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Chapter 1
Introduction

The meshless method [1] is encountered in in various kind of applications.
In particular it is used in the solution of mechanical problems [2], imaging [3],
fluid dynamics [4], solution of partial differential equations in 2D [5, 6].

In the last decade this tool started to gain the attention also of the electro-
magnetic community and has been applied to various kind of problems such as
time domain simulations [7, 8, 9, 10, 11, 12, 13], boundary problems [14], mi-
crowave imaging [15, 16, 17], and 2D bounded problems [18, 19, 20, 21, 22, 23].

The interest about the meshless method is increasing because this tech-
nique presents some advantages compared to the most traditional ones like
finite element (FEM) or finite difference method [24]. The mesh generation
is, in fact, a time and memory consuming process and this is unwanted in par-
ticular in real time simulations when frequent re-meshing steps are required.
This is in particular true in the cases in which the basis functions are de-
fined over triangular element pairs like the Rao-Wilton-Glisson (RWG) [25].
Another important feature of the meshless method is that it is based on a
particular kind of basis functions ( i.e. the radial basis functions) that can
approximate the solution in a more accurate way than the low order polyno-
mials used in the FEM [26].

In general the problems encountered in the microwave engineering can
be divided in two families: those which bring to an inversion problem (e.g.
imaging, inverse scattering, boundary problems) and those which bring to an
eigenproblem (e.g. propagation inside a waveguide or resonant modes inside
a cavity).

The aim of this thesis is the application of the meshless method to the
second family. In particular various cases are taken into account: (1) the 2D
scalar problem of finding the modes inside a shielded waveguide filled with an
homogeneous material, (2) the 2D vector problem of finding the dispersion
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1. Introduction

diagram of the modes propagating inside a shielded waveguide filled with
an inhomogeneous material, and (3) the 3D vector problem of finding the
resonant modes inside shielded cavity filled with an inhomogeneous material.

However the meshless method presents some numerical limitations when is
applied, in its original form, to the electromagnetic simulations that generate
eigenproblems [19]. These limitations are, in brief, the low accuracy on the
calculations of the first TE modes of a waveguide filled with a homogeneous
material and the strong dependence of the solutions on the position of the
collocation points [27], the non-symmetric nature of the built matrices that
brings to the ill-conditioning of the problem [28, 29].

To overcome all these issues the variational technique has been applied in
conjunction with the meshless method permitting to develop a new numerical
tool that can handle all the cases listed before in a reliable way obtaining,
in all the reported simulations, an high number of modes with a relative low
number of unknowns.

This method has been called Variational Meshless Method (VMM).

This manuscript is organized as follows:

� Chapter 2 gives a brief introduction about the meshless method. In order to
present this technique, the interpolation problem inside a bounded domain
has been taken into account. Various considerations about the stability and
the choice of the collocation points have been reported.

� Chapter 3 shows some limitations of the classical technique (such as the
strong dependence of the solution on the position of the collocation points
and the relative poor accuracy in the computation of the first TE modes of
a waveguide) and proposes a very simple and no time consuming expedient
which consists a slightingly different definition of the employed radial basis
functions to improve the results.

� Chapter 4 presents the VMM for the 2D scalar problem of finding the
eigenmodes inside an hollow waveguide shielded by a perfect conductor. it
also proposes an automatic refinement technique which permits to handle
also complicated geometries such as sharp corners.

� Chapter 5 presents the MM-VMM which is the mode matching technique
in conjunction with the VMM and seems a promising technique for opti-
mization problems.
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� Chapter 6 presents the VMM for the 2D vector problem of finding the dis-
persion diagram of the modes inside an inhomogeneous waveguide shielded
by a perfect conductor.

� Chapter 7 presents the exploitation of symmetries in the case of 2D vector
problems.

� Chapter 8 presents the VMM for the 3D vector problem of finding the
resonant modes inside an inhomogeneous cavity shielded by a perfect con-
ductor.

� Chapter 9 gives some conclusions about this work.

All the numerical results reported in this manuscript are obtained on a
computer with an Intel(R) Core(TM) i7-6700 CPU @ 3.40 GHz (8 CPUs),
3.4 GHz and 16 GB of RAM, by running a Matlab scripts.

All this activity is based on published works. A list of the publications
updated at the moment of the submission of this manuscript is given in
Appendix A.
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Chapter 2
Meshfree Methods

2.1 Introduction

During the last decades the meshfree methods [1] have gained the at-
tention of the scientific community. These powerful modeling tools can be
applied in various kind of problems [2]:

� scattering data modeling

� the solution of partial differential equations

� non-uniform sampling

� mathematical finance

� computer graphics

� learning theory, neural networks and data mining

� optimization

All the listed applications depend on the ability of approximating a known or
unknown function. For this reason most of the literature about the meshless
methods is focused on the interpolation problems. This introductory chapter
is therefore dedicated to the Scattered Data Interpolation Problem.

