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Chapter 1
Introduction

Exactly 50 years before the writing of this thesis, SLAC-MIT breakthrough ex-
periments on high-energy electron-proton scattering [1, 2] showed for the first
time that the proton was made of point-like constituents. Our understanding of
the strong force (i.e., the force which binds together quarks and gluons) has made
major steps since then, thanks to the joint e�orts of an ever-growing community
of researchers–and PhD students–around the world. Quantum ChromoDynamics
(QCD) is one of the building blocks of the Standard Model, and precise QCD pre-
dictions are crucial for physics studies at hadron colliders. However, despite the
many achievements of physics in the last decades, we cannot say yet that we have
a true comprehension of visible matter. We lack a proof for color confinement,
i.e., for the fact that colored particles are never observed alone, and we do not have
a clear understanding of how the physical properties of hadrons emerge from the
interaction of their constituents. For instance, we are not yet able to say how the
spin of the proton is generated from the spin of quarks and gluons and from their
orbital angular momentum, nor we clearly know how the nucleon constituents are
distributed in position and momentum.

The reason for our knowledge gaps is that QCD at hadronic scales reaches the
region where perturbation theory breaks down, due to the strength of the coupling,
so that theoretical calculations must resort to nonperturbative techniques. One such
technique is the calculation of Green functions on a discretized space-time lattice
(lattice QCD), but there is a limited number of observables that can be presently
calculated to good accuracy with this method. Besides lattice calculations, the
information we presently have on hadron physics comes from experimental mea-
surements. Factorization theorems allow us to reliably separate cross sections
into perturbative parts, which describe the actual high energy scattering of quarks
and gluons involved in the collision, and nonperturbative matrix elements, which
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1. Introduction

give the momentum and space distribution of these partons1 inside the nucleon.
The most well-known example of nonperturbative functions extracted in this way
is given by Parton Distribution Functions (PDFs). In a simplified picture, these
give the probability distribution for a parton to carry a certain fraction x of the
nucleon momentum, in a frame where this momentum is light-like. For PDFs a di-
rect calculation on the lattice—hence with Euclidean time—is not possible, since
this involves matrix elements of bilocal operators separated along the light-cone.
Only recently, pioneering methods to circumvent this problem have been proposed
[3]. Commonly extracted from the simultaneous analysis of di�erent experiments,
PDFs have reached an accuracy of few % over a wide kinematic range and are
continuously updated, also thanks to LHC data (see, e.g., [4–6]).

A study restricted to the longitudinal (light-like) momentum component of
partons is however not su�cient to unravel the mysteries of QCD dynamics inside
hadrons, as a complete description should include transverse momentum, which is
an independent degree of freedom. Moreover, we also need information on spatial
coordinates. Indeed, we cannot directly measure a wave-function in experiments,
but we can think of reconstructing it from the phase-space distribution of the
system, i.e., the analogue of the classical Liouville density for the case of a quantum
system. This kind of distributions are known as Wigner distributions. Due to the
uncertainty principle, they cannot be interpreted as probability distributions, and
are not even positive definite. In any case, they can be used to calculate any
expectation value of a system. Thus, to have the maximal information on its state,
we would have to measure the distribution of a parton in both momentum and
space coordinates.

Generalized Transverse Momentum Distributions (GMTDs), which can be
thought of as the Fourier-transforms of Wigner distributions, may potentially have
a connection with experiments. However, devising suitable observables for the
extraction of GTMDs is complicated, and only recently some proposals have been
presented (see, e.g., [7, 8] and references therein). In the meantime, Transverse
Momentum Distributions (TMDs), and Generalized Parton Distributions (GPDs),2
which correspond to projections of GTMDs, have been extensively studied on the
formal side, and some extractions from data have been performed. The uncertain-
ties on this functions, though, are still large and their key properties are often not
yet well determined.

Of the above functions, in this thesis we will concentrate on TMDs, describing
the probability distribution for partonic transverse momentum inside a nucleon.
Intrinsic transverse momentum received a lot of attention in recent years, due

1“Parton” is used to generally denote quarks and gluons, without distinction.
2Generalized Parton Distributions (GPDs) describe the distribution of partons in the impact

parameter sapce as well as the longitudinal momentum x. See [9] for a theoretical review.
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to its connection to the big puzzles of the strong force, but its potential role in
experimental observables was conjectured since the early days of QCD [10, 11]:
it was known that the transverse momentum (with respect to the beam axis) of
particles produced in hadronic collisions could originate either from the motion
of partons inside the nucleon or from the recoil against QCD radiation during
the hard scattering. The first clear evidences for intrinsic transverse momentum
were shown by Drell-Yan3 cross sections measured by hadronic accelerators at
Fermilab and CERN in the late ’70s – early ’80s [13, 14]. The observed rates
displayed a gaussian-like dependence on qT ,4 for qT . 1 GeV, whose width was
compatible with typical momentum scales of quarks inside the proton (see, e.g.,
[15]). However, theoretically sound studies had to wait for the improvement
of perturbative QCD techniques: QCD predicts a strong enhancement of gluon
emission at low qT , requiring the summation of infinitely many emissions and the
inclusion of a nonperturbative component to obtain a reliable result. A formalism
for the resummation of large contributions in transverse-momentum dependent
Drell-Yan cross sections was developed by Collins, Soper and Sterman (CSS) [16],
and made possible a consistent inclusion of both perturbative and nonperturbative
contributions in the same formula. This allowed to successfully describe Z-
production data measured at Tevatron during the ’90s and early 2000s, together
with earlier data at low energy [17–20]. Later, the formalism was extended
[21] to describe the transverse momentum of single hadrons produced in deep
inelastic scattering (a process commonly denoted as Semi Inclusive DIS, or SIDIS),
allowing for the description of collider data from DESY [22], as well as fixed target
data from both DESY and CERN (see, e.g., [23–25]). On the theoretical side, there
has been recently important progress, with the formal proof that CSS cross sections
can be interpreted in a factorized form in terms of transverse momentum dependent
parton distribution functions (TMDs) [26–28].

Despite these successes, major questions remain open. Present data seem not to
allow us to clearly determine the evolution of TMDs with respect to the exchanged
momentum Q2, nor their variation with the longitudinal momentum x, and quark
flavor. Even their shape in transverse momentum has not been sharply established:
while the works cited above agreed on a gaussian distribution, studies of newer
data seem to require di�erent shapes [25, 29, 30]. In this thesis, we present a
TMD study in Drell-Yan, including the most recent data, released from LHC.
To date, the only nonperturbative studies making use of these data are [29, 30],
where however theoretical predictions for some experiments are renormalized to

3Drell-Yan is the production of a lepton-antilepton pair in the collision of two hadrons, via the
electroweak annihilation of a quark and antiquark [12]. Although the term is commonly referred
to the case where the intermediate state is a virtual photon, in the following we will extend it to
Z-boson production.

4q
T

here denotes the transverse momentum of the lepton pair.
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1. Introduction

the integral of the experimental cross section. At the same time, in studies like
[31] a fair description of LHC data is obtained with the sole use of perturbative
resummation. At variance with [29, 30], in this work we compare to LHC data
without the use of normalization factors, thus making a study of both the shape and
absolute value of cross sections. This more direct comparison puts in evidence
the problem posed by modern data, especially those from ATLAS: since their
uncertainties reach the few ‰ level, it becomes contradictory trying to fit them
without taking into account also the uncertainties of theoretical formulas, which
are often larger. For this reason, we introduce collinear PDF uncertainties in the
calculation of the �2.

For what concerns Semi Inclusive Deep Inelastic Scattering, will show for the
first time a phenomenological study of TMDs beyond zeroth order in pQCD, high-
lighting the crucial e�ects of first order corrections: these are such to apparently
prevent any description of data beyond leading order. We provide a theoretical
explanation for this discrepancy, essentially based on an analysis of what is in
principle the kinematic region for the proper application of the TMD formalism.
The argument is supported by a study of the most recent data available.

TMDs are the theoretical tool for describing low values of transverse momen-
tum. A complete description of data requires the transition to ordinary (“collinear”)
pQCD at higher qT , where the observed transverse momentum is generated by hard
gluon emission. The understanding of the whole qT spectrum of data is essential
for a solid determination of the respective importance of perturbative and nonper-
turbative physics. However, the matching of the TMD and collinear formalisms
is known to present problems in practical applications [32]. What is more, an
analysis of SIDIS data in the framework of collinear pQCD has recently shown
serious discrepancies [33], which implies that we do not have presently a good un-
derstanding of high-qT data in the low energy regimes of SIDIS experiments. An
analogous analysis for collinear predictions in low-energy Drell-Yan is addressed
in this thesis, finding a similar issue in the description of data. The impact of
possible perturbative and non perturbative corrections to the collinear-factorized
formulas is analyzed. The size of the discrepancies and the similarities in the kine-
matics seem to point at a common origin of the problems in SIDIS and Drell-Yan,
and it is crucial to understand them before attempting a description of the whole
qT spectrum.

Transverse-momentum dependent cross sections acquire a particular interest
when some of the particles involved are polarized. Indeed, asymmetries that arise
as a consequence of polarization can provide precious information on nonperturba-
tive dynamics. One famous example are the asymmetries generated by the Sivers
TMD [34, 35], which are due to the correlation between the spin of a transversely
polarized nucleon and the momentum of the parton. The Sivers e�ect would not
exist without orbital motion of partons, and in model studies it can even be con-
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nected to the contribution of orbital angular momentum to the proton spin [36].
In this thesis we will deal with di�erent but still very interesting asymmetries, i.e.,
those arising in SIDIS when the target nucleon is polarized in the longitudinal
direction. These were the first single-spin asymmetries measured in SIDIS [37–
39], and have been studied in the TMD framework, although their description is
not unambigous [40–44] . However, a perturbative calculation for the matching
at higher qT was lacking. Therefore, we provide 1-loop results in collinear pQCD
and phenomenological predictions for a future Electron-Ion Collider, as well as a
comparison to the above data. The study of single-spin asymmetries in pQCD is
also interesting by itself, as they are “T-odd,” i.e., odd under naive time reversal,
which corresponds to the application of time reversal without interchanging initial
and final states in the scattering process. Perturbative T-odd e�ects are pure loop
e�ects, as they arise from the imaginary parts of absorptive amplitudes. As such
they have been long searched for in the past, but a clear comparison to data has
never been possible due to the small size of these phenomena.

The outline of the thesis is as follows: in Ch. 2 we introduce the kinematics
of Semi Inclusive Deep Inelastic Scattering and Drell-Yan, and the general de-
composition of cross sections in terms of hadronic structure functions. In Ch. 3
we summarize the theory of Transverse Momentum Distributions, presenting the
framework used in Ch. 4, where we report our phenomenological studies on TMDs
in SIDIS and Drell-Yan. In Ch. 5 we show the analysis of collinear factorization
in Drell-Yan at low energy at high transverse momentum In Ch. 6 we present the
results on spin asymmetries in SIDIS, providing our analytic calculation for the
involved structure functions, and numerical predictions for an EIC. We also show
a comparison to available HERMES data, to study the role of collinear-factorized
theory at low energies.

9



1. Introduction

10



Chapter 2
Transverse-Momentum-Dependent
cross sections: Semi-Inclusive Deep
Inelastic Scattering and Drell-Yan

In this Chapter, we summarize some of the most relevant aspects in the theoretical
description of Drell-Yan and Semi-Inclusive Deep Inelastic Scattering: after de-
scribing the kinematics of the processes, we review their factorization properties,
in particular for cross sections that are di�erential with respect to the transverse
momentum.

2.1 Deep Inelastic Scattering
In Deep Inelastic Scattering (DIS) a lepton scatters o� a nucleon, the nucleon is
destroyed, and, in the most inclusive case, only the outgoing lepton is observed:

`(l) + N(P) ! ` (l0) + X (2.1)

(particles momenta are indicated in parentheses, and N denotes a generic nucleon).
At leading order in the elctroweak coupling, the interaction is described by the
exchange of a single virtual photon or weak boson (although for simplicity the
formulae shown throughout the Chapter are for the case of virtual photon).

2.1.1 Kinematics
In this thesis, we will consider a frame of reference where the boson momentum
qµ is directed along the +ẑ direction and the nucleon momentum Pµ along �ẑ.
This is opposite to the most common convention in the literature on inclusive DIS,
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2. Transverse-Momentum-Dependent cross sections

but is in accordance with the usual convention for Semi-Inclusive DIS. Moreover,
if not specified otherwise, we will use the so-called infinite momentum frame, i.e.,
the frame where the boson has only spatial components. In light-cone coordinates:

Pµ =


Q

xB
p

2
,

xBM2

Q
p

2
, 0

�
,

qµ =

� Qp

2
,

Qp
2
, 0

�
.

(2.2)

In our calculations and in the following sections we will neglect hadron masses,1
so that the nucleon momentum will be light-like. The cross section is expressed
in terms of the following invariants:

⌅ the modulus of the boson virtuality

Q2 = �q2, (2.3)

which is required to be large, Q2 � ⇤2
QCD, for the applicability of asymptotic

freedom and perturbative QCD;

⌅ the squared center-of-mass energy of the lepton and the nucleon

s = (l + P)2 ' 2P · l; (2.4)

⌅ the invariant mass of the hadronic final state after interaction with the lepton

W2 = (q + P)2; (2.5)

⌅ the Bjorken variable xB , which in the parton model corresponds to the
fraction of momentum of the struck quark with respect to the nucleon,

xB =
Q2

2P · q
; (2.6)

⌅ the“inelasticity” y of the process, which in the nucleon rest frame corre-
sponds to the fraction of energy exchanged by the lepton,

y =
P · q
P · l

=
Q2

2xBs
. (2.7)

1See, for instance, [45, 46] for studies of hadron mass corrections.
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2.1. Deep Inelastic Scattering

2.1.2 Hadronic matrix elements and Parton Distribution Func-
tions

The cross section of process (2.1) can be expressed as

d� =
1
2s

��M̄��2 d(Lips), (2.8)

where 2s is the flux factor, d(Lips) is the Lorentz-invariant phase space

d(Lips) = (2⇡)4�4 (l + P � l0 � PX)
d3PX

(2⇡)32P0
X

d3l0

(2⇡)32l00
, (2.9)

while M is the Feynman amplitude for lepton-nucleon inelastic scattering

iM = u (l0, �0) �µu(l, �) e2

Q2
⌦
PX, SX

��Jµ(0)�� P, S
↵
. (2.10)

For simplicity, we will now consider the case of unpolarized scattering, and average
(sum) over the spin of initial (final) state particles:

��M̄��2 = 1
4

’
�,�0,S,S

X

|M|2 . (2.11)

The matrix element in (2.11) is commonly written as

��M̄��2 d3PX

(2⇡)32P0
X
=

e4

Q4 Lµ⌫W µ⌫, (2.12)

where Lµ⌫ is the (spin averaged) lepton tensor, which only depends on l, l0:

Lµ⌫ (l, l0) =
1
2

’
�,�0

(u (l0, �0)) �µu (l, �))⇤ (u (l0, �0)) �⌫u (l, �))

= �Q2gµ⌫ + 2
⇣
lµl0⌫ + l0µl⌫

⌘
,

(2.13)

and W µ⌫ is the hadron tensor, which is expressed in terms of hadronic matrix
elements as2

W µ⌫(q, P) = 1
2⇡

1
2

’
S

’
X

π
d3PX

(2⇡)3P0
X
(2⇡)4�(4) (q + P � PX)

hP, S |Jµ(0)| PXi hPX |J⌫(0)| P, Si .
(2.14)

2Summation over spin in the final state is intended.
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2. Transverse-Momentum-Dependent cross sections

Figure 2.1: The Feynman amplitude and its complex conjugate (cut diagram) for DIS in the parton
model.

The "deep inelastic" regime is defined by Q2, P · q ! 1, with xB kept fixed.
Considering the infinite momentum frame, relativistic time dilation and length
contraction in this regime are such that the interaction takes place on a much
shorter time scale than the one of the (nonperturbative) inner dynamics of the
nucleon, and the scattering involves a single quark, which can be e�ectively
considered free during the interaction. This means that the final state X in (2.14)
is given by an on-shell quark with momentum k µ = pµ + qµ and a remainder R
(Fig. 2.1), so that the hadron tensor can be rewritten as

W µ⌫(q, P) =
’

q
e2

q
1
2

’
S

’
R

π
d3PR

(2⇡)32P0
R

π
d4p �

⇣
(p + q)2 � m2

⌘

⇥ ✓
⇣
p0 + q0 � m

⌘
�(4) (P � p � PR) hP, S | ̄q

I (0)|RihR| 
q
J (0)|P, Si

⇥ �µIK(/p + /q + m)KL�
⌫
LJ,

(2.15)

where  q
I is the Dirac component I of a quark field with flavor q, and eq is the

fractional charge of the quark.
It is convenient to Fourier transform the four-momentum conservation delta

function in the second line of (2.15) and use it to perform a translation of the quark
field:

W µ⌫(q, P) =
’

q
e2

q
1
2

’
S

π
d4p �

⇣
(p + q)2 � m2

⌘
✓
⇣
p0 + q0 � m

⌘

⇥
π

d4⇠

(2⇡)4 e�ip·⇠ hP, S | ̄q
I (⇠) 

q
J (0)|P, Si

⇥ �µIK(/p + /q + m)KL�
⌫
LJ,

(2.16)
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2.1. Deep Inelastic Scattering

where we made use of the completeness of the remainder states |Ri. We thus have
an expression for the hadron tensor in terms of a quark-quark correlator

�(p, P, S) =
π

d4⇠

(2⇡)4 e�ip·⇠ hP, S | ̄q
I (⇠) 

q
J (0)|P, Si. (2.17)

Interesting results can already be obtained by performing an expansion of (2.16)
in powers of 1/Q, and retaining only the leading terms. In this way one selects
the leading part of the quark quark correlator, obtaining the so-called leading twist
Parton Distribution Functions (PDFs), that are the most well-known among the
PDFs, and have a probabilistic interpretation. To apply these approximations, it is
necessary to consider what is the behavior of the components of particles momenta.
Using light-cone coordinates, the initial quark momentum can be parametrized as

pµ =

"
xP+,

p2 + |pT |2
2xP+

, pT

#
, (2.18)

where the quark virtuality p2 and its transverse momentum |pT |2 are assumed to
be small compared to the hard scale Q2. Without showing all the details, we only
notice that the leading component of pµ+qµ is the plus component, so that in third
line of (2.16) we can retain just the term �µ���⌫, while the delta function in the
first line becomes proportional to �(x � xB), which eliminates the integral over the
p� component. In this way, the final result becomes

W µ⌫(q, P) '
’

q
e2

q
1
2

Tr [�q (xB) �µ���⌫] , (2.19)

where we have introduced the integrated (and spin averaged) correlation function

�JI(x) =
1
2

’
S

π
d2pTdp+�JI (p, P, S)|p�=xP�

=

π
d⇠+

2⇡
e�ip·⇠ ⌦

P, S
�� I(⇠) J(0)

�� P, S
↵��
⇠�=⇠

T

=0

. (2.20)

From the above expression, recalling the definition of the (collinear) parton distri-
bution function f1,

f1(x) /
1
2

’
S

π +1

�1

d⇠+
2⇡

e�ixP�⇠+
⌦
P, S

�� (⇠+) �� (0)
�� P, S

↵
, (2.21)

it is possible to show that the DIS cross section has the form

d�
dxBdQ2 (P, q) =

π 1

0

dx
x

d�̂
dxdQ2 (p, q) f1

⇣ xB

x

⌘
, (2.22)
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2. Transverse-Momentum-Dependent cross sections

where d�̂(p, q) is the cross section for the scattering o� a quark with momentum
p.

Up to this point, we considered the scattering at zeroth order in QCD. It can be
shown, through a so-called factorization proof, that the form in (2.22) for the cross
section also holds in full QCD. Indeed, the partonic cross section d�̂ can be calcu-
lated from Feynman diagrams up to the desired order in ↵s. Infrared divergences
that are not canceled in the sum of virtual and real contributions can be factorized
out of the partonic cross section through the introduction of a factorization scale
µF . In rough terms, only particles with a virtuality greater than µ2

F will appear
in the partonic scattering amplitude, all the others being considered as contribut-
ing to the nonperturbative dynamics embodied by the PDFs. On the other hand,
ultraviolet divergences will require the introduction of a renormalization scale µ.
Setting for simplicity µF = µ, we can write the generalization of (2.22) as

d�
dxBdQ2 (xB,Q2) =

π 1

0

dx
x

d�̂
dxdQ2 (x,Q

2/µ2, ↵s(µ2)) f1
⇣ xB

x
, µ2

⌘
, (2.23)

where we have re-expressed the kinematic dependence in terms of xB and Q2.
The PDF now depends on the scale µ, and its evolution can be calculated in
perturbative QCD, from the Renormalization Group Equation (RGE).3 Although
there exist processes for which factorization is known to be violated [48, 49], all
the observables we will consider in this thesis can be factorized as a convolution
of short-distance partonic scattering and Parton Distribution Functions.

A remark should be made concerning QCD corrections and the quark-quark
correlator in (2.17) to (2.21): as it stands, the correlator is not gauge invariant, as
can be seen by applying a local gauge transformation to the quark fields. However
this is just an artifact of adopting a pure parton model picture. When including
QCD corrections, final state (or initial state, in the case of Drell-Yan) gluon
radiation must be considered. This radiation factorizes, i.e., it can be included
inside the definition of Parton Distribution Functions, and contributions from
any number of gluons sum up to give a path-ordered exponential of integrals of
gluon fields. This provides precisely the gauge link (or Wilson line) L necessary to
connect the two quark fields at di�erent space-time positions ⇠1, ⇠2 in the correlator,
thus ensuring gauge invariance:4

L [⇠1, ⇠2] = P exp
✓
ig

π ⇠2

⇠1

dzµAµ(z)
◆
. (2.24)

In the case of collinear PDFs, (2.21), the space-time separation of the fields is
along a light-cone direction, and the gauge link is set to 1 by choosing a proper
light-cone gauge, n · A = 0.

3See, e.g., [47]
4A detailed treatment can be found in [26]
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2.2. Semi-Inclusive Deep Inelastic Scattering

2.2 Semi-Inclusive Deep Inelastic Scattering
Particularly interesting observables in DIS can be obtained when including infor-
mation on a hadron h detected in the final state:

`(l) + N(P) ! ` (l0) + h(Ph) + X . (2.25)

This is denoted as Semi-Inclusive Deep Inelastic Scattering (SIDIS). We will as-
sume that the final hadron is generated by the hadronization of a quark or gluon
coming from the hard partonic scattering involving the virtual photon (current
fragmentation), and not from the target debris (target fragmentation). The kine-
matics for SIDIS is shown in Fig. 2.2. The lepton momenta define the x̂-ẑ plane,
with respect to which we define the azimuthal angle of the outgoing hadron, �h,
and, in the case of a transversely polarized target, the angle of the trasnverse spin
�S. Ph? is defined as the component of the outgoing hadron momentum transverse
to the ẑ axis.5 The fragmentation variable z is instead defined in relation to the
longitudinal part of Pµh :

z =
P · Ph

P · q
. (2.26)

In the parton model, z corresponds to the fractional momentum of the detected
hadron with respect to the quark which originated the fragmentation process.

