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Abstract

Quantum mechanics is the gateway towards novel and potentially disruptive approaches to scien-
tific and technical computing. In this thesis we explore, from a number of different perspectives, the
effects of such strong relationship between the physical nature of information and the informational
side of physical processes, with a focus on the digital quantum computing paradigm.

After an extensive introduction to the theory of universal quantum simulation techniques, we
review the main achievements in the field and, in parallel, we outline the state of the art of near-term
architectures for quantum information processing. We then move on to present novel and scalable
procedures for the study of paradigmatic spin models on intermediate-scale noisy quantum proces-
sors. Through an innovative combination of quantum algorithms with classical post-processing and
error mitigation protocols, we demonstrate in practice the full digital quantum simulation of spin-
spin dynamical correlation functions, reporting experimental results obtained on superconducting
cloud-accessible IBM Q devices. We also exhibit a practical use-case by successfully reproduc-
ing, from quantum computed data, cross section calculations for four-dimensional inelastic neutron
scattering, a common tool employed in the analysis of molecular magnetic clusters.

The central part of the thesis is dedicated to the exploration of perspective hardware solutions
for quantum computing. As it is not yet clear whether the currently dominant platforms, namely
trapped ions and superconducting circuits, will eventually allow to reach the final goal of a fully-
fledged architecture for general-purpose quantum information processing, the search for alternative
technologies is at least as urgent as the improvement of existing ones or the development of new
algorithms. After providing an overview of some recent proposals, including hybrid set-ups, we
introduce quantum electromechanics as a promising candidate platform for future realizations of
digital quantum simulators and we predict competitive performances for an elementary building
block featuring nanomechanical qubits integrated within superconducting circuitry.

In the final part, we extend the reach of quantum information protocols beyond its traditional
areas of application, and we account for the birth and rapid development of Quantum Machine
Learning, a discipline aimed at establishing a productive interplay between the parallel revolutions
brought about by quantum computing and artificial intelligence. In particular, we describe an
original procedure for implementing, on a quantum architecture, the behavior of binary-valued
artificial neurons. Formally exact and platform-independent, our data encoding and processing
scheme guarantees in principle an exponential memory advantage over classical counterparts and
is particularly well suited for pattern and image recognition purposes. We test our algorithm on
IBM Q quantum processors, discussing possible training schemes for single nodes and reporting a
proof-of-principle demonstration of a 2-layer, 3-neuron feed-forward neural network computation
run on 7 active qubits. The latter is, in terms of the total size of the quantum register, one of the
largest quantum neural network computation reported to date on real quantum hardware.
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Introduction

Over slightly more than a century, quantum mechanics revolutionized the physical sciences like
almost no other theory ever did. The advent and fortunes of modern optics, chemistry, solid
state and particle physics, just to name a few examples, all relate to the deep principles governing
the microscopic world. At the same time, foundational and interpretational problems connected
to quantum theory challenged, and still challenge, the very meaning that we assign to scientific
experiences: Bell’s inequalities [1], together with a number of similarly counterintuitive results,
certified the untenability of the orthodox combination of realism and locality, thus paving the way
for an information-oriented vision of the universe [2]. Driven by that awareness, unveiling the
physical nature of information [3, 4] opened new philosophical horizons: indeed, if on one hand
computation and communication should ultimately be regarded as physical processes subject to
an appropriate set of laws and limitations, it might also be productive to symmetrically frame all
physical entities in operational terms, with states and events being placeholders for the reality of
protocols, preparations and observations. In this spirit, we may then acknowledge that the way
we speak about the world is at least as important as what we talk about: to say it in different
words, information manipulation and the understanding of natural phenomena are unequivocally
and intimately related.

The interplay between physical systems and their possible role as either computers or subjects
of a computation is particularly strong, for conceptual and technological reasons, in the quantum
realm: in this work, we will examine such relationship from different angles. The fundamentals
of quantum computer science have been elaborated in the past few decades [5], proving mathe-
matically the advantages offered by quantum information processing over classical counterparts.
Within the same period of time, only preliminary experimental realizations of quantum computing
architectures, and no practically relevant speed-up, were reported: genuine quantum mechanical
properties, specifically coherence and entanglement, are fragile and elusive almost as much as they
are potentially powerful. However, and despite the remarkable distance that, without any doubt,
still separates us from the fully quantum-powered era of computation, a new wave of optimism is ris-
ing in the scientific community. Quantum technologies, from sensing to cryptography, are receiving
increasing attention from institutional and industrial pioneers, and quantum computing remains
at the forefront of those efforts. As classical computers both created new areas of research and
enabled some of the most spectacular achievements of mankind, not least the landing on the Moon
of which we celebrate in 2019 the 50th anniversary, the hope for a similar or even greater impact
looks reasonable for the field of quantum information. Apart from a few much sought milestones,
and some inevitable inflated claims, an incremental approach towards the final goal of fault-tolerant
quantum computation seems nowadays the most viable strategy: in this quest, the so called Noisy
Intermediate-Scale Quantum (NISQ) processors are certainly in the best position to play a vital
role [6]. Indeed, finding early applications to practical problems, while keeping a steady progress
on fundamental issues, is considered the key to a smooth and sustainable growth.

As we will see in Chapter 1, a very natural test bed for quantum computing is represented by
quantum simulations. The importance of the latter, recalling the beginning of our discussion, can
hardly be overstated: being able to simulate, namely describe and control, physical events repre-
sents one of the sharpest forms of scientific investigation. Moreover, it is well known that, when the
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viii Introduction

target model is quantum mechanical, the classical resources required to carry out such a task scale
exponentially with the size of the problem, thus calling for a radical change in the numerical tech-
niques to be adopted. We will concentrate upon the digital approach to quantum simulations, where
the name itself manifests the focus on an abstract, discrete and platform-independent encoding and
manipulation of information: within this scheme, any architecture designed for general-purpose,
qubit-based quantum computing can equally well be regarded as a Universal Quantum Simula-
tor capable of reproducing efficiently, under a suitable mapping, the dynamics of a large class of
physical systems. After a formal introduction to digital quantum simulations and an extensive dis-
cussion about the most common algorithmic procedures and tools, we will then review the major
advancements in the field and, in doing so, we will essentially assess the present status of quantum
computing technologies. Special attention will be devoted to trapped ions and superconducting
platforms, which are currently leading the way.

In Chapter 2, we will deploy digital quantum simulation protocols on real NISQ superconduct-
ing processors and we will present original and potentially scalable procedures to extract physically
meaningful results from such non error-corrected quantum chips. After some preliminary tests on
archetypal spin models, we will concentrate on the quantum simulation of dynamical spin-spin cor-
relation functions, from which several energetic and structural characteristics of a given system can
be extracted. The practical experiments that we are going to discuss, involving quantum registers
containing up to 5 active qubits, were all performed by accessing remotely the real quantum back-
ends made available by IBM via the IBM Quantum Experience program, using the Qiskit (Quantum
Information Science Kit) open source python library. Besides providing explicit examples of the
natural capabilities of such state-of-the-art quantum processors, we will conduct a thorough analysis
of the actual noise sources and systematic errors affecting their performances. In particular, we will
argue that, for digital quantum simulation purposes, systematic coherent inaccuracies are currently
the limiting factor, and we will introduce and successfully employ an a posteriori error mitigation
procedure based on general symmetry considerations and sum rules. A practical application of the
results to a real physical problem, namely the calculation of the cross section for four-dimensional
inelastic neuron scattering investigations of magnetic clusters, will also be described.

Having reviewed and demonstrated the current level of maturity of the dominant quantum tech-
nological platforms, in Chapter 3 we will move on to discuss perspective and alternative hardware
solutions for quantum information processing. Focusing on the so called hybrid paradigm, in which
different components with complementary strengths and weaknesses are combined to optimize the
desired functionality, we are going to present an original proposal of an electromechanical architec-
ture for digital quantum simulations. We will describe an intrinsically scalable elementary building
block featuring, as quantum information carriers, two nanomechanical oscillators integrated within
usual superconducting circuitry. Through numerical simulations, we will investigate the potential
fidelities of a universal set of single- and two-qubit gates, which greatly benefit form the design
of the set-up and from the promising coherence properties of nanomechanical devices. Moreover,
we will extensively comment on a novel method to achieve sufficiently high levels of single-phonon
non-linearity, an essential ingredient for the reliable isolation of a computational basis. Finally, we
will predict competitive performances in the realization of typical digital quantum simulations.

In Chapter 4, we will cross the traditional boundaries of quantum information science, introduc-
ing machine learning as a new potential application arena. Like abstract physical theories eventually
produced novel insights in computer science, many celebrated protocols in artificial intelligence ac-
tually originated from schematic models of neural activity and from the formalization of learning
processes. These later evolved into a totally new perspective on software design and led to strik-
ing advancements in the way information processing systems interact with the surrounding world:
along these lines, the rapidly growing field of Quantum Machine Learning aims at establishing a
productive interaction between two currently very active areas of research. Here, we will first give
a brief account of the most advanced quantum approaches e.g. to classification tasks, once again
with a particular focus on the standard digital and circuit-based model of quantum computation.
To provide a fresh merger of quantum information and machine learning, we will then go back to
the roots of artificial neural network computation and outline an original procedure for reproduc-
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ing, on a quantum architecture, the well known McCulloch-Pitts model of binary-valued artificial
neurons. We will describe an optimized data encoding and processing scheme, built upon the class
of quantum hypergraph states and showing possible exponential advantages in storage resources
over classical equivalents. The protocol, declined as an elementary image recognition problem, will
be tested on real IBM Q processors both at the single node level and in a first attempt to realize a
fully quantum feed-forward neural network (ffNN) computation. In particular, a proof-of-principle
demonstration of a 2-layer and 3-neuron ffNN, run on a 7-qubit quantum register, will be reported
and discussed.

A summary of the main achievements, together with an outlook on future works, is left for the
final Conclusions.





1
Digital quantum simulations

A scientific comprehension of the world and its phenomena requires the ability of preparing, ob-
serving, registering and interpreting in a coherent framework a series of events. The principle that
guides sensible researchers in many aspects of their often wandering activity is in fact best phrased
by Richard Feynman’s eponymous words “What I cannot create, I do not understand ”. As we live
nowadays in a society recognizing the fundamental role of information and information processing
as a basis for communication and discovery, it is not surprising that the way scientists, and partic-
ularly those acquainted with formal methods of investigation, deal with the recreation of natural
facts has also evolved to encompass the computational methods of simulation.

Simulating a natural process means being able to artificially reproduce its properties and its
dynamical evolution in time. This is most effectively done in a controlled environment where all
external variables are under full control. The very first example of a simulation is, in this extended
sense, an accurate mathematical modeling, i.e. a mapping of the information we know about a
system of interest onto a certain set of variables and equations, followed by an analytic or numerical
solution. The resulting set of mathematical identities, or the computer with the routine aimed
at solving them, can then be called a simulator. With such a simulator, the experimenter can in
principle probe the behavior of the real system under fairly general conditions, initialize its state
almost at will, make predictions and test new hypotheses, the only limitations being the validity of
the initial modeling and, possibly, the available computational power.

Quantum mechanics, widely recognized as the most successful and so far unchallenged micro-
scopic theory of our universe, currently represents the ultimate frontier of scientific simulation.
Models formulated in quantum mechanical terms are often conceptually troublesome and techni-
cally demanding. Despite the many methods and tools which have been developed over the last
century such as quantum Montecarlo [7], molecular dynamics [8] or tensor networks [9], it has be-
come more and more clear that the distance separating us from the the realm of full many-body
quantum simulations will hardly be covered with the sole help of classical computing machines. The
most prominent and essential reason lies in the exponential scaling of the size, in terms of time and
memory resources, of the numerical problems that researchers typically face when trying to reduce
real physical systems to their fundamental constituents. This is in turn a manifestation of the well
known quantum mechanical principle associating tensor products of complex vector spaces to sys-
tems composed of a large number of parts. The failure of classical simulation methods is especially
manifest when strong quantum correlations between subsystems become dominant in determining
the properties of the object under investigation, which is indeed the case in many interesting and
generally open problems.

Building on the original idea, usually attributed to Feynman [10] with early contributions by
Y. I. Manin [11] and P. Benioff [12], that the intimately quantum properties of Nature necessarily
require a fully quantum computing machine to be efficiently described, quantum simulators have
been proposed in the last few decades as the gateway towards a new approach to scientific computing.
A quantum simulator is per se a physical quantum system which is able, under controlled conditions,
to mimic the dynamical behavior of another quantum physical model. In other words, a quantum
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2 Digital quantum simulations

simulator arises primarily from the awareness that any computation, and hence any computer, is in
itself a physical process [4]. Such an approach immediately leads to the idea of a system which is able
to process quantum information as if its own internal states obeyed, under a suitable mapping and
irrespective of the degree of internal correlations or entanglement, the dynamical laws governing the
evolution of a target model. Just like in the early days of classical computing, two complementary
viewpoints can be taken on the subject, with different degrees of generality and technical complexity.
On one hand, when the focus is put on the physical states of the simulator, namely when the
relationship between the controlled and the target system are already evident at the hardware level,
we generally speak of analog quantum simulators. These devices are tailored to reproduce, on a
certain physical platform with its own governing set of quantum dynamical equations, the behavior
of a restricted class of other physical models which are also formally governed by the same set of
equations, or which can be closely related to it via a simple mapping. The simulator is usually
operated by initializing and evolving its state under carefully designed conditions: the observations
made on the simulator are then referred to the target model in the very same way a sophisticated
toy train can provide hints on its bigger counterpart. Following this route, a plethora of analog
quantum simulators have been proposed [13–24] and developed [25–36] on several platforms ranging
from cold atoms to superconduting circuits, solid state devices and photonic systems. On the other
hand, digital quantum simulators are programmable and general purpose quantum devices, which
promise a larger flexibility on the models to be solved [37–57]. Here the focus is shifted towards
the information processing character which ultimately pertains to any physical dynamics and, in
this respect, digital quantum simulators are in principle quantum machines satisfying DiVincenzo
criteria [58] for universal quantum computation. From now on, we will mainly focus on this second
approach, and we will often refer to digital quantum computers as universal quantum simulators
(UQS) [37].

In a digital quantum simulation, the evolution of the physical model is mapped, following the
usual mathematical formulation of quantum mechanics, onto the effective algebra of quantum reg-
isters made of qubits. The quantum time propagator, namely a unitary operation, can then be
programmed in digital steps through a sequence of quantum logic gates (i.e. unitary transforma-
tions on the qubits) defining a quantum circuit [5]. In the following, we will provide specific examples
and general recipes both for the mapping of the target system and for the translation of evolution
operators into quantum register operations. We will in particular concentrate on the class of quan-
tum spin models, which besides being extremely interesting on their own right, usually constitute
the ideal formal conjunction between general quantum mechanical models and their correspond-
ing representation in terms of qubits. Spin models are in this sense the key towards the quantum
simulation of a large class of manybody quantum models, such as interacting fermionic systems,
that are known to be classically intractable [59]. Paradigmatic examples are the Hubbard model
in condensed matter [48, 60], or the Schwinger model in lattice gauge field theory [52, 61, 62]. In
particular, we will emphasize the role of specific quantities that are known to be difficult to compute
but extremely important in the description of the dynamical response [63] of manybody systems,
such as quantum correlations. Despite being in principle much more powerful, UQS are typically
difficult to realize in practice compared to analog simulators, mainly due to the well known stringent
requirements for general purpose quantum computation [58]. In this respect, it is worth mentioning
that hybrid digital-analog quantum simulators have also been proposed, aimed at combining the
easier scalability of analog approaches with the intrinsic universality of digital quantum simula-
tions [64]. This paradigm is hailed as a promising route leading to universal digital-analog quantum
computation.

Several general purpose [6, 65–67] and more category- or hardware-specific [68–73] accounts
of the development in the field of quantum simulators can be found in the literature. In the
following sections, we will start by giving a detailed description of the theoretical foundations of
digital quantum simulations, commenting on the related mathematical techniques and with a clear
focus on the tools that are most often required in practical cases. This will provide the necessary
background to support the description of the original results presented in the following chapters.
We will then describe and comment the recent and future development of the field in terms of
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both algorithmic procedures and experimental results. We will pay special attention to near-term
realizations of digital quantum computers and simulators, and particularly to those technological
platforms which are currently leading the way, namely coherently manipulated trapped ions [74, 75]
and superconducting circuits working at microwave frequencies [76–78]. We will closely follow
the fast pace of advancement which, in recent years, has made programmable devices available
even outside research laboratories, attracting widespread interest. Indeed, established technological
companies such as IBM and Google, startup ventures (Rigetti Computing and IonQ to name a few)
and public institutions [79] all have designed and deployed consistent strategies in search of the long-
sought goal of “quantum advantage”. Such efforts hold promise for breaking the barriers currently
limiting the simulations of complex many-body physics with classical computing machines. Without
entering into rigorous definitions here [80–82], we can identify such threshold close to the size of 50
to 60 fully operational qubits. Indeed, by reasoning in orders of magnitude and by assuming that
∼8 bytes are needed to store a complex number in single-precision, a 50 qubit quantum register
would in general be able to manipulate around 8×2N ∼ 9 ·1015 bytes of information, corresponding
to roughly 9 Pb. This in turn approximates the typical amount of random access memory in
state-of-the-art supercomputers [80, 81]. Quantum advantage for scientific applications is largely
believed to be within reach already in the current era of Noisy Intermediate Scale Quantum (NISQ)
devices [6], and it represents the landmark which would unequivocally certify the maturity of the
field and probably its potential commercial value. Towards this direction, relevant claims of a 53-
qubit superconducting quantum hardware outperforming even the most powerful supercomputer
currently available in the completion of a specific algorithmic task have recently been reported [83].
While certainly setting an important technological milestone, such device has not yet been employed
to run a programmable quantum simulation of a physical model with certified advantage, nor it
has been used so far for the demonstration of practical use cases. Far-reaching consequences may
of course be expected if fully fault tolerant and scalable quantum hardware will effectively become
available [60, 84–86], in which N > 100 logical qubits should be complemented with a much larger
number of auxiliary quantum bits aimed at correcting noise induced errors. However, it is more
difficult to foresee now a timescale for the practical realization of this paradigm.

On a parallel sight, while the main object of this chapter is restricted to quantum simulations of
physical models, it is nevertheless worth mentioning already at this stage that the same techniques
could in principle be applied to more general computational tasks. Some complex problems in
fields outside the physical sciences, such as optimization, stock market pricing [87, 88] and machine
learning [89] are indeed known to have close relationships with many mathematical models in physics
or engineering, and might therefore benefit from speedup advantages over classical computers.

1.1 Theory of quantum simulations

When a physical theory is designed to describe the evolution in time of a system, the mathematical
description is typically formulated in the language of differential equations. Their solution is at the
heart of most simulation protocols nowadays, from molecular dynamics to aircraft design. A very
common situation is, for example, a linear set of equations such as

d~x

dt
= M~x (1.1)

where M is a matrix and ~x represents a vector of dynamical variables. Given an initial condition
~x(0), the formal solution to the above equation is simply

~x(t) = eMt~x(0) (1.2)

Implementing such a solution on a computer routine gives a useful tool to fully solve the system
dynamics, provided that the size of the numerical problem is within reach of the available computa-
tional resources. In quantum mechanics, the corresponding paradigmatic example is the Schrödinger
equation (here and in the following, we will assume ~ = 1)

d |Ψ〉
dt

= −iH |Ψ〉 (1.3)



4 Digital quantum simulations

where H is known as the Hamiltonian operator and the associated complex linear space is the well
know Hilbert space of wavefunctions. The Schrödinger equation can in principle be fully solved by
computing the unitary time-evolution operator U(t) = e−iHt. Once the latter is known, any initial
condition can be evolved linearly as

|Ψ(t)〉 = U(t) |Ψ(0)〉 (1.4)

From the few examples above, we can already see that matrix exponentiation is an ubiquitous
numerical task in simulation scenarios, and crucially in the field of quantum mechanical systems.
On classical computers, matrix exponentiation is a notably difficult problem whose computational
complexity is believed to scale at least polynomially with the size of the matrix [90]. When combined
with the exponential growth of the linear dimensions associated to a composite quantum mechanical
system with the number of sub-systems, this in turn leads in general to an exponential demand of
time and memory resources for manybody quantum simulations. In the next section we will discuss
how quantum computing devices might be able to overcome such limitations in many cases of
practical interest.

1.1.1 From Feynman to Lloyd

In 1982, Richard Feynman conjectured that using a controllable quantum mechanical system as
a computing resource, instead of a classical object, would provide significant advantages in the
simulation of quantum systems [10]. Indeed, just about fifteen years later, in 1996, Seth Lloyd proved
that idea to be essentially correct [37], with the sole limitation that the systems to be simulated
only carry local interactions between their constituent subsystems. We will thus concentrate on
system Hamiltonians of the form

H =

L∑

l

Hl (1.5)

where Hl acts locally only on a portion of the total system.
Given a certain Hamiltonian that models the physical system under investigation, H, the problem

of computing the corresponding time evolution operator U(t) = exp (−iHt) is equivalent, from a
quantum informational perspective, to the task of realizing a well defined unitary transformation.
As it is well known in the field [5], a quantum computing device endowed with a universal set of
quantum gates is by definition able to perform any arbitrary unitary transformation, albeit not
necessarily in an efficient number of elementary operations. What Lloyd actually proved is that
universal quantum computers can calculate U(t) efficiently (i.e. with polynomial time and memory
resources in the size of the target system) whenever H is a sum of local terms. The proof of
this result relies on the following two fundamental facts: first, in the circuital model for universal
quantum computation a general unitary transformations can always be implemented by successively
performing elementary unitary operations (quantum gates), and appending one unitary UA after
another UB in the circuit results in a total unitary which mathematically is the product UAUB being
applied to the state of the qubit register. Second, any unitary operation U acting on N qubits can
be implemented with O(22N ) elementary operations [5, 91]. Here we recall that the dimension of
the Hilbert space associated to N qubits is d = 2N . Suppose now that we are given a Hamiltonian
which is a sum of local terms, as in Eq. (1.5), with say L ∝ p ·N , where p measures some degree
of locality1 and N is the total number of qubits required to encode the computation. According to
the rules above, computing directly U(t) = exp (−iHt) in general requires O(22N ) operations, and
is therefore exponentially inefficient. However, let us call ml the dimension of the subsystem over
which the action of each Hl is restricted. We can assume that ml � 2N , since typical local terms
only involve few-body interactions. In this case, the unitary Ul(t) = exp (−iHlt) can be computed
with O(m2

l ) operations. The overall product

Ũ =
∏

l

Ul(t) (1.6)

1For example, in a lattice of N nodes with pairwise interactions and p nearest neighbors we have L = pN/2.
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can therefore be obtained on a universal quantum computer by juxtaposing the circuit implemen-
tations of the single Ul(t) unitary matrices and takes at most O(Lm2

max) elementary operations,
where mmax = maxlml. The final step of the reasoning lies in the following mathematical identity,
which is known as the Suzuki-Trotter (ST) decomposition:

e−i
∑
l Hlt = lim

n→∞

(∏

l

e−iHlt/n
)n

(1.7)

If all the Hl operators commute, namely

[Hl,Hl′ ] = 0 ∀l, l′ (1.8)

the ST identity is exact already for n = 1. However, in general the product of local time evolution
operators will not be exactly equal to the total target unitary U(t) = exp (−iHt), but it can be
shown that ∀n

U(t) = e−i
∑
l Hlt =

(∏

l

e−iHlt/n
)n

+O

(
t2

n

)
(1.9)

The equation above means that we can approximate arbitrarily well the desired quantum mechanical
time propagator by repeating n times the sequence of gates corresponding to the product of local
terms for shorter time steps t/n. All in all, we were able to break our original problem into smaller
pieces, e−iHlt/n, which can now be implemented efficiently using only a limited set of elementary
gates and give the correct answer up to an arbitrarily small digital error O(t2/n). Indeed, for any
ε > 0 and t, there exists a nε such that U(t) can be computed within an approximation ε in at most
nεLm

2
max operations. This is polynomial in N whenever L = poly(N), as for example in the case

of nearest neighbors interactions.

1.1.2 Quantum simulations cookbook

A universal quantum computer will be described, from now on, as a qubit-based digital quantum
device obeying the algebra of Pauli matrices and operating with a universal set of quantum gates [5].
Given the results presented in the previous section, the problem of quantum simulation can then
be formulated and solved on such a machine in a handful of simple steps.

First, a model Hamiltonian of interest H must be defined. As for any sensible physical descrip-
tion, H should contain all the dynamical information characterizing the physical quantum system
under investigation. The most appropriate set of variables and operators will appear in the mathe-
matical structure of the Hamiltonian, such as for example frequencies and couplings, spin matrices,
fermionic/bosonic creation and annihilation operators or lattice-discretized quantum fields.

Second, the target Hamiltonian H must be mapped onto its equivalent representation on the
qubit Pauli algebra

H → H({σα}) (1.10)

This step requires a suitable encoding of the degrees of freedom of the target system into a number
N of qubits. All the relevant quantum mechanical states and operators must be rephrased in terms
of computational basis states and Pauli matrices {σα} acting on them, thus resulting in mapped
Hamiltonian H. We recall here that the Pauli algebra of qubits is characterized by the following
well known set of SU(2) matrices

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
(1.11)

satisfying the following commutation and anti-commutation rules

[σα, σβ] = 2iεαβγσγ , {σα, σβ} = 2δαβI (1.12)

where α, β, γ ∈ {x, y, z}, εαβγ is the Levi-Civita tensor, δαβ is the Kronecker delta and I is the
identity matrix. The Pauli algebra is at the heart of the physical description of spin-1/2 quantum
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systems and therefore the mapped Hamiltonian H will in general correspond to a model of interacting
spin-1/2 operators, such as for example the Heisenberg or Ising chain. It is easy to understand at
this stage the reason why spin systems represent the ideal contact point between physical and
computational quantum problems. Despite being intrinsically more involved, effective mappings
are also known for a large variety of interesting cases, ranging from spin S > 1/2 [47, 54, 92] to
fermionic and fermionic-bosonic systems [38, 47–49, 54, 57, 64, 93–95] usually through the well
known Jordan-Wigner transformation [40, 47, 96, 97]. Other recent examples include lattice models
related to gauge theories [61, 62] and even quantum gravity studies [55]. Regardless of the details of
the originalH, the quantum simulation will be efficient, in Lloyd’s sense, whenever the corresponding
H is the sum of local terms. This is usually not a limitation in many practical cases, as most physical
processes are inherently local in nature.

In the third step, assuming the target Hamiltonian is mapped onto a sum of local contributions

H =
∑

l

Hl (1.13)

one must check whether [Hl,Hl′ ] = 0 ∀l, l′. If that is the case, then

e−iHt =
∏

l

e−iHlt (1.14)

with no error. Otherwise, an appropriate number n of ST steps (sometimes referred to as Trotter
steps) must be chosen according to the required degree of precision, in such a way that, by applying
Equations (1.7) and (1.9)

e−iHt '
(∏

l

e−iHlt/n
)n

(1.15)

This application of the ST formula is sometimes called Trotterization in quantum simulations jargon,
and the error which arises from the above approximation formula is also named digitalization or
digital error. In pictorial terms, one might somehow compare this situation with the well known
analog-to-digital conversion tasks performed on classical computers, where a finite set of discrete
operations accessible to the machine must be used to approximate a continuum of possible signals.
We will come back to the properties and limitations set by digitalization errors in a subsequent
section.

Fourth, each local unitary e−iHlt (or e−iHlt/n) must be translated into a sequence of quantum
gates. This is always possible in at most O(m2

l ) operations and with any universal set of single- and
two-qubit operations available on a general purpose quantum computer [5]. However, no unique
scheme or library exists in general to carry out such translation, as different universal set of op-
erations are in principle all equivalent and specific choices are usually dictated by the processor
architecture or by technical efficiency considerations. Some examples and common “dictionaries”
will be discussed later in this chapter. Once the individual sequences corresponding to the factors
in the ST decomposition are known, the total quantum circuit encoding the time evolution will
simply be the juxtaposition of all of them, repeated in general n times.

Finally, initial state preparation must be included at the beginning of the circuit, and an ap-
propriate set of measurements must be appended at the end to recover expectation values of the
relevant observable quantities on the evolved quantum state. Notice that these are by no means
trivial tasks, since general quantum states and measurements require the ability of preparing and
observing highly correlated states and properties.

While the points outlined above represent a quite general set of instructions towards the design
of a quantum simulation algorithm, moving to practical implementations of such scheme usually
requires a number of algorithmic and quantum computational tools, which must also be adapted
to the specific hardware platform on which the computation is to be performed. We will provide
specific examples and useful formal techniques in the following sections. The general philosophy
behind a digital quantum simulation is also summarized in Fig. 1.1. Once more, we stress that the
class of computational tasks which can be treated with the methods of quantum simulations is not
at all limited to actual physical systems, but extends towards any problem that is expressible in the
form of Hamiltonian quantum dynamics.
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Mapping

Gate decomposition

Quantum circuit

|ψ〉0

Pauli Hamiltonian H{σ(i)
α }

|ψ(t)〉 '
(∏

l e
−iHl

t
n

)n |ψ〉0

Physical model

|Ψ〉0 |Ψ(t)〉e−iHt
Observables

Figure 1.1: Conceptual illustration of a digital quantum simulator. A physical Hamiltonian
H determines the quantum state evolution Ψ(t), which can be approximated to arbitrary precision
by mapping the given model on a spin-type algebra and slicing the time evolution according to the
Trotter-Suzuki formula. The resulting sequence of unitary operations is then put in the form of a
quantum circuit to be directly run on a quantum computing hardware. Finally, observations made
on the approximated output state of the quantum register, ψ(t), are mapped back to the original
physical space.

1.1.3 Spin mapping and circuit decompositions

Among the steps that must be undertaken in order to practically design and realize a digital quan-
tum simulation, the translation of unitary operators into elementary quantum gates is the one that
is most typically hardware-dependent. It is also critical in terms of results and performance, par-
ticularly in the present era of NISQ prototypes, where the correlation between hardware properties
and target features is stronger. In this section, after introducing the general form of typical mapped
Hamiltonians H, we will review the most common choices for universal sets of single- and two-qubit
gates and we will related them to the technological platforms where they are employed. We will
then present, for paradigmatic spin-type Hamiltonian terms, the corresponding possible quantum
gate sequences: in this way, we are going to build a fundamental library that will constitute the
stepping stone towards more specific applications. We recall, as already mentioned before, that the
choice of spin models does not limit the generality of the discussion: indeed, they formally obey the
abstract Pauli algebra which is the common logical basis of all digital quantum registers.

In Section 1.1.2 we have introduced the general idea that, for all practical purposes, most prob-
lems in digital quantum simulations are ultimately brought in the form of a spin-1/2 Hamiltonian
which can be directly mapped onto a N -qubit quantum register. As an example [73, 93], consider
the following Fermi-Hubbard minimal model describing two lattice sites i ∈ {1, 2} and two fermions
with opposite spin directions s ∈ {↑, ↓}:

H = −V
(
b†1,↓b2,↓ + b†1,↑b2,↑ + h.c.

)
+ U

(
b†1,↓b1,↓b

†
1,↑b1,↑ + b†2,↓b2,↓b

†
2,↑b2,↑

)
(1.16)

where h.c. means the Hermitian conjugate and the operator b†i,s (bi,s) creates (annihilates) a fermion
with spin s on site i. In H, the coefficients V and U are hopping and on-site repulsion energies.
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Fermionic operators obey the canonical anticommutation rules

{bi,s, b†i′,s′} = δii′,ss′I {bi,s, bi′,s′} = 0 (1.17)

The spin mapping can be obtained by applying the Jordan-Wigner transformation [38, 40, 96, 97],
which in this case takes the explicit form

b†1,↓ = I⊗ I⊗ I⊗ σ+

b†2,↓ = I⊗ I⊗ σ+ ⊗ σz
b†1,↑ = I⊗ σ+ ⊗ σz ⊗ σz
b†2,↑ = σ+ ⊗ σz ⊗ σz ⊗ σz

(1.18)

Here 2σ+ = σx+ iσy and the anticommutation relations are preserved due to the properties of Pauli
matrices. The resulting mapped Hamiltonian reads

H =
V

2
(σx ⊗ σx ⊗ I⊗ I + σy ⊗ σy ⊗ I⊗ I + I⊗ I⊗ σx ⊗ σx + I⊗ I⊗ σy ⊗ σy)

+
U

4
(σz ⊗ I⊗ I⊗ σz + I⊗ I⊗ I⊗ σz + σz ⊗ I⊗ I⊗ I)

+
U

4
(I⊗ σz ⊗ σz ⊗ I + I⊗ σz ⊗ I⊗ I + I⊗ I⊗ σz ⊗ I)

(1.19)

or, equivalently,

H =
V

2

(
σ(1)
x σ(2)

x + σ(1)
y σ(2)

y + σ(3)
x σ(4)

x + σ(3)
y σ(4)

y

)

+
U

4

(
σ(1)
z σ(4)

z + σ(1)
z + σ(4)

z + σ(2)
z σ(3)

z + σ(2)
z + σ(3)

z

) (1.20)

where we indicate with σ(k)
α the operator σα acting on the k-th component of the tensor product. As

H is now the sum of local Pauli terms, the corresponding time evolution operator could be simulated
on a 4-qubit quantum register, as it will be clear in the following. It is not difficult to abstract from
this elementary example and to write down the typical form for the generator of time evolution in
a N -qubit digital quantum simulation:

H =
N∑

i=1
α=x,y,z

h
(1)
α,iσ

(i)
α +

N∑

i,j=1
α,β=x,y,z

h
(2)
αβ,ijσ

(i)
α σ

(j)
β + . . . (1.21)

Only single- and two-spin terms are explicitly shown here, as the time evolution induced by any other
manybody term can in principle be reduced to these ones in a direct application of the well known
universality of single- and two-qubit operations [5]. However, it is worth mentioning that in some
specific architectures where many-body interactions are natively implementable (e.g. in trapped
ions quantum processors) the class of elementary operations can be extended without affecting
neither the universality nor the efficiency of the quantum simulation methods, provided that the
overall structure of H retains a local nature. We should also notice at this stage that H 7→ H({σα})
mapping procedures may generate non-local or many-body interactions even from apparently simple
target Hamiltonians H: for example, the application of the Jordan-Wigner transformation in more
than one dimension or with long-range couplings leads to multi-spin interactions in the resulting
H. Indeed, Eq. (1.18) must in general be replaced by b†j =

(∏j−1
l=1 −σ

(l)
z

)
σ

(j)
+ [40], where we have

introduced for simplicity a single label j = {i, s} for fermionic modes addressing both site and
spin variables. The resulting spin Hamiltonian contains several terms, depending on the number
of occupied states existing between each pair of interacting fermions after lattice sites have been
properly ordered [54].
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Before moving to technical discussions, we can now use Eq. (1.21) to set up the notation and
terminology for some of the renown spin models that we will most often deal with in the rest of this
work. Among these, the Heisenberg model corresponds to a Hamiltonian of the form

HHeis = J
∑

〈i,j〉

(
σ(i)
x σ(j)

x + σ(i)
y σ(j)

y + σ(i)
z σ(j)

z

)
, (1.22)

A generalization to anisotropic couplings gives the XYZ model

HXYZ =
∑

〈i,j〉

(
Jxxσ

(i)
x σ(j)

x + Jyyσ
(i)
y σ(j)

y + Jzzσ
(i)
z σ(j)

z

)
, (1.23)

which reduces to the so called XY model if Jzz = 0. In all cases, a transverse magnetic field can be
added via single qubit terms, such as in the Transverse Field Ising model (TIM)

HTIM =
∑

i

hiσ
(i)
x +

∑

〈i,j〉
Jzzσ

(i)
z σ(j)

z (1.24)

Here 〈i, j〉 denote nearest neighbors spin pairs.

Universal sets of quantum gates on NISQ processors

Any given hardware architecture comes with a native set of operations which are implemented in
practice according to the physical characteristics of the device. The platform has the potential
for implementing universal quantum computation and simulation if and only if, among all other
criteria [58], such native set of operations contains a universal set in the usual quantum computing
sense. Several of such universal sets of single- and two-qubit gates are known [5], all in principle
equally powerful. If the requirement is satisfied, any target unitary evolution can be translated into a
combination of the native operations without unnecessary overhead. Processors based on different
technological platforms may also exhibit distinct qubit-qubit inter-connectivity and other more
technical constraints such as limitations in gate directionality. These features do not usually pose
hard limitations to the computational power of the platform, since they can always be compensated
via, e.g., SWAP operations. However, they may result in some overhead in the total length of
the simulations, even up to the point that the results of certain computations are significantly
degraded due to the still limited resilience of NISQ devices to noise, cross-talks and gate errors. As a
consequence, it is certainly the case that some NISQ platforms are more suitable for the simulation
of certain physical models (e.g. trapped ions, featuring built-in all-to-all connectivity, can more
easily simulate long-range interactions), even though in principle any full-fledged digital quantum
simulator could reproduce arbitrary quantum dynamics. A fair comparison of performances between
competing platforms requires all these factors to be taken into account [98, 99].

Single qubit control is one of the most basic requirements for general-purpose quantum compu-
tation. All currently proposed and realized quantum computing platforms allow addressing single
qubits with tailored control pulses to perform single qubit gates. The most general single qubit
SU(2) operation has the form

U(θ, φ, λ) =

(
cos(θ/2) −eiλ sin(θ/2)

eiφ sin(θ/2) ei(λ+φ) cos(θ/2)

)
(1.25)

and can be obtained, for example, by combining well known single qubit quantum gates such as the
Hadamard gate2

H =
1√
2

(
1 1
1 −1

)
(1.26)

and the phase gate

Φ(δ) =

(
1 0
0 eiδ

)
(1.27)

2There is often a conflict of notation between Hadamard gates and Hamiltonians, for both are customarily indicated
by “H”. We will not unnecessarily complicate the notation as long as the meaning is clear from the context.
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Indeed, the following identity holds:

U(θ, φ, λ) = e−iθ/2Φ
(π

2
+ φ

)
HΦ(θ)HΦ

(
−π

2
+ λ

)
(1.28)

Rotations around the coordinate axes

Rα(θ) = exp

(
−iθ

2
σα

)
α = x, y, z (1.29)

can be implemented, up to global phase factors, by choosing particular parameters in U(θ, φ, λ). For
example, Rz(λ) = e−iλ/2Φ(λ) = e−iλ/2U(0, 0, λ), Rx(θ) = U(θ,−π/2, π/2) and Ry(θ) = U(θ, 0, 0).
Vice-versa, any platform capable of implementing single-qubit rotations around the coordinate axes
can in principle realize an arbitrary U(θ, φ, λ) via the identity

U(θ, φ, λ) = Rz(φ)Rx(θ)Rz(λ) (1.30)

Finally, it is interesting to mention that the mathematical relation

U(θ, φ, λ) = Rz(φ− π/2)Rx(π/2)Rz(π − θ)Rx(π/2)Rz(λ− π/2) (1.31)

justifies a particularly effective experimental technique in which arbitrary single-qubit operations
are performed by using only fixed-phase Rx(π/2) gates, thus requiring just a single or few external
pulse calibrations, and error-free virtual Rz gates which are essentially changes of reference frame in
the control software [100]. Other formal decompositions of general SU(2) transformations, as well
as approximate results employing only a finite set of fixed-phase single qubit operations instead of
continuous-valued ones, are also known [5, 101].

All universal sets of quantum gates require at least a two-qubit fully entangling operation.
The exact way this requirement is satisfied in real processors strongly depends on the underlying
architecture and might differ even for competing implementations based on the same fundamental
technology. For example, superconducting qubits connected via cross-resonance interactions [102–
105] often display a native universal set

S1 = {Rα(θ),CNOT} (1.32)

containing arbitrary single qubit rotations and the two-qubit CNOT gate

CNOT =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 (1.33)

A parametric alternative to the CNOT which is usually very flexible and well suited for digital
quantum simulations is expressed in the form of a so called XY interaction [53, 92, 106, 107]

UXY(δ) = e−iδ(σx⊗σx+σy⊗σy) (1.34)

In matrix notation, this corresponds to

UXY(δ) =




1 0 0 0
0 cos(2δ) −i sin(2δ) 0
0 −i sin(2δ) cos(2δ) 0
0 0 0 1


 (1.35)

which for δ = −π/8 gives the
√
iSWAP gate

U√iSWAP =




1 0 0 0

0 1/
√

2 i/
√

2 0

0 i/
√

2 1/
√

2 0
0 0 0 1


 (1.36)
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In contrast with the previous case, at the hardware level the XY interaction, which is equivalently
generated by an exchange Hamiltonian of the form

Hhardware ∝ (σ+ ⊗ σ− + σ− ⊗ σ+) (1.37)

arises naturally, e.g., in many direct coupling configurations of superconducting circuits [72, 108,
109]. Here, we will call S2 the universal set

S2 = {Rα(θ),UXY(δ)} (1.38)

Finally, we define S3 = {Rα(θ),CΦ(δ)} as the universal set of quantum gates containing all single
qubit rotations and the controlled-phase gate

CΦ(δ) =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiδ


 (1.39)

The latter is often natively implemented on superconducting platforms with state dependent fre-
quency shifts [60, 93, 110–112], and it is closely related to the Ising interaction generated by
HIsing ∝ σz ⊗ σz [113].
Shifting our focus to quantum processors based on trapped ions technology [75, 114, 115], the most
widely used fundamental set of operations, which we will call S4, includes individual single qubit
z-rotations

T
(j)
1 (θ) = e−iθσ

(j)
z , (1.40)

collective non-entangling operations

T2(θ) = e−iθ
∑
j σ

(j)
z , T3(θ, φ) = e−iθ

∑
j σ

(j)
φ (1.41)

where σφ = cosφσx + sinφσy, and Mølmer-Sørensen collective entangling gates [116–118]

T4(θ, φ) = e−iθ
∑
i<j σ

(i)
φ σ

(j)
φ (1.42)

Any subset of qubits can in principle be addressed with the collective gates via optical laser manipu-
lation and transverse normal vibrational modes, while leaving the others untouched. This collective
character of trapped ions quantum gates is best exploited for the quantum simulation of long range
and multiple-body interactions, as it will be detailed in Sec 1.2.1.

Library of quantum gates sequences for quantum simulations

Once the hardware-native fundamental set of operations is known, any given quantum simulation
is most effectively digitized by making use of the single- and two-qubit operations which are acces-
sible to the quantum processor. Every spin-1/2 appearing in the Hamiltonian of the form shown in
Eq. (1.21) is assigned to a qubit in the quantum register, and the corresponding unitary manipula-
tions are then applied.

Starting from single-spin terms

H
(i)
1 =

∑

α=x,y,z

h
(1)
α,iσ

(i)
α , (1.43)

these induce a time evolution
U

(i)
1 (t) = e−iH

(i)
1 t (1.44)

corresponding to a rotation of the Bloch vector of the target qubit. As shown in the previous
section, this can always be expressed in the U(θ, φ, λ) form, and therefore as a combination of
rotations around the coordinate axes or alternatively of e.g. Hadamard and phase gates.



12 Digital quantum simulations

Two-body spin-spin interaction terms can in general be written as

H
(i,j)
αβ = h

(2)
αβ,ijσ

(i)
α ⊗ σ(j)

β (1.45)

and the corresponding local time evolution operator reads

U
(i,j)
αβ (t) = e−iH

(i,j)
αβ t = e−iδσ

(i)
α ⊗σ(j)

β (1.46)

where we take δ as a dimensionless phase factor. The decomposition of U
(i,j)
αβ (t) terms into elemen-

tary quantum gates varies depending on the chosen set of native operations. For example, let us
define the unitary operation ZZ(δ) as

ZZ(δ) = e−iδσz⊗σz (1.47)

Within the universal set S1, ZZ(δ) can be implemented according to the following quantum circuit

• •

Rz(2δ)
e−iδσz⊗σz =

(1.48)

where we employed the usual notation for CNOT gates

•
CNOT =

(1.49)

Similar constructions, combined with single qubit rotations, give access to all the U
(i,j)
αβ (t) transfor-

mations. Indeed, by recalling the following identities

Ry

(π
2

)
σzRy

(
−π

2

)
=σx

Rx

(π
2

)
σzRx

(
−π

2

)
= − σy

(1.50)

which essentially correspond to rotations of the qubit reference frame, it is straightforward to verify
that the two-qubit operation

YY(δ) = e−iδσy⊗σy (1.51)

can be obtained in with the following sequence of gates

Rx(π/2) • • Rx(−π/2)

Rx(π/2) Rz(2δ) Rx(−π/2)
e−iδσy⊗σy =

(1.52)

and, for example,
Ry(−π/2) • • Ry(π/2)

Rz(2δ)

e−iδσx⊗σz =

(1.53)

When using the universal set S2, it is easier to take as the fundamental building block the
unitary transformation

XX(δ) = e−iδσx⊗σx (1.54)

which corresponds to the following quantum circuit

UXY(δ/2)

Rx(π)

UXY(δ/2)

Rx(−π)

e−iδσx⊗σx =

(1.55)
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The decomposition above is readily understood by considering that

Rx (−π)σyRx (π) = −σy (1.56)

and using the identity

e−iδσx⊗σx = e−i
δ
2

(σx⊗σx−σy⊗σy)e−i
δ
2

(σx⊗σx+σy⊗σy) (1.57)

All other unitary evolution terms generated by σα ⊗ σβ can again be reduced to XX(δ) and to the
quantum circuit in Eq. (1.55) with single-qubit changes of reference frame.

In view of the already mentioned close relationship of CΦ(δ) gates with Ising-like evolution, it is
not surprising that the ZZ(δ) building block can be obtained within S3 directly from a single CΦ(δ)
with single qubit corrections and apart from an overall phase:

Φ(−δ/2) •

Φ(δ) Φ(−δ/2)

ei(δ/4)ZZ(δ/4) =

(1.58)

Since in real experimental setups the achievable phases δ in a single CΦ(δ) gate might be limited due
to hardware constraints, for example in a practical range δ = 0.5-4.0 rads [93], another equivalent
construction combining two CΦ(δ) and single qubit rotations (α = x, y)

Rx(π) • Rα(π) •

Φ(δ) Rα(π) Φ(δ) Rx(π)

ei(δ/2)ZZ(δ/2) =

(1.59)

is often employed to enable the range of negative and small angles.
Finally, on a 2-qubit quantum register it is straightforward to obtain XX(δ) within S4 by directly

using T4(δ, 0). Single qubit rotations can then be combined with this building block in a similar
fashion as with other fundamental sets to obtain arbitrary 2-qubit evolution terms.

Unitary evolution terms of the form U
(i,j)
αβ (δ) are readily generalized to N -qubit interactions

Uα1...αN (δ) = e−iδ
⊗
i σ

(i)
αi (1.60)

In principle, such operations can always decomposed into the single- and two-qubit gates, and
this is usually the only solution available on processor architectures featuring only pairwise qubit
interactions. An example within the S1 universal set is the following:

• •

• •

Rz(2δ)

e−iδσz⊗σz⊗σz =

(1.61)

The pattern is naturally generalized to any N > 3, and changes of reference frames can be applied
to individual qubits as done above for the N = 2 case [119]. In trapped ions processors, where the
universal set S4 natively contains many-body interactions, the decomposition of N -body terms can
usually be done very efficiently using Mølmer-Sørensen collective gates [115, 120] and the limits on
N are in principle dictated only by the scalability of the hardware set-up itself.

1.1.4 Suzuki-Trotter approximation and digital error

The crucial ingredient enabling universal approximation of arbitrary quantum dynamics on a general-
purpose quantum computer is the Suzuki-Trotter formula, Eq. (1.7). When the convergence towards
the exact solution of the simulation is not trivial (e.g. when local Hamiltonian terms do not com-
mute), the amount of acceptable digital error must be carefully assessed when designing the cor-
responding quantum algorithm. This is critical for intermediate-scale non error-corrected quantum
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Figure 1.2: Comparison of different digital approximations for a 2-qubit TIM-like
simulation. The solid black line shows the fidelity with respect to the exact simulation when a
fixed number of ST steps n = 5 is used, failing after a very short phase evolution. The dotted red
line tests a linear increase of n with δ according to n = δ/2ε, which also becomes inaccurate for
larger phases. Finally, the solid green line shows the case in which the digital error is kept fully
under control by increasing quadratically the number of ST steps according to n = δ2/2ε. In the
plot, ε = 0.1 and n goes up to n ' 104 when the scaling is quadratic with the phase.

processors, where the increase in the number of gates which comes with the increase in the number n
of Trotter steps cannot proceed indefinitely without affecting the quality of the results. In practical
NISQ cases, it is usually sufficient for the digital error to be just smaller than the hardware noise.