2.2 Scattered Data Interpolation Problem

The Scattered Data interpolation Problem is defined as follows[2]:
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2. Meshfree Methods

Scattered Data Interpolation Given a data set (xj,yj), j = 1, . . . , N ,
with xj ∈ Rs, yj ∈ R, find a function f such that f(xj) = yj, j = 1, . . . , N .

The basic idea beyond the meshfree methods is to approximate an un-
known or known function f with a“similar”one which is called f̃ through the
linear combination of some particular basis functions each radial respect to
their own center. The word “similar” will have a different meaning depending
on the problem under study. These particular functions are defined in the
following manner [3]:

Radial (Basis) Function For a kernel Φ : Rs × Rs → R with input
vectors xj = [(xj)1, (xj)2, . . . , (xj)s]

T , xi = [(xi)1, (xi)2, . . . , (xi)s]
T , and a

φ(·) : [0,∞) → R, Φ is a radial (basis) function (RBF) if can be defined as
Φ(xj,xi) = φ(r) where r = ‖xj − xi‖2 is the Euclidean distance.

The generic xi vectors are called s-dimensional collocation points (CPs),
while xj are the observation points (OPs). Others norms can be used, but
from now on in this work the Euclidean norm will only be considered.

The RBF-approximation f̃(xj) of the generic function f(xj) can therefore
be written as [3]

f̃(xj) =
N∑
i=1

aiφ(‖xj − xi‖2) (2.1)

The interpolation problem is then built by imposing the Point Matching

condition [8] resulting in a matrix linear problem:

Aa = y (2.2)

where a = [a1, a2, . . . , aN ]T is the vector of the unknown coefficients, y =

[y1, y2, . . . , yN ]T is the vector of the sampled values, yj = f̃(xj), and the
interpolation matrix A has been introduced

A =

φ(‖x1 − x1‖2) . . . φ(‖x1 − xN‖2)
...

. . .
...

φ(‖xN − x1‖2) . . . φ(‖xN − xN‖2)

 (2.3)

Note that if the CPs coincide with the OPs, {xj|j = 1 . . . N} = {xi|i = 1 . . . N},
the matrix A is symmetric. It is also real if we are dealing with real quan-
tities. The interpolation will have thus a solution if the matrix A can be
inverted. This can be guaranteed if A is a strictly positive defined matrix[2]
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2.2. Scattered Data Interpolation Problem

Table 2.1: Examples of SPD RBFs

Name Expression

Gaussian φ(r) = e−cr
2

Inverse Multi Quadratic φ(r) = 1√
1+cr2

C0 Matérn φ(r) = e−
√
cr

C2 Matérn φ(r) = e−
√
cr(1 +

√
cr)

C4 Matérn φ(r) = e−
√
cr(3 + 3

√
cr + cr2)

Truncated Power Function φ(r) = (1−
√
cr)l+ where l ≥ s

2
+ 1

(if
√
cr < 1, 0 otherwise)
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Figure 2.1: Plot of the Gaussian RBF for three different values of the shape
parameter c.

Strictly Positive Defined Matrix A real symmetric matrix A of dimen-
sion N ×N is called strictly positive defined if for every non-zero vector c of
dimension N × 1

cTAc > 0. (2.4)

This depends on choice of an appropriate set of RBFs. The functions which
permit to satisfy the (2.4) are called strictly positive defined (SPD) . There
are kinds of SPD RBFs in the literature [2, 3, 5]. In Table 2.1 some examples
are reported. Note that all the expressions reported depend on a value c
that is called shape parameter. For high values of c the RBFs will be spiky,
while for low values the function will be flatter. In Fig. 2.1 this effect is
shown in the case of the Gaussian RBF. The choice of c is one of the most
critical aspect of a meshless method since both the achievable precision and
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2. Meshfree Methods

the well conditioning of the problem (2.2) depend on it. Another important
aspect that has effects on the precision and well-conditioning of (2.2) are the
positions xi and xj.

2.2.1 Considerations about the position of xi and xj

Consider the general case in which the following interpolation has to be
computed

g̃(x) =
N∑
i=1

biBi(x) (2.5)

This is equivalent to a matrix problem Kb = g where the Bi are called basis

functions( not necessary radial). In this case the following definition can be
given [2]:

Haar Space Let the finite-dimensional linear function space B ⊂ C(Rs) have
a basis {B1, . . . , BN}. Then B in an Haar Space on Rs if

det(K) 6= 0 (2.6)

for any distinct set of points x1, . . . ,xN ∈ Rs. Here, K is the matrix with

entries Ki,j = Bj(xi).