The most simple observable that can be devised in SIDIS is obtained by
integrating the events over the azimuthal angle � and the transverse momentum
Ph?, so that the cross section will be di�erential in x, Q2 and z (we consider
for the moment unpolarized scattering). To reduce systematic uncertainties, it is
convenient to normalize by the total number of DIS events with the given x and
Q2, obtaining what we will refer to as integrated multiplicity (in the following, we
will rewrite the Bjorken variable xB as x):

Mh
⇣
x, z,Q2

⌘
=

d�h/
�
dxdQ2dz

�
d�DIS/

�
dxdQ2� . (2.27)

This observable is an important source of data for the extraction of Fragmentation
Functions,

Dq/h
1

⇣
z,Q2

⌘
, (2.28)

which give the probability for the quark of flavor q to fragment into a hadron h
carrying fractional momentum z. Indeed, the factorized formula for the numerator

5In the following chapters we will use also the notation P
hT

, when referring to the modulus of
the transverse components of Pµ

h

.
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2. Transverse-Momentum-Dependent cross sections

y

z

x

hadron plane

lepton plane

l�
l ST

Ph

Ph�
φh

φS

Figure 2.2: The kinematics for Semi-Inclusive Deep Inelastic Scattering.

of (2.27) reads

d�h

dxdQ2dz
=

’
a,b

π
dx̂dẑd⇠d⌘�(x � ⇠ x̂)�(z � ⌘ ẑ)

⇥ d�̂ab

dx̂dQ2dẑ
f a
1

⇣
⇠,Q2

⌘
Db/h

1

⇣
⌘,Q2

⌘
,

(2.29)

where as before d�̂ is the partonic cross section calculated perturbatively.

2.2.1 Structure functions in SIDIS
We will now consider the fully di�erential cross section in SIDIS. Also in this
case, the cross section is expressed in terms of lepton and hadron tensor

d�h

dxdQ2dzdP2
h?d�d�S

/ Lµ⌫Wµ⌫, (2.30)

where we allow for lepton polarization:

Lµ⌫(l, l0, �e) = �Q2gµ⌫ + 2
⇣
lµl0⌫ + l0µl⌫

⌘
+ 2i�e✏µ⌫⇢�l⇢l0�, (2.31)
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2.2. Semi-Inclusive Deep Inelastic Scattering

with �e = +(�)1 corresponding to a right (left) handed letpon beam. The hadron
tensor will now include information on the detected hadron:

W µ⌫ (q, P, Ph, S) =
’

X

π
d3PX

(2⇡)32P0
X
�(4) (q + P � PX � Ph)

⇥ hP, S |Jµ(0)| Ph, Xi hPh, X |J⌫(0)| P, Si .
(2.32)

To understand the structure of the � and y dependence of the cross section, it is
useful to write it in terms of boson-nucleon scattering amplitudes. The longitudinal
and transverse boson polarization states can be defined respectively as

✏ µ0 =
1
Q

✓
qµ +

Q2

P · q
Pµ

◆
,

✏ µ
+1 =

1p
2
(0, 1,+i, 0), ✏ µ�1 =

1p
2
(0, 1,�i, 0).

(2.33)

Let us write

Lµ⌫Wµ⌫ = j µ ( j⌫)⇤ Wµ⌫, (2.34)

j µ being the lepton current. We can then expand this current onto the helicity basis
in (2.33):

j µ =
1p
2

⇣
(1 � y)+ 1

2�e✏ µ�1 + (1 � y)� 1
2�e✏ µ

+1

⌘
+ ✏ µ0 . (2.35)

Considering first the case of unpolarized target, we can derive the azimuthal
dependence of the cross section by taking the hadron plane coincident with the
lepton plane, and then rotating the lepton system by an angle �� around the ẑ axis,
which is equivalent to rotating the hadron system by an angle �. The rotated lepton
current will be

j µ(��) = 1p
2

⇣
(1 � y)+ 1

2�ee�i�✏ µ�1 + (1 � y)� 1
2�eei�✏ µ

+1

⌘
+ ✏ µ0 . (2.36)
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2. Transverse-Momentum-Dependent cross sections

Inserting this into (2.34), we obtain

(1 � y)Lµ⌫Wµ⌫ =
1
2

⇥
1 + (1 � y)2

⇤
(W�� +W++)

� �e
1
2

⇥
1 � (1 � y)2

⇤ ✓
W�� � W++. . . . . . . . . . .

◆
+ 2(1 � y)W00

+ 2(1 � y)
"
Re W�+ cos 2� � Im W�+. . . . . . . sin 2�

#

+
p

2(1 � y)1/2(2 � y) [Re (W�0 +W+0) cos �+

� Im (W�0 � W+0). . . . . . . . . . . . . . . . sin �

#
� �e

p
2y(1 � y)1/2

⇥

Re (W�0 � W+0). . . . . . . . . . . . . . . . cos � � Im (W�0 +W+0) sin �

�
,

(2.37)

where

Wab = ✏
µ
a

�
✏⌫b

�⇤ Wµ⌫, a, b = +,�, 0. (2.38)

We see that modulations in the azimuthal angle of the produced hadron are due to
the quantum interference of di�erent polarization states. Terms underlined with
dots are P-odd and hence only present in the case of weak interactions. Terms
underlined with a continuous line are instead odd under naive time-reversal (T-
odd), which means time reversal without the interchange of initial and final states,
i.e., reversal of the spatial components of momenta and spins. Wµ⌫ is intended
here to be the spin averaged version of the hadron tensor. The following notation
is commonly used for the transverse and longitudinal parts:

WT =
1
2
(W++ +W��) , WL = W00. (2.39)

If we allow for nucleon polarization, defining the target spin three-vector in our
reference frame as

S =
©≠
´

ST cos �S
ST sin �S
�SL

™Æ
¨
, (2.40)
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2.2. Semi-Inclusive Deep Inelastic Scattering

then the following terms have to be added to (2.37):

� SL

h
2(1 � y) sin(2�)Im W+++� +

p
2(1 � y)1/2(2 � y) sin � Im

�
W+++0 � W��

+0
� i

+ SL�e


y (2 � y) 1

2
�
W++++ � W��

++

�
�
p

2y(1 � y)1/2 cos �Re
�
W+++0 � W��

+0
� �

� ST


sin (� � �S) Im

�
W+�++ + (2 � y)W+�00

�
+
(2 � y)

2
sin (� + �S) Im W+�+�

+
(2 � y)

2
sin (3� � �S) Im W�+

+� +
p

2(1 � y)1/2(2 � y) sin �SIm W+�+0

+
p

2(1 � y)1/2(2 � y) sin (2� � �S) Im W�+
+0

i
+ ST�e

⇥
y (2 � y) cos (� � �S)Re W+�++

�
p

2y(1 � y)1/2 cos �S Re W+�+0 �
p

2y(1 � y)1/2 cos (2� � �S)Re W�+
+0 ],

(2.41)

where the upper ± labels in the hadron tensor have been introduced to denote the
helicity states of the nucleon in the amplitude and its complex conjugate, and we
have now excluded for brevity P-violating terms. A di�erent notation can be found
in the literature ([50]), where the structure functions are labeled by the polarization
of the external particles and the type of the azimuthal modulation. For instance,
one has

FUU,T =
1
2

�
F++++ + F��

++

�
, FUU,L = F++00

Fcos �
h

UU = � 1p
2

Re
�
F+++0 + F��

+0
�
,

Fsin(�
h

��
S

)
UT,T = � Im F+�++ ,

(2.42)

where the letters in the subscript represent, respectively, the lepton, target, and
boson polarization (U = unpolarized, T = transverse, L = longitudinal), so that, e.g.,
Fsin(�

h

��
S

)
UT,T is the structure function multiplying sin (�h � �S), when considering an

unpolarized lepton, transversely polarized target, and averaging over the transverse
polarization states of the boson. The functions Fi j

mn are closely related to the
hadronic amplitudes Wi j

mn above. They are defined as

Fi j
mn

⇣
x,Q2, z, P2

h?

⌘
=

Q2(1 � x)
4⇡3↵

d�i j
mn

dzdP2
h?
, (2.43)

d�i j
mn being boson-nucleon scattering amplitudes
In order to give accurate QCD predictions for the SIDIS structure functions,

it is crucial to distinguish between a region of high transverse momentum, where
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2. Transverse-Momentum-Dependent cross sections

collinear factorization is applicable, and the TMD factorization region at low
transverse momentum. To this end, it is necessary to introduce the invariant6

q2
T = �qµT qT µ, (2.44)

where qµT is the transverse component of the boson momentum with respect to
both the nucleon and the final hadron:

qµT = qµ + ⇠Pµ � 1
z

Pµh , (2.45)

with
⇠ ⌘ � Ph · q

P · Ph
. (2.46)

In the frame we are considering, the Minkowski components of Ph can be expressed
in terms of qT as

Pµh =
zQ
2

 
1 �

q2
T

Q2 ,
2qT

Q
cos �,

2qT

Q
sin �, 1 +

q2
T

Q2

!
. (2.47)

Hence we see that there is a simple relation between the transverse momentum of
the detected hadron in our frame and that of the boson w.r.t. the hadrons:

Ph? ⌘
q

P2
hx + P2

xy = zqT . (2.48)

In a covariant way, the transverse momentum of the final hadron is expressed as

Pµh? = Pµh � z (2x � ⇠) Pµ � zqµ. (2.49)

The relevance of the variable qT is due to the fact that it is directly related to
the kinematics of the partonic process: relatively high values of qT originate from
the radiation of hard gluons, while a low qT calculation requires a resummation of
the logarithmically enhanced soft gluon radiation and the inclusion of a model for
intrinsic transverse momentum. In the following sections we will describe the two
regimes. The discussion can be generalized to other processes, like, e.g., Drell-Yan
and e+e� ! h1h2X .

2.2.2 High transverse momentum: Collinear factorization
When qT is high compared to hadronic scales, qT � M , possible e�ects of
intrinsic transverse momentum can be neglected, and the observed transverse

6Where not specified otherwise, we will use a
T

to denote the modulus of the transverse
component of aµ: a

T

⌘ |a
T

|
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2.2. Semi-Inclusive Deep Inelastic Scattering

momentum can be ascribed entirely to the recoil of the scattered partons against
hard QCD radiation, which can be calculated perturbatively. In this case, the
collinear factorization formula applies, and the cross section is a convolution of a
partonic cross section d�̂ab and collinear PDFs and FFs:

d�
dxdQ2dzdqTd�

=
’
a,b

π
dx̂dẑd⇠d⌘�(x � ⇠ x̂)�(z � ⌘ ẑ)

⇥ d�̂ab

dx̂dQ2dẑdqTd�
f a
1

⇣
⇠,Q2

⌘
Db/h

1

⇣
⌘,Q2

⌘
.

(2.50)

The partonic momenta are taken to be collinear to the external hadrons: pµa = ⇠Pµ,
pµb =

1
⌘Pµh . Considering the leading order calculation, the partonic process is of

the form �⇤ + q(q̄) ! q(q̄)+ g or �⇤ + g ! q+ q̄, and the structure functions have
the following form:

FUU,T =
1

Q2
↵s

(2⇡z)2
’

a
xe2

a

π 1

x

d x̂
x̂

π 1

z

dẑ
ẑ
�

 
q2

T

Q2 � (1 � x̂)(1 � ẑ)
x̂ ẑ

!

⇥ f a
1

⇣ x
x̂

⌘
Db

1

✓
z
ẑ

◆
Cab

UU,T (x̂, ẑ) ,
(2.51)

where we took FUU,T for the sake of example. The �-function in (2.51) ensures
the on-shellness of the unobserved particle in the (LO) partonic cross section. In
the limit of small transverse momentum, qT ⌧ Q, one can approximate it as (see,
e.g., [51, 52])

�

 
q2

T

Q2 � (1 � x̂)(1 � ẑ)
x̂ ẑ

!
=�(1 � x̂)�(1 � ẑ) ln

Q2

q2
T
+

x̂
(1 � x̂)+

�(1 � ẑ)

+
ẑ

(1 � ẑ)+
�(1 � x̂) + O

 
q2

T

Q2 ln
Q2

q2
T

!
,

(2.52)

with this approximation, one can obtain the behavior of the structure function in
the small-qT limit, commonly known as the asymptotic expansion. For FUU,T , this
yields

FUU,T ' 1
q2

T

↵s

2⇡2z2

’
a

xe2
a

"
f a
1 (x)Da

1(z)CF

 
2 ln Q2

q2
T
� 3

!
+ f a

1 (x)
�
Da

1 ⌦ Pqq

+Dg
1 ⌦ Pgq

⌘
(z) +

⇣
Pqq ⌦ f a

1 + Pqg ⌦ f g1
⌘
(x)Da

1(z)]
.

(2.53)
The structure function in this case is divergent for qT ! 0, because of the well-
known soft and collinear divergences of QCD. The structure of divergences is such
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2. Transverse-Momentum-Dependent cross sections

that at perturbative order ↵N
s , the asymptotic expression for FUU,T will have the

form
1
q2

T

N’
n=1

2n�1’
m=0

cn,m(x, z)
⇣ ↵s

2⇡

⌘n
lnm

 
Q2

q2
T

!
. (2.54)

Then, for qT ⌧ Q, each power of ↵s is multiplied by large logarithmic (and inverse
power) terms, which make a fixed order perturbative expansion unreliable in this
regime. Di�erent structure functions have a di�erent asymptotic behavior for
qT ⌧ Q. For instance, FUU,L is suppressed by a relative factor q2

T/Q2 with respect
to FUU,T , and hence can be neglected in phenomenological studies at low qT .

A well-known formalism for the all-order resummation of the logarithmic
terms for the unpolarized structure function FUU,T was first developed for Drell-
Yan in [16], and extended to SIDIS in [52, 53]. In recognition of the work of the
authors in [16], this formalism is commonly referred to as CSS resummation. To
ensure transverse momentum conservation, the resummation formula is commonly
derived in the Fourier-conjugate space with respect to qT , and has the form7 [54]

FUU,T =
1
z2

’
a

xe2
aH

⇣
Q2/µ2

⌘ π
d2b

(2⇡)2 e�ib·q
T exp[�S(Q, b)]

⇥
’

i

⇣
Cin

ai ⌦ f i
1

⌘
(x; µ = b0/b)

’
j

⇣
Dj

1 ⌦ Cout
ja

⌘
(z; µ = b0/b) ,

(2.55)

where ⌦ denotes a convolution over x or z. Cin
ai , Cout

ja , H
�
Q2/µ2� are pertur-

bative coe�cients calculated in fixed-order QCD. In particular Cin
ai , Cout

ja are the
Wilson coe�cients of an Operator Product Expansion (OPE) of quark matrix
elements at small transverse distance. As such, they are convoluted with the or-
dinary (collinear) PDFs and FFs. The large transverse momentum logarithms are
exponentiated in the Sudakov factor exp[�S(Q, b)].

Since the Fourier integral in (2.55) extends over the entire b space, the non-
perturbative region b & 1

⇤ is also involved, and the numerical integration cannot
generally be done without a regularization of the perturbative divergences at large
b, often done by the introduction of a cuto� function b⇤(b), which freezes the
value of b after a certain threshold. This is in agreement with the fact that a
complete calculation requires the introduction of a nonperturbative function, such
to mimic QCD dynamics at large distances. The observed transverse momentum
distribution is indeed generated by a convolution of nonperturbative dynamics and
the QCD radiation generated in the scattering. Due to the properties of Fourier
transforms, a convolution in momentum space translates into a product of factors
in the conjugate space. Hence, nonperturbative contributions are introduced as a

7The resummation formalism is discussed in more detail in Chapt. 3.
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multiplicative term inside the Fourier integral of (2.55):

FUU,T =
1
z2

’
a

xe2
aH

⇣
Q2/µ2

⌘ π
d2b

(2⇡)2 e�ib·q
T exp[�S(Q, b⇤(b))]

⇥ exp[�SNP(Q, b, x, z)]
⇥

’
i

⇣
Cin

ai ⌦ f i
1

⌘
(x; µ = b0/b⇤(b))

’
j

⇣
Dj

1 ⌦ Cout
ja

⌘
(z; µ = b0/b⇤(b)) ,

(2.56)
where SNP(Q, b, x, z) is the nonperturbative function to be fitted to data.

2.2.3 Low transverse momentum: TMD factorization
The function SNP in (2.56) mostly a�ects the shape of the cross section for qT ' M ,
and is intended to mimic the contribution from intrinsic transverse momentum
and nonperturbative soft radiation. A natural question is whether theoretical
calculations in the regime M . qT ⌧ Q, where (2.56) applies, can be re-expressed
in terms of three-dimensional nucleon matrix elements, expressing the intrinsic
transverse-momentum distribution of partons. Only in recent years there has been a
complete explicit proof of Transverse-Momentum-Dependent (TMD) factorization
([26], see also [27, 28]). It turns out that the TMD formalism reproduces the CSS
results: the resummation of Sudakov logarithms is obtained in this framework
from the RGE of TMD parton distributions. To have an idea of how Transverse
Momentum Distributions enter the cross section, it is instructive to look at the
parton model expression for the hadron tensor in SIDIS, (2.32). The outgoing
hadron h in this framework is originated from the fragmentation of the quark after
the absorption of the virtual photon. The expression for W µ⌫ will then have the
form [55]

W µv (q, P, S, Ph) =
’

q
e2

q

π
d4pd4k�(4)(p + q � k)Tr [�(p, P, S)�µ� (k, Ph) �v] ,

(2.57)
where �(p, P, S) is the quark-quark correlator in its unintegrated form, defined in
(2.17), while � (k, Ph) is the correlator describing quark fragmentation

�KL (k, Ph) =
’

X

π
d3PX

(2⇡)32P0
X
�(4) (k � Ph � PX)

⇥ h0 | K(0)| Ph, Xi
D
Ph, X

��� L(0)
��� 0E

=
1

(2⇡)4
π

d4⇠eik ·⇠ h0 | K(⇠)| Phi
⌦
Ph

�� L(0)
�� 0↵ .

(2.58)
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The momentum k µ of the outgoing quark will be connected to that of the detected
hadron Pµh . This sets a constraint on k µ, which we must take into account by
inserting in (2.57) a �(4)(p+q�k) for conservation of 4-momentum. To understand
more clearly the e�ect of the �-function, we can temporarily set ourselves in a frame
where the external hadrons have no transverse momentum

Pµ =

P�,

M2

2P� , 0
�
, Pµh =

"
M2

h
2P+h
, P+h , 0

#
, (2.59)

qµ =

�xP�,

P+h
z
, qT

�
. (2.60)

As mentioned before, there is a connection between the transverse momentum
of the virtual photon in this frame, and that of the detected hadron in the frame
used in the rest of this thesis. More precisely: qT = �Ph?/z. The transverse
momentum part of the � function is then �(2) (pT + qT � kT ), or equivalently
�(2) (pT � Ph?/z � kT ). We have seen that in the case of inclusive DIS, Sec. 2.1.2,
when considering the leading terms in 1/Q, the expression for the hadron tensor
simplifies, and only the correlator integrated over transverse momentum is in-
volved. However, this is not the case for Semi-Inclusive DIS, when the transverse
momentum qT is not integrated over, and it is of the order of hadronic scales. The
correct expression is indeed

W µv (q, P, S, Ph) =
’

q
e2

q 4z
π

d2pTd2kT�
(2)

✓
pT � Ph?

z
� kT

◆

Tr [� (x, pT, S) �µ� (z, kT ) �v] ,
(2.61)

where
� (x, pT, S) ⌘

π
dp+�(p, P, S)

����
p�=xP�

,

� (z, kT ) ⌘
1
4z

π
dk�� (k, Ph)

����
k+=P+

h

/z

(2.62)

are the transverse-momentum dependent correlators (Fig. 2.3). At leading twist,
the correlator � in (2.62) gives rise to 8 Transverse Momentum Dependent Parton
Distribution Functions (TMD PDFs or TMDs), corresponding to di�erent polar-
ization states of the nucleon and the quark, which are collected in Table 2.1. Being
leading twist functions, they have a probabilistic interpretation (Fig. 2.4). For
instance, a function which has attracted lot of attention in recent years is the Sivers
function f ?1T (x, pT ), first proposed in [34, 56], which can be interpreted as the prob-
ability di�erence for a quark transverse momentum to point right or left, when
the nucleon is moving towards us, and its spin is pointing upward. In this thesis
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2.2. Semi-Inclusive Deep Inelastic Scattering

Figure 2.3: The cut diagram for SIDIS.

quark pol.

U L T

nu
cl

eo
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p
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.

U f1 h�
1

L g1L h�
1L

T f�
1T g1T h1, h�

1T

Twist-2 TMDs
Table 2.1: The 8 leading twist TMD PDFs, for di�erent nucleon and quark polar-
ization. Functions in red are T-odd, while functions in black survive integration
over the transverse momentum, and hence have a collinear PDF counterpart.

27



2. Transverse-Momentum-Dependent cross sections

Figure 2.4: Probabilistic interpretation of leading twist TMDs. The nucleon is moving towards the
reader.

we will concentrate on the most basic TMD, i.e., the function f1 (x, pT ) describ-
ing the transverse momentum probability distribution of unpolarized quarks in an
unpolarized nucleon. Besides giving precious information by itself, its knowledge
is also needed for the extraction of other functions, since di�erent TMDs have
some common evolution properties, and since unpolarized TMDs appear in the
denominator of asymmetries. Concerning the fragmentation correlator �, if we
restrict ourselves to final hadrons with spin 0, or unreconstructed spin, we remain
with 2 leading twist Transverse Momentum Dependent Fragmentation Functions
(TMD FFs):

D1(z, kT ), H?
1 (z, kT ), (2.63)

describing respectively the fragmentation of an unpolarized and transversely po-
larized quark (the function H?

1 is known as Collins function from [57]).
TMD factorization theorems establish that cross sections at qT ⌧ Q can

be written as convolutions of TMD PDFs and FFs. For instance, the SIDIS
unpolarized structure function in (2.56) can be expressed in an equivalent way as

FUU,T /
’

q
e2

q

π
d2pT1d2pT2�

(2) (qT + pT � kT )

⇥ f q/N
1 (x, |pT |)Dh/q

1 (z, z |kT |)
(2.64)

where f q/N
1 and Dh/q

1 are respectively the TMD PDF for nucleon N and TMD FF
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2.3. Drell-Yan

for hadron h (we neglected for the moment the dependence on factorization scales,
which will be discussed in Ch. 3).

It is worth noticing the relevance of gauge links in the case of Transverse
Momentum Dependent Parton Distribution Functions. The quark fields in (2.62)
are separated in the transverse plane, at variance with the integrated correlator in
(2.21):

�I J (x, pT, S) =
π

d⇠+d2⇠T

(2⇡)3 eip·⇠ ⌦
P, S

�� J(0) (⇠)I
�� P, S

↵����
⇠�=0

(2.65)

meaning that the gauge link to be inserted in the above equation will be di�erent
from 1, regardless of the gauge choice. Gauge links are responsible for properties
peculiar to TMDs. One of these is the appearance of a new class of divergences,
so called rapidity divergences [58], which set some of the evolution properties of
these functions. Another important e�ect is the T-oddness of certain TMDs. This
last property is due to the fact that gauge links are process dependent: the path
in (2.24) is determined by the process considered, and in particular depends on
whether the gluon radiation is in the final or initial state [59]. The leading twist
T-odd TMDs are the Sivers [34, 56] and Boer-Mulders [60] functions, respectively
f ?1T and h?1 in Table 2.1, and the Collins fragmentation function H?

1 [57].