To get a better understanding of the origin and scaling properties of the so called digital error,
let us take two operators O1 and O2 such that [O1,O2] 6= 0. By exploiting the well known matrix
exponential expansion

eM =

∞∑

n=0

Mn

n!
(1.62)

we can readily see that [121]

e(O1+O2)δ = I + (O1 + O2) δ +
1

2

(
O2

1 + O1O2 + O1O2 + O2
2

)
δ2 +O(δ3) (1.63)

On the other hand,

eO1δeO2δ =

(
I + O1δ +

1

2
O2

1δ
2 +O(δ3)

)(
I + O2δ +

1

2
O2

2δ
2 +O(δ3)

)

= I + (O1 + O2) δ +
1

2

(
O2

1 + O1O2 + O1O2 + O2
2

)
δ2 +

δ2

2
[O1,O2] +O(δ3)

= e(O1+O2)δ +
δ2

2
[O1,O2] +O(δ3)

(1.64)

Up to second order3 we then have

eO1δeO2δ = e(O1+O2)δ+ δ2

2
[O1,O2]+O(δ3) (1.65)

3We are using here the fact, which can easily be checked by Taylor series expansion, that second order corrections
in the formula ex(A+B) = exAexB +O(x2) are equal to the second order corrections in exAexB = ex(A+B)+O(x2) [121].
Higher order terms are different.
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and we can also write
(
eO1

δ
n eO2

δ
n

)n
=

(
e

(O1+O2) δ
n

+ δ2

2n2 [O1,O2]+O
(
δ3

n3

))n

= e
(O1+O2)δ+ δ2

2n
[O1,O2]+O

(
δ3

n2

) (1.66)

Hence we obtain, again up to second order corrections, the so called first-order Suzuki-Trotter
formula, see also Eq. (1.9),

e(O1+O2)δ '
(
eO1

δ
n eO2

δ
n

)n
− δ2

2n
[O1,O2] (1.67)

The inaccuracy ε = δ2/2n corresponding to the digital error grows quadratically with the phase of
the evolution and decreases with the inverse of the number of digital ST steps. Higher order formulas
for exponential product expansion are also known, such as the second-order Suzuki-Trotter [121]

e(O1+O2)δ =
(
eO2

δ
2n eO1

δ
n eO2

δ
2n

)n
+O

(
δ3

n2

)
(1.68)

which provides a better scaling of the digital error at the cost of an additional factor per iteration.
In all cases, a ratio rε = δp/nq controls the digital error as a function of the target evolution
phase and the number of Suzuki-Trotter steps. Two different strategies can therefore be envisioned.
On one hand, one could aim at a fixed digital precision ε over the whole range of the dynamical
simulation. This requires to increase the number of Trotter steps, and consequently the total length
of the quantum circuit to be computed, keeping the ratio rε fixed. As an example, for the first-order
formula in Eq. (1.67) we get

nε(δ) ∝
δ2

2ε
(1.69)

Notice that while the number of digital steps increases, the phase evolution δn = δ/n required in each
step decreases as 1/n, thus keeping the overall computation time on the physical hardware linear
in the total phase provided that each digital step can be implemented with a coherent operation of
duration t ∝ δn [37]. On the other hand, when the maximum length of quantum circuits that can be
faithfully realized is limited, such as in te case of NISQ processors, it might be convenient to keep the
length of the quantum circuit (i.e. the number of steps n) fixed. This produces a phase-dependent
digital error, scaling e.g. with δ2 in the first-order case. The uniform effect of hardware noise over the
whole simulation comes at the cost of a limited range of phases (and therefore of physical times) in
which the results of the simulation accurately reproduce those of the target model. Hybrid solutions
are also possible, e.g. by selecting reasonable number of steps n in different intervals of phases δ,
always with the primary goal of balancing the total error arising both from the hardware noise and
software-level approximations. An example of this approach will be given in a later chapter. The
two different strategies (fixed ε vs fixed n) can be compared for example by computing the quantum
fidelity

f(δ) = |〈ψ0|ψn(δ)〉| (1.70)

of the digitally evolved state
|ψn(δ)〉 =

(
eO1

δ
n eO2

δ
n

)n
|ψ0〉 (1.71)

with respect to the exact evolution

|ψex〉 = e(O1+O2)δ|ψ0〉 (1.72)

The results are shown in Fig. 1.2 for a simple 2-qubit case where we choose |ψ0〉 = |00〉 and

O1 = −i(σ(1)
x + σ(2)

x ), O2 = −iσ(1)
z σ(2)

z (1.73)

corresponding to a TIM-like interaction.
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1.1.5 Extracting physical observables

The final target of a quantum simulation is the physical information contained in the evolved state
of the quantum register |ψ(t)〉. In the final step of any simulation run, quantum measurements
are applied to retrieve such information. In all practical cases, the easiest and often the only
implemented kind of observation in NISQ processors is a measurement in the computational basis,
i.e. of the occupation probability of the eigenstates of σz for each qubit. However, this is usually
sufficiently versatile to give access to meaningful physical quantities. In simple cases, the expectation
value of a generic quantum observable O on the quantum register 〈O(t)〉 = 〈ψ(t)|O|ψ(t)〉 can be
reconstructed by a readout procedure combining unitary operations Umeas and measurements in
the computational basis. Indeed, every O is characterized by a set of eigenstates {|oi〉} and of
possible corresponding outcome values {oi}. It goes without saying that such O must be written,
under an appropriate mapping, in a form which can be interpreted on a quantum register, namely
as a combination of Pauli operators. The role of Umeas is then to map eigenstates of O onto
computational basis states. As an example, if O = σx, the readout of 〈σx(t)〉 on a single qubit can
be done by performing a Hadamard gate, which map σx 7→ σz, followed by a standard measurement
in the computational basis. More in general, joint qubit measurements are also possible as a way
of characterizing the output quantum state e.g. via quantum tomography [106]. Notice that a
full reconstruction of |ψ(t)〉, which is a 2N -dimensional complex vector, is actually exponentially
expensive in terms of the number of repetitions of the simulation protocol: as a consequence, most
quantum simulations aim directly at some specific physical property of the system under study.

A particularly useful strategy allowing the extraction of complex physical quantities and opti-
mizing the efficiency of the measurement process is the ancilla-assisted method originally introduced
by Somma et al. [40]. In view of the original applications that we are going to present in Chapter 2,
we will now describe the ancilla-assisted observation of dynamical correlation functions and we will
briefly comment how this can in turn lead to an algorithmic procedure for finding the spectrum
of an Hermitian operator. Given a N -qubit state |ψ〉, a Hamiltonian H generating time evolution
and two unitary operators V and W, we define the dynamical correlation CVW(t) function as the
quantity

CVW(t) = 〈V†(t)W〉 = 〈ψ|eiHtV†e−iHtW|ψ〉 (1.74)

Dynamical correlations can be used to describe the propagation of excitations or external perturba-
tions within a physical system. They appear in areas such as linear response theory [122], where they
can be used to compute susceptibilities, magnetization and conductivity, manybody physics [123]
and cross section calculations [124].

The ancilla-assisted quantum simulation of the dynamical correlation function can be performed
with a quantum circuit whose basic structure is shown in Fig. 1.3. For simplicity, we assume that
the quantum register is already prepared in the desired state |ψ〉 (it can be for example the ground
state of the target physical system) and that the ancilla a starts in the quantum superposition√

2|+〉 = |0〉 + |1〉. The joint initial state of the quantum register R and the ancilla is therefore
|φ〉aR = |+〉a|ψ〉R. First, a W unitary is performed on R, controlled by the ancilla:

|φ〉aR →
1√
2

(|0〉a|ψ〉R + |1〉aW|ψ〉R) (1.75)

The sequence of gates for the digital simulation of the time evolution U(t) = eiHt is then applied to
the quantum register, thus leading to

1√
2

(|0〉aU(t)|ψ〉R + |1〉aU(t)W|ψ〉R) (1.76)

Finally, a V unitary is applied to R, this time controlled by the state |0〉 of the ancilla4. The output
state is:

|φout〉 =
1√
2

(|0〉aVU(t)|ψ〉R + |1〉aU(t)W|ψ〉R) (1.77)

4By convention, controlled quantum gates are usually activated when the control qubit is in state |1〉. Activation
conditioned by state |0〉 is easily obtained by adding X ≡ σx quantum gates on a before and after the standard
controlled operation.
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⇒ 〈σy〉

H

X X

Rx(π/2)

Figure 1.3: Ancilla-based algorithm to compute dynamical correlation functions. The
two alternative paths at the end of the circuit show a possible choice of unitaries Umeas which,
followed by a measurement in the computational basis, give access to the real and imaginary parts
of CVW(t), proportional to 〈σx〉 and 〈σy〉 respectively.

A measure of the observable σx on the ancilla gives

〈σ(a)
x 〉 = Tr

[(
σ(a)
x ⊗ I

)
|φout〉〈φout|

]

= Re [CVW(t)]
(1.78)

In a similar way, Im [CVW(t)] can be obtained by measuring 〈σ(a)
y 〉, in a second run of the algorithm.

In total
〈2σ(a)

+ 〉 = CVW(t) (1.79)

By removing the unitary evolution or by moving it at the beginning of the circuit, the same scheme
can be used to simulate equal-time correlations. Notice that at the end of the proposed procedure all
the information is accessible through the ancilla a alone, while the larger quantum register R needs
not to be measured at all. This is, on a general basis, a good example of how physical information
can be retrieved from a digital simulation without the need for full state tomography. Moreover,
from a NISQ perspective this also means that the quality of the outcomes can be improved by
mitigating, with suitable optimization techinques and processor design, the readout error of a single
qubit. An evolution of the same algorithm can be used to efficiently extract n-point time-correlation
functions [125] and the expectation values of any operator expressible in the form O =

∑
j cjV

†
jWj

where Vj ,Wj are unitary operators [40].
Combining a slightly modified version of the ancilla-assisted strategy described above with either

a classical Fast Fourier Transform (FFT) or even a Quantum Phase Estimation algorithm [5, 126]
the spectrum of a Hermitian operator Q can be extracted. In particular, in physical problems one
is usually interested in the case Q = H, where H is some Hamiltonian of interest. For example,
the hybrid quantum-classical approach, proposed again by Somma et al. [40], requires the quantum
register R to be initialized in a state |ψ〉 with some overlap with the eigenstates |Ql〉 of Q

|ψ〉 =
∑

l

λl|Ql〉 (1.80)

The exponential UQ(θ) = e−iQθ is a unitary operator which be realized on the quantum register
in exactly the same way as any standard time-evolution operator U(θ) = e−iHθ. By setting e.g.
|ψ〉R = |ψ〉, t = 0 (i.e. removing the U(t) part), W = UQ(θ) and V = I in the algorithm in Fig. 1.3,
we can then compute the expectation value 〈ψ|UQ(θ)|ψ〉. The result will be of the form

〈UQ(θ)〉 =
∑

l

|λl|2e−iqlθ (1.81)
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Figure 1.4: Quantum circuits for the 2-qubit Heisenberg model. (a) 6-CNOT decompo-
sition within the S1 universal set. (b) Equivalent 3-CNOT decomposition [124, 127]. (c) 3-UXY

decomposition within the S2 universal set [53, 128].

where ql are the eigenvalues of Q. By repeating the same procedure a number of times, the values
of 〈UQ(θ)〉 can be reconstructed as a function of θ. The FFT then yields

FFT (〈UQ(θ)〉) =
∑

l

2π|λl|2δ(q − ql) (1.82)

An original combination of the quantum simulation of dynamical correlation functions with classical
Fourier analysis, designed along the lines of what was presented in this section and run on a NISQ
processor, will be presented and discussed in Chapter 2.

1.1.6 Examples

In order to see in action some of the techniques and procedures presented in the previous sections,
we will now provide a few numerical examples applied to paradigmatic situations and models. The
noise free classically computed results that we are about to show will consitute a sort of golden
standard to assess the performances of real NISQ devices later on.

Recalling Eq. (1.22), we can write a 2-qubit isotropic Heisenberg model as

HHeis,2 = J
(
σ(1)
x σ(2)

x + σ(1)
y σ(2)

y + σ(1)
z σ(2)

z

)
(1.83)

The induced time evolution then reads

UHeis,2(δ) = e
−iδ

(
σ

(1)
x σ

(2)
x +σ

(1)
y σ

(2)
y +σ

(1)
z σ

(2)
z

)
= e−iδσ

(1)
x σ

(2)
x e−iδσ

(1)
y σ

(2)
y e−iδσ

(1)
z σ

(2)
z

= XX(δ)YY(δ)ZZ(δ)

(1.84)

where δ = Jt and the second equality, which is essentially the ST formula for n = 1, follows from
[σ

(1)
α σ

(2)
α , σ

(1)
β σ

(2)
β ] = 0∀α, β. After identifying the two spin states {| ↑〉, | ↓〉} with the two com-

putational basis states {|0〉, |1〉}, a straightforward application of Eq. (1.48) and its generalization
with single qubit rotations leads, within the universal set S1, to a 6-CNOT decomposition of the
Heisenberg time evolution, as shown in Fig. 1.4a. Despite its conceptual transparency, this is not
the most effective solution to the 2-qubit Heisenberg model quantum simulation. Indeed, according
to a result by Vidal and Dawson [127], any two qubit operation, therefore including UHeis,2(δ), can
always be obtained with at most three CNOT gates and single qubit rotations. Based on such con-
struction, a shorter but equivalent quantum circuit is reported in Fig. 1.4b. Similarly, in S2 we can
obtain the digital simulation of UHeis,2(δ) either by juxtaposing gate sequences of the form shown
in Eq. (1.55) or by using only three 2-qubit UXY gates (instead of six), as reported in Fig. 1.4c.
This last result is based on the identity [53, 128]

HHeis,2 =
J

2
(Hxxyy + Hxxzz + Hzzyy) (1.85)
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1Figure 1.5: Digital quantum simulation of spin models. Exact curves are obtained with
full Hamiltonian exponentiation, the dotted lines represent ideal digital approximation computed
with the Suzuki-Trotter formula, and the quantum simulations data points, indicated with dots
and diamonds, are computed multiplying the matrix representation of the corresponding sequences
of elementary quantum gates. Increasing degrees of digital resolution, involving longer underlying
quantum gate sequences, provide in principle better agreement with the ideal solution of the target
model. (a) Individual spin magnetization for the 2-qubit Heisenberg model, using the decomposition
in Fig. 1.4b for the digital quantum simulation. The initial state of the two spins is

√
2|ψ0〉 =

|↑〉 (|↑〉+ |↓〉). (b) Time evolution of the occupation probability of the initial state |ψ0〉 = |100〉 of
3 qubits interacting as a Heisenberg chain with open ends in an external field. Here J12 = J23 = J
and Bg = 20J . (c) Total magnetization of a pair of qubits interacting according to the Transverse
Field Ising model (TIM), with Jzz = J and Bg = 2J . The digital quantum simulation is performed
using the matrix representation of the S1 fundamental set.

where Hααββ = σ
(1)
α σ

(2)
α + σ

(1)
β σ

(2)
β and all the terms on the right hand side commute. Just from

these two elementary examples, we have once more a demonstration of the fact that no absolute
solution is intrisically valid for the translation of a certain physical time evolution in a sequence of
digital quantum gates, not even within the same fundamental set of operations. Optimization can
be performed either in the design of the algorithm or, on a more technical level, at the compilation
stage which adapts a certain quantum circuit to the physical properties of a real quantum processors.
On NISQ devices, it is often crucial to have the shortest possible circuits and the smallest number
of two-qubit operations: however, several other constraints might enter the game, such as qubit
quality or chip connectivity. In S3 a decomposition with three CΦ(δ) follows immediately from
Eq. (1.58) and single qubit changes of reference frame. Finally, in S4 a possible realization of the
Heisenberg interaction can be obtained for some digital resolution δ as

UHeis,2(δ) = ABCAC† (1.86)

where A = T4(δ, 0), B = T4(δ, π/2) and C = T3(π/4, π/2). With any of the above elementary
decompositions, the digital quantum simulation of the 2-qubits Heisenberg model can be performed
and physical information can be extracted by using the methods discussed in Sec. 1.1.5. A numerical
example computed in Matlab is reported in Fig. 1.5a, where we show the digital quantum simulation
of the individual magnetization of the two spin-1/2 particles. The latter can be extracted by
measuring the observable σ(i)

z and using the definition 〈s(i)
z 〉 = (1/2)〈σ(i)

z 〉. No digital error is
present in this case, due to the commutativity of the local terms in the 2-qubit Heisenberg chain.

Simple 2-spin chains such as the Heisenberg bond just described can be used as building block to
realize more complex configurations, thus extending the quantum simulation to arbitrary number
of spins with pairwise interactions and different inter-qubits connectivity. For example, a 3-spin
Heisenberg chain with open ends, put in an external magnetic field ~B, has a Hamiltonian of the
form

HHeis,3 = HB + H12
Heis,2 + H23

Heis,2 (1.87)
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where
HB =

Bg

2

(
σ(1)
z + σ(2)

z + σ(3)
z

)
(1.88)

describes the magnetic field oriented along the z-direction and each of the spin-spin bonds corre-
sponds to a term

Hij
Heis,2 = Jij

(
σ(i)
x σ(j)

x + σ(i)
y σ(j)

y + σ(i)
z σ(j)

z

)
(1.89)

In general, the two bonds can be nonequivalent, i.e. J12 6= J23. Since [H12
Heis,2,H

23
Heis,2] 6= 0 (indepen-

dently from the coupling constants Jij), in this case the quantum simulation must be carried out
using the ST digital procedure, alternating the application of the sequence for the 2-spin case on
the two bonds

UHeis,3(δ) =
(
U12
Heis,2(δ12/n)U23

Heis,2(δ23/n)
)n
e−iHBt (1.90)

where δij = Jijt. The part describing the magnetic field on equivalent spins (we set the gyromagnetic
ratio g1 = g2 = g3 = g) corresponds to single qubit rotations around the z axis. Since this part
commutes with the rest, it can be performed at the beginning of the circuit and does not enter in
the Suzuki-Trotter discretization procedure. In Fig. 1.5b we show how these results can be used
to compute the time evolution of the occupation probability of an initial state |ψ0〉 = | ↑↓↓〉 =
|100〉. This approach can be now straightforwardly generalized to more complicated spin lattices.
Remarkably, all bond interaction involving disjoint subsets of spins generate locally independent
time evolution terms commuting with each other: indeed, by construction of the tensor product
space, [σ

(i)
α , σ

(j)
β ] = 0 when i 6= j. As a consequence, the corresponding unitary operators can

always be simulated in parallel on the quantum register and decomposed in just as many elementary
quantum gates as in simpler configurations, thus reducing the overall complexity of the quantum
simulation. As we extensively discussed, this mechanism lies at the very heart of the computational
efficiency of digital quantum simulation algorithms.

Other paradigmatic forms for pairwise spin interactions are also very easily obtained with similar
techniques. For example, we recall that the Hamiltonian of the Transverse Field Ising model (TIM),
introduced in Eq. (1.24), in the two-qubit case can be written as

HTIM,2 = HB,x + Hzz (1.91)

where
HB,x =

Bg

2

(
σ(1)
x + σ(2)

x

)
Hzz = Jzzσ

(1)
z σ(2)

z (1.92)

The quantum simulation of the TIM corresponds to the following digital process

UTIM,2(t) =

(
ZZ(Jzzt/n)e

−i
(
σ

(1)
x +σ

(2)
x

)
Bgt
2n

)n
(1.93)

Apart from straightforward single qubit rotations around the x axis, the required quantum circuit
contains only ZZ operations, which can easily be translated into elementary quantum gates as done,
e.g., in Eq. (1.48). In Fig. 1.5c we report the time evolution of the total magnetization of the spin
dimer along z, simulated with the matrix representation of the quantum gates in S1 and extracted
by measuring the expectation values of σ(i)

z .
Finally, we also report an example featuring the ancilla-based algorithm discussed in Sec. 1.1.5.

Here, it is applied to extract spin-spin dynamical correlations

Cαβij (t) = 〈s(i)
α (t)s

(j)
β 〉 = (1/4)〈σ(i)

α (t)σ
(j)
β 〉 (1.94)

for the 3-spin open Heisenberg chain of Eq. (1.87). Dynamical correlations are computed on the
ground state of the system, which for a sufficiently strong external magnetic field is well approxi-
mated by |ψ〉 = |↓↓↓〉. The structure of the required quantum circuit is shown in Fig. 1.6a for the
case of next-to-nearest neighbors cross correlations. Autocorrelations and nearest neighbors corre-
lations can be computed in a similar way by changing the target qubit involved in the operations
controlled by the ancilla. Numerical results based on S1 decompositions are presented in Fig. 1.6b-d.
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1Figure 1.6: Digital quantum simulation of dynamical correlation functions for the
3-qubit Heisenberg model. The solid line is the exact computation without digital errors,
the dotted line represents the expected result for continuous phase Trotter evolution with n =
5 and the data points show the result of the corresponding quantum circuit for a selection of
phase values. Here we set J12 = J23 = J and Bg = 20J . (a) Quantum circuit allowing to
compute time-correlation functions between next-to-nearest neighbors qubits, namely 〈σ(3)

β (t)σ
(1)
α 〉.

The operators α and β represent (controlled) σα and σβ unitary transformations, δB = Bgt and
Uij
δ/n is a shorthand notation for Uij

Heis,2(δij/n). The part inside the green box must be repeated

n times. (b) Autocorrelation 〈s(1)
x (t)s

(1)
x 〉. (c) Nearest neighbors 〈s(2)

x (t)s
(1)
x 〉 cross correlation. (d)

Next-to-nearest neighbors 〈s(3)
x (t)s

(1)
x 〉 cross correlation.

1.2 State-of-the-art in digital quantum simulations

Having laid the theoretical foundations of digital quantum simulations, and before presenting in
depth some original results, we will devote the final part of this chapter to a brief overview of the
main experimental achievements constituting the state-of-the-art at the time of writing. While it is
certainly difficult to keep up with the most recent studies in years of excitement and fast progress,
we will nevertheless mention a few seminal papers who are unanimously recognized as the ones who
established the field as a whole. This section is mainly focused on the two different technological
approaches which have so far been effectively demonstrated as promising NISQ processor candidates,
i.e. trapped ions and superconducting circuits. Even though a thorough comparison between the two
is inevitably affected by very specific experimental details, we will try to give a broad and synthetic
overview of the respective strengths and weaknesses. An outlook on possible future platforms for
universal quantum simulations and quantum information processing is left for a separate discussion
in Chapter 3.
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1.2.1 Trapped Ions

Since the late nienties, and in parallel with the impressive advancement in the field of manipulation
and control of single quantum systems [129, 130], atomic ions in linear Paul traps [131] have been
representing one of the most promising candidated for realizing fully operational quantum proces-
sors [68, 74, 132, 133]. As compared to neutral atoms, the trapping potential for charged atomic
species can be much stronger, thus allowing to hold each single ion for several hours, and even days,
with very long coherence times and a remarkably high degree of external control. This makes them
a reliable solution for quantum information processing satisfying all of the required DiVincenzo
criteria. As of today, digital quantum processors with up to 11 programmable ions in a linear Paul
trap have been made available [134], with some spin-off companies such as IonQ, Honeywell and
Alpine Quantum Technologies offering restricted cloud access5.

Despite the technical challenges posed by ultra-high vacuum and laser cooling, trapped ions pro-
cessors do not in general need cryogenic temperature to be operated, which represents a significant
advantage in terms of costs and portability over competing technologies. In this hardware platform,
individual ions are held in place through radio frequency oscillating electric fields that generate a
stable two-dimensional potential well [135]. Ions are then confined by a further harmonic trap along
a line and, due to the mutual Coulomb repulsion, they almost spontaneously arrange in a chain
whose nodes are spatially separated by a few microns. While this is currently the most performing
configuration, it is nevertheless considered hardly scalable towards larger sizes or higher dimen-
sionality of the confining potential, as the number of ions in a chain affects their separation and,
ultimately, limits the the capabilities of individual qubit control and the multi-qubit gate fidelity.
In this respect, modularity [136] and 2D arrays [137] are being considered as possible solutions.

Different types of trapped ion qubits can be defined, depending on the frequency spacing between
the relevant energy eigenstates selected to encode the logical {|0〉, |1〉} basis. In general, hyperfine
qubits are encoded into a pair of energy levels typically separated by frequencies in the GHz range,
while optical qubits are defined corresponding to quadrupole active transitions in the hundreds of
THz. Zeeman qubits can also be defined via the application of an external static magnetic field,
opening a low frequency (few MHz) tunable gap between magnetic levels. The technologies based on
40Ca+ as optical qubits [138, 139], and 43Ca+ or 171Yb+ as hyperfine qubits [140, 141], repsectively,
are particularly advanced, although several other atomic species with a single outer electron can be
successfully trapped [74, 133].

Irrespective of the specific qubit realization, initialization, control and readout are performed
via coherent manipulation. For example, initial state preparation can be obtained using optical
pumping with external lasers of suitable frequency, while readout is achieved by detecting resonantly
scattered radiation from an optical transition. Single-qubit operations are enabled by directly
coupling the designated |0〉 and |1〉 eigenenergy levels, and the required tools inevitably depend on
the qubits type [135]. Multi-qubit gates between ions trapped along the same chain are realized by
exploiting the transverse normal vibrational modes of the whole ion string trapped in a harmonic
potential [142], which are used as a bus to transfer quantum information. One of the most common
native entangling logical port relies on a controlled-phase type of gate that was originally proposed
from Mølmer and Sørensen [116], see Eq. (1.42). The details of the specific implementation again
depend on the particular type of qubit [75, 117, 118]. We notice that an unequivocal advantage
of this set-up, which is often of crucial importance for quantum simulation purposes, is that the
design of the processor features a built-in all-to-all connectivity between qubits: no other alternative
technology has so far reached comparable levels of flexibility with respect to chip topology.

In terms of absolute performance, the different experimental platforms have essentially shown
quite comparable figures of merit. In particular, when working with isolated or pairs of trapped
ions, single-qubit operations with fidelities in the order of 99.9999% have been reported [143], as well
as two-qubit gates reaching fidelities above 99.9% even in different experimental setups [140, 144].
Typical duration for single-qubit gates varies between 100 ns and few tens of µs, while two qubit
gating times range in the µs to few hundred µs interval [133, 140, 145]; readout is typically performed
in hundreds of µs with fidelities in the 99.99% range [146].

5See e.g. https://ionq.com/, https://www.honeywell.com/en-us/company/quantum and https://www.aqt.eu/.

https://ionq.com/
https://www.honeywell.com/en-us/company/quantum
https://www.aqt.eu/
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Since the typical coherence times of trapped ion qubits vary between few hundred of millisec-
onds [147] to hundreds of seconds [143, 148], the trapped ion quantum hardware is the one currently
allowing to achieve the highest coherence versus gating time ratio, ideally in the order of 105 to
106. In view of practical quantum computing applications, we should however emphasize that the
considerations above are mostly limited to few qubits quantum hardware: while analog quantum
simulators of Ising chains have been shown with more than 50 trapped ions [35], the stringent
performance requirements for digital quantum information processing are still only reachable with
NISQ prototypes with no more than 20 qubits [138]. In fact, increasing the number of ions in the
chain ultimately limits gates fidelity, mainly due to the difficulties of individually addressing single
qubits while avoiding cross-talks between the different beams. Moreover, errors affecting the over-
all success of a quantum computation generally arise from two distinct mechanisms: decoherence,
induced e.g. from undesired qubit-environment coupling such as spontaneous emission, frequency
shift, motional heating or spurious residual collisions inside the vacuum chamber, and imperfect
control fields, such as miscalibrated or noisy control field amplitude, frequency, or polarization,
which typically result in quantum gate errors [133]. On a quantitative level, it has recently been
reported that the fidelity of multi-qubit entangling Mølmer-Sørensen gates degrades from 99.6%
with 2 optical qubits down to 86% when the same quantum hardware is loaded with 10 optical
qubits [149]. At the same time, a quantum processor based on 11 hyperfine qubits has recently been
shown to achieve an all-to-all connectivity with average single- and two-qubit XX gate fidelities of
99.5% and 97.5% respectively [134].

Probably the first experimental demonstration of digital quantum simulations came in 2011,
performed by Lanyon et al. [115] on a trapped ions prototype quantum processor. Some of those
early results on paradigmatic few spin toy-models still stand as reference standards. As an example,
we report in Fig. 1.7 the digital simulation of two-spin Ising, XY and XYZ models: the most striking
feature, which had never been proved before, is of course the capability of the same quantum
hardware to be reprogrammed to simulate essentially different interaction terms with no direct
connection to the physical Hamiltonian of the setup. Each spin-1/2 was directly mapped onto a
single ion, and the unitary operations reported in Fig. 1.7

C = T2(π/16) D = T4(π/16, 0) E = T4(π/16, π) F = T3(π/4, 0) (1.95)

were defined in terms of the universal S4 set of native gates, see Eqs. (1.40)-(1.42). The time evolu-
tion is quantified by a dimensionless phase θ = Et/~ and was obtained through several repetitions
of Suzuki-Trotter digital steps at fixed resolution6. The initial state was chosen as an eigenstate
of
∑

i σ
(i)
x , and the population in each of the eigenstates was monitored as a function of θ. The

same work reported remarkable results for the digital quantum simulation of up to 6 spins and
multi-spin interaction terms, thus showing from the beginning the superior potential of trapped
ions architectures in approaching such complex models.

Going beyond spin models, the digital quantum simulation of lattice gauge field theories was
implemented by Martinez et al. [61], in a neat demonstration of the possible broad impact quantum
simulation techniques can have on different areas of physics. In this work, Kogut–Susskind fermionic
degrees of freedom were encoded into Pauli operators, while the electromagnetic background was
eliminated via the gauge freedom of the theory. The authors reported a successful simulation of
particle-antiparticle spontaneous creation from vacuum fluctuations (i.e. the Schwinger mechanism)
and of the corresponding entanglement dynamics on a 4-qubit proof-of-principle realization. Open

6Notice that this is yet another possible strategy to tackle the issue of the digital error, see Sec. 1.1.4. Here, a
fixed size of the phase slice δn = δ/n is chosen, essentially following the idea of n ∝ δ as in one of the cases presented
in Fig. 1.2. For many practical purposes, the exact dynamics is well approximated with this approach: indeed, with
the same steps leading to Eq. (1.67) we can write

e(O1+O2)δ '
(
eO1δneO2δn

)δ/δn
+O(δnδ)

The agreement with the exact dynamics is of course better for smaller δn and is controlled by the product δnδ. From
an experimental perspective, having a fixed phase evolution makes it possible to use the same pulse scheme for each
step, such that only one or few control sequences must be optimized.
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Figure 1.7: Quantum simulations with a trapped ions processor. Experimental quantum
simulation of two-spin models: the complexity of the simulated model increases from A to C, the
digital resolution is fixed to θ/n = π/16 and the number of digital steps increases linearly with the
simulated phase evolution. In each panel, a sketch of the sequence of unitary operators corresponding
to a single digital step is shown, and up to n = 12 consecutive Suzuki-Trotter steps were performed
for the data shown here. Solid lines correspond to the exact evolution, empty symbols correspond to
the ideal digitized evolution, and filled symbols are the quantum simulator results for the evolution
of the different eigenstates. Reproduced from Ref. [115].

quantum systems dynamics and quantum maps have also been approached on trapped ions proces-
sors [114, 120].

With respect to quantum register size, a fully controlled 20-qubit system has been shown to reli-
ably allow for the creation of multi-qubits entangled states [138], and a remarkable hybrid quantum-
classical simulation of the Schwinger model on 20 40Ca+ ions was very recently reported by Kokail
et al. [150]. Here, digitalized Hilbert space exploration techniques such as the Variational Quantum
Eigensolver (VQE) algorithm [151] were used to study static ground state properties and phase tran-
sitions. The VQE algorithm has also been applied to study from very simple [139] to more complex
chemical species, such as the water molecule [152], using in the latter case a hyperfine qubits-based
quantum processor. Along the same lines, the deuteron nucleus binding energy within a percent
accuracy was also obtained with a ion trap quantum processor implementing a record quantum cir-
cuit depth [153], thus paving the way to possible further studies of effective field theories in nuclear
physics.
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1.2.2 Superconducting circuits

From the early days of circuit Quantum Electrodynamics (cQED) [76, 77, 154, 155], a fast and
continuous technological improvement [60, 154–162] has brought superconducting quantum circuits
to challenge trapped ions as the leading platform for practical quantum information processing [98].
Given their inherent conceptual simplicity and relatively close relationship with many standard
electrical engineering techniques, it is not surprising that even outside academic laboratories some of
the worldwide leading and emerging high-tech companies currently investing in quantum computing
are concentrating their efforts on this architecture (e.g. Google, Rigetti and IBM, the latter with
the IBM Q program).

Several thorough reviews about the technical implementation of superconducting qubits, de-
scribing different design solutions and performances, can be found in the literature [72, 78, 109].
Superconducting circuits require cryogenic temperatures around 10-15mK to be reliably operated
in the quantum regime, a condition that is often achieved in 3He/4He dilution refrigerators. Qubits
are encoded into the energy spectrum of the lowest collective charge/current excitations in a micro-
LC resonator, with a nanostructured Josephson junction playing the role of a nonlinear inducting
element. By changing the relative values of characteristic circuital parameters, such the charging
energy of a single Cooper pair, the Josephson or the inductive energy, different families of super-
conducting qubits can be identified, such as phase qubits, rf-sQUID, flux qubits, charge qubits and
transmons. In particular, the latter are essentially a capacitively shunted version of the basic an-
harmonic LC resonator devices [156] and can reach coherence times in the 100 µs range [161], with
an increase of up to 5 orders of magnitude with respect to the original Cooper Pair Box design
from the late Nienties. These impressive results have even called for a cQED analog of Moore’s law,
named after R. J. Schoelkopf, stating that the best coherence times available on superconducting
qubits increases by an order of magnitude every three years [78]. In view of its very good properties,
the transmon is nowadays the elementary unit of several scalable proposal for quantum comput-
ing architectures [86], and other transmon-inspired qubits, such as the Xmon [60] have also shown
remarkable fidelities in a setup consisting of 9 qubits [163, 164]. A transmon processor consisting
of 53 operating qubits has been recently reported [83] by the Google AI Quantum research group,
showing improved single- and two-qubit gate fidelities.

Transmission lines wired at the edges of the chip board allow for individual qubit addressabil-
ity, thus enabling single-qubit initialization, manipulation and read-out through microwave control
pulses. In particular, current superconducting quantum circuits allow for single-qubit gate fidelities
above 99.9% [60]. Qubit-qubit couplings are obtained through additional superconducting trans-
mission line resonators, and two major alternative schemes are employed to engineer two-qubit
quantum logic gates: in one case, the qubit transition frequencies are tuned by a local magnetic
field to activate the mutual interactions, while in the second version a cross-resonant (CR) drive
is used, applying to a given control qubit microwave pulses in resonance with another target qubit
connected to the previous one. While the first realizations of the frequency tuning scheme were
obtained by bringing the two qubits into resonance to get a virtual photon exchange, yielding an ef-
fective XY interaction [106], the most promising implementations are currently based on tuning one
qubit along a “fast adiabatic trajectory” [60] that moves the |11〉 component of the wave-function
close to an avoided level crossing with state |02〉, leading to a state-dependent phase and hence to
the implementation of the controlled-phase gate [165]. This approach results in very fast (typical
gate duration around 40 ns) and high-fidelity two-qubit gates, compared to relaxation and coher-
ence times in the 20-40 µs range on average [60]. Conversely, the CR scheme uses fixed-frequency
qubits in order to avoid frequency crowding and to reach longer coherence times up to 50µs7 and
can easily implement a CNOT gate [104]. However, as the CR effect is essentially perturbative (see
also Sec. 2.1), this requires more selective pulses and hence results in slower two-qubit gates, taking
∼ 200 − 300 ns on average [104, 166], with average fidelity of 96%. A novel proposal to directly
implement exchange-type gates with tunable amplitude and phase on fixed frequency qubits, thus
making this architecture much more flexible e.g. for quantum simulations applications, has also
been recently reported [167].

7Since the frequencies are fixed, the qubits can for example be operated constantly at a coherence “sweet spot”.
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Figure 1.8: Digital quantum simulations on a superconducting circuit processor. (Top)
Experimental quantum simulation of the Ising model in a transverse homogeneous field for two
spins with increasing number of Trotter steps. (Bottom right) Dependence of final state fidelity
on the number of digital steps used in the quantum simulation, for different phase angles (color
bars), compared to ideal unitary evolution for the given number of Trotter steps. (Bottom left)
False color image of superconducting quantum processor with 4 Niobium qubits and Aluminum
transmission line resonators. Onput and output ports and single qubit flux bias lines are also
highlighted. Reproduced from Ref. [106].

As already noted for trapped-ion architectures, it is worth pointing out that while remarkable
results have been obtained in samples specifically aimed at testing the basic operations on few qubits
circuits, obtaining a scalable platform able to implement fast and high fidelity single- and two-qubit
gates, as well as efficient readout, still represents a key challenge. For example, we will extensively
describe in Chapter 2 how systematic coherent inaccuracies due to an imperfect implementation of
the elementary gates are nowadays one of the leading error sources when several qubits are operated
together to practically realize digital quantum simulation protocols.

The use of superconducting quantum hardware for digital quantum simulations of spin models
was first reported in 2015 by Salathé et al. [106]. In their work, the authors successfully demon-
strated, on a 4-qubit quantum processor, proof-of-principle realizations of 2-spin Heisenberg and
Ising models, with several digital steps performed in sequence. As already briefly mentioned when in-
troducing the universal operation set S2, see Eq. (1.34), superconducting processors with frequency-
tunable qubits coupled through an intermediate resonator naturally implement a XY-type interact-
ing spin Hamiltonian, which can be used as the basis to digitally program a full Heisenberg or Ising
type evolution, see for example Fig. 1.4c and Refs. [53, 106]. In Fig. 1.8 we report typical results
for the digital evolution of the spins projections along the magnetic field direction, z, with up to 3
digital time steps, for an initial state prepared in |↑〉 (|↑〉 − i |↓〉) /

√
2 that evolves non trivially in

time according to the Transverse Fied Ising Hamiltonian. In another panel of Fig. 1.8, a summary
of the fidelity for the quantum simulation with up to 5 Trotter steps is also reported. As it can be
observed, while the ideal fidelity of the simulated quantum state with respect to the exact evolution
increases against the number of Trotter steps, the experimental one starts to decrease after about
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2 or 3 digitized steps, depending on the phase, due to the increased length and complexity of the
underlying quantum circuit. Despite the fact that approximately 5 ST steps still represented an
upper bound beyond which the quality of the results is heavily affected by short coherence times
and systematic gate errors, the results presented here have undoubtedly set a standard in the field
of cQED-based quantum information processing for physics applications, and they still stand as a
touchstone for digital quantum simulations in superconducting quantum circuits. Last but not least,
in the same work a first attempt at simulating the digital time evolution of two-point correlations
was also reported.

As with trapped ions processors, the potential usefulness of the superconducting circuit quan-
tum hardware as a universal quantum simulator goes well beyond the analysis of bare spin models.
For example, other seminal works [93, 168] reported the experimental digital simulation of 3 and 4
modes Fermi-Hubbard model, a notoriously difficult model to be addressed with classical algorithms.
More recent results in hybrid quantum-classical (e.g. VQE) approaches have given a boost to the
field of quantum chemistry [94, 169], and nuclear physics problems have also been tackled with
superconducting quantum processors. In particular, an evolution of the VQE algorithm led to the
cloud-based computing of the deuteron binding energy [95] on IBM Q public devices. Moreover, a
quantum-classical algorithm has been used to approach the solution of the Schwinger model dynam-
ics [62]. In order to partially overcome at least some of the barriers hindering the progress towards
a first demonstration of quantum advantage on NISQ processors, considerable work is currently
dedicated to understanding the main sources of error and the noise properties on superconducting
processors. Error mitigation techniques, which are being discussed, designed and tested, have shown
the potential for improving the overall quantum simulation fidelities [62, 124, 170–172].

1.2.3 Summary and comparison

In this section we have presented an inevitably partial but representative selection of results demon-
strating the state of the field of practical digital quantum simulations on NISQ deivces. In Fig. 1.9,
we try to give a quantitative summary of the main achievements in terms of fidelity and number of
digital steps. Such a direct comparison has to be taken with a grain of salt, as it is certainly diffi-
cult to put in the right perspective experiments and works performed on different platforms, under
different initial conditions, and reporting slightly different figures of merit. Nevertheless, the plot
gives a visual idea of the scenario on digital quantum simulation of spin Hamiltonians up to date.
Despite the clear and still considerable correlation between the number of digital steps included in
the simulation and the fidelity of the final state obtained, we can see that currently trapped ions
quantum simulators allow better performance for deeper quantum circuits, i.e. with large numbers
of Trotter steps. With respect to this, we also recall that up to 12 digital steps have been achieved
on trapeed ions processors [115], albeit such data point is not reported here due to the lack of the fi-
delity characterization in the original publication. We also notice that a number of 5 Suzuki-Trotter
digital steps is currently a limiting value for superconducting quantum processors if the fidelity of
the simulation is to be kept above a reasonable accuracy threshold, meaning that there is still much
room for improvement. In terms of the size of the simulated model, pure digital quantum simula-
tions for spin-models with up to 6 spins have been performed on trapped ions processors [115]. On
the other hand, in Chapter 2 we will present original results on superconducting processors with
up to 4 spins [124], which is currently close to the technological limits of the platform. All in all,
the picture emerging from the data collected here is in line with recent studies comparing the two
architectures when challenged with similar quantum algorithms on 5 qubits processors [98]. We
should stress once more that most of the remarkably high experimental fidelities reported in the
literature have been achieved on few-qubit setups that, although scalable by design, are optimized
for a specific target and are often pushed to the experimental limits. Conversely, when several qubits
are connected and operated together, many new challenges emerge, such as the need to selectively
address only some of them or to keep cross-talks under control.

On the technical side, the two leading architectures have shown many complementary character-
istics. While superconducting circuits usually achieve much larger gate speeds, and thus may offer
better performances when comparing quantum and classical devices in terms of absolute execution
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Figure 1.9: Summary of state-of-art experimental digital quantum simulations. Open
circles represent results obtained on superconducting circuits quantum processors, while squares
correspond to experimental quantum simulations on trapped ions processors. The color code cor-
responds to different target models being simulated: two-spin Transverse field Ising model (TIM2),
two-spin XY (XY2) and XYZ (XYZ2) models, 3- and 6-spin many body interactions (MB3,6, fi-
delities given as estimated bounds), two-spin Heisenberg model (Heis2), and 2- to 4-mode Fermi
Hubbard model (FHx, with x = 2, 3, 4). Although more digital steps than the ones reported here
were actually performed in some of the experiments, data points are shown only when some mea-
sure of accuracy was provided in the original reference. Fidelities from Ref. [106] are given with
respect to the ideal evolution for a fixed phase value and initial state, while those from Ref. [115] are
process fidelities given with respect to the expected digitized evolution. Finally, data from Ref. [93]
are extrapolated linear trends of fidelity with respect to the ideal digital outcome.

time of a given algorithm, the ratio of coherence time to gate operation remains in favor of trapped
ions architectures. For digital quantum simulation purposes on NISQ devices, a native all-to-all con-
nectivity is often a significant advantage, as it effectively reduces typical circuit depths and helps
in avoiding the use of cumbersome SWAP gates: in this sense, trapped ions are more promising for
establishing quantum correlations between distant pairs of qubits, although the first attempts to
go beyond nearest-neighbors coupling have been reported on three-qubit superconducting quantum
processors [173]. Finally, while in trapped ion-based technologies all qubits are in principle identi-
cal, superconducting qubits usually display, even on the same chip, different fabrication parameters
and qualities. These are also affected by thermal cycling and hence require a detailed and frequent
characterization to accurately calibrate the control pulses [174].

In the interest of finding platform- and problem-independent figures of merit to compare different
quantum computing architectures, the so called quantum volume [99, 175, 176] has been introduced
in recent years to provide combined information both on the available quabits N and the typical
circuit depth d(N) that can successfully be run on a given platform. Conceptually, the quantum
volume is defined as

VQ = min[N, d(N)]2 (1.96)

To be more specific, let us denote by εeff(N) the average error rate per two-qubit general SU(4) gate
run on any pair of qubits in a N qubit quantum register on the hardware under examination. Notice
that εeff(N) in general receives contributions from hardware-native single- and two-qubit gate errors,
from the possible lack of all-to-all connectivity and from the structure of the available fundamental
gate set. As a result, εeff(N) is typically different, and usually larger, than the ideal error rate
measured for proof-of-principle demonstrations of individual gates. We can then assume that the
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error rate per clock cycle, i.e. per step in any given algorithm when all possible parallelization of
two-qubit operations on disjoint pairs of qubits is taken into account, scales as ε ' Nεeff(N). An
estimate of the average circuit depth in which at most a single error occurs now gives

d · ε ' 1 =⇒ d ' 1

Nεeff(N)
(1.97)

and the definition of the quantum volume can be further refined as follows

VQ = max
n≤N

(
min

[
n,

1

nεeff(n)

]2
)

(1.98)

Here the maximum is taken over all possible subsets of n qubits and keeps into account the fact that,
according to the definitions above, the optimal circuit depth d formally decreases with N if more
qubits with constant εeff(N) are added, and that the maximum volume could then be accessible to a
given hardware by using only a portion of the available quantum register. As with qubit coherence
times, an analog of Moore’s law has also been proposed for the quantum volume: for example,
IBM Research reported in the period 2017-2019 a yearly doubling of the maximal quantum volume
achieved with their IBM Q prototypes, from VQ ' 4 to VQ ' 16 [177].

The challenges that must be faced to increase the available quantum volume are, by definition,
closely related to the evolution of current NISQ devices into useful quantum simulators. On one
hand, despite a few non-trivial issues related e.g. to individual qubit manipulation and frequency
crowding (on superconducting platforms) or to finding new strategies for qubit confinement and
spatial arrangement (on trapped ions processors), adding more qubits to the actual hardware mostly
appears to be a purely technological challenge. On the other hand, implementing long sequences
of high-fidelity operations on several qubits could be more demanding and may bring up some
fundamental physical issues. Indeed, this requires considerable improvement of the average gate
performances on multi-qubit devices, the suppression of both qubit decoherence and coherent errors
due to imperfect qubit manipulations, and the reduction of unwanted qubit-qubit interactions (cross-
talks) whose harmful effect increases with the system size. Along these lines, strategies to engineer
better gate parallelization [178] and global entangling interactions [179] on trapped ions architectures
have lately been put forward.

To conclude, and in addition to what was already mentioned in the previous sections, we also
summarize here some of the theoretical contributions which in recent years aimed at expanding the
range of applicability and the performances of digital quantum simulation protocols, independently
of the specific hardware platform. Examples go from quantum chemistry and material sciences [57,
119, 180] to quantum field theories [181, 182] and high energy physics [183], from the dynamics of
open [184–189] and many-body quantum systems [190] to linear response [63] and imaginary-time
evolution [191, 192]. Refined product formulas for lattice simulation [193], genetic algorithms [194]
and variational time evolution approaches directly inspired by the action minimization principle [195]
have also been proposed in an attempt to increase the digital accuracy and resilience to hardware
noise of quantum simulations algorithms.





2
Quantum dynamics on near-term quantum processors

In this chapter, we present original results for the digital quantum simulation of quantum dynamics
on NISQ processors based on superconducting technology. First, some of the algorithms outlined
in Chapter 1 will be put into practice with the aim of assessing the current capabilities of quantum
processors. We will then move on beyond state-of-the-art results and present proof-of-principle
demonstrations of new procedures and simulation techniques.

The quantum processors used in this work are provided by IBM Research within the IBM Quan-
tum Experience (IBM Q) program. Results were obtained both on public free-access prototypes
and on near-to-commercial chips. The latter were operated in close collaboration with the quantum
computing research group at the IBM Zurich Laboratory.

The chapter is organized in three main sections: in the first part, we will provide some tech-
nical details about the quantum processors used in the experimental tests and the way they were
programmed and operated on cloud. In the second part, we will present algorithms and results
for the digital quantum simulation of some paradigmatic few-spin models, specifically adapted and
designed to be run on IBM Q processors. In the third and most important part, we will then
describe in detail the main theoretical and experimental achievements, namely the full digital quan-
tum simulation of spin dynamical correlation functions and a thorough original discussion of device
noise, error mitigation techniques and scalability perspectives. These findings will then be applied,
with an original hybrid quantum-classical procedure, to extract the cross section of 4-dimensional
inelastic neutron scattering processes on molecular magnetic systems.

2.1 The IBM Quantum Experience

IBM Q quantum processors were first made available for free cloud access in 2016. The physical
chips are assembled and operated in the IBM Research Laboratory in Yorktown, while users can
submit quantum circuits to be run by using graphical interfaces and the Qiskit python development
kit [196]. At its heart, the latter manipulates QASM (Quantum Assembly Language) listings for
quantum circuits [197]. Both the user interface and the control software are currently under active
development and have undergone some deep restyling steps over the months in which the data
presented here were taken, approximately January 2018-June 2019. However, the average properties
and performances of the quantum processors, which we are going to outline below, were kept
reasonably stable through constant maintenance and calibration. The IBM Quantum Experience
can be accessed at https://quantum-computing.ibm.com, while Qiskit documentation and updates
are hosted at https://qiskit.org/.

The processors

All IBM Q processors are based on superconducting technology and belong to the class of Noisy
Intermediate Scale Quantum prototypes, having N ≤ 20 physical qubits and featuring no quantum
error correction. Individual qubits are realized as transmon circuits kept at a fixed frequency
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(a)

(c)

(b)

(d)

Figure 2.1: IBM Q public devices. (a) Layout of the 5-qubit “ibmqx4-Tenerife” processor, with
a scheme of inter-qubit connectivity and CNOT gate directions. Black squares represent transmon
qubits, coupled through coplanar waveguide resonators and controlled via transmission lines. (b)
Optical image of a real IBM Q 5-qubit quantum processor. (c) Layout of the 16-qubit “ibmqx5-
Rüschlikon” quantum processor. (d) Optical picture of a real IBM Q 16-qubit device. Images are
reproduced under Creative Commons License, © IBM Research.

within the microwave range. Qubit-qubit couplings are obtained via coplanar waveguide (CPW)
resonators, also named quantum bus cavities [158], and individual qubit control and readout is
performed through a set of other CPW resonators put in contact with external transmission lines
at the edge of the chip board [94, 166]. The processors are shielded from external electromagnetic
influences and kept at cryogenic temperatures (typically 15-20mK) inside dilution fridges. All data
and results described in this chapter were obtained, via remote access, on 5-qubit (named “ibmqx2-
Yorktown” and “ibmqx4-Tenerife”), 16-qubit (“ibmqx5-Rüschlikon” and “ibmq_16_melbourne”) and
20-qubit (“ibmq_20_tokyo”) processors. In Fig. 2.1 we show a schematic layout of typical quantum
chip architecture and optical images of the real processors.

The fundamental set of quantum logic gates that is natively implemented on IBM Q proces-
sors [101] is essentially the S1 set described in Sec. 1.1.3, i.e. it contains single qubit rotations
and CNOT. Microwave control pulses manipulating single qubits and activating two-qubit CNOT
operations, shaped with gaussian and gaussian-derivative profiles, are optimized to minimize gate
inaccuracies and population leakage outside the computational basis states of transmons [198, 199].
In terms of pulse optimization, it is worth mentioning that virtual z-rotations (i.e. phase gates) are
used [100], see also Sec. 1.1.3: under this strategy, every single-qubit relative phase induced by a
Rz(θ) operation is taken into account only as a change of reference frame in the control settings of all
subsequent gates, without the need for physical manipulation. Virtual z-rotations are in principle
error-free and instantaneous, such that better performances should be expected for circuits relying
on the largest possible number of such quantum gates. A scheme of the four fundamental control
sequences for IBM Q devices, to which all other user-requested quantum gates are reduced at the
compilation stage, are reported in Fig. 2.2a.
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(a) (b)

Q2

Q1

1
Figure 2.2: Fundamental quantum operations on IBM Q devices. (a) Pulse scheme for
the fundamental gate set. Every pulse is applied at the frequency reported at the beginning of
each line: ωq is the frequency of the qubit on which the Ui gates are applied, while ωC and ωT in
the CNOT are the control and target qubit frequencies respectively. Image retrieved from https:
//github.com/Qiskit/ibmq-device-information. (b) Scheme of two transmon qubits coupled
through an intermediate cavity resonator. Cross resonance interactions are activated by driving one
qubit at the renormalized frequency of the other.