The Mairhuber-Curtis theorem [6] states that it is not possible to fix in
advance the set of basis functions to interpolate an arbitrary scattered data
for multivariate problems(s ≥ 2). This is the reason why the polynomial
interpolation is not suitable for large data set in multi-dimensional spaces.

To build a well-posed scattered interpolation problem, when dealing with
RBFs, it is mandatory to find a set of RBFs that can guarantee the (2.6).
We just know the answer: if the point matching technique is applied in con-
junction with the SPD RBFs the problem is invertible and will have a unique
solution. For this reason the natural choice for xi will be the [7]

Point Matching Method: xi = xj.

Depending on the problem to handle, the positions of the scattered data xj
could be given or eligible. In this last case some considerations can be made
about both the precision and the accuracy.

In order to evaluate the error between the interpolant f̃(pj) and the data
values f(pj) on the evaluation points pj with j = 1, . . . , P , two measures can
be used:
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2.2. Scattered Data Interpolation Problem

the root-mean-square error (RMSE)

RMSE :=

√√√√ 1

P

P∑
j=1

[
f̃(pj)− f(pj)

]2

=
1√
P
‖f̃ − f‖2 (2.7)

and the sup norm (i.e. the maximum value of the error)

‖f̃ − f‖∞:= sup
x∈R

(|f̃(x)− f(x)|) (2.8)

For special cases of infinitely smooth RBF such as Gaussian, the RMSE can

be estimated and some maximum bound can be found for this error [2]. In
order to obtain this estimation the fill distance hχ,Ω can be used. It is defined
as follows

hχ,Ω = sup
x∈Ω

min
xi∈χ
‖x− xi‖2 (2.9)

where χ is the set of the CPs. Note that hχ,Ω indicates how well the data in

fill out the domain Ω. A reasonable choice of the shape parameter c seems
to be the stationary approach which consists in keeping constant the product
c h2

χΩ (see Table 2.1). This means that the shape parameter is chosen in
order to respect the following thumb rule

c =
c0

h2
χ,Ω

(2.10)

where c0 is a proper constant. The convergence of the Gaussian RBF with

respect to the pair c and hχΩ has been studied by Madych in [8] and an
analytical expression of the error bound has been given

|f̃(x)− f(x)| ≤ Cλ1/(
√
chχ,Ω) (2.11)

where C is a proper constant value, while λ < 1. This relation is actually

true provided that f is in the Native Space of the Gaussian Kernel. The
Native space is defined as in [9]:

Native Space If a symmetric strictly positive definite function Φ : Ω×Ω→
R is the reproducing kernel of a real Hilbert space H of real valued functions
on Ω, then H is the native space for Ω.

Thanks to (2.11) it is possible to state that, in the the case of the station-
ary approach (2.10), the error can be minimized by reducing hχ,Ω. This is of
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2. Meshfree Methods

course intuitive, but do not help to define a “good” choice of xj. In order to
achieve this result, another definition is needed.

The separation distance is

qχ =
1

2
min
i 6=j
‖xi − xj‖2 (2.12)

The problem (2.2) brings to the inversion of the matrix A. It is well known

in the literature [10] that the condition number of A respect to the inversion
problem can be easily computed if the matrix is positive defined. In this case
in fact

cond2(A) = ‖A‖2‖A−1‖2=
λmax
λmin

(2.13)

where λmax and λmin are respectively the maximum and minimum eigenvalue

of A. If, in (2.1) and (2.2), φ(·) is positive defined the upper bound of λmax
is given by [11]

λmax ≤ Nφ(0) (2.14)

while the lower bound of λmin depends on the RBF in use. In the case of

Gaussian RBFs it is possible to write [11]

λmin ≥ Cs(
√

2c)−se−40.7s2/cq2
χq−sχ (2.15)

where s is the dimension of the problem and Cs is a proper constant. As can

be seen in (2.13) and (2.15), the conditioning of the problem (2.2) can be im-
proved increasing qχ. If c and hχ,Ω are thus fixed based on the considerations
about the precision, qχ must be kept as higher as possible [12].

For this reason, defining the uniformity as

ρχ,Ω =
qχ
hχ,Ω

(2.16)

the conditioning of the problem will be better when ρχ,Ω ≈ 1 i.e when the
points are nearly equispaced.

2.2.2 Considerations about the Shape Parameter and
its choice

As said before, the choice of the shape parameter is critical in the mesh-
less method. This is due to the fact that although the accuracy improves
decreasing c, this value can not be arbitrarily small because of the stability
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2.2. Scattered Data Interpolation Problem

Figure 2.2: Plot of the Franke’s function over the unit square.