2.3 Drell-Yan
Drell-Yan is the process where a lepton-antilepton pair from the decay of a virtual
photon or Z-boson is produced in the high energy scattering of two hadrons (we
will not consider polarized beams in this thesis):

N1(P1) + N2(P2) ! �⇤/Z(q) + X ! `+(l) + `�(l0) + X . (2.66)

The cross section can be expressed in terms of lepton and hadron tensor as

d�
d4qd⌦

=
↵2

em

4Q4s
Lµ⌫W µ⌫, (2.67)

where Q2 ⌘ q2, and we have chosen as independent variables the 4-momentum qµ

of the vector boson and the solid angle⌦ of the lepton l+ in a given rest frame of the
boson. One example of such a frame is the Collins-Soper frame8, depicted in Fig.
2.5. Like for SIDIS, quantum interference between between di�erent scattering
amplitudes originates modulations in the lepton angles ✓ and �. Although in this

8Another commonly chosen frame is the Gottfried-Jackson frame, where the ẑ axis points along
the direction of hadron N1
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2. Transverse-Momentum-Dependent cross sections

Figure 2.5: The Collins-Soper frame. The two hadron momenta define the x̂ � ẑ plane, while the
ẑ axis is defined as the direction bisecting the angle between P1 and �P2

thesis we will only deal with cross sections integrated over azimuthal angles, it is
worth briefly discussing the angular structure, since this will be of some relevance
when calculating the e�ect of experimental cuts on the lepton phase space, in Ch.
4. The cross section in terms of structure functions reads [61–63]9

d�
d4qd⌦

=
↵2

2Q2s

h
WT

⇣
1 + cos2 ✓

⌘
+WL

⇣
1 � cos2 ✓

⌘

+W+0 sin 2✓ cos � +W+� sin2 ✓ cos 2�
⇤
,

(2.68)

where the subscripts denote contraction of the hadron tensor with di�erent polar-
ization vectors for the virtual boson. More precisely, the decomposition of the
hadron tensor is

W µ⌫ = � (gµ⌫ � T µT ⌫) (WT +W+�) � 2X µX⌫W+�
+ Z µZ⌫ (WL � WT � W+�) � (X µZ⌫ + Z µX⌫)W+0,

(2.69)

whereT µ = qµ/Q is the time-like polarization direction, while the three orthogonal
space-like vectors X µ, Y µ, Z µ are defined according to the direction of x̂ and ẑ in

9The hadron tensor W in the convention of [61] should be divided by (2⇡)4 to obtain the one in
our convention
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2.3. Drell-Yan

Fig. 2.5:

Z µ =
2

s
q

Q2 + q2
T

⇣
(P2 · q) Pµ1 � (P1 · q) Pµ2

⌘
,

X µ = � 2Q

sQT

q
Q2 +Q2

T

⇣
(P2 · q) P̃µ1 + (P1 · q) P̃µ2

⌘
,

(2.70)

with P̃µi ⌘ Pµi � qµ (P1 · q) /Q2. In the same way, the lepton tensor can be
decomposed in terms of a helicity basis. After integrating over the angles, the
di�erential cross section reads

d�
d4q
=

4⇡↵2
em

3Q2s
[2WT +WL] . (2.71)

In the parton model, applicable when Q2 is high, the intermediate boson is
produced by the annihilation of a quark from one hadron and an antiquark from
the other one. The tensor W µ⌫ is then

W µ⌫ =
’

X

⌦
P1P2

��Jµ†(0)�� X
↵
hX |J⌫(0)| P1P2i (2⇡)4�(4) (P1 + P2 � PX � q)

=

π
d4xe�iqx ⌦

P1P2
��Jµ†(x)J⌫(0)�� P1P2

↵
,

(2.72)
with Jµ(x) the electromagnetic quark current

Jµ(x) =
’

q
eq q(x)�µ q(x). (2.73)

As in the case of SIDIS, one needs to distinguish two di�erent kinematic regimes
depending on qT , i.e., the transverse momentum of the boson in any frame where
the colliding hadrons are collinear. When qT is of the order of the hard scale Q,
the correct prediction is given by fixed-order collinear factorization, where the
hard cross section is convoluted with ordinary PDFs. We will discuss collinear
factorization for Drell-Yan in Ch. 5. In chapter 4 instead we will present a phe-
nomenological analysis of the regime qT ⌧ Q, where CSS resummation, or
equivalently, TMD factorization should be applied. In this regime, the structure
function WL can be neglected, and the term WT can be written as a convolution of
two TMD PDFs, one for each of the incoming hadrons

d�
dQ2dq2

Tdy
/

’
q

e2
q

π
d2pT1d2pT2�

(2) (qT � pT1 � pT2)

⇥
h

f q/N1
1 (x1, |pT1 |) f q̄/N2

1 (x2, |pT2 |) + q ⌧ q̄
i
.

(2.74)
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2. Transverse-Momentum-Dependent cross sections

In (2.74), we wrote the di�erential cross section in terms of common experimental
variables: Q2, qT and the rapidity y of the vector boson in the c.m. of the two
hadrons

y =
1
2

log
✓

q0 + qz

q0 � qz

◆
. (2.75)

The longitudinal fractional momenta in the TMD formula above are

x1 =
Qp

s
ey, x2 =

Qp
s

e�y . (2.76)

2A Appendix: Notation and conventions

Lorentz vectors and metric
In this thesis, we use round brackets to express a vector in terms of its Minkowski
components:

vµ =
⇣
v0, vx, vy, vz

⌘
, while we use square brackets for light-cone components:

vµ =
⇥
v�, v+, vT

⇤
⌘


v0 � vz
p

2
,
v0 + vz
p

2
, vx, vy

�
.

Vectors in the 2-dimensional transverse space are denoted in bold-face.
We use the metric tensor defined as

gµ⌫ = diag (1,�1,�1,�1) .

Plus-distributions
Plus-distributions are defined as

( f (x))+ ⌘ lim
"!0

(
f (x)✓(1 � x � ") � �(1 � x � ")

π 1�"

0
f (y)dy

)
.

For instance, one has, for a regular test function T(x):
π 1

x
dy

T(y)
(1 � y)+

=

π 1

x
dy

T(y) � T(1)
1 � y

� T(1) ln
1

1 � x
.
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Chapter 3
Low transverse momentum: formalism

In this Chapter we will discuss more in detail the theoretical description of trans-
verse momentum dependent cross sections in SIDIS,

d�` N!`0 h X

dQ2dxdzdP2
hT

, (3.1)

and Drell-Yan
d�N1 N2!`+ `� X

dQ2dydq2
T
, (3.2)

concentrating on the TMD formalism, valid at low-qT . As seen in Ch. 2, cross
sections in (3.1) and (3.2) can be expressed in terms of transverse and longitudinal
structure functions. The precise relations, considering electromagnetic scattering,
are

d�` N!`0 h X

dQ2dxdzdP2
hT

=
(2⇡)2↵2

em

xQ4

⇢✓
1 � y +

y2

2

◆
FSIDIS

UU,T + (1 � y) FSIDIS
UU,L

�
, (3.3)

and

d�N1 N2!`+ `� X

dQ2dydq2
T
=

2⇡2↵2
em

3Q2s
⇥
2FDY

UU,T + FDY
UU,L

⇤
, (3.4)

where for uniformity of notation we have redefined WT and WL in (2.71) as FDY
UU,T

and FDY
UU,L . The hadron tensors in (3.3) and (3.4) in the region qT ⌧ Q satisfy TMD

factorization, i.e., factorization in terms of Transverse Momentum Distributions.
In the following we will not consider the contribution of longitudinal structure
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3. Low transverse momentum: formalism

functions, being negligible in this kinematic region. Up to now, we only presented
parton model formulas (Eqs. (2.64) and (2.74)). The full QCD result, including
scale dependencies generated by factorization and renormalization, reads [26, 64]

FSIDIS
UU,T =

’
q

��HSIDIS(Q; µ)2
�� π d2pT d2kT�

(2) (pT + qT � kT )

⇥ f q/N
1

�
x, |pT | ; µ; ⇣ f

�
Dh/q

1 (z, z |kT | ; µ; ⇣D)

⌘
’

q

��HSIDIS(Q; µ)2
�� π d2b

(2⇡)2 e�iq
T

·b

⇥ f̃ q/N
1

�
x, b; µ; ⇣ f

�
D̃h/q

1 (z, b; µ; ⇣D) ,

(3.5)

FDY
T =

’
q

��HDY (Q; µ)2
�� π d2pT1d2pT2�

(2) (pT1 + pT2 � qT )

⇥ f q/N1
1

�
x, |pT1 | ; µ; ⇣ f 1

�
f q̄/N2
1

�
x, |pT2 | ; µ; ⇣ f 2

�
⌘

’
q

��HDY (Q; µ)2
�� π d2b

(2⇡)2 eiq
T

·b

⇥ f̃ q/N1
1

�
x1, b; µ; ⇣ f 1

�
f̃ q̄/N2
1

�
x2, b; µ; ⇣ f 2

�
.

(3.6)

We defined f̃1 and D̃1 as the Fourier transformed of the respective TMDs, since
TMD evolution is more easily written in the conjugate transverse space b, which
ensures transverse momentum conservation:

f q/N
1

�
x, |pT | ; µ; ⇣ f

�
⌘

π
d2b

(2⇡)2 eipT·b f̃ q/N
1

�
x, b; µ; ⇣ f

�
,

Dh/q
1 (z, z |kT | ; µ; ⇣D) ⌘

π
d2b
(2⇡)2 e�ikT·bD̃h/q

1 (z, b; µ; ⇣D) .
(3.7)

The hard factor HX(Q; µ) is process dependent and is calculated in a fixed-order
expansion in the strong coupling ↵s. TMD PDFs and FFs obey evolution equations
in two independent scales: besides the renormalization scale µ, the rapidity scale
⇣ appears, as a consequence of the regularization of rapidity divergences. This
kind of divergences cannot be classified as infrared nor ultraviolet. They are rather
artificial divergences, introduced when separating the cross section in terms of
two TMDs: if a unregulated definition was adopted, the gauge link inside a TMD
would contain gluons moving in the light-cone direction opposite to that of the
parent nucleon. Also, that would not take into account the role of soft gluon
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3.1. TMD evolution

radiation, which is embodied in the soft factor.1 The regularization is done by
including one part of the soft factor in each of the TMDs, and setting a rapidity
cuto� yc to separate left-moving (y < yc) and right-moving (y > yc) particles.
For instance, in the case of SIDIS, the two scales ⇣ f and ⇣D are defined by

⇣ f = x2M2
N e2(y

N

�y
c

), ⇣D =
M2

h

z2 e2(y
c

�y
h

), (3.8)

where MN(h) and yN(h) are the mass and rapidity of the initial nucleon (final hadron).
By construction one has ⇣ f ⇣D = Q4. A common choice is to set ⇣ f = ⇣D = Q2.
A convenient choice for the scale µ is instead µ ' Q, to avoid large logarithms
ln(Q2/µ2) in the hard factor.

3.1 TMD evolution

3.1.1 Perturbative terms
The Renormalization Group Equation, originating from the renormalization of
ultraviolet divergences, dictates the evolution in µ:

@ ln f̃1 (x, b; µ, ⇣)
@ ln µ

= � f

⇣
↵s(µ); ⇣/µ2

⌘
, (3.9)

where � f is called the TMD anomalous dimension2. The evolution with respect
to the rapidity scale ⇣ is instead related to the derivative of the soft factor with
respect to the rapidity cuto� yc, and has the form

@ ln f̃1 (x, b; µ, ⇣)
@ ln

p
⇣

= K̃ (b; µ) . (3.10)

The rapidity anomalous dimension K̃ also depends on µ, and evolves through its
own RGE:

dK̃ (b; µ)
d ln µ

= ��K(↵s(µ)), (3.11)

where �K is called the cusp anomalous dimension. An important relation between
the anomalous dimensions follows from the continuity of second derivatives of the
TMD function:

@2 ln f̃1
@ ln

p
⇣ @ ln µ

=
@2 ln f̃1

@ ln µ @ ln
p
⇣
. (3.12)

1The soft factor is a vacuum expectation value of a loop of Wilson lines, describing emission
of gluons in the central rapidity and near-on-shell region. For all the details on TMD definition
and evolution, including the origin of Eq. (3.10), see [26, 64].

2Evolution equations and anomalous dimension for TMD PDFs and FFs are identical.
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3. Low transverse momentum: formalism

Inserting Eqs. (3.9) to (3.11), this translates into

@� f
�
↵s(µ); ⇣/µ2�
@ ln

p
⇣

= ��K (↵s(µ)) . (3.13)

Hence, evolving the TMD anomalous dimension � f in rapidity, from the starting
point ⇣0 = µ2, yields the relation

� f

⇣
↵s(µ); ⇣/µ2

⌘
= � f (↵s(µ); 1) � �K(↵s(µ)) ln

p
⇣

µ
. (3.14)

The quantities � f (↵s(µ); 1), K̃ (b; µ) ,�K(↵s(µ)) all obey a perturbative expan-
sion in powers of ↵s:

� f (↵s(µ); 1) =
1’

n=1

✓
↵s(µ)
⇡

◆n

�(n)f ,

�K (↵s(µ)) =
1’

n=1

✓
↵s(µ)
⇡

◆n

�(n)K ,

K̃ (b; µ) =
1’

n=1

✓
↵s(µ)
⇡

◆n

K̃ (n)(b; µ).

(3.15)

Perturbative coe�cients up to order ↵3
s can be found in [65, 66]. These expansions

are valid as long as the scale µ is within a perturbative range, and the last expression
is intended for small values of b (b ⌧ 1/⇤). Here we report just the first order
coe�cients:

�(1)f = CF
3
2
, �(1)K = 2CF, K̃ (1)(b; µ) = �CF ln

 
µ2b2

b2
0

!
, (3.16)

with b0 ⌘ 2e��E .
TMD evolution is thus an evolution in the bi-dimensional µ, ⇣ space, which

can be applied in b-space through a multiplicative evolution kernel E(µ, ⇣ ; µ0, ⇣0):

f̃1 (x, b; µ, ⇣) = E(µ, ⇣ ; µ0, ⇣0) f̃1 (x, b; µ0, ⇣0) . (3.17)

In this work, we will make use of a solution for the evolution kernel adopted in pre-
vious phenomenological studies (see, e.g., [25, 64, 67]), which is also the solution
most close to the standard CSS formalism.3 Since the perturbative expressions

3Neglecting higher order corrections, our choice coincides with the standard CSS; the explicit
proof of this correspondence can be found for instance in Appendix B of [32], while a comparison
of di�erent solutions for TMD evolution can be found in [65, 68].
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3.1. TMD evolution

for the initial scale TMD f̃1 (x, b; µ0, ⇣0) and in the evolution kernel in Eq. (3.17)
contain logarithms of the form ln

⇣
µ2

0b2

b2
0

⌘
and ln

⇣
⇣0
µ2

0

⌘
, we minimize these terms by

adopting the natural choice for central values of the initial scales:

µ0 = µb, ⇣0 = µ
2
b, µb ⌘ b0

b
. (3.18)

Moreover, we evolve first in ⇣ and then in µ:

f̃1 (x, b; µ, ⇣) = f̃1
⇣
x, b; µb, µ

2
b

⌘

⇥
✓p
⇣

µb

◆ K̃(b;µ
b

)
exp

⇢π µ

µ
b

dµ0

µ0


� f (↵s (µ0) ; 1) � ln

p
⇣

µ0
�K (↵s (µ0))

��
.

(3.19)

The second line of the above equation is the evolution kernel E(µ, ⇣ ; µ0 = µb,
zeta0 = µ2

b) within our prescription. As can be checked from (3.16), this choice
of scales implies K̃ = 0 up to order ↵s. Scale variations can be studied by setting
(µ0, ⇣0) = (cµ0µb, c⇣0µ2

b), and varying the factors ci.
In principle, the regularity of f̃1 as a function of µ and ⇣ should guarantee that

the evolution kernel E(µ, ⇣ ; µ0, ⇣0) is independent of the path chosen to integrate the
evolution equations from (µ0, ⇣0) to (µ, ⇣). However, the perturbative truncation of
K̃ to a given order in ↵s breaks the continuity condition (3.12), introducing some
path dependence. A detailed study on the issue can be found in [69].

At small values of b, i.e., b ⌧ 1/⇤, TMDs can be calculated perturbatively,
through an Operator Product Expansion (OPE) [70] around b = 0, and their
expression reads4

f̃ a/N
1 OPE (x, b; µ, ⇣) =

’
i

π 1

x

dx̂
x̂

C̃in
a/i (x/x̂, b; µ, ⇣, ↵s(µ)) f i/N

1 (x̂, µ),

D̃h/a
1 OPE (z, b; µ, ⇣) = 1

z2

’
i

π 1

x

dẑ
ẑ

C̃out
i/a (z/ẑ, b; µ, ⇣, ↵s(µ)) Dh/i

1 (ẑ, µ),
(3.20)

where f i/N
1 (x̂, µ) (Dh/i

1 (ẑ, µ)) is the collinear PDF(FF) for parton species i. The
explicit calculation of the Wilson coe�cients C̃in and C̃out to order ↵s can be
found in [26, 64], while the expressions to order ↵2

s can be found for instance in
[66, 68]. Potentially large logarithmic terms in these expressions are controlled by
the choice of scales in (3.18).

4Our C̃out coe�cients are defined in a di�erent way from [26, 64]:

C̃out

����
ours

(z, b; ...) = z2C̃out

����
Collins

(z, b; ...).

This is done to facilitate the comparison to collinear factorized formulas in Ch. 4.
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3. Low transverse momentum: formalism

3.1.2 Logarithmic ordering
In this subsection we specify and motivate the notation we will use to indicate
di�erent levels of perturbative accuracy in the TMD evolution formula. The TMD
evolution kernel E (also known as Sudakov factor) can be written as an infinite
series of logarithms

E2(Q,Q2; µb, µ
2
b) = 1 +

1’
n=1

↵n
s

2n’
k=1

Ẽ (n,k) lnk Q2

µ2
b

. (3.21)

In (3.21) we wrote E2 because we are interested in the logarithmic expansion of
the cross section, which always contains two TMDs. Terms with k = 2n are the
only terms taken into account in a leading logarithmic (LL) expression, and more
generally k = 2n�m (m � 0) corresponds to NmLL logarithmic accuracy. Di�erent
levels of logarithmic accuracy correspond to di�erent perturbative accuracy of the
anomalous dimensions in (3.15). The remaining perturbative ingredients for the
cross section, i.e., the hard factor H and the Wilson coe�cients C̃in(out) also have
a perturbative expansion in ↵s, but without logarithms of the type ln Q2/µ2

b. They
should however be taken to the proper order in ↵s, to attain the desired logarithmic
accuracy. Let us consider, indeed, an expansion of (3.21) to NmLL, and check
what is the e�ect of multiplying by a term proportional to ↵p

s :

↵p
s E2

NmLL = ↵
p
s

1’
n=1

↵n
s

2n�m’
k=1

Ẽ (n,k) lnk Q2

µ2
b

,

=

1’
n0=1+p

↵n0
s

2n0�2p�m’
k=1

Ẽ (n0�p,k) lnk Q2

µ2
b

⇠ Nm+2pLL,

(3.22)

where in the last line we have defined n0 ⌘ n + p, and the symbol ⇠ denotes that
what we obtain are terms of logarithmic accuracy Nm+2pLL. This means that in a
NNLL framework, one should take H and C̃in(out) at least up to order ↵s, in order
to take into account all contributions with the proper logarithmic counting. This
is not necessary at LL and NLL, where one can safely take them at leading order,
i.e., ↵0

s , as higher order terms would introduce corrections of higher logarithmic
accuracy. There is however a di�erent convention, often adopted in studies within
the CSS framework (see, e.g., [19, 22, 71, 72]), where at NmLL the coe�cients
H and C̃in(out) are taken at order ↵m

s . To distinguish, we will denote calculations
done with this convention with a 0 symbol, i.e., NmLL0. In any case the cusp
anomalous dimension is taken at one order higher, ↵m+1

s , since it multiplies a
logarithm ln(Q/µb), while � f and K̃ are taken at order ↵m

s . The two di�erent
prescriptions are summarized in Table 3.1.
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3.1. TMD evolution

H , C̃in(out) �K � f K̃

LL ↵0
s ↵1

s ↵0
s ↵0

s

Nm�1LL ↵m�1
s ↵m+1

s ↵m
s ↵m

s

Nm�1LL0 ↵m
s ↵m+1

s ↵m
s ↵m

s

Table 3.1: Nomenclature for di�erent logarithmic orders in the TMD formula.
Notice the distinction between NmLL and NmLL0 for m � 1.

3.1.3 Non-perturbative terms and b⇤ prescriptions
At large b, b & 1/⇤, not only the OPE in (3.20) is not applicable, but also
the strong coupling ↵s(µb) in the perturbative expansions in (3.15) and in the
Wilson coe�cients hits the Landau pole. Since the Fourier integral in (3.7)
extends over the full b space, a common way to avoid this issue is to make the
substitution b ! b⇤(b) inside f̃1

�
x, b; µ; ⇣ f

�
and D̃1 (z, b; µ; ⇣D) , where b⇤(b) is

a cuto� function, defined in such a way that b⇤ ' b when b is below a certain
threshold b < bmax , and b⇤ ' bmax beyond the threshold. This is commonly
accompanied by the introduction of a function f̃NP(x, b,Q2) (D̃NP(z, b,Q2)), to
describe nonperturbative physics at large b. The final expression for the evolved
TMD PDF becomes then

f̃1 (x, b; µ, ⇣) = f̃1 OPE

⇣
x, b⇤; µb⇤, µ

2
b⇤

⌘
f̃NP(x, b, ⇣)

⇥
✓p

⇣

µb⇤

◆ K̃(b;µ
b

⇤ )
exp

⇢π µ

µ
b

⇤

dµ0

µ0


� f (↵s (µ0) ; 1) � ln

p
⇣

µ0
�K (↵s (µ0))

�� (3.23)

(analogously for TMD FFs). A classical choice for the function b⇤(b), introduced
in [16] and used in many phenomenological works, is

b⇤(b) = bq
1 + b2

b2
max

, (3.24)

but of course this is not the only possible choice. We will explore also an expo-
nential form, adopted in [67], which yields a more sharp transition (see Fig. 3.1:

b⇤exp(b) = bmax
⇥
1 � exp(�b4/b4

max)
⇤ 1

4 . (3.25)

Practically, the b⇤ function can be chosen in such a way to modify not only the
large distance region b & 1/⇤, but also the very short distance region, b . 1/Q, as
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Figure 3.1: A comparison of the di�erent forms for the function b⇤. Dashed: Eq. (3.24); full
line: Eq. (3.25); dot-dashed: Eq. (3.26). b

max

= 2e��E GeV�1 for all the curves, while b
min

in
Eq. (3.26) is set to 2e��E /5GeV�1 for illustrative purposes. The dotted line represents b⇤ = b, for
comparison.

proposed in [73]. Such a modification is legitimate since it only a�ects the region
where TMD factorization loses predictive power (in qT -space the modification
essentially a�ects the tail of TMDs, at qT ⇠ Q), and is similar to the prescrip-
tion introduced in [72], where logarithms ln(Q2b2) in the resummed formula are
replaced by ln(Q2b2 + 1). In our work we make use of the following function

b̄⇤exp(b) = bmax

"
1 � exp(�b4/b4

max)
1 � exp(�b4/b4

min)

# 1
4

, (3.26)

already used in [25], with bmin ⇠ 1/Q. The advantages of prescriptions like (3.26)
are:

⌅ the scale µb⇤ in the Sudakov exponent in (3.23) never becomes greater than
µ ⇠ Q. This avoids the use of resummation in an unphysical region;

⌅ consequently, resummed contributions are damped in the region qT ⇠
Q, where they lose accuracy, thus improving the matching to fixed-order
collinear factorization;

⌅ the integral over
Ø

d2qT of TMDs, or equivalently, the value of the Fourier
transformed TMD f̃1 (x, b; µ, ⇣) in (3.23) at b = 0, is di�erent from zero, at
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3.2. Matching to fixed-order

variance with the standard CSS prescription. Its value has a precise physical
meaning in relation to the qT -integrated cross section, (2.29), as we will
show.