Single qubit operations. Quantum logic gates addressing individual qubits are obtained in three
versions of different complexity and generality: at the lowest level, the quantum gate called U1(λ)
is nothing but a virtual Φ(λ) phase gate, see Eq. (1.27)

U1(λ) =

(
1 0
0 eiλ

)
= ei

λ
2 Rz(λ) (2.1)

and is obtained with just a Frame Change (FC) at the control software level, as commented above.
A slightly more powerful gate is

U2(φ, λ) =
1√
2

(
1 −eiλ
eiφ ei(λ+φ)

)
(2.2)

which requires one Gaussian Derivative (GD) and two FC pulses. Hadamard gates can for exam-
ple be translated as H = U2(0, π). Finally, the most general SU(2) gate, already introduced in
Eq. (1.25), here is called U3

U3(θ, φ, λ) =

(
cos(θ/2) −eiλ sin(θ/2)

eiφ sin(θ/2) ei(λ+φ) cos(θ/2)

)
(2.3)

and is implemented with two GD and three FC pulses at the frequency of the target qubit. Typical
gating times for IBM Q devices are in the range of 50-150 ns for each GD pulse. It is also worth
mentioning that, since the continuous phases are encoded through virtual frame changes, the total
duration of single qubit rotations is fixed and does not depend on the choice of the θ, φ or λ
parameters introduced above.

Two-qubit operations. The native two-qubit CNOT gate which completes the universal set of
quantum operations is obtained with a cross-resonance (CR) scheme [104, 200] in which the control
qubit is driven at the frequency of the target with a Gaussian Flattop (GF) pulse. The average
GF duration is around a few hudreds of nanoseconds, typically tGF ' 100-400 ns. The physical
basis of the cross-resonance gate can be understood starting from the circuit in Fig. 2.2b. Indeed,
the typical Hamiltonian for a pair of qubits (Q1 and Q2, with frequencies ω1 and ω2 respectively)
dispersively coupled through a common resonator reads [104]

H =
ω1

2
σ(1)
z +

ω1

2
σ(2)
z + Jσ(1)

x σ(2)
x (2.4)

https://github.com/Qiskit/ibmq-device-information
https://github.com/Qiskit/ibmq-device-information
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Table 2.1: Typical average parameters for IBM Q devices

ibmqx2 ibmqx4 ibmqx5 ibmq_16_melbourne ibmq_20_tokyo
N of qubits 5 5 16 14 20

Frequency (GHz) 5.19 5.29 5.14 4.97 5.16
T1 (µs) 62.9 45.2 52.1 54.6 86.1
T2 (µs) 49.7 22.5 87.8 66.5 60.3

1-qubit gate error 2 · 10−3 2 · 10−3 2 · 10−3 6 · 10−3 2 · 10−3

2-qubit gate error 5 · 10−2 4 · 10−2 5 · 10−2 5 · 10−2 5 · 10−2

Readout error 4 · 10−2 1 · 10−1 7 · 10−2 6 · 10−2 9 · 10−2

which upon diagonalization in the regime J � ∆12 = ω1 − ω2 yields a set of renormalized qubit
frequencies

ω̃1 = ω1 +
J

∆12
ω̃2 = ω2 −

J

∆12
(2.5)

In the new qubit basis, a drive Hamiltonian applied on Q1 at the frequency ω̃2 has the form [104]

Hdrive(t) = A(t) cos(ω̃2t)

(
σ(1)
x −

J

∆12
σ(1)
z σ(2)

x +m12σ
(2)
x

)
(2.6)

where A(t) is the amplitude shape of the pulse. Apart from single qubit effects σ(1)
x and spurious

cross-talks m12σ
(2)
x , the drive Hdrive(t) contains the generator σ

(1)
z σ

(2)
x which can be tuned to obtain

a CNOT gate. Without commenting further on these technical details, we mention that the whole
treatment can be done symmetrically for a driving applied on Q2, and in general the whole 2-qubit
SU(4) Lie algebra can be covered [102]. Quite relevant for the IBM Q realization is also the fact that,
being Q1 and Q2 non-degenerate, when cross talks are taken into account [104] the effective strength
of the cross resonance interaction is non-symmetric and is typically more favorable (requiring e.g.
shorter gating times) for one particular choice of the control-target roles. As a consequence, and
most often in public IBM Q devices, these relationships are fixed and are available to the user only
in a specific configuration: for example, in Fig. 2.1a the directions of the arrows point from the
designated control towards the target. Notice that these limitations can always be compensated
through single qubit rotations, as in the following identity:

•
=

H H

H • H

(2.7)

Qubit readout. Information about the state of individual qubits can be retrieved via measure-
ments in the computational basis. Each quantum circuit run on IBM Q devices is repeated a number
nshots ≤ 8192 of times, from which the statistics of the outcomes can be reconstructed, leading to
the probabilities p0 and p1 of measuring a qubit in states |0〉 and |1〉 respectively. At the hardware
level, the state of each qubit is measured by sending a microwave pulse into readout resonators: the
reflected signals are then amplified via a Josephson parametric converter followed by high electron
mobility transistor amplifiers operating at 4K.

We conclude this section by providing in Tab. 2.1 a set of typical physical characterization
parameters for the IBM Q quantum processors. These are averaged over all qubits and a significant
variability of qubit quality must usually be taken into account. Most of these properties are updated
on a daily basis through hardware recalibration. Additional information and technical details are
maintained at https://github.com/Qiskit/ibmq-device-information.

Writing quantum software

Remote user interaction with IBM Q devices and quantum programming happen via the open
source python development kit called Qiskit [196]. During the time frame in which the results
presented here were obtained, the Qiskit distribution went through several releases, moving from

https://github.com/Qiskit/ibmq-device-information
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version 0.4 to 0.10. Although the overall software interface gradually evolved and has seen, among
other improvements, the addition of field-specific libraries and a better handling of backends and
circuit compilation routines, the underlying structure for writing a sequence of quantum gates and
running it on a real quantum processor has remained essentially the same. Without going into
details, we can give the flavor of a Qiskit program with the following lines of code, where we create
an instance of a 2-qubit quantum register, we perform a simple sequence of gates which brings a
factorized |00〉 default initial state into the Bell state

√
2|Φ+〉 = |00〉+ |11〉 and then measures both

qubits in the computational basis, writing the outcomes on a 2-bit classical register:

import q i s k i t as qk

qr = qk . QuantumRegister (2 , name=' qr ' )
c r = qk . C l a s s i c a lR e g i s t e r (2 , name=' cr ' )
qc = qk . QuantumCircuit ( qr , c r )

qc . h ( qr [ 0 ] )
qc . cx ( qr [ 0 ] , qr [ 1 ] )

qc . measure ( qr [ 0 ] , c r [ 0 ] )
qc . measure ( qr [ 1 ] , c r [ 1 ] )

The corresponding circuit representation is

qr0 : |0〉 H •

qr1 : |0〉

cr0 : 0

cr1 : 0

When parsed and compiled to be run on a real IBM Q processor, the above program is converted into
an OpenQASM listing, featuring the native IBM Q gates. Remembering that for the Hadamard
gate we can write H = U2(0, π), it is straightforward to verify that the corresponding quantum
assembly script is

OPENQASM 2 . 0 ;
i n c lude " q e l i b 1 . inc " ;
qreg q [ 5 ] ;
c reg cr [ 2 ] ;
u2 (0 .0 , 3 . 14159265358979) q [ 1 ] ;
cx q [ 1 ] , q [ 0 ] ;
u2 (0 .0 , 3 . 14159265358979) q [ 0 ] ;
u2 (0 .0 , 3 . 14159265358979) q [ 1 ] ;
b a r r i e r q [ 1 ] , q [ 0 ] ;
measure q [ 0 ] −> cr [ 0 ] ;
measure q [ 1 ] −> cr [ 1 ] ;

In this case, the target backend was the “ibmqx4-Tenerife” processor, and the compiler used the
identity of Eq. (2.7) to account for the fixed control-target CNOT relationship between physical
qubits Q1 and Q0 imposed by the chip, see Fig. 2.1a. This ability of the Qiskit compiler to
adapt a given circuit to a certain hardware, for example by taking into account the actual qubit-
qubit connectivity and CNOT directionality, has greatly improved over time. However, in order
to maintain full control over this mapping and to avoid unexpected modifications of the quantum
circuit, for all results presented here the adaptation to the real backend topology was always hard-
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coded, including e.g. SWAP operations

• •

•
SWAP =

(2.8)

explicitly when needed. This was of course possible due to the small size of the quantum registers
involved. Moreover, the choice of the subset of qubits to be used to run a certain algorithm on
a given processor was also requested explicitly, in such a way that different realizations could be
compared and the best qubits in terms of coherence and gate fidelity could be targeted. It is
worth noting that, along with Qiskit, the ecosystem of open source quantum software libraries is
already quite well developed [201], with both full-stack approaches (e.g. IBM Q with Qiskit, Rigetti
Computing with PyQuil and Forest1) and more application-oriented efforts.

2.2 Digital quantum simulations of spin Hamiltonians

Initial experiments on IBM Q processors were performed primarily as a way of assessing the bare
performances of the hardware and to establish a working library of gate sequences. In this section, we
present early results on the digital quantum simulation of some paradigmatic spin models. Despite
an overall quantitative accuracy which often turns out to be not fully satisfying, these preliminary
results will help to identify a set of features and physical quantities of interest that the prototype
quantum processors were already able to reproduce. Leveraging this knowledge of the capabilities
and intrinsic limitations of IBM Q processors will turn out to be crucial in the design and successful
completion of more complex studies, which will be presented afterwards in Sec. 2.3. All simulations
reported in this section were performed in March 2018, and some of the results were later published
in Ref. [202].

2.2.1 Tunneling of S = 1 total magnetization

The magnetic moment of a spin S = 1 particle under the action of single-spin crystal-field anisotropy
obeys a Hamiltonian of the form [47, 203]

H = DS2
z + E(S2

x − S2
y) (2.9)

The mapping of this model to a qubit register can be made straigthforwardly by considering, on
one hand, the close relationship between qubits and spin s = 1/2 particles, and on the other hand
the fact that the S = 1 components can be seen as the sum of two spin-1/2 operators:

Sα = s(1)
α + s(2)

α for α = x, y, z (2.10)

The corresponding mapped Hamiltonian then becomes [47, 54]

H = 2Ds(1)
z s(2)

z + 2E
(
s(1)
x s(2)

x − s(1)
y s(2)

y

)
(2.11)

Here, in view of studying the time evolution of the total magnetization Sz = s
(1)
z + s

(2)
z , we have

neglected operators corresponding to constants of the motion commuting with s(i)
z . By using the

relation s(i)
α = (1/2)σ

(i)
α , the Hamiltonian H can then be written in Pauli form

H =
D

2
σ(1)
z σ(2)

z +
E

2

(
σ(1)
x σ(2)

x − σ(1)
y σ(2)

y

)
(2.12)

The time evolution of the expectation value of Sz then reads

〈Sz(t)〉 = 〈ψ0|eiHt
(
s(1)
z + s(2)

z

)
e−iHt|ψ0〉

= 〈ψ0|ei
Et
2

(σ
(1)
x σ

(2)
x −σ(1)

y σ
(2)
y )
(
s(1)
z + s(2)

z

)
e−i

Et
2

(σ
(1)
x σ

(2)
x −σ(1)

y σ
(2)
y )|ψ0〉

(2.13)

1See for example https://github.com/rigetti/pyquil and https://www.rigetti.com/forest.

https://github.com/rigetti/pyquil
https://www.rigetti.com/forest


Quantum dynamics on near-term quantum processors 37

0 5 10 15

-1

-0.5

0

0.5

1
Exact solution

ibmqx2 q[4],q[2]

ibmqx2 q[3],q[4]

(a) (b)

1Figure 2.3: Digital quantum simulation of S = 1 magnetization on an IBM Q processor.
(a) Scheme and connectivity of the IBM Q quantum processor ibmqx2-Yorktown. Retrieved from
https://github.com/Qiskit/ibmq-device-information. (b) Results of the 2-qubit digital quan-
tum simulation using the quantum circuit in Eq. (2.17). Data are shown for two different choices of
qubits on the quantum processor. In both cases, the CNOT direction was chosen according to the
device characteristics and the statistics of the occupation probabilities for s(i)

z eigenstates was re-
constructed by running the same sequence of quantum gates nshots = 8192 times, i.e. the maximum
allowed on IBM Q public devices.

where |ψ0〉 is the initial state of the system and we have used the relation

[σ(1)
α σ(2)

α , σ
(1)
β σ

(2)
β ] = 0 for α, β = x, y, z (2.14)

As a result, it is clear that non-trivial evolution is only generated by the term

HE =
E

2

(
σ(1)
x σ(2)

x − σ(1)
y σ(2)

y

)
(2.15)

which we can readily compute on a quantum register. In fact, this is probably one of the simplest
possible examples of digital quantum simulation, as the time evolution operator

U(t) = e−i
Et
2

(σ
(1)
x σ

(2)
x −σ(1)

y σ
(2)
y ) = e−i

Et
2
σ

(1)
x σ

(2)
x ei

Et
2
σ

(1)
y σ

(2)
y (2.16)

does not require digital approximations through the ST formula of Eq. (1.7). Within the IBM Q
native set of operations, a quantum circuit achieving the desired result for a target phase evolution
λ = Et/2 is for example

X Ux3 (π/2) • • Ux3 (−π/2) Uy3 (−π/2) • • Uy3 (π/2)

X Ux3 (π/2) U1(−2λ) Ux3 (−π/2) Uy3 (−π/2) U1(2λ) Uy3 (π/2)

(2.17)

where Ux
3(θ) = U3(θ,−π/2, π/2) = Rx(θ), Uy

3(θ) = U3(θ, 0, 0) = Ry(θ) and we have used quantum
gate decompositions similar to the ones in Eqs. (1.48)-(1.52). The X gates at the beginning prepare
the initial state |11〉 from the default |00〉 assumed in Qiskit. The elementary digital quantum
simulation algorithm in Eq. (2.17) was tested on different pairs of qubits on the ibmqx2 quantum
processor, as reported in Fig. 2.3. Data are extracted by measuring the quantum register in the
computational basis, i.e. by reconstructing occupation probabilities for the eigenstates of s(i)

z =

(1/2)σ
(i)
z . We notice a very good agreement with theoretical predictions featuring the tunneling

oscillations of the total magnetization, with only minor discrepancies with respect to ideal results.
Such differences come essentially in the form of a slight damping of the oscillations, whereas the
oscillation frequency is correctly reproduced. In fact, we can already mention that this is a typical
effect of the combined action of noise channels and systematic errors on the quantum chip, as will
become more clear in the following.

https://github.com/Qiskit/ibmq-device-information
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Figure 2.4: Digital quantum simulation of spin-1/2 chains on IBM Q processors. (a) Spin
magnetization at one end and at the center of a 3-qubit Heisenberg chain, simulated on ibmqx2 for
one digital step and with initial state |↓↑↓〉. (b) Spin magnetization at one end and at the center
of a 3-qubit chain with anti-symmetric exchange interactions, simulated on ibmqx5 for one digital
step and with initial state |↓↑↓〉.

2.2.2 Spin-1/2 chains

A slight increase in the complexity of the target digital simulation can be obtained by combining
SU(4) Hamiltonians for different spin-1/2 pairs, thus building small-scale examples of spin chains.
In this case, bonds with common ends typically generate non-commuting terms and thus call for
a non-trivial use of the Suzuki-Trotter digitalization procedure. One of the simplest prototypes
is a system of three spin-1/2 particles arranged in a linear chain topology with open ends and
Heisenberg-like interactions. The Hamiltonian reads

HHeis,3 = H12
Heis,2 + H23

Heis,2 (2.18)

where

Hij
Heis,2 = Jij

(
σ(i)
x σ(j)

x + σ(i)
y σ(j)

y + σ(i)
z σ(j)

z

)
(2.19)

It is straightforward to verify by direct inspection that [H12
Heis,2,H

23
Heis,2] 6= 0. The digital quantum

simulation is therefore built as

e−iHHeis,3t '
(
e−iH

23
Heis,2t/ne−iH

12
Heis,2t/n

)n
(2.20)
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and a single digital step corresponds to a quantum circuit of the form

e−iH
12
Heis,2t/n

e−iH
23
Heis,2t/n

(2.21)

We take for simplicity J12 = J23 = J and we define λ = Jt and λn = λ/n. We can therefore
decompose each 2-qubit block in Eq. (2.21) with the usual techniques in CNOT gates and single
qubit rotations (see for example Fig. 1.4a). Using IBM Q native gates a typical sequence for
e−iH

ij
Heis,2t/n is then

ZZ(λn)

Ux3 (π/2)

ZZ(λn)

Ux3 (−π/2) Uy3 (−π/2)

ZZ(λn)

Uy3 (π/2)

Ux3 (π/2) Ux3 (−π/2) Uy3 (−π/2) Uy3 (π/2)

(2.22)

where

ZZ(λn) =
• •

U1(2λn)

(2.23)

Here, in the spirit of testing the hardware capabilities and resilience, we do not use any CNOT re-
duction scheme (such as e.g. the one shown in Fig. 1.4b), in such a way that each 2-qubit Heisenberg
block consists of 6 CNOT gates and single-qubit rotations. A single digital step on three qubits has
therefore a circuit depth corresponding to 12 CNOTs. Results obtained for n = 1 on the ibmqx2
quantum processor are shown in Fig. 2.4a. While the overall oscillation of the spin magnetization
is visible, it is clear that the quantum hardware is pushed here close to its present limitations in
terms of quantitative accuracy. In particular, n > 1 digital steps are still beyond reach on this
particular implementation of the Heisenberg model: in terms of quantum gates, we empirically find
approximately 10-15 CNOTs in the circuit to be an upper bound for reliable results. Consistent
performances on similar SU(4) Hamiltonians are also reported in the recent literature [62].

Another series of experiments, whose results are shown in Fig. 2.4b, targeted a 3-qubit chain
with anti-symmetric exchange interactions (ASE)

HASE,3 = H12
ASE,2 + H23

ASE,2 (2.24)

where
Hij
ASE,2 = J

(
σ(i)
x σ(j)

y − σ(i)
y σ(j)

x

)
(2.25)

Here, a single 2-qubit block e−iH
ij
ASE,2t/n within a digital step takes the form

Uy3 (π/2)

ZZ(λn)

Uy3 (−π/2) Ux3 (−π/2)

ZZ(−λn)

Ux3 (π/2)

Ux3 (π/2) Ux3 (−π/2) Uy3 (−π/2) Uy3 (π/2)

(2.26)

and the total 3-qubit quantum algorithm

e−iH
12
ASE,2t/n

e−iH
23
ASE,2t/n

(2.27)

contains 8 CNOTs per digital step. As it can be seen in the experimental results obtained on
the ibmqx5 quantum processor, oscillations are once again accurately reproduced, while the total
amplitude is slightly damped. In both ASE and Heisenberg chains, it is worth noticing that a
source of quantitative inaccuracy is also an apparent shift of the oscillation maxima with respect
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1Figure 2.5: Digital quantum simulation of the Transverse Field Ising model. (a) Quantum
circuit for a single Trotter digital step, using IBM Q native quantum logic gates. (b)-(d) Time
evolution of the total spin magnetization along the z direction for increasing number n of digital
steps. Exact Hamiltonian diagonalization (dashed line) and numerical matrix exponentiation using
the Trotter formula (solid blue line) are compared with experimental results obtained on the ibmqx5
quantum processor.

to the exact results. While in a fair scenario in which classical simulations are not available this
discrepancy cannot in general be detected, it will be nevertheless interesting to investigate it further
in the following. Indeed, we will see in later sections that this issue is rather ubiquitous in many
of the experimental results obtained on real hardware and, at least to some extent, it reflects
systematic inaccuracies in the implementation of quantum gates. Under this light, we will be able
in some special cases to exploit the underlying physical properties and symmetries of the target
models to mitigate their impact a posteriori without resorting to explicit exact solutions.

2.2.3 Transverse Field Ising model

We conclude this exploration of the basic performances of IBM Q processors as digital quantum
simulators by showing on an explicit example the effect of different choices for the number of Suzuki-
Trotter approximation steps. As we extensively discussed in Chapter 1, a dense discretization is
required to accurately reproduce the physical reality of a target model. However, this in turn
means that long enough quantum computations must be implemented and carried out: on NISQ
processors, there is inevitably a trade-off between digital error and experimental limitations. Here
we use as a test case the 2-qubit Transverse Field Ising model, introduced in Eq. (1.91)

HTIM,2 =
Bg

2

(
σ(1)
x + σ(2)

x

)
+ Jzzσ

(1)
z σ(2)

z (2.28)
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The corresponding quantum circuit for a digital step, reported in Fig. 2.5a (see also Eq. (1.93) for
the corresponding mathematical formulation) is sufficiently simple to make a few Trotter steps well
within the current boundaries of experimental feasibility, even if with lower and lower accuracy as
n increases. The cases with n = 1, 5, 10 simulated on ibmqx5 are reported in Fig. 2.5b-d, where
experimental results for the total spin magnetization in the case Bg = 2Jzz are compared to the
numerical solution of the TIM both in the exact and digital version. The number of digital steps is
kept constant over the whole range of the simulation. The quantitative and qualitative agreement
is good up to approximately n ' 5 (i.e. 10 CNOTs) and Jzzt ' 18, while it is also clear the at least
n ' 10 is needed to start getting physically meaningful results at long times.

The lesson that must be learned from all the results presented in this section is that there is
still much room for improvement in all those applications in which the time evolution of physical
quantities is directly the object of the simulation. However, as we will more extensively discuss in
the second part of this chapter, it is also true that there exist a set of questions that can be asked
about a physical system, starting from e.g. normal oscillation frequencies, for which a useful answer
can already come from digital quantum simulation algorithms run on NISQ processors.

2.3 Dynamical quantum correlations

It is well known that a good and reliable estimation of quantum mechanical normal frequencies
is critical for exploring the energetic structure of a target system. The most general physical
quantities containing such information are dynamical correlation functions [122, 123, 125], which
were already briefly introduced in Sec. 1.1.5. Indeed, dynamical correlation functions describe how
excitations, possibly induced by external probes, propagate inside a system and are thus common
to all kinds of investigations involving e.g. linear response, energy transport and scattering. The
results presented in the previous section suggest that an analysis of dynamical correlations and of
the energetic and structural information they carry, if faced with the necessary contributions from
data and error analysis, might be within reach of a digital quantum simulation scheme performed
on NISQ processors. As dynamical correlations for quantum systems are typically hard to obtain
numerically on classical devices, the successful use of a quantum hardware might open new and
interesting perspectives in the field.

Here we will present a systematic procedure to compute and analyze dynamical correlation
functions on spin systems, and we will provide proof-of-principle realizations obtained on IBM Q
processors. Besides the intrinsic theoretical and experimental value of such results, the final goal will
be the study of real physical systems, such as magnetic clusters made of atomic or molecular spins:
indeed, we will demonstrate how quantum dynamical correlations can be used to efficiently extract
the cross section for an investigation technique known as 4-dimensional inelastic neutron scattering,
which nicely relates the general knowledge of paradigmatic spin models to a specific real world
application. During the discussion, we will have the opportunity to characterize in greater detail
the major sources of experimental error on the real processors, starting from an almost completely
hardware-agnostic end user perspective. The most relevant results in this section appeared in
Ref. [124].

2.3.1 Quantum algorithms for dynamical correlation functions

The general procedure for computing and extracting dynamical correlation functions by making
use of digital quantum simulation techniques on a register of qubits was introduced and described
in Sec. 1.1.5. Here we apply that scheme to some 2- and 3-spin systems, which we will also call
molecules from now on, adapting the required gate sequences to IBM Q devices. All the benchmark
spin models considered here share the general structure

H =
N−1∑

i=1
α=x,y,z

Jαi s
(i)
α s

(i+1)
α +B

N∑

i=1

gis
(i)
z (2.29)
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Table 2.2: Parameters for simulated spin molecules. For each molecule, the parameter J
sets the overall energy scale.

molecule 1 molecule 2 molecule 3 molecule 4 molecule 5
N of spins 2 2 2 3 3

Bg1 3J 10J 10J 10J 10J
Bg2 3J 12.5J 12.5J 10J 10J
Bg3 - - - 10J 10J
Jα1 J J Jz1 = J , Jx,y1 = 0 J Jx1 = Jy1 = −0.5Jz1 = J
Jα2 - - - J Jx1 = Jy1 = −0.5Jz1 = 0.7J

where s(i)
α = (1/2)σ

(i)
α are spin-1/2 operators. The target spin-spin dynamical correlation functions

are defined as
Cαβij (t) = 〈0|s(i)

α (t)s
(j)
β |0〉 =

∑

p

〈0|s(i)
α |p〉〈p|s(j)

β |0〉e−iEpt (2.30)

where |0〉 is the energetic ground state, |p〉 are molecular eigenstates and Ep are the corresponding
eigenergies. We notice that, already from the expansion above, it is immediately clear that a full
knowledge of dynamical correlations is essentially equivalent to a complete characterization of the
system under study, i.e. a diagonalization of the relevant Hamiltonian.

For the N = 2 case, we consider three different choices of the structural parameters, correspond-
ing to different degrees of complexity both in the required simulation algorithm and in the resulting
dynamical behavior. The parameters are collected in Tab. 2.2: molecule 1 is a Heisenberg dimer
of equivalent spins (g1 = g2 = g) put in an external field, molecule 2 has Heisenberg interactions
and inequivalent spins (g1 6= g2), and molecule 3 features inequivalent spins and a simple Ising
term aligned to the external field. Only molecule 2 requires a non-trivial application of the Trot-
ter approximation formula. On the other hand, the N = 3 case always requires a digital Trotter
discretization due to the non-commutativity of the Hamiltonian interaction terms corresponding to
edges with common ends, just like it was the case in Sec. 2.2.2. Two different spin trimers were
considered, as reported again in Tab. 2.2: molecule 4 is a fully isotropic Heisenberg system in an
external field, while molecule 5 features a anisotropic XYZ interaction with inequivalent bonds. In
all cases, the external field was chosen to be sufficiently strong so that the ground state could a pri-
ori be assumed to be approximately |0〉 = |↓↓〉 (|↓↓↓〉 for trimers). Following the usual conventions
adopted in quantum computation [5], we make the identification |↓〉 = |1〉 between spin-1/2 and
qubit states. More in general, a separate analysis is required, possibly via variational approaches
such as the VQE algorithm, to obtain the ground state and to prepare it on the quantum register.

The general structure of the quantum algorithm to extract dynamical correlation functions is
reported in Fig. 2.6a for dimers and Fig. 2.6b for trimers. The final measure on the ancilla provides,
as described in Sec. 1.1.5, real and imaginary parts of the correlations

C̃αβij (t) = 〈0|σ(i)
α (t)σ

(j)
β |0〉 (2.31)

which correspond to Cαβij (t) up to a constant 1/4 factor. In both dimer and trimer cases, the choice
of the target qubits in the initial and final controlled operations determines the pair of spins on
which the dynamical correlation is computed, possibly including autocorrelations. These controlled
unitaries involving Pauli operations can be obtained within the IBM Q native set as follows

•

α

≡
•

σα

=
•

R R†

(2.32)

where R = H = U2(0, π) for α = z, R = U1(π/2) for α = y and no R is needed for α = x. The time
evolution terms Uij(t) are designed according to the usual digital quantum simulation procedures
and applying Suzuki-Trotter digital approximation when required. In particular, for general 2-qubit
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a H • X • X Umeas

〈σx〉+ i〈σy〉 = C̃βα21 (t)

1 α
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〈σx〉+ i〈σy〉 = C̃βα22 (t)

1 Rz(Bgt)
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2 α Rz(Bgt)
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
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1

Figure 2.6: Digital quantum simulation of spin-spin dynamical correlations. (a) Quantum
circuit for cross-correlations on a spin dimer (molecules 1, 2 and 3). Interaction with the external
magnetic field is implicitly included in the U12(t) unitary operation. (b) Quantum circuit for
autocorrelations on a spin trimer (molecules 4 and 5). Here the rotations induced by an external field
are explicitly factored out as they commute (gi = g for i = 1, 2, 3) with the two-body interactions.
The latter must be treated with Trotter digital steps, and τ = t/n. In both panels, α, β are short-
hand notations for σα,β and Umeas allows to retrieve from a final measurement in the computational
basis the expectation values of σx (for Umeas = H) and σy (for Umeas = Rx(π/2)) on the ancilla a.
In turn, these encode respectively the real and imaginary parts of the target correlation function.

SU(4) interactions leading to time evolution terms of the form

Uij(t) = e−it
∑
α J

αs
(i)
α s

(j)
α (2.33)

we make use of the following decomposition which optimizes the circuit depth per digital step [127],
see also Fig. 1.4b

• Rx(J
xt
2 − π

2 ) H • H • Rx(π2 )

Rz(
Jzt
2 ) Rz(

−Jyt
2 ) R†x(π2 )

e−it
∑
α J

αs
(i)
α s

(j)
α =

(2.34)

For the case of molecule 4 and 5 the trotterization is explicitly shown in Fig. 2.6b. For the spin
dimers, n > 1 digital steps are required only in the simulation of molecule 2, and here we make use
of the second order Suzuki-Trotter formula introduced in Eq. (1.68). The time evolution part of the
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circuit then becomes

Rz(
Bg1τ

2 ) • Rx(J
xτ
2 − π

2 ) H • H • Rx(π2 ) Rz(
Bg1τ

2 )

Rz(
Bg2τ

2 ) Rz(
Jzτ

2 ) Rz(
−Jyτ

2 ) R†x(π2 ) Rz(
Bg2τ

2 )







n

(2.35)

where τ = t/n. Being intrinsically limited by the hardware capabilities, for molecule 2 we use n = 2
up to Jt = 2.0 and n = 4 for 2 < Jt ≤ 6.0, and we set n = 2 for all evolution phases for molecules 4
and 52. While not optimal in terms of the computation of exact physical values for the dynamical
correlations at long times, these choices still allow for a reliable extraction of the correct normal
frequencies, as it will be demonstrated shortly by making use of suitable classical data analysis
techniques. In this sense, the hybrid procedure we are discussing, while remaining relatively far
from the full advantages promised by a post-NISQ digital quantum simulator, is nevertheless able
to tackle real problems and provide physically relevant answers, holding promise for speed-ups over
classical counterparts.

2.3.2 Results and error mitigation

From the structure of the algorithm presented in Fig. 2.6 it is straightforward to see that, in order to
avoid the necessity for SWAP operations and thus some CNOT overhead, the role of the ancilla must
be assigned on the quantum hardware in such a way that the chosen qubit can directly be involved
in a controlled operation with the qubits appearing in the target dynamical correlation function to
be computed. This means, for example, that the quantum circuit for dimers, Fig. 2.6a, requires at
least a set of three all connected qubits. For this purpose, we used the bow-tie shaped ibmqx4 chip,
as shown in Fig. 2.7a. On the other hand, the case of three-spin molecules, Fig. 2.6b, requires four
qubits with, ideally, the ancilla put in direct contact with all other three qubits individually. On
IBM Q public devices, this configuration is not available, and a hybrid solution must be adopted: as
reported in Fig. 2.7a, the 5-qubit ibmqx4 can be used to compute autocorrelations (i.e. functions of
the form Cαβii (t)) and nearest-neighbors cross-correlations (e.g. Cαβ21 (t) and Cαβ32 (t)), while the 16-qubit
ibmqx5 can easily accommodate the quantum circuit for spin 1 and spin 3 autocorrelations and next-
to-nearest neighbors (i.e. of the form Cαβ31 (t)) cross-correlations. The 20-qubit chip ibmq_20_tokyo,
which was used for molecule 5, can simultaneously offer access to all dynamical correlations without
any remapping.

We start presenting results on real IBM Q processors with the series of raw experimental data
obtained through the IBM Quantum Experience on molecule 1 for Cxxij (t) correlations, reported in
Fig. 2.7b. As it can immediately be seen, the qualitative similarities with the ideal numerically
computed solution are nevertheless strongly affected by a combination of damping and horizontal
shift (i.e. phase error) effects. We recall that similar problems were encountered in Sec. 2.2.
Leaving for a successive paragraph a more detailed analysis and justification of how these errors
arise and are related to specific hardware limitations, we will now present a method for reducing the
impact of the quantitative inaccuracy. This procedure, which we call Phase-and-Scale (PaS) error
mitigation, exploits some mathematical properties of the dynamical correlation functions which can
be inferred a priori without any knowledge of the exact solution of the simulation problem. Error
mitigation techniques have recently emerged as useful tools to extend and improve the computational
capabilities of noisy quantum hardware [62, 170–172]: it is however important to point out explicitly
that error mitigation is intimately different from quantum error correction. On one hand, the latter
generally involves the use of several physical qubits to encode and protect from external noise a
much smaller set of logical qubits, in a configuration which is still inaccessible to the present few-
qubit NISQ processors. On the other hand, error mitigation is a form of data post-processing which
can polish and extrapolate experimental results obtained on quantum processors. Indeed, all error
mitigation techniques can only be effective when the raw data retain some form of structure and
are well distinct from random noise: as a result, this approach remains confined within the typical

2Further comments and plots comparing Trotter and exact evolutions are provided in Appendix A.
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Figure 2.7: Digital quantum simulation of dynamical correlations on IBM Q devices.
(a) Mapping of the spin dimers and trimers, along with the ancilla for readout of dynamical corre-
lations, on ibmqx4, ibmqx5 and ibmq_20_tokyo IBM Q devices. Qubit labels are given according
to Fig. 2.6. Notice that the direction of some of the CNOTs on ibmqx4 changed over successive
device calibrations and that a straightforward remapping 1 ↔ 3 of the trimer on ibmqx4 can be
used to put the ancilla in contact with qubits 2 and 3 instead of 1 and 2. (b) Raw data for molecule
1, computed on ibmqx4 (circles) and compared to exact results (solid lines). (c) Phase-and-Scale
error mitigated data for molecule 1 and corresponding fit. The extracted Fourier components are
sufficiently good that there is no appreciable difference between the fit and the exact results. (d)
PaS-mitigated results for molecule 2, computed on ibmqx4, and corresponding fit. The same color
code as in panels (b)-(c) is used for real and imaginary parts. (e) Real part of dynamical corre-
lations for molecule 4 and corresponding fit. Auto- and nearest neighbors cross-correlations are
computed on ibmqx4, while next-to-nearest neighbors cross-correlations are computed on ibmqx5.
Fitted Fourier coefficients and additional experimental data are reported in Appendix A. All results
here were obtained by averaging the quantum circuit outcomes over nshots = 8192.
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coherence time of the qubits at use. In our case, we first observe that, for t = 0, autocorrelation
functions of the form Cααii (0) are a sum of positive squares of absolute values:

Cααii (0) =
∑

p

|〈0|s(i)
α |p〉|2 (2.36)

We can impose Cααii (0) to be real and positive by taking the experimental points for the real and
imaginary parts, which are obtained with different final measurements (see Fig. 2.6) and are typically
both different from zero, computing a phase correction

φ = arg (Re [Cααii (0)] + i Im [Cααii (0)]) (2.37)

and applying it to rotate the complex number back on the real axis

Cααii,mitigated(0) ≡ Ĉααii (0) = e−iφCααii (0) (2.38)

We heuristically find, by comparing to ideal numerical solutions, that the same phase correction φ
computed ad t = 0 by imposing that Cααii (0) be real and positive can be successfully applied over
the whole time domain to restore the correct mixing of real and imaginary parts. Cross-correlations
are also typically well rephased with corrections computed from the corresponding autocorrelations.
Two comments are needed here: on one hand, the fact that the phase correction can be extended
at all times strongly suggests that the origin of the associated error on the physical hardware is
of systematic nature. We will indeed argue in Sec. 2.3.3 that the phase inaccuracy is mostly due
to systematic off-resonant driving of individual qubits resulting in biased rotations on the Bloch
sphere. The validity and legitimacy of this rephasing procedure, and in particular its extension to
more complicated cases where e.g. no exact benchmark solution is available, strongly relies upon
such understanding of hardware errors. On the other hand, the manifestation of phase inaccuracies
as apparent horizontal (i.e. temporal) shifts of the outcome dynamical correlations can easily be
understood by noticing that for monochromatic oscillations of the form

f(t) = Aeiωt = A (cosωt+ i sinωt) (2.39)

a constant phase shift can easily be interpreted as a time offset:

f̂(t) = Aeiωte−iφ = A [cosω(t− t0) + i sinω(t− t0)] (2.40)

where ωt0 = φ. When, as it is often the case in our simulations, the oscillations result from different
frequency components, the actual effect on the real and imaginary parts is more complicated.
The second step of the PaS procedure aims at mitigating the overall damping of the experimental
data, mainly arising from incoherent errors on the quantum hardware. We make use of the following
sum rule for t = 0 autocorrelations:

〈(ŝ(i))2〉 = s(i)(s(i) + 1) =
∑

α

Cααii (0) (2.41)

where (ŝ(i))2 is the square of the total i-th spin operator with value s(i) = 1/2. A scaling factor F
for the experimental data is then obtained as

Fi =
s(i)(s(i) + 1)∑

α Cααii (0)
(2.42)

This Fi can be used to magnify all autocorrelations Cαβii (t). Moreover, we heuristically find an
average between Fi and Fj to be a good scaling correction for Cαβij cross-correlations. It is essential
to notice that such scaling factors depend on the total length of the quantum circuit used to obtain
the raw data, as longer circuits mean longer exposure of qubits to environmental noise: it must then
be computed for each series of data depending e.g. on the underlying target Hamiltonian model and
the number of Trotter steps. However, given that the duration of the single and two qubit gates
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Table 2.3: Oscillation frequencies and most relevant Fourier coefficients for spin dimers
obtained by fitting the PaS-mitigated data computed on the ibmqx4 chip. In square brackets, we
report the corresponding exact results obtained from the numerical diagonalization of the spin
Hamiltonian: the agreement is very good.

Molecule 1 Molecule 2 Molecule 3
ω1/J 2.00(2) [2.00] 9.5(1) [9.40] 9.5(1) [9.50]
ω2/J 3.00(3) [3.00] 12.1(1)[12.10] 12.0(1) [12.00]

|〈0|s(1)
x |1〉|2 0.125(2)[0.125] 0.24(2) [0.24] 0.25(1) [0.25]

|〈0|s(1)
x |2〉|2 0.125(5)[0.125] 0.02(1) [0.01] 0.00(1) [0.00]

|〈0|s(2)
x |1〉|2 0.125(5) [0.125] 0.02(1) [0.01] 0.00(1) [0.00]

|〈0|s(2)
x |2〉|2 0.125(5) [0.125] 0.24(2) [0.24] 0.25(1) [0.25]

〈0|s(1)
x |1〉〈1|s(2)

x |0〉 -0.127(5) [-0.125] -0.05(1) [-0.05] 0.00(1) [0.00]
〈0|s(1)

x |2〉〈2|s(2)
x |0〉 0.127(5)[0.125] 0.05(1) [0.05] 0.00(1) [0.00]

on the IBM Q processors is constant and does not depend on the continuous phase parameters, the
scaling does not depend on the simulated time t, and can indeed be applied over the whole time
domain to all data points sharing the same underlying structure of the quantum circuit. In Fig. 2.7c
we show the combined effect of PaS corrections on the data for molecule 1 corresponding to the
raw results in Fig. 2.7b. Both rephasing and rescaling parameters must always be computed for a
consistent set of data taken in a particular moment and on a certain quantum processor: indeed,
they intimately reflect, in addition to the characteristics of the particular sequence of gates that
is being run, the calibration properties of the quantum hardware and the particular choice of the
physical qubits. Moreover, it is worth pointing out explicitly that the data at t = 0 which are
used as a reference point for the PaS procedure must be computed by setting the parameter t to
zero in the corresponding quantum circuit but leaving all other quantum gates, for example CNOT
appearing in the decomposition of Uij(t) blocks, untouched3.

After the experimental results have been treated with the PaS procedure, data are fitted to
extract Fourier amplitudes

Aαβij,p + iBαβ
ij,p = 〈0|s(i)

α |p〉〈p|s(j)
β |0〉 (2.43)

and frequencies Ep, see Eq. (2.30), which directly represent the most important physical information
encoded in the quantum dynamical correlation functions under study, namely spin matrix elements
and eigenenergies. In particular, we assume that each correlation function is a linear combination
of oscillating functions

Cαβij (t) =
∑

p

[
Aαβij,p + iBαβ

ij,p

]
e−iEpt

=
∑

p

[
Aαβij,p cosEpt+Bαβ

ij,p sinEpt
]

+ i
∑

p

[
Bαβ
ij,p cosEpt−Aαβij,p sinEpt

]
(2.44)

Frequencies and Fourier coefficients are extracted by combining a Fast Fourier Transform analysis
with the FMINUIT package4. In the case of spin dimers, we always find that only two normal fre-
quencies have non-negligible weight, while three frequencies are required to reproduce the measured
oscillations. The finite time domain of the quantum simulation and the relatively small number of
Trotter steps all limit in principle the resolution with which the exact frequencies can be obtained:
however, having in mind a comparison with direct experimental measurements of dynamical corre-
lations on real quantum systems, it is often sufficient that this resolution matches the experimental

3That is to say that t = 0 data points are not obtained by simply omitting the time evolution part in the quantum
circuit: on the contrary, the Uij(0) block is used essentially as a noisy identity operation.

4See http://www.fis.unipr.it/~giuseppe.allodi/Fminuit/Fminuit_intro.html for details.

http://www.fis.unipr.it/~giuseppe.allodi/Fminuit/Fminuit_intro.html
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Figure 2.8: Major classes of hardware errors on IBM Q devices. (a) Incoherent Errors
arise from uncontrolled interaction of the qubits with the environment. (b) Systematic coherent
errors arise from non-perfect implementation of unitary gates. Here we show the effect of a single
qubit off-resonant rotation (ORR): the ideal trajectory for a Rx(θ) gate (in red) is compared to an
effective rotation around an axis tilted by θtilt = π/16 towards the z direction (blue dots). The
Bloch sphere plot is obtained with the Qutip python library [204, 205]. (c) Measurement errors
induce erroneous qubit readout in the computational basis, with e.g. a classical outcome 1 when
the qubit is actually in state |0〉.

one. In our case, we find excellent agreement with exact numerical Hamiltonian diagonalization, as
it is reported in Tab. 2.3 for spin dimers and in Appendix A. In Fig. 2.7d-e we also show a selection
of PaS mitigated results for molecule 2 and 4 with the corresponding fit. As mentioned above, for
molecule 2 we used n = 2 Trotter step in the first part of the evolution (Jt ≤ 2.0) and n = 4
afterwards: PaS mitigation was performed independently on the two data series, while the final fit
was done over the whole time domain. More experimental data are reported for completeness in
Appendix A.

2.3.3 Error analysis and scalability

Before proceeding to show how the information retrieved from dynamical correlation functions
simulated on a quantum processor can become useful for further physical studies, we provide in
this section a more detailed analysis of the hardware errors and of their relationship with the
experimental results reported above. We stress that the following study was conducted from the
perspective of IBM Q end users without any access to the physical hardware other than cloud
connection. To compare and corroborate our findings, we also report numerical results obtained
with the Qiskit simulation feature, which allows to run quantum circuits on classical hardware and
under the effect of different noise channels5. The main error sources on IBM Q devices can be
organized in three classes (see Fig. 2.8 for a pictorial representation):

• Incoherent Errors (IEs) are induced by the interaction with the external environment and
are essentially due to non perfect isolation of the qubits. These are most often considered
as the dominant limiting factors for quantum information processing applications, since they
are essentially responsible for the finite lifetime (T1) and coherence time (T2) of quantum
hardware, and are the target of many error-correction codes. In our simulations of hardware
noise, incoherent errors are included by taking into account random qubit reset, applied with
probability p = e−t/T1 after a noisy gate of duration t and mimicking an average T1 = 30µs,
a Pauli-Z channel

ρ 7→ pσzρσz + (1− p)ρ (2.45)

5Latest Qiskit releases incorporate dedicated libraries for classical simulation (Qiskit Aer) and error analysis
(Qiskit Ignis). The results presented in this section were obtained with an earlier version of the simulator, originally
introduced in Qiskit v0.5.
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Figure 2.9: Gate tomography for IBM Q processors. (a) Diagonal components of the
quantum state Rx(θ)|0〉 computed on ibmqx4 compared to ideal results (dashed lines). (b) Corre-
sponding real and imaginary parts for off-diagonal components. These experimental data require
pre-measurement Umeas unitaries to be obtained, as off-diagonal ρ elements are proportional to
σx,y expectation values while IBM Q devices only allow for measurements along the z direction: in
this case, error propagation is taken into account to extract the typical tilt parameters (see text).
(c) Experimental (ibmqx4, left column) and noisy numerical simulation (right column) of a CNOT
gate applied to the initial quantum state

√
2|ψ0〉 = |00〉+ |10〉. ORR, incoherent and measurement

errors are included in the simulated data. (d) Same experiment as in panel (c), for initial state√
2|ψ′0〉 = |01〉+ |11〉.

to model pure dephasing [5] with T2 = 30µs6 and depolarizing Pauli channels

ρ 7→ pdep

3
(σxρσx + σyρσy + σzρσz) + (1− pdep)ρ (2.46)

applied with probability pU = 0.002 and pCNOT = 0.05 after each single- or two-qubit opera-
tion respectively. These values were based on average device calibration data and adjusted to
match the experimental evidence. Here ρ indicates the density matrix

ρ =

(
ρ00 ρ01

ρ10 ρ11

)
(2.47)

of the numerically simulated system. Finite thermal population in the qubit excited state is
found to be practically negligible, in agreement e.g. with Ref. [100].

• Measurement Errors (MEs) are the result of biased qubit readout, and typically cause
a damping of the output quantities towards maximally mixed results. Qubit readout in su-
perconducting setups, which is essentially based on detecting the frequency shift induced in

6Similarly to qubit excited state lifetime T1, the coherence time T2 can be related to the probability p appearing
in the definition of the Pauli-Z channel by assuming p = e−t/T2 , where t is the duration of the noisy gate.
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an auxiliary resonator via a microwave signal [206], is currently a limiting factor in many
practical cases [166]. The measurement protocols are usually slow, with typical duration of
several hundreds of nanoseconds, and their accuracy is on average around 96% [166], even
though higher fidelities (above 99%) were reported in proof-of-principle demonstrations [207].
Asymmetric measurement errors are also possible, as in general the qubit excited state will
be subject to relaxation while the readout is being performed. In our numerical simulations
we assumed for simplicity symmetric measurement errors of 4-5%, in agreement with typical
calibration data for IBM Q processors, see Tab. 2.1.

• Systematic Coherent Errors (SCEs) arise from non-perfect implementation of the co-
herent unitary dynamics corresponding to individual quantum gates. Concatenating several
non-ideal quantum gates can significantly alter the dynamics under study. On IBM Q proces-
sors, we find the major manifestation of SCEs to be essentially consistent with Off-Resonant
Rotations (ORR) of individual qubits, which have also been reported in the literature for simi-
lar devices [100]. ORR errors are typically due to inaccuracy in the frequency characterization
of qubits, due to e.g. renormalization or drift of nominal values during operation cycles, and
consequently in the design of driving pulses. We can examine an explicit example, adapted
from Ref. [100], by looking at the trajectories on the Bloch sphere for an attempted Rx(θ)
unitary gate reported in Fig.Fig. 2.8b. If the driving pulse is exactly on resonance with the
qubit frequency Ω, the unitary time evolution of the qubit is

U(t) = e−i
Ω
2
tσx (2.48)

and leads to the desired gate for Ωt = θ. If, on the contrary, the driving is detuned from Ω
by an amount ∆, the actual time evolution is

Ũ(t) = e−it(
Ω
2
σx+ ∆

2
σz) (2.49)

The rotation is now no longer performed around the x coordinate axis, but instead around a
direction tilted towards the z axis by an angle θtilt = tan−1(∆/Ω). Similarly, a wrong phase
in the complex amplitude of the driving field can also lead to an effective rotation axis with an
acquired component in the y direction. As it can be seen in Fig.Fig. 2.8b, the net effect is often
a combination of unexpected offsets both in the x-y plane, leading to a wrong mixing of real
and imaginary components of the off-diagonal entries in the qubit density matrix, and along
the z direction, leading to artificial damping of oscillations. These effects are clearly related
to the experimental errors reported in the quantum computation of dynamical correlations,
see Sec. 2.3.2. To assess the impact of these ORR-induced inaccuracies on IBM Q devices,
we performed a full Rα(θ) tomography, whose typical results are reported in Fig. 2.9a-b for
the case α = x. Apart from an angle-independent measurement error of about 4-5%, which is
explicitly manifest in the fact that e.g. ρ00(0) 6= 1 when the initial state is |0〉, the ORR induces
an effective damping7 of the oscillations and a wrong mixing of the Bloch vector components
in the x-y plane. The latter correspond to σx,y expectation values, which are proportional to
the real and imaginary part of ρ01 entries. From these characterization experiments, we find
typical effective rotation axis to be systematically tilted of approximately π/16 towards z and
of π/8 (−π/12) towards y (respectively x) for all Rx (respectively Ry) gates. We recall that
rotations around the z axis are operated virtually at software level and are thus error free by
design.
Two-qubit SCEs can also in general arise from non-ideal realization of the native CNOT
gate, for example due to spurious cross-talk effects. In our case, we performed a full gate
tomography by preparing the initial states

|00〉 ± |10〉√
2

;
|01〉 ± |11〉√

2
(2.50)

7Notice for example that ρ11(π) < ρ00(0) while equality should hold.
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and applying a CNOT operation, which ideally should bring the quantum register into the
well know Bell basis. We then extracted, with suitable combined measurements8, all the
components of the density matrix of the outcome state. This procedure requires several single-
qubit rotations in addition to the two-qubit CNOT under examination, each one affected by its
own SCEs: by comparing the results obtained in real IBM Q processors with numerical results
including all the IEs, MEs and ORR errors described above, we find that single-qubit SCEs
are already the dominant error source, as the noise model reproduces well the experimental
findings, see Fig. 2.9c-d. Typical coherent errors for cross-resonance gates, described e.g. in
Ref. [104] have a smaller impact and were thus neglected in subsequent numerical simulations.

To summarize, our remote diagnostic experiments on IBM Q processors provided us with a
noise model featuring, as dominant error sources, single-qubit SCEs caused by off-resonant rotations.
These constitute the major source of inaccuracy in the quantum simulation of dynamical correlation
functions, as they can in principle completely alter the unitary dynamics on the quantum register
and e.g. affect the information about the system eigenfrequencies and eigenstates. Other important
error contributions come from incoherent errors and measurement errors, which usually manifest
themselves as damping of the computed dynamical correlations. Classical numerical simulations
including hardware errors are reported in Fig. 2.10. First, in Fig. 2.10a we demonstrate, by a
direct comparison with experimental data for molecule 1, how phase and attenuation errors are
very well reproduced by the theoretical model. As we discussed extensively, PaS mitigation can be
used to partially recover the correct dynamics and, in the cases presented here, to extract correct
fit parameters: however, as the net effect of SCEs usually goes beyond simple systematic phase
shifts, increasing the complexity of the simulation often leads to residual alterations which are not
fully corrected. In Fig. 2.10b-c we show some of such residual errors displayed in PaS-mitigated
experimental data for molecule 4: by comparing with the results of noisy simulations, first performed
with full IEs and SCEs contributions and then repeated with IEs only, it is straightforward to
prove that SCEs are indeed the sources of these non-trivial dynamical inaccuracies. IEs alone are
indeed mostly responsible of overall damping of the oscillations, which is easily fixed with the PaS
procedure. Finally, we present in Fig. 2.10d experimental and simulated data for the case of a 4-spin
Hesienberg model: the digital quantum simulation in this case involves 5 qubits (4 spins plus the
ancilla) and was performed on the ibmqx4 quantum processor.