Figure 2.3: Evaluation points used to calculate the error of the interpolation
of the Franke’s function in the cases under study.

of the numerical computation. In order to study this effect, consider the
interpolation, inside the domain [0, 1]× [0, 1], of the Franke’s function [13]

f(x, y) = +
3

4
e−1/4((9x−2)2+(9y−2)2) +

3

4
e−(1/49)(9x+1)2−(1/10)(9y+1)2

+
1

2
e−1/4((9x−7)2+(9y−3)2) − 1

5
e−(9x−4)2−(9y−7)2

(2.17)

The graph of this function is shown in Fig. 2.2. The interpolation per-

formances are evaluated in the case of 81, 289, and 1089 CPs. While the
RMSE and the maximum error are calculated over the grid consisting of
1600 evaluation points pj shown in Fig. 2.3 (see (2.7) and (2.8)). Calling the
floating-point relative accuracy used by Matlab eps, the CPs, the RMSE
and maximum error, and the condition number of the interpolation matrix
A compared to a arbitrary threshold of 1/(10 eps) are shown for the case of
81, 289, and 1081 CPs respectively in Fig. 2.4, Fig. 2.5, and Fig. 2.6.

In Tab. 2.2, the best scenarios with respect to the RMSE, using Gaussian
RBFs, are reported.
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Figure 2.4: Interpolation of the Franke’s function with 81 CPs: (a) CPs.
(b) RMSE and max error; (c) condition number of the interpolation matrix
A compared with 1/(10 eps).

20



2.2. Scattered Data Interpolation Problem

(a)

-6

-4

-2

0

2

0 50 100 150 200

L
o

g
1

0
(e

rr
o

r)

c (m-2)

RMS

max

(b)

0

4

8

12

16

20

24

0 50 100 150 200

L
o

g
1

0
(e

rr
o

r)

c (m-2)

1/(10 eps)

cond(A)

(c)

Figure 2.5: Interpolation of the Franke’s function with 289 CPs: (a) CPs.
(b) RMSE and max error; (c) condition number of the interpolation matrix
A compared with 1/(10 eps).
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Figure 2.6: Interpolation of the Franke’s function with 1089 CPs: (a) CPs.
(b) RMSE and max error; (c) condition number of the interpolation matrix
A compared with 1/(10 eps).
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2.2. Scattered Data Interpolation Problem

Table 2.2: Best scenarios with respect to the lower RMSE error in the cases
under test. The Gaussian RBFs have been used.

#CPs c (m−2) RMSE error max error cond2(A)

81 16.00 0.0046 0.0245 2.0309E+06

289 31.36 1.2374E-04 0.0012 8.5033E+13

1089 43.56 2.4761E-08 3.1330E-07 2.8024E+19

As can be noted, in the case of 1089 CPs the minimum error is achieved
in a ill-conditioning region in fact in this case the condition number of the
matrix A is equal to 2.8024E + 19. This phenomenon is quite common in
the case of an “high” number of CPs and is related to the trade-off principles
of the RBFs-interpolation procedures [2].

Various algorithms have been developed in order to calculate the optimal
shape parameter c. The most common are:

� The Contour-Padé Algorithm [14]. This method is limited to a relative
small number of unknowns.

� trial and error strategy [2, p. 142]. This method is the most simple
and consists in the evaluation of the error between the function to
interpolate and its interpolation. Of course this is possible only when
the function to interpolate is known and for this reason in a limited
number of applications

� Use of the power function as Indicator [2, p. 142].

� Leave One Out Cross Validation (LOOCV) presented by Rippa in [15]
and analyzed in the next subsection.

LOOCV

The LOOCV finds the optimal shape parameter c by minimizing the
(least-square) error for a fit of data based on an interpolant for which one
of the CPs is left out. In particular, consider the test function f(x), calling
fk = f(xk) the generic data. Suppose that the set of data has N elements
{f1, . . . , fN}, Constructing the radial basis function interpolant Pf,k

Pf,k(x) =
N∑

i=1,i 6=k

ai,kφ(‖x− xi‖2) (2.18)
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2. Meshfree Methods

such that

Pf,k(xj) = fj with j = 1, . . . , k − 1, k + 1, . . . , N (2.19)

After this, the error at the point (xk) is calculated

Ek = fk − Pf,k(xk) (2.20)

Then the quality of fit is measured by finding the superior value inside the

entries of E = [E1, . . . , EN ]T . The optimal shape parameter c is that one
that minimize such measure. This method is quite slow, in fact, it has a
complexity of O(N4). An other important limitation of this method is that
it is not trivial the choice of the test function to use. It is in fact important
to highlight that that a proper test function should be chosen taking into
account the nature of the solutions that are expected. Of course this is not
always possible.