The function f̃NP in (3.23) is the product of two terms:

f̃ a
NP(x, b, ⇣) = f̃ a

1 NP(x, b)
✓p
⇣

Q0

◆ K̃
NP

(b)
. (3.27)

f̃1 NP is the nonperturbative counterpart of f̃1 OPE for large b, describing the intrin-
sic transverse momentum distribution from the parton-in-nucleon wave function,
while K̃(b) is the nonperturbative extension of the rapidity evolution kernel (we
recall indeed that the kernel is b-dependent and is derived from the soft factor). In
the above equation we have explicitly reinserted dependence on the flavor a, since
the intrinsic distribution f̃ a

1 NP can have flavor-dependence, while the nonperturba-
tive part of the evolution is independent of flavor and external hadron species, and
also of the process. Dependence on the hard scale ⇣ ⇠ Q comes only from K̃NP.
Being nonperturbative functions, f̃ a

1 NP and K̃NP can be predicted through models,
or extracted from fits to data with a suitable parametrization. The initial rapidity
scale Q0 in (3.27) should be though of as the scale of the model for f̃ a

1 NP. It is
usually set of the order of 1 ⇠ 2 GeV. Di�erent fits, like [19, 20, 29], have used an
overall gaussian form for f̃NP:

f̃ a
NP(x, b, ⇣) / exp

(
�b2

 
g1(x) + g2 ln ⇣

Q2
0

!)
, (3.28)

but also a negative exponential form has been used, as well as more involved
forms [25, 29, 74]. One should keep in mind that the actual TMD in the fit is a
convolution of the nonperturbative form f̃NP and the perturbative parts, and hence
details concerning the way the two parts are separated, like the value of bmax and
the form of the function b⇤, can a�ect the form of the nonperturbative function
preferred by the fit.

3.2 Matching to fixed-order
As we have discussed in Sec. 2.2.2, the collinear factorization formula should be
applied for transverse-momentum dependent cross sections at qT ⇠ O(Q), while
TMD factorization is applicable at qT ⌧ Q and is subject to power corrections
of the order O(qT/Q). One should thus switch from one formalism to the other
when describing data from low to high qT . However, an abrupt switch would
not yield the most accurate predictions in the intermediate region where both the
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3. Low transverse momentum: formalism

formalisms are applicable with some degree of accuracy5. Hence it is common
to use the so-called W + Y prescription [16, 71] to match the two regions6. In
this prescription, W stands for the TMD factorized cross section in (3.5) and (3.6),
while Y is a correction term to be applied in the intermediate region M ⌧ qT . Q:

d�X

dqTd ...
(matched) = W + Y,

W ⌘ d�X

dqTd ...
(TMD),

Y ⌘ d�X

dqTd ...
(F.O.) � d�X

dqTd ...
(asy),

(3.29)

where d�X/(dqTd ...) denotes either (3.1) or (3.2), and labels in parentheses denote,
respectively, the TMD cross section, the fixed order collinear-factorized cross
section (Eq. (2.50) in the case of SIDIS, the analogue for DY), and the asymptotic
expansion discussed in Sec. 2.2.2. The idea behind (3.29) is the following: when
qT ⌧ Q, the collinear expression should be well approximated by its asymptotic
expression, yielding a negligible contribution from the Y term. At higher qT ,
the TMD formula needs O(qT/Q) corrections. These are well approximated by
Y , since it contains precisely those terms from the collenar formula that are sub-
leading. Eventually, when qT is of the order of Q, the W term and the asymptotic
term in (3.29) should cancel, leaving the fixed-order cross section. One should
keep in mind that in practice cancellations are never perfect. Concerning the
high-qT limit of (3.29), it is true that the W term, when expanded to a given order
in ↵s, yields precisely the asymptotic expression at that order (see, e.g., Sec. 3.2
of [51] for the explicit formulae at leading order). However, in practice there is
only a narrow range in qT (if any) where this approximation works (see, e.g., Sec.
1.4 of [71]), after which one should switch to a pure collinear-factorized formula.
In studies on qT spectra for Tevatron and LHC (e.g., [71, 77, 78]), this switching
usually happens at qT < Q. The situation is particularly dramatic for SIDIS, since
it has been shown that a true cancellation never occurs, due to the influence of
nonperturbative components [32]. Also at very low qT , errors in the cancellation
of the asymptotic with the fixed-order can be sizeable, especially at low Q. A way
to practically avoid the issue, as proposed in [73], is to introduce two damping
functions, one to gradually set to 0 the Y term at low qT , and one to set to 0 the
W and asymptotic terms at relatively high qT , before these terms become negative
(which usually happens at qT < Q).

5See, e.g., the discussion in Sec. 1.3 of [71].
6Alternative matching procedures were proposed also in, e.g., Refs. [75, 76].
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s ) and logarithmic ordering

3A Appendix: expansion of the evolution factor to
O(↵2

s ) and logarithmic ordering
To motivate the expansion of the evolution kernel in Eq. (3.21) and the logarithmic
ordering in Table 3.1, we will discuss the fixed-order ↵2

s expansion of E, or, better,
of E2, since we always have two TMDs in the cross section formula. For simplicity,
we will not consider scale variations at this stage, and set µ = Q, ⇣ = Q2:

E2(Q,Q2; µb, µ
2
b) =

exp

(
K̃ (b; µb) ln

Q2

µ2
b

+

π Q2

µ2
b

dµ02

µ02


� f (↵s (µ0) ; 1) � ln

p
⇣

µ0
�K (↵s (µ0))

�)
.

(3.30)

Since we are interested in a order ↵2
s expansion, we can retain just the first two

terms in each of the perturbative series of the anomalous dimensions (3.15):
E2(Q,Q2; µb, µ

2
b) '

exp

( ’
n=1,2

an
s (µb)K̃ (n) (b; µb) ln

Q2

µ2
b

+

π Q2

µ2
b

dµ02

µ02

’
n=1,2

an
s (µ0)


�(n)f � ln

p
⇣

µ0
�(n)K

�)
,

(3.31)

where as ⌘ ↵s/(4⇡), and we have consequently redefined the perturbative coe�-
cients �(n)f , �(n)K and K̃ (n) to compensate for the factor of 4. In order to analytically
solve the integral over µ0, we need an expression for the running coupling. In the
context of a second-order approximation, it is su�cient to consider the leading
order RGE for as:

as(µ) =
as(Q)

1 + as(Q)�0 ln
�
µ2/Q2� ' as(Q)

h
1 + as(Q)�0 ln

⇣
Q2/µ2

⌘
+ O

⇣
a2

s

⌘i
,

(3.32)
where we expanded around the hard scale Q. Inserting this expression in (3.31),
one obtains

E2 ' exp

(
as(Q)

"
K̃ (1) ln

Q2

µ2
b

+

π Q2

µ2
b

dµ02

µ02

✓
�(1)f � �(1)K ln Q2

µ02

◆#

+ a2
s (Q)�0

"
K̃ (1) ln2 Q2

µ2
b

+

π Q2

µ2
b

dµ02

µ02

✓
�(1)f ln Q2

µ02
� �(1)K ln2 Q2

µ02

◆#

+ a2
s (Q)

"
K̃ (2) ln

Q2

µ2
b

+

π Q2

µ2
b

dµ02

µ02

✓
�(2)f � �(2)K ln

Q2

µ02

◆#
+ O

⇣
a3

s

⌘
}.

(3.33)
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At this point we can carry out the integration through the formula:
π Q2

µ2
b

dµ02

µ02
lnk

✓
Q2

µ02

◆
=

π ln Q2

ln(µ2
b

)
d ln µ02 lnk

✓
Q2

µ02

◆

=

π ln(Q2/µ2
b

)

0
dxxk =

1
k + 1

lnk+1

 
Q2

µ2
b

!
, (k � 0)

(3.34)

obtaining

E2 ' exp
⇢
as(Q)

⇣
K (1) + �(1)f

⌘
L � 1

2
�(1)K L2

�

+ a2
s (Q)

⇣
K (2) + �(2)f

⌘
L +

✓
�0K (1) +

1
2
�0�

(1)
f � 1

2
�(2)K

◆
L2

� 1
3
�0�

(1)
K L3

��
,

(3.35)

where
L ⌘ ln Q2

µ2
b

. (3.36)

It is useful to introduce a shorthand notation:

E2 ' exp

( 2’
n=1

an
s (Q)

n+1’
k=1

E (n,k)Lk

)
(3.37)

where E (n,k) are the coe�cients of an
s (Q)Lk in (3.35):

E (1,1) = K̃ (1) + �(1)f , E (1,2) = �1
2
�(1)K

E (2,1) = K (2) + �(2)f , E (2,2) = �0K (1) +
1
2
�0�

(1)
f � 1

2
�(2)K , E (2,3) = �1

3
�0�

(1)
K .

(3.38)

We can now expand the exponential to order a2
s :

E2 '1 + as(Q)
2’

k=1
E (1,k)Lk + a2

s (Q)
266664

3’
k=1

E (2,k)Lk +
1
2

 2’
k=1

E (1,k)Lk

!2377775
+ O

⇣
a3

s

⌘

'1 + as(Q)
2’

k=1
E (1,k)Lk + a2

s (Q)
4’

k=1

eE (2,k)Lk + O
⇣
a3

s

⌘
,

(3.39)
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where
eE (2,1) = E (2,1), eE (2,2) = E (2,2) + 1

2
⇥
E (1,1)⇤2

eE (2,3) = E (2,3) + E (1,1)E (1,2), eE (2,4) = 1
2
⇥
E (1,2)⇤2 . (3.40)

By induction, one can conclude that the Sudakov factor has the logarithmic ex-
pansion in (3.21), and that in order to achieve a LL, NLL, NNLL logarithmic
resummation, the perturbative expansions should be taken as in Table 3.1.

3B Appendix: hard factor and Wilson coe�cients
at O(↵s)

In this Appendix we collect the O(↵s) expressions for the hard factors HX in Eqs.
(3.5)-(3.6) and the Wilson coe�cients C̃in(out) in Eq (3.20), since they will be
used in Ch. 4, and there are di�erent conventions for their definition. For their
derivation, we refer the reader to [26, 64]. Here we follow the convention of those
references, apart from the Wilson coe�cient C̃out , for which

C̃out
����
ours

(z, b; ...) = z2C̃out
����
Collins

(z, b; ...). (3.41)

Hard factors
��HSIDIS(Q; µ)2

�� = 1 + ↵sCF

⇡


�3

2
ln
µ2

Q2 � 1
2

ln2 µ
2

Q2 � 4
�
+ O

⇣
↵2

s

⌘
��HDY (Q; µ)2

�� = 1 + ↵sCF

⇡


�3

2
ln µ

2

Q2 � 1
2

ln2 µ
2

Q2 � 4 + ⇡2
�
+ O

⇣
↵2

s

⌘
.

(3.42)

TMD PDF Wilson coe�cients
C̃in

q/q0 (x, b; µ, ⇣, ↵s(µ)) = �qq0�(1 � x)+

+ �qq0
↵sCF
2⇡

(
ln

✓
2e��E

b µ

◆2 ✓
2

1 � x

◆
+

� 1 � x
�
+ 1 � x+

+ �(1 � x) ln
✓
2e��E

b µ

◆2 
1 + ln

✓
⇣

µ2

◆� )
+ O

⇣
↵2

s

⌘
,

(3.43)

C̃in
q/g (x, b; µ, ⇣, ↵s(µ)) =

↵sTf
2⇡

(
ln

✓
2e��E

b µ

◆2
[1 � 2x(1 � x)]+

+ 2x(1 � x)
)
+ O

⇣
↵2

s

⌘
,

(3.44)
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TMD FF Wilson coe�cients

C̃out
q0/q (z, b; µ, ⇣, ↵s(µ)) = �qq0�(1 � z)+

+ �qq0
↵sCF
2⇡

( "
ln

✓
2e��E

b µ

◆2
+ ln z2

# ✓
2

1 � z

◆
+

+ 1 + z
�
+ 1 � z+

+ �(1 � z) ln
✓
2e��E

b µ

◆2 
1 + ln

✓
⇣

µ2

◆� )
+ O

⇣
↵2

s

⌘
,

(3.45)

C̃out
g/q (z, b; µ, ⇣, ↵s(µ)) =

↵sCF
2⇡

1
z

( "
ln

✓
2e��E

b µ

◆2
+ ln z2

# ⇥
1 + (1 � z)2

⇤
+ z2

)
+ O

⇣
↵2

s

⌘
.

(3.46)
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Chapter 4
Low transverse momentum:
phenomenology

In this Chapter we present phenomenological studies on TMDs in SIDIS and
Drell-Yan. The two processes are treated separately, since SIDIS data present
issues when attempting a description beyond leading order. These are addressed
in Sec. 4.1, where we provide theoretical and numerical evidences that help to
identify the origin of the discrepancies. In Sec. 4.2 we show preliminary results
for a fit of Drell-Yan data from both fixed-target and collider experiments, including
the newest data from LHC.

4.1 TMDs in SIDIS
Early phenomenological studies on the CSS formalism in SIDIS can be found in
[22], where data from the H1 [79] and ZEUS [80] collaborations at HERA were
considered. The observables in that case are however di�erent from the cross
section in (3.1). In one case the transverse energy flow was measured, which is
equivalent to

d⌃z

dxdQ2dqT
=

’
h

π 1

z
min

dz
✓
z · d�` N!`0 h X

dxdzdQ2dqT

◆
, (4.1)

and hence a sum over hadron species and an average over z of the cross section are
involved. In the other case, data di�erential in PhT and integrated over the other
variables were presented:

d�` N!`0 h X

dPhT
. (4.2)
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The fact that the cross section in (4.2) is di�erential in PhT and integrated over z
poses complications in the theoretical analysis of data, since the low and high qT
ranges are mixed. Leaving to future studies a reanalysis of these data, in this work
we will discuss the unpolarized PhT -di�erential multiplicities in SIDIS, integrated
over the azimuthal angle. To distinguish from collinear multiplicities, Eq. (2.27),
we will denote them as Mh

P
T

:

Mh
P
T

⇣
x, z,Q2, PhT

⌘
=

d�h/
�
dx dQ2 dz dPhT

�
d�DIS/

�
dxdQ2� . (4.3)

Di�erent phenomenological TMD studies have been performed on SIDIS mul-
tiplicites of the form (4.3), following the release of large statystics data from
HERMES [81] and COMPASS [82] collaborations. Some of these studies are in a
parton model framework (like, e.g., [23, 24]), while others (e.g., [25]) are at most
at NLL, in the nomenclature of Table 3.1. Valuable information was provided by
these pioneering studies. However, higher order analyses were not performed, and
experimental issues were present: the COMPASS data set, which was the set with
the higher statistics and kinematic coverage, was a�ected by normalization errors1.
This allowed to reproduce the shape of the data but not their normalization. A new
set of data by the same collaboration has been released only recently [83].

In this thesis, we will show that going at the first non-trivial order (O(↵s)) in
the TMD formula apparently introduces a serious discrepancy with data, lowering
theoretical predictions by a factor⇠ 0.5. We will then argue that this discrepancy is
probably due to the fact that most data lie in a qT region where the formalism is not
applicable, at least without modifications. At fixed-target energies, it is hard if not
impossible to identify a region of validity of the TMD formalism. Considerations
based on perturbative calculations indicate that PhT should be extremely small if
we want qT/Q logarithms to dominate. However, nonperturbative contributions
should be large in that region and hamper a perturbative analysis.

4.1.1 The range for transverse-momentum resummation
The issue of what is practically the qT range for TMDs is quite controversial. In all
Drell-Yan studies (e.g., [19, 20, 25, 29, 30]), the chosen range is qT/Q . 0.1�0.25
(both for fixed target and collider regimes), while restrictions adopted in SIDIS
studies are definitely loose: the focus is more on the value of PhT , so that data with
qT close to Q are often accepted as TMD data (see, e.g., [23–25]). This choice
was in part dictated by the gaussian-like shape of the data, which seems to suggest
that intrinsic transverse momentum is playing a role in SIDIS even sometimes

1See the erratum to [82]
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at qT ⇠ Q, especially when Q is few GeVs. We cannot discard this hypothesis.
However, it must be noticed that the TMD formalism is beyond its domain of
applicability in that region, and hence it cannot be expected to give meaningful
results: as we have seen, TMD factorization is equivalent to transverse-momentum
resummation, and hence is applicable in the qT range where resummation is
meaningful. A commonly adopted rough criterion is qT ⌧ Q, since this means
large logarithms of the form ln(Q/qT ). A more refined criterion can be to look
at the asymptotic cross section. This contains the parts of the fixed-order cross
section diverging at least as 1/q2

T (Eq. (2.54)), which are precisely those terms that,
order by order, need to be resummed. Resummation should be applied where the
asymptotic term is a good approximation of the fixed-order calculation. Moreover,
going to larger qT , the asymptotic curve rapidly goes to negative values. At this
point, not only a resummation formula, but also a W+Y construction would be
a�ected by large errors (see again Sec. 1.4 of [71]). To give an example of what
can be the e�ect of such a criterion on data selection, in Fig. 4.1 we plot the fixed
order collinear-factorized prediction and its asymptotic expansion (at LO), for a
Drell-Yan and a SIDIS bin, with comparable values of

p
s, Q (' 4.5 GeV) and

x. The region where the asymptotic term is positive, and hence meaningful, is
qT . 1.4 GeV in both cases. Beyond this region it is in principle hard to justify
the use of resummed formulas. However, the range covered by data is markedly
di�erent: at variance with Drell-Yan, almost all data in the considered SIDIS bin
lie beyond this ‘safe zone’2. It follows, then, that SIDIS studies for kinematics
similar to Fig. 4.1 necessarily have to violate the above criterion. It is interesting
to notice that, instead, selection cuts adopted in Drell-Yan studies generally agree
with the criterion3.

4.1.2 The integral of TMDs
From the above considerations, it is important to understand what one should
expect when adopting a TMD formalism to attempt a description of SIDIS data.
To this aim, we will consider the integral over qT of the TMD-factorized cross
section π

W ⌘
π

d2qT
d�` N!`0 h X

dQ2dxdzd2qT
(TMD), (4.4)

2One might be induced to think that this is specific of the smaller z bins, since q
T

= P
hT

/z,
and hence this bins cover higher values in q

T

. However, as we shall see in the following, the
observations presented here are quite general for low-energy SIDIS, and our conclusions do not
have a marked dependence on the value of z.

3The cut q
T

/Q . 0.1 � 0.25 in general selects data within our ‘safe zone’. For instance, the
analyses in [19, 20, 25] considered the first 7 data points from the E288 bin in Fig. 4.1, while [29]
considered the first 5 points. A complete collection of plots like Fig. 4.1 for fixed-target Drell-Yan
can be found in Ch. 5.

49



4. Low transverse momentum: phenomenology

�=��� ���

��-�

��-�

��-�

���

���

���

���

��
σ/
(π
��
��

�
� )

[�
�/
�
��

� ]

� � �
�� [���]

����� � =���� ���� �=����

(αs)
(αs) asy

�+ � ��=�� ����� �=������ �=����

��-�

��-�

��-�

���

���

���

���

�σ
��

�
��
��
��

��
�
/

�σ
��

�
��

[�
��

-�
]

� � � � � � �
�� [���]

������� ����� � = ���� ���

(αs)
(αs) asy

Figure 4.1: The fixed order (full curve) and asymptotic (dashed curve) O(↵
s

) calculations for a
Drell-Yan (left) and a SIDIS (right) bin. The range where the two theoretical curves overlap should
be considered as the range where transverse-momentum resummation is needed. To show the
available experimental ranges, data from E288 [13] and COMPASS [83] are superimposed.

where (TMD) denotes that formula (3.5) is adopted for the qT -di�erential cross
section. By the properties of Fourier transforms, the above intergal can be written
in terms of b�space distributions, evaluated at b ⌘ 0:π

W = �0
’

q

��HSIDIS(Q; Q)2
��

⇥ f̃ q/N
1

⇣
x, b ⌘ 0; Q; Q2

⌘
D̃h/q

1

⇣
z, b ⌘ 0; Q; Q2

⌘
,

(4.5)

where �0 is the cross section prefactor

�0 ⌘ z24⇡↵2
em

xQ4

✓
1 � y +

y2

2

◆
. (4.6)

Comparing the value of this integral to the integral of experimental data, or to
the theoretical integrated cross section in collinear factorization, Eq. (2.29), will
explain why a O(↵0

s ) formula (as the one in [25]) can approach data, and higher
order calculations cannot.

Analytic expressions for the integral of TMDs

In the standard CSS prescription, the TMD integral over the full qT space is
zero.4 However, as we mentioned in Sec. 3.1.3, this is due to the scale µ⇤b in
(3.23) going unphysically to infinity for b ! 0. In qT -space, this is reflected
on the TMD going large and negative at large qT , compensating the integral of

4See Appendix A of [73] for an explicit proof.
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4.1. TMDs in SIDIS

the small-qT region. This is an incidental feature of the prescription used for
the b⇤ prescription, as discussed in Sec. 3.1.3. Prescriptions of the b̄⇤ type, like
(3.26), while not a�ecting the TMD in the physical region, modify the large-qT
tail, yielding a non-zero value for

Ø
W. Indeed, these prescriptions give b̄⇤ ! bmin

when b ! 0, with bmin ⇠ 1/Q. Inserting our solution (3.23) for TMD evolution,
the integral in Eq. (4.5) reads:

π
W = �0

’
q

��HSIDIS(Q; Q)2
�� ✓ Q
µb

min

◆2K̃(b⌘0;µ
b

min

)

⇥ exp

(
2
π Q

µ
b

min

dµ0

µ0


� f (↵s (µ0) ; 1) � ln

Q
µ0
�K (↵s (µ0))

�)

⇥ f̃1 OPE

⇣
x, bmin; µb

min

, µ2
b
min

⌘
f̃NP(x, b ⌘ 0,Q2)

⇥ D̃1 OPE

⇣
z, bmin; µb

min

, µ2
b
min

⌘
D̃NP(z, b ⌘ 0,Q2),

(4.7)

where we chose the hard scales as µ = Q, ⇣ f (D) = Q2, and the initial scales as
µ0 = µb⇤ , ⇣0 f (D) = µ2

b⇤ . In the above equation, we have substituted b⇤ with bmin,
i.e., its limit for b ! 0. A reasonable choice for bmin is the one that gives

µb
min

= Q, (4.8)

i.e., bmin = b0/Q, since this prevents unphysical Sudakov resummation (i.e.,
resummation with µb > Q). With this choice, perturbative evolution terms are
set to 1 in (4.7). By definition, also the nonperturbative terms f̃NP and D̃NP must
be equal to 1 at b = 0 (they should not a�ect formulas in the perturbative regime
b ! 0). In conclusion, we are left with

π
W = �0

’
q

��HSIDIS(Q; Q)2
��

⇥ f̃1 OPE

⇣
x, b0/Q; Q,Q2

⌘
D̃1 OPE

⇣
z, b0/Q; Q,Q2

⌘
,

(4.9)

where f̃1 OPE and D̃1 OPE are convolutions of Wilson coe�cients C̃in and C̃out with
collinear PDFs and FFs, respectively (Eq. (3.20)). When the hard factor and the
Wilson coe�cients are taken at O(↵0

s ), as in a LL or NLL framework, the explicit
expression becomes

π
W

����
O(↵0

s

)
= �0

’
q

e2
q

z2 f q/N
1 (x,Q)Dh/q

1 (z,Q). (4.10)
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This corresponds to the leading-order expression for the integrated cross section
in collinear factorization, (2.29):π

W
����
O(↵0

s

)
=

d�h

dxdQ2dz

����
O(↵0

s

)
. (4.11)

Expressions beyond zeroth order for H and C̃in(out) contribute in a NLL’ calcula-
tion, or at higher logarithmic accuracy. Isolating only the terms proportional to
O(↵s) in the TMD integral, with the standard scale choices of (4.9), one obtainsπ

W
����
O(↵1

s

)
= �0

’
q

e2
q

z2
↵s

⇡

⇢
� 4CF f q/N

1 (x,Q)Dh/q
1 (z,Q)

+
h
C̃in
(1)(b = 0) ⌦ f1

iq/N
(x,Q) Dh/q

1 (z,Q)

+ f q/N
1 (x,Q)

h
C̃out
(1) (b = 0) ⌦ D1

i h/q
(z,Q)

�
,

(4.12)

where we have explicitly inserted the expression (3.42) for the hard factor. The
convolutions in the second and third line areh

C̃in
(1)(b = 0) ⌦ f1

iq/N
(x,Q) =

’
i=q,g

π 1

x

dx̂
x̂

C̃in(1)
q/i

⇣
x/x̂, bmin; Q,Q2, ↵s (Q)

⌘
f i/N
1 (x̂,Q),

h
C̃out
(1) (b = 0) ⌦ D1

i h/q
(z,Q) =

’
i=q,g

π 1

x

dẑ
ẑ

C̃out(1)
i/q

⇣
z/ẑ, bmin; Q,Q2, ↵s (Q)

⌘
Dh/i

1 (ẑ,Q),

(4.13)

and the expressions for the order O(↵s) part of Wilson coe�cients in (4.13) can
be derived from Eqs. (3.43) to (3.46):

C̃in(1)
q/q0

⇣
x, bmin; Q,Q2, ↵s (Q)

⌘
= �qq0

↵sCF
2⇡

(1 � x) , (4.14)

C̃in
q/g

⇣
x, bmin; Q,Q2, ↵s(Q)

⌘
=
↵sTf
2⇡

[2x(1 � x)] , (4.15)

C̃out(1)
q0/q

⇣
z, bmin; Q,Q2, ↵s(Q)

⌘
=�qq0

↵sCF
2⇡

(
ln z2

✓
2

1 � z

◆
+

+ 1 + z
�

+ 1 � z

)
,

(4.16)
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C̃out
g/q

⇣
z, bmin; Q,Q2, ↵s(Q)

⌘
=
↵sCF
2⇡

1
z

(
ln z2 ⇥

1 + (1 � z)2
⇤
+ z2

)
. (4.17)

If we compare the O(↵s) TMD integral, Eq. (4.12), to the O(↵s) expression for
the integrated SIDIS cross section in collinear factorization (Appendix 4A), we
see that the two expressions are di�erent, and

Ø
W reproduces only one part of the

coe�cients of the full cross section:
π

W
����
O(↵1

s

)
,

d�h

dxdQ2dz

����
O(↵1

s

)
. (4.18)

This is consistent: integrating only the low-qT contributions, contained in the
TMD formula, should reproduce only one part of the full integrated cross section.
The only exception is the order O(↵0

s ) case, as we have seen above. The reason is
that at order 0 in collinear factorization the only contribution is from qT = 0, since
there is no gluon radiation to produce a recoil transverse momentum.