It is fair to say that, on the present IBM Q hardware, SCEs are currently the most important
limitation for the digital quantum simulation of spin-spin dynamical correlation functions. We ex-
plicitly notice that, while quantum error correction (QEC) is of course the only viable approach to
counterbalance qubit finite lifetime and decoherence, the errors we experienced in practical simula-
tions are mostly an issue of qubit control and manipulation, and are not easily fixed by standard
QEC techniques. On one hand, error mitigation strategies can certainly help in reducing a posteri-
ori the impact of systematic errors, even though a fair and sensible application of these procedures
requires at least a deep understanding of the origin and effect of the errors themselves. On the
other hand, and contrary to intrinsic T1 and T2 limitations, SCEs could be at least partially tackled
by quantum engineers with improved chip design, calibration and control electronics9. To assess
the overall scalability of our method in a realistic scenario, we performed a series of numerical
simulations targeting and open linear spin chain with isotropic nearest-neighbour Hi,i+1

Heis,2 ≡ Hi
Heis,2

Heisenberg interactions
Hi
Heis,2 = J

∑

α=x,y,z

σ(i)
α σ(i+1)

α (2.51)

8With combined measurements we mean here single-qubit unitary operations Umeas followed by qubit readout in
the computational basis, which is the only available measurement process on IBM Q processors. As described in
Sec. 1.1.5, this is sufficient to target e.g. the x or y components of the Bloch vector, i.e. the expectation values of
σx,y. By measuring all possible combinations 〈σασβ〉 a 2-qubit state can be fully reconstructed.

9We can for example imagine that a slightly sparser CNOT connectivity could lead to less inter-qubit spurious
interactions, cross-talks and frequency renormalization corrections: empirical evidence in our quantum simulations
suggests for example that smaller processors (ibmqx4) have better performances in terms of SCEs with respect to
larger and more connected ones. This is indeed the route that IBM seems to be undertaking with the a new series of
quantum processors, see e.g. the IBM Q Pughkeepsie 20-qubit chip in Chapter 4.
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Figure 2.10: Error analysis and scalablilty. (a) Comparison between experimental raw data
(top plot) and numerical simulations (bottom plot) featuring the estimated hardware errors (IEs,
SCEs, MEs). Attenuation and phase errors are very well reproduced. (b) Experimental PaS-
mitigated data for molecule 4. Residual errors not compensated by the PaS procedure are high-
lighted with blue circles. (c) Noisy simulations for the same dynamical correlation function of panel
(b), after applying PaS corrections. The dynamics remains slightly altered if SCEs are present (top
plot), but is fully recovered from error mitigation as soon as they are turned off (bottom plot).
(d) Extension to the N = 4 isotropic Heisenberg chain. Experimental data are obtained on the
ibmqx4 quantum processor. (e) Dynamical correlation functions for N -spin isotropic Heisenberg
chains, simulated numerically including current levels of hardware noise (top), halved SCEs (mid-
dle) and IEs only (bottom). The quantum simulations require N + 1 qubits, including the ancilla,
and are performed with n = round[2

√
N − 2] digital Trotter steps.

examining,for increasing total system size N , the dynamical correlations on one end of the chain
(i.e. for spins on the first and second site)10 Cross-correlation results are reported in Fig. 2.10e: in
all simulations, the total gating time per digital step does not increase for N > 3, since pairwise
interactions across even and odd bonds along the chain can be simulated in parallel as in the
following example

e−iH
12
Heis,2t/n

e−iH
23
Heis,2t/n

e−iH
34
Heis,2t/n

e−iH
45
Heis,2t/n

· · ·

(2.52)

10This choice ensures that, even if the digital quantum simulation is performed in full for all the N spins, the
observed quantity does not change too much with increasing N . Indeed, the effect of distant additional spins at the
opposite end of the chain will only slightly affect the dynamical correlations on the first two sites, in such a way that
we can focus only on the propagation of errors.
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However, in order to keep a constant total digital error (and thus to reproduce the physical dynamics
with sufficient accuracy) the number n of Trotter steps must increase with N . Indeed, by assuming
a first order Trotter approximation and recalling Eq. (1.67), the total digital error is given by

εN =
τ2

2

[∑

i

H2i−1
Heis,2,

∑

i

H2i
Heis,2

]
(2.53)

where τ = t/n. As a result, noticing that all Heisenberg interaction terms have the same structure,
εN scales as

εN '
τ2J2

2
(N − 2)

[ ∑

α=x,y,z

σ(1)
α σ(2)

α ,
∑

α=x,y,z

σ(2)
α σ(3)

α

]
∝ t2

n2
(N − 2) (2.54)

In the numerical simulations, we fix εN to remain equivalent to the digital error arising in the
quantum computation of the N = 3 cases (e.g. molecules 4 and 5) with n = 2, thus obtaining a
slow increase

n = round[2
√
N − 2] (2.55)

of the number of digital steps with the size of the chain. With present error levels, the maximum
N for which a reliable digital simulation could be obtained, after applying PaS mitigation and data
smoothing through running average, is N = 6. Simply halving the magnitude of SCEs errors (i.e.,
in our case, the amplitude of θtilt angles) while keeping current hardware IEs could already extend
the range up to N ' 12, and the results become of course very good after removing all SCEs.
While these numbers are still relatively far from the threshold of pure quantum advantage11, they
look promising in terms of future scalability of the method as soon as larger and better quantum
processors become available. It is also worth mentioning that some practical quantum speed-up for
specific applications should be taken into account as a short- and mid-term goal. For example, we
will show in the next section how the information retrieved from the digital quantum simulation
of dynamical correlations can be used to simulate real experiments investigating the structure of
magnetic molecular clusters: in everyday practice, most of the related data analysis tasks involve
several repeated fits of Hamiltonian parameters, thus requiring on the numerical side to recompute
many times the spin-spin dynamical correlations with slightly modified couplings and energies.
Even if not impossible in principle, this is usually very demanding on classical devices already for
moderately large system sizes: being able to carry out similar computations with sufficient accuracy
on a quantum processor could offer the opportunity of reducing the required time and memory
resources, enabling a better and more efficient use of experimental results and facilities. It goes
without saying that for all those systems whose size exceeds the available classical computational
resources a quantum simulation approach would be the ultimate solution, even though it is more
difficult to foresee a realistic time scale for such achievements at present.

2.3.4 Four-dimensional inelastic neutron scattering

Molecular magnetic systems are ideal test-beds to investigate the phenomenology of finite-size spin
systems. They typically contain several magnetic centers giving rise to rich and complex physical
behaviors, determined e.g. by the spatial arrangement of the centers themselves along with interac-
tions inside isotropic magnetic cores and anisotropic few-body perturbations [208]. Any attempt to
model molecular magnets usually relies heavily on many of the paradigmatic spin Hamiltonians that
we have thoroughly described and reviewed in the context of digital quantum simulation: however,
the main difficulty in matching theoretical description and experimental practice in the study of
single molecule magnets typically lies in determining, by comparing data and numerical simulations,
the appropriate structural parameters, including e.g. the set of interaction energies and exchange
parameters. Moreover, as the size of the target system increases, classical computational methods
suffer from the exponential increase of the resources required by the corresponding quantum me-
chanical description. As a consequence, even though nowadays large magnetic molecules can be

11Indeed, the numerical simulations reported here were all obtained on standard classical computers in a few hours.
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chemically sithesized [209–212], a full understanding of the resulting properties and an interpreta-
tion of spectroscopic measurements is still lacking in many cases of interest. It is therefore natural
to ask whether an approach based on quantum computing, and specifically relying on the near-term
processors which will with greater probability dominate the scene in the next decade, could provide
new resources in this challenge.

Along this chapter, we have presented a proof-of-principle demonstration of how NISQ prototype
processors, in combination with classical data analysis and error mitigation techniques, can be used
to digitally simulate dynamical correlation functions and extract the physical structural parameters
of the corresponding spin lattice models. Here we show how these procedures can be turned into
useful tools to tackle a practical problem of interest: in particular, we will use the data obtained
for molecules 1-5 in Sec. 2.3.2 to compute cross sections for the so called four-dimensional inelastic
neutron scattering experiments. These quantities are simultaneously typically hard to obtain on
classical computers for large clusters and directly comparable with experimental evidence.

Four-Dimensional Inelastic Neutron Scattering (4D-INS) is the technique of choice to analyze
molecular magnetic clusters [213–215], the reason for the name lying in the simultaneous dependence
on both energy and three-dimensional momentum of the resulting spectra. By transforming back
from reciprocal space, 4D-INS can therefore provide an unrivaled amount of information about the
temporal and spatial dynamics of the normal excitations inside the target system. The cross section
for 4D-INS experiments can be expressed, at temperature T = 0, in the general form [216]

I(E,Q) ∝
∑

i,j

Fi(Q)F∗j (Q)
∑

p
α=x,y,z

(
δαβ −

QαQβ
Q2

)
〈0|s(i)

α |p〉〈p|s(j)
β |0〉e−iQ·Rijδ(E − Ep) (2.56)

where E and Q are the energy and three-dimensional momentum variables, Fi(Q) is the magnetic
form factor for the i-th ion inside the molecule and Rij is the vector of relative positions of the i-th
and j-th magnetic centers. While form factors and ion positions are usually known, eigenenrgies
Ep and spin matrix elements between eigenstates typically represent the computational bottleneck,
as their calculation essentially requires the full diagonalization of the Hamiltonian model describing
the magnetic molecule under study. However, by recalling Eq. (2.30), it is straightforward to
observe that the Fourier frequencies and expansion coefficients of spin-spin dynamical correlation
functions provide direct access to these quantities. We can then propose the following hybrid
quantum-classical strategy to compute 4D-INS cross sections: first, a quantum processor efficiently
performs the digital quantum simulation of all two-spin dynamical correlations Cαβij (t). Second, the
results undergo classical post-processing for error mitigation via the PaS procedure, after which a
classical Fourier transform or a fit analysis extracts the Fourier frequencies and coefficients. Finally,
these are combined with known quantities to obtain the 4D-INS cross section as a function of
transferred energy and momentum, which can then be compared with experimental characterization
data for the target molecule. As mentioned at the end of the previous section, this calculations
must usually be repeated several times, adjusting Hamiltonian parameters in order to match the
experimental evidence from 4D-INS results, and quantum processors could either allow to simulate
what is currently beyond reach of classical machines alone (currently limited in practice to a few
dozens of spins) or provide useful speed-ups for smaller system sizes.

With the data obtained on IBM Q quantum processors for the digital quantum simulation of
spin-spin correlation functions, presented in the previous sections and in Appendix A, we can now
readily present a few examples of the proposed technique for 4D-INS cross section calculations. For
both dimers (molecules 1-3) and trimers (molecules 4-5), we use realistic magnetic form factors
and inter-atomic distances for Cu2+ ions. In particular, we assume the structure of dicopper di-
porphyrines [217] with R = (5Å)x for dimers and equilateral triangles with 5Å edges for trimers.
The results for the energy and momentum dependence of 4D-INS cross sections is presented in
Fig. 2.11 for molecules 1-3 and Fig. 2.12 for molecules 4-5. It is worth mentioning explicitly that,
as it is customarily done in 4D-INS experiments, all intensities I(E,Q) are given relative to the
maximum: this eliminates any dependence on the overall scaling factors and/or damping in the
quantum simulation of dynamical correlations, as long as the structure and the oscillation patterns
are respected. Moreover, in computing the final cross-sections reported here we made use of the
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Figure 2.11: 4D-INS cross sections for spin dimers. (a) Molecule 1: The intensity I(E) is
reported as a function of energy (red dots in the top panel) and of momentum for E = Ep of the two
energy peaks (color maps in left column for peak I, right column for peak II), compared with exact
results (solid line in the top panel, bottom color plots). The three dimensional plot for I(E,Q)
is also shown, while insets close to the energy peaks depict the corresponding spatial precession
pattern of spin excitations. Similar results are reported in panel (b) for molecule 2 and in panel (c)
for molecule 3.
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fact, which was confirmed by experiments on the real quantum processors reported for complete-
ness in Appendix A, that for the spin models under study Cαβyz (t) correlations are identically zero,
Cxyij (t) = −Cyxij (t) and Czzij (t) are constant in time. Axial (x ↔ y) and permutational (i ↔ j)
symmetries of the target Hamiltonian, when present, lead to the equivalences Cxxij (t) = Cyyij (t) and
Cααij (t) = Cααji (t) respectively: whenever possible, we took advantage of this general properties by
using, for example, Cxxij (t) instead of Cyyij (t). Indeed, the latter involves a larger number of gates
to implement controlled-σy operations with respect to the hardware-native controlled-σx = CNOT,
and is thus more error prone.

By comparing with ideal results computed numerically, it is immediately clear that the agreement
is good in all cases. For spin dimers, the results in Fig. 2.11a-c show almost perfect resemblance
with the exact counterparts, and we will show in the next section how the cross section data can be
used to quantify two-spin entanglement. While the energy peaks identify the transitions to excited
eigenstates, the extractedQ-dependence of the inelastic neutron cross-section describes the structure
of the eigenstates themselves. For instance, transitions between states belonging to different total
spin multiplets are characterized by a minimum in I(Q) for Q → 0. For example, in the case of
molecule 1, Fig. 2.11a, the peak labeled as I corresponds to an inter-multiplet transition between the
ground state triplet and the excited singlet 1/

√
2(|↑↓〉 − |↓↑〉), while peak II represents a transition

within triplet states, namely the ground |↓↓〉 and the excited 1/
√

2(|↑↓〉+ |↓↑〉). This is consistent
with the positive sign of J in the target Hamiltonian, leading to a singlet state lower in energy than
the triplet. Moreover, the Q-dependence for fixed E = Ep directly provides information about the
spin precession pattern in real position space associated with the given excitation [215]. When a
resonant perturbation brings a molecule from its ground state into a superposition state with a small
amplitude on the p-th excited state, the spins described by the components (〈s(i)

x 〉, 〈s(i)
y 〉, 〈s(i)

z 〉) start
preceeding around the z direction with frequency Ep. Looking again at molecule 1 and to the insets
in Fig. 2.11a , the inter-multiplet transition (i.e. the first energy resonance) is characterized by the
x and y components of the two spins preceding in phase opposition, while a giant spin excitation,
with the two spins rigidly precessing conserving the same total-spin modulus of the ground state,
is associated to the second energy resonance.

For molecules 4 and 5 the digital quantum simulation of dynamical correlations is more demand-
ing and the estimated 4D-INS cross sections are slightly less accurate than in case of dimers. In
particular, we notice that for molecule 4 (Fig. 2.12a) the relative intensities of the peaks in I(E)
suffer from slight deviations with respect to exact results. This is mainly due to the residual damp-
ing of Cxx21 for Jt > 8, see Fig. 2.7e and Fig. 2.10b, which is not recovered from PaS-mitigation and
leads to a Fourier coefficient 〈0|s(2)

x |2〉〈2|s(1)
x |0〉 6= 0, as reported in Tab. A.1-A.2 (Appendix A).

In real space, the corresponding excitation would induce a slight precession of ion 2, while exact
diagonalization gives 〈0|sx2 |2〉〈2|sx1 |0〉 = 0 and ion 2 not preceeding. For molecule 5, whose plots
appear in Fig. 2.12b, we notice again slight deviations in the position of the first peak and in the
relative intensities of the peaks in I(E), while the I(Qx, Qy) maps are in very good agreement with
the exact behavior.

Finally, in addition to the scaling considerations expressed in Sec. 2.3.3, we point out that to
compute the 4D-INS cross section only dynamical correlations between pairs of spins are needed.
Accordingly, the total number of quantum gates and repetitions of the digital quantum simulations
algorithm with different target qubits scales polynomially as N2 with the total size of the system.
The extension to molecular clusters containing magnetic centers with spin s > 1/2 can also be done
by encoding the state of each spin s onto that of 2s qubits. For instance, four qubits σ1,...,4 can
represent a pair of interacting spins s(1,2) = 1, i.e. s(1)

α = (σ
(1)
α +σ

(3)
α )/2, s(2)

α = (σ
(2)
α +σ

(4)
α )/2. In this

particular example, the calculation of dynamical correlation functions for the target Hamiltonian
would be recast in terms of correlation functions on pairs of physical qubits as

〈s(2)
α (t)s

(1)
β (t)〉 =

1

4
〈[σ(2)

α (t) + σ(4)
α (t)][σ

(1)
β + σ

(3)
β ]〉

=
1

4

[
〈σ(2)
α (t)σ

(1)
β 〉+ 〈σ(4)

α (t)σ
(1)
β 〉+ 〈σ(2)

α (t)σ
(3)
β 〉+ 〈σ(4)

α (t)σ
(3)
β 〉
] (2.57)

In this form, the desired quantities could then be directly evaluated on a quantum processor.
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Figure 2.12: 4D-INS cross sections for spin trimers. (a) Molecule 4, digital quantum simu-
lations performed on ibmqx4 and ibmqx5 processors. (b) Molecule 5, digital quantum simulations
performed on the ibmq_20_tokyo processor.

2.3.5 Entanglement and concurrence

The information contained in 4D-ISN spectra is not limited to the energetic and spatial structure
of molecular excitations. For example, it has been shown that cross sections similar to the ones we
described in the previous section can be used to portray entanglement in weakly coupled molecular
qubits [214]. In our particular case, the Q modulation of the scattered neutron intensity provides a
quantification of entanglement in the excited states of a spin dimers characterized by a factorized
reference ground state. In spin-1/2 dimers, i.e. for two-qubit states, entanglement is usually analyzed
in terms of concurrence C [218–220], which is defined as follows. Let ρ be the density matrix of a
(generally mixed) bipartite two-qubit state: after applying spin flip σy operations

ρ̃ = (σy ⊗ σy)ρ∗(σy ⊗ σy) (2.58)

the spectral decomposition of ρρ̃ is computed as

ρρ̃ =
4∑

i=1

λ2
i |ψi〉〈ψi| (2.59)

If the resulting eigenvalues are conventionally put in increasing order λ1 ≥ λ2 ≥ λ3 ≥ λ4, then the
concurrence of ρ is defined as

C(ρ) = max{λ1 − λ2 − λ3 − λ4, 0} (2.60)

Maximally entangled states have C(ρ) = 1, while separable states correspond to C(ρ) = 0. In the
particularly simple case of pure states ρ = |ψ〉〈ψ|, where

|ψ〉 = a|00〉+ b|01〉+ c|10〉+ d|11〉 (2.61)

it is straightforward to compute an analytic expression for the concurrence

C(|ψ〉〈ψ|) = 2|ad− bc| (2.62)

At the same time, if we go back to molecules 1-3 and we concentrate on the first excited states
(energy peak I in Fig. 2.11a-c, i.e. eigenenergy E1 and eigenstate |p〉 = |1〉), we can write

|ψ〉 = |p〉 = b|01〉+ c|10〉 , C(|ψ〉〈ψ|) = 2bc (2.63)
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Molecule 2

Molecule 3 Molecule Concurrence (C)
1 1.0(1) [1.0]
2 0.4(1) [0.4]
3 0.0(1) [0.0]

Figure 2.13: Concurrence fit for the first excited state in spin dimers. Cuts of the 4D-INS
spectrum at I(Qx, Qy = 0, Qz = 0, E = E1) are reported for molecules 1-3, where dots represent
data obtained from IBM Q-based simulations and solid lines are the corresponding exact numerical
results. Fitting the oscillations with Eq. (2.64) provides the concurrence values shown in the table
on the right, which must be compared to the ideal values in square brackets.

and, recalling that we set R12 = Rx,

I(Qx, Qy = 0, Qz = 0, E = E1) ∝ F1(Qx)F∗2 (Qx)(|b|2 + |c|2 + bc∗eiQxR + h.c.)

= F1(Qx)F∗2 (Qx)[|b|2 + |c|2 + 2 Re(bc∗) cos(QxR)− 2 Im(bc∗) sin(QxR)]
(2.64)

In the equations above we have already explicitly used the fact that correlations Czzij (t) are indepen-
dent of time to conclude that d = 012 and the presence of only two peaks in the energy spectra to
exclude two-spin excitations (i.e. a = 0). A fit of the cross section Q data (color maps in Fig. 2.11a-
c, cut at Qy = 0 and for peak I) then provides a direct estimate of parameters b and c and a
measure of the concurrence, namely of the degree of entanglement, in the first molecular excited
state. Results reported in Fig. 2.13 show an excellent agreement between the estimates based on
IBM Q digital quantum simulations and the corresponding exact numerical calculations.

At a more fundamental level, quantum correlation effects can also be observed already from spin
matrix elements: in particular, whenever the ground state |0〉 is separable a sizable cross-correlation
coefficient 〈0|s(1)

x |p〉〈p|s(2)
x |0〉 fingerprints a genuinely quantum behavior due to entanglement in the

excited state |p〉 . Indeed, the values reported in Tab. 2.3 show that the cross-correlation coefficients
decrease from molecule 1, which is characterized by maximum entanglement in both excited states,
to molecule 3 in which excited states are factorized. Conversely, in molecules 2 and 3, autocorrela-
tion coefficients |〈0|s(i)

x |p〉|2 are much larger for (i, p) ∈ {(1, 1), (2, 2)} than for (i, p) ∈ {(1, 2), (2, 1)},
indicating that in these cases the two transitions are close to independent single-spin excitations.
Finally, a much smoother, or even completely absent, modulation of I(Qx) in molecules 2 and 3
with respect to molecule 1 is also a signature associated to smaller entanglement, as it is clear from
Fig. 2.13.

To conclude, in this chapter we have introduced an original combination of quantum algorithms,
classical data analysis and error mitigation procedures through which we obtained reliable results
for the digital quantum simulation of dynamical correlation functions. On one hand, this provides
a clear experimental assessment of the current capabilities and limitations of cloud-accessible NISQ
superconducting devices operated as universal quantum simulators. At the same time, we have

12Remember that we identified the factorized 2-spin ground state |0〉 = |↓↓〉 with the qubit state |11〉 on the
quantum register, and therefore a non-trivial time dependence in

Czzij (t) =
∑
p

〈0|s(i)
z |p〉〈p|s(j)

z |0〉e−iEpt

can only come from terms of the form 〈11|s(i)
z |11〉, which are in turn only present when d 6= 0.
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also demonstrated a practical application in which the theoretical understanding of paradigmatic
spin models and of the quantum protocols aimed at calculating their behavior in time is put into
practice for the study of a concrete physical problem. With forthcoming technological progress, our
approach could turn a non error-corrected quantum hardware into a valuable resource to speed-
up the investigation of complex systems and unlock previously unexplored regimes, thus taking a
further step into the NISQ-era roadmap towards quantum-enhanced technical computing.





3
Electromechanical Quantum Simulators

After exploring the near past and the present of quantum technologies for digital information pro-
cessing and simulation, we will now take a look at possible future perspectives, with particular
attention to hardware solutions. So far, we have seen that trapped ions and superconducting quan-
tum circuits represent the dominant and most technically advanced platforms, though it is not
clear whether any of the two will eventually represent the ultimate choice to realize a fully-fledged
quantum computing architecture. It might also be the case that only a combination of several
complementary approaches will lead to major advances. With this in mind, the first part of the
chapter is dedicated to a brief review of alternative proposals and an outlook on the field of hy-
brid quantum technologies: we will then move forward and present a recent original theoretical
study [92] combining electromechanical nano-oscillators and superconducting elements to provide
an elementary building block for universal quantum simulations, with promising performances in
terms of key figures of merit and scalability.

3.1 Perspective platforms for quantum information processing

Despite an impressive and fast development that brought superconducting qubits and trapped ions
on the verge of a much hailed second quantum revolution, the road towards a functioning large scale
quantum processor is still far from being clearly traced. On one hand, we have mentioned already in
Chapter 1 how the extremely good coherence and connectivity of trapped ion qubits hide intrinsic
limitations in scaling the linear chain design, while superconducting circuits are easily fabricated
and manipulated but often suffer from a number of issues such as higher noise levels, gate infideli-
ties, frequency crowding, cross talks, lack of connectivity and, last but not least, readout errors.
Moreover, in practical realizations trapped ions require high and ultra-high vacuum conditions and
superconducting qubits must be operated at cryogenic temperatures, thus limiting the versatility
and portability of quantum computing devices. If the latter obstacles could easily be overcome, in
perspective, with remote access1, the physical and engineering challenges which separate us from
the final goal of fault tolerant quantum computation will probably last several years or decades even
in the most optimistic scenarios. In the meantime, intermediate-scale quantum devices represent
both a necessary step and an opportunity for novel applications.

In parallel to the steady progress that the two leading technological platforms have been under-
going, a number of alternative approaches have been proposed over the past years, either running
behind the scenes for some time after a few initial achievements or being studied ex-novo. The
levels of maturity range from proof-of-principle demonstrations to more preliminary theoretical in-
vestigations. Taking into account the widespread scientific and commercial interest in practical
quantum information processing, it would not be surprising to see in the near future some of these
complementary solutions step out of the shadow of trapped ions and superconducting circuits and

1This is indeed the vision that most quantum computing ventures and companies have already started to put into
practice, from the IBM Quantum Experience to Rigetti’s Quantum Cloud Services or D-Wave’s Leap.
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acquire an independent status as candidate platforms for quantum technological and computing
purposes.

With their huge success in microelectronics and a number of appealing features, from room
temperature operations to the potential for mass scale manufacturing and integration with existing
classical technology, semiconductors have long been considered for practical quantum computing
since the very beginning [221]. For example, semiconductor based quantum dots have been pro-
posed and tested as spin qubits [222]. Single-qubit read-out and manipulation were demonstrated
more than a decade ago [223, 224], though the intrinsic limitations to coherence times posed by
nuclear spin dephasing and spin-orbit coupling [225] remain a severe challenge to scalability. Lately,
promising experimental results in silicon-based quantum dots triggered a wave of renewed interest
and moderate optimism: CNOT gates between two quantum dots have been shown with about
78% fidelity [226]. Precision for single qubit rotation can be as high as 99% [227–230], with average
gating times below 100 ns and dephasing times close to 200 ns [228].

Controlled impurities and defect ions in silicon have also been considered for potentially low-cost
quantum technologies [231]. As with quantum dot-based qubits, single-spin read-out and manip-
ulation of localized donor impurities [232, 233] have already been achieved, and several proposals
for two-qubit quantum gates have been put forward [234, 235]. Very recent results have demon-
strated the first

√
SWAP two-qubit operation between phosphorus donor electrons in silicon, with

gating time of 800 ps and fidelity around 94% [236]. Along the same lines, color centers in diamond
have been employed for quantum information manipulation and storage. As an example, Nitrogen-
Vacancies (NV) were used to demonstrate decoherence-protected single- and two-qubit gates on a
ten-qubit quantum register [237], achieving genuine multipartite entanglement over up to 7 spins.
In the same work, NV centers were also proposed as stable multi-qubit memories, preserving single-
qubit states up to 75 s and multi-qubit entanglement for over 10 s.

While photonic circuits have been largely explored as analog quantum simulators [70], it is
less obvious how they could play a role in digital quantum computing and universal quantum
simulations. Indeed, naturally weak photon-photon interactions, typically due to small material non-
linearities, complicate the construction of functioning quantum registers. Possible solutions might
come from suitable electromagnetic confinement in nonlinear materials, which could lead to single-
photon sensitivity [238, 239], or by using mixed radiation-matter excitations in semiconductors,
also called exciton-polaritons, which proved to be sensitive at the single quantum level [240, 241].
Like conventional photonic circuits, exciton-polaritons have shown interesting applications in the
field of analog simulators, particularly in the study of strongly interacting photonic lattices [19,
242]. In both photonic and polaritonic platforms, full on-chip integration could of course be a
useful and necessary intermediate achievement towards quantum technological maturity. It is also
worth mentioning that, within the now flourishing quantum computing commercial ecosystem, a
few companies and start-up ventures such as Toronto-based Xanadu2 are actively investigating
photonic solutions for continuous-variable quantum computing [243–245], with special attention to
perspective machine learning applications [246].

The long coherence times and high degree of chemical tunability make of magnetic molecules
another promising potential platform for quantum information processing [47]. Manipulation is
often achieved through electromagnetic pulses, through which it is for example possible to effectively
control qubit-qubit interactions in suitably engineered structures of elecronic [247] or nuclear [248]
spins. The richness of the molecular Hilbert space could also be exploited to encode logical qubits,
embedding quantum error correction within single molecules [249].

Finally, arrays of optically or magnetically trapped neutral atoms, typically excited in Rydberg
states [46], represent a rising alternative for quantum simulations. Analog versions with more than
50 Rydberg atoms have already been reported [33], and programmable two-qubit entanglement
has been shown with ∼ 97% fidelity [250]. Although several challenges need to be addressed
for general-purpose quantum computing applications, particularly related to the short coherence
times as compared to trapped ions [251], an important advancement has been marked by the
recent implementation, in parallel on several clusters of atoms in a one-dimensional array of optical

2See website at https://www.xanadu.ai/.

https://www.xanadu.ai/
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tweezers, of universal two- and three-qubit entangling gates on 87Rb qubits. These were encoded
in long-lived hyperfine ground states and coupled via excitation to strongly interacting Rydberg
states, achieving controlled-phase gate fidelity above 97.4%.

3.2 Hybrid quantum technologies

The large number of quantum devices and different quantum technological platforms which have
appeared over the years, showing varying strengths and suffering of sometimes complementary
weaknesses, have eventually inspired the idea of experimenting with hybrid approaches [252, 253].
The philosophy supporting all these attempts, and particularly those aimed at developing resilient
and general-purpose quantum computing systems, is indeed rather simple: it is very likely that,
in the long run, a hybrid technology will be in the best position to simultaneously meet all the
stringent requirements in terms of scalability (possibly in multi-dimensional arrays or distributed
networks), chip-scale integration and high operational reliability.

An ideal infrastructure for quantum information processing should be able to carry out three
major classes of tasks, namely storage, manipulation and transmission of quantum states, with all
necessary inter-conversions between those stages, such as for example quantum memory readout.
At the same time, it has become more and more clear that none of the currently available quan-
tum technologies has the potential to execute all these tasks with sufficiently good performances
and versatility. For example, photons are usually associated to communication protocols, electronic
states in atoms or electric charges in semi- and superconductors can be employed to rapidly pro-
cess information and weakly interacting electronic [254] or nucelar [255] spins may realize reliable
quantum memories. Interfacing different kinds of elements, although very challenging in practice,
holds promise for significant advantages. Loosely speaking, in most examples the coherent coupling
between components, represented here by creation operators a† and b†, takes the general form [253]

Hcoupling = geff(a†b+ h.c.) (3.1)

and the main difficulty often lies in achieving a sufficiently strong interaction coefficient geff. Spatial,
energetic or impedance matching consideration play the dominant role in designing and optimizing
hybrid quantum devices. In view of these issues, it is not surprising that among the first hybrid
proposals we find the combination of superconducting qubits with long-lived quantum memories
based on spin ensembles [256, 257], where the interaction between the two components is mediated
by microwave cavity photons inside a common coplanar waveguide (CPW) resonator. Indeed,
although the typical coupling strength3 between a single spin and a microwave photon is only
around g ' 2π · 10Hz, when the cavity field c is made to interact with a N -spin ensemble the
relevant Hamiltonian is given by the Tavis-Cummings model

Hcoupling = g
√
N(cS† + h.c.) (3.2)

where S† represent collective spin excitations and the resulting effective coupling geff = g
√
N for

N ' 1011-1012 can overcome the natural spin decoherence and cavity losses. Along the same
lines, atomic and molecular ensembles have also been studied both as good quantum memories
and optical interfaces with communication photons through e.g. Raman transitions [258–260]. Spin
ensembles and photons in tunable resonators were recently proposed as the backbone of a novel
architecture [110, 111, 261] with promising performances for universal quantum computing and
digital quantum simulations [54, 262]. Finally, other examples of hybrid quantum technologies
include Nitrogen Vacancy (NV) centers coupled to carbon nanotubes [263] and superconducting
waveguides [264], and Rydberg atoms integrated on superconducting chips [265, 266].

3.2.1 Mechanical quantum devices

Particularly interesting within the hybrid quantum technological paradigm is the role played by
mechanical degrees of freedom. In quantum opto- and electromechanichs, collective oscillation

3Assuming ~ = 1, we will use from now on frequency units to express couplings.
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modes of micro- and nanoscale systems are investigated in the few-phonon regime, and have been
proposed as promising alternatives to photonic devices for conversion and transmission of quantum
information [267, 268], as support for quantum information manipulation [264, 269] and for sensing
applications [270–272]. Most of such applications rely on the ability of mechanical interactions
to create parametric photon-phonon interfaces whose coupling “bandwidth” ranges from optical to
microwave frequencies. Indeed, the typical Hamiltonian describing both optomechanical radiation
pressure interactions (featuring e.g. mobile mirrors in Fabry–Perot cavities) and electromechanical
LC-frequency modulation (via e.g. oscillating capacitor membranes) has the form [253, 268]

Hmech = ωca
†a+ Ωmb

†b+ g0a
†a(b† + b) (3.3)

where a is the electromagnetic field operator for the cavity resonator (either optical or electrical)
and b is the annihilation operator for the mechanical mode. The structure of Hmech is readily derived
from the bare Hamiltonian

H = ωc(x)a†a+ Ωmb
†b (3.4)

if we assume that the mechanical displacement x influences the cavity resonance frequency. Indeed,
at first order we can write

ωc(x) ' ωc + x
∂ωc
∂x

(3.5)

and we recover Eq. (3.3) if we promote the position variable to a quantum mechanical operator in
the usual way, i.e. x ∝ (b† + b), and we define

g0 = x0
∂ωc
∂x

(3.6)

where x0 is the mechanical zero-point fluctuation amplitude. Other forms of the opto/electrome-
chanical coupling are also known in special cases, depending e.g. quadratically on the displace-
ment [273, 274] or involving qubit operators instead of cavity field, see Sec. 3.2.2. If the cavity
is driven by an external laser at ωL, the Hamiltonian above can be put in a rotating frame and
linearized around the average cavity population n̄ = |ᾱ|2 as follows

a = ᾱ+ δa (3.7)

giving
H′ = −∆δa†δa+ Ωmb

†b+ H′int (3.8)
where ∆ = ωL − ωc and

H′int ∝ g0

√
n̄(δa† + δa)(b† + b) (3.9)

As a result, even if initially ωc and Ωm were far apart, the laser driving can be used to bridge the gap
while also amplifying the bare interaction strength to geff = g0

√
n̄. This property can make a single

mechanical membrane very well suited as a coherent transducer between optical and microwave
radiation [275] with potential applications in the quantum regime. Moreover, by choosing a red-
detuned laser ωL = ωc − Ωm and using the rotating wave approximation (RWA) in Eq. (3.8), it is
straightforward to see that the dominant interaction term becomes

H′′int,RWA ' geff(δa†b+ h.c.) (3.10)

This is the analog of the quantum optical beam-splitter Hamiltonian and provides the basis for
sideband cooling of the mechanical motion [276, 277]. On the other hand, the same reasoning in
the blue-detuned case ωL = ωc + Ωm leads to the equivalent of a two-mode squeezing Hamiltonian

H′′′int,RWA ' geff(δa†b† + h.c.) (3.11)

which opens the way to parametric amplification and the creation of entanglement between photonic
and mechanical degrees of freedom [278].

For the purposes of this chapter, we will leave aside the vast field of optomechanics to concen-
trate more on quantum electromechanical realizations. In the next section, we will briefly describe
typical set-ups and a few experimental milestones in the field, such as the successful integration
of mechanical degrees of freedom within superconducting quantum circuits, with the purpose of
setting the stage for the subsequent description of an original architecture for quantum information
processing featuring mechanical qubit encoding.



Electromechanical Quantum Simulators 65
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Figure 3.1: Electromechanical coupling in superconducting circtuits. (a) Fundamen-
tal model of capacitive coupling between a mechanical oscillator and a LC resonator. A control
transmission line is also explicitly sketched. (b) False color images of a realization of the electrome-
chanical superconducting setup. Here the LC resonator is composed of a spiral inductor shunted by
a parallel-plate capacitor, all made in Alluminium on a Sapphire substrate. The upper plate of the
capacitor is suspended 50 nm above the lower plate and is free to vibrate. The mechanical oscillation
frequency is Ωm/2π = 10.69MHz, with a quality factor Qm ' 3.6 · 105. Images reproduced from
Ref. [279].

3.2.2 Quantum electromechanics

Electromechanical interactions can arise in the microwave domain by capacitively coupling a me-
chanical element within a superconducting circuit. A paradigmatic model is shown in Fig. 3.1a,
where one of the parallel plates of the capacitor in a lumped elements LC resonator is mechanically
compliant [280]: the motion of the plate modifies the total capacity and thus modulates the char-
acteristic frequency of the electrical circuit, in accordance to Eq. (3.5). A remarkable realization
of this set-up with a drum-shaped suspended membrane capacitor is reported in Fig. 3.1b. If x is
the mechanical displacement from the equilibrium position of the moving plate, d is the equilibrium
separation between plates and C0 is the corresponding equilibrium capacitance, we have in general
the following form for the total capacity in the LC resonator [280]:

CT(x) = C + C0

(
1− x

d

)
(3.12)

Here, we left room for a position-independent fraction C of the total capacitance. The total capac-
itive energy of the system is therefore

EC =
Q2

2CT(x)
(3.13)

where Q is the electric charge on the capacitor. If we expand to first order in the displacement we
get

EC '
Q2

2CT(0)
+ x

(
dEC
dx

)

x=0

=
Q2

2CT
+

β

2dCT
xQ2 (3.14)

where CT ≡ CT(0) and β = C0/CT. We can thus write the total Hamiltonian for the circuit in
Fig. 3.1a as [280]

H =
p2

2m
+

1

2
mΩmx

2 +
Φ2

2L
+

Q2

2CT
+

β

2dCT
xQ2 +

1

2
i(t)Φ (3.15)

Here, (p, x) are conjugate momentum and position coordinates for the mechanical mode with fre-
quency Ωm and effective mass m, (Q,Φ) are conjugate charge-flux variables for the circuit, L is the
inductance and i(t) is a time-dependent driving current. Canonical quantization of the electrical
and mechanical oscillator variables4 [x, p] = [Q,Φ] = i leads to

H = ωca
†a+ Ωmb

†b+
g0

2
(b+ b†)(a+ a†)2 − i(Ee−iωdt + E∗eiωdt)(a− a†) (3.16)

4As in all other parts of this work, we consider ~ = 1.
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where

a =

√
ωcL

2
Q+

i√
2ωcL

Φ

b =

√
mΩm

2
x+

i√
2mΩm

p

(3.17)

The cavity resonance is ωc = 1/
√
LCT, while ωd is the frequency of the drive and the coupling

constant reads
g0 =

βωcx0

2d
(3.18)

Here, x0 = 1/(2mωc) is the usual zero-point quantum fluctuation length for the mechanical mode.
Finally, by going to a rotating reference frame via the unitary transformation

H′ = UHU† − iUdU†

dt
withU = eiωda

†at (3.19)

and making the rotating wave approximation we get

H′ = (ωc − ωd)a†a+ Ωmb
†b+ g0(b+ b†)a†a+ (E ′a† + h.c.) (3.20)

namely the typical radiation pressure-like behavior as in Eq. (3.3). Typical experimental parameters,
reported e.g. in Ref. [279], are ωc/2π = 7.5GHz, Ωm/2π = 10.69MHz, x0 = 4.1 fm and g0/2π =
230Hz. Successful integration of mechanical devices with superconducting coplanar resonators led
over the past years to a number of milestone achievements, from strong coupling [279] to ground-
state sideband cooling of the mechanical motion [281], coherent state transfer [282] and entanglement
with propagating electric signals [278].

In parallel to linear LC resonators, a second fundamental and necessary step in hybrid quantum
elecromechanics is the integration of mechanical modes with non-linear superconducting circuits, i.e.
qubits. Milestone achievements were reported already in 2009 by LaHaye et al. [283], who performed
spectroscopic measurements of a nanomechanical suspended bridge coupled to a microwave-driven
Cooper-pair box (CPB) qubit, and in 2010 by O’ Connell et al. [284], who obtained ground state
cooling of a high-frequency piezoelectric bulk acoustic resonator inside a dilution fridge and the
subsequent superconducting qubit-mediated single phonon control. Particularly interesting for our
purposes is the full hybrid cavity QED set-up proposed e.g. by Pirkkalainen and collaborators [285,
286] for Ωm in the MHz range and by Rouxinol at al. [287] for ultra-high mechanical frequencies
Ωm/2π ' 3.4GHz, in which a transmon qubit is simultaneously coupled to a microwave cavity
and to a phonon mode in a micromechanical resonator. In general, a qubit-mechanical oscillator
capacitive interaction is described by the following Hamiltonian [280]

H = Ωmb
†b+

ε

2
σz +

δ

2
σx + λ(b+ b†)σz (3.21)

where the qubit energy parameters δ and ε can be independently controlled by a voltage gate
bias and a magnetic flux bias. Interaction strengths in the order of a few MHz [285] up to '
100MHz [286, 287] have been reported, while typical qubit energy scales are in the 1 − 10 GHz
range. Notice that the electromechanical interaction term is not diagonal with respect to the bare
qubit eigenstates: indeed, after a rotation into a new set of qubit variables (i.e. by diagonalizing
the qubit sector and redefining the Pauli axes)

(
σ̃x
σ̃z

)
=

(
ε/Ωq −δ/Ωq

δ/Ωq ε/Ωq

)(
σx
σz

)
(3.22)

where Ωq =
√
ε2 + δ2, we obtain a new Hamiltonian

H = Ωmb
†b+

Ωq

2
σ̃z + gm,z(b+ b†)σ̃z + gm,x(b+ b†)σ̃x (3.23)
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It is now clear that, in the actual qubit eigenbasis, the mechanical coupling in general has both
diagonal (gm,z) and transverse (gm,x) components. However, in many cases of interests it can be
shown that gm,z � gm,x [285]: we will then assume from now on that the relevant physical behavior
is well captured by the familiar Jaynes-Cummings Hamiltonian5

H = Ωmb
†b+

Ωq

2
σz + g(b+ b†)σx (3.24)

As we will later explore the dispersive regime Ωm � Ωq, we keep for completeness both rotating
and counter-rotating terms without making explicit use of RWA-like approximations.

Several interesting classes of mechanical systems have been put forward for circuit QED applica-
tions: in Fig. 3.2 we show, together with the already mentioned Alluminium membranes [279, 285]
and suspended Silicon Nitride [283] or Alluminium [287] structures, examples of carbon nan-
otubes (CNTs) [289–291] and graphene sheets [288, 292, 293]. Remarkably high quality factors
(Qm = Ωm/Γm where Γm is the relevant damping rate) and coherence properties were reported for
many of these devices, particularly for Ωm/2π equal to a few tens of MHz. Moreover, dynamical
tuning of the mechanical characteristic frequency over a range of 5-10MHz has been demonstrated
thorough external gate voltages for SiC beams [294], Al membranes [295], CNTs [289] and graphene
structures [288, 292].

3.3 Electromechanical qubits for digital quantum simulations

The remarkable quality factors and the progress in fabrication and control of nanomechanical de-
vices led to the idea of encoding and process quantum information onto nanomechanical qubits.
The project is fascinating in many respects, not least because of the fact that the very origin of
programmable computing machines can be traced back to the fully mechanical analytical engine
proposed in the XIX century by C. Babbage6. An optomechanical set-up made of several nanores-
onators coupled through a common high-finesse optical cavity was theoretically described by Rips
and Hartmann in 2013 [269], reporting promising gate fidelities. Here we propose to bring this
approach to a new stage in the electromechanical domain, leveraging the seamless integration with
existing superconducting technology and the possibility of controlling electromechanical devices at
the single phonon level. We envision a hybrid architecture to efficiently implement a digital quantum
simulator, based on electromechanical elements coupled to superconducting circuits and designed
in a modular fashion, thus featuring built-in perspectives for scalability.

In our set-up, anharmonic and tunable nanomechanical resonators (NRs) will play the role of
digital quantum information carriers (i.e. qubits), while virtual fluctuations of superconducting
non-linear resonators such as transmons will be employed to mediate two-qubit gates: as we will
demonstrate with extensive numerical simulations performed with state-of-the-art parameters, this
scheme puts into practical use the good relaxation (T1) and coherence (T2) properties of NRs, while
the corresponding time scales for the superconducting elements become essentially irrelevant for
information processing purposes. In the subsequent sections, we will argue that this electromechan-
ical qubit encoding would not only allow achieving high gate fidelities above 99.9% but also, and
most importantly, a ratio T2/Tgate > 104, where Tgate represents the average single- and two-qubit
overall gating time. The latter is a key figure of merit in view of the realization of digital quantum
simulations, in which long sequences of concatenated operations are most often required.

3.3.1 Hybrid electromechanical building block

In Fig. 3.3 we report a schematic representation of the elementary building block of the proposed
hybrid architecture: this fundamental unit is given by a pair of electromechanical NRs mutually
coupled to a nonlinear circuit element, here assumed to be a transmon. A superconducting resonator
cavity or a transmission line is also schematically represented and can be taken into account as a

5For simplicity, we drop the tilde signs from the qubit operators in the diagonalized Hamiltonian.
6See for example C. Babbage (ed. by M. Campbell-Kelly), Passages from the life of a philosopher, Rutgers

University Press, New Brunswick, N.J., USA (1994).
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(a) (b)
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Figure 3.2: Electromechanical devices. (a) Suspended silicon nidride nanostructure with
Ωm/2π = 58MHz and Qm ' 3 · 104. Reproduced from Ref. [283]. (b) Suspended alluminium
membrane coupled to a transmon qubit (shown in green), Ωm/2π = 71.842MHz, Qm ' 5500.
Image reproduced from Ref. [285] (c) Doubly clamped alluminium membrane, with Ωm/2π = 88-
89MHz, Qm ' 103 (measured at 77K, estimated Qm ' 105 at milli-kelvin temperatures). Images
courtesy of Prof. M. D. LaHaye, Syracuse University. (d) Multilayer graphene sheet, Ωm/2π =
36.23MHz, Qm ' 1, 59 · 105. Reproduced from Ref. [288]. (e) Suspended carbon nanotube (CNT),
Ωm/2π ' 300MHz, Qm ' 6, 250. Image reproduced from Ref. [289]. Other experiments with
similar structures reported Qm up to 5 · 106 [290].

further element to be weakly coupled to each NR for ground state cooling [281], which in our case
becomes equivalent to qubit initialization, and readout. Contrary to the much more common usage
as qubit, the transmon is present here just as an interaction mediator, and in perspective could
also be employed for read out of each NR qubit state [284, 285]. In the following calculations and
characterizations we will not explicitly include the transmission line in the model, but we point out
already at this stage that a sequential repetition of the fundamental NR-transmon-NR unit with
one or more common resonator cavities suggests a natural design for scaling up the architecture.
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Transmission line/ cavity resonator
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Figure 3.3: Scalable electromechanical building block for digital quantum simulations.
(a) Schematic representation of the fundamental unit for quantum information processing: two
electromechanical oscillators (NR) are mutually coupled through a transmon within a supercon-
ducting circuit. The NRs are controlled and tuned individually through external voltage biases,
while external magnetic fields can be used to tune the transmon transition frequency. A supercon-
ducting transmission line/cavity resonator for NRs initialization and/or readout is also sketched.
A common transmission line can also act as the backbone of a sequential architecture where the
NR-transmon-NR block is repeated to scale up the quantum processor. (b) A possible equivalent
circuit representation of the building block, with the transmission line schematically represented by
the Lr and Cr elements.

One elementary unit of the electromechanical platform can be modeled with the free Hamiltonian

H0 =
∑

i

[
ωib
†
ibi + Hnl,i

]
+

Ω

2
σz , (3.25)

where bi (b†i ) represent bosonic annihilation (creation) operators for the mechanical resonators,
see e.g. Eq. (3.17), and the transmon is described as a pure quantum two-level system [156] with
frequency Ω. In order to isolate the two lowest energy levels in the otherwise harmonic spectrum of
the nanoresonators we include a non-linear term Hnl,i: this will make it possible to unambiguously
define a qubit computational basis, as it is customarily done in weakly anharmonic superconducting
circuits. In order to keep our analysis simple, we will only require a shift of the lowest lying Fock
energy levels, i.e. a diagonal term on the Fock basis

Hnl,i = Ub†ib
†
ibibi (3.26)

We will discuss the possible ways of engineering such non-linear contribution in Sec. 3.3.4. Finally,
the interaction between mechanical oscillators and the transmon is modeled, following Eq. (3.24),
as

Hint =

2∑

i=1

gi

(
bi + b†i

)
σx (3.27)

We will demonstrate that with a realistic choice of U , gi and ∆i = ωi−Ω, the dynamics is effectively
restricted to the computational basis constituted by the ni = 0, 1 Fock states of the nanoresonators,
provided that they are initialized within the same manifold.

Our set-up is designed to work in the strongly dispersive regime: in the following, the elec-
tromechanical resonators frequencies will be set below 100MHz, while the transmon frequency in
the 2-10GHz range. One one hand, we motivate this choice by referring to the experimental evi-
dence reporting remarkably better coherence times for electromechanical resonators working in the
few tens of MHz, see Sec. 3.2.2. On the other hand, as already mentioned above, this will leave the
transmon essentially in its ground state during all information processing operations performed in
low-occupancy bosonic states, with NR-NR interactions mediated by its virtual excitations. Notice
that in principle such an energy mismatch does not allow to directly employ the rotating wave
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approximation in Hint: we will thus keep for completeness all rotating and counter-rotating terms
in our perturbative analysis, although we will later be able to demonstrate that the latter only
minimally affect the qualitative behaviour of the system in the regime of parameters under study.
Dissipation and pure dephasing effects will be fully included in our simulations via the master
equation [296]

dρ

dt
= i[ρ,H0 + Hint + Hcontrol(t)] + LTR[ρ] +

∑

i

Li[ρ] , (3.28)

where Hcontrol(t) introduces an explicit time dependence for dynamical tuning and driving of the
different components, which will be better specified in the following sections. Lindblad terms act
individually on the electromechanical NRs

Li[ρ] = γiD(bi)[ρ] + γi,dD(b†ibi)[ρ] (3.29)

and on the transmon
LTR[ρ] = γTRD(σ−)[ρ] + γTR,dD(σz)[ρ] (3.30)

respectively. Here ρ is the joint density matrix of the full system and D(O)[ρ] = OρO†−0.5{O†O, ρ},
with {A,B} denoting the anticommutator AB +BA.