To illustrate this important aspect, let us consider the case in which the
optimal shape parameter has to be computed inside the 2D unitary square
[0, 1]× [0, 1]. and the cases with 25, 81, and 289 CPs as shown in Fig. 2.7(a).
The LOOCV is before executed using the Franke’s function (2.17) giving the
results shown in Fig. 2.7(b), and then using the sinc(x, y) = sinc(x)sinc(y)
function obtaining those shown in Fig. 2.7(c). As can be seen by comparing
the Fig. 2.7(b) and the Fig. 2.7(c) the chosen test function is chosen can
significantly change the optimal shape parameter.

2.3 Example of Interpolation Problem

In order to evaluate the efficiency and accuracy of the presented theory an
electrostatic problems with a known analytical solution is taken into account.
Consider the problem shown in Fig. 2.8(a) where three sides of the domain
are maintained at zero potential, while the upper side is kept at 10V . The
potential inside the domain is the solution of the Laplace equation under a
proper boundary condition and has the following expression [8]:

V (x, y) =
40

π

∞∑
k=1

sin (2k−1)πx
a

sinh (2k−1)πy
a

(2k − 1)sinh (2k−1)πb
a

(2.21)

In the following the unitary rectangle will be considered as domain (a = 1m
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2.4. Conclusion

and b = 1m). The graph of the solution is shown in Fig. 2.8(b). The simula-
tion was run with the 256 CPs shown in Fig. 2.9(a). While the results were
evaluated in the 961 evaluation points in Fig. 2.9(b). In Tab. 2.3 three cases
are considered. The first is that one in which the simulation is conducted
by choosing the shape parameter given by the LOOCV algorithm and using
the sinc as test function. The second one is the case in which the simulation
is conducted by choosing the shape parameter given by the LOOCV algo-
rithm and using the expected solution as test function (see Fig. 2.8(b)). The
last case is the result of the simulation run with the best shape parameter
( which minimizes the RMSE). In this example it is possible to appreciate
the importance of choosing a “good” c.

Table 2.3: Simulation results of the problem in Fig. 2.8. Three cases are
considered: (1) the shape parameter is fond with the LOOCV and the sinc
function as test. (2) the shape parameter is fond with the LOOCV and the
expected function as test, and (3) the best shape parameter that minimizes
the RMES has been chosen

Case c (m−2) RMSE error max error cond2(A)

1 2.9 8.424549E-01 4.50 2.76E+18

2 6.3 2.042970E-01 2.34 1.52E+20

3 9.8 8.897187E-02 1.84 4.18E+18

2.4 Conclusion

In this chapter a brief introduction about the meshless method has been
given. In order to present this technique the interpolation problem inside a
bounded domain has been taken into account. This is actually the kind of
problem in which the Meshless Method and the radial basis functions are
more extensivelly used. Various aspects have been shown. In particular
various considerations about the precision, stability, and the choice of the
collocation points have been reported. For more details about this topic the
reader is addressed to the references at the end of this chapter.
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Figure 2.7: LOOCV execution over the 2D unitary square [0, 1] × [0, 1]:
(a) three configurations taken into account: 25, 81, and 289 CPs (b) re-
sult in the case of Franke’s test function; (c) result in the case of sinc test
function.
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Figure 2.8: Example of Interpolation problem: (a) Cross section of the rect-
angular conducting boundary, with an insulating gap between the upper side
and the other three (b) Shape of the theoretical solution inside the domain
under study.
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Figure 2.9: Example of Interpolation problem: (a) Collocation points used
during the simulation (b) Evaluation points.

27



2. Meshfree Methods

28



Bibliography

[1] G. R. Liu, Meshfree methods: moving beyond the finite element method,
Boca Raton,: World Scientific, 2007.

[2] G. E. Fasshauer, Meshfree approximation methods with MATLAB, Vol.
6, Chicago,: CRC Press, 2003.

[3] M. Mongillo, “Choosing basis functions and shape parameters for radial
basis function methods,” SIAM Undergraduate Research Online, Vol. 4,
pp. 190–209, 2011.

[4] M. N. O. Sadiku, Numerical techniques in Electromagnetic, 2nd ed.,
CRC press, 2011.

[5] B. Fornberg and C. Piret, “On choosing a radial basis function and
a shape parameter when solving a convective PDE on a sphere,” J.
Comput. Phys., Vol. 227,No. 5, pp. 2758-2780, 2008.

[6] J.C. Mairhuber, “On Haar’s theorem concerning Chebychev approxi-
mation problems having unique solutions,” Proceedings of the American
Mathematical Society, Vol. 7,No. 4, pp. 609-615., 1956.

[7] Y. Q. Zhang, G. C. Wan, K. Yang, and M. S. Tong, “On the point-
matching method for solving electromagnetic radiation problems,” 2013
IEEE Antennas and Propagation Society International Symposium (AP-
SURSI), Orlando, FL, 2013, pp. 1526-1527.