Relation between the TMD integral and the asymptotic term

To better understand what is the relation between the TMD integral and collinear
factorization, it is useful to consider the integral of the asymptotic cross section

π
d2qT

d�` N!`0 h X

dQ2dxdzd2qT
(asy), (4.19)

where the leading order expression for the integrand is given in (2.53).
To be more precise, Eq. (4.19) as it stands is ill-defined, since the asymptotic
function is not integrable over qT , due to collinear and soft singularities which
arise as qT ! 0. To have a well-defined integral, one should consider the partonic
version of (4.19) π

casy ⌘
π

d2qT
d�̂

dQ2dx̂dẑd2qT
(asy), (4.20)

and then convolute it with hadronic PDFs and FFs. After inclusion of proper
virtual contributions at qT = 0 and factorization of collinear singularities, the
resulting cross section integrated over qT is finite. This is what we will refer to as
“integral of the asymptotic term”:

π
asy ⌘

’
i, j

π 1

x

dx̂
x̂

f i/N
1

⇣ x
x̂
, µ

⌘ π 1

z

dẑ
ẑ

Dh/ j
1

✓
z
ẑ
, µ

◆

⇥
π

d2qT
d�̂ ji

dQ2dx̂dẑd2qT
(asy).

(4.21)
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By sending the space-time dimensions to d = 4 � 2✏ , and hence the transverse
dimensions to 2 � 2✏ , divergences in the integral (4.20) will appear as poles in
✏ . Soft divergences are then canceled by virtual contributions, while collinear
divergences are factorized into partonic PDFs and FFs. At this point an analytic
solution for (4.21) can be found, provided one introduces an upper integration
cuto� qcut

T . This is needed since the asymptotic term is only meaningful at low
qT , where it approximates the fixed-order. The result of such a calculation can be
found in [22]:

π
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����
O(↵1

s

)
=

π
W

����
O(↵1

s

)
+

’
q

�0↵s
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e2

q
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� CF

2

 
ln2 Q2�

qcut
T
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�2
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1 (z,Q)+
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�2

’
q

"
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1 (z,Q)
’
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π 1

x

dx̂
x̂

Pqi(x̂) f i/N
1

⇣ x
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,Q

⌘
+

+ f q/N
1 (x,Q)

’
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π 1

z

dẑ
ẑ

Pjq(ẑ)Dh/ j
1

✓
z
ẑ
, µ

◆ #)
,

(4.22)

where Pi j are the splitting functions, and we have set the factorization and renor-
malization scales equal to Q. Thus, for qcut

T ' Q, the TMD integral at order ↵s
corresponds to the integral of the asymptotic term at the same order. This relation
is expected to hold also at higher orders.

Concluding, we have evidenced that:

1. the TMD cross section is supposed to yield a reliable prediction in the
region where the fixed-order collinear cross section is approximated by the
asymptotic expansion;

2. the integral of the TMD cross section can be calculated analytically, provided
a b̄⇤ prescription is used, to avoid unphysical use of resummation; as we shall
see in Sec. 4.1.3, the analytic integral thus calculated is a good approximation
of the numerical integral of the W term, restricted to the region W> 0; its
value is independent of non-perturbative terms, and thus predictable from
pQCD;

3. at order O(↵s) in the hard factor and Wilson coe�cients, the analytic integral
above corresponds to the integral of the asymptotic term (after cancellation
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4.1. TMDs in SIDIS

of singularities); this is consistent with point 1: the W term should reproduce
the fraction of data in the region where the asymptotic approximation works;

4. at order O(↵0
s ), the integral of the W term corresponds to the full LO inte-

grated cross section; this is due to the fact that, at this order, the qT generated
by perturbative QCD is 0, and hence there is no high-qT contribution to the
theoretical cross-section.

4.1.3 Comparison to data
For the reasons explained in the previous Sections, it is possible for TMD theory–
when taken at the 0th order in the hard coe�cients–to approach fixed-target SIDIS
data, even tough most of them lie outside of what can be safely retained a TMD
region. This was partially shown by previous studies like [23–25], which how-
ever could not make definitive conclusions concerning the COMPASS data [82],
a�ected by an experimental issue in the determination of the normalization. The
new and unbiased data released in [83] confirm the above statement: in Figs. 4.2
and 4.3 we show them in comparison with predictions obtained with the param-
eters extracted in [25]. Since no hadron identification is provided, we consider
the sum of pion and kaon multiplicities. The data shown satisfy the selection cuts
PhT < 0.9 GeV, 0.2 < z < 0.74, and Q2 > 1.4 GeV2. All the perturbative and
nonperturbative ingredients are the same as in [25]. The overall �2/Ndata from
the comparison, including both positive and negative hadrons in the final state,
is ⇠ 2.4, and goes down to ⇠ 1.7 when excluding the two lowest-Q2 bins (i.e.,
selecting data with Q2 > 2.1 GeV2).

However, in agreement with the discussions in Sec. 4.1.2, when going from a
NLL prescription–as the one used in [25]–to a NLL0 one (or higher order), where
the hard factor and the Wilson coe�cients are at order O(↵s), the comparison to
data becomes extremely di�cult. Indeed, one finds that the ratio data/theory is
around ⇠ 2 for most bins. This is independent of nonperturbative choices, as the
discrepancy does not improve when letting the parameters being chosen by a fit
to data. In view of what we saw above, the explanation is rather simple: in a
0th-order prescription, the TMD cross section is such to reproduce the full LO
cross section when integrated over qT (Eq. (4.11)). Thus, NLL TMDs (as well
as LL and parton model TMDs) are normalized to a value that approximates the
whole qT -integrated data, while NLL0 TMDs are normalized to the qT -integral of
just the TMD region (hence, an extremely narrow region, as shown in Fig. 4.1). To
quantitatively see this e�ect, we took again the TMD parameterization from [25]5,
but this time adding the O(↵s) terms for the hard factor and Wilson coe�cients,

5With respect to [25], we used more recent sets for the collinear PDFs and FFs that enter the
TMD formula: we used MMHT PDFs [5], and the DSSH17 set for kaon FFs.
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Figure 4.2: Comparison of the new COMPASS data [83] for SIDIS multiplicities, (4.3), to predic-
tions obtained with the TMD functions extracted from other data in [25]. In this figure: negative
hadron production o� a deuteron target.
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Figure 4.3: The same as Fig. 4.2, but for positive hadron production.
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and we multiplied the theoretical predictions by independent normalization factors
N(x, z,Q2), one for each bin in x, z and Q2. These factors were then considered
as free parameters, while all the nonperturbative parameters were kept fixed, and
the �2 w.r.t. the data was minimized as a function of them6

�2 ⌘
’

x,z,Q2

’
P
hT

h
Mh

P
T

(exp) � N(x, z,Q2)Mh
P
T

(th)
i2

⇣
�Mh

P
T

⌘2 . (4.23)

The global �2/d.o. f ., considering the number of parameters introduced, is⇠ 1.34.
The normalizations N(x, z,Q2) thus obtained should give an accurate estimate of
the ratio data/theory for the di�erent bins.

According to the previous Section, these factors should be close to the ratio

d�h

dxdQ2dzØ
W

��
O(↵0

s

)+O(↵1
s

)
, (4.24)

where the numerator is the the (qT -integrated) SIDIS cross section in collinear
factorization, while the denominator is the integral of the W term, as defined above.
The order ↵0

s expression for
Ø

W was given in (4.10), while the ↵s expression is
reported in Eqs. (4.12)-(4.17). The order ↵s expression for the integrated cross
section can be found, for instance, in Appendix C of [84]. We do not expect Eq.
(4.24) to reproduce exactly the phenomenological normalization factors, simply
because the numerator of (4.24) is a good estimate for the integral of data over the
whole qT range, while we necessarily have to reduce the range when comparing to
TMDs. The selection cuts in our analysis also exclude the high-qT tail of TMDs,
which is instead taken into account in the denominator of (4.24). Nonetheless,
Fig. 4.4 shows an overall good agreement between the normalization factors
fitted by the above procedure (black dots) to the values predicted by the collinear
factorization formula7 (4.24) (red crosses).

To check that the conclusions are quite general, we also performed an actual fit
of, simultaneously, the nonperturbative parameters and the normalization factors,
with the same exact parameterization and perturbative framework as above (i.e., at
NLL0). To have a good estimate of the uncertainty on the parameters, we adopted a
bootstrap procedure, repeating the fit for 200 sets of pseudo-data randomly gener-
ated around the measured values. Due to the over-parameterization introduced by

6Mh
PT

(exp) and Mh
PT

(th) are the experimental and theoretical multiplicities, respectively.
7Both the numerator and denominator of (4.24) have been calculated with APFEL++[85]. To

produce the figure, we have used a LO expression for the numerator. A NLO formula does not
improve the description.
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Figure 4.4: The normalization factors N(x, z,Q2) (black dots), obtained from a comparison to data
as described in the text, compared to the theoretical ratio in (4.24) (red crosses), for the di�erent
bins of the new COMPASS data [83], in the case of positive hadron production. Here the collinear
cross section, numerator of (4.24), is taken at LO.
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g1
⇥
GeV2⇤ ↵ � �

⇥
GeV�2⇤ g2

⇥
GeV2⇤

0.21 ± 0.04 1.56 ± 0.73 �0.12 ± 0.08 0.21 ± 0.21 0.10 ± 0.03

Table 4.1: Non-perturbative parameters for the TMD PDFs, in the notation of
Eqs. (34)-(39) of [25], extracted from our toy fit with normalization factors. The
reported values correspond to the mean and 68% confidence interval from the
results of the 200 bootstrap replicas.

g3
⇥
GeV2⇤ � �

0.40 ± 0.09 4.03 ± 2.06 2.04 ± 0.76

� �F
⇥
GeV�2⇤ g4

⇥
GeV2⇤

0.24 ± 0.15 18.6 ± 1.4 0.18 ± 0.04

Table 4.2: Analogue of Tab. 4.1, but for TMD FFs.

the artificial normalization factors, the final nonperturbative parameters (reported
in Tabs. 4.1-4.2) should not be considered as an accurate description of intrinsic
transverse momentum. For the same reason, the resulting average �2/d.o. f . is
particularly low: 0.51 . This should rather be considered as a toy fit, whose aim is
to show that the normalization factors N(x, z,Q2) are quite general and indepen-
dent of the nonperturbative parameters. Indeed, from Fig. 4.5, we can see that the
agreement with the theoretically predicted normalizations is preserved also in this
case.

To conclude, we showed that beyond-lowest-order TMD theory cannot repro-
duce SIDIS fixed-target data, at least when the data selection cuts in qT are taken, as
often done, beyond the safe region8 qT . 0.2Q. However, this discrepancy can be
quantitatively predicted by theoretical arguments. For this reason, we are not fac-
ing a failure of the theory, but instead a confirmation of the fact that the considered
data lie mostly outside of what–on theoretical grounds–can be considered a TMD
region. Together with the fact that parton model and lowest-order approaches seem
instead to work, with gaussian-like parameterizations, this seems to suggest that
intrinsic transverse momentum is playing a major role in the observed data, but at
the same time that the TMD factorization formalism may not be the appropriate
tool to study this role.

8During the writing of the thesis, it was reported in [86] a fit of both Drell-Yan and SIDIS,
confirming that acceptable results for SIDIS can be achieved only when using restrictive cuts
q
T

/Q < 0.2 � 0.25, thus considering a small percentage of the data.
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Figure 4.5: Same as Fig. 4.4, but with the normalization factors N(x, z,Q2) obtained from a
simultaneous fit together with the nonperturbative parameters, as described in the text. The black
dots and the error bars are obtained respectively as the mean and the standard deviation of the
values from the 200 bootstrap replicas.
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4. Low transverse momentum: phenomenology

4.2 TMDs in Drell-Yan
In this Section we report our phenomenological study of TMDs in Drell-Yan9.
Di�erent studies are present in the literature: after the first analyses of transverse-
momentum resummation for Tevatron data in the 1980-90s and early 2000s [17–
20], a second wave of updated fits and phenomenological works was published
in the last decade, following the release of newer data from Tevatron (e.g., see
[74, 87]) and, later, of LHC data. The first TMD fit of simultaneously Drell-Yan
and SIDIS data can be found in [25], and was conducted within the “standard”
theoretical framework used in the previously-cited works (i.e., the one given in
Eq. (3.23)). The first studies including LHC data are [29, 30], which used
however a di�erent choice for the TMD renormalization and rapidity scales, called
the ⇣ prescription (see [29] for the description), which should allegedly improve
perturbative stability. We retain it important to have an independent study of the
most recent data in the standard framework, at the highest available perturbative
accuracy. Moreover, we will show a TMD study of LHC data without making use
of any normalization factor, contrarily to what was done in previous works, where
predictions were normalized to the value of the total experimental cross section.
This is crucial, since it allows TMD theory to be cleanly tested against the most
precise data available, by reproducing not only the shape of transverse momentum
cross sections, but also their absolute normalization.

4.2.1 Perturbative and nonperturbative choices
The theoretical framework for our calculations is described in Chapt 3, and con-
densed in Eq. (3.23). The b⇤ function is taken as in Eq. (3.26), i.e., with an
exponential form and a bmin threshold. We set

bmax = 2e��E GeV�1 ' 1.123 GeV�1, bmin =
2e��E

Q
, (4.25)

while the TMD factorization and rapidity scales are set to µ =
p
⇣ = Q. Except

for Sec. 4.2.4, where we compare di�erent logarithmic orderings, all our result
are at N3LL. For the collinear PDFs, we use the MMHT NNLO set [5]. For what
concerns the nonperturbative TMD, according to recent studies [29, 30], a function
with a gaussian behavior at b ! 0 and a milder slope at large b should allow for
an easier description of, simultaneously, low energy data and LHC data. We will
thus use a q-Gaussian with q=2, since it has precisely the above properties. Our

9The term Drell-Yan is extended here to include lepton pair production in hadron-hadron
collision via an intermediate Z-boson.
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4.2. TMDs in Drell-Yan

parameterization is:

fNP(x, b, ⇣) =
exp

h
�1

4g2 log
⇣
⇣

Q2
0

⌘
b2

i
1 + 1

4g
2
1(x)b2

, (4.26)

where the x-dependence is governed by the function g1 in the denominator:

g1(x) = N1
x�(1 � x)↵
x̂�(1 � x̂)↵ . (4.27)

We choose Q2
0 = 1 GeV2 and x̂ = 0.1. The free parameters are thus four: ↵, �,

N1, g2.

4.2.2 Selected data sets
A description of the data sets selected in our analysis is given in Tab. 4.3. For all
the sets, we adopt the selection cut qT < 0.2Qmin, where Qmin is the lower bound
of the invariant mass bin.

Fixed-target Drell-Yan

We included in our analysis data from Drell-Yan on nuclear targets from Fermilab
experiments E288 [13] and E605 [88]. The observable in this case is

Ed3�

d3q
⌘ 2E
⇡
p

s
d�

dxF dq2
T
=

d�
⇡dydq2

T
. (4.28)

The kinematic variables of the experiments are reported in Tab. 4.3. The center-
of-mass energies range from ⇠ 20 to ⇠ 40 GeVs. Nuclear targets (copper and
tungsten) are treated as an incoherent sum of protons and nucleons. These data sets
are a�ected by large normalization errors, notably the E288 set, with a declared
overall uncertainty of 25%, which we inserted in the correlation matrix as a
completely correlated multiplicative uncertainty. We integrated our calculations
over the respective bin widths in Q and qT , and excluded bins with 9 < Q < 11, to
avoid the ⌥ resonance.

Tevatron

Tevatron data from CDF runs I-II [90, 91], and D0 runs I-II [92, 93] for Z-boson
production were also included. The observable in this case is d�/dqT , except
for D0 run II, where the data are divided by the total measured cross-section:
1/� · d�/dqT . Our calculations are integrated over the physically allowed rapidity
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4. Low transverse momentum: phenomenology

Experiment
p

s (GeV) y , xF Q (GeV) Npt

E288 200[13] 19.4 y = 0.4 4-9 30
E288 300 [13] 23.8 y = 0.21 4-9 30
E288 400 [13] 27.4 y = 0.03 5-9, 11-14 65

E605 [88] 38.8 xF = 0.1 7-9, 10.5-18 25
PHENIX [89] 200 y = 1.2 � 2.2 4.8-8.2 2
CDF run I [90] 1.8 · 103 - 66-116 25
CDF run II [91] 1.96 · 103 - 66-116 26
D0 run I [92] 1.8 · 103 - 75-105 12
D0 run II [93] 1.96 · 103 - 70-110 5

ATLAS 7 [94] 7 · 103 |y | < 2.4
(in 3 bins) 66-116 18

ATLAS 8 [95] 8 · 103 |y | < 2.4
(in 6 bins) 66-116 36

CMS 7 [96] 7 · 103 |y | < 2.1 60 -120 3
CMS 8 [97] 8 · 103 |y | < 2.1 60 -120 4
LHCb 7 [98] 7 · 103 2 < y < 4.5 60-120 7
LHCb 8 [99] 8 · 103 2 < y < 4.5 60-120 7

LHCb 13 [100] 13 · 103 2 < y < 4.5 60-120 7
Total 302

Table 4.3: Data sets considered in our Drell-Yan analysis. The last column reports
the number of included data points after the selection cut qT < 0.2Q.

64



4.2. TMDs in Drell-Yan

range, as well as over the bin width in Q and qT . We did not make use of the
narrow-width approximation for Z production, and included Z/�⇤ interference. In
the case of D0 run II, we divided our di�erential cross section by the total cross
section calculated with DYNNLO [101, 102].

RHIC

We also considered the data from 200 GeV pp collisions at the Relativistic Heavy
Ion Collider (RHIC) recently released by the PHENIX collaboration [89]. Al-
though having few data points and large uncertainties, this is at the moment the
only unpolarized set available at RHIC kinematics. We integrated our calculations
over the bin width in Q, qT and y.

LHC

From the ATLAS [94, 95], CMS [96, 97] and LHCb [98–100] experiments at LHC,
we included transverse momentum distributions of Z-bosons. Data are provided
without correction for experimental cuts on the transverse momentum and rapidity
of the final leptons. Hence, in our calculations we had to numerically solve the
integral of the lepton tensor over the lepton phase space, including the final-state
cuts reported in the respective papers. For ATLAS and CMS, the published
values correspond to the normalized fiducial cross section, 1/� f id · d� f id/dqT ,
while LHCb reports the absolute fiducial cross section, d� f id/dqT . We considered
data corrected for final-state QED radiation, and, for ATLAS, we considered the
combined electron and muon channels, in the rapidity-binned version. As we
did for Tevatron, we integrated our formulas over the bin width in Q, qT and y,
including Z/�⇤ interference, and calculating the total cross section with DYNNLO.

4.2.3 Statistical treatment
To calculate the �2 w.r.t. data, we reconstructed the covariance matrix from the
published values for the (correlated and uncorrelated) experimental uncertainties:

(cov)i j = �
2
i,unc�i j + �i,corr�j,corr, (4.29)

where i, j = 1, ...,Npt are indexes for the data points. In general, there can be
multiple sources for each kind of uncertainty:

�2
i,unc =

Nunc’
m=1

⇣
�(m)

i, unc

⌘2
, �i,corr�j,corr =

Ncorr’
n=1

�(n)
i, corr�

(n)
j, corr. (4.30)
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4. Low transverse momentum: phenomenology

Denoting as ti and mi respectively the theoretical prediction and measured value
for data point i, one has

�2 =

Npt’
i, j

(ti � mi) (cov�1)i j
�
t j � mj

�
. (4.31)

When plotting results in presence of correlated errors, to have a more faithful
visual representation of the agreement with data, one can rewrite Eq. (4.31) in
terms of the so-called “systematic shifts” [103]:

�2 =

Npt’
i

1
�2

i,unc
(ti + si � mi)2 +

Ncorr’
j

�2
j . (4.32)

We notice that the first term in (4.32) has the same form as an uncorrelated �2,
but with the theoretical predictions shifted by amounts si: t0i = ti + si, where

si =

Ncorr’
n=1

�n�
(n)
i, corr. (4.33)

The second term in (4.32) is called a “penalty term”, as it gives the penalty to
pay for rewriting the �2 in an uncorrelated form. The parameters � j can be
calculated from (4.31). In our plots, we show only uncorrelated errors for data
points, and the shifted theoretical curves. This represents more accurately the
statistical agreement, provided the penalty terms are not extremely large. In any
case, we show on each plot the total �2, taking into account correlations.