3.3.2 Effective qubit-qubit interactions

By assuming that the single-phonon non-linearity U is sufficiently strong (typically of a few MHz in
our simulations) to allow the clear spectral isolation of a computational basis and that the system
is operated deeply in the dispersive regime (Ω� ωi, |∆i| � gi), useful insights about the behavior
of the electromechanical qubits within a single building block can be obtained by constructing an
effective perturbative Hamiltonian. Indeed, when the above conditions are met, we can consider
Hint as a small perturbation to H0. Moreover, as long as we refer to low-occupancy Fock states,
two clearly separated manifolds can be identified in the unperturbed spectrum of H0: a low-energy
one containing total eigenstates of the form7 |n1↓n2〉, and a high-energy one in which the transmon
is in the excited state, i.e. the set of |n1↑n2〉 eigenstates. The magnitude of the gap between the
two manifolds is set by the transmon frequency Ω and is therefore of the order of a few GHz,
much larger than the typical phonon energy. We can then safely apply second order perturbation
theory and then restrict ourselves to the low-energy manifold, tracing over the transmon degrees of
freedom while keeping the influence of virtual transmon excitations as effective interactions between
the nanoresonators. The resulting effective Hamiltonian matrix elements can be obtained from the
following identity

〈µν|H̃eff|µ′ν ′〉 =
1

2

∑

m1,m2

〈n1↓n2|Hint|m1↑m2〉
〈
m1↑m2|Hint|n′1↓n′2

〉

×
[

1

ω1(n1 −m1) + ω2(n2 −m2)− Ω
+

1

ω1(n′1 −m1) + ω2(n′2 −m2)− Ω

] (3.31)

where the sum runs explicitly over all states of the full Hilbert space in which the transmon is
in the excited state. With some abuse of notation, we understand that H̃eff acts on a smaller
Hilbert space in which we only keep the NRs degrees of freedom in the low-energy manifold, namely
|µν〉 7→ |n1↓n2〉 with µ ≡ n1 and ν ≡ n2. If we further restrict to the computational basis, i.e.
µ, ν = 0, 1, while using bosonic states up to mi = 2 in Eq. (3.31), the resulting effective Hamiltonian
can be expressed in terms of Pauli matrices as

H̃eff =
2∑

i=1

(
λi
2
σ(i)
z

)
+

Γ

4
σ(1)
x σ(2)

x + const., (3.32)

7Here we use |n1σn2〉 to denote the unperturbed eigenstate of the system in which the i-th nanoresonator is in
the ni-th Fock state and the transmon, which is treated here as a pure two-level system, is in its ground (σ =↓) or
excited (σ =↑) state.
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where

Γ =
4g1g2Ω(ω2

1 + ω2
2 − 2Ω2)

(Ω2 − ω2
1)(Ω2 − ω2

2)
(3.33)

is an effective NR-NR coupling, while

λi =
−2g2

i (Ω
2 + ωi(2U + Ω))

(2U + Ω + ωi)(Ω2 − ω2
i )

(3.34)

are single-qubit energy renormalization shifts due to the dispersive interaction with the transmon.
The effective transmon-mediated two-qubit interaction in Eq. (3.32) can actually be decomposed in
two terms:

Γ

4
σ(1)
x σ(2)

x =
Γ

8

(
σ(1)
x σ(2)

x + σ(1)
y σ(2)

y

)
+

Γ

8

(
σ(1)
x σ(2)

x − σ(1)
y σ(2)

y

)
(3.35)

The first XX + YY interaction on the right hand side can straightforwardly be rewritten as an
exchange Hamiltonian

Hex ∝ (σ+ ⊗ σ− + σ− ⊗ σ+) (3.36)

coupling the |10〉 and |01〉 elements of the computational basis. As we briefly mentioned in Sec. 1.1.3,
this kind of interaction is common to many superconducting architectures for quantum information
processing and here will constitute the basis to build a universal set of quantum gates. The second
XX − YY contribution is actually generated by the counter-rotating contributions in the original
interaction Hamiltonian, and couples the |00〉 and |11〉 components. Given the large energy gap
G ' ω1 + ω2 between them, the net effect of this term is negligible as long as the couplings gi are
not too strong, in such a way that Γ� G. It is nevertheless worth keeping in mind that deviations
from an ideal excitation exchange behavior can arise under different conditions. For most practical
purposes, we can thus rewrite the effective Hamiltonian as

Heff =

2∑

i=1

(
λi
2
σ(i)
z

)
+

Γ

8

(
σ(1)
x σ(2)

x + σ(1)
y σ(2)

y

)
+ const. (3.37)

In the following, we will use the Heff derived above as a qualitative reference to predict and under-
stand the behavior of the real system when employed as a minimal two-qubit register. However,
in order to fully account for the actual complexity of the set-up, we will use the full model in
Eq. (3.28) to perform all numerical simulations and quantitative analysis. This will avoid artificial
biases with respect e.g. to the possible population leakages from computational basis during qubit
manipulations, while also checking a posteriori the validity of the approximations leading to Heff.

3.3.3 Single and two-qubit gates

One of the key ingredients to perform single and two-qubit gates is the dynamical tuning of ω1 and
ω2. This can be achieved by using external static and modulated electric fields, i.e. electrostatic
potential energies V , acting locally on a single NR. The working principles of these control techniques
have already been studied and demonstrated experimentally on a large variety of systems [288, 289,
292, 294, 297]. A systematic voltage bias can immediately be used to cancel out the effective
frequency renormalization contributions λi in Eq. (3.37). For the rest of the discussion, we will thus
assume, unless explicitly stated and without loss of generality, that the reference frequencies of the
NRs remain the ωi defined at the beginning: in the numerical implementations, this is achieved by
introducing additional terms −λib†ibi in the model Hamiltonian.

As a first step towards the description of gate operatons, we must identify an idle configuration
for the building block: this is readily found if we assume that the two NRs are significantly detuned,
i.e. |ω1 − ω2| � Γ. Under such conditions, the transmon-mediated interaction term in Eq. (3.37) is
practically ineffective: hence, the two qubits are essentially decoupled and independent rotations of
each of them can be implemented. Here, the use of a high-frequency transmon helps improving the
two qubits decoupling.

Following similar implementations [269], single qubit Rz rotations can be performed by shifting
the NRs oscillation frequency for the amount of time required to add the desired phase to the



72 Electromechanical Quantum Simulators

ni = 1 component of the wave-function. For example, a change of the qubit oscillation frequency by
an amount δω for a time interval δt can be implemented thorough a step-like pulse, the temporal
switching of the external fields being only limited by the response time of the control electronics
(typically in the ns timescale). The resulting

Hcontrol(t) = Hz
i (t) = δωΘt0(δt)b†ibi (3.38)

will induce a time evolution

Ucontrol(t) = exp

(
−i
∫
dtHcontrol(t)

)
(3.39)

producing a phase

φz =

∫
dtδωΘt0(δt) = −δωδt (3.40)

on the |1〉 state. Here Θt0(δt) is a unitary square function starting at t0 with duration δt and
the usual form of Rz operators is immediately recovered up to a global phase by observing that,
on the computational basis, b†b ≡ (1/2)(I + σz). Other single-qubit rotations are obtained with
an oscillating transverse field keeping a definite phase relationship with the quantum mechanical
evolution of the system. By choosing

Hcontrol(t) = Hxy
i (t) = V xy(t)(bi + b†i ) (3.41)

with
V xy(t) = Θt0(δt)V xy

0 cos(ωit+ θ) (3.42)

one can achieve either Rx (for θ = 0) or Ry (for θ = π/2) rotations: indeed, if we restrict Hcontrol(t)
on the ni = 0, 1 computational basis and we express it in terms of Pauli matrices we have

Hcontrol(t) = Θt0(δt)V xy
0 cos(ωit+ θ)(σ

(i)
− + σ

(i)
+ ) (3.43)

Moving to the interaction picture with respect to ωib
†
ibi, using the well known identity

cos(ωit+ θ) =
ei(ωit+θ) + e−i(ωit+θ)

2
(3.44)

and dropping off-resonant terms we finally get

HI
control(t) ∝ cos(θ)σ(i)

x + sin(θ)σ(i)
y (3.45)

The total rotation angle equals the area under the pulse modulating the oscillation

φxy =

∫
dtV xy

0 Θt0(δt) (3.46)

In practical realizations of Rx(α) or Ry(α) gates, the pulse shape can more generally be written as

V xy(t) = A(t, t0, σ)V xy
0 cos(ωit+ θ) . (3.47)

where V xy
0 denotes the amplitude scale of the pulse, while A(t, t0, σ) is a time-dependent modulation

of the oscillatory part that describes the on/off switching of the gate. If ζ(t) is the Heaviside step
function, one straightforward choice of this pulse envelope is of course a square pulse

A(t, t0, σ) = ζ(σ/2− |t− t0 − σ/2|) ≡ Θt0(σ) (3.48)

starting at t0 and lasting for σ = α/V xy
0 , as used in Eq. (3.42). However, as we are not dealing

with real two-level systems but rather trying to restrict the dynamics of a nonlinear harmonic
oscillator to its ground and first excited levels, a more careful design of the pulse profile can lead
to significant improvement of the performances. Indeed, the frequency spectrum of a cosine-like
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function modulated by a square pulse may in general not be sufficiently narrow around the target
ω1 to avoid the activation of unwanted transitions that are close in energy, e.g. the |1〉 ↔ |2〉
transition. In this context, it is well known that an elementary but already powerful optimization
tool is provided by Gaussian pulses, leading to a frequency spectrum which is also gaussian and
rapidly decaying. The envelope can then be chosen as

A(t, t0, σ) = e−
(t−t0)2

2σ2 (3.49)

with σ = α/(
√

2πV xy
0 ). The gate will now last approximately 2.5-3σ on both sides of the central

peak at t = t0. In this way, the amount of nonlinearity that is required to obtain reasonably large
gate fidelities can be reduced with respect to the square pulse case, or alternatively the strength of
the tuning V xy

0 can be increased, thus diminishing the total gating time.
To realize two-qubit gates, the transmon-mediated interaction between the electromechanical

NRs must be activated. On one hand, good isolation of the qubits during the idle phase and single-
qubit gates requires that they are detuned from each other and that the transmon is at a sufficiently
high frequency (e.g. Ω ' 10GHz) to strongly suppress the residual effective coherent coupling.
On the other hand, dynamically tuning the two qubits to resonance, for example to a common
intermediate frequency ωr = |ω1 − ω2|/2 is already sufficient to activate coherent oscillations: in
this case, the time evolution induced by the relevant term in Heff reads

UXY(t) = e
−iΓ

8

(
σ

(1)
x σ

(2)
x +σ

(1)
y σ

(2)
y

)
t (3.50)

which, expressed in matrix form on the computational basis states becomes

UXY(t) =




1 0 0 0

0 cos Γt
4 −i sin Γt

4 0

0 −i sin Γt
4 cos Γt

4 0
0 0 0 1


 (3.51)

This is an entangling operation which, if the time evolution is halted at τ = π/|Γ|, leads to the
universal two-qubit gate

√
iSWAP =




1 0 0 0

0 1/
√

2 i/
√

2 0

0 i/
√

2 1/
√

2 0
0 0 0 1


 (3.52)

The interaction is then turned off by shifting back the frequencies of the nanoresonators. The
protocol is completed by two rephasing single qubit z-rotations applied to the NRs to correct for the
additional phase accumulated by the qubits with respect to their idle evolution with the original bare
ω1,2. This latter step is obtained by an inverse −ξi = ωi−ωr pulse lasting for a time τ ′ = mod(τ, 2π).
The typical gating time of a single

√
iSWAP is of the order of a few µs with realistic choices of

the parameters. This duration can be optimized by exploiting one peculiar property of our setup,
namely the possibility of dynamically tuning the transition frequency Ω of the transmon. This is, of
course, of great importance when performing long sequences in the presence of realistic dissipation
processes. This shift, which could be implemented experimentally by varying the magnetic flux
concatenated with the transmon, is essentially just another time-dependent contribution to the
total Hamiltonian in the interaction picture

HTR(t) = δΩ(t)
σz
2

(3.53)

Changing the frequency of the transmon affects all the effective qubit-qubit Hamiltonian parameters:
in particular, reducing Ω (and thus the detuning ∆ with respect to the nanoresonators) increases the
coupling Γ ' g2/∆ and modifies the renormalizations λi. Needless to say, this procedure is limited
both by the tunability range of the transmon and by the validity of the perturbative expansion in
terms of g2/∆. Given some values of the external dissipation rates, for example, there exists an
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Figure 3.4: Examples of single- and two-qubit quantum gates. (a)-(b) Rx(π) rotation
performed on qubit 1 while qubit 2 is kept isolated and the transmon frequency Ω = 10GHz is
left unchanged, with the corresponding Gaussian oscillating pulse. The peak amplitude is 0.3MHz.
(c)-(d)

√
iSWAP operation, with a short idle phase before and after the gate. Frequency shifts

shown in (c) are operated on qubit 2 (NR pulse) and on the transmon (TR pulse) during the time
evolution. A short rephasing stage on the qubit is included at the end, while the renormalization
shift λ2 is not explicitly reported. Similar operations are also performed on qubit 1 to achieve
the resonance condition. In all panels, the system undergoes unitary evolution with bare NRs
frequencies ω1 = 85MHz and ω2 = 75MHz. In (b)-(d), pab = |〈ab|ψ〉|2 represents occupation
probabilities for the Fock states computed on the simulated wavefunction |ψ〉 after tracing out the
transmon degrees of freedom.

optimal δΩ that increases the gate fidelity without loosing too much of the agreement between the
actual behavior of the system and what is expected from the effective Hamiltonian description. In
our simulations, we set a non zero δΩ during the coherent interaction time τ , which must then be
computed by using Ω + δΩ in Eq. (3.33)) and we put the transmon back to its original frequency
already during the qubit rephasing stage. We mention explicitly that when the transmon frequency
is modified, the permanent shifts −λi applied to the qubits must in principle be adjusted accordingly.

The set made of single qubit rotations and
√
iSWAP is universal for standard quantum com-

putation. In addition to that, the actual parametric nature of the native two-qubit operation will
prove extremely useful for digital quantum simulation protocols, where the ability to activate the
UXY(t) interaction for an arbitrary duration will avoid some of the more complicated constructions
which are typically needed when using fixed-phase two-qubit gates. Notice that the set {Rα,UXY}
is exactly the S2 introduced in Chapter 1, see Eq. (1.38). A few representative examples of sim-
ulated single and two-qubit gates, together with a description of the required external pulses, are
shown in Fig. 3.4. We notice that square pulses modulating NRs ad transmon frequencies are
already sufficient to obtain satisfactory results with two-qubit operations, as the UXY evolution
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conserves the total number of excitations and is thus less prone to population leakages outside the
computational basis. Instead, gaussian envelope functions are usually required to obtain good single
qubit rotations. With these precautions, we could verify that in all numerical simulations bosonic
occupancies ni > 1 do not significantly appear throughout typical gate dynamics.

The performances of the set-up were assessed in terms of the fidelity [5]

F =
√
〈ψ|ρ|ψ〉 (3.54)

between the ideal target pure state of a given single- or two-qubit operation (ψ) and the actual den-
sity matrix ρ resulting from the numerical integration of the full master equation, see Eq. (3.28). On
one hand, this measures the resilience of our protocols with respect to dissipation and decoherence
both on the NRs and on the interposed transmon. At the same time, the overall fidelity is also in
principle affected by any residual unitary evolution effects not fully captured by the perturbative
analysis which guided the design of the pulse sequences: possible examples are the non perfect
isolation of the NRs in the idle phase, leading to spurious cross-talk effects, or excitation of the
bosonic states with more than one phonon.

As benchmark operations, we report in Fig. 3.5 the results obtained for a Rx(π/2)-rotation on
qubit 1 and for the

√
iSWAP gate as a function of the pure dephasing rate (i.e. the reciprocal of

the coherence time) for both the NRs and the transmon. For these simulations, the the system was
initialized in a random superposition of all the 4 states in the computational basis, and we chose the
following set of parameters: ω1/2π = 85MHz, ω2/2π = 75MHz (idle configuration), U/2π = 3MHz,
g1 = g2 = 2π · 6MHz, γ1 = γ2 = 2π · 50Hz, γTR/2π = 100 kHz. The transmon fequency Ω/2π
is kept at 10 GHz in idle configuration and during single-qubit operations, and is tuned down to
2.5 GHz when performing two-qubit gates. As a direct consequence of the fact that the relevant
quantum information content is carried by the nanoresonators, while the transmon is involved only
through virtual excitations, the fidelity F shows very weak dependence on the transmon decoherence
rate γTR,d and a much more sensitive dependence on γNR,d. Indeed, the simulations suggest that
our scheme is in principle intrinsically robust against transmon decoherence, as the results look
practically insensitive, for both single- and two-qubit gates, to an increase of more than two orders
of magnitude in γTR,d above the most optimistic [161] value γTR,d/2π = 10 kHz, corresponding to
a transmon T2 time of 100µs. Notice also that the typical gating time of a single

√
iSWAP is

of the order of a few µs, which is comparable or even larger than the shortest transmon T2 time
considered, i.e. T2,TR = 0.1µs when γTR,d/2π = 10MHz. Finally it is worth pointing out that a
value of γNR,d/2π ' 100 kHz looks rather pessimistic for most candidate electromechanical qubits,
in particular nanomembranes and nanotubes, where total linewidths in the 0.1-1 kHz range have
been experimentally shown [288, 290, 292].

To compare with existing technology, we recall that on state-of-the-art transmon based technol-
ogy the shortest two-qubit gating times are currently around Tgate = 40-50 ns when fidelities above
99% are required [60], leading to a typical ratio T2/Tgate ∼ 103 with the current order of magni-
tude for superconducting qubit coherence times [161]. In our simulations, we obtained F > 99%
with Tgate = 500 (300) ns for single- (two-) qubit gates, thus demonstrating that the proposed
electromechanical platform could potentially achieve T2/Tgate > 104 with a still realistic coherence
time around T2,NR ∼ 10ms.

Residual thermal occupancy of nanomechanical resonators

Throughout our analysis, we assumed that the system can be cooled at sufficiently low temperatures
to safely neglect the effect of thermal interaction with the environment. While conventional dilution
refrigerators can easily maintain thermal noise below typical transmon excitation energies, achiev-
ing the corresponding regime for nanoresonators with fundamental frequencies in the MHz range is
still challenging from the experimental point of view. Indeed, such relatively low-frequency devices
most often require special techniques such as sideband cooling to reach their mechanical ground
state [281]. For this reason, we performed an additional study on the gate fidelities considering,
on top of all the intrinsic dissipation mechanisms reported in Eq. (3.28), a residual thermal inter-
action between the nanoresonators and the surrounding environment. In this series of simulations,
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Figure 3.5: Fidelity of single- and two-qubit quantum gates. (a) Single qubit π/2 x-rotation.
(b) Two-qubit

√
iSWAP gate. The fidelities are evaluated as functions of the pure dephasing rates

γ1,d = γ2,d = γNR,d of the electromechanical resonators and of the transmon (γTR,d), starting from
a random superposition of all computational basis states. All other parameters are reported in the
text.

we added to the master equation additional Lidblad terms describing a bosonic thermal reservoir
attached to the i-th oscillator

Li[ρ] =
χ

2
[n̄ (ωi, T ) + 1]

(
2biρb

†
i − b

†
ibiρ− ρb

†
ibi

)
+
χ

2
n̄(ωi, T )

(
2b†iρbi − bib

†
iρ− ρbib

†
i

)
(3.55)

where (kB = 1)

n̄(ωi, T ) =
1

exp
(
ωi
T

)
− 1

(3.56)

is the Bose occupancy at temperature T . In particular, we set n̄ = 0.1 for both oscillators, as
this generally represents a good estimate of the achievable residual thermal occupation in real
experiments. The rate χ can be inferred from typical line broadening of the nanoresonators, which
is of the order of few tens of Hz. When average values for all the other dissipation mechanism are
taken into account, the impact of the residual thermal occupation is of the order of 0.01-0.1% on
single gate fidelities if χ = 50Hz, and around 1% if we use the more pessimistic value χ = 1 kHz.

3.3.4 Non-linearity of electromechanical qubits

A sufficiently strong non-linearity at the single-phonon level is of crucial importance for the definition
of electromechanical qubits, namely for a faithful enconding of digital quantum information in a
spectrally isolated computational basis. In our previous analysis, such degree of anharmonicity was
introduced through a simplified model featuring, in the Fock number representation, a diagonal shift
of the |1〉 ↔ |2〉 transition with respect to |0〉 ↔ |1〉. While this treatment already contains all the
features relevant for quantum computing purposes, keeping at the same time the description easy
to understand and analytically transparent, it says little about how the non-linearity is actually
obtained in practice. In this section, after assessing the actual impact of non-linearity on the
gate fidelity, we will discuss the issue more extensively, first comparing our simplified description
with a more realistic and commonly used model of anharmonic mechanical oscillators, and then
by introducing an original hybrid solution to engineer the spectral properties of electromechanical
resonators.

Fidelity versus non-linear shift

The relevance of the spectral anharmonicity for the fundamental quantum information processing
tasks carried out by our proposed electromechanical set-up is best investigated with respect to single
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Figure 3.6: Effect of non-linearity. (a) Fidelity of a single qubit Rx(π) gate as a function of
the nonlinear shift between the first and second energy gaps. Gaussian tuning pulses were used
to activate the gate. (b) Corresponding population leak outside the computational basis. We plot
the norm of (I − Pcb)|ψ〉, where |ψ〉 is the state of the system after the rotation (tracing out the
transmon degrees of freedom) and Pcb is the projector on the computational basis subspace.

qubit transverse (i.e. x, y) rotations, as they require a form of driving which in principle does not
conserve the total number of bosonic excitations in the system. As an example, in Fig. 3.6, we
show how the fidelity of a single qubit Rx(π) rotation changes as a function of the non-linear gap
difference δ = ω21−ω10, where ω10 = ω1−ω0 it the distance in frequency between the computational
basis eigenstates (|0〉, |1〉) and ω21 = ω2−ω1 is the separation of the first non-computational excited
state from |1〉. Notice that, within our simple non-linear model of Eq. (3.26), we have δ = 2U . The
simulations were carried out varying the parameter U in the absence of external dissipations. The
most significant feature is the large plateau very close to unity for almost all values above δ ' 2MHz.
Moreover, we find that a nonlinear shift δ = 1MHz is already sufficient to give theoretical fidelities
F > 0.99, which is the threshold required on single gates to successfully apply error correction
protocols such as the surface code [60].

Models of anharmonicity

From the perspective of the total bosonic Hilbert space (i.e. without truncation on the maximum
number n1,max and n2,max of allowed excitations in each resonator), the diagonal non-linearity model
which we have adopted above can be written, for a single oscillator, as a Kerr-type Hamiltonian

Hnl,diag = Ub†b†bb . (3.57)

On the other hand, a widely accepted model for nonlinear nanomechanical resonators is rather given
by [298]

Hnl,full = U(b† + b)4 ∝ x̂4 . (3.58)

As a first step in comparing the two models, we will now show that, in the range of interest, the
first one overestimates the magnitude of the parameter U required to achieve a given amount of
non-linearity in the spectrum, namely it predicts, given U , a smaller shift δ = ω21 − ω10, with
respect to Eq. (3.58). In Fig. 3.7, the shift δ for the two models is computed by performing a
numerical diagonalization of the Hamiltonian, after adding the free term H0 = ωb†b and setting
nmax = 10. In the plot, U and δ are both expressed as fractions of the bare frequency of the
oscillator ω. When U/ω ≤ 0.1, which roughly corresponds to the assumptions made in our previous
description of electromechanical qubits, the model Hamiltonian (3.57) is always conservative in
terms of quantitative estimation of the nonlinear single-phonon contribution given U . When the
intrinsinc mechanical non-linearities [294, 297] are not sufficiently strong, the anharmonic regime of
nanoresonators can be accessed by stretching the structure out of its natural equilibrium position
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Figure 3.7: Comparison between models for single-phonon nonlinearity of nanome-
chanical resonators. (a) Spectral shift δ = ω21−ω10 predicted using a simplified diagonal model
(solid line) and using a full non-linear Hamiltonian (dashed red line) for the same choice of the
parameter U controlling single-phonon non linearity. (b) Focus on the region of interest for the
typical set of parameters used in this work, namely U/ω ≤ 0.1.

via static external electric fields [294, 298–300]: the above results then suggest that the actual
amplitude of such external bias required to obtain e.g. the target δ = 1MHz (see Fig. 3.6) might
be experimentally accessible in real devices which obey the full non-linearity model reported in
Eq. (3.58), even though single-phonon sensitivity has not yet been fully demonstrated. We will come
back to this later when discussing alternative techniques to engineer a non-linear electromechanical
spectrum.

For completeness, we also compared the eigenvectors corresponding to the first three energy
levels (namely the computational basis plus the first extra excited level) for the two models Hnl,diag
and Hnl,full. In this case, we selected the parameter U in two different ways such that the gap shift
δ is the same both for Hnl,diag and Hnl,full. The following table summarizes the fidelity F = |〈nnl|n〉|
of the eigenvectors |nnl〉, obtained from Eq. (3.58) and ordered by increasing energy, with respect
to the corresponding bare Fock state |n〉, for the two different choices ω = ω1 = 85MHz and
ω = ω2 = 75MHz:

n F(ω = ω1) F(ω = ω2)

1 0.9996 0.9995
2 0.9971 0.9963
3 0.9899 0.9872

If the computational basis is redefined on the set of |nnl〉 states, the very same machinery that we
presented in Sec. 3.3.3 can be applied to implement single-qubit rotations and the

√
iSWAP gate.

Indeed, electrical pulses can still be used to tune the fundamental transition frequency, ω01, for both
oscillators, thus bringing them to resonance when needed. Moreover, the operators bi and b

†
i still

promote transitions between the new eigenvectors, albeit with a slightly different matrix element
Xkl = 〈k|b|l〉, as summarized in the following table:

Xkl Fock states |nnl〉 for (ω = ω1) |nnl〉 for (ω = ω2)

X01 1 1.0005 1.0007

X12

√
2 1.4170 1.4179

The only effective consequence for the gating protocols is thus the (in principle transition-specific)
rescaling of the coupling elements gi → giXxy, leading to a renormalization of the required gating
time or pulse amplitude. Numerical simulations give overall fidelities that are within 0.1% with
respect to the simplified case using Fock states and Hnl,diag. It is also worth noticing that the
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Hamiltonian in Eq. (3.58) only couples Fock states differing by an even number of excitations. This
in turn means that |nnl〉 and |(n+ 1)nl〉 are still orthogonal to each other as in the bare Fock basis:
indeed, they can be regarded as eigenvectors of the number parity operator belonging to different
eigenspaces. In simpler terms, they are superpositions containing, alternatively, either even or odd
Fock states. As a direct consequence, the matrix element Xnn vanishes. The same is not true for
Xn(n+2), meaning that bi and b†i could in principle promote |0〉nl ↔ |2〉nl transitions outside the
computational basis, for example during the single qubit x or y rotations. However, in our protocol
this effect remains negligible in view of the large energy gap between the two distant eigenstates.

Inducing phonon non-linearity with a superconducting circuit

In Fig. 3.6, we saw that the degree of anharmonicity which would be required to achieve a reliable
qubit behavior in our set-up goes from 1 to a few MHz, and we have already mentioned a few
examples in the literature where the non-linear regime is reached via electric field gradients, see
Refs. [294, 298–300]. Despite a few early investigations relying on those techniques for quantum
information applications [269], it is still unclear if such approaches will ultimately be sufficient to
generate reliable sensitivity of the non-linear effects down to the single-phonon level. We hereby
explore an alternative scheme based on dispersive coupling of an additional low-frequency super-
conducting element to each NRs. We will demonstrate how this weak hybridization of quantum
electromechanical excitations could in principle engineer by design a non-linear spectrum without
degrading the remarkable coherence properties which constitute one of the main predicted strengths
of nanomechanical qubits.

A combined system made of a single harmonic nanoresonator and a superconducting (SC) non-
linear element would in principle display anharmonic energy levels which could be used for the
definition of the physical qubit. Indeed, this coupled NR-SC can again be effectively described by
a Rabi-like interaction term

H = ωNRb
†b+

ΩSC

2
σz + g(b+ b†)(σ− + σ+) (3.59)

As done previously and in similar works [301], no rotating wave approximation is done at this stage,
in view of selecting a dispersive regime ωNR � ΩSC . We stress that the SC component envisioned
here would by no means play the role of a mediator between different NRs, as the transmon in-
troduced in the fundamental building block of our set-up was doing (see Sec. 3.3.1 and Fig. 3.3).
Instead, it would only be an additional element attached to each individual electromechanical oscil-
lator with the explicit purpose of slightly modifying the structure of its excitation spectrum. This
difference in roles manifests itself in the parameters range required to obtain a significant non-linear
effect, which are very different from the ones at which a transmon qubit is typically operated. In
fact, a SC resonance frequency ΩSC in the few hundreds of MHz range is required here, as well as
a NR-SC element coupling rate g in the few tens of MHz, which is basically opposite to the large
Ω (1-10GHz) and small g (a few MHz) previously assumed for the transmon mediator. From the
experimental point of view, a sutable non-linear SC fluxonium circuit with low frequency and rather
good dissipation and coherence properties compared to typical SC performances has already been
demonstrated [302]. At the same time, quite large NR-SC coupling strengths can be obtained ca-
pacitively [285–287], for example by applying a sufficiently strong voltage bias and/or with suitable
circuit geometry, up to the point that the coupling energy g can become comparable to the bare
frequency of the NR element [303], leading to high sensitivity of the electromechanical set-up to
phonon number.

In Fig. 3.8a we report the nonlinear shift δ = ω21 − ω10 obtained as a function of g via a
numerical diagonalization of the Hamiltonian in Eq. (3.59). As typical proof-of-concept parameters
we assumed ωNR = 100MHz, ΩSC = 500MHz, and a suitable number of bosonic excitations to
obtain numerical convergence for the eigenvalues and eigenstates of interest. The target δ ' 1MHz
is obtained for g ' 50MHz, which is rather large but still accessible without too much effort [285–
287, 303]. To compare with numerical results, we also report here the analytical expression of the
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Figure 3.8: Non-linearity induced by superconducting circuit. (a) Nonlinear shift between
the ground-first and the first-second excited states transitions δ = ω21 − ω10, induced by couping a
nanoresonator NR to a superconduction non-linear circuit SC. Results are obtained diagonalizing
Eq. (3.59). (b) Probabilities of Fock states (with SC in |0〉, left axis) and of finding the SC in the
excited state |1〉 (right axis) for the first three eigenvectors |ψi〉 of the Hamiltonian in Eq. (3.59).
(c) Dissipation time scale T1 for the coupled NR-SC system, obtained from Bloch-Redfield simu-
lations. (d) Decoherence time scale T2 for the coupled NR-SC system. The values of overall T1

and T2 timescales in (c)-(d) are expressed in units of the corresponding typical timescales for the
superconducting circuit assumed in the simulation (T1,SC = 1ms and T2,SC ' 10µs). In all panels
ωNR ≡ ω = 100MHz and ΩSC ≡ Ω = 500MHz

nonlinear shift as obtained to fourth order perturbation theory in the SC-NR oscillators coupling

δ ' 2g4

[
2

(Ω− ω)2(Ω + ω)
+

2

(Ω + ω)2(Ω− ω)
+

1

(Ω + ω)3
+

1

(Ω− ω)3

]
(3.60)

Here, we used the compact notation ΩSC ≡ Ω and ωNR ≡ ω. Moreover, all terms but the last one
are only present if the effect of counter-rotating terms in Eq. (3.59) is taken into account.

To better unveil the actual character of the collective excitations in the first three energy levels,
ψi (i.e. the designated computational basis plus one extra level), we report in Fig. Fig. 3.8b the
amplitude probability of the bare Fock eigenstates of the uncoupled harmonic oscillator on the
corresponding new eigenstate of the coupled system, pn = |〈n, 0|ψn〉|2. Here the second index in
the bra vector indicates the SC in its ground state, |0〉. On the right axis of the same Fig. 3.8b
we show the total probability, for each collective eigenstate, to find the SC in the |1〉 excited state,
regardless of the state of the NR: this information gives an estimate of the amount of wavefunction
leaking on the SC as a consequence of the coupling, that is the magnitude of the mixing of the bare
degrees of freedom. As it can be seen, in the region of interest such mixing never exceeds ∼ 5%



Electromechanical Quantum Simulators 81

for the relevant states in the computational basis. On one hand, this last result prevents us from
considering this combined NR-SC architecture as a form of full hybrid encoding: indeed, given the
dispersive nature of the coupling, the two subsystems are not treated on equal footing, with the NR
degrees of freedom maintaining a predominant role. On the other hand, such regime is crucial in
guaranteeing that the NR performances in terms of coherence are not significantly affected by the
presence of the additional SC element.

We quantitatively analyzed the actual effect of introducing the SC element in terms of dissipa-
tion (T1) and coherence times (T2) of the collective excitations by applying the formalism of open
quantum systems. In particular, given the strong internal coupling (as we saw above, g can get
up to a significant fraction of ωNR) and of the presence of non-negligible counter-rotating terms,
we employed a Bloch-Redfield master equation with suitable secular approximation [296]. We start
by diagonalizing the full system Hamiltonian, a procedure that is ultimately consistent with the
fact that the actual qubits are defined as slightly mixed excitations, and then derive the dissipation
and pure dephasing terms by computing the matrix elements of a set of operators describing the
coupling to the environment. We considered an extended system

HTOT = HNR+SC + Henv,NR + Henv,SC + HI (3.61)

where HNR+SC is given in Eq. (3.59), while

Henv,i =
∑

k

ωk,id
†
k,idk,i (3.62)

is a collection of harmonic bath modes (i = NR,SC) and the system-bath coupling HI is a sum of
terms of the form

HI,S = O ⊗
∑

k

g′k,i(dk,i + d†k,i) . (3.63)

Here O is a hermitian system operator describing individual interaction mechanisms for either the
nanoresonator or the superconducting circuit. We use, for example, the operators ONR = b+b† and
OSC = σ− + σ+ to describe what in the bare SC and NR basis would be interpreted as dissipative
processes, while coupling via ONR = b†b and OSC = σz gives rise to dephasing contributions. The
resulting master equation will fully describe all possible transitions induced by the environment on
the effective dynamics of the coupled nanoresonator and SC system, with rates that are proportional
to the spectral functions of the environment evaluated at the relevant transition frequencies. Such
functions are taken for simplicity as zero temperature white noise spectra

Si(ω) =





γi,d for ω = 0

γi for ω > 0

0 for ω < 0

(3.64)

where, again, i = NR,SC and γ (γd) represent dissipation (pure dephasing) contributions in
the uncoupled case. These numerical simulations were carried out with the QuTiP library in
Python [204, 205]. In Fig. 3.8c-d we show the change in the total T1 (decay of diagonal terms)
and T2 (decay of coherences) of the coupled system as a function of g, obtained by observing the
time evolution of an initial superposition of the computational basis elements. More explicitly,
data are obtained by fitting the exponential decay of the excited state occupation probability and
of the off-diagonal element (coherence) of the resulting density matrix. The following parameters
were used in these simulations: ωNR = 100 MHz, ΩSC = 500 MHz, γNR = 50 Hz (corresponding
to T1,NR = 20 ms), γNR,d = 200 Hz (i.e. T2,NR = 8 ms), γSC = 1 kHz, and γSC,d = 50 kHz.
In particular, dissipation rates for the low-frequency SC element correspond to T1,SC = 1ms and
T2,SC ' 10µs, as experimentally reported in Ref. [302]. Our results clearly predict that the addi-
tional superconducting element affects the original performances of the nanomechanical oscillator
by less than an order of magnitude, thus still preserving a significant advantage over the typical
dissipation and coherence times of the SC element alone, whose T1 and T2 values are taken as a
reference for normalization in the plot.
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3.3.5 Digital quantum simulations

The promising theoretical predictions for the fidelities of elementary single- and two-qubit gates
suggest that the proposed electromechanical architecture could potentially meet the requirements
for building a digital quantum simulator, capable of running long sequences of concatenated gates.
In accordance to the framework introduced in Chapter 1, we will now briefly describe the realiza-
tion of a few prototypical algorithms for the digital quantum simulation of spin models, using the
fundamental set of operations accessible to the our electromechanical quantum computing set-up.
At difference with Chapters 1 and 2, we focus here on the hardware performances, more than on the
algorithm design: indeed, after decomposing the target Hamiltonian in the corresponding sequence
of gates using standard techniques, we numerically simulated the actual experimental procedure to
operate the electromechanical qubits, including all required external pulses and realistic dissipa-
tion and decoherence processes. This in turn means integrating Eq. (3.28), with Hcontrol(t) being
the translation of a given digital quantum simulation algorithm into the corresponding series of
time-dependent frequency shifts and driving pulses needed to activate the quantum operations, as
described in Sec. 3.3.3. All the results were obtained assuming γTR,d/2π = 100 kHz as realistic
transmon dephasing rate and for different choices of the nanomechanical qubits T2 times.

As a first example, we consider the problem of spin S = 1 total magnetization tunneling,
previously discussed in Sec. 2.2.1. We recall here for convenience that the physical model is described
by the Hamiltonian

H = DS2
z + E(S2

x − S2
y) (3.65)

which can be decomposed, by writing Sα as the sum of two spin-1/2 operators, as

H = 2Ds(1)
z s(2)

z + 2E
(
s(1)
x s(2)

x − s(1)
y s(2)

y

)
(3.66)

Following Sec. 2.2.1, the time evolution of the total magnetization Sz(t) = s
(1)
z (t) + s

(2)
z (t) can be

simulated on a quantum register of two qubits by realizing a sequence of gates representing the
unitary operator U(t) = e−iHEt generated by

HE =
E

2

(
σ(1)
x σ(2)

x − σ(1)
y σ(2)

y

)
(3.67)

Using the native UXY(t) two qubit operation, see Eq. (3.50), it is straightforward to check that the
quantum circuit in Fig. 3.9a achieves the desired result. Indeed, we can verify by direct inspection
that

e
−iE

2

(
σ

(1)
x σ

(2)
x −σ(1)

y σ
(2)
y

)
t

= R(1)
x (π)e

−iΓ
8

(
σ

(1)
x σ

(2)
x +σ

(1)
y σ

(2)
y

)
t
R(1)
x (−π) (3.68)

if we assume8 E = Γ/4. At the hardware level, the algorithm requires two gaussian pulses on
qubit 1 to implement R

(1)
x (π) rotations and frequency shifts on the two qubits and the intermediate

transmon to activate the UXY(t) exchange evolution, the duration of the latter varying with the
target evolution phase λ ∝ Et: a schematic representation is provided in Fig. 3.9a below the
quantum circuit. The resulting time evolution of the total magnetization obeys, given an initial
state |↑↑〉,

Sz(t) = s(1)
z (t) + s(2)

z (t) = cos(2Et) (3.69)

and no Trotter steps are needed in this case. Numerical results are reported in Fig. 3.9a, where
we compare the exact result of Eq. (3.69) to the digital quantum simulation performed on the
electromechanical set-up, for either γNR,d = 0 or γNR,d/2π = 1 kHz. The overall fidelity, averaged
over all points, equals F = 0.999 for γNR,d = 0 and F = 0.988 for γNR,d/2π = 1 kHz, respectively.

A slightly more challenging digital simulation is reported in Fig. 3.9b, where the target model
is now the two-spin Heisenberg Hamiltonian, see also Eq. (1.83)

HHeis,2 = J
(
σ(1)
x σ(2)

x + σ(1)
y σ(2)

y + σ(1)
z σ(2)

z

)
(3.70)

8Typically, Γ is a well defined property of the hardware: arbitrary values of the target E parameter can then be
obtained for example by suitably rescaling the physical phase acquired during a gate operation with respect to the
simulated time in U(t) = e−iHEt.
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Figure 3.9: Digital quantum simulations with electromechanical qubits. (a) Tunneling
of S = 1 total magnetization. A scheme of the pulse sequence operated at hardware level is shown
below the quantum circuit (drive amplitude and frequency shifts not to scale). (b) Heisenberg model
on two spin-1/2, with solid lines indicating exact results and markers indicating results from the nu-
merical simulation of the electromechanical setup. No Trotter approximation is required. (c) Trans-
verse Field Ising model for n = 10 Trotter steps and different choices of the coherence time for the
nanoresonators. In all panels, we use the compact notation UXY(δ) = exp

[
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x σ
(2)
x + σ

(1)
y σ

(2)
y )
]
.

The quantum algorithm is now designed, following Fig. 1.4c and the identity [53, 128]

e−iHHeis,2t = e−i
J
2

Hxxyyte−iHxxzzte−iHzzyyt (3.71)

where Hααββ = σ
(1)
α σ

(2)
α + σ

(1)
β σ

(2)
β . For γNR,d/2π = 0.1 kHz (i.e. T2,NR = 10ms) and J = Γ/8, the

average fidelity of the simulation is above 99%.
Finally, the digital quantum simulation of the 2-spin Transverse Field Ising model (see Eq. (1.91)
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and Sec. 2.2.3)

HTIM,2 = Λs(1)
x s(2)

x + b(s(1)
z + s(2)

z ) =
Λ

4
σ(1)
x σ(2)

x +
b

2

(
σ(1)
z + σ(2)

z

)
(3.72)

gives the opportunity to test longer sequences of gates. Indeed, in this case a non-trivial application
of the Trotter approximation formula is required, leading to the following construction

e−iHTIM,2t '
(

R(1)
z (bτ)R(2)

z (bτ)UXY

(
Λ

Γ
τ

)
R(1)
x (−π)UXY

(
Λ

Γ
τ

)
R(1)
x (π)

)n
(3.73)

where τ = t/n and, using Eq. (3.50) for the definition of the native UXY in terms of hardware
parameters, we made explicit the possible rescaling9 of the physical phase to be acquired by the
electromechanical qubits when in general Λ 6= Γ. The quantum circuit applied on the hardware is
shown in Fig. 3.9c: measuring the state of the electromechanical qubits gives direct access to the
total magnetization along the x axis10, i.e. 〈Sx〉 = Tr[ρ(s

(1)
x +s

(2)
x )]. Numerical simulations reported

in Fig. 3.9c were done choosing Λ = 2b = Γ and n = 10 Trotter steps. For each data point, this
requires the sequential concatenation of 20 two-qubit and 40 single-qubit gates (the latter can often
be operated in parallel on both qubits). The digital simulation is therefore quite demanding in
terms of hardware performances: nevertheless, the fidelity is already 0.90 for γNR,d/2π = 1 kHz,
and it increases to 0.96 by assuming a more optimistic value γNR,d/2π = 100Hz. The results are
especially noteworthy if we consider that the total physical time required to operate the longest
sequence of gates, corresponding to the last point in Fig. 3.9c, is about 150µs. The overall potential
of the proposed electromechanical architecture for quantum information processing and quantum
simulation purposes is thus confirmed.

To summarize, in this chapter we have briefly explored a few possible future directions for quan-
tum computing technology. While trapped ions and superconducting circuits continue their steady
approach to maturity and receive attention from a growing academic and industrial community, the
many open challenges in quality, control and scalabilty make the search for new paradigms as exciting
and scientifically relevant as the improvement of existing solutions. Here we have proposed quantum
electromechanics as a promising candidate platform, theoretically describing a novel architecture
for quantum information processing based on state-of-the-art nano-devices. We demonstrated how
qubits can be encoded in the anharmonic vibrational modes of mechanical resonators and integrated
with superconducting circuitry. In our proposed set-up, switchable coupling mediated by virtual
transmon excitations can be used, in combination with single-qubit manipulation techniques, to
engineer a universal set of elementary quantum gates, whose fidelity remains remarkably high even
with the inclusion of realistic decoherence and dissipation rates on both the nanoresonators and
the superconducting elements. Finally, we concatenated such elementary operations to numerically
assess the potential performances in the realization of paradigmatic quantum simulation algorithms,
finding very encouraging results.

9Notice that, even though this is not explicit in Eq. (3.73), this rescaling can be most effectively done taking total
phases modulo 2π, in order to keep the physical simulation time under control.

10Notice that, with respect to Chapter 1 and 2, here we used an equivalent parametrization of the TIM where the
external field is along the z direction.



4
Quantum artificial neural networks

As quantum technologies start leaving academic research laboratories and set the stage for future
commercialization, great effort is being devoted to harness the potential advantage of quantum
information processing and employ it outside its traditional field of application. Even though the
first practical demonstrations of quantum speedup over classical counterparts will probably come
from the solution of rather abstract problems [81] or within very special settings [304, 305], a plethora
of practical use cases for quantum computing is being explored and developed, from communication
to optimization, from chemistry [180] to finance [87, 88]. The aim of such attempts, for which
at present only proof-of-principle experimental tests on small noisy quantum processors can be
given, is, on one hand, to develop the algorithmic and software machinery enabling future full-scale
realizations, while, on the other hand, fulfilling a roadmap designed to bring the performances of
near term quantum technology beyond classical counterparts in real world scenarios. Both sides
require fundamental research in quantum computer science and a clear interdisciplinary attitude.

Among the fields that have been recently associated to quantum computing, machine learning
attracted special attention. Indeed, it is certainly tempting and fascinating to put together two
approaches that, in parallel and within the respective areas, have been holding promise of a modern
revolution in computation and information science. We will devote the first part of this chapter to
a brief account of the birth and status of Quantum Machine Learning (QML) as a discipline, laying
out proposed advantages and current bottlenecks. We will then get back to the roots of machine
learning, namely to Rosenblatt’s and McCulloch-Pitts’ artificial neuron models, and describe a series
of original works [306, 307] in which such fundamental ingredients and their combinations have been
translated into quantum procedures and employed to carry out simple classification and recognition
tasks on real prototype quantum processors.

4.1 The rise of quantum machine learning

Following the growing interest and enthusiasm towards the so called artificial intelligence in many
areas of human knowledge, machine learning techniques have successfully been applied to physi-
cal problems [308], ranging from cosmology and sub-atomic particles to many-body and quantum
physics. In these approaches, classical computing architectures are employed for example to ana-
lyze and classify quantum states, to optimize experimental set-ups or quantum circuit design. In
its purest form, Quantum Machine Learning (QML) [89, 309–311] aims at turning the relationship
around, namely at developing quantum computing algorithms and procedures to analyze complex
series of either classical or, in perspective, quantum data.

4.1.1 Quantum subroutines for linear algebra

The most natural point of contact between quantum information processing and machine learning is
probably linear algebra. Indeed, many of the most demanding protocols in artificial intelligence and
data analysis feature matrix manipulations in high-dimensional vector spaces, while, at the same

85



86 Quantum artificial neural networks

time, many renown quantum algorithms precisely tackle some fundamental algebraic tasks, such as
Fourier transformation [5, 312], matrix diagonalization [313] and the solution of linear systems of
equations [314]. The whole corpus of quantum algorithms for linear algebra applications is already
sufficiently mature that it is often indentified with the acronym q-BLAS [89], for quantum Basic
Linear Algebra Subroutines. In many cases, there exist theoretical proofs showing an exponential
advantage of q-BLAS procedures over classical counterparts, many of them based on the intimate
linear structure of quantum mechanics associating a 2N -dimensional complex vector space to the
joint state of N qubits. As an example, let us consider the forefather of many recent advances in
the field, namely the Harrow-Hassidim-Lloyd (HHL) algorithm [314] for linear systems of equations.
The problem solved by the HHL subroutine is indeed a classic in linear algebra: given a D × D
Hermitian matrix A and a vector ~b, find a vector ~x such that

A~x = ~b (4.1)

The algorithm can be sketched as follows. First, the vector ~b is, without loss of generality, nor-
malized and written onto the quantum register of approximately log2D qubits as a superposition
of computational basis states, e.g. ~b 7→ |b〉 =

∑
i bi|i〉. Then, by applying the well known phase

estimation algorithm [5, 126], essentially involving the digital quantum simulation of the unitary
operator e−iAt, one can construct the state

|ψ〉 =
∑

j

βj |uj〉|λj〉 (4.2)

where uj are the eigenvectors of A, the βj are the coefficients of the (always possible, in principle)
expansion of |b〉 on the basis {|uj〉} and |λj〉 are the eigenvalues of A written on an auxiliary quantum
register. Adding an additional qubit and performing a rotation conditioned on |λj〉 we obtain

|ψ〉|0〉 7→
∑

j

βj |uj〉|λj〉
(√

1− C

λj
|0〉+

C

λj
|1〉
)

(4.3)

where C is a normalization constant. After uncomputing the phase estimation, we can discard the
auxiliary quantum register on which the eigenvalues of A were written, leaving the state

∑

j

βj |uj〉
(√

1− C

λj
|0〉+

C

λj
|1〉
)

(4.4)

Finally, a measure of the last qubit in the computational basis, conditioned on the outcome |1〉,
puts the original quantum register in the state

√
1∑

j C
2|βj |2/|λj |2

∑

j

βj
λj
|uj〉 ∝ |A−1b〉 ≡ |x〉 (4.5)

The desired vector ~x is thus recovered probabilistically, and the number of times the algorithm must
be repeated to succeed depends on the condition number of the matrix A. For well behaved cases,
the HHL subroutine runs in O

(
(logD)2

)
quantum operations, with an exponential advantage over

classical counterparts requiring at least O (D logD) steps. A number of caveats must however be
taken into account, mostly regarding loading of classical data (i.e. the vector b) on a quantum register
and the efficient extraction of the output: indeed, a generic quantum state |b〉 can be exponentially
expensive to prepare from scratch, and fully characterizing a state |x〉 to recover its components
requires an exponential number of tomographic measurements. As we will see, the interface layer
between classical data and their quantum representation is indeed a very common bottleneck in
many quantum machine learning schemes: proposed solutions go from directly inputing quantum
states stored in a quantum Random Access Memory (qRAM) [315] to post-processing output data
directly on the quantum register to recover only partial information of interest, possibly encoded
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into the expectation value of some quantum observable mx = 〈x|M |x〉, though this is, in general,
still an open line of research.

Another example, using quantum techniques similar to the HHL algorithm and with similar
scaling properties, is the so called quantum Principal Component Analysis (qPCA) [316], which, for
a series of data written in D-dimensional vectors ~vj , finds the eigenvectors associated to the largest
eigenvalues (i.e. the principal components) of the covariance matrix C =

∑
j ~vj~v

T
j exponentially

faster than the best corresponding classical algorithm.

4.1.2 Quantum classification

Classification of data is one of the typical tasks supervised and unsupervised machine learning
systems are programmed for. In particular, the well known problem of pattern classification can be
expressed in the following terms [309]: given a training set T = {(~vi, ci)} containing feature vectors
~vi and their corresponding class ci, with ci ∈ {Ck}L1 if there are L possible classes, the algorithm must
learn how to assign a new and unseen vector x to one of the classes, according to general rules inferred
from T . Several quantum classifiers have been recently proposed and tested [317–324], relying on
different forms of encoding and data processing and sometimes mimicking different classical machine
learning algorithms. Oracle-based quantum classification has also been put forward as a possible
route to the demonstration of quantum advantage on noisy quantum processors [325, 326].