[8] W.R. Madych,“Error estimates for interpolation by generalized splines,”
In Curves and surfaces (Academic Press), Vol. 7,No. 4, pp. 297-306.,
1991.

29



BIBLIOGRAPHY

[9] R. Schaback, “Native Hilbert spaces for radial basis functions I.,” New
Developments in Approximation Theory, Birkhäuser, Basel, pp. 255-
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Chapter 3
Considerations about the
Classical Approach

3.1 Introduction

In the previous chapter the meshless method and the RBFs have been pre-
sented in the special case of the interpolation problem. Another application
of them will be presented in this chapter: the solution of partial differential
equations (PDEs) with a proper boundary condition. The presentation will
be focused on the electromagnetic problems and in particular on the case of
the propagation of the electromagnetic field inside an hollow waveguide. In
the literature there are various kind of examples of solution of PDEs (see
for instance [1, 2, 3, 4, 5, 6]). In [4] a very efficient algorithm is presented
for the solution of elliptic PDEs. It has been later applied the the case of
the electromagnetic propagation inside an homogeneous shielded waveguide
by Lai in [7]. In this work the problem of finding the eigenmodes inside
the domain has been reduced to a generic eigenproblem by using the point
matching technique [7, 8] for both the PDE and the boundary condition as
suggested by Kansa. The resulting matrix problem is computed very quickly,
but it presents some drawbacks such as the singularity of the mass matrix,
the non symmetric nature of the matrices, and thus the ill-conditioning of
the resulting problem [9]. Moreover the solution found though this technique
suffers a strong dependence on the position of the collocation points [10] and,
even worse, a relative bed precision in the calculation of the first TE modes
[2] that are encountered by applying the Neumann Condition [11]. In [10] a
very simple approach has been proposed to mitigate these last two problems
without cost of time and memory. Most of this chapter is therefore based on
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Figure 3.1: © 2017 IEEE–Cross-section of a generic metallic waveguide with
the different sets of collocation points used to define the RBFs.

[10] and will reuse extensively the material of that work.

3.2 Outline of the Theory

Consider the cross section Ω of an infinite long waveguide shielded by
a perfect conductor and filled by an homogeneous media (in this chapter
the vacuum will be considered) and represented in Fig. 3.1 where Γ is the
boundary. In this case the electromagnetic field inside the structure can be
represented through an infinite set of TE and TM modes [11], which are
respectively the transversal electric and magnetic modes. These kind field
configurations will be the solution of the Helmholtz scalar equation and a
proper boundary condition given by the operator B, in particular∇

2Φ(~r) + k2Φ(~r) = 0 ~r ∈ Ω

B [Φ(~r)] = 0 ~r ∈ Γ
(3.1)

where k is the wavenumber, Φ(~r) is the generic Hertz-Debye potential [11],

~r is the generic observation point inside the domain under study, and the
operator B can the Dirichlet boundary condition in the case of the TM
modes and the Neumann boundary condition for the TE modes:

B [Φ(~r)] =


Φ(~r) = 0 for TM modes

∂Φ(~r)

∂n
= 0 for TE modes

(3.2)

where n̂ is the outward normal unit vector on the boundary Γ (Fig. 3.1).

To discretize the problem (3.1), the RBF approximation is used and in
particular Φ(~r) can be described as follows
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3.2. Outline of the Theory

Φ(~r) =
N∑
i=1

aiφi(~r) (3.3)

where ai are unknown coefficients, and the i-th RBF has been introduced

φi = φ(‖~r − ~ri‖2) (3.4)

Recalling the Chap. 2, every φi is centered in its own center ~ri called collo-

cation point CP (Fig. 3.1). N is the total number of the CPs defined over
the domain. In particular, N = L + M where L is the number of the CPs
defined in inside the domain ( with index i = 1, . . . , L) and M is the num-
ber of CPs defined on Γ ( with index i = L + 1, . . . , N). The definition of
some point exactly on the boundary is not a trivial choice since the classical
approach under study in this chapter is essentially a point matching tech-
nique which explicitly requires the imposition of the boundary condition. As
seen in Chap. 2, there are various kind of RBFs, the work presented in this
manuscript is conducted by using the Gaussian type