Particular attention is required for uncertainties of multiplicative nature, like
normalization uncertainties. If these are calculated as

�(n)
i, corr = �

(n)
i, corrmi, (4.34)

i.e., as the relative multiplicative error times the measured value, then the �2 is no
more quadratic in mi and a bias in the minimization is introduced, known as the
D’Agostini bias [103, 104]. We have explicitly checked that this bias is particularly
severe for E288 data, which are a�ected by a 25% normalization error: when fitting
this data set alone, even a theoretical prediction equal to 0 for all points would
yield �2 values not far from 1. One way to avoid the bias is by using, instead of mi
in (4.34), independent theoretical predictions, like, for instance, predictions from
a previous fit:

�(n)
i, corr = �

(n)
i, corrt0,i . (4.35)

This is the so-called “t0 method” (see, e.g., [103]). In our case, for t0,i we use
predictions from a preliminary fit.
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4.2. TMDs in Drell-Yan

In fits to data, theoretical uncertainties are often neglected in the expression for
the �2. However, this turns out to be practically impossible in our case, since we
have data of unprecedented precision: ATLAS measurements have relative errors
smaller than 1%, in some cases of the order of few ‰. This is smaller than the
e�ect of the collinear PDF uncertainty on TMD calculations. We thus decided
to include in the covariance matrix the 68% PDF uncertainty propagated by the
Hessian method.10 To this purpose, we used the MMHT Hessian sets [5], and
calculated the point-by-point uncertainty on the theoretical observable. The error
thus calculated was then added in quadrature to the uncorrelated experimental
uncertainties in (4.29). In this procedure, some choice for the nonperturbative
TMD parameters in (4.26) is needed. We decided to fix these parameters by doing
a preliminary fit without PDF errors in the �2. The Hessian uncertainties thus
calculated were then used in the final fit. This assumes that the size of uncertainties
is weakly dependent on TMD parameters.

To have a measure of the uncertainties on the extracted parameters, we adopted
the bootstrap technique, by generating 100 sets of pseudo-data from the mean
values and covariance matrix of the original data, and performing 100 separate fits.
Confidence intervals for any quantity which is a function of the nonperturbative
parameters are then calculated from the mean and standard deviation over replicas
(see, e.g., [23, 25]).

4.2.4 Comparison to data
Perturbative QCD description of LHC data

As it has recently been shown [31], transverse-momentum resummation without
the introduction of nonperturbative functions is in good agreement with LHC mea-
surements of Z-boson transverse momentum distribution. To have cross-validated
results, we performed a comparison of TMD predictions (in our framework) to all
the LHC data reported in Tab. 4.3, setting the nonperturbative parameters in Eqs.
(4.26)-(4.27) to 0. As can be seen in Fig. 4.6 for a selected bin, it is essential to
make use of the highest logarithmic accuracy to achieve a good agreement with
data, the description deteriorating extremely rapidly at lower orders. The total
�2/Ndata, for all the LHC data considered, goes from 1.83 at N3LL, to 6.81 at
NNLL, and 95.58 at NLL. We explicitly checked that performing a fit of LHC data
alone with a nonperturbative function does not improve the agreement, as the best
fit parameters are equal to 0. In any case, it is important to check whether there
exists a nonperturbative parameterization such to allow for a good description of,

10Perturbative uncertainties are di�cult to give a statistical interpretation, and are thus not
included at the moment.
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Figure 4.6: TMD predictions with the nonperturbative parameters set to 0, at increasing logarithmic
accuracy. Top left: NLL; top right: NNLL; bottom: NNNLL. Only the central rapidity bin from
[94] is shown. The �2 divided by the number of data points in the bin is calculated as described
in Sec. 4.2.3. The shifted predictions are obtained by summing the shift parameters to the actual
predictions (see Sec. 4.2.3, in particular Eqs. (4.32)-(4.33), for the definition of systematic shifts).

at the same time, lower energy data and LHC data. In this sense, LHC data will
have the role of setting limits on nonperturbative e�ects, especially at low x.

Simultaneous description of data at di�erent energies

In Tab. 4.4 we show the parameters for the function (4.26) obtained from two
di�erent fits: one including all the data in Tab. 4.3, and one excluding LHC data.
The nonperturbative evolution of TMDs, encoded in the g2 parameter, is slightly
reduced when including CERN data, while the parameter N1, describing the size
of intrinsic transverse momentum, is compatible with the one extracted from the
reduced set of data, and in general parameter uncertainties are greatly reduced.
Thanks to the larger x span, and to the fact that in some cases a rapidity binning
is provided, the impact of LHC data on the determination of the x dependence is
remarkable. It allows, indeed, to extract the parameters ↵ and �, which would
be otherwise completely unconstrained. In Fig. 4.7 is shown the function fNP
(Eq. (4.26)) at the initial scale ⇣ = 1 GeV2 and di�erent values of x. It is clear
how, to accommodate for LHC data, the intrinsic transverse momentum has to
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4.2. TMDs in Drell-Yan

parameter: N1 ↵ � g2

LHC excluded 0.72 ± 0.24 5.9 ± 8.7 1.4 ± 3.1 0.098 ± 0.016
all data 0.92 ± 0.08 3.3 ± 0.5 0.74 ± 0.10 0.054 ± 0.006

Table 4.4: The nonperturbative parameters (Eqs. (4.26)-(4.27)), extracted from a
fit of all the data (lower row), and a fit excluding LHC data (upper row).
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Figure 4.7: The nonperturbative function (4.26) at the initial scale ⇣ = 1 GeV2, as extracted from
the fit to all data (full blue line), and the fit without LHC data (dashed red line). From left to
right, x = 10�3, 10�2, 10�1. For each value of b, the average and 68% confidence interval from the
replicas is shown.

steeply decrease at low x.11 The explicit nonperturbative transverse-momentum
dependence at the initial scale ⇣ = 1 GeV2 is shown in Fig. 4.8, where we plot the
function

fNP (x, pT, ⇣) ⌘
π

d2b

(2⇡)2 eipT·b f̃NP (x, b, ⇣)

⌘
π

db
2⇡

bJ0 (bpT ) f̃NP (x, b, ⇣) ,
(4.36)

multiplied by 2⇡pT in order to have curves normalized to 1. In pT space, we do
not show curves from the fit without LHC data, since their uncertainty at the initial
scale spans orders of magnitude.

The total �2/(d.o. f .) of the fit is 1.24±0.01 when including all data, and 0.65±
0.02 when excluding LHC. The �2 over number of points for each experimental
set is reported in Tab. 4.5. As anticipated in the previous section, ATLAS data are
the most di�cult to fit, due to the strikingly small errors, and reach values of �2

11Due to the properties of Fourier transforms, a large distribution in b space corresponds to a
narrow distribution in momentum space.
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Figure 4.8: The intrinsic transverse momentum distribution as a function of p
T

at the initial scale
⇣ = 1 GeV2. From left to right, x = 10�3, 10�2, 10�1. For each value of p

T

, we show the
average and 68% confidence interval from the fit including all data. The curves correspond to
2⇡ p

T

f
NP

(x, p
T

, ⇣), hence their integral over p
T

is 1.

of the order of some units. However the agreement with theory of the other LHC
data is generally good, as well as the overall fit quality. In Figs. 4.9-4.12 we show
curves obtained with the mean values of the nonperturbative parameters (second
row of Tab. 4.4), compared to data. We stress that these are the first attempts at
a simultaneous description of these data in the CSS formalism, and more detailed
explorations are needed to draw sharp conclusions.
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4.2. TMDs in Drell-Yan

Experiment �2/Npt
(all data)

�2/Npt
(no LHC) Npt

E288 200[13] 0.65 ± 0.05 0.56 ± 0.07 30
E288 300 [13] 0.68 ± 0.06 0.52 ± 0.05 30
E288 400 [13] 0.45 ± 0.03 0.49 ± 0.04 65

E605 [88] 0.87 ± 0.06 0.81 ± 0.09 25
PHENIX [89] 4.0 ± 0.4 2.3 ± 0.7 2
CDF run I [90] 0.64 ± 0.02 0.53 ± 0.02 25
CDF run II [91] 1.19 ± 0.09 0.76 ± 0.04 26
D0 run I [92] 0.75 ± 0.02 0.71 ± 0.03 12
D0 run II [93] 2.32 ± 0.07 2.24 ± 0.07 5

Total
(ps < 7TeV)

�
�2/d.o. f .

�
0.86 ± 0.03

�
�2/d.o. f .

�
0.65 ± 0.02 220

ATLAS 7 [94] 4.30 ± 0.08 - 18
ATLAS 8 [95] 2.65 ± 0.05 - 36
CMS 7 [96] 2.16 ± 0.01 - 3
CMS 8 [97] 1.58 ± 0.03 - 4
LHCb 7 [98] 1.31 ± 0.01 - 7
LHCb 8 [99] 0.51 ± 0.01 - 7

LHCb 13 [100] 0.81 ± 0.03 - 7
Total

(all experiments)

�
�2/d.o. f .

�
1.24 ± 0.01 - 302

Table 4.5: The values of �2 over number of points for the di�erent experimental
sets considered, in the case of a fit including all data (first column), and one
excluding LHC data (second column).
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Figure 4.9: TMD curves obtained with the mean nonperturbative parameters from the fit to all data
(see Tab. 4.4). Data are from the fixed-target Drell-Yan experiment E288, for

p
s = 400 GeV. The

“shifted” curves are obtained by adding to theoretical predictions the systematic shifts, as described
in Sec. 4.2.3. This gives a more faithful representation of the statistical agreement with data. The
�2 over number of data is reported for each bin.
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Figure 4.10: Same as Fig. 4.9, for Tevatron Z-production data. Upper panels: CDF run I and II.
Lower panels: D0 run I and II.
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Figure 4.11: Same as Fig. 4.9, for Z-production data at ATLAS (
p

s = 8 TeV).
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Figure 4.12: Same as Fig. 4.9, for Z-production data at LHCb at di�erent center-of-mass energies
(
p

s = 7, 8, 13 TeV).
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4A Appendix: di�erence between the TMD integral
and the integrated SIDIS cross section at O(↵s)

In this Appendix we report the theoretical formula for the SIDIS cross section in-
tegrated over transverse momentum at O(↵s), for the reader who wants to compare
it with the integral of the TMD cross section (Sec. 4.1.2). This expression can be
found, for instance, in [84]:

d�h

dxdQ2dz

����
O(↵1

s

)
= �0

’
f f 0

e2
f

z2
�
� f 0 f + � f 0g

� ↵s

⇡

⇢ h
Dh/ f 0

1 ⌦ C f 0 f
1 ⌦ f f /N

1

i
(x, z,Q)

+
1 � y

1 + (1 � y)2
h
Dh/ f 0

1 ⌦ C f 0 f
L ⌦ f f /N

1

i
(x, z,Q)

�
,

(4.37)
where the first term of the sum gives the structure function F1, and the second
term the longitudinal structure function FL . Square brackets denote a double
convolution over both x and z. The QCD coe�cients C f 0 f

1 and C f 0 f
L are calculated

from first order perturbation theory, and read

Cqq
1 =

CF

2

(
� 8�(1 � x)�(1 � z)
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Pqq(z) ln Q2
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1
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(4.38)
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(4.40)
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Cqq
L = 2CF xz, (4.41)

Cgq
L = 2CF x(1 � z), (4.42)

Cqg
L = 2x(1 � x). (4.43)

In the above expressions µ (µF) denotes the factorization scale for PDFs (FFs),
while L1,2 are abbreviations for the following logarithmic functions:

L1(⇠) ⌘
⇣
1 + ⇠2

⌘ ✓
ln(1 � ⇠)

1 � ⇠

◆
+

, L2(⇠) ⌘
1 + ⇠2

1 � ⇠ ln ⇠ . (4.44)

To facilitate the comparison, one can rewrite the integral of the TMD cross section,
Eq. (4.12), in a similar fashion to Eq. (4.37):π

W
����
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’
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�
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i
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(4.45)
where

Cqq
T MD =

CF
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2L2(z) + (1 � z)
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Cgq
T MD =

CF

2

(
Pgq(z)

⇥
�(1 � x) ln (z(1 � z))

⇤
+ z�(1 � x)

)
, (4.47)

Cqg
T MD =

1
4

(
�(1 � z)2x(1 � x)

)
. (4.48)

We notice that the O(↵1
s ) contribution to the TMD integral (4.45) can be obtained

from the full QCD calculation (4.37), after subtraction of the following terms:
⌅ terms contributing to the longitudinal structure function FL (indeed, this

structure function is subleading in the TMD framework);

⌅ terms that “correlate” the x and z variable, i.e., terms that do not contain
�(1 � x) or �(1 � z) in the perturbative coe�cients;

⌅ a term CF/2 {�(1 � x)[L1(z) � L2(z)] + �(1 � z)[L1(x) � L2(x)]} must be
subtracted from the Cqq

1 coe�cient (4.38).
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Chapter 5
High transverse momentum:
phenomenology

In Ch. 4 we discussed Drell-Yan data at di�erent energies, in the low-qT framework
of Transverse Momentum Distributions. A complete description of the available
data requires the matching of the TMD formalism with the collinear formalism
at higher transverse momentum (see Secs. 2.2 and 3.2 for an introductive dis-
cussion about the two regimes and their matching). While this matching seems
to be under control at the kinematics of Tevatron and LHC1, the issue has never
been addressed—to our knowledge—in the context of low-energy Drell-Yan exper-
iments. What is more, there are not even studies showing the agreement between
these data and collinear-factorized formulas at high qT , where high here means
beyond the TMD region. In the context of SIDIS, a recent study [33] has shown
remarkable di�culties in the description of data in the collinear-factorization re-
gion. In this Chapter we will show that a similar disagreement is present also
in low-energy (

p
s . 60 GeV) Drell-Yan, and we will explore di�erent possible

sources of the discrepancy. The work reported here has been published in [105].

5.1 Issues of the matching formalism
In low-energy Drell-Yan, admittedly, the qT -span of data is more reduced than in
SIDIS, and rarely exceeds qT ⇠ Q. However, as we discussed in Secs. 3.2 and
4.1, the TMD formalism, and even its extension through a W+Y formalism, is well
understood only in a narrow region qT ⌧ Q, beyond which we expect the collinear
formalism to give at least an approximate description of data. In this section,

1See for instance [31, 77], and references therein.
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5. High transverse momentum: phenomenology

we briefly show what are the limits of the matching formalism in the regime we
consider.

The W+Y formalism (Sec. 3.2) is known to present di�culties in SIDIS,
most evident when the center-of-mass energy and the Q value are not too high
(but persisting also at a HERA-like kinematics)[32]. In particular, it was shown
that the W+Y sum is not able to match the fixed order calculation. Indeed, in
this regime, contrary to the ideal case Q ! 1, the nonperturbative components
a�ect the high-qT tail of the W term, preventing a proper cancellation against the
asymptotic term in Y. To overcome this and other problems, in [73] a modified
W+Y prescription was proposed. In this scenario, the W and asymptotic terms
are gradually damped with the growing of qT , in such a way to leave only the
fixed-order calculation. In the notation of Sec. 3.2:

d�X

dqTd ...
(matched) ⌘ ⌅

✓
qT

Q
, ⌘

◆ 
W � d�X

dqTd ...
(asy)

�
+

d�X

dqTd ...
(F.O.), (5.1)

where ⌅ is a damping function, such to be ⇠ 1 in the TMD region, and approx-
imately ⇠ 0 when TMD approximations are not reliable. In the cited work, the
following example was used:

⌅

✓
qT

Q
, ⌘

◆
⌘ exp

"
�

✓
qT

⌘Q

◆� #
, (5.2)

using the values � = 8 and ⌘ = 0.34 for phenomenological tests. By making
this choices, the authors agreed that, to have reliable predictions, the transition
to fixed-order theory should happen for qT between ⇠ Q/4 and ⇠ Q/2, at the
considered kinematics.

Since the causes of the issues mentioned for SIDIS are quite general, it is
natural to expect a similar scenario in the Drell-Yan case. This is indeed what
is shown by Fig. 5.1. In the left panel, we show the e�ect of taking the TMD
function extracted in [25], and extrapolating it beyond the fit region. First of all,
it is remarkable that the TMD curve is always distant from the asymptotic curve,
preventing any cancellation. Moreover, we show the di�erence occurring when
using the two di�erent choices for the b⇤ function in Eqs. (3.24) and (3.25). While
the details of this function should only a�ect the interplay between perturbative
and nonperturbative contributions in the low-qT spectrum, they are shown here
to a�ect the behavior of the curves in the matching region and beyond. In the
right panel, we show the application of the modified matching formalism in Eq.
(5.2). When using the values quoted above for the damping parameters � and ⌘,
the transition to pure fixed-order theory occurs around qT ⇠ 0.4Q (full curve). In
this case, the matching looks smooth, but leaves out a number of data points at
higher qT , which should be described by collinear factorization, and are not. For
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Figure 5.1: Left: the TMD cross section (full line) from the fit in [25], when extended beyond the
fit region, shows markedly di�erent behavior depending on the functional form chosen for b⇤ in
Eq. (3.23) the dotted line is obtained with the square-root form, (3.24), while the dashed line with
the exponential form (3.25). In both cases, bmax = 1.123 GeV�1. The asymptotic curve is also
plotted (at LO, to be consistent with the fit). Right: matched curve obtained from the same TMD,
with the procedure described in [73], Sec. IX: the full line is obtained with the damping function
⌅ (see Eq. (5.2)), using the parameter ⌘ = 0.34 advocated in that paper. This choice enforces a
transition to the pure LO prediction between q

T

' Q/4 and q
T

' Q/2, and the result is insensitive
to the TMD tail and to the choice of the b⇤ function. The dashed and dotted curves instead show
the e�ect of a slight variation of the parameter ⌘ controlling the transition point, for our two types
of b⇤ prescriptions. For a larger value of ⌘ the matching to fixed order is not working due to the
incomplete cancellation between the TMD tails and the Y term. Data are taken from [13].

a di�erent choice of the ⌘ parameter–such to yield a larger non-zero region for
the damping function–the matched curve never approaches the fixed-order one,
and is completely dependent on the details of the b⇤ function (dashed and dotted
curves). Predictions in this case are thus of dubious interpretation. Above all, we
recall that the use of resummation, and of the W+Y prescription, is a�ected by
uncontrolled errors beyond the region where the asymptotic term is positive (see
also discussions in Sec. 4.1)

In conclusion, there is presently not a good understanding of the TMD-to-
collinear matching in the low-energy Drell-Yan regime. In the following, we will
approach the problem starting from the high-qT side, i.e., from the point of view
of collinear factorization.

5.2 Comparison of collinear factorization to data
In this section we provide comparisons of fixed-order collinear factorization pre-
dictions for the available qT -dependent Drell-Yan data in the fixed target (or low-
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5. High transverse momentum: phenomenology

energy collider) regime, from Fermilab, CERN and RHIC experiments, mainly for
proton-proton collisions. The center-of-mass energies of the experiments taken
into account lie in the range 20 GeV  p

s  60 GeV (except for RHIC, wherep
s=200 GeV), while the invariant mass of the Drell–Yan lepton pair lies in the

range 4.5  Q  13.5 GeV. For all our theoretical predictions, we use the DYqT
[77, 106] and CuTe [107] codes, obtaining completely equivalent results for the
fixed-order di�erential cross sections, at both LO QCD (O (↵s)) and NLO QCD�
O

�
↵2

s
� �

. These codes also provide an all-order resummation of logarithms in
qT/Q in the cross section, which become relevant toward low qT . This enables us
to study the asymptotic expansion of the resummed result, which we will make use
of below. We note that we have also performed cross-checks using the numerical
codes of Refs. [108] and [109]. Throughout this paper, the CT14 PDF set [110]
will be our default choice.

E866
The E866/NuSea experiment [111] was a fixed-target Drell–Yan experiment de-
signed to measure the internal structure of the nucleon, in particular the asymmetry
of down and up antiquarks in the sea, using di-muon events originating from the
collision of an 800-GeV proton beam with hydrogen and deuterium targets (

p
s =

38.8 GeV). The measurement of the qT -distribution of the muon pair is presented
in [112], a Fermilab PhD thesis, and results are given in terms of the di�erential
cross section:

Ed3�

d3q
⌘ 2E
⇡
p

s
d�

dxF dq2
T
=

d�
⇡dydq2

T
. (5.3)

Data are reported for di�erent bins in xF = 2pL/
p

s, ranging from �0.05 to 0.8,
and are integrated over di�erent ranges in the invariant mass Q of the muon pair.

The comparison of our LO and NLO theoretical calculations with the experi-
mental data is shown in Fig. 5.2 for the bin 0.15  xF  0.35 and for the invariant
mass range 4.2 GeV  Q  5.2 GeV. The lower part of the plot shows the ratio
(data-theory)/theory. The error margins of the data points correspond to the sum
in quadrature of statistical and systematic uncertainties, including also an overall
normalization uncertainty of 6.5%, as indicated in [112]. Our theoretical predic-
tions are computed at the average Q value and xF of each bin (Q = 4.7 GeV and xF
= 0.25 in the case of Fig. 5.2). The left plot of Fig. 5.2 shows the comparison of
the experimental data with NLO QCD

�
O

�
↵2

s
� �

predictions for central values of
the factorization and renormalization scales, µR = µF = Q. The 90% confidence
interval of the CT14 PDF set [110] is included in the plot, but the corresponding
variation is barely visible.

An immediate observation from Fig. 5.2 is that the NLO cross section is below
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Figure 5.2: Transverse-momentum distribution of Drell–Yan di-muon pairs at
p

s = 38.8 GeV in
a selected invariant mass range and Feynman-x range: experimental data from Fermilab E866
(hydrogen target) [112] compared to LO QCD and NLO QCD results. Left: NLO QCD

�
O

�
↵2
s

� �
calculation with central values of the scales µ

R

= µ
F

= Q = 4.7 GeV, including a 90% confidence
interval from the CT14 PDF set [110]. Right: LO QCD and NLO QCD theoretical uncertainty
bands obtained by varying the renormalization and factorization scales independently in the range
Q/2 < µ

R

, µ
F

< 2Q.

the E866 data at high transverse momenta, qT & 3 GeV, even within the relatively
large uncertainties that the data have here. The NLO cross section falls below
the data even much more severely at lower qT closer to the “matching regime”
with TMD physics, where the experimental uncertainties are much smaller. This
provides further evidence to our observation above that this regime is presently
not well understood theoretically. At the same time we emphasize that data from
[112], integrated over qT , are in good agreement with theoretical predictions and
are commonly used in global PDF fits [113, 114] (see, for instance, Section 5.1
of [112], where the only relevant discrepancy concerns the lowest mass point
(hQi ' 4.4 GeV) for 0.05 < xF < 0.25 (Figs. 5.1-5.5)). This suggests that TMD
physics may be the main player for the cross section up to relatively high qT , since
the tail at very large qT makes only a small contribution to the cross section.

The right plot of Fig. 5.2 shows the e�ect of varying the renormalization and
factorization scales independently in the range Q/2 < µR, µF < 2Q, both for the
LO QCD (O (↵s)) and the NLO QCD

�
O

�
↵2

s
� �

calculation. The fact that, for
qT & 2.5 GeV, the NLO uncertainty band overlaps with (and is eventually included
in) the LO uncertainty band provides some indication that perturbation theory is
well-behaved for this process. On the other hand, we also observe that the NLO
scale uncertainty band is only marginally more narrow than the LO one.
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Figure 5.3: E866: comparison between experimental data and NLO QCD predictions for di�erent
x
F

bins. We also show the low-q
T

asymptotic part of the cross section. For details, see text.

We have also considered di�erent PDF choices (CTEQ 10 [115], NNPDF 2.3
[116] and MSTW2008 [113]), obtaining very similar results: the di�erent curves
lie within the uncertainty bands shown in the right plot of Fig. 5.2. Such a mild
PDF dependence was expected, since the PDFs are well constrained and have
small uncertainties in the x-range probed in this process. We conclude that PDF
uncertainties (unless they are grossly underestimated by the parameterizations)
cannot explain the discrepancy between theory and data at high qT .