Estimating distances between feature vectors, thus translating in mathematical terms the com-
mon wisdom that similar properties are a proxy for group identity, is at the basis of some simple yet
effective classification algorithms. For example, the k-nearest neighbors method constructs clusters
of data by assigning a vector ~x to the class cx to which its k (already classified or assigned in T )
nearest vectors belong. A translation of this and similar approaches in the quantum computing
paradigm focuses naturally on efficient evaluations of vector distances, which can be again reduced
to an algebraic problem. For example, it has been proposed that the overlap (i.e. the fidelity) |〈a|b〉|
between two quantum states |a〉 and |b〉 encoding for feature vectors can be used as a similarity
measure. The so called SWAP test [327] is a way of computing such a quantity on a digital quantum
computing architecture, and is based on the following quantum circuit:

|0〉 H • H

|a〉 ×

|b〉 ×

(4.6)

where we used the notation
×

×
SWAP =

(4.7)

Indeed, it is straightforward to verify that the output state is

|ψST〉 =
1

2
[|0〉(|a〉|b〉+ |b〉|a〉) + |1〉(|a〉|b〉 − |b〉|a〉)] (4.8)

and that the probability of observing the first qubit in state |0〉 is therefore directly linked to the
desired overlap

p0 =
1

2
+

1

2
|〈a|b〉|2 (4.9)

Through the simple encoding onto computational basis states

~x 7→ |x|−1/2
∑

i

xi|i〉 (4.10)

the SWAP test has been used by Lloyd et al. [317] to construct a quantum version of the nearest
centroid algorithm, namely a variation of the k-nearest neighbors in which distances are computed
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between the vector to be classified and the “center of mass” of the classes in the feature space. With
a slightly more involved form of encoding, Wiebe et al. [328] reported a quadratic speedup with
respect to classical algorithms in computing the inner product of two vectors.

More recently, quantum-enhanced support vector machines (SVM) have been designed [321, 322]
and realized on real superconducting quantum processors [321], showing promising performances.
Support vector machines are used for linear discrimination, a method that searches for the best
separating hyperplane discriminating between two class regions and acting as a boundary for classi-
fication of unknown inputs. The required linear separability of feature vectors belonging to different
classes enables, on one hand, the use of standard mathematical techniques such as the method of
Lagrange multipliers to simplify the solution of the hyperplane optimization problem. On the other
hand, it would severely limit the applicability of the method to those cases in which the classes are
geometrically disjoint. This restriction can be overcome by mapping a given problem into a higher
dimensional feature space, namely by changing the encoding and the effective distance measure ap-
plied to the data: the fundamental quantity for SVMs applications therefore becomes the so called
kernel K, containing information about all the inner products of mapped feature vectors. Indeed,
given two such D-dimensional vectors ~x and ~x′, a valid kernel K(~x, ~x′) induces a distance measure
which serves as the basis to compute the separating hyperplane. Different kernels provide different
metrics and, as a result, different outcomes of the classification problem. In quantum SVMs [322],
one usually defines a feature map φ : X 7→ F relating classical data vectors ~x ∈ X to quantum
states |φ(~x)〉 living in the so called quantum feature Hilbert space F . The corresponding kernel is
thus constructed using the natural inner product in F :

K(~x, ~x′) = 〈φ(~x)|φ(~x′)〉 (4.11)

Notice that, in general, the map φ can contain non-linear combinations of the input components.
Quantum information processing techniques can then be used to build kernels which may be hard
to compute classically or to speed up the evaluation of inner products between feature vectors.
Rebentrost et al. [329] have for example proposed that, through the direct encoding defined in
Eq. 4.10, a standard kernel K(~x, ~x′) ∝ ~x·~x′ can be computed efficiently via a partial trace operation,
i.e. by discarding part of the information stored in the composite quantum register used for training
and/or loading the data. Indeed, if {|xi〉} is a basis of the 2N -dimensional training vector space
T , in such a way that any quantum state representing training vectors ~vj can be expressed as
|vj〉 =

∑
i αji|xi〉, one can first use two N -qubit quantum registers to prepare the state

|χ〉 =
1√
NX

2N∑

i=1

|~xi||i〉|xi〉 (4.12)

where NX =
∑2N

i=1 |~xi|2 and |i〉 are computational basis states. Then, using Eq. 4.10 it is easy to
see that

〈xi|xj〉 =
~xi · ~xj
|~xi||~xj |

(4.13)

and therefore

TrX [|χ〉〈χ|] =
1

Nχ

2N∑

i,j=1

|~xi||~xj |〈xj |xi〉|j〉〈i| =
K̂

Tr[K̂]
(4.14)

where TrX denotes the partial trace over the quantum register storing the |xi〉 states and (K̂)ij =
K(~xi, ~xj). In the work by Havlíček et al. [321], quantum feature maps were put into practice via
digital quantum circuits. As an example, the authors report the following sequence of parametrized
quantum operations preparing a class of quantum states |φ(~x)〉 of N qubits whose inner product is
conjectured to bex hard to compute classically:

Uφ(~x) = exp

(
i
∑

S

φS(~x)
∏

i∈S
σ(i)
z

)
H⊗N exp

(
i
∑

S

φS(~x)
∏

i∈S
σ(i)
z

)
H⊗N (4.15)
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Here S are subsets of qubit indexes 1, . . . , N and a possible choice of φS(~x) for |S| ≤ 2 is

φi(~x) = xi φ{i,j}(~x) = (π − xi)(π − xj) for i, j = 1, 2 (4.16)

Following Eq. 1.48, it is not difficult to see that the elementary building block of the algorithm can
be decomposed in terms of elementary entangling operations and single qubit rotations

• •

Rz(2φ{i,j}(~x))
e−iφ{i,j}(~x)σ

(i)
z ⊗σ(j)

z =

(4.17)

while single qubit Rz gates are sufficient when S contains only one index. With these techniques,
a 2-qubit variational classification protocol was then tested on real IBM Q quantum processors,
obtaining very high accuracy on simple proof of concept experiments. Finally, Schuld and Killo-
ran [322] proposed squeezing in bosonic Fock space as a way of implementing a feature map in
photonic continuous variable quantum architecture.

4.1.3 Searching for quantum neurons

In the early days of machine learning, artificial neurons and neural networks were first proposed as
powerful tools for trainable classification and pattern recognition [330, 331]. Gaining momentum
after a few milestones results such as the backpropagation algorithm for training [332] and the
Universal Approximation Theorem [333, 334], deep feed-forward neural networks experienced rapid
evolution and development, and constitute today the cornerstone of many artificial intelligence
protocols [335, 336].

The simplest “digital” formalization of an artificial neuron was provided by McCulloch and
Pitts [330]. Every such node is represented by a binary variable Xi ∈ {−1, 1}, with Xi = 1(−1)
denoting an active (rest) state. Every neuron is controlled by a set of inputs x1, . . . , xm which
can either be signals from other neurons in the network (i.e. xj ≡ Xj) or external data. In every
computational step, each input is first weighted by a synapse coefficient wij ∈ {−1, 1}. Then, the
state of the i-th neuron is updated via an integrate-and-fire response

Xupdated
i =

{
1 if

∑
j wijxj ≥ θi

−1 otherwise
(4.18)

where θi represents some predefined threshold. A full neural network constructed by integrating
several McCulloch-Pitts nodes can thus store binary patterns {X1, . . . , XN} in the collective acti-
vation state. The dynamics of the network can either proceed in sequential order (as it is usually
the case in feed-forward neural networks), synchronous or random order. A particularly interesting
case is provided by Hopfield neural networks (HNNs) [337], which display remarkable capabilities
of reproducing the behavior of associative memory. The latter is the ability of recovering a previ-
ously stored item by relying on some partial information about it: for example, the letters Einst
immediately point to Albert Einstein in an archive of notable physicists. HNNs (see Fig. 4.1a) are
in principle symmetric and fully connected, i.e. wij = w̃ij(1 − δij) with wij = wji, and are able to
store a set of specific binary patters and retrieve them afterwards. Indeed, let us denote by ~V s a
particular state of the N sites, namely

~Xs = {Xs
1 , X

s
2 , X

s
3 . . . , X

s
N} (4.19)

It can be shown that, by choosing synapses according to the so called Hebbian rule

wij =
∑

s

(2Xs
i − 1)

(
2Xs

j − 1
)

(4.20)

for some collection of possible states ~Xs, then all these states are stable under the updating algorithm
for neuron states. The existence of such stable limit points is further confirmed by the fact that the
energy functional

E = −1

2

∑

i 6=j
wijXiXj +

∑

i

θiXi (4.21)
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(a) (b)

input hidden output

Figure 4.1: Artificial neural networks. (a) Example of the typical layout for a Hopfield neural
network. All nodes are equivalent and connected to all others. (b) Scheme of a feed-forward neural
network, with one hidden layer surrounded by input and output ones.

is monotonically decreasing under random updates of the neurons [337]. The state of the system
will then continue to change until a (local) minimum of E is reached: content-addressability finally
derives from the fact that, by providing a certain initial state {X1, . . . , XN}, the system converges to
the ~Xs, among the ones encoded in the weights, which is closer to the input in terms of Hamming
distance (i.e. the number of differing bits, or ±1 entries). Of course, the number of different
patterns which can reliably be stored and retrieved depends on the overall size and capacity of
the network [338]. As Hopfield himself noted, there exist a clear isomorphism between HNNs and
generalized Ising models where wij are interpreted as the exchange couplings.

A more refined artificial neuron model, proposed by Rosenblatt [331] and later further gener-
alized, relaxes the constraint on the binary nature of state variables and is often referred to as
“perceptron”. The output of such graded-response neurons now becomes continuous valued, for
example Xi ∈ [−1, 1], and is computed from weighted inputs using the output states of connected
neurons (or other input signals) from a previous step:

Xupdated
i = f


∑

j

wijXj


 (4.22)

A common choice for the response function f is the sigmoid

f(x) =
1

1 + e−x
≡ sgm(x) (4.23)

while binary-response neurons are recovered by choosing f(x) = sign(x). When used in feed-forward
neural networks, i.e. featuring a series of successive neuron layers with no feedback or recursive
structures (see Fig. 4.1b), graded-response neurons can be trained adjusting the connections wij
throughout the network with the well known backpropagation procedure [332], thus making feed-
forward neural networks a very powerful and versatile tool to analyze, classify and manipulate
data. As it is common in supervised learning, a training set is initially provided as an ensemble of
pre-labeled input-output pairs (~x, ~otarget). Here ~x is a vector whose number of entries matches the
number of inputs the network can accept and the dimension of ~otarget is that of the typical output
of the network (e.g. ~otarget is N -dimensional if the network has N neurons in the output layer).
Inputs are passed to the first layer of the neural network, and the states of all neurons are updated
in a cascaded fashion using Eq. (4.22). After each input has gone through the network (typically
initialized with random connections wij) the output ~o is compared with the desired one ~otarget ≡ ~y:
in particular, the following quadratic error function is constructed

E =
1

2

∑

k

(yj − oj)2 (4.24)
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A minimization of E via gradient descent then gives the update rule for the weights. If, for a given
neuron, we define χi =

∑
k wikXk as the weighted sum of its inputs, we have

∂E
∂wij

=
∂E
∂Xi

∂Xi

∂χi

∂χi
∂wij

(4.25)

Let us now assume that we are working with a neuron (here labeled with i) in the output layer.
Then Xi = oi and we get

∂χi
∂wij

=Xj

∂Xi

∂χi
= f ′(χi)

∂E
∂Xi

=
∂E
∂oi

= − (yi − oi)

(4.26)

As a result
∂E
∂wij

= −(yi − oi)f ′(χi)Xj ≡ −δiXj (4.27)

and the weight wij should then be updated by a quantity ∆wij ∝ δiXj . In case the i-th neuron is
part of a hidden layer, the evaluation of ∂E/∂Xi is slightly more elaborated. Making again use of
the chain rule for derivatives, we get

∂E
∂Xi

=
∑

l∈L

(
∂E
∂Xl

∂Xl

∂χl

∂χl
∂Xi

)
(4.28)

where L is the set of all neurons in the successive layer receiving an input from neuron i. Finally,

∂E
∂Xi

=
∑

l∈L

(
∂E
∂Xl

f ′(χl)wli

)
(4.29)

and the desired quantity can be recovered as soon as the derivatives ∂E/∂Xl are known. Since we
have seen above that this is true for the output layer, all derivatives can be computed recursively
moving backwards from the last layer to the first. Once more, the weights are then updated with

∆wij ∝
∑

l∈L

(
∂E
∂Xl

f ′(χl)wli

)
f ′(χi)Xj ≡ δiXj (4.30)

The constant of proportionality, called the learning rate η, must carefully be selected to avoid a too
strong sensitivity on single items within the training set, which could result in oscillations around
the minimum of E , but without sacrificing too much in the speed of convergence. To sum up, after
each cycle the weights are updated with the rule

wij 7→ wij + ∆wij = wij + ηδiXj (4.31)

where the definition of δi depends on whether the i-th neuron is found in a hidden or output layer,
see Eq. (4.27) and Eq. (4.30). Alternative schemes sometimes enhance the convergence and stability
by using

∆wij(t+ 1) = ηδiXj + α∆wij(t) (4.32)

i.e. by making the update of a weight wij at cycle t+ 1 dependent on the correction applied at the
previous step.

Although mathematically simple, the training of large neural networks if often computationally
expensive in terms of memory and time resources. This, together with the hope of recognizing
and generating atypical data patterns [89], motivated over the last few years intense activity in
search of a quantum version of artificial neurons and neural networks [339]. Rebentrotst et al. [340]
have for example designed a quantum version of Hopfield networks where neurons are encoded
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in the amplitudes of quantum states, leading to an exponential advantage in storage resources.
Using the HHL subroutine, the authors then envision a way of efficiently operating the network
as an associative memory system. At the single node level, some proposals associate a qubit to
each neuron [341] or binary state variable [320] and unitary operations to weights. In this setup,
quantum phases can for example be used to compute and store the net input

∑
j wijxj , which is then

retrieved with a quantum Fourier transform [342]. Although not exploiting in full the exponential
size of quantum Hilbert spaces, this scheme has the significant advantage that inputs can easily be
presented in quantum superpositions, leading to quantum perceptron states with no classical analog.
As a complementary solution, we will present in Sec. 4.2 a different encoding scheme for McCulloch-
Pitts neurons which, similarly to Ref. [340], makes use of amplitudes in quantum superpositions
to enhance memory capacity. In terms of basic neuron operations, interesting work has also been
devoted to reconcile the inherent linear structure of quantum mechanics with the threshold behavior
of activation functions [343, 344], for example by resorting to repeat-until-success techniques [345].

Regarding the learning phase, quantum search algorithms have been proposed as a way of
speeding up the training process, e.g. by exploiting the well known Grover method [346–348]. In
parallel, some attempts to achieve fully trainable quantum feed-forward neural networks [349] and to
provide the quantum analog of classical backpropagation algorithms have also been reported [350].
It is, however, fair to say that an established theory of quantum learning and a clear investigation
of the effective practical potential of quantum neural networks, both in terms of computational
efficiency and required quantum resources, is still the subject of ongoing research. With this in
mind, NISQ-accessible proposals and experiments, both in terms of single neuron dynamics and
quantum-classical training schemes such as the one that we will discuss in section 4.2.3 and 4.2.3,
could certainly provide new insights and offer the opportunity to assess with practical use cases the
maturity of the field.

4.1.4 Perspectives on Quantum Machine Learning

We conclude this short and inevitably partial overview of the field of quantum machine learning by
recalling a few other possible approaches beyond classification and supervised learning schemes.

Following the impressive results brought about by classical generative models [351], a number
of promising strategies to employ similar methods in a quantum setting have been proposed. In
particular, variational quantum autoencoders fit nicely into the current stream of heuristic and semi-
heuristic approaches which seem particularly well suited for noisy intermediate-scale applications.
Classical autoencoders can be trained to extract a low-dimensional representation (in the so called
latent space) of higher-dimensional data and, in reverse, constitute the basis for generating new
plausible samples not originally included in the training set: similarly, quantum autoencoders have
been described primarily as a tool to compress quantum states into a smaller Hilbert space [352],
thus enabling a more effective use of quantum resources. Quantum autoencoders have been put in
relations with approximate quantum adders [353] and a few feasibility studies have already been
performed e.g. on superconducting quantum processors [354].

In unsupervised learning, data are searched for patterns without providing explicit examples
through a learning phase. A particularly interesting example is provided by reinforcement learning
protocols, which are often based on the learning agent paradigm: here, the computer is given a set of
rules or objectives and operates according to a reward/penalty mechanism. Through a combination
of supervised and reinforcement learning, classical systems have come to master complex human
games such as Go [355]. Potential quadratic speedups with respect to classical counterparts have
been predicted [356] for quantum agent-based and reinforcement learning models, which have then
been explored either from the perspective of superconducting architectures [357] or in trapped ions
set-ups [358]. Superconducting quantum processors have also been employed in proof-of-principle
demonstrations of hybrid unsupervised clustering protocols [359].

Despite our focus on the digital, circuit-based quantum computing paradigm, it is finally worth
mentioning that several machine learning tasks could find breeding ground into other complementary
approaches to quantum information processing. For example, proposed applications of quantum an-
nealing procedures range from training of deep neural networks [360] to Boltzmann machines [361],
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for which some preliminary work has been reported on D-Wave’s systems [362]. In parallel, as al-
ready mentioned in Chapter 1, continuous variable quantum computing is also actively investigated
as a possible way of implementing quantum neural networks on photonic architectures [246].

Quantum machine learning is a relatively young research field growing quickly. However, a
number of challenges and open problems remain to be faced in the forthcoming years [89]. Apart
from the obvious progress in hardware, which will be essential for all future quantum technologies,
and from the search of new algorithms specifically designed for intermediate-scale and near-term
architectures, most QML techniques developed so far still suffer from a series of bottlenecks and
caveats that need to be overcome. Among these, we have already mentioned the often dominating
exponential costs for loading classical data onto quantum registers and the equally hard task of
extracting the processed information stored in quantum states. On top of it, a general assessment
of the costs of QML algorithms, in terms e.g. of circuit depth or number of qubits, is needed as a
preliminary step to provide clear and fair benchmarking with respect to classical procedures. The
latter is also typically complicated by the fact that the actual scaling properties of many heuristic
methods, either classical or quantum, is not yet fully understood. On a more specific sector of QML,
as we saw in Sec. 4.1.3, a unifying theory of quantum learning would certainly be welcomed as a
major accomplishment in the quest for fully quantum neural networks [309, 339]. Finally, we cannot
ignore that a change of paradigm could be waiting around the corner: indeed, there is increasing
awareness of the fact that the true power of QML may ultimately reside in the analysis of quantum
data, which is by definition a difficult or inaccessible task for classical systems. As very recent
examples, we can mention the results by Wright and McMahon [363], arguing that the capacity of
classically parametrized quantum neural networks will ultimately be bounded by the corresponding
classical value, the quantum reservoir processor by Gosh et al. [364], inspired by classical reservoir
computing and capable of telling apart entangled states from seaparable ones, and the spiking
neural-like architecture described by Kristensen et al. [365], which is based on elementary quantum
spin components and can again be used to classify quantum states.

4.2 A quantum artificial neuron

As we saw in Sec. 4.1.3, artificial neural networks are designed as a set of nodes, or neurons, and the
corresponding set of mutual connections, whose architecture is naturally inspired by neural nodes
and synaptic connections in biological systems [335, 366]. The resulting class of computational
models can naturally be applied to tasks such as pattern recognition, image classification, and de-
cision making [366]. So far, artificial neural networks have been mostly run as classical algorithms
on conventional computers, but considerable interest has also been devoted to physical neural net-
works, i.e. neural networks implemented on dedicated hardware [336, 367–369]. However, we have
seen that there are valid reasons to believe that quantum processors, and with them the intrinsic
capabilities of quantum mechanical systems to manipulate large vectors and matrices, could be em-
ployed to achieve exponential advantages in either memory storage or processing power for neural
networks [339, 340, 342, 347, 349, 370].

Here we design a quantum procedure to closely mimic the functionality of a binary valued Mc-
Culloch and Pitts [330] artificial neuron. The m-dimensional classical input and weight vectors will
be encoded on the quantum hardware by using N qubits, where m = 2N , thus fully exploiting
the exponential advantage of quantum information storage, as already pointed out [318, 340]. For
loading and manipulation of data, we will make use of an original protocol to generate multipartite
entangled states based on quantum information principles [371] optimizing the quantum computa-
tional resources to be employed. We will then experimentally show the effectiveness of our approach
by practically implementing a 2-qubit version of the algorithm on the IBM Q quantum processors
(see Sec. 2.1). In particular, we will use a single artificial neuron to sort out simple patterns, such as
vertical or horizontal lines, in black and white collections of pixels, and we will provide a numerical
demonstration of a possible hybrid training scheme. This building block will then be used in Sec. 4.3
to realize a first example of feed-forward neural network running on real quantum hardware.
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4.2.1 Quantum algorithm for binary-valued artificial neurons

We start the discussion by outlining the general idea behind our proposed quantum procedure for
artificial neurons. Let us consider two binary input and weight vectors

~i =




i0
i1
...

im−1


 ~w =




w0

w1
...

wm−1


 (4.33)

with ij , wj ∈ {−1, 1} and m = 2N . The primary target of the quantum algorithm is to perform
the inner product ~i · ~w and then, based on the outcome, provide an activation or rest signal:
in our design, this is achieved through a sequence of quantum operations aimed at loading the
classical information contained in ~i, followed by a ~w-controlled manipulation and a final quantum
measurement mimicking the thresholding behavior. Notice that we explicitly include all the practical
steps needed to interface classical and quantum information, without e.g. assuming pre-loaded input
quantum states: in such a way, the overall computational costs will be fairly assessed, taking into
account the often relevant costs associated to those parts of QML protocols, see Sec. 4.1.1 and 4.1.4.

The Hilbert space associated to a quantum register containing N qubits has total dimension
m = 2N . A simple way of encoding binary-valued ~i and ~i can then be found by making use of the
relative quantum phases (i.e. factors ±1 in our case) in balanced superpositions: we can for example
define the states

|ψi〉 =
1√
m

m−1∑

j=0

ij |j〉

|ψw〉 =
1√
m

m−1∑

j=0

wj |j〉
(4.34)

where, as usual, we label computational basis states with integers j ∈ {0, . . . ,m− 1} corresponding
to the decimal representation of the respective binary string, and we recall that ij , wj ∈ {−1, 1} ≡
{eiπ, ei0}. It is not difficult to see that, under the encoding scheme of Eq. (4.34), the inner product
between inputs and weights is contained in the overlap

〈ψw|ψi〉 =
~w ·~i
m

(4.35)

Assuming that the quantum register starts in the blank state |0〉⊗N , the first step of the algorithm
prepares the state |ψi〉 by performing a unitary transformation Ui such that

Ui|0〉⊗N = |ψi〉 (4.36)

In principle, any m ×m unitary matrix having ~i in the first column can be used to this purpose,
and we will give explicit examples in the following. In a more general scenario, nothing prevents
replacing this step with e.g. a direct call to a quantum memory [315], although, as mentioned above
and for the sake of completeness, in the present analysis we prefer to maintain an explicit description
of the loading stage.

Let now Uw be a unitary operator obeying the constraint

Uw|ψw〉 = |1〉⊗N = |m− 1〉 (4.37)

As before, any m×m unitary matrix having ~w in the last row satisfies this condition. If we apply
Uw after Ui, the overall N -qubits quantum state becomes

Uw|ψi〉 =

m−1∑

j=0

cj |j〉 ≡ |φi,w〉 (4.38)
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Figure 4.2: Artificial neuron models. (a) Classical artificial neuron: an input array ~i is
processed with a weight vector ~w to produce a linear, binary valued output function. (b) Schematic
representation of the proposed quantum algorithm for the implementation of an artificial neuron
on a quantum processor: the first two unitary operations prepare the input quantum state, |ψi〉,
and project it onto the |ψw〉 direction, writing the outcome onto the |11 . . . 1〉 component. The
final outcome is then extracted via an ancillary qubit, which is eventually measured to evaluate the
activation state.

Using Eq. (4.37), we then have

〈ψw|ψi〉 = 〈ψw|U †wUw|ψi〉 =

= 〈m− 1|φi,w〉 = cm−1

(4.39)

and the the desired result~i · ~w ∝ 〈ψw|ψi〉 is contained, up to a normalization factor, in the coefficient
cm−1 of the final state |φi,w〉. To make this information accessible, an ancilla qubit (a), initially set
in the state |0〉, is used as the target of a multi-controlled NOT gate, where the roles of controls is
assigned to the N encoding qubits. This leads to [5]

|φi,w〉|0〉a →
m−2∑

j=0

cj |j〉|0〉a + cm−1|m− 1〉|1〉a (4.40)

Finally, a non-linear threshold activation behavior is obtained by performing a quantum mea-
surement: indeed, an observation of the state of the ancilla in the computational basis produces
the output |1〉a (i.e. an active state of the neuron) with probability |cm−1|2. Despite its simplicity,
we will show with specific examples that this choice is already sufficient to carry out some paradig-
matic tasks. We notice, however, that once the inner product information is stored on the ancilla
our procedure is in principle compatible with more refined approaches to the realization of thresh-
old functions on quantum registers [343–345]. We also mention explicitly that, within our proposed
encoding scheme, both parallel and anti-parallel (~i, ~w) pairs produce an activation of the artificial
neuron, while orthogonal vectors always result in the ancilla being measured in the state |0〉a. This
is a direct consequence of the probability of a quantum outcome being a quadratic function, i.e.
|cm−1|2 in the present case, at difference with classical perceptrons that can only be employed as
linear classifiers in their simplest realizations. In view of using our quantum model for pattern
and/or image recognition and classification, this feature turns out to be particularly convenient, as
it allows to interpret a given pattern and its negative on equivalent footing. More formally, this
intrinsic symmetry reflects the invariance of the encoding |ψi〉 and |ψw〉 states under the addition
of a global −1 factor.
A comparison of the classical artificial neuron model with the outline of our quantum procedure is
provided in Fig. 4.2.
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Figure 4.3: Elementary gate decompositions. (a) Example of a multi-controlled sign flip
block SF4,6 adding a −1 factor in front of the |0110〉 component of a 4-qubit computational basis,
making use of an extra qubit in the

√
2|−〉 = |0〉−|1〉 state. In each block, the NOT gates should be

operated on those qubits for which the state is |0〉 in the target component. A standard construction
to implement the multi-controlled CNNOT gate using N− 1 additional working qubits (wq) is also
shown. (b) Textbook decomposition of a Toffoli gate using CNOT and single-qubit operations.

Direct sign flip approach

After describing the general philosophy behind our proposed realization of a quantum circuit-based
artificial neuron, we now move to discuss the actual implementation of the unitary operations Ui

and Uw. We will first outline a “brute force” application of successive sign flip blocks, which we
will then compare to an alternative and more effective approach based on the generation of the so
called hypergraph states [371].

We define a sign flip block SFN,j as the unitary transformation acting on the computational
basis of N qubits in the following way:

SFN,j |j′〉 =

{
|j′〉 if j 6= j′

−|j′〉 if j = j′
(4.41)

In general, SFN,j is equivalent to a multi-controlled quantum operation between N qubits: for
example, for any N,m = 2N , a controlled Z operation between N qubits (CNZ) is a well known
quantum gate [5] realizing SFN,m−1, while a single qubit Z gate acts as SF1,1. The whole family
of sign-flip blocks for N qubits can be realized using CNZ gates in combination with single qubit
NOT gates (i.e. single bit flip operations). Indeed, we can write

SFN,j = Oj

(
CNZ

)
Oj (4.42)

where

Oj =

N−1⊗

l=0

(NOTl)
1−jl (4.43)
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In the expression above, NOTl means that the bit flip is applied to the l-th qubit and jl = 0(1)
if the l-th qubit is in state |0〉(|1〉) in the computational basis state |j〉. Alternatively, the same
result can also be obtained by using an extra ancillary qubit prepared in state

√
2|−〉 = |0〉 − |1〉

and multi-controlled NOT gates (CNNOT), i.e. bit flip operations conditioned on the state of some
control qubits. The latter decomposition is shown in Fig. 4.3a.

In view of practically testing the algorithm on real IBM Q processors, which feature only pairwise
CNOT gates as native multi-qubit operations, we recall here that all N -controlled unitaries can be
reduced to the corresponding single-control unitary operation with the addition of Toffoli gates

•
•

(4.44)

with matrix representation

Toffoli =




1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0




(4.45)

and by using N − 1 extra working qubits [5]. An example of this construction for a CNNOT block
is shown in Fig.Fig. 4.3a. The same can of course be applied to a CNZ operation, reducing it to a
C2Z ≡ CZ

•

•
CZ =

(4.46)

An IBM Q-accessible sequence can then be obtained via the identity

•

•
=

•

H H

(4.47)

and the standard exact decomposition of the Toffoli gate in terms of CNOT and single qubit
rotations [5, 91] reported for completeness in Fig. 4.3b using the shorthand notation

T =

(
1 0

0 eiπ/4

)
= Φ(φ/4) = eiπ/8Rz(φ/4) (4.48)

We explicitly point out that, as it is easily understood from the definition in Eq. (4.41), any
SFN,j is the inverse of itself. The full sequence realizing Ui can then be summarized as follows:
starting from the initialized register |0〉⊗N , parallel Hadamard (H) gates are applied to create an
equal superposition of all the elements of the computational basis

|0〉⊗N H⊗N−−−→ 1√
m

m−1∑

j=0

|j〉 ≡ |+〉⊗N (4.49)

where
√

2|+〉 = |0〉 + |1〉. Then, the SFN,j blocks are applied one by one whenever there is a −1
factor in front of |j〉 in the representation of the target |ψi〉. Notice that any SFN,j only affects
a single element of the computational basis while leaving all the others untouched. Moreover, all
SFN,j blocks commute with each other, so they may actually be performed in any order.

The unitary Uw encoding the weight vector can be designed along the same lines. Indeed, given
a |ψw〉, we first apply the SFN,j blocks that would be needed to flip all the −1 signs in its expansion
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Figure 4.4: Quantum hypergraph states. A mathematical hypergraph, with hyper-edges
represented as circles around subsets of vertices, can be put in correspondence with a quantum
circuit generating the corresponding quantum hypergraph state. Notice that, since all the operations
commute with each other, the sequence of gates can be performed in any order.

on the computational basis, thus returning to the balanced superposition |ψw〉 → |+〉⊗N . This
quantum state can then be brought into the desired |11 . . . 11〉 ≡ |1〉⊗N state by applying parallel
Hadamard and NOT gates:

|+〉⊗N H⊗N−−−→ |0〉⊗N NOT⊗N−−−−−→ |1〉⊗N (4.50)

As commented at the end of the previous section, the whole problem is manifestly symmetric
under the addition of a global −1 factor (i.e. |ψi〉 and −|ψi〉 are fully equivalent, as it is always
the case in quantum mechanics). Hence, there can be only at most m/2 = 2N−1 independent −1
factors, and 2N−1 sign flip blocks are needed in the worst case: as a result, the above strategy is
in general exponentially expensive in terms of circuit depth as a function of the number of qubits,
and requires an exponential number of N -controlled gates. At the same time, in terms of the size
of the classical input, the quantum algorithm scales linearly with the number of bits m.

Quantum hypergraph states

An optimized implementation of Ui and Uw can be given after realizing that the class of possible
input- and weight-encoding states, Eq. (4.34), coincides with the set of the so called quantum
hypergraph states. These are ubiquitous ingredients of many renown quantum algorithms and have
been extensively studied and theoretically characterized [371, 372].

A k-uniform hypergraph gk = {V,E} is defined as a collection of n vertices V with a set of
k-hyper-edges E, where each k-hyper-edge connects exactly k vertices and the usual notion of a
connected graph is obtained for k = 2. A k-uniform quantum hypergraph state can be associated to
gk in the following way: after assigning a qubit in the |+〉 state to each vertex, for any k-hyper-edge
a (multi)-controlled Z operation is performed between all the qubits {i1, . . . , ik} connected by that
hyper-edge. We thus obtain

|gk〉 =
∏

{i1,...,ik}∈E
CkZi1,...,ik |+〉⊗N (4.51)

where, with a little abuse of notation, we assume C2Z ≡ CZ and C1Z ≡ Z = Rz(π). Similarly, we
define a hypergraph g≤N = {V,E} as a set of N vertices V with a set E of hyper-edges of any order
k, not necessarily uniform. A quantum state of N qubits can be associated to any hypergraph g≤N
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by generalizing the same procedure given above for the k-uniform case, namely by performing a
CkZ gate for each hyper-edge in g≤N

|g≤N 〉 =
N∏

k=1

∏

{i1,...,ik}∈E
CkZi1,...,ik |+〉⊗N (4.52)

It is immediately clear that k-uniform hypergraph states form a subset of the class of hypergraph
states. Moreover, for N qubits there are exactly N = 22N−1 different hypergraph states. In Fig. 4.4
we show an example of a hypergraph and of the quantum circuit generating its corresponding
state. A more complete technical discussion on the properties of hypergraph states can be found in
Refs. [371, 372], where alternative definitions using the stabilizer formalism are also given.

From a formal point of view, our proposed encoding scheme assigns a boolean value representing
a single classical bit to each element of a N -qubit computational basis. This value is converted into
a ±1 factor, i.e. a 0 or π phase, which is then put in front of each component in a balanced quantum
superposition of all the computational basis elements. The quantum states which result from all
possible choices of the phase factors are known as Real Equally Weighted (REW), and can be given
a mathematical formulation: for any boolean function f : {0, 1}N → {0, 1}, the corresponding REW
state is

|f〉 =
1

2N/2

2N−1∑

x=0

(−1)f(x)|x〉 (4.53)

It is straightforward to see that all states introduced in Eq. (4.34) can be interpreted as REW states.
The relation between quantum hypergraph and input-/weight-encoding states that we claimed at
the beginning of this section can then be put in precise terms as follows [371]:

The set GN± of N -qubit REW states and the set G≤N = {|g≤N 〉} of quantum hypergraph
states coincide.

Indeed, G≤N ⊆ G± since, as shown in Eq. (4.52), any |g≤N 〉 is obtained from the REW state |+〉⊗N
by applying (multi)-controlled-Z operations, namely by introducing additional π phases in front
some computational basis components. The opposite inclusion can be proven constructively, as we
will show in a moment as part of the implementation of the target Ui and Uw unitary operations.

Encoding with hypergraph states

Leveraging the connection with quantum hypergraph states, we will now provide a strategy to
realize the unitary Ui with at most a single N -controlled CNZ and a number of p-controlled CpZ
gates with p < N .

We assume again that the quantum register starts in the blank state |0〉⊗N and we apply an
initial H⊗N gate, see Eq. (4.49), to obtain the simplest REW state |+〉⊗N . Then, the algorithmic
generation of hypergraph states takes a series of iterative steps to which we will collectively refer
to as the “hypergraph states generation subroutine” (HSGS). First, we check, in the representation
of |ψi〉 on the computational basis, whether there is any component with only one qubit in state
|1〉 (i.e. of the form |0 . . . 010 . . . 0〉) requiring a −1 factor. If so, the corresponding single qubit Z
gate is applied by targeting the only qubit in state |1〉. Notice that this might introduce additional
−1 factors in front of states with more than one qubit in state |1〉. Then, for p = 2, . . . , N , we
consider the components of the computational basis with exactly p qubits in state |1〉. For each of
them, an additional −1 sign is introduced in front of its current amplitude (if it is needed and it
was not previously introduced) by applying the corresponding CpZ between the p qubits in state
|1〉. Similarly, if an unwanted sign is already present due to a previous step, this can be easily
removed by applying the same CpZ. Since CpZ acts non trivially only on the manifold with p or
more qubits being in state |1〉, the signs of all the elements with a lower number of |1〉 components
are left unchanged. By construction, when p = N all the signs are the desired ones. Notice that,
by associating to each CpZ the corresponding hyperedge as shown in Fig. 4.4, this also proves that
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Figure 4.5: Example of HSGS-based quantum circuit for a N = 4 artificial neuron. The
input vector has elements i0 = i1 = −1, and ij = 1 for j = 2, . . . , 15, while the weight vector has
elements w2 = w3 = w4 = −1, and 1 in all other entries (remember that for N = 4 the artificial
neuron is capable of processing m = 24 = 16-dimensional input and weight vectors). The HSGS is
realized inside the Ui block after the initial H⊗N gate, and in the Uw block before the final H⊗N

and NOT⊗N operations.

each and every one REW state has a corresponding hypergraph, thus completing the equivalence
GN± = G≤N .

As in the sign flip case, Uw can be obtained by slightly modifying the sequence of gates that would
be used to generate |ψw〉. Indeed, one can start by first performing the HSGS tailored according
to the ±1 factors in |ψw〉: since all the gates involved in HSGS are the inverse of themselves
and commute with each other, this step is equivalent to the unitary transformation bringing |ψw〉
back to the equally balanced superposition of the computational basis states |+〉⊗N . The desired
transformation Uw is finally completed by adding parallel H⊗N and NOT⊗N gates, see Eq. (4.50).

An example of the full sequence for a specific N = 4 case is shown in Fig. 4.5. The HSGS-
based algorithm successfully reduces the required quantum resources with respect to the brute
force approach based on sign flip blocks: however, it may still involve an exponential cost in terms
of circuit depth, i.e. of temporal steps of the quantum circuit when all possible parallelization of
independent operations on the qubits is taken into account. Indeed, the sign flip algorithm described
above requires O(2N ) N -controlled Z gates when running on N qubits, in the worst case. Since any
CNZ can be decomposed into poly(N) elementary single and two-qubit gates [5], the overall scaling
of the sign flip approach is O(poly(N)2N ). On the other hand, the worst case for the HSGS, namely
the fully connected hypergraph with N vertices, corresponds to applying once all the possible Z
and CpZ operations for 2 ≤ p ≤ N . Since all these operations commute, they can be arranged in
such a way that all the qubits are always involved either in a single-qubit operation or a multi-
controlled one (e.g., a Z on a certain qubit and the CN−1Z on the remaining ones can be done in
parallel), for any progressive clock cycle. The overall number of clock cycles is still O(2N ), as in the
previous case, but now at most one slice contains a N -qubit operation, while all other slices with
p < N can be decomposed into poly(p) elementary operations. In this respect, the proposed HSGS
optimizes the number of multi-qubit operations and may result in a significant practical advantage
in currently available superconducting quantum processors, where multi-qubit operations are not
natively available.

Before proceeding, it is finally worth pointing out that the role of Uw can be interpreted a
posteriori as that of canceling some of the transformations performed to prepare |ψi〉, or even all
of them if the condition ~i = ~w is satisfied. Further optimization of the algorithm, lying beyond the
scope of the present work, might therefore be pursued at the compiling stage. However, we notice
that the input and weight vectors can, in practical applications, remain unknown or hidden until
runtime.
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Figure 4.6: Pattern recognition with a single quantum artificial neuron. (a) Labeling
of the black and white 2 × 2 visual patterns, with a few examples. (b) Example of the full gate
sequence for the N = 2 case, with input and weight vectors corresponding to labels ki = 11 and
kw = 7. (c) Mapping on the ibmqx4 “Tenerife” quantum processor. (d) Ideal recognition of a
checkerboard pattern and its negative against other possible inputs.

4.2.2 Proof-of-principle realization on NISQ processors

We implemented the algorithm for a single quantum artificial neuron both on classical simulators
working out the matrix algebra of the circuit and on the cloud-based real quantum backends provided
via the IBM Quantum Experience (see Sec. 2.1). Due to the constraints imposed by the actual
IBM hardware in terms of the size of the processors and the connectivity between the different
qubits, we limited the quantum realization to the N = 2 case: nevertheless, even this small-scale
example is already sufficient to show all the distinctive features of our proposed set up, such as
the exponential growth of the analyzable problems dimension, as well as the pattern recognition
potential. In general, as already mentioned, in this encoding scheme N qubits can store and process
2N -dimensional input and weight vectors. Thus, 22N different input patterns can be analyzed,
corresponding also to the number of different ~w that can in principle be defined, though the global
phase symmetry in practice reduces to N = 22N−1 the number of independent inputs. Given their
essentially boolean nature, all binary inputs and weights can also easily be converted into black
and white patterns, thus providing a visual interpretation of the artificial neuron classification and
recognition activity.

When N = 2, 22 = 4 binary images can be managed, and thus 222
= 16 different patterns can

be analyzed. The conversion between ~i or ~w and 2× 2 pixels visual patterns is done as follows: as
depicted in Fig. 4.6a, we label each image by ordering the pixels left to right, top to bottom, and
assigning a value nj = 1(0) to a white (black) pixel. The corresponding input or weight vector is
then built by setting ij = (−1)nj , or wj = (−1)nj . We can also univocally assign an integer label ki
(or kw) to any pattern by converting the binary string n0n1n2n3 to its corresponding decimal number
representation. Under this scheme, numbers 3 and 12 are for example used to label patterns with
horizontal lines, while 5 and 10 denote patterns with vertical lines and 6 and 9 are used to label
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Figure 4.7: Experimental results for the N = 2 case. (a) Ideal outcome of the quantum
algorithm for an artificial neuron simulated on a classical computer. (b) Results from the ibmqx4
quantum processor using the 3-qubit algorithm with sign flip blocks. (c) Results from the ibmqx4
quantum processor using the 3-qubit HSGS-based algorithm. The average discrepancies D calcu-
lated with respect to the ideal case are explicitly reported.

images with checkerboard-like pattern. An example of the sequence of operations performed on
the IBM Q quantum computer using hypergraph states is shown in Fig. 4.6b for ~i corresponding
to the index ki = 11, and ~w corresponding to kw = 7. The quantum algorithm was run on three
qubits (including the ancilla) and all the gate decomposition techniques presented e.g. in Sec. 4.2.1
were used to explicitly reduce the quantum unitary transformations to the set of native IBM Q
operations. Moreover, outcome probabilities for the final measure on the ancilla were reconstructed
with nshots = 8192 repetitions.

The Hilbert space of two qubits is relatively small, with a total of 16 possible values for~i and ~w.
Hence, the quantum artificial neuron model could be experimentally tested on the IBM quantum
computer for all possible combinations of input and weights. The ideal outcome of the quantum
algorithm is shown in Fig. 4.7a, where both the global −1 factor1 and the input-weight symmetries
are immediately evident. In particular, it can be realized that, for any given weight vector ~w, the
artificial neuron is able to single out from all the 16 possible input patterns only ~i = ~w and its
negative (with output |cm−1|2 = 1, i.e. the perfect activation of the neuron), while all other inputs
give outputs (i.e. activation probabilities) smaller than 0.25. If the inputs and weights are translated
into 2 × 2 black and white pixel grids thorough the set of rules adopted above, it is not difficult
to see that a single quantum neuron can be used to recognize either vertical, horizontal lines, or
checkerboard patterns (an example is reported in Fig. 4.6d). Notice however that the single node
can only focus on one specific pattern at a time: for example, it cannot tell apart patterns containing
either vertical or horizontal lines from all the others. The latter is a task that requires a deeper
network, and will be tackled in Sec. 4.3.

The actual experimental results, obtained on the ibmqx4 “Tenerife" quantum processor, are
shown in Fig. 4.7b-c. First (panel 4.7b), we report the results of the brute-force sign-flip. To
demonstrate explicitly the progressive degrading of performances with increasing circuit length,
here we deliberately did not take into account the global sign symmetry, thus treating any |ψi〉
and −|ψi〉 as distinct input quantum states and using up to 2N sign flip blocks: even in such an
elementary example the algorithm performs worse and worse with increasing number of blocks. It
should however be emphasized that, despite the quantitative inaccuracy, the underlying structure of
the output is already quite clear: indeed, a threshold of 0.5 applied to the measured output would be
sufficient to successfully complete all the classification tasks, i.e. the artificial neuron can correctly
single out from all possible inputs any given precalculated weight vector. A remarkably better
quantitative accuracy is obtained using the algorithm based on the hypergraph states formalism,

1With the integer labeling defined above, the global phase symmetry gets reflected in the fact that the outcome
is symmetric for complementary labels modulo 22N

− 1 = 15.
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see panel 4.7c. In this case, the global phase symmetry is naturally embedded in the algorithm itself,
and the results show symmetric performances all over the range of possible inputs and weights. All
combinations of~i and ~w yield results either larger than 0.75 or smaller than 0.3, in good agreement
with the expected values, and all the classification tasks are once again correctly carried out. To give
a quantitative measure of the overall agreement between the ideal (Fig. 4.7a), sign flips (Fig. 4.7b)
and hypergraph states (Fig. 4.7c) versions, we introduce the average discrepancy

D =

∑
i,w |O(i, w)−Oideal(i, w)|

22N+1 (4.54)

where O(i, w) =
∣∣∣
∑

j ijwj

∣∣∣
2

= |cm−1|2 is the outcome of the artificial neuron for a given pair of
input and weights as obtained on a real device, Oideal(i, w) is the corresponding ideal result and
22N+1 is the total number of possible ~i-~w pairs. As reported also in Fig. 4.7b-c, we find D ' 0.2364
for the sign flip case, and D ' 0.0598 for the HSGS-based version, thus quantitatively confirming
the visual impression that the latter leads to better performances.

4.2.3 Hybrid training scheme

In the spirit of showing the potential scalability and usefulness of our quantum artificial neuron
model, we have applied the HSGS-based algorithm to the N = 4 case by using the circuit simulator
feature available in Qiskit [196]. Now 232 possible combinations of ~i and ~w vectors are possible: to
explicitly show a few examples, we have chosen a single weight vector, ~wt, corresponding to a simple
cross-shaped pattern when represented as a 4×4 pixels image encoded along the same lines of the
N = 2 case, and weighted it against several possible choices of input vectors. When a threshold
O(i, wt) > 0.5 is applied to the outcome of the artificial neuron, 274 over the total 216 possible
inputs are selected as positive cases, and they correspond to patterns differing from ~wt (or from its
complementary one) by at most two pixels. Geometrically speaking, the vectors corresponding to
positive cases all lie within a cone around ~wt. Some results are reported in Fig. 4.8a for a selected
choice of input vectors, where the artificial neuron output is computed both with standard linear
algebra and with a quantum circuit on a virtual and noise-free quantum simulator run on a classical
computer. The discrepancies between the two are solely due to the finite statistics of the final
measure required in the second case.

The true power of artificial neurons lies of course in their trainability. Based on the results above,
we have taken a first step in this direction by implementing an elementary hybrid quantum-classical
training scheme, through an adaptation of the perceptron update rule [373] to our algorithm. After
preparing a random training set containing a total of 3050 different inputs, of which 50 positive and
3000 negative ones according to the threshold defined in the previous paragraph, the binary valued
artificial neuron is trained to recognize the targeted ~wt. This is obtained by using the noiseless
Qiskit simulator feature, in which the artificial neuron output is computed through our proposed
quantum algorithm, and the optimization of the weight vector is performed by a classical processor.
We selected a random ~w0 vector to start with, and then we let the artificial neuron process the
training set according to well defined rules and learning rates lp and ln for positive and negative
cases, respectively, without ever conveying explicit information about the target ~wt.

More in detail, at any step of an online2 training session the current weight vector of the artificial
neuron (~w) is modified or left unchanged depending on the answers provided by the artificial neuron.
Whenever the outcome for a given~i in the training set and the current ~w, O(i, w), is correctly above
or below the threshold fixed at the beginning to discriminate between positive and negative cases,
~w is left unchanged. On the contrary, ~w is updated when the input is wrongly classified: in
particular, if the artificial neuron declares an input ~i as a positive case (O(i, w) > 0.5 here) while
it is actually labeled as a negative case in the precalculated training set, ~w is moved further apart

2With online training, we mean that the elements in the training set are streamed in a sequential fashion. The
weight vector is updated after every input has been processed and the actual positive/negative decision based on the
outcome of the artificial neuron has been compared with the ideal one assigned to ~i in the training set.
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Figure 4.8: Training a N = 4 artificial neuron. (a) A possible cross-shaped choice for the
target weight vector ~wt is represented together with a small selection of different input vectors.
Above each input pattern, the quantitative answers of the artificial neuron, namely the values of
|cm−1|2, are reported as obtained either through standard linear algebra (ideal ‘exact’ results) or
resulting from the simulation of the quantum algorithm (‘q. alg’, run on a classical computer and
averaged over nshots = 8192 repetitions). The two versions agree within statistical error. The
inputs with outcome O(i, w) > 0.5 differ from ~wt or its complementary by at most two pixels and
are labeled as positive cases in the construction of the training set. (b) Example of a learning
trajectory from the initial pattern ~w0, reaching the target ~wt through some intermediate steps.
(c) Average fidelity of the quantum state encoding the learned pattern with respect to the target
one, obtained by repeating the learning procedure 500 times on the same training set.

from ~i by flipping a fraction ln of the ±1 signs, randomly selected among those positions where the
components of ~i and ~w coincide. Similarly, whenever a positive input ~i is wrongly recognized as a
negative one, ~w is moved closer to ~i by flipping a fraction lp of the ±1 signs in ~w randomly chosen
among those positions where the components of ~i and ~w differ from each other. The classical part
of the training is performed within a single geometrical m-dimensional hemisphere, thus avoiding
confusion between a pattern and its negative, although notice that this distinction is unnecessary
in specifying the parameters of the quantum part of the algorithm. An example of the trajectory
of the system around the configuration space of possible patterns is shown in Fig. 4.8b, in which
we computed the fidelity of the quantum state |ψw〉 encoding the trained ~w with respect to the
target state |ψwt〉. We point out explicitly that such fidelity is offered here as a convenient mean to
depict the convergence of the training method, but that it is never used as a figure of merit during
the training procedure: no information about the target ~wt other than the positive/negative labels
assigned to elements in the training set is ever conveyed to the artificial neuron. In Fig. 4.8c, we
also report the average behavior over 500 realization of the training scheme, all with the same initial
pattern ~w0 and the same training set. As it can be seen, the quantum artificial neuron effectively
learns the targeted cross-shaped pattern. With some heuristic adjustments, we find lp = 0.5 to be
the optimal learning rate in our case, with little effect produced by ln. The latter is also set to
ln = 0.5 for simplicity.
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4.3 A quantum feed-forward neural network

Moving from the simple, single layer artificial neuron design to complete feed-forward networks truly
revolutionized classical machine learning. In feed-forward Neural Networks (ffNNs) there generally
exists at least one additional layer of neurons (i.e. one or more “hidden” layers) between the input
and the output ones, as represented in Fig. 4.2b. The advantage of ffNNs with respect to simpler
designs such as single layer perceptrons or support vector machines is that they can be used to
classify data with relations that cannot be reduced to a separating hyperplane. More formally,
ffNNs can realize large classes of functions of the inputs under fairly general assumptions on the
activation function of single nodes [333, 334].