φi(~r) = e−c|~r−~ri|
2

(3.5)

where the shape parameter c is defined in order to work with the stationary

approach ( see Chap. 2) and in particular as is done in [12]

c =
1

αh2
(3.6)

where α is a parameter typically selected by using preconditioning algorithms

like the LOOCV introduced in the Chap. 2 and h is the fill distance between
the collocation points and approximated as suggested in [12]

h ≈
√
AΩ√

N − 1
(3.7)

where AΩ is the cross-section area. By substituting (3.3) in (3.1), and ap-

plying a point-matching technique in the collocation points, (2.1) becomes
N∑
i=1

ai [∇2φi(~rj) + k2φi(~rj)] = 0 j = 1, . . . , L

N∑
i=1

aiB [φi(~rj)] = 0 j = L+ 1, . . . , N

(3.8)
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In the case of TE modes in particular

B [φi(~rj)] =
∂φi(~rj)

∂n
(3.9)

Note that the derivative of the RBFs is known analytically. This permits a

straightforward implementation of the algorithm. The system of equations
(3.8) permits to assemble a matrix eigenproblem that can be solved numeri-
cally.

Aa− k2Ba = 0 (3.10)

where the matrices A and B are N × N real matrices. By solving (3.10)

the cutoff wavenumbers km and of the corresponding eigenvectors am =
[am,1, am,2, . . . , am,N ] can be computed. Recall that the generic eigenvector
am allows to calculate the modal scalar potential through (3.3).

3.3 Classical Approach: State of Art

To evaluate the efficiency and the reliability of the method various simula-
tions have been carried out in the standard case of a WR90 hollow waveguide,
which has a rectangular cross-section with dimensions 22.86 mm × 10.16 mm.
All the analysis in this section and the next one is focused on the evaluation
of the first 40 TE modes. Since this is the most critical case as explained in
Sec. 3.1.

In all the reported cases the simulations were run with N = 196 CPs and
in particular with L = 144 internal CPs in Ω andM = 52 boundary CPs on Γ.
As one of the aim of the study (reported in [10]) was to make considerations
on the dependence of the solution on the position of the CPs, and since the
Meshless Method should be reliable also in the case of a non-structured grid
of CPs, the first case evaluated was the one of a random distribution (with
a uniform statistic). The result is presented in Fig. 3.2 where the obtained
distribution of CPs and the resulting error over the computed wavenumbers
respect to the analytical solution are shown. In particular this error is defined
as

Relative Error =
|kc − kt|

kt
(3.11)

where kc is the computed eigenvalue by using the meshless method and kt is

the theoretical wavenumber.
By using (??) the average distance h = 1.172 mm is obtained. The choice

of the parameter α has been made by using the LOOCV algorithm. This gave
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Figure 3.2: © 2017 IEEE– Relative error in the calculation of the cutoff
frequencies of the first 40 TE modes of a WR90 rectangular waveguide using
N = 196 Gaussian RBFs (L = 144, M = 52), h = 1.172 mm, and α = 8 and
a random distribution of the internal points.

an optimum value of α = 8. As expected by Palette in [2], the error over
the first TE mode is not the lower obtained in all the computed spectrum.
Actually, it is, in this case, larger than 1%. Moreover, increasing the number
of CPs does not improve this behavior. This is of course a problem issue
when designing a waveguide, since in this case, the first modes are the most
important. This problem was already highlighted in [2], where a possible
countermeasure was proposed, relying on the placement of some internal
collocation points closer to the boundary points (margin points placed at
distance δ < h from the boundary, see Fig. 3.1). In fact, the poor accuracy
shown in Fig. 3.2, seems due to the limited number of internal CPs close
to the boundary. However, to simplify the procedure, a regular grid was
adopted in [2], thus reducing the flexibility of the meshless method. The
resulting error and the obtained grid is shown in Fig. 3.3 but , as can be
seen, the behavior of the algorithm has not significant differences respect to
the previous case. Finally, the case of a random grid, but with the use of the
margin points, was evaluated and reported in Fig. 3.4. Also in this occasion
there were not an improvement on the calculation of the first TE modes.

3.4 Possible Improvement

As seen in the previous section, the theory presented in 3.2 does not per-
mit to achieve a certain level of accuracy and in particular seems to show
a significant dependence of the solution on the position of the CPs. The
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Figure 3.3: © 2017 IEEE– Relative error in the calculation of the cutoff
frequencies of the first 40 TE modes of a WR90 rectangular waveguide using
N = 196Gaussian RBFs (L = 144, M = 52), h = 1.172 mm, and α = 8 and
a regular distribution of the internal points with margin points (δ = h/2).
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Figure 3.4: © 2017 IEEE– Relative error in the calculation of the cutoff
frequencies of the first 40 TE modes of a WR90 rectangular waveguide using
N = 196 Gaussian RBFs (L = 144, M = 52), h = 1.172 mm, and α = 8
and a quasi-random distribution of the internal points with margin points
(δ = h/2).