The comparison between data and theory for other xF bins (Fig. 5.3) and
for a di�erent invariant mass range (Fig. 5.4) gives the same qualitative re-
sults. The upper part of each plot contains the NLO QCD

�
O

�
↵2

s
� �

prediction
(blue) with its uncertainty band obtained through the customary scale variation
(Q/2 < µR, µF < 2Q) around the central value Q of the invariant mass range. The
lower part of each plot again shows the ratio (data-theory)/theory. We also plot
the asymptotic expansion of the resummed calculation (red lines). The asymptotic
result coincides with the fixed order prediction in the region of very low transverse
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Figure 5.4: E866: comparison between experimental data and NLO QCD predictions for di�erent
invariant mass bins. We also show the low-q

T

asymptotic part of the cross section. For details, see
text.
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momenta, but it becomes very small (and eventually negative) with increasing
qT . We show the asymptotic piece in order to obtain a rough guide concerning
the region where the fixed-order calculation may start to become reliable [71]:
ideally, when qT is large enough that the di�erence between the fixed-order and
asymptotic calculations (Y term) exceeds the full (W+Y) cross section, one should
switch from W+Y to the fixed-order result to obtain more reliable predictions.
This occurs for qT values around 1-2 GeV in the present case. Figures 5.3 and 5.4
show the same qualitative features seen above: the overall agreement between
theory and high-qT data is poor. In general, the disagreement between data and
theoretical predictions seems to become worse with increasing Feynman-xF and
to be only mildly dependent on the invariant mass Q of the lepton pair.

R209
The R209 experiment [14, 117] (two proton beams colliding at a center-of-mass
energy of

p
s = 62 GeV) was carried out at the CERN ISR (Intersecting Storage

Rings) to search for new particles and test scaling models. The di�erential cross
section d�/dq2

T for the production of a muon pair with transverse-momentum qT
is reported in [118] for the invariant mass range 5 GeV < Q < 8 GeV. The low
transverse momentum part of these data has been included in extractions of TMDs
[19, 20]. Studies of the whole qT spectrum can be found in [119, 120].

Comparisons of our NLO results to the R209 data are shown in Fig. 5.5. Again
NLO is below the data at high qT , although the discrepancy is not as statistically
significant in this case as for the E866 data. We note that a similar gap between
data and theory was reported in [120] in the context of a LO calculation. There, the
so-called “kT -factorization” formalism was claimed to account for the discrepancy.
In contrast, in [119] the W + Y formalism was reported to match the data over the
whole qT range.

E288
The E288 experiment [13] measured the invariant cross section Ed3�/d3q, at fixed
photon rapidity, for the production of µ+µ� pairs in the collision of a proton beam
with a fixed target composed of either Cu or Pt. The measurements were performed
using proton incident energies of 200, 300 and 400 GeV, producing three di�erent
data sets. The respective center of mass energies are

p
s = 19.4, 23.8, 27.4 GeV.

Our results are shown in Figs. 5.6, 5.7, 5.8, 5.9. The comparison to data shows
the same features as before. We have tested the importance of nuclear e�ects
by computing the cross sections also with the nCTEQ15 [121] and CT14 [110]
nuclear PDFs. These turn out to lead to almost indistinguishable results. We
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Figure 5.5: Left: R209 data [118] compared to NLO QCD
�
O

�
↵2
s

� �
. The dashed line shows the

asymptotic part. Theoretical results are integrated over the Q range. We have chosen µ
R

= µ
F

= Q.
Right: scale variations (Q/2 < µ

R

, µ
F

< 2Q) at LO and NLO.

note that the low transverse momentum part of the E288 data has been used for
extractions of TMDs [19, 20, 25, 29, 74].

E605
We also consider the set of measurements of Ed3�/d3q in the E605 [88] exper-
iment, extracted from an 800-GeV proton beam incident on a copper fixed target
(
p

s = 38.8 GeV). Results at fixed xF = 0.1 are shown in Fig. 5.10. The low
transverse momentum part of these data has also been included in extractions of
TMDs [19, 20, 25].

PHENIX
Finally, we also compare to the recent measurement [89] performed by the PHENIX
collaboration at the Relativistic Heavy Ion Collider in pp collisions at

p
s=200 GeV.

The experimental points are taken from Fig. 33 of [89] and compared to LO QCD
and NLO QCD, including theoretical uncertainties, in Fig. 5.11. The asymptotic
expansion of the W term to NLO is also shown. Evidently, the comparison between
NLO and the data is overall satisfactory in this case. It thus appears that there is a
qualitative di�erence between the fixed-target and collider regimes.
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Figure 5.6: E288: experimental data vs. NLO QCD predictions for y=0.4 and di�erent invariant
mass bins.
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Figure 5.7: E288: experimental data vs. NLO QCD predictions for y=0.21 and di�erent invariant
mass bins.
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Figure 5.8: Additional plots for E288: experimental data vs. NLO QCD predictions for y=0.03
and di�erent invariant mass bins.
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Figure 5.9: Additional plots for E288: experimental data vs. NLO QCD predictions for y=0.03
and di�erent invariant mass bins.
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Figure 5.10: E605: experimental data vs. NLO QCD predictions for x
F

=0.1 and di�erent invariant
mass bins.
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Figure 5.11: PHENIX: experimental data vs. NLO QCD predictions for 1.1< |y | <2.2 and 4.8
GeV < Q < 8.2 GeV.

5.3 Threshold resummation
As we have seen in Fig. 5.2, the NLO corrections to the qT -di�erential cross
sections are quite sizable. It is therefore important to investigate in how far
beyond-NLO perturbative corrections might be relevant for obtaining a better
agreement with the data. For the kinematics relevant for the Fermilab and CERN
experiments, the invariant mass and transverse momentum of the Drell–Yan pair
are such that the production is relatively close to partonic threshold, where a new
class of logarithms (separate from that mentioned above at low qT ) arises. Indeed,
in the collinear-factorized formula for observables like (5.3),

d�
dqTdydQ2 ⌘

π
dxa

π
dxb f 1

a (x, µ2
F) f 1

b (xb, µ
2
F)

d�̂
dqTdydQ2 , (5.4)

the partonic cross section is actually a function of the variables ŷT and r:

d�̂
dqTdydQ2 ⌘ Hab

 
r, ŷT,

µ2
F

Q2 ,
µ2

R

Q2 , ↵s(µ2
R)

!
,

r ⌘ qT

mT
,

ŷT ⌘ qT + mTp
ŝ
,

(5.5)

where mT =
q

Q2 + q2
T is the transverse mass, and ŝ = xa xbs is the partonic

center-of-mass squared. We notice that ŷT  1, and for ŷT ! 1 the partonic
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5. High transverse momentum: phenomenology

center-of-mass energy is just su�cient to produce the lepton pair with invariant
mass Q and transverse momentum qT , i.e., it is near production threshold. Close to
threshold, soft and/or collinear gluon radiation yields a characteristic logarithmic
enhancement to the cross section, which, at nth order in perturbation theory, has
the form ↵n

s lnm �
1 � ŷ2

T
�
, with m  2n. The summation of these logarithms

to all orders is known as threshold resummation. We note that ŷT becomes
especially large when the partonic momentum fractions xa, xb approach their
lower integration limits. Since the PDFs rise steeply towards small argument,
this enhances the relevance of the threshold regime, and the soft-gluon e�ects are
relevant even when the hadronic center-of-mass energy is much larger than the
produced transverse mass and transverse momentum of the final state.

Large corrections from threshold resummation have been found previously in
purely hadronic single-inclusive processes such as pp ! ⇡X [122, 123]. For
the high-qT Drell-Yan cross section pp ! �⇤X ! `+`�X , the corresponding
study was carried out in Sec. IV of [105], adopting the formalism developed in
Refs. [124–129]. Referring the reader to the original paper for formal details, we
just report here the comparison of threshold-resummed formulas to data at a fixed
value of Q and di�erent values of

p
s (Figs. 5.12-5.13). We notice that the NLO

expansion of the resummed formula (black dashed curve) accurately reproduces
the NLO result (blue solid curve, with uncertainty bands). This provides some
confidence that threshold resummation correctly describes the dominant parts of
the cross section to all orders, and that subleading contributions not addressed by
resummation are reasonably small. In the left part of Fig. 5.12 we also show the
scale uncertainty band for the NLL matched result (red dot-dashed curve), which
is barely broad enough to be visible. Evidently, resummation leads to a strong
reduction in scale dependence, as one would expect from a result that incorporates
the dominant contributions to the cross section at all orders.

Overall, we notice a significant increase of the cross section due to NLL
resummation, with respect to the NLO results shown in Sec. 5.2. The enhancement
is more pronounced for the case of E288 than for E866 since, for a given Q, at E288
energy one is closer to threshold because of the lower c.m.s. energy. However,
despite the increase, the NLL result unfortunately still remains well below the
E288 and E866 experimental data at high qT . We thus conclude that NLL high-qT
threshold resummation alone is not able to lead to a satisfactory agreement with
the data.
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Figure 5.12: E288: experimental data vs. threshold-resummed predictions at NLL+NLO QCD
for two di�erent rapidity bins and two di�erent center-of-mass energies.
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5.4 Intrinsic-kT smearing and power corrections
The factorized cross section, Eq. (5.4), receives corrections that are suppressed by
inverse powers of Q ⇠ qT . Little is known so far about the structure and size of
such power corrections for the high-qT Drell–Yan cross section. It is an interesting
question whether the discrepancies between perturbative predictions and the high-
qT experimental data seen above might be explained by power corrections. We
will try here to address this question from a phenomenological point of view.

As a simple way of modeling power corrections we estimate below the impact of
a nonperturbative partonic “intrinsic” transverse momentum kT on the Drell–Yan
qT spectrum. Such an “intrinsic-kT smearing” is a phenomenological model that
has been invoked in the early literature in cases where collinear factorization was
found to underestimate transverse momentum spectra, like for inclusive prompt
photon and pion production in hadronic collisions (see for instance [130–132]). For
inclusive processes such as these and the high-qT Drell–Yan process considered
here, no general factorization theorem is known that would extend to arbitrary
kinematics of the partonic process. For prompt photons, factorization has been
established, however, for near-threshold kinematics and low kT in the framework
of the “joint resummation” formalism [133–135], and for high-energy (small-x)
dynamics [136]. A technical challenge for all these approaches is the potential
for an artificial singularity when the total transverse momentum of the initial
state partons is comparable to the observed transverse momentum. A method for
dealing with this issue was proposed in Ref. [137] and found to give rise to power
corrections to the cross section. A full treatment of the Drell–Yan cross section
may require implementation of perturbative joint resummation along with a study
of corrections in inverse powers of Q or qT . Rather than pursuing this elaborate
framework, for the purpose of obtaining a simple estimate of the potential size of
such higher-order perturbative and power-suppressed nonperturbative e�ects, we
resort to an implementation of a simple model of intrinsic-kT smearing that will
be described now.

5.4.1 Overview of the formalism
The collinear factorization formula for the process h1h2 ! �⇤X may be adapted
from Eq. (5.4) and reads at LO (O (↵s)):

E
d3�

d3q
⌘ d�

dy d2qT
=

’
a,b

π
dxa dxb fa/h1

⇣
xa,Q2

⌘
fb/h2

⇣
xb,Q2

⌘

⇥ d�̂ab!�⇤c

dt̂
ŝ
⇡
�
⇣
ŝ + t̂ + û � Q2

⌘
,

(5.6)
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where as before the fa/h(xa,Q2) are the usual collinear PDFs for partons a = q, q̄, g
in hadron h. If one allows the incoming partons to have a small transverse
momentum k

T

, Eq. (5.6) becomes [131]:

E
d3�

d3q
=

’
a,b

π
dxa d2k

aT

dxb d2k
bT

Fa/h1

⇣
xa, kaT

,Q2
⌘

Fb/h2

⇣
xb, kbT

,Q2
⌘

⇥ ŝ
xa xbs

d�̂ab!�⇤c

dt̂
ŝ
⇡
�
⇣
ŝ + t̂ + û � Q2

⌘
,

(5.7)

where the functions Fa/h are a generalization of the PDFs, including a dependence
on transverse momentum. Notice that the partonic Mandelstam invariants must
be modified with the inclusion of k

T

, and consequently a factor ŝ/(xa xbs) must
be inserted to account for the modification of the partonic flux (see Appendix
A of [131]). The modification of the partonic four-momenta is most often done
according to two criteria: (1) the partons remain on-shell: paµp

µ
a = 0, and (2) the

light-cone momentum fractions retain the usual meaning, e.g.: xa = p+a/P+a . This
leads to the following choice, in terms of Minkowski components [131, 138]:

pµa +

 
xa

p
s

2
+

k2
aT

2xa
p

s
, k

aT

, xa

p
s

2
�

k2
aT

2xa
p

s

!
, (5.8)

and likewise for the other parton’s momentum. Note that we use LO cross sections
in Eq. (5.7) since a higher-order formulation is not really warranted for our simple
model.

As mentioned above, the framework must become unreliable when kaT or
kbT become of the order of the observed transverse momentum, and arguably well
before. Large values of kaT can make the partonic Mandelstam in the denominators
of the LO hard-scattering cross sections unphysically small. In [131], the following
condition was chosen to limit the size of, for example, kaT :

kaT < min
h
xa
p

s,
p

xa (1 � xa) s
i
. (5.9)

This ensures that each parton moves predominantly along the direction of its parent
hadron, and that its energy does not exceed the hadron’s energy (a similar condition
was adopted in [139], for a study of SIDIS in the TMD regime). However, forp

s ' 40 GeV (E866 and E605 experiments), this condition implies that kaT may
still reach values as high as 20 GeV. In our numerical analysis we therefore prefer
to introduce an additional cuto� kTmax on both kaT and kbT and will test the
dependence of the results on this cuto�.
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For the generalized PDFs in Eq. (5.7), the most common choice is

Fa/h

⇣
xa, kaT

,Q2
⌘
= fa/h

⇣
xa,Q2

⌘ 1
⇡

⌦
k2

T

↵ exp

"
�

k2
aT⌦

k2
T

↵
#
, (5.10)

where
⌦
k2

T
↵

is independent of flavor2 and momentum fraction xa, but does de-
pend logarithmically on Q2 because of soft gluon radiation. Instead of Eq. (5.10),
one could also consider using the transverse momentum dependent PDFs ex-
tracted from the low-qT spectra of Drell–Yan experiments (as given for instance
in Refs. [19, 20, 25, 29]). However, these functions show a non-negligible tail
at large kT , where they lose physical meaning. Hence, if they are used inside a
convolution such as Eq. (5.7), the result will strongly depend on the choice of the
cuto� kTmax, since the integrations (5.7) include contributions from this tail. This
dependence will be mostly unphysical and is, in fact, precisely a manifestation of
the artificial singularity arising in the partonic scattering functions at really large
kaT and kbT . For this reason, we stick with Eq. (5.10); however, we tune

⌦
k2

T
↵

to the
width of the TMD PDFs taken from [25], evolved to the given Q2. This is shown
in Fig. 5.14 where the dashed lines show the evolved TMD of Ref. [25], evolved
to Q= 4.7 GeV, normalized by dividing by its integral over d2kT . We compare
it to a pure Gaussian with a width tuned in such a way that the two distributions
become very similar, except for the high-kT tail. This “equivalent Gaussian” turns
out to have a width of

⌦
k2

T
↵

= (0.95 GeV)2. It is this Gaussian that we use for our
numerical studies presented below.

Our choice of an x-independent Gaussian width in Eq. (5.10) is motivated by the
fact that the x-dependence of

⌦
k2

T
↵

is still not well constrained in the present TMD
fits [25]. Di�erent parametrizations have been proposed in the literature [19, 20],
including also x-independent choices [29, 74, 140]. A dependence of

⌦
k2

T
↵

on x
is a natural feature in the joint resummation formalism [137]. In any case, for the
mostly exploratory study presented here, an x-independent value of

⌦
k2

T
↵

appears
adequate. Since our goal is to give an upper limit for the kT -smearing e�ects, we
use the largest value of

⌦
k2

T
↵

found in [25] (see Fig. 10 there), which occurs at
x = 0.06.

5.4.2 Numerical results
In Fig. 5.15 we show the e�ect of kT -smearing, Eq. (5.7), for E866 kinematics. The⌦

k2
T
↵

of the Gaussian is taken as in Fig. 5.14. The impact of smearing on the cross

2We remark that the initial parton “a” can also be a gluon. Every k
T

-smearing model has to
make an assumption for the average gluon transverse momentum, which is usually taken to be the
same as that for the quarks. We note that perturbative resummations predict dependence of

⌦
k2
T

↵
on parton flavor [137].

98



5.4. Intrinsic-kT smearing and power corrections

����

����

����

����

����

����

����

����

�(
��
� �
��

� )
/�
(�
��

� )

��� ��� ��� ��� ��� ��� ��� ���
�� [���]

�=����� �=��� ���

��-�

��-�

��-�

��-�

��-�

��-�

��� ��� ��� ��� ��� ��� ��� ���
�� [���]

Figure 5.14: Comparison between the TMD of Ref. [25], evolved to the scale Q= 4.7 GeV and
divided by its integral over d2k

T

(dashed line), with the Gaussian (5.10) with
⌦
k2
T

↵
= (0.95 GeV)2

(full line). Left panel: linear scale; Right panel: logarithmic scale.
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Figure 5.15: Left panel: the e�ect of k
T

-smearing (dashed blue lines), with the cuto� k
Tmax in

Eq. (5.7) set to 2 GeV. The bands correspond to variation of factorization and renormalization
scales between Q/2 and 2Q. For comparison, the calculation in ordinary collinear factorization at
LO is also shown (red dotted lines). Right panel: the e�ect of varying the cuto� k

Tmax in Eq. (5.7).
Here the curves correspond to the central values µ

R

= µ
F

= Q. For k
Tmax � 2 GeV, which

corresponds to the 99% percentile of the gaussian in Eq. (5.10), independence from the cuto� is
reached.

99



5. High transverse momentum: phenomenology

section overall remains mild, as long as the cuto� kTmax is chosen below 2 GeV.
Especially the regime qT ' Q is only little a�ected by kT -smearing. We conclude
that, although kT -smearing does somewhat improve the comparison with the data,
its e�ects do not appear to be su�ciently large to lead to a satisfactory agreement.
We note that at lower c.m.s. energies as relevant for E288, one is forced to choose
smaller cuto�s since the reach in qT is more limited in these cases.
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Chapter 6
High transverse momentum: T-odd
e�ects in perturbative QCD and
longitudinal single-spin asymmetries
in SIDIS

As we have seen in Ch. 2, di�erent structure functions are present in SIDIS,
depending on the polarization states of beam and target. Each of these functions
can be described in two di�erent frameworks: at low qT , they are expressed
in terms of TMD PDFs and FFs, while at qT ⇠ O(Q) they are calculated in
collinear factorization. A complete analysis of the structure functions in the TMD
formalism can be found in [50], while a study on the matching of the low- and
high-qT formalisms was reported in [51]. However, for a couple of structure
functions, the collinear pQCD calculation is not present in the literature. In
the terminology of Sec. 2.2.1, these are Fsin �

h

UL and Fsin 2�
h

UL , i.e., the sin �h and
sin 2�h modulations for the case of unpolarized lepton and longitudinally polarized
nucleon. Interestingly, these were the first single spin asymmetries observed in
SIDIS [37–39]. Due to the low values of PhT involved, these data were studied
in a TMD framework, even if their interpretation is not straightforward, due to
the competition of di�erent mechanisms[40–44]. In any case, it is interesting to
have collinear-factorized predictions for these kind of asymmetries, also because
a future Electron-Ion Collider (EIC) will have an extended kinematic range, which
might give the possibility to explore di�erent QCD regimes.

A key feature of the above asymmetries is that they are odd under naive time-
reversal (T-odd), which corresponds to applying time reversal to all the momenta
and spins involved in a scattering process, but without interchanging initial and
final states. T-odd e�ects are absent at tree-level in perturbation theory, since they
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6. T-odd e�ects in pQCD and FUL in SIDIS

require a non-trivial absorptive amplitude, i.e., they require loop contributions.
They originate, at higher order, from final (initial) state interactions. The term
“T-odd” has been in use since before the advent of QCD, in particular in the
context of searches for T-violation in electro-weak processes (e.g., [141, 142]):
in cases where one could exclude or limit the e�ect of final state interactions,
T-odd correlations would correspond to true violation of time-reversal symmetry.
In the TMD framework, T-oddness can arise at leading twist from the properties
of the Wilson lines in the definition of the TMD functions. This has been a
central issue in studies of the three-dimensional nucleon structure, since the Sivers
function would vanish without properly taking into account the role of Wilson
lines [35, 57, 59]. In collinear factorization, T-odd asymmetries can be generated
by twist-three correlations [143–146]. In leading-twist collinear factorization,
on the other hand, T-odd e�ects have been the object of a longstanding search.
Short after the first experimental successes of pQCD, these e�ects were indeed
proposed as a clean test of the gluon self-coupling [147, 148]. The interest in
T-odd phenomena in pQCD, being purely loop e�ects, is still present in modern
times, and di�erent predictions have been presented (see, e.g., [149, 150] and
references therein). However, the observation of these asymmetries is challenging
on the experimental side, due to their small size, so that a clear comparison to data
has not been possible to date.

6.1 T-odd observables in perturbative QCD
Denoting as Sf i the scattering matrix element between an initial state i and a final
state f , a naive time-reversal transformation corresponds to a time-reversal without
interchange of initial and final states. Hence an observable is said to be T-odd if1

��Sf i
��2 , ���S f̃ ĩ

���2 , (6.1)

where ĩ( f̃ ) is obtained from i( f ) by reversing momenta and spins. T-odd e�ects can
be present also in the case of theories which are invariant under true time-reversal,
for which: ��Sf i

��2 = ���Sĩ f̃

���2 . (6.2)

This is easily understood by considering the reaction matrix T

Sf i ⌘ � f i + i(2⇡)4�(4)
�
Pf � Pi

�
Tf i, (6.3)

1See, e.g., [151] or similar textbooks for a definition of scattering matrix and the reaction
matrix, and, e.g., [141, 142] for a discussion of true time-reversal and T-oddness.
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6.1. T-odd observables in perturbative QCD

Figure 6.1: Tree-level diagrams for �⇤ + q ! q + g.

and the unitarity condition for the scattering matrix

Tf i � T⇤
i f = i

’
X

T⇤
X f TXi�

(4) (PX � Pi) ⌘ i↵ f i, (6.4)

where in the last equation we introduced the notation ↵ f i for the absorptive part of
the reaction amplitude. Eq. (6.4) can be rewritten as

T⇤
i f = Tf i � i↵ f i, (6.5)

and, taking the square modulus of both sides
��Ti f

��2 = ��Tf i
��2 + ��↵ f i

��2 + 2Im
⇣
T⇤

f i↵ f i

⌘
. (6.6)

T-reversal invariance, Eq. (6.2), implies
��Ti f

��2 = ���Tf̃ ĩ

���2 (leaving aside the case
i = f ). Thus, if only electromagnetic and QCD interactions are considered, Eq.
(6.6) gives an expression for naive T-violating terms:

���Tf̃ ĩ

���2 � ��Tf i
��2 = ��↵ f i

��2 + 2Im
⇣
T⇤

f i↵ f i

⌘
. (6.7)

If we consider–in view of our SIDIS calculation–the process �⇤ + q ! q + g, the
leading order contributions to Tf i are the tree-level diagrams in Fig. 6.1, while the
leading terms for the absorptive amplitude ↵ f i are given by the 1-loop diagrams
in Fig. 6.2. The lowest-order contributions to T-odd e�ects come then from
2Im

⇣
T⇤

f i↵ f i

⌘
, and are given by the interference of 1-loop and tree amplitudes.

They are thus of order O
�
↵2

s
�
. For the imaginary part to be non-zero, the loop

amplitudes must have a relative phase with respect to the tree-level amplitude.
This will reduce the number of contributing diagrams in Fig. 6.2.

Perturbative T-odd e�ects in QCD have been calculated for di�erent processes.
For e+e� ! 3 jets annihilation, the O

�
↵2

s
�

calculation has been shown to vanish
[152, 153]. Predictions for Drell-Yan can be found in [149, 150, 154], and for SIDIS
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6. T-odd e�ects in pQCD and FUL in SIDIS

Figure 6.2: 1-loop diagrams for �⇤ + q ! q + g. (a) s-channel (b) t-channel (c) box diagrams.

with polarized lepton beam in [148, 149, 155]. Analogous expressions for SIDIS
in the case of polarized target are however lacking, except for the unpublished
work reported in [156], where the absorptive amplitudes were derived from the
e+e� results of [149] by applying crossing relations. In this work, we will follow
the alternative strategy of directly calculating the relevant diagrams for the FUL
structure functions in SIDIS. This will allow us to cross check the results in [156],
and give predictions for a future EIC.