In order to harness the full potentialities that quantum computing may offer to the field of arti-
ficial intelligence, it may well be necessary to undergo the same passage from single layered to deep
feed-forward neural networks. After introducing in the previous section a possible, NISQ-accessible
model of single artificial neurons capable of analyzing exponential amounts of classical data, here
we take a first step towards a fully quantum coherent ffNN and we report some experimental tests
on a state-of-the art 20-qubit IBM Q quantum processor. We use the HSGS-powered algorithm
described in Sec. 4.2.1, combined with suitable quantum operations mimicking “synapses”, to build
the network architecture. Although the procedure can in principle be extended to arbitrary net-
work design, we will limit our analysis to a specific example whose structure already contains many
characteristic features of ffNNs while remaining sufficiently simple to be successfully simulated on
the present generation of superconducting quantum hardware.

A scheme of the ffNN hereby considered is shown in Fig. 4.9a, where the circles indicate artificial
neurons, and the vectors ~wi refer to the respective weights, which we impose from the beginning.
The network is constructed with a single hidden layer made of N = 2 neurons and a single binary
(i.e. yes/no) output neuron, and is meant to carry out an elementary but meaningful problem: the
network should recognize (i.e. give a positive answer) whether there exist straight lines in 2×2 images
containing only black or white square pixels, regardless of the fact that the lines are horizontal or
vertical. All the other possible input images should be classified as negative. As we saw above in
Sec. 4.2.2, such images can indeed be encoded and processed by our quantum model of artificial
neurons, but a single neuron cannot recognize at the same time vertical and horizontal lines: indeed,
such patterns are, both literally and in vector representation, orthogonal to each other, and for each
type there are two possible images representing the negative of each other. As a result, there is no
single hyperplane separating just the four positive states from all other possible inputs.

The working principle of the network is straightforward. With the choice of weights represented
in Fig. 4.9a, the top quantum neuron of the hidden layer outputs a high activation probability if
the input vector has vertical lines, while the bottom neuron does the same for the case of horizontal
lines. The output neuron in the last layer then combines the two pieces of information deciding
whether one of the neurons in the hidden layer has given a positive outcome. Featuring a set of
precalculated weights, our experiment is meant as a proof-of-principle demonstration of the fact
thatffNNs can be run successfully on quantum processors. A more realistic use case, which is left
for future work, would of course involve the full training of the network, for which a meaningful
procedure should be designed and the network functionality probably extended to allow e.g. for
continuous-valued data.

4.3.1 Connecting quantum artificial neurons

When several copies of the quantum register implementing the quantum artificial neuron model out-
lined in Sec. 4.2 work in parallel, the respective ancillae can be used to feed-forward the information
about the input-weight processing to a successive layer, thus constructing a fully coherent quantum
ffNN. By measuring the output layer only, the activation state of the network can be assessed, and
several computational tasks that are in principle inaccessible to a single neuron can be performed.

A synapse, namely a connection between a neuron na belonging to a given layer of the network
and another neuron nb belonging to the successive layer, can be implemented as a controlled oper-
ation such that the state of the quantum register corresponding to nb is conditioned upon the state
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Figure 4.9: Architecture of a feed-forward neural network and corresponding quantum
algorithm. (a) Model of a ffNN with four classical binary inputs, one hidden layer containing two
artificial neurons and one output layer made of a single neuron. Next to each neuron, the ideal
shape of the weight vector needed to achievs the desired recognition of horizontal and vertical lines
is shown. The corresponding encoding scheme in terms of black and white pixels, which is the one
introduced in Sec. 4.2.2, is also reported for convenience. (b) Quantum circuit implementing the
ffNN. The first (second) three qubits encode the first (second) hidden neuron, while the last qubit
represents the output layer. Synapses between the successive layers are color-coded, in agreement
with the panel above. (c) Layout of the 20-qubit IBM Q Poughkeepsie processor, with qubit-qubit
CNOT connectivity shown explicitly. The qubits used to run the ffNN quantum algorithm are
highlighted and color-coded.

of the ancillae carrying the information about the activation state of na. An example of a practical
implementation of this proposed architecture is given in Fig. 4.9b. We assume that each neuron
within the hidden layer can accept 4-dimensional inputs, such that each quantum neuron can be
represented on a 2-qubit enconding register plus an ancilla qubit (i.e. m = 4 and N = 2 using the
notation of Sec. 4.2.1). At the same time, the output neuron takes 2-dimensional inputs coming
from the previous layer and provides the global activation state of the network, thus requiring a
single qubit (m = 2, N = 1) to be encoded. Let us call n1 and n2 the first two neurons and n3

the output one, and assume that after the single-neuron quantum operations the global state of the
(3+3+1)-qubit network can be written as

(rn1 |ϕn1〉|0〉a1 + cm−1,n1 |1 . . . 1〉n1 |1〉a1)

⊗ (rn2 |ϕn2〉|0〉a2 + cm−1,n2 |1 . . . 1〉n2 |1〉a2)

⊗ |0〉n3

(4.55)
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where we explicitly indicated with ax the ancilla for neuron nx, rnx = (1 − c2
m−1,nx)1/2 and |ϕnx〉

contains, for each neuron, all the components other than the one leading to activation, see Eq. (4.40).
Notice that, by construction, 〈ϕnx |1 . . . 1〉 = 0. In the meantime, the n3 qubit is brought into the
superposition

√
2|+〉 = |0〉 + |1〉 by applying a single-qubit Hadamard gate, H. Synapses can

thereafter be implemented with two CZ gates, as represented in Fig. 4.9b. The overall state of the
quantum ffNN then becomes

(rn1rn2 |Rn1〉|Rn2〉+ cn1cn2 |An1〉|An2〉) |+〉n3

+ (rn1cn2 |Rn1〉|An2〉+ cn1rn2 |An1〉|Rn2〉) |−〉n3

(4.56)

where cnx is a short-hand notation for cm−1,nx , and the activated |A〉 and rest |R〉 states of n1 and
n2 are explicitly given as

|Anx〉 = |1 . . . 1〉nx |1〉ax
|Rnx〉 = |ϕnx〉|0〉ax

(4.57)

It is now worth pointing out the following aspects of this original quantum ffNN formulation.
First, a general superposition of all the possible independent encoding REW states with m = 2 is
constructed for the output neuron, conditioned on the state of the quantum registers in the previous
layer, through the control synapses. Thus, one can now proceed to the analysis of the inputs on
n3 through a unitary operation Uw3 , according to the general algorithm already outlined for single
quantum neurons. Moreover, as it will be explicitly shown below in a practical example, in this case
the output neuron can also be measured directly without adding further ancillae qubits. Second,
different combinations of activation and rest patterns leading to a given state of the output neuron
can be engineered by slightly modifying the structure of the synapses: as an example, if the n1-n3

connections were given by a generalized CZ operation, controlled by a1 being in state |0〉 (e.g. by
adding a NOT gate on a1 before and after the CZ [5]), then the final state of the quantum ffNN
would read

(rn1rn2 |Rn1〉|Rn2〉+ cn1cn2 |An1〉|An2〉) |−〉n3

+ (rn1cn2 |Rn1〉|An2〉+ cn1rn2 |An1〉|Rn2〉) |+〉n3

(4.58)

We notice, however, that the initial choice leading to Eq. (4.56) seems the most natural one, espe-
cially if the aim is to keep the classical interpretation of a synapse firing when the feeding neuron
is found in its active state.

4.3.2 Pattern classification on a real quantum processor

Leveraging the remarkable performances of the IBM Q Poughkeepsie quantum processor, we realized
in practice the 7-qubit experiment introduced in Fig. 4.9b. This is, to the best of our knowledge,
one of the largest quantum neural network computation reported to date on real quantum hardware
in terms of the total size of the quantum register.

All individual nodes of the network were treated with the HSGS-based procedure described in
Sec. 4.2.1. In particular, the two neurons representing the hidden layer can work in parallel on two
separate 3-qubit registers, which then need to separately interact with the single qubit encoding
neuron n3. Given the still manageable size of the computation, all the mapping and connectivity
adaptation of the circuit was hard coded without any automated compilation. In particular, here we
notice that, at difference with the ibmqx4 triangular topology of Sec. 4.2.2, the two 3-qubit subsets
encoding for a single node are only linearly connected. This makes the final Toffoli gate writing
the activation state of each neuron on the respective ancilla not directly implementable via e.g. the
decomposition reported in Fig. 4.3b, for that requires at least two CNOT operations between two
qubits which are not nearest neighbors on the chip. We thus resort to SWAP constructions, via the
identity

×

×

• •

•
=

(4.59)
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Figure 4.10: Running the ffNN on a real quantum processor. (a) Example of a 7-qubit
circuit implementing in practice the quantum algorithm for the feed-forward neural network of
Fig. 4.9. We explicitly show HSGS-based single-neuron unitary transformations, the decomposition
of the Toffoli gate according to Eq. (4.60) and the feed-forward synapses. Qubits are labeled as in
Fig. 4.9c. Notice the SWAP operations, each one requiring three CNOTs in alternating directions.
For the circuit reported here, the input corresponds to the binary label 0010, i.e. integer label
ki = 2. (b) Ideal results of pattern classification obtained with exact numerical simulation of the
ffNN. Notice that the target patterns have integer labels 12, 3 (horizontal), 10 and 5 (vertical).
(c) Experimental results obtained on IBM Q Poughkeepsie quantum processor, after applying error
mitigation. Despite some residual quantitative inaccuracy, all the target patterns are correctly
recognized, and are indicated by the outcome neuron being active with probability larger that
ε = 0.5 (shown in red).

The optimal solution in terms of total circuit size is of course to use the qubits (17 and 19 in
Fig. 4.9c) closer to the one representing n3 (18 in Fig. 4.9c) as ancillae, such that they can take part
in a direct synapse interaction. The latter require CZ operations which are easily reduced to CNOT
via Eq. (4.47). We also notice that by making use of the following approximate construction [91]

q0 • •

q1 • ' • •

a A A A† A†

(4.60)

where A = Ry(π/4) we can obtain the Toffoli gate up to a phase which does not affect the target
activation probability. This reduces the number of required next-to-nearest neighbor CNOT to one
per neuron in the hidden layer, by using for example the mapping

Neuron 1 Neuron 2
q0 9 15
q1 14 16
a 19 17
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where the numbers represent physical qubits as depicted in Fig. 4.9c. The advantage in total circuit
depth with respect to the exact construction of Fig. 4.3b, when SWAP operations are taken into
account, is significant for the performances of a NISQ processor. An example of the full sequence
of quantum gates run via the IBM Quantum Experience is reported in Fig. 4.10a. As shown in
Fig. 4.9a, we choose ~w1 and ~w2 corresponding to a vertical and a horizontal line, respectively, and
we set ~w3 = (1,−1). As a result, the HSGS-based algorithm for quantum neurons gives Uw3 ≡ H
and cn1 = 1 (cn2 = 1) if and only if ~i contains a vertical (horizontal) line. Going back to Eq. (4.56)
and applying Uw3 on the quantum state of the register after the synapses, we obtain an output
state

|ψout〉 =

(rn1rn2 |Rn1〉|Rn2〉+ cn1cn2 |An1〉|An2〉) |0〉n3

+ (rn1cn2 |Rn1〉|An2〉+ cn1rn2 |An1〉|Rn2〉) |1〉n3

(4.61)

Since the output neuron is encoded in a single qubit, we can directly read out its activation state
by measuring it in the computational basis. The probability of finding |1〉 on n3 is therefore

p1 = Tr [(I⊗ |1〉〈1|n3)|ψout〉〈ψout|]
= r2

n1
c2
n2

+ c2
n1
r2
n2

(4.62)

where I is the identity operator on the quantum registers encoding neurons 1 and 2 with their
respective ancillae. As shown in Fig. 4.10b, we ideally have p1 = 1 for the target horizontal and
vertical patterns, and p1 < 0.5 in all other cases. In Fig. 4.10c we report the experimental results
obtained from the IBM Q Poughkeepsie processor: as it can immediately be appreciated, despite
some residual quantitative inaccuracy in the estimation of probabilities, all the classification tasks
are correctly performed. In particular, the target horizontal and vertical patterns are singled out
from all other possible inputs. Raw data from the quantum processor already allow for an accurate
classification: however, the overall quality of the outcomes greatly benefits from the application of
error mitigation techniques, as described in more detail in the following.

Error mitigation techniques

In Sec. 2.3.2 we have already introduced the concept of error mitigation as a way of improving
the overall quality of experimental results obtained on NISQ processors. Here we describe how
similar techniques can be applied in the present case to enhance the classification performances of
our quantum ffNN algorithm and reduce the quantitative differences from the ideal outcome. In
particular, here we cannot make use of general symmetry considerations or sum rules inspired by
physical properties of the model under study, but we may apply some general-purpose protocols
inspired by pulse-stretching and noise amplification methods described in the literature [62, 170,
172, 195].

We performed an incremental analysis on the performances of the circuit by artificially aug-
menting the effective level of noise affecting the computation. As end users on the IBM Quantum
Experience, we did not have at the time we performed the experiments (June 2019) access nor
control of the actual pulse scheme used to drive the qubits. We then resorted to the mathemat-
ical properties of e.g. CNOT gates, which are the inverse of themselves, to control the effective
noise in discrete steps. Indeed, by selecting an odd integer r = 1, 3, 5, . . . as a noise parameter, an
increasingly noisy CNOT can be implemented by repeating the same gate r times:

•




noisy

•




r

=

(4.63)

By applying this procedure to all the CNOT gates in a given circuit (including those introduced to
decompose e.g. CZ and SWAP gates) and for different values of r, we obtain a set of noisy outcomes
as a function of r. Error mitigated data can then be constructed by extrapolating such results
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Figure 4.11: Noise amplification and error mitigation (a) Results of the ffNN computation on
IBM Q Pughkeepsie for noise amplification applied to CNOT gates and different choices of the noise
parameters. (b) Results for noise amplification applied to CNOT and H gates. (c) Error mitigation
results, extrapolated with a quadratic fit and compared with raw data for the case on which the
noise amplification is applied to CNOT gates only or both CNOT and H operations. (d) Example
of zero-noise extrapolation with polynomial fit of degree d for inputs with corresponding integer
label i.

at zero noise. An example of the application of this technique to the data for the ffNN quantum
computation is shown in Fig. 4.11a-c. The extrapolation is done assuming a quadratic fit function,
see Fig. 4.11d.

The error mitigation scheme we have described is essentially focused on random noise affecting
two-qubit operations. Errors on CNOT gates, particularly when the latter are implemented via
the relatively slow cross-resonance procedure, are indeed a common source of inaccuracy and the
procedure outlined above is therefore able to enhance the overall quality of the results obtained on
the real quantum processor. However, we have seen and extensively motivated in Sec. 2.3.3 that
single-qubit operations are also typically affected by significant amounts of errors whose impact on
the results can be comparable, if not larger, to that of two-qubit gates. Although the most harmful
effects in such case are actually coherent, and thus not easily tamed by noise amplification methods,
over the typical duration of single-qubit pulses (up to 50-100 ns for Gaussian Derivative on IBM
Q devices, see Sec. 2.1) incoherent quantum channels can have non-negligible impact. A further
step can then be taken by combining the CNOT mitigation with a similar approach applied to H
gates, which are ubiquitous in the proposed algorithm and have the self-inverse property H2 = H.
In Fig. 4.11b we report the results of the application of the r-fold noise incremental enhancement
to all CNOT and H in the given circuit. The result of the extrapolation for both strategies (miti-
gation applied to CNOT alone, or to CNOT and H) are compared with raw results in Fig. 4.11c.
The quality of the results for the CNOT+H case, which is the one presented in the main text,
is improved for almost all data points with respect to the corresponding CNOT-only mitigation.
Residual inaccuracies are most probably due to systematic biases introduced either in the realization
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of individual coherent operations or during readout. We also notice that a more refined series of
interpolation experiments [195] could in principle be used to estimate higher-order correction terms
and to tackle non-stochastic errors.

Before concluding, it is worth mentioning that the fully coherent approach to ffNNs presented
here can also be reformulated in a hybrid quantum-classical way, with single quantum nodes con-
nected through classical feed-forward of information upon measurement of the activation states of
individual neurons [307]. Such description makes more explicit the non-linear contribution brought
about by each layer of the network and can be directly related to the fully coherent version via
the well known principle of deferred measurement [5]. The latter states that in a quantum circuit
one can always move a measurement done at an intermediate stage to the end of the computation
while replacing classically controlled operations (i.e. classical feed-forward synapses in this case)
with quantum controlled ones, which indeed appear e.g. in the quantum coherent formulation of
Fig.4.9b. On one hand, a hybrid architecture immediately suggest a way towards integration with
existing classical structures and algorithms for neural network computation and machine learning:
for example, one could imagine that a few carefully distributed quantum nodes at the input of an
otherwise classical network might act as a memory-efficient layer enabling the treatment of otherwise
unmanageable sets of data. On the other hand, the quantum coherent version reduces the necessity
to store and process classical bits during intermediate stages, and could more directly point towards
extensions in non-classically accessible regimes either with respect to the size of the computation
or the complexity of the convolutional filters to be deployed.





Conclusions

In this work, we presented the current status of digital quantum technologies for simulation and
information processing, and we introduced a number of original algorithms, hardware solutions and
applications. Here we briefly summarize the main results and we discuss possible future directions
of research.

Progress in the field of digital quantum simulations, which was reviewed in Chapter 1 and
within which the discussion in Chapters 2 and 3 can be framed, is certainly closely connected to the
evolution of practical quantum computing at large. Indeed, we saw that a fully developed quan-
tum architecture satisfying the requirements for the implementation of the standard circuit-based
quantum computation can equally well represent a general-purpose quantum simulator, capable of
reproducing efficiently the dynamics of a large class of physical systems. As they formally obey the
algebra of qubits, many of the spin-1/2 models that we discussed and implemented on real NISQ
processors may serve both as ideal test-beds for benchmarking specific hardware realizations and as
the joining link towards more complex physical systems. A certified quantum advantage, nowadays
the driving force behind a large number of actors in the quantum computing arena, would of course
open in the long run exciting avenues in the physical sciences: in the language of simulations, it could
for example mean approaching the unexplored frontier of highly correlated many-body systems. On
a more near-term perspective, and provided that significant efforts are devoted to improve reliability
and scalability of the current noisy prototypes, practical speed-ups may be expected in specific use-
cases including quantum chemistry and mid-sized magnetic systems: in this direction, novel hybrid
quantum-classical approaches, including variational quantum eigensolvers or time propagators and
data post processing techniques such as the ones we described in Chapter 2 for the extraction of
experimental cross sections, look particularly promising and sufficiently resilient. While exact time
evolution, requiring long sequences of quantum gates and high degree of accuracy per digital step,
will probably remain in the immediate future inaccessible for most non-trivial physical models, we
have nevertheless indicated a possible path towards the use of prototypical quantum simulation
methods for obtaining useful characteristic and structural quantities which are in principle hard
to compute classically. It is also worth pointing out that crossing the line of what even the most
powerful supercomputers are able to simulate will immediately pose the issue of verification. Once
more, the world and its description will then need to be compared on equal footing: as long as phys-
ical systems are involved, experiments will ultimately certify the validity of computational results,
although this could not always represent the most practical solution. A judicious characterization
of the hardware working principles could certainly offer at least partial legitimacy, yet we will with
great probability assist to an increasing interest into the development of formal validation and di-
agnostic tools. In the meanwhile, though on a much longer time-scale, the pursuit of fault tolerance
will certainly continue.

Within the multitude of alternatives to trapped ions and superconducting circuits, the develop-
ment of hybrid quantum hardware could offer viable ways to overcome the present limitations of
quantum information processing architectures. Be it merely a matter of performances or a deeper

113



114 Conclusions

technological challenge, the versatility and interoperability of quantum devices certainly represent
almost unexploited resources. While it is certainly fair to say that the current level of maturity of
many perspective quantum technologies is not yet comparable with the leading ones, this in turn
means that they might gain space and attention in academic and fundamental research while the
most developed counterparts drift towards the industrial world. As an example, we designed in
Chapter 3 a novel and intrinsically scalable electromechanical architecture with promising features
in terms of key figures of merit. Our theoretical proposal is supported by extensive numerical in-
vestigations of the actual hardware functioning and by a steady advancement, well documented
in the recent literature, of the experimental fabrication and control techniques for nano-oscillators
integrated within superconducting platforms.

The most exploratory part of our work focused, in Chapter 4, on describing new applications
of quantum computing beyond its traditional scope. In particular, we gave a brief account of the
recent birth and fast growth of quantum machine learning (QML) as a new and promising discipline,
with vast horizons and possibly far reaching consequences. We have proposed a quantum model
for binary-valued artificial neural computation, which we have then experimentally tested both
at the single node and feed-forward network level. Encouraging results were obtained on IBM Q
real quantum devices with up to 7 active qubits. Our encoding scheme in principle guarantees
an exponential memory advantage with respect to classical counterparts: however, we must also
explicitly acknowledge that, in general, the computational cost for constructing the relevant unitary
transformations and synapse connections is also exponential in the size of the quantum register, or
linear in the number of bits of the classical input. This is indeed a quite common, and sometimes
neglected, bottleneck in many QML proposals. In a NISQ perspective, the practical necessity to
decompose complex quantum operations, such as the multiply controlled gates appearing in our
procedure, into hardware-native equivalents may also represent a further obstacle, especially for
those platforms such as superconducting quantum circuits which typically feature only pairwise
interactions. Our algorithm is formally exact and platform-independent: as such, it could be in-
terpreted as a reference standard. Taking inspiration from variational unitary constructions and
approximate methods for state preparation, we may then envision in the future viable quasi-exact
alternatives with better scaling properties. Furthermore, it is not redundant to point out that the
way in which data are collected and processed might also undergo significant rethinking over time,
for example with quantum memories and databases possibly becoming available and at least par-
tially easing the demand for general quantum-classical interfaces. Finally, quantum approaches to
learning are of course the most natural next step in the search for a fully quantum-enhanced neural
computation: while we have demonstrated, via a hybrid procedure, that our model is trainable at
the single neuron level, the real fundamental question on whether genuinely quantum resources such
as superposition and parallelism could speed-up the deep learning process remains open. Applying
to our quantum feed-forward network, or to a possible future analogue with graded-response nodes,
a quantum version of the backpropagation algorithm would be a remarkable step in this direction.

All considered, our analysis depicted the lively and rich ecosystem flourishing around quantum
information processing and its applications. While a number of formidable challenges still stand in
front of us, we may say with confidence that quantum mechanics is no longer just a physical theory:
instead, it nowadays represents the core of the technological quest that will define our times.



A
Additional data and results

In this Appendix, we provide additional numerical results and experimental data to complete the
discussion of Chapter 2.

A.1 Suzuki-Trotter decomposition

As discussed in Sec. 2.3.1, the Suzuki-Trotter formula was applied to approximate the time evolu-
tion induced by the spin-spin couplings and the effect of external fields. A number n > 1 of Trotter
steps is required for molecules 2, 4 and 5 to get a reliable reproduction of the actual physical dy-
namics: as this is in practice limited by the performances of the hardware, we have adopted a fixed
n approach, calibrating the digital error on the longest simulation times. When possible, differ-
ent intervals requiring different number of digital steps were identified, in order to reach optimal
compromise between accuracy and circuit depth. Although exact simulations may of course not be
easily available for larger models, for our proof-of-principle demonstration we made sure through
numerical tests that the digital error does not affect the physically relevant features, such as oscil-
lation frequencies and beatings, in such a way that the actual capabilities of the hardware could
be assessed without other induced biases. As shown in Fig. A.1 and A.2, the comparison between
the exact system evolution and the digital evolution, obtained by Suzuki-Trotter decomposition,
justifies the choices made in Sec. 2.3.1.
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Figure A.1: Digital vs exact time evolution for molecule 2. Dynamical correlation functions
Cαβij (real part): the correct dynamics is reproduced with n = 2 Trotter step for short times (Jt ≤ 2.0
in our simulations) and with n = 4 for 2.0 < Jt ≤ 6.0. Here we used a second order Suzuki-Trotter
decomposition.
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Figure A.2: Digital vs exact time evolution for molecule 4. Dynamical correlation functions
Cαβij for molecule 4 (real part). The correct dynamics is reproduced with n = 1 Trotter step for short
times (Jt ≤ 2.0). Conversely, a decomposition with n = 2, although not perfect, is able to catch
the essential features of the system dynamics, reproducing the correct frequency and the beats in
the oscillations.

A.2 Digital quantum simulations of dynamical correlations

In the following pages, we report additional experimental results obtained on IBM Q quantum pro-
cessors to fully characterize the set of dynamical correlation functions for the spin models under
study in Sec. 2.3. These results constitute the basis for the extraction of Fourier amplitudes and
frequencies, namely of spin matrix elements and eigenenergies, and for ther subsequent computation
of the 4D-INS cross section. Although only a the most representative results are reported here, we
mention that the total number of data points simulated via the IBM Quantum Experience is close
to 104.

All results shown here are already treated with the Phase-and-Scale error mitigation procedure
introduced in Sec. 2.3.2. The data points are color coded with red representing real parts and blue
representing imaginary parts of spin-spin dynamical correlation functions

Cαβij (t) = 〈0|s(i)
α (t)s

(j)
β |0〉 (A.1)

The exact results, obtained by diagonalizing the corresponding molecular spin Hamiltonian, are also
reported for comparison.
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Figure A.3: Dynamical correlation functions Cxxij for molecule 1 calculated on the ib-
mqx4 processor (circles), compared with the exact result (line).

Figure A.4: Dynamical correlation functions Cyyij and Czzij for molecule 1 calculated on
the ibmqx4 processor (circles), compared with the exact result (line).
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Figure A.5: Dynamical correlation functions Cxyij for molecule 1 calculated on the ib-
mqx4 processor (circles), compared with the exact result (line). Notice that contributions from
the first and second line cancel out in the 4D-INS cross-section.

Figure A.6: Dynamical correlation functions Czxij and Czyij for molecule 1 calculated on
the ibmqx4 processor (circles), compared with the exact result (line).



Additional data and results 119

Figure A.7: Dynamical correlation functions for molecule 1 calculated on the ibmqx4
processor (circles), compared with the exact result (line). The experiment was extended to longer
simulation times to check the periodic behavior of Cαβij (t).

Figure A.8: Dynamical correlation functions Cxxij (t) for molecule 2 calculated on the
ibmqx4 processor (circles), compared with the exact result (line).



120 Additional data and results

Figure A.9: Dynamical correlation functions Cyyij (t) and Czzij (t) for molecule 2 calculated
on the ibmqx4 processor (circles), compared with the exact result (line).

Figure A.10: Dynamical auto-correlation functions for molecule 3 calculated on the
ibmqx4 processor (circles), compared with the exact result (line).
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Figure A.11: Dynamical cross-correlation functions for molecule 3 calculated on the
ibmqx4 processor (circles), compared with the exact result (line).

Figure A.12: Dynamical Cxyij and Cxzij correlation functions for molecule 3 calculated on
the ibmqx4 processor (circles), compared with the exact result (line).
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Figure A.13: Dynamical Cxxij correlation functions for molecule 4 (circles) calculated on
the ibmqx5 (left column) and ibmqx4 (right column) processors, compared with the exact result
(line).
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Figure A.14: Dynamical Cyyij correlation functions for molecule 4 (circles) calculated on the
ibmqx5 (left column) and ibmqx4 (right column) processors, compared with the exact result (line).



124 Additional data and results

Figure A.15: Dynamical Czzij correlation functions for molecule 4 (circles) calculated on the
ibmqx5 (left column) and ibmqx4 (right column) processors, compared with the exact result (line).
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A.3 Fitting dynamical correlations

Finally, we report in the following plots and tables some additional results obtained fitting the results
of the digital quantum simulations of dynamical correlations on IBM Q processors, according to the
Fourier expansion of Eq. (2.30)

Cαβij (t) =
∑

p

〈0|s(i)
α |p〉〈p|s(j)

β |0〉e−iEpt (A.2)

As in the previous section, all experimental data are already error-mitigated via the PaS procedure.

Figure A.16: Fit of dynamical Cxx22 correlation function for molecule 2. Real (top) and
imaginary (bottom) parts are fitted with a superposition of two oscillating functions (lines).

Figure A.17: Fit of dynamical auto-correlation functions Cxxii for molecule 3. Real
(top) and imaginary (bottom) parts are fitted with a single oscillating function, indicating that the
excitations of the two spins are fully independent.
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Figure A.18: Fit of the imaginary part of dynamical Cxxij correlation functions for
molecule 4 with a superposition of three sinusoidal functions, using the same amplitudes as for
real parts reported in Fig. 2.7e.

Table A.1: Oscillation frequencies and Fourier coefficients of the dynamical correlations
functions for the isotropic trimer (molecule 4), obtained by fitting the data measured on the ibmqx4
and ibmqx5 processors. Exact results obtained from spin Hamiltonian diagonalization are reported
in square brackets. Values for symmetry-equivalent sites are not reported.

|p〉 Ep/J |〈0|s(1)
x |p〉|2 |〈0|s(2)

x |p〉|2 〈0|s(1)
x |p〉〈p|s(2)

x |0〉 〈0|s(1)
x |p〉〈p|s(3)

x |0〉
|1〉 8.5(1) [8.5] 0.04(3) [0.0425] 0.13(5) [0.1675] -0.08(3) [-0.0825] 0.05(3) [0.0425]
|2〉 9.5(1) [9.5] 0.14(2) [0.125] 0.02(3) [0.00] -0.02(3) [0.00] -0.13(1) [-0.125]
|3〉 10.0(1) [10.0] 0.08(3) [0.0825] 0.11(4) [0.0825] 0.09(3) [0.0825] 0.08(3) [0.0825]

Table A.2: Oscillation frequencies and Fourier coefficients of the dynamical correlations
functions for the anisotropic trimer (molecule 5), obtained by fitting the data measured on the
ibmqx4 and ibmq20 processors with Eq. (2) of the main text. Exact results obtained from spin
Hamiltonian diagonalization are reported in square brackets.

|p〉 = |1〉 |p〉 = |2〉 |p〉 = |3〉
Ep/J 8.0(1) [7.97] 9.1(1) [9.15] 9.5(1) [9.48]

|〈0|s(1)
x |p〉|2 0.1(1) [0.18] 0.4(1) [0.63] 0.2(1) [0.19]

|〈0|s(2)
x |p〉|2 0.5(1) [0.77] 0.0(1) [0.06] 0.2(1) [0.18]

|〈0|s(3)
x |p〉|2 0.0(1) [0.05] 0.2(1) [0.31] 0.5(1) [0.64]

〈0|s(1)
x |p〉〈p|s(2)

x |0〉 0.3(1) [0.37] -0.2(1) [-0.19] -0.2(1) [-0.18]
〈0|s(2)

x |p〉〈p|s(3)
x |0〉 0.3(1) [0.20] 0.1(1) [0.13] -0.2(1) [-0.33]

〈0|s(1)
x |p〉〈p|s(3)

x |0〉 0.1(1) [0.10] -0.4(1) [-0.44] 0.2(1) [0.35]



Bibliography

[1] J. S. Bell, Speakable and Unspeakable in Quantum Mechanics, Cambridge University Press,
Cambridge, UK (1987).

[2] S. Lloyd, Computational Capacity of the Universe, Phys. Rev. Lett. 88, 237901 (2002).

[3] R. Landauer, Dissipation and noise immunity in computation and communication, Nature
335, 779–784 (1988).

[4] R. Landauer, The physical nature of information, Phys. Lett. A 217, 188–193 (1996).

[5] M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information, Cambridge
University Press, Cambridge, UK (2000).

[6] J. Preskill, Quantum Computing in the NISQ era and beyond, Quantum 2, 79 (2018).

[7] J. Gubernatis, N. Kawashima and P. Werner, Quantum Monte Carlo Methods, Cambridge
University Press, Cambridge, UK (2016).

[8] J. M. Haile, Molecular Dynamics Simulation: Elementary Methods, Wiley-Interscience, New
York, USA (1992).

[9] S. Montangero, Introduction to Tensor Network Methods, Springer Nature Switzerland AG,
Cham, CH (2018).

[10] R. P. Feynman, Simulating physics with computers, Int. J. Theor. Phys. 21, 467 (1982).

[11] Y. I. Manin, Computable and Noncomputable, Sov. Radio p. 13 (1980).

[12] P. Benioff, The computer as a physical system: A microscopic quantum mechanical Hamilto-
nian model of computers as represented by Turing machines, J. Stat. Phys. 22, 563 (1980).

[13] M. Fisher, P. B. Weichman, G. Grinstein et al., Boson localization and the superfluid-insulator
transition, Phys. Rev. B 40, 546–570 (1989).

[14] D. Jaksch, C. Bruder, J. I. Cirac et al., Cold Bosonic Atoms in Optical Lattices, Phys. Rev.
Lett. 81, 3108–3111 (1998).

[15] M. J. Hartmann, F. G. S. L. Brandao and M. B. Plenio, Strongly interacting polaritons in
coupled arrays of cavities, Nat. Phys. 2, 848 (2006).

[16] A. D. Greentree, C. Tahan, J. H. Cole et al., Quantum phase transitions of light, Nat. Phys.
2, 856 (2006).

127



128 Bibliography

[17] D. G. Angelakis, M. F. Santos and S. Bose, Photon-blockade-induced Mott transitions and XY
spin models in coupled cavity arrays, Phys. Rev. A 76, 031805 (2007).

[18] I. Carusotto, S. Fagnocchi, A. Recati et al., Numerical observation of Hawking radiation from
acoustic black holes in atomic Bose–Einstein condensates, New J. Phys. 10, 103001 (2008).

[19] I. Carusotto, D. Gerace, H. E. Tureci et al., Fermionized Photons in an Array of Driven
Dissipative Nonlinear Cavities, Phys. Rev. Lett. 103, 033601 (2009).

[20] L. Tian, Circuit QED and Sudden Phase Switching in a Superconducting Qubit Array, Phys.
Rev. Lett. 105, 167001 (2010).

[21] D. Gerace and I. Carusotto, Analog Hawking radiation from an acoustic black hole in a flowing
polariton superfluid, Phys. Rev. B 86, 144505 (2012).

[22] O. Viehmann, J. von Delft and F. Marquardt, Observing the Nonequilibrium Dynamics of the
Quantum Transverse-Field Ising Chain in Circuit QED, Phys. Rev. Lett. 110, 030601 (2013).

[23] L.-H. Du, J. Q. You and L. Tian, Superconducting circuit probe for analog quantum simulators,
Phys. Rev. A 92, 012330 (2015).

[24] J.-M. Reiner, M. Marthaler, J. Braumüller et al., Emulating the one-dimensional Fermi-
Hubbard model by a double chain of qubits, Phys. Rev. A 94, 032338 (2016).

[25] M. Greiner, O. Mandel, T. Esslinger et al., Quantum phase transition from a superfluid to a
Mott insulator in a gas of ultracold atoms, Nature 415, 39–44 (2002).

[26] A. Friedenauer, H. Schmitz, J. T. Glueckert et al., Simulating a quantum magnet with trapped
ions, Nat. Phys. 4, 757 (2008).

[27] R. Gerritsma, G. Kirchmair, F. Zähringer et al., Quantum simulation of the Dirac equation,
Nature 463, 68 (2010).

[28] K. Kim, M.-S. Chang, S. Korenblit et al., Quantum simulation of frustrated Ising spins with
trapped ions, Nature 465, 590 (2010).

[29] R. Islam, E. E. Edwards, K. Kim et al., Onset of a quantum phase transition with a trapped
ion quantum simulator, Nat. Commun. 2, 377 (2011).

[30] H. S. Nguyen, D. Gerace, I. Carusotto et al., Acoustic Black Hole in a Stationary Hydrody-
namic Flow of Microcavity Polaritons, Phys. Rev. Lett. 114, 036402 (2015).

[31] J. Steinhauer, Observation of quantum Hawking radiation and its entanglement in an analogue
black hole, Nat. Phys. 12, 959 (2016).

[32] H. Labuhn, D. Barredo, S. Ravets et al., Tunable two-dimensional arrays of single Rydberg
atoms for realizing quantum Ising models, Nature 534, 667 (2016).

[33] H. Bernien, S. Schwartz, A. Keesling et al., Probing many-body dynamics on a 51-atom quan-
tum simulator, Nature 551, 579 (2017).

[34] P. Roushan, C. Neill, J. Tangpanitanon et al., Spectroscopic signatures of localization with
interacting photons in superconducting qubits, Science 358, 1175 (2017).

[35] J. Zhang, G. Pagano, P. W. Hess et al., Observation of a many-body dynamical phase transition
with a 53-qubit quantum simulator, Nature 551, 601 (2017).

[36] X. Zhang, K. Zhang, Y. Shen et al., Experimental quantum simulation of fermion-antifermion
scattering via boson exchange in a trapped ion, Nat. Commun. 9, 195 (2018).

[37] S. Lloyd, Universal Quantum Simulators, Science 273, 1073 (1996).



Bibliography 129

[38] G. Ortiz, J. E. Gubernatis, E. Knill et al., Quantum algorithms for fermionic simulations,
Phys. Rev. A 64, 022319 (2001).

[39] G. Benenti, G. Casati, S. Montangero et al., Efficient Quantum Computing of Complex Dy-
namics, Phys. Rev. Lett. 87, 227901 (2001).

[40] R. Somma, G. Ortiz, J. E. Gubernatis et al., Simulating physical phenomena by quantum
networks, Phys. Rev. A 65, 042323 (2002).

[41] G. Benenti, G. Casati, S. Montangero et al., Dynamical localization simulated on a few-qubit
quantum computer, Phys. Rev. A 67, 052312 (2003).

[42] G. Benenti, G. Casati and S. Montangero, Quantum computing and information extraction
for a dynamical quantum system, Quantum Inf. Process. 3, 273 (2004).

[43] S. Montangero, Dynamically localized systems: Exponential sensitivity of entanglement and
efficient quantum simulations, Phys. Rev. A 70, 032311 (2004).

[44] M. K. Henry, J. Emerson, R. Martinez et al., Localization in the quantum sawtooth map
emulated on a quantum-information processor, Phys. Rev. A 74, 062317 (2006).

[45] F. Verstraete, J. I. Cirac and J. I. Latorre, Quantum circuits for strongly correlated quantum
systems, Phys. Rev. A 79, 032316 (2009).

[46] H. Weimer, M. Müller, I. Lesanovsky et al., A Rydberg quantum simulator, Nat. Phys. 6, 382
(2010).

[47] P. Santini, S. Carretta, F. Troiani et al., Molecular Nanomagnets as Quantum Simulators,
Phys. Rev. Lett. 107, 230502 (2011).

[48] J. Casanova, A. Mezzacapo, L. Lamata et al., Quantum Simulation of Interacting Fermion
Lattice Models in Trapped Ions, Phys. Rev. Lett. 108, 190502 (2012).

[49] A. Mezzacapo, J. Casanova, L. Lamata et al., Digital Quantum Simulation of the Holstein
Model in Trapped Ions, Phys. Rev. Lett. 109, 200501 (2012).

[50] S. P. Jordan, K. S. M. Lee and J. Preskill, Quantum Algorithms for Quantum Field Theories,
Science 336, 1130 (2012).

[51] S. Raeisi, N. Wiebe and B. C. Sanders, Quantum-circuit design for efficient simulations of
many-body quantum dynamics, New J. Phys. 14, 103017 (2012).

[52] P. Hauke, D. Marcos, M. Dalmonte et al., Quantum Simulation of a Lattice Schwinger Model
in a Chain of Trapped Ions, Phys. Rev. X 3, 041018 (2013).

[53] U. Las Heras, A. Mezzacapo, L. Lamata et al., Digital Quantum Simulation of Spin Systems
in Superconducting Circuits, Phys. Rev. Lett. 112, 200501 (2014).

[54] A. Chiesa, P. Santini, D. Gerace et al., Digital quantum simulators in a scalable architecture
of hybrid spin-photon qubits, Sci. Rep. 5, 16036 (2015).

[55] L. García-Álvarez, I. L. Egusquiza, L. Lamata et al., Digital Quantum Simulation of Minimal
AdS / CFT, Phys. Rev. Lett. 119, 040501 (2017).

[56] Z. Jiang, K. Sung, K. Kechedzhi et al., Quantum Algorithms to Simulate Many-Body Physics
of Correlated Fermions, Phys. Rev. Appl. 9, 044036 (2018).

[57] I. D. Kivlichan, J. McClean, N. Wiebe et al., Quantum Simulation of Electronic Structure
with Linear Depth and Connectivity, Phys. Rev. Lett. 120, 110501 (2018).



130 Bibliography

[58] D. P. DiVincenzo, The Physical Implementation of Quantum Computation, Fortschr. Phys.
48, 771 (2000).

[59] M. Troyer and U.-J. Wiese, Computational Complexity and Fundamental Limitations to
Fermionic Quantum Monte Carlo Simulations, Phys. Rev. Lett. 94, 170201 (2005).

[60] R. Barends, J. Kelly, A. Megrant et al., Superconducting quantum circuits at the surface code
threshold for fault tolerance, Nature 508, 500 (2014).

[61] E. A. Martinez, C. A. Muschik, P. Schindler et al., Real-time dynamics of lattice gauge theories
with a few-qubit quantum computer, Nature 534, 516 (2016).

[62] N. Klco, E. F. Dumitrescu, A. J. McCaskey et al., Quantum-classical computation of Schwinger
model dynamics using quantum computers, Phys. Rev. A 98, 032331 (2018).

[63] A. Roggero and J. Carlson, Linear Response on a Quantum Computer, arXiv:1804.01505
(2018).

[64] A. Mezzacapo, U. Las Heras, J. S. Pedernales et al., Digital Quantum Rabi and Dicke Models
in Superconducting Circuits, Sci. Rep. 4, 7482 (2015).

[65] I. Buluta and F. Nori, Quantum Simulators, Science 326, 108–111 (2009).

[66] I. M. Georgescu, S. Ashhab and F. Nori, Quantum simulation, Rev. Mod. Phys. 86, 153
(2014).

[67] B. C. Sanders, Efficient algorithms for universal quantum simulation, in G. W. Dueck and
D. M. Miller (eds.), Reversible Computation, p. 1, Springer Berlin Heidelberg, Berlin, Heidel-
berg (2013).

[68] R. Blatt and C. F. Roos, Quantum simulations with trapped ions, Nat. Phys. 8, 277 (2012).

[69] I. Bloch, J. Dalibard and S. Nascimbène, Quantum simulations with ultracold quantum gases,
Nat. Phys. 8, 267–276 (2012).

[70] A. Aspuru-Guzik and P. Walther, Photonic quantum simulators, Nat. Phys. 8, 285–291 (2012).

[71] A. A. Houck, H. E. Türeci and J. Koch, On-chip quantum simulation with superconducting
circuits, Nat. Phys. 8, 292 (2012).

[72] G. Wendin, Quantum information processing with superconducting circuits: a review, Rep.
Prog. Phys. 80, 106001 (2017).

[73] L. Lamata, A. Parra-Rodriguez, M. Sanz et al., Digital-analog quantum simulations with
superconducting circuits, Adv. Phys.: X 3, 1457981 (2018).

[74] C. Monroe and J. Kim, Scaling the Ion Trap Quantum Processor, Science 339, 1164 (2013).

[75] P. Schindler, D. Nigg, T. Monz et al., A quantum information processor with trapped ions,
New J. Phys. 15, 123012 (2013).

[76] J. Clarke and F. K. Wilhelm, Superconducting quantum bits, Nature 453, 1031–1042 (2008).

[77] R. J. Schoelkopf and S. M. Girvin, Wiring up quantum systems, Nature 451, 664–669 (2008).

[78] M. H. Devoret and R. J. Schoelkopf, Superconducting Circuits for Quantum Information: An
Outlook, Science 339, 1169 (2013).

[79] A. Acín, I. Bloch, H. Buhrman et al., The quantum technologies roadmap: a European com-
munity view, New J. Phys. 20, 080201 (2018).



Bibliography 131

[80] E. Pednault, J. A. Gunnels, G. Nannicini et al., Breaking the 49-Qubit Barrier in the Simu-
lation of Quantum Circuits, arXiv:1710.05867 (2017).

[81] S. Boixo, S. V. Isakov, V. N. Smelyanskiy et al., Characterizing quantum supremacy in near-
term devices, Nat. Phys. 14, 595–600 (2018).

[82] B. Villalonga, D. Lyakh, S. Boixo et al., Establishing the Quantum Supremacy Frontier with
a 281 Pflop/s Simulation, arXiv:1905.00444 (2019).

[83] F. Arute, K. Arya, R. Babbush et al., Quantum supremacy using a programmable supercon-
ducting processor, Nature 574, 505–510 (2019).

[84] P. Schindler, J. T. Barreiro, T. Monz et al., Experimental Repetitive Quantum Error Correc-
tion, Science 332, 1059 (2011).

[85] H. You, M. R. Geller and P. C. Stancil, Simulating the transverse Ising model on a quantum
computer: Error correction with the surface code, Phys. Rev. A 87, 032341 (2013).

[86] A. Córcoles, E. Magesan, S. J. Srinivasan et al., Demonstration of a quantum error detection
code using a square lattice of four superconducting qubits, Nat. Commun. 6, 6979 (2015).

[87] S. Woerner and D. J. Egger, Quantum risk analysis, npj Quantum Inf. 5, 15 (2019).

[88] A. Martin, B. Candelas, Á. Rodríguez-Rozas et al., Towards Pricing Financial Derivatives
with an IBM Quantum Computer, arXiv:1904.05803 (2019).

[89] J. Biamonte, P. Wittek, N. Pancotti et al., Quantum machine learning, Nature 549, 195
(2017).

[90] C. Moler and C. Van Loan, Nineteen Dubious Ways to Compute the Exponential of a Matrix,
Twenty-Five Years Later, SIAM Review 45, 3–49 (2003).

[91] A. Barenco, C. H. Bennett, R. Cleve et al., Elementary gates for quantum computation, Phys.
Rev. A 52, 3457 (1995).

[92] F. Tacchino, A. Chiesa, M. D. LaHaye et al., Electromechanical quantum simulators, Phys.
Rev. B 97, 214302 (2018).

[93] R. Barends, L. Lamata, J. Kelly et al., Digital quantum simulation of fermionic models with
a superconducting circuit, Nat. Commun. 6, 7654 (2015).

[94] A. Kandala, A. Mezzacapo, K. Temme et al., Hardware-efficient variational quantum eigen-
solver for small molecules and quantum magnets, Nature 549, 242 (2017).

[95] E. F. Dumitrescu, A. J. McCaskey, G. Hagen et al., Cloud Quantum Computing of an Atomic
Nucleus, Phys. Rev. Lett. 120, 210501 (2018).

[96] P. Jordan and E. Wigner, Über das Paulische äquivalenzverbot, Zeitschrift für Physik 47,
631–651 (1928).

[97] R. A. Bari, Classical Linear-Chain Hubbard Model: Metal-Insulator Transition, Phys. Rev. B
7, 4318 (1973).

[98] N. M. Linke, D. Maslov, M. Roetteler et al., Experimental comparison of two quantum com-
puting architectures, PNAS 114, 3305 (2017).

[99] A. W. Cross, L. S. Bishop, S. Sheldon et al., Validating quantum computers using randomized
model circuits, arXiv:1811.12926 (2018).

[100] D. C. McKay, C. J. Wood, S. Sheldon et al., Efficient Z gates for quantum computing, Phys.
Rev. A 96, 022330 (2017).



132 Bibliography

[101] J. M. Chow, J. M. Gambetta, A. D. Córcoles et al., Universal Quantum Gate Set Approaching
Fault-Tolerant Thresholds with Superconducting Qubits, Phys. Rev. Lett. 109, 060501 (2012).

[102] G. S. Paraoanu, Microwave-induced coupling of superconducting qubits, Phys. Rev. B 74,
140504 (2006).

[103] C. Rigetti and M. Devoret, Fully microwave-tunable universal gates in superconducting qubits
with linear couplings and fixed transition frequencies, Phys. Rev. B 81, 134507 (2010).

[104] J. M. Chow, A. D. Córcoles, J. M. Gambetta et al., Simple All-Microwave Entangling Gate
for Fixed-Frequency Superconducting Qubits, Phys. Rev. Lett. 107, 080502 (2011).

[105] S. Sheldon, E. Magesan, J. M. Chow et al., Procedure for systematically tuning up cross-talk
in the cross-resonance gate, Phys. Rev. A 93, 060302 (2016).

[106] Y. Salathé, M. Mondal, M. Oppliger et al., Digital Quantum Simulation of Spin Models with
Circuit Quantum Electrodynamics, Phys. Rev. X 5, 021027 (2015).

[107] D. C. McKay, S. Filipp, A. Mezzacapo et al., Universal Gate for Fixed-Frequency Qubits via
a Tunable Bus, Phys. Rev. Appl. 6, 064007 (2016).

[108] N. Schuch and J. Siewert, Natural two-qubit gate for quantum computation using the XY
interaction, Phys. Rev. A 67, 032301 (2003).

[109] P. Krantz, M. Kjaergaard, F. Yan et al., A Quantum Engineer’s Guide to Superconducting
Qubits, arXiv:1904.06560 (2019).

[110] S. Carretta, A. Chiesa, F. Troiani et al., Quantum Information Processing with Hybrid Spin-
Photon Qubit Encoding, Phys. Rev. Lett. 111, 110501 (2013).

[111] A. Chiesa, D. Gerace, F. Troiani et al., Robustness of quantum gates with hybrid spin-photon
qubits in superconducting resonators, Phys. Rev. A 89, 052308 (2014).

[112] M. Reagor, C. B. Osborn, N. Tezak et al., Demonstration of universal parametric entangling
gates on a multi-qubit lattice, Sci. Adv. 4, eaao3603 (2018).

[113] J. A. Jones, Robust Ising gates for practical quantum computation, Phys. Rev. A 67, 012317
(2003).

[114] P. Schindler, M. Müller, D. Nigg et al., Quantum simulation of dynamical maps with trapped
ions, Nat. Phys. 9, 361 (2013).

[115] B. P. Lanyon, C. Hempel, D. Nigg et al., Universal Digital Quantum Simulation with Trapped
Ions, Science 334, 57 (2011).

[116] K. Mølmer and A. Sørensen, Multiparticle Entanglement of Hot Trapped Ions, Phys. Rev.
Lett. 82, 1835 (1999).

[117] A. E. Webb, S. C. Webster, S. Collingbourne et al., Resilient Entangling Gates for Trapped
Ions, Phys. Rev. Lett. 121, 180501 (2018).

[118] Y. Shapira, R. Shaniv, T. Manovitz et al., Robust Entanglement Gates for Trapped-Ion Qubits,
Phys. Rev. Lett. 121, 180502 (2018).

[119] P. K. Barkoutsos, J. F. Gonthier, I. Sokolov et al., Quantum algorithms for electronic structure
calculations: Particle-hole Hamiltonian and optimized wave-function expansions, Phys. Rev.
A 98, 022322 (2018).

[120] M. Müller, K. Hammerer, Y. L. Zhou et al., Simulating open quantum systems: from many-
body interactions to stabilizer pumping, New J. Phys. 13, 085007 (2011).



Bibliography 133

[121] N. Hatano and M. Suzuki, Finding Exponential Product Formulas of Higher Orders, in A. Das
and B. K. Chakrabarti (eds.), Quantum Annealing and Other Optimization Methods, pp. 37–
68, Springer Berlin Heidelberg, Berlin, Heidelberg (2005).

[122] R. Kubo, Statistical-Mechanical Theory of Irreversible Processes. I. General Theory and Sim-
ple Applications to Magnetic and Conduction Problems, Journal of the Physical Society of
Japan 12, 570–586 (1957).

[123] A. L. Fetter and J. D. Walecka, Quantum theory of many-particle systems, International series
in pure and applied physics, McGraw-Hill, S. Francisco (1971).

[124] A. Chiesa, F. Tacchino, M. Grossi et al., Quantum hardware simulating four-dimensional
inelastic neutron scattering, Nat. Phys. 15, 455 (2019).

[125] J. S. Pedernales, R. Di Candia, I. L. Egusquiza et al., Efficient Quantum Algorithm for
Computing n-time Correlation Functions, Phys. Rev. Lett. 113, 020505 (2014).

[126] Cleve R., Ekert A., Macchiavello C. et al., Quantum algorithms revisited, Proc. Royal Soc. A
454, 339–354 (1998).

[127] G. Vidal and C. M. Dawson, Universal quantum circuit for two-qubit transformations with
three controlled-NOT gates, Phys. Rev. A 69, 010301 (2004).

[128] J. Ferrando-Soria, S. A. Magee, A. Chiesa et al., Switchable Interaction in Molecular Double
Qubits, Chem 1, 727–752 (2016).

[129] J.-M. Raimond and S. Haroche, Exploring the quantum: atoms, cavities and photons, Oxford
University Press, Oxford (2006).

[130] D. J. Wineland, Nobel Lecture: Superposition, entanglement, and raising Schrödinger’s cat,
Rev. Mod. Phys. 85, 1103–1114 (2013).

[131] W. Paul, Electromagnetic traps for charged and neutral particles, Rev. Mod. Phys. 62, 531–540
(1990).

[132] R. Blatt and D. Wineland, Entangled states of trapped atomic ions, Nature 453, 1008–1015
(2008).

[133] C. D. Bruzewicz, J. Chiaverini, R. McConnell et al., Trapped-Ion Quantum Computing:
Progress and Challenges, arXiv:1904.04178 (2019).

[134] K. Wright, K. M. Beck, S. Debnath et al., Benchmarking an 11-qubit quantum computer,
arxiv:1903.08181 (2019).

[135] D. Leibfried, R. Blatt, C. Monroe et al., Quantum dynamics of single trapped ions, Rev. Mod.
Phys. 75, 281–324 (2003).

[136] A. Bautista-Salvador, G. Zarantonello, H. Hahn et al., Multilayer ion trap technology for
scalable quantum computing and quantum simulation, New J. Phys. 21, 043011 (2019).

[137] C. D. Bruzewicz, R. McConnell, J. Chiaverini et al., Scalable loading of a two-dimensional
trapped-ion array, Nature Communications 7, 13005 (2016).

[138] N. Friis, O. Marty, C. Maier et al., Observation of Entangled States of a Fully Controlled
20-Qubit System, Phys. Rev. X 8, 021012 (2018).

[139] C. Hempel, C. Maier, J. Romero et al., Quantum chemistry calculations on a trapped-ion
quantum simulator, Phys. Rev. X 8, 031022 (2018).

[140] C. J. Ballance, T. P. Harty, N. M. Linke et al., High-fidelity quantum logic gates using trapped-
ion hyperfine qubits, Phys. Rev. Lett. 117, 060504 (2016).



134 Bibliography

[141] S. Debnath, N. M. Linke, C. Figgatt et al., Demonstration of a small programmable quantum
computer with atomic qubits, Nature 536, 63 (2016).

[142] J. I. Cirac and P. Zoller, Quantum computations with cold trapped ions, Phys. Rev. Lett. 74,
4091–4094 (1995).

[143] T. P. Harty, D. T. C. Allcock, C. J. Ballance et al., High-fidelity preparation, gates, memory,
and readout of a trapped-ion quantum bit, Phys. Rev. Lett. 113, 220501 (2014).

[144] J. P. Gaebler, T. R. Tan, Y. Lin et al., High-fidelity universal gate set for 9Be
+ ion qubits,

Phys. Rev. Lett. 117, 060505 (2016).

[145] V. M. Schäfer, C. J. Ballance, K. Thirumalai et al., Fast quantum logic gates with trapped-ion
qubits, Nature 555, 75–78 (2018).

[146] A. H. Myerson, D. J. Szwer, S. C. Webster et al., High-fidelity readout of trapped-ion qubits,
Phys. Rev. Lett. 100, 200502 (2008).

[147] A. Bermudez, X. Xu, R. Nigmatullin et al., Assessing the progress of trapped-ion processors
towards fault-tolerant quantum computation, Phys. Rev. X 7, 041061 (2017).

[148] Y. Wang, M. Um, J. Zhang et al., Single-qubit quantum memory exceeding ten-minute coher-
ence time, Nature Photonics 11, 646–650 (2017).

[149] A. Erhard, J. J. Wallman, L. Postler et al., Characterizing large-scale quantum computers via
cycle benchmarking, arxiv:1902.08543 (2019).

[150] C. Kokail, C. Maier, R. van Bijnen et al., Self-verifying variational quantum simulation of
lattice models, Nature 569, 355 (2019).

[151] J. R. McClean, J. Romero, R. Babbush et al., The theory of variational hybrid quantum-
classical algorithms, New J. Phys. 18, 023023 (2016).

[152] Y. Nam, J.-S. Chen, N. C. Pisenti et al., Ground-state energy estimation of the water molecule
on a trapped ion quantum computer, arxiv:1902.10171 (2019).

[153] O. Shehab, K. A. Landsman, Y. Nam et al., Toward convergence of effective field theory
simulations on digital quantum computers, arXiv:1904.04338 (2019).

[154] A. Blais, R.-S. Huang, A. Wallraff et al., Cavity quantum electrodynamics for superconducting
electrical circuits: An architecture for quantum computation, Phys. Rev. A 69, 062320 (2004).

[155] A. Wallraff, D. I. Schuster, A. Blais et al., Strong coupling of a single photon to a supercon-
ducting qubit using circuit quantum electrodynamics, Nature 431, 162–167 (2004).

[156] J. Koch, T. M. Yu, J. M. Gambetta et al., Charge-insensitive qubit design derived from the
Cooper pair box, Phys. Rev. A 76, 042319 (2007).

[157] J. Gambetta, W. A. Braff, A. Wallraff et al., Protocols for optimal readout of qubits using a
continuous quantum nondemolition measurement, Phys. Rev. A 76, 012325 (2007).

[158] J. Majer, J. M. Chow, J. M. Gambetta et al., Coupling superconducting qubits via a cavity
bus, Nature 449, 443–447 (2007).

[159] J. Gambetta, A. Blais, M. Boissonneault et al., Quantum trajectory approach to circuit QED:
Quantum jumps and the Zeno effect, Phys. Rev. A 77, 012112 (2008).

[160] M. Mariantoni, H. Wang, T. Yamamoto et al., Implementing the Quantum von Neumann
Architecture with Superconducting Circuits, Science 334, 61 (2011).



Bibliography 135

[161] C. Rigetti, J. M. Gambetta, S. Poletto et al., Superconducting qubit in a waveguide cavity with
a coherence time approaching 0.1 ms, Phys. Rev. B 86, 100506(R) (2012).

[162] A. Nersisyan, S. Poletto, N. Alidoust et al., Manufacturing low dissipation superconducting
quantum processors, arXiv:1901.08042 (2019).

[163] J. Kelly, R. Barends, A. G. Fowler et al., State preservation by repetitive error detection in a
superconducting quantum circuit, Nature 519, 66–69 (2015).

[164] R. Barends, A. Shabani, L. Lamata et al., Digitized adiabatic quantum computing with a
superconducting circuit, Nature 534, 222 (2016).

[165] L. DiCarlo, J. M. Chow, J. Gambetta et al., Demonstration of two-qubit algorithms with a
superconducting quantum processor, Nature 460, 240–244 (2009).

[166] J. M. Gambetta, J. M. Chow and M. Steffen, Building logical qubits in a superconducting
quantum computing system, npj Quantum Inf. 3, 2 (2017).

[167] M. Ganzhorn, D. Egger, P. Barkoutsos et al., Gate-efficient simulation of molecular eigenstates
on a quantum computer, Phys. Rev. A 11, 044092 (2019).

[168] U. Las Heras, L. García-Álvarez, A. Mezzacapo et al., Fermionic models with superconducting
circuits, EPJ Quantum Tech. 2, 8 (2015).

[169] P. J. J. O’Malley, R. Babbush, I. D. Kivlichan et al., Scalable Quantum Simulation of Molecular
Energies, Phys. Rev. X 6, 031007 (2016).

[170] K. Temme, S. Bravyi and J. M. Gambetta, Error Mitigation for Short-Depth Quantum Cir-
cuits, Phys. Rev. Lett. 119, 180509 (2017).

[171] S. McArdle, X. Yuan and S. Benjamin, Error-mitigated digital quantum simulation, Phys.
Rev. Lett. 122, 180501 (2019).

[172] A. Kandala, K. Temme, A. D. Córcoles et al., Error mitigation extends the computational
reach of a noisy quantum processor, Nature 567, 491 (2019).

[173] T. Roy, S. Hazra, S. Kundu et al., A programmable three-qubit superconducting processor with
all-to-all connectivity, arXiv:1809.00668 (2018).

[174] P. V. Klimov, J. Kelly, Z. Chen et al., Fluctuations of energy-relaxation times in supercon-
ducting qubits, Phys. Rev. Lett. 121, 090502 (2018).

[175] N. Moll, P. Barkoutsos, L. S. Bishop et al., Quantum optimization using variational algorithms
on near-term quantum devices, Quantum Sci. Tech. 3, 030503 (2018).

[176] K. X. Wei, I. Lauer, S. Srinivasan et al., Verifying Multipartite Entangled GHZ States via
Multiple Quantum Coherences, arXiv:1905.05720 (2019).

[177] J. M. Gambetta, Benchmarking NISQ-era quantum processors, Invited Talk Y34.00004 at
APS March Meeting (2019).

[178] C. Figgatt, A. Ostrander, N. M. Linke et al., Parallel entangling operations on a universal
ion-trap quantum computer, Nature 572, 368–372 (2019).

[179] Y. Lu, S. Zhang, K. Zhang et al., Global entangling gates on arbitrary ion qubits, Nature 572,
363–367 (2019).

[180] Y. Cao, J. Romero, J. P. Olson et al., Quantum Chemistry in the Age of Quantum Computing,
arXiv:1812.09976 (2018).



136 Bibliography

[181] F. Fillion-Gourdeau, S. MacLean and R. Laflamme, Algorithm for the solution of the Dirac
equation on digital quantum computers, Phys. Rev. A 95, 042343 (2017).

[182] T. V. Zache, F. Hebenstreit, F. Jendrzejewski et al., Quantum simulation of lattice gauge
theories using Wilson fermions, Quantum Sci. Technol. 3, 034010 (2018).

[183] C. W. Bauer, W. A. de Jong, B. Nachman et al., A quantum algorithm for high energy physics
simulations, arXiv:1904.03196 (2019).

[184] M. Kliesch, T. Barthel, C. Gogolin et al., Dissipative Quantum Church-Turing Theorem, Phys.
Rev. Lett. 107, 120501 (2011).

[185] H. Wang, S. Ashhab and F. Nori, Quantum algorithm for simulating the dynamics of an open
quantum system, Phys. Rev. A 83, 062317 (2011).

[186] R. Di Candia, J. S. Pedernales, A. del Campo et al., Quantum Simulation of Dissipative
Processes without Reservoir Engineering, Sci. Rep. 5, 09981 (2015).

[187] A. Chenu, M. Beau, J. Cao et al., Quantum Simulation of Generic Many-Body Open System
Dynamics Using Classical Noise, Phys. Rev. Lett. 118, 140403 (2017).

[188] R. Cleve and C. Wang, Efficient Quantum Algorithms for Simulating Lindblad Evolution,
in 44th International Colloquium on Automata, Languages, and Programming (ICALP 2017),
vol. 80 of Leibniz International Proceedings in Informatics (LIPIcs), p. 17:1, Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2017).

[189] H. Lamm and S. Lawrence, Simulation of Nonequilibrium Dynamics on a Quantum Computer,
Phys. Rev. Lett. 121, 170501 (2018).

[190] A. Smith, M. S. Kim, F. Pollmann et al., Simulating quantum many-body dynamics on a
current digital quantum computer, arXiv:1906.06343 (2019).

[191] M. J. S. Beach, R. G. Melko, T. Grover et al.,Making Trotters Sprint: A Variational Imaginary
Time Ansatz for Quantum Many-body Systems, arXiv:1904.00019 (2019).

[192] M. Motta, C. Sun, A. T. K. Tan et al., Quantum Imaginary Time Evolution, Quantum Lanc-
zos, and Quantum Thermal Averaging, arXiv:1901.07653 (2019).

[193] A. M. Childs and Y. Su, Nearly Optimal Lattice Simulation by Product Formulas, Phys. Rev.
Lett. 123, 050503 (2019).

[194] U. Las Heras, U. Alvarez-Rodriguez, E. Solano et al., Genetic Algorithms for Digital Quantum
Simulations, Phys. Rev. Lett. 116, 230504 (2016).

[195] Y. Li and S. C. Benjamin, Efficient Variational Quantum Simulator Incorporating Active
Error Minimization, Phys. Rev. X 7, 021050 (2017).

[196] G. Aleksandrowicz, T. Alexander, P. Barkoutsos et al., Qiskit: An open-source framework for
quantum computing (2019).

[197] A. W. Cross, L. S. Bishop, J. A. Smolin et al., Open Quantum Assembly Language,
arXiv:1707.03429 (2017).

[198] F. Motzoi, J. M. Gambetta, P. Rebentrost et al., Simple Pulses for Elimination of Leakage in
Weakly Nonlinear Qubits, Phys. Rev. Lett. 103, 110501 (2009).

[199] J. M. Chow, L. DiCarlo, J. M. Gambetta et al., Optimized driving of superconducting artificial
atoms for improved single-qubit gates, Phys. Rev. A 82, 040305 (2010).

[200] J. M. Chow, J. M. Gambetta, A. W. Cross et al., Microwave-activated conditional-phase gate
for superconducting qubits, New J. Phys. 15, 115012 (2013).



Bibliography 137

[201] M. Fingerhuth, T. Babej and P. Wittek, Open source software in quantum computing, PLOS
ONE 13, e0208561 (2018).

[202] F. Tacchino, A. Chiesa, M. D. LaHaye et al., Digital Quantum Simulations of Spin Models on
Hybrid Platform and Near-Term Quantum Processors, Proceedings 12, 24 (2019).

[203] D. Gatteschi, R. Sessoli and J. Villain, Molecular Nanomagnets, Oxford University Press, New
York, USA (2006).

[204] J. Johansson, P. Nation and F. Nori, QuTiP: An open-source Python framework for the dy-
namics of open quantum systems, Comput. Phys. Commun. 183, 1760–1772 (2012).

[205] J. Johansson, P. Nation and F. Nori, QuTiP 2: A Python framework for the dynamics of open
quantum systems, Comput. Phys. Commun. 184, 1234–1240 (2013).

[206] A. A. Clerk, M. H. Devoret, S. M. Girvin et al., Introduction to quantum noise, measurement,
and amplification, Rev. Mod. Phys. 82, 1155–1208 (2010).

[207] D. Sank, E. Jeffrey, J. Mutus et al., Fast scalable state measurement with superconducting
qubits, Phys. Rev. Lett. 112, 190504 (2014).

[208] A. Furrer and O. Waldmann, Magnetic cluster excitations, Rev. Mod. Phys. 85, 367–420
(2013).

[209] C. Schröder, H. Nojiri, J. Schnack et al., Competing Spin Phases in Geometrically Frustrated
Magnetic Molecules, Phys. Rev. Lett. 94, 017205 (2005).

[210] A. M. Todea, A. Merca, H. Bögge et al., Extending the {(Mo)Mo5}12m30 Capsule Kepler-
ate Sequence: A {Cr30} Cluster ofS=3/2 Metal Centers with a {Na(H2O)12} Encapsulate,
Angew. Chem., Int. Ed. 46, 6106–6110 (2007).

[211] G. F. S. Whitehead, F. Moro, G. A. Timco et al., A Ring of Rings and Other Multicomponent
Assemblies of Cages, Angewandte Chemie International Edition 52, 9932–9935 (2013).

[212] A. Baniodeh, N. Magnani, Y. Lan et al., High spin cycles: topping the spin record for a single
molecule verging on quantum criticality, npj Quantum Mater. 3, 10 (2018).

[213] M. L. Baker, T. Guidi, S. Carretta et al., Spin dynamics of molecular nanomagnets unravelled
at atomic scale by four-dimensional inelastic neutron scattering, Nat. Phys. 8, 906–911 (2012).

[214] E. Garlatti, T. Guidi, S. Ansbro et al., Portraying entanglement between molecular qubits with
four-dimensional inelastic neutron scattering, Nat. Commun. 8, 14543 (2017).

[215] A. Chiesa, T. Guidi, S. Carretta et al., Magnetic Exchange Interactions in the Molecular
Nanomagnet Mn 12, Phys. Rev. Lett. 119, 217202 (2017).

[216] S. W. Lovesey, Theory of Neutron Scattering from Condensed Matter, Oxford University Press,
Oxford, UK (2003).

[217] S. S. Eaton, G. R. Eaton and C. K. Chang, Synthesis and geometry determination of cofacial
diporphyrins. EPR spectroscopy of dicopper diporphyrins in frozen solution, Journal of the
American Chemical Society 107, 3177–3184 (1985).

[218] S. Hill and W. K. Wootters, Entanglement of a Pair of Quantum Bits, Phys. Rev. Lett. 78,
5022–5025 (1997).

[219] W. K. Wootters, Entanglement of Formation of an Arbitrary State of Two Qubits, Phys. Rev.
Lett. 80, 2245–2248 (1998).

[220] W. K. Wootters, Entanglement of formation and concurrence, Quantum Inf. Comput. 1, 27–44
(2001).



138 Bibliography

[221] D. Loss and D. P. DiVincenzo, Quantum computation with quantum dots, Phys. Rev. A 57,
120 (1998).

[222] L. M. K. Vandersypen and M. A. Eriksson, Quantum computing with semiconductor spins,
Physics Today 72, 38–45 (2019).

[223] J. M. Elzerman, R. Hanson, L. H. Willems van Beveren et al., Single-shot read-out of an
individual electron spin in a quantum dot, Nature 430, 431–435 (2004).

[224] J. R. Petta, A. C. Johnson, J. M. Taylor et al., Coherent Manipulation of Coupled Electron
Spins in Semiconductor Quantum Dots, Science 309, 2180 (2005).

[225] R. Hanson, L. P. Kouwenhoven, J. R. Petta et al., Spins in few-electron quantum dots, Rev.
Mod. Phys. 79, 1217–1265 (2007).

[226] D. M. Zajac, A. J. Sigillito, M. Russ et al., Resonantly driven CNOT gate for electron spins,
Science 359, 439 (2018).

[227] M. Veldhorst, C. H. Yang, J. C. C. Hwang et al., A two-qubit logic gate in silicon, Nature
526, 410–414 (2015).

[228] T. F. Watson, S. G. J. Philips, E. Kawakami et al., A programmable two-qubit quantum
processor in silicon, Nature 555, 633 (2018).

[229] A. Noiri, T. Nakajima, J. Yoneda et al., A fast quantum interface between different spin qubit
encodings, Nat. Commun. 9, 5066 (2018).

[230] W. Huang, C. H. Yang, K. W. Chan et al., Fidelity benchmarks for two-qubit gates in silicon,
Nature (2019).

[231] D. D. Awschalom, L. C. Bassett, A. S. Dzurak et al., Quantum Spintronics: Engineering and
Manipulating Atom-Like Spins in Semiconductors, Science 339, 1174 (2013).

[232] A. Morello, J. J. Pla, F. A. Zwanenburg et al., Single-shot readout of an electron spin in
silicon, Nature 467, 687–691 (2010).

[233] J. J. Pla, K. Y. Tan, J. P. Dehollain et al., A single-atom electron spin qubit in silicon, Nature
489, 541–545 (2012).

[234] R. Kalra, A. Laucht, C. D. Hill et al., Robust Two-Qubit Gates for Donors in Silicon Controlled
by Hyperfine Interactions, Phys. Rev. X 4, 021044 (2014).

[235] G. Tosi, F. A. Mohiyaddin, V. Schmitt et al., Silicon quantum processor with robust long-
distance qubit couplings, Nat. Commun. 8, 450 (2017).

[236] Y. He, S. K. Gorman, D. Keith et al., A two-qubit gate between phosphorus donor electrons
in silicon, Nature 571, 371–375 (2019).

[237] C. E. Bradley, J. Randall, M. H. Abobeih et al., A Ten-Qubit Solid-State Spin Register with
Quantum Memory up to One Minute, Phys. Rev. X 9, 031045 (2019).

[238] S. Ferretti and D. Gerace, Single-photon nonlinear optics with Kerr-type nanostructured ma-
terials, Phys. Rev. B 85, 033303 (2012).

[239] H. Flayac, D. Gerace and V. Savona, An all-silicon single-photon source by unconventional
photon blockade, Sci. Rep. 5, 11223 (2015).

[240] G. Muñoz-Matutano, A. Wood, M. Johnsson et al., Emergence of quantum correlations from
interacting fibre-cavity polaritons, Nat. Mater. 18, 213–218 (2019).



Bibliography 139

[241] A. Delteil, T. Fink, A. Schade et al., Towards polariton blockade of confined exciton–polaritons,
Nat. Mater. 18, 219–222 (2019).

[242] D. Gerace, H. E. Türeci, A. Imamoglu et al., The quantum-optical Josephson interferometer,
Nat. Phys. 5, 281 (2009).

[243] S. Lloyd and S. L. Braunstein, Quantum Computation over Continuous Variables, Phys. Rev.
Lett. 82, 4 (1999).

[244] N. C. Menicucci, P. van Loock, M. Gu et al., Universal Quantum Computation with
Continuous-Variable Cluster States, Phys. Rev. Lett. 97, 110501 (2006).

[245] C. Weedbrook, S. Pirandola, R. García-Patrón et al., Gaussian quantum information, Rev.
Mod. Phys. 84, 621–669 (2012).

[246] N. Killoran, T. R. Bromley, J. M. Arrazola et al., Continuous-variable quantum neural net-
works, arXiv:1806.06871 (2018).

[247] J. Ferrando-Soria, E. Moreno Pineda, A. Chiesa et al., A modular design of molecular qubits
to implement universal quantum gates, Nat. Commun. 7, 11377 (2016).

[248] M. Atzori, A. Chiesa, E. Morra et al., A two-qubit molecular architecture for electron-mediated
nuclear quantum simulation, Chem. Sci. 9, 6183–6192 (2018).

[249] R. Hussain, G. Allodi, A. Chiesa et al., Coherent Manipulation of a Molecular Ln-Based
Nuclear Qudit Coupled to an Electron Qubit, J. Am. Chem. Soc. 140, 9814–9818 (2018).

[250] H. Levine, A. Keesling, A. Omran et al., High-fidelity control and entanglement of rydberg-
atom qubits, Phys. Rev. Lett. 121, 123603 (2018).

[251] M. Saffman, Quantum computing with atomic qubits and rydberg interactions: progress and
challenges, J. Phys. B: At., Mol. Opt. Phys. 49, 202001 (2016).

[252] Z.-L. Xiang, S. Ashhab, J. Q. You et al., Hybrid quantum circuits: Superconducting circuits
interacting with other quantum systems, Rev. Mod. Phys. 85, 623 (2013).

[253] G. Kurizki, P. Bertet, Y. Kubo et al., Quantum technologies with hybrid systems, PNAS 112,
3866 (2015).

[254] N. Bar-Gill, L. M. Pham, A. Jarmola et al., Solid-state electronic spin coherence time ap-
proaching one second, Nat. Commun. 4, 1743 (2013).

[255] K. Saeedi, S. Simmons, J. Z. Salvail et al., Room-Temperature Quantum Bit Storage Exceeding
39 Minutes Using Ionized Donors in Silicon-28, Science 342, 830–833 (2013).

[256] A. Imamoğlu, Cavity QED Based on Collective Magnetic Dipole Coupling: Spin Ensembles
as Hybrid Two-Level Systems, Phys. Rev. Lett. 102, 083602 (2009).

[257] J. H. Wesenberg, A. Ardavan, G. A. D. Briggs et al., Quantum Computing with an Electron
Spin Ensemble, Phys. Rev. Lett. 103, 070502 (2009).

[258] P. Rabl, D. DeMille, J. M. Doyle et al., Hybrid Quantum Processors: Molecular Ensembles as
Quantum Memory for Solid State Circuits, Phys. Rev. Lett. 97, 033003 (2006).

[259] D. Petrosyan, G. Bensky, G. Kurizki et al., Reversible state transfer between superconducting
qubits and atomic ensembles, Phys. Rev. A 79, 040304 (2009).

[260] J. Verdú, H. Zoubi, C. Koller et al., Strong Magnetic Coupling of an Ultracold Gas to a
Superconducting Waveguide Cavity, Phys. Rev. Lett. 103, 043603 (2009).



140 Bibliography

[261] Y. Ping, E. M. Gauger and S. C. Benjamin, Measurement-based quantum computing with a
spin ensemble coupled to a stripline cavity, New J. Phys. 14, 013030 (2012).

[262] A. Chiesa, P. Santini, D. Gerace et al., Long-lasting hybrid quantum information processing
in a cavity-protection regime, Phys. Rev. B 93, 094432 (2016).

[263] P.-B. Li, Z.-L. Xiang, P. Rabl et al., Hybrid Quantum Device with Nitrogen-Vacancy Centers
in Diamond Coupled to Carbon Nanotubes, Phys. Rev. Lett. 117, 015502 (2016).

[264] P.-B. Li, Y.-C. Liu, S.-Y. Gao et al., Hybrid Quantum Device Based on NV Centers in Dia-
mond Nanomechanical Resonators Plus Superconducting Waveguide Cavities, Phys. Rev. Appl.
4, 044003 (2015).

[265] S. D. Hogan, J. A. Agner, F. Merkt et al., Driving Rydberg-Rydberg Transitions from a Copla-
nar Microwave Waveguide, Phys. Rev. Lett. 108, 063004 (2012).

[266] C. Hermann-Avigliano, R. C. Teixeira, T. L. Nguyen et al., Long coherence times for Rydberg
qubits on a superconducting atom chip, Phys. Rev. A 90, 040502 (2014).

[267] M. Poot and H. S. J. van der Zant, Mechanical systems in the quantum regime, Physics Reports
511, 273–335 (2012).

[268] M. Aspelmeyer, T. J. Kippenberg and F. Marquardt, Cavity optomechanics, Rev. Mod. Phys.
86, 1391–1452 (2014).

[269] S. Rips and M. J. Hartmann, Quantum Information Processing with Nanomechanical Qubits,
Phys. Rev. Lett. 110, 120503 (2013).

[270] D. Rugar, R. Budakian, H. J. Mamin et al., Single spin detection by magnetic resonance force
microscopy, Nature 430, 329–332 (2004).

[271] M. Poggio and C. L. Degen, Force-detected nuclear magnetic resonance: recent advances and
future challenges, Nanotechnology 21, 342001 (2010).

[272] S. Barzanjeh, S. Guha, C. Weedbrook et al., Microwave Quantum Illumination, Phys. Rev.
Lett. 114, 080503 (2015).

[273] A. M. Jayich, J. C. Sankey, B. M. Zwickl et al., Dispersive optomechanics: a membrane inside
a cavity, New J. Phys. 10, 095008 (2008).

[274] J. D. Thompson, B. M. Zwickl, A. M. Jayich et al., Strong dispersive coupling of a high-finesse
cavity to a micromechanical membrane, Nature 452, 72–75 (2008).

[275] R. W. Andrews, R. W. Peterson, T. P. Purdy et al., Bidirectional and efficient conversion
between microwave and optical light, Nat. Phys. 10, 321–326 (2014).

[276] I. Wilson-Rae, N. Nooshi, W. Zwerger et al., Theory of Ground State Cooling of a Mechanical
Oscillator Using Dynamical Backaction, Phys. Rev. Lett. 99, 093901 (2007).

[277] F. Marquardt, J. P. Chen, A. A. Clerk et al., Quantum Theory of Cavity-Assisted Sideband
Cooling of Mechanical Motion, Phys. Rev. Lett. 99, 093902 (2007).

[278] T. A. Palomaki, J. D. Teufel, R. W. Simmonds et al., Entangling Mechanical Motion with
Microwave Fields, Science 342, 710–713 (2013).

[279] J. D. Teufel, D. Li, M. S. Allman et al., Circuit cavity electromechanics in the strong-coupling
regime, Nature 471, 204–208 (2011).

[280] W. P. Bowen and G. J. Milburn, Quantum Optomechanics, CRC Press, Boca Raton, FL, USA
(2016).



Bibliography 141

[281] J. D. Teufel, T. Donner, D. Li et al., Sideband cooling of micromechanical motion to the
quantum ground state, Nature 475, 359–363 (2011).

[282] T. A. Palomaki, J. W. Harlow, J. D. Teufel et al., Coherent state transfer between itinerant
microwave fields and a mechanical oscillator, Nature 495, 210–214 (2013).

[283] M. D. LaHaye, J. Suh, P. M. Echternach et al., Nanomechanical measurements of a supercon-
ducting qubit, Nature 459, 960–964 (2009).

[284] A. D. O’Connell, M. Hofheinz, M. Ansmann et al., Quantum ground state and single-phonon
control of a mechanical resonator, Nature 464, 697–703 (2010).

[285] J.-M. Pirkkalainen, S. U. Cho, J. Li et al., Hybrid circuit cavity quantum electrodynamics with
a micromechanical resonator, Nature 494, 211–215 (2013).

[286] J.-M. Pirkkalainen, S. U. Cho, F. Massel et al., Cavity optomechanics mediated by a quantum
two-level system, Nat. Commun. 6, 6981 (2015).

[287] F. Rouxinol, Y. Hao, F. Brito et al., Measurements of nanoresonator-qubit interactions in a
hybrid quantum electromechanical system, Nanotechnology 27, 364003 (2016).

[288] V. Singh, S. J. Bosman, B. H. Schneider et al., Optomechanical coupling between a multilayer
graphene mechanical resonator and a superconducting microwave cavity, Nat. Nanotechnol. 9,
820–824 (2014).

[289] B. H. Schneider, V. Singh, W. J. Venstra et al., Observation of decoherence in a carbon
nanotube mechanical resonator, Nat. Commun. 5, 5819 (2014).

[290] J. Moser, A. Eichler, J. Güttinger et al., Nanotube mechanical resonators with quality factors
of up to 5 million, Nat. Nanotechnol. 9, 1007–1011 (2014).

[291] N. Ares, T. Pei, A. Mavalankar et al., Resonant Optomechanics with a Vibrating Carbon
Nanotube and a Radio-Frequency Cavity, Phys. Rev. Lett. 117, 170801 (2016).

[292] P. Weber, J. Güttinger, I. Tsioutsios et al., Coupling Graphene Mechanical Resonators to
Superconducting Microwave Cavities, Nano Letters 14, 2854–2860 (2014).

[293] X. Song, M. Oksanen, J. Li et al., Graphene Optomechanics Realized at Microwave Frequen-
cies, Phys. Rev. Lett. 113, 027404 (2014).

[294] I. Kozinsky, H. W. C. Postma, I. Bargatin et al., Tuning nonlinearity, dynamic range, and
frequency of nanomechanical resonators, Appl. Phys. Lett. 88, 253101 (2006).

[295] M. D. LaHaye, private communication (2017).

[296] F. Petruccione and H. Breuer, The Theory of Open Quantum Systems, Oxford University
Press, Oxford, UK (2002).

[297] H. W. C. Postma, I. Kozinsky, A. Husain et al., Dynamic range of nanotube- and nanowire-
based electromechanical systems, Appl. Phys. Lett. 86, 223105 (2005).

[298] S. Rips, I. Wilson-Rae and M. J. Hartmann, Nonlinear nanomechanical resonators for quan-
tum optoelectromechanics, Phys. Rev. A 89, 013854 (2014).

[299] M. Agarwal, S. A. Chandorkar, R. N. Candler et al., Optimal drive condition for nonlinearity
reduction in electrostatic microresonators, Appl. Phys. Lett. 89, 214105 (2006).

[300] R. Khan, F. Massel and T. T. Heikkilä, Tension-induced nonlinearities of flexural modes in
nanomechanical resonators, Phys. Rev. B 87, 235406 (2013).



142 Bibliography

[301] Y.-X. Liu, A. Miranowicz, Y. B. Gao et al., Qubit-induced phonon blockade as a signature of
quantum behavior in nanomechanical resonators, Phys. Rev. A 82, 032101 (2010).

[302] I. M. Pop, K. Geerlings, G. Catelani et al., Coherent suppression of electromagnetic dissipation
due to superconducting quasiparticles, Nature 508, 369–372 (2014).

[303] J. J. Viennot, X. Ma and K. W. Lehnert, Phonon-Number-Sensitive Electromechanics, Phys.
Rev. Lett. 121, 183601 (2018).

[304] S. Bravyi, D. Gosset and R. König, Quantum advantage with shallow circuits, Science 362,
308–311 (2018).

[305] V. Dunjko, Y. Ge and J. I. Cirac, Computational Speedups Using Small Quantum Devices,
Phys. Rev. Lett. 121, 250501 (2018).

[306] F. Tacchino, C. Macchiavello, D. Gerace et al., An artificial neuron implemented on an actual
quantum processor, npj Quantum Inf. 5, 26 (2019).

[307] F. Tacchino, P. Barkoutsos, C. Macchiavello et al., Quantum implementation of an artificial
feed-forward neural network, arXiv:1912.12486 (2019).

[308] G. Carleo, I. Cirac, K. Cranmer et al., Machine learning and the physical sciences,
arXiv:1903.10563 (2019).

[309] M. Schuld, I. Sinayskiy and F. Petruccione, An introduction to quantum machine learning,
Contemporary Physics 56, 172–185 (2015).

[310] A. Perdomo-Ortiz, M. Benedetti, J. Realpe-Gómez et al., Opportunities and challenges for
quantum-assisted machine learning in near-term quantum computers, Quantum Sci. Technol.
3, 030502 (2018).

[311] M. Benedetti, E. Lloyd and S. Sack, Parameterized quantum circuits as machine learning
models, arXiv:1906.07682 (2019).

[312] Y. Nam, Y. Su and D. Maslov, Approximate Quantum Fourier Transform with O(n log(n)) T
gates, arXiv:1803.04933 (2018).

[313] L. Wossnig, Z. Zhao and A. Prakash, Quantum Linear System Algorithm for Dense Matrices,
Phys. Rev. Lett. 120, 050502 (2018).

[314] A. W. Harrow, A. Hassidim and S. Lloyd, Quantum Algorithm for Linear Systems of Equa-
tions, Phys. Rev. Lett. 103, 150502 (2009).

[315] V. Giovannetti, S. Lloyd and L. Maccone, Quantum Random Access Memory, Phys. Rev. Lett.
100, 160501 (2008).

[316] S. Lloyd, M. Mohseni and P. Rebentrost, Quantum principal component analysis, Nat. Phys.
10, 631–633 (2014).

[317] S. Lloyd, M. Mohseni and P. Rebentrost, Quantum algorithms for supervised and unsupervised
machine learning, arXiv:1307.0411 (2013).

[318] M. Schuld, M. Fingerhuth and F. Petruccione, Implementing a distance-based classifier with
a quantum interference circuit, EPL (Europhysics Letters) 119, 60002 (2017).

[319] M. Schuld, A. Bocharov, K. Svore et al., Circuit-centric quantum classifiers, arXiv:1804.00633
(2018).

[320] E. Farhi and H. Neven, Classification with Quantum Neural Networks on Near Term Proces-
sors, arXiv:1802.06002 (2018).



Bibliography 143

[321] V. Havlíček, A. D. Córcoles, K. Temme et al., Supervised learning with quantum-enhanced
feature spaces, Nature 567, 209 (2019).

[322] M. Schuld and N. Killoran, Quantum Machine Learning in Feature Hilbert Spaces, Phys. Rev.
Lett. 122, 040504 (2019).

[323] R. Ghobadi, J. S. Oberoi and E. Zahedinejhad, The Power of One Qubit in Machine Learning,
arXiv:1905.01390 (2019).

[324] A. Pérez-Salinas, A. Cervera-Lierta, E. Gil-Fuster et al., Data re-uploading for a universal
quantum classifier, arXiv:1907.02085 (2019).

[325] A. W. Cross, G. Smith and J. A. Smolin, Quantum learning robust against noise, Phys. Rev.
A 92, 012327 (2015).

[326] D. Ristè, M. P. da Silva, C. A. Ryan et al., Demonstration of quantum advantage in machine
learning, npj Quantum Inf. 3, 16 (2017).

[327] H. Buhrman, R. Cleve, J. Watrous et al., Quantum Fingerprinting, Phys. Rev. Lett. 87,
167902 (2001).

[328] N. Wiebe, A. Kapoor and K. Svore, Quantum Algorithms for Nearest-Neighbor Methods for
Supervised and Unsupervised Learning, arXiv:1401.2142 (2014).

[329] P. Rebentrost, M. Mohseni and S. Lloyd, Quantum Support Vector Machine for Big Data
Classification, Phys. Rev. Lett. 113, 130503 (2014).

[330] W. S. McCulloch and W. Pitts, A logical calculus of the ideas immanent in nervous activity,
The bulletin of mathematical biophysics 5, 115–133 (1943).

[331] F. Rosenblatt, The Perceptron: A perceiving and recognizing automaton, Tech. Rep. 85-460-1,
Cornell Areonautical Laboratory, Inc. (1957).

[332] D. E. Rumelhart, G. E. Hinton and R. J. Williams, Learning representations by back-
propagating errors, Nature 323, 533–536 (1986).

[333] G. Cybenko, Approximation by superpositions of a sigmoidal function, Math. Control Signals
Syst. 2, 303–314 (1989).

[334] K. Hornik, Approximation capabilities of multilayer feedforward networks, Neural Networks 4
(1991).

[335] J. M. Zurada, Introduction to Artificial Neural Systems, West Group (1992).

[336] R. Rojas, Neural Networks: A Systematic Introduction, Springer (1996).

[337] J. J. Hopfield, Neural networks and physical systems with emergent collective computational
abilities, PNAS 79, 2554 (1982).

[338] R. McEliece, E. Posner, E. Rodemich et al., The capacity of the Hopfield associative memory,
IEEE Transactions on Information Theory 33 (1987).

[339] M. Schuld, I. Sinayskiy and F. Petruccione, The quest for a Quantum Neural Network, Quan-
tum Inf. Process. 13, 2567–2586 (2014).

[340] P. Rebentrost, T. R. Bromley, C. Weedbrook et al., Quantum Hopfield neural network, Phys.
Rev. A 98, 042308 (2018).

[341] M. V. Altaisky, Quantum neural network, arXiv:quant-ph/0107012 (2001).

[342] M. Schuld, I. Sinayskiy and F. Petruccione, Simulating a perceptron on a quantum computer,
Phys. Lett. A 379, 660–663 (2015).



144 Bibliography

[343] W. Hu, Towards a Real Quantum Neuron, Natural Science 10, 99–109 (2018).

[344] E. Torrontegui and J. J. Garcia-Ripoll, Unitary quantum perceptron as efficient universal
approximator, EPL (Europhysics Letters) 125 (2019).

[345] Y. Cao, G. G. Guerreschi and A. Aspuru-Guzik, Quantum Neuron: an elementary building
block for machine learning on quantum computers, arXiv:1711.11240 (2017).

[346] B. Ricks and D. Ventura, Training a Quantum Neural Network, Advances in Neural Informa-
tion Processing Systems 16, 1–8 (2003).

[347] N. Wiebe, A. Kapoor and K. M. Svore, Quantum Perceptron Models, arXiv:1602.04799 (2016).

[348] Y. Liao, O. Dahlsten, D. Ebler et al., Quantum advantage in training binary neural networks,
arXiv:1810.12948 (2018).

[349] K. H. Wan, O. Dahlsten, H. Kristjánsson et al., Quantum generalisation of feedforward neural
networks, npj Quantum Inf. 3, 36 (2017).

[350] G. Verdon, J. Pye and M. Broughton, A Universal Training Algorithm for Quantum Deep
Learning, arXiv:1806.09729 (2018).

[351] I. Goodfellow, J. Pouget-Abadie, M. Mirza et al., Generative Adversarial Nets, in Proceedings
of the International Conference on Neural Information Processing Systems, pp. 2672–2680
(2014).

[352] J. Romero, J. P. Olson and A. Aspuru-Guzik, Quantum autoencoders for efficient compression
of quantum data, Quantum Sci. Technol. 2, 045001 (2017).

[353] L. Lamata, U. Alvarez-Rodriguez, J. D. Martín-Guerrero et al., Quantum autoencoders via
quantum adders with genetic algorithms, Quantum Sci. Technol. 4, 014007 (2018).

[354] Y. Ding, L. Lamata, M. Sanz et al., Experimental Implementation of a Quantum Autoencoder
via Quantum Adders, Adv. Quantum Technol. 2, 1800065 (2019).

[355] D. Silver, A. Huang, C. J. Maddison et al.,Mastering the game of Go with deep neural networks
and tree search, Nature 529, 484–489 (2016).

[356] V. Dunjko, J. M. Taylor and H. J. Briegel, Quantum-Enhanced Machine Learning, Phys. Rev.
Lett. 117, 130501 (2016).

[357] L. Lamata, Basic protocols in quantum reinforcement learning with superconducting circuits,
Sci. Rep. 7, 1609 (2017).

[358] T. Sriarunothai, S. Wölk, G. S. Giri et al., Speeding-up the decision making of a learning agent
using an ion trap quantum processor, Quantum Sci. Technol. 4, 015014 (2018).

[359] J. S. Otterbach, R. Manenti, N. Alidoust et al., Unsupervised Machine Learning on a Hybrid
Quantum Computer, arXiv:1712.05771 (2017).

[360] S. H. Adachi and M. P. Henderson, Application of Quantum Annealing to Training of Deep
Neural Networks, arXiv:1510.06356 (2015).

[361] M. H. Amin, E. Andriyash, J. Rolfe et al., Quantum Boltzmann Machine, Phys. Rev. X 8,
021050 (2018).

[362] M. Benedetti, J. Realpe-Gómez, R. Biswas et al., Estimation of effective temperatures in
quantum annealers for sampling applications: A case study with possible applications in deep
learning, Phys. Rev. A 94, 022308 (2016).



Bibliography 145

[363] L. G. Wright and P. L. McMahon, The Capacity of Quantum Neural Networks,
arXiv:1908.01364 (2019).

[364] S. Ghosh, A. Opala, M. Matuszewski et al., Quantum reservoir processing, npj Quantum Inf.
5, 35 (2019).

[365] L. B. Kristensen, M. Degroote, P. Wittek et al., An Artificial Spiking Quantum Neuron,
arXiv:1907.06269 (2019).

[366] J. Schmidhuber, Deep learning in neural networks: An overview, Neural Networks p. 33 (2015).

[367] C. D. Schuman, T. E. Potok, R. M. Patton et al., A Survey of Neuromorphic Computing and
Neural Networks in Hardware, arXiv:1705.06963 (2017).

[368] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza et al., A million spiking-neuron integrated circuit
with a scalable communication network and interface, Science 345, 668 (2014).

[369] M. Sanz, L. Lamata and E. Solano, Quantum memristors in quantum photonics, APL Pho-
tonics 3, 080801 (2018).

[370] F. Neukart and S.-A. Moraru, On Quantum Computers and Artificial Neural Networks, Signal
Processing Research 2, 12 (2013).

[371] M. Rossi, M. Huber, D. Bruß et al., Quantum hypergraph states, New J. Phys. 15, 113022
(2013).

[372] M. Ghio, D. Malpetti, M. Rossi et al., Multipartite entanglement detection for hypergraph
states, J. Phys. A: Math. Theor. 51, 045302 (2018).

[373] C. M. Bishop, Pattern Recognition and Machine Learning, Springer (2006).





List of Publications

Scientific Journals

1. F. Tacchino, A. Chiesa, S. Carretta and D. Gerace, Quantum Computers as Universal
Quantum Simulators: State-of-the-Art and Perspectives, Advanced Quantum Technologies,
1900052 (2019). DOI: 10.1002/qute.201900052. Pre-print at arXiv:1907.03505.

2. F. Tacchino, A. Succurro, O. Ebenhöh and D. Gerace, Optimal efficiency of the Q-cycle mech-
anism around physiological temperatures from an open quantum systems approach, Scientific
Reports 9, 16657 (2019). DOI: 10.1038/s41598-019-52842-x. Pre-print at arXiv:1807.02332.

3. F. Tacchino, C. Macchiavello, D. Gerace and D. Bajoni, An Artificial Neuron Implemented
on an Actual Quantum Processor, npj Quantum Information 5, 26 (2019).
DOI: 10.1038/s41534-019-0140-4. Pre-print at arXiv:1811.02266.

4. A. Chiesa, F. Tacchino, M. Grossi, P. Santini, I. Tavernelli, D. Gerace and S. Carretta,
Quantum hardware simulating four-dimensional inelastic neutron scattering, Nature Physics
15, 455 (2019). DOI: 10.1038/s41567-019-0437-4. Pre-print at arXiv:1809.07974.

5. F. Tacchino, A. Chiesa, M. D. LaHaye, S. Carretta and D. Gerace, Electromechanical Quan-
tum Simulators, Physical Review B 97, 214302 (2018). DOI: 10.1103/PhysRevB.97.214302.
Pre-print at arXiv:1711.00051.

6. F. Tacchino, A. Auffèves, M. F. Santos and D. Gerace, Steady State Entanglement beyond
Thermal Limits, Physical Review Letters 120, 063604 (2018).
DOI: 10.1103/PhysRevLett.120.063604. Pre-print at arXiv:1710.01377.

Pre-print manuscripts

7. F. Tacchino, P. Barkoutsos, C. Macchiavello, I. Tavernelli, D. Gerace and D. Bajoni, Quan-
tum implementation of an artificial feed-forward neural network, arXiv:1912.12486 (2019).

Conference Proceedings

8. F. Tacchino, A. Chiesa, M. D. LaHaye, I. Tavernelli, S. Carretta and D. Gerace, Digital Quan-
tum Simulations of Spin Models on Hybrid Platform and Near-Term Quantum Processors, Pro-
ceedings 12, 24 (2019). DOI: 10.3390/proceedings2019012024. Pre-print at arXiv:1902.04971.

9. F. Tacchino, M. Grossi, D. Gerace, A. Chiesa, P. Santini, S. Carretta, and I. Tavernelli,
Efficient Quantum Simulation of Dynamic Correlations on Superconducting Quantum Com-
puters, Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of
America, 2019), paper JTh5C.3 (postdeadline). DOI: 10.1364/CLEO_AT.2019.JTh5C.3.

147

https://doi.org/10.1002/qute.201900052
http://arxiv.org/abs/1907.03505
https://doi.org/10.1038/s41598-019-52842-x
http://arxiv.org/abs/1807.02332
https://doi.org/10.1038/s41534-019-0140-4
http://arxiv.org/abs/1811.02266
https://doi.org/10.1038/s41567-019-0437-4
http://arxiv.org/abs/1809.07974
https://doi.org/10.1103/PhysRevB.97.214302
http://arxiv.org/abs/1711.00051
https://doi.org/10.1103/PhysRevLett.120.063604
http://arxiv.org/abs/1710.01377
http://arxiv.org/abs/1912.12486
https://doi.org/10.3390/proceedings2019012024
http://arxiv.org/abs/1902.04971
https://doi.org/10.1364/CLEO_AT.2019.JTh5C.3




Acknowledgments

In the last proposition of his Tractatus Logico-Philosophicus, L. Wittgenstein suggests that “whereof
one cannot speak, thereof one must be silent.” It is certainly difficult to rival with such complete,
authoritative and liberating conclusion, let alone disagree with its prescription. For once, I will
however try to formulate into words the immense sense of gratitude that I feel for those who con-
tributed, in many different ways, towards the successful completion of this work.

First and foremost, my respect and admiration go to my supervisor, Prof. Dario Gerace, who
tirelessly encouraged and assisted me over the last few years. A mentor and a friend, he guided me
outside the PhD box and into the fascinating world of scientific research. I fully owe my experience
as a graduate student, well above the average in terms of personal and professional growth, to
his initiative and openness. I also gratefully acknowledge the support and the many opportunities
offered by the University of Pavia and by the Graduate School in Physics, the latter under the
effective direction of Prof. L. C. Andreani.

I warmly thank Prof. L. Lamata and Prof. S. Montangero for their fast, careful review and very
positive assessment of this dissertation.

I has been an honor and a pleasure to interact with many talented scientists around the world.
I would like to thank in particular Dr. A. Auffèves and Prof. M. F. Santos, who welcomed me
in their scientific family and accompanied me towards my first publication; Prof. S. Carretta and
Dr. A. Chiesa, masters of molecular magnetism who gave crucial contributions to the results pre-
sented in Chapters 2 and 3 and to whom I am indebted for most of my knowledge in digital quantum
simulations; Prof. D. Bajoni and Prof. C. Macchiavello, who got me involved, with their inventive-
ness and profound knowledge of quantum information, in the engaging quest for quantum artificial
neurons; Dr. I. Tavernelli and Dr. P. Barkoutsos, who opened the doors of the IBM Research labo-
ratory in Zurich, sharing their valuable expertise and insight on quantum algorithms, software and
real processors; M. Grossi, who first introduced me to the IBM Q community and with whom I en-
joyed several discussions regarding the business side of quantum computing; Prof. M. D. LaHaye for
inviting me to visit Syracuse and for providing some of the beautiful images appearing in Chapter 3;
Prof. H. E. Türeci, together with his team in Princeton and Berkeley, for his kind hospitality, sup-
port and understanding; Prof. O. Ebenhöh and Dr. A. Succurro for their perseverance. I would also
like to mention Prof. M. Liscidini, who often took time to share with me his views on science and
academic life, and my fellow graduate students M. Passoni, M. Clementi, F. Garrisi and A. Barone
for good conversations and innumerable coffees.

Last but not least, a heartfelt thank you to L. Guglielmi for the beautiful cover illustration.

This work is dedicated to my parents, for hard work, integrity and patience are best taught by
example. I shall also thank my sister and grandparents, who took care of me from opposite sides.

The final lines, and the deepest love, are for Elisa. This is the last safe haven of my youth, and
here I am, once again, asking for your trust, strength and resilience. We both know I will only be
able to face the journey of life with you by my side: come what may, I will always be standing
by yours.

149