6.2 Perturbative calculation of longitudinal single
spin asymmetries

In this section we will discuss the longitudinal target single spin asymmetries
(SSAs) in SIDIS. Experimentally, they are defined as

AUL(�) ⌘
d�"(�) � d�#(�)
d�"(�) + d�#(�), (6.8)

d�"(#) denoting the fully-di�erential cross section for positive (negative) helicity
of the target2:

d�"(#)(�) ⌘ d�"(#)

dxdQ2dzdP2
hTd�

. (6.9)

2This means target polarization antiparallel (parallel) to the beam direction.
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6.2. Perturbative calculation of longitudinal single spin asymmetries

Due to the structure of the SIDIS cross section discussed in Ch. 2, single spin
asymmetries have the general form

AUL(�) =
Asin �

UL sin � + Asin(2�)
UL sin(2�)

1 + Acos �
UU cos � + Acos(2�)

UU cos(2�)
, (6.10)

where Asin(n�)
UL are called analyzing powers. They can be calculated as

Asin(n�)
UL =

Ø
d� sin(n�)

⇥
d�"(�) � d�#(�)

⇤
1/2

Ø
d�

⇥
d�"(�) + d�#(�)

⇤ . (6.11)

where � ⌘ �h and n = 1, 2. In the collinear factorization framework, the SIDIS
cross section can be actually written in terms of partonic cross section, as in
Eq. (2.50). At leading order, the partonic subprocesses are 2-to-2 reactions:
�⇤ + q(q̄) ! q(q̄) + g, �⇤ + g ! q + q̄. In terms of 4-momenta, one has
qµ+ pµ = p0µ+ pµX , where p0µ is the momentum of the fragmenting particle, while
pµX is that of the unobserved particle in the final state. The partonic cross section,
for a positive-helicity parton, has the expression

d�̂"

dx̂ dQ2 dẑ dp02T d�
=
⇡↵2y2

4Q8 Lµ⌫Ŵ"µ⌫ 1
(2⇡)3

�

 
p02T
Q2 � ẑ(1 � ẑ)(1 � x̂)

x̂

!
, (6.12)

where the �-function comes from the on-shellness condition p2
X = 0. Lµ⌫ is the

unpolarized lepton tensor in (2.13). The "hat" variables are defined as

x̂ =
Q2

2p · q
, ẑ =

p · p0

p · q
, (6.13)

so that pµ = (x/x̂)Pµ and p0 = (ẑ/z)Pµh . The partonic Mandelstam variables are

ŝ = (q + p)2 = 1 � x̂
x̂

Q2, t̂ = (q � p0)2 = �1 � ẑ
x̂

Q2,

û = (p � p0)2 = � ẑ
x̂

Q2.
(6.14)

Ŵ"µ⌫ in Eq. (6.12) is the parton-level version of the hadronic tensor

Ŵ"µ⌫ ⌘ hp, " |Jµ (0)| p0 pXi hp0 pX |J⌫ (0)| p, "i , (6.15)

for an initial parton with positive helicity. As discussed above, we only need
interference terms between tree-level and 1-loop amplitudes, thus remaining with

Ŵ"µ⌫
t/l ⌘

⌦
p, "

��Jµtree (0)
�� p0 pX

↵ D
p0 pX

���J⌫loop (0)
��� p, "

E
+

+
D
p, "

���Jµloop (0)
��� p0 pX

E ⌦
p0 pX

��J⌫tree (0)
�� p, "

↵
.

(6.16)
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6. T-odd e�ects in pQCD and FUL in SIDIS

Figure 6.3: The 1-loop diagrams for �⇤ + g ! q + q̄ contributing to T-odd asymmetries.

Moreover, since only the imaginary part of T⇤
f i↵ f i contributes to T-odd e�ects, Eq.

(6.7), we need only consider terms in the loop amplitude that have a relative phase
with respect to the tree amplitude. These are generated by the analytic continuation
of logarithms in the loop integrals, e.g.:

ln
✓
� µ2

ŝ + i✏

◆
! ln

✓
µ2

ŝ

◆
+ i⇡. (6.17)

For this reason, in the calculation with a quark in the initial state, Fig. 6.2, t-
channel diagrams in row (b), and the third of the box diagrams in row (c), do not
contribute to the asymmetries. Instead, in the initial gluon case, only the two box
diagrams shown in Fig. 6.3 contribute.

To obtain the sin � and sin(2�)modulations of the cross section in the numerator
of (6.11), we thus considered the partonic scattering amplitude

Lµ⌫Ŵ
"µ⌫
t/l , (6.18)

–restricting to the interference terms in Ŵ"µ⌫
t/l , Eq. (6.16)– and we took 1/2

the discontinuity in the complex plane for ✏ ! 0± (✏ being the infinitesimal
imaginary part in Feynman propagators), to select the imaginary parts originating
from analytic continuation:

1
2

✓
lim
✏!0+

� lim
✏!0�

◆
Lµ⌫Ŵ

"µ⌫
t/l . (6.19)

Taking the positive helicity state in (6.16), this gives (half of) the numerator of the
single spin asymmetries, (6.11), after convoluting the partonic cross section (6.12)
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6.2. Perturbative calculation of longitudinal single spin asymmetries

with the helicity PDFs and the FFs:

d��
dx dQ2 dz dPhT d�

=

π
dx̂ dẑ dp0T d⇠ d⌘ � (x � ⇠ x̂) � (z � ⌘ ẑ) �

�
PhT � ⌘p0T

�

⇥
’
ab

hb
1

⇣
⇠,Q2

⌘
Dh/a

1

⇣
⌘,Q2

⌘ d��̂ab

d x̂ dQ2 dẑ dp0T d�

=
’
ab

π
d⇠
⇠

d⌘
⌘2 hb

1

⇣
⇠,Q2

⌘
Dh/a

1

⇣
⌘,Q2

⌘ d��̂ab

d x̂ dQ2 dẑ dp0T d�
,

(6.20)

where we defined

d��
dx dQ2 dz dPhT d�

⌘ d�" � d�#

dx dQ2 dz dPhT d�
. (6.21)

To calculate (6.19), we used the Tracer package [157] for Dirac traces in d-
dimensions involving �5, and Package-X [158] for the evaluation of loop integrals
and their discontinuity. As a consequence of the Kinoshita-Lee-Nauenberg the-
orem [159, 160], at 1-loop order T-odd terms must be free of soft and collinear
divergences, since there are no corresponding real emission diagrams to cancel
them. Consistently, infrared divergences cancel out in our calculation. Our result
is

d��̂ab

d x̂ dQ2 dẑ dp02T d�
=
↵2↵2

s

2⇡Q6

⇣
Aab

1 sin � + Aab
2 sin 2�

⌘

⇥ �
 

p02T
Q2 � ẑ(1 � ẑ)(1 � x̂)

x̂

!
,

(6.22)

where

Aab
1 =

p
1 � y(2 � y)

p0T
2Qx̂

"
1
x̂
�hab

1 (x̂, ẑ) +
 
ẑ +

p02T
Q2 ẑ

!
�hab

2 (x̂, ẑ)
#
,

Aab
2 = �(1 � y)

p02T
Q2 x̂

�hab
2 (x̂, ẑ),

(6.23)
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6. T-odd e�ects in pQCD and FUL in SIDIS

and, for the case of initial quark (or antiquark), the �hi functions are

�hqq
1 (x̂, ẑ) = � x̂3(1 � x̂ � ẑ)

(1 � x̂)(1 � ẑ)

⇥

1
2

CFCA + CF

✓
CF � CA

2

◆ ✓
3 � ẑ
1 � ẑ

+ ln(ẑ) 2
(1 � ẑ)2

◆�
,

�hqq
2 (x̂, ẑ) = x̂3

(1 � x̂)(1 � ẑ)

⇥

3
2

CFCA + CF

✓
CF � CA

2

◆ ✓
1 � 3ẑ
1 � ẑ

+ ln(ẑ)2(1 � 2ẑ)
(1 � ẑ)2

◆�
.

(6.24)

When the outgoing hadron originates from the fragmentation of the gluon, one
has3

Agq
1 (ẑ) = �Aqq

1 (1 � ẑ), Agq
2 (ẑ) = Aqq

2 (1 � ẑ). (6.25)

In the initial gluon case we obtain instead

�hqg
1 = �

x̂3

ẑ(1 � ẑ)

✓
CF � CA

2

◆ 
2(1 � ẑ) + 2x

ẑ
+

ẑ � x̂ � 1
ẑ(1 � ẑ) +

� x̂ + ẑ � 1
(1 � ẑ)2 ln ẑ +

x̂ � ẑ � 1
ẑ2 ln(1 � ẑ)

�
,

�hqg
2 = �

✓
CF � CA

2

◆
x̂3

ẑ(1 � ẑ)

⇥

1 � 2ẑ + 2ẑ2

ẑ(1 � ẑ) +
1

(1 � ẑ)2 ln ẑ +
1
ẑ2 ln(1 � ẑ)

�
,

(6.26)

and

Aq̄g
1 (ẑ) = �Aqg

1 (1 � ẑ), Aq̄g
2 (ẑ) = Aqg

2 (1 � ẑ). (6.27)

The color factor (CF �CA/2) suppresses initial gluon contributions with respect to
those for the initial quark case. These will be further suppressed, in the observable,
by the smallness of the helicity gluon PDF compared to the valence PDFs. Our
results correspond to those in [156], apart from an overall sign for both the sin �
and sin(2�) modulations. We believe this can be due to a sign error in Eq.
(10.36) of [156] (to be compared to Eqs. (3.12-3.13) in [149]). A cross check is
actually provided by the SIDIS beam asymmetries ALU calculated in [148, 149].
Indeed, if one considers the neutrino scattering case in those calculations, the
W-boson mediated interaction selects left-handed quarks, so that, even if the target

3The coe�cient of sin � acquires a minus sign because the two outgoing particles have a relative
angle of 180o in the transverse plane.
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is unpolarized, the partonic matrix elements are the same as in our Eq. (6.16),
with reversed helicity. By looking for instance at the functions F8 and F9 in Eq.
(3.14) of [149], in the case of quark-initiated diagrams, one can indeed check
that they correspond to our A1 and A2 functions with a reversed sign. . Clearly,
the reasoning above does not allow comparisons in the initial gluon case, and
the partonic functions are di�erent when going from AUL to ALU asymmetries
[40–44].

6.3 Phenomenological results
In this section we show our numerical estimates for Asin �

UL and Asin(2�)
UL , obtained

using the DSSV set for helicity PDFs [161, 162], and the DSS14 set for FFs [163],
and setting both the renormalization and factorization scales equal to Q. For
the denominator of the asymmetries we used a LO (O(↵s)) expression, with the
MMHT [5] set for the unpolarized PDFs.

As mentioned above, AUL asymmetries were the first Single Spin Asymmetries
observed in SIDIS [37]. Although the low PhT range reached by the available data
seems to suggest that a TMD formalism interpretation is more appropriate–and
di�erent studies have analyzed them in terms of leading and sub-leading twist
TMDs4–we consider it interesting to compare also to our collinear-factorization
predictions . Indeed, the two frameworks may not be so sharply separated in this
case: what is relevant for distinguishing the TMD regime from the collinear one
is the value of qT/Q, and taking the average values of PhT and z in [37–39] gives
qT ' 1 GeV, while Q is of the order of 1 ⇠ 2 GeV. What is more, a quantitative
study of collinear pQCD predictions is the first step towards a matching to TMDs.5

One issue when considering target spin asymmetries is given by the fact that
the target is actually polarized along the beam direction, so that the experimental
asymmetry, Al

UL , receives contributions from both longitudinal and transverse
asymmetries with respect to the direction of the virtual photon, Aq

UL and Aq
UT [164].

Combining with data from transversely polarized target, a reanalysis of the data
of [37] has been done in [165], in order to provide a separation of the Aq

UL

4When decomposing the target spin with respect to the virtual photon direction, both the
longitudinal and transverse components are present. Hence, one has to consider the competition
between the twist-three combinations that make up the F

UL

functions at TMD level—among
which the most relevant involves the Collind fragmentation function H?

1 —and the twist-two F
UT

modulations, which involve also the Sivers function f ?1T . See [50] for a detailed decomposition
of the structure functions in terms of TMDs, and [44] for an early discussion of the competing
mechanisms.

5We notice that our collinear-factorized calculation for the Fsin 2�
UL

structure function cannot
match the one calculated in the TMD framework, since this is of order O(↵

s

) (see Table 2 of [51]),
while we are dealing with 1-loop formulae. Instead, there is the possibility of matching for Fsin�

UL

.
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Figure 6.4: Comparison of our theoretical predictions for Asin�
UL

to HERMES data from [165]. These
data were obtained from a reanalysis of those in [37], to estimate the asymmetry for a polarization
along the virtual photon direction (blue squares), from the measured asymmetry (black dots).

contribution. In Fig. 6.4 we show a comparison of those data with our predictions
for the sin � asymmetry, calculated at the mean values of x, z, Q2 and PhT for each
point reported in Table 1 of [165].

In Fig. 6.5 we compare the analyzing powers for both sin � and sin(2�)
using the original data from [37] (hence without corrections for the polarization
direction), while in Fig. 6.6 we compare to asymmetries o� a deuteron target,
from [39]. For these sets of data, we calculate our predictions at the declared mean
values of x and Q2 for each point, while assuming for hzi and hPhT i the same
values as in the binning operated by [165], as they are not declared here, and the
binning choices are very similar. Although theoretical curves generally tend to
underestimate the asymmetries, especially for the "corrected" data in Fig. 6.4, we
notice that the trend of data is reproduced in most cases, as well as the di�erence
in magnitude between the sin � and sin(2�) components, and between ⇡+ and ⇡�
and the two di�erent targets. The situation thus appears to be di�erent from the
unpolarized structure function Fcos 2�

UU analyzed in [166]: there, the perturbative
O(↵s) prediction at HERMES kinematics was shown to be negligible compared to

110



6.3. Phenomenological results

� → π+ ���
���ϕ

-����

-����

-����

����

����

����

����

��� ��� ���
�

� → π+ ���
����ϕ

��� ��� ���
�

Figure 6.5: Asin�
UL

and Asin 2�
UL

asymmetries for production of positive pions o� a proton target [37],
compared to our calculations.

higher-twist e�ects.
We will now show some estimates for a future Electron-Ion Collider (EIC).

One crucial di�erence compared to fixed-target experiments is that lower values
of x are explored. Since the helicity PDFs strongly suppress asimmetries outside
the valence region, this makes sin � and sin(2�) modulations harder to detect in
a collider regime. In Fig. 6.7 (Left) we show the steep x-dependence of the
analyzing powers for a center-of-mass energy of 140 GeV, at given values of z, Q2

and PhT . The kinematic values have been chosen by looking at projected data in
[167]. We have checked that, for lower values of the invariant mass, Q2 . 10 GeV2

(hence 10�4 . x . 10�2), where the majority of events is expected, asymmetries
are generally lower than ⇠ 10�3. Fig. 6.7 (Right) shows the z-dependence of our
predictions, which is moderate through most of the range.

Due to this reasons (strong suppression of asymmetries at low x, mild z-
dependence) in the following we show results integrated over large bins in z and
Q2, but di�erential in x and P2

hT :

Asin(n�)
UL int ⌘

Ø z
max

z
min

dz
Ø Q2

max

Q2
min

dQ2
Ø

d� sin(n�)
⇥
d�"(�) � d�#(�)

⇤
1/2

Ø z
max

z
min

dz
Ø Q2

max

Q2
min

dQ2
Ø

d�
⇥
d�"(�) + d�#(�)

⇤ , (6.28)

and we concentrate on the higher-x part of the spectrum. As can be seen from Fig.
6.8, analyzing powers are close to 0 for ⇡� production, while for ⇡+ they reach
values around 0.01 only in the highest accessible PhT range (see again [167] for
estimates of SIDIS cross sections at an EIC).
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Figure 6.6: Asin�
UL

asymmetry for pion production o� a deuteron target [39], compared to our
calculations.
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Figure 6.7: x-dependence (Left) and z-dependence (Right) of the analyzing powers for positive
pion production from a proton target at a future EIC. The sin(2�) analyzing power is multiplied by
-1. In both figures,

p
s = 140 GeV, Q2 = 50 GeV2, and P

hT

= 2 GeV. In the left panel, z is fixed to
0.4, while in the right panel x = 0.1.
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Figure 6.8: Predictions for analyzing powers Asin(n�)
UL int at an EIC with

p
s = 140 GeV, integrated

over z and Q2, for two di�erent x values (full lines: x = 10�1, dashed lines: x = 10�2). In all cases
the integration range for z goes from 0.05 to 0.8, while the one for Q2 is 20 � 100 GeV2 or 2 � 10
GeV2, respectively for x = 10�1 or x = 10�2.

The results shown above are for a center-of-mass energy of 140 GeV, around
the highest values foreseen for the EIC. However, for given values of x, Q2 and
z, asymmetries depend on

p
s only through the y-dependent prefactors of the

structure functions, like A1 and A2 in (6.22), and this dependence is canceled to a
large extent when taking the ratio to the unpolarized cross section, in (6.11). We
checked this explicitly by comparing predictions at

p
s = 45 GeV and 140 GeV.

There will be di�erences in the kinematic span and in the available luminosity,
as well as the di�erent expected number of events (see, for instance, Figs. 1-2 of
[167]).
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Chapter 7
Conclusions

In this thesis we presented investigations on di�erent aspects of transverse-mom-
entum dependent observables in QCD. After reviewing the general properties of
SIDIS and Drell-Yan cross sections (Ch. 2) and the evolution and formal properties
of TMDs (Ch. 3), we concentrated on the lower qT spectrum of both SIDIS and
Drell-Yan (Ch. 4). This is a crucial kinematic region, since it gives access to
three-dimensional information on the momentum distribution of quarks. In Sec.
4.1, we have evidenced how the case of SIDIS multiplicities is controversial:
the majority of data lies beyond what–on formal grounds–can be considered the
TMD region, but, at the same time, their shape is well described by gaussian-
like parameterizations, as shown in previous parton-model (and leading order)
fits. The apparent contradiction is due to the fact that lowest-order solutions for
TMDs–i.e., solutions with the hard factor and Wilson coe�cients at zeroth order in
↵s–are not properly normalized and thus hide di�culties in reproducing the data,
which only show up at higher order. Indeed, when going at order ↵s, theoretical
predictions underestimate measurements by a factor ⇠ 2. We provided formal
arguments to confirm that this is precisely due to the above issue, i.e., that the
considered data are mostly beyond the TMD range. In particular, one argument is
that the TMD-factorized cross section is, consistently, normalized to the (infrared-
regularized) qT -integral of the asymptotic term, which is naturally smaller than
the total integrated cross section. The smallness of this integral is quantified by
the theoretical ratio given by Eq. (4.24),

d�h

dxdQ2dzØ
W

��
O(↵0

s

)+O(↵1
s

)
, (7.1)

which reproduces, to a good approximation, the normalization factors needed to
recover the discrepancy between theory and data. In conclusion, TMD factor-
ization in its standard form is not able to reproduce SIDIS data at the presently
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available kinematics. The reason is most probably that there is little or no room
for the application of the TMD formalism, which requires qT ⌧ Q. Moreover,
perturbative calculations that underpin the TMD formalism beyond lowest order
should be applicable only in the region qT � ⇤QCD. Clearly, when Q approaches
⇤QCD or M , the whole formalism is questionable. At the same time, the fact that
lowest-order results can successfully reproduce the data probably indicates that
intrinsic transverse momentum plays a prominent role.

For the Drell-Yan process, we have presented an analysis of TMDs with the
inclusion of data from LHC, for the first time without multiplying theoretical
predictions by any artificial normalization factor. It is a delicate procedure, since
some of these data, in particular those from ATLAS, have an unprecedented
precision. It is found that the maximum available perturbative accuracy (N3LL) is
needed in order to have an acceptable description. Moreover, LHC data appear to
be compatible with a vanishing intrinsic transverse momentum. Their addition in
a fit is however crucial for reducing the present uncertainties on TMDs, especially
at low x. Indeed, they can be thought of as setting an upper limit on the size of
nonperturbative e�ects. With a 2-gaussian (slightly di�erent from a gaussian) as
the nonperturbative function, a good simultaneous description of data at di�erent
energies is obtained. These are however first explorations of the newest data in the
standard TMD formalism,1 and will be followed by more detailed studies, where
di�erent parameterizations will be compared [168].

As anticipated above, a recent work [33] has found discrepancies in the the-
oretical description of SIDIS data at intermediate to high qT , i.e., beyond the
TMD region: predictions from collinear factorization have been shown to largely
underestimate di�erential multiplicities measured by COMPASS [83]. In Ch. 5,
we showed an analogous study for Drell-Yan at low energy. Fixed-target data are
widely used in TMD analyses (see, e.g., [19, 20, 25, 29, 30, 74]). However, anal-
yses of points at higher qT are lacking. We showed that, analogously to the SIDIS
case, these points are largely above theory. The e�ect appears to depend on the
center-of-mass energy, as PHENIX data (

p
s = 200 GeV) show a fair agreement

with calculations, and also data from Tevatron and LHC (for Z boson production)
are known to be correctly reproduced. We discussed possible mechanisms that
might contribute to the discrepancies: on the perturbative side, threshold resum-
mation is found to play some role, especially for the lower energy data. A non
negligible contribution is also found for intrinsic transverse momentum, whose
e�ect we estimated through a phenomenological model, such to simulate power
corrections to collinear factorization. However, the size of these phenomena is not
yet su�cient to correct for the mismatch with data. Future studies smight work

1Other studies were provided in [29, 30], where however a modified prescription was used,
di�erent from the standard CSS formalism.

116



on the possible connections between Drell-Yan and SIDIS. Keeping in mind the
possibility of experimental errors, especially in the presently available Drell-Yan
data, a more formal analysis of power corrections, and–as suggested in [33]–a re-
analysis of parton distribution functions and fragmentation functions, are possible
directions.

In Ch. 6, we have presented calculations in collinear-factorization of single
spin asymmetries in SIDIS, for the case of polarized target. This corresponds to
having a high-qT prediction for the FUL structure functions (see Ch. 2), while to
date it was only calculated in the TMD framework, if we exclude the unpublished
work reported in [156], where the asymmetries where indirectly calculated by
applying crossing symmetry to e+e� amplitudes. In this thesis we showed a direct
calculation of the relevant Feynman diagrams at 1-loop, pointing out a sign error
in both the sin � and sin 2� modulations of [156]. Azimuthal modulations for a
future Electron-Ion Collider (EIC) are predicted to have a strong x dependence,
and to be almost negligible for ⇡� produced o� a proton target, whereas, in the case
of ⇡+, a positive (negative) analyzing power for sin � (sin 2�) is foreseen, reaching
values around 1% at the highest measurable x and PhT . In the fixed-target regime,
it is interesting to observe that our calculations show an approximate agreement
with the size and shape of the asymmetries measured by HERMES, which are
commonly interpreted in terms of TMDs. This signals that matching corrections
to TMD factorization should not be overlooked in studies of longitudinal spin
asymmetries.

T-odd asymmetries in collinear factorization are also an interesting subject per
se, as they are a pure loop e�ect in QCD. Despite being hunted for decades, they
still lack clean experimental comparisons. For the future, it will be interesting to
extend our study to analogous asymmetries in hadron collisions at the Relativistic
Heavy Ion Collider (RHIC).
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