core of this thesis is the development of a novel technique that overcomes
all these issues and improves the numerical stability by using the meshless
method in conjunction with the variational technique [8]. However the clas-
sical approach of Sec. 3.2 can be significantly improved by implementing a
slightly different definition of the RBFs employed to discretize the problem.
It is possible to note, in fact, that all the RBFs are defined using a common
shape parameter c. This can cause a certain correlation between them (in
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Figure 3.5: © 2017 IEEE– Error in the calculation of the modes by adopting
the proposed randomization of the shape parameter of the Gaussian RBFs,
assuming 0 < ξi < 1 in (3.12) with the same random distribution as in
Fig. 3.2. 2000 simulations have been performed, and the markers represent
the results for a specific set of ξi, whereas the lines represents the mean value,
the mean value plus/minus the variance, and the mean value plus/minus two
times the variance.

particular in the case of a random grid) and thus can increase the linear
dependence of some raws inside the matrices A and B of (3.10). For this
reason, in [10], this new definition is proposed

φi(~r) = e−ci|~r−~ri|
2

with ci = ξic (3.12)

where ξi is a parameter generated for each RBF with a uniform distribution

in the interval (0, 1). The same simulations of the previous section (with
the same distribution of CPs) have been than run using (3.12) instead of
(3.5). The obtained results are shown in Fig. 3.5 for the case of a random
grid, in Fig. 3.6 for the case of a uniform grid, and in Fig. 3.7 for the case
of a random grid with the use of the margin CPs. In all these figure it is
possible to find the position of the CPs, the results for a particular simulation
and the statistical considerations. About this last aspect, in particular, 2000
simulations have been run generating for the same CPs configuration a new
set of values ξi each time. The mean computed error µ for every wavenumber
is shown, in conjunction with the intervals µ ± σ where σ is the variance.
As can be found out, for every configuration of CPs there is a significantly
improvement on the accuracy of the first computed modes and no change for
the others. Note, in particular, that, the expedient shown in this section,
does not increase the computation time of the simulation since there is no
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Figure 3.6: © 2017 IEEE– Error in the calculation of the modes by adopting
the proposed randomization of the shape parameter of the Gaussian RBFs,
assuming 0 < ξi < 1 in (3.12) with the same uniform distribution as in
Fig. 3.3. 2000 simulations have been performed, and the markers represent
the results for a specific set of ξi, whereas the lines represents the mean value,
the mean value plus/minus the variance, and the mean value plus/minus two
times the variance.

-8

-7

-6

-5

-4

-3

-2

-1

0 5 10 15 20 25 30 35 40

L
o
g

1
0
(R

e
la

ti
v
e
 e

rr
o
r)

eigenvalue number

Serie2

Serie3

Serie5

m 

m  s

m  2s

Figure 3.7: © 2017 IEEE– Error in the calculation of the modes by adopting
the proposed randomization of the shape parameter of the Gaussian RBFs,
assuming 0 < ξi < 1 in (3.12) with the same quasi-random distribution as in
Fig. 3.4. 2000 simulations have been performed, and the markers represent
the results for a specific set of ξi, whereas the lines represents the mean value,
the mean value plus/minus the variance, and the mean value plus/minus two
times the variance.

variation on the dimension of A and B. Moreover in this case also the totally
random grid gives relative good results.
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3.5 Conclusion

In this chapter the classical approach, to apply the meshless method, has
been presented. Some limitations known in the literature have been shown
focusing on an electromagnetic problem. In particular, it has been shown
that the this classical technique exhibits a strong dependence of the solution
on the position of the CPs and a relative poor accuracy in the computation
of the first TE modes of a waveguide. A very simple and no time consuming
improvement has been proposed, by using a slightingly different definition
of the employed RBFs. The obtained results outperform those given by the
classical approach and are obtained relaxing all kind of requirement on the
regularity of the grid where the CPs are defined.
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Chapter 4
The Variational Meshless
Method for Homogeneous
Waveguides

4.1 Introduction

In the previous chapter a very simple expedient has been proposed to
improve the accuracy in the calculation of the first TE modes inside a hol-
low shielded waveguide. The theory presented there presents in any case
some numerical limitations as the resulting eigenproblem is built with non-
symmetric and singular matrices [1]. This leads to a ill-conditioned problem
(see [2] for reference). Another limitation associated to this aspect is that a
low degree of accuracy can be achieved in the calculation of the eigenvectors.
For this reason the Point Matching technique fails when dealing with very
general geometries where the field presents more rapid variations (e.g. in
proximity of sharp corners).

To tackle this limitations, in [3] the variational meshless method (VMM)
has been presented which combines the meshless method with the variational
technique. As will be shown this method permits the computation of an
high number of modes with a relative limited number of unknowns and an
appreciable precision.

Moreover, in this work an automatic refinement technique was presented
to improve the accuracy of the solution in presence of complicated geometries.
As will be shown this can be done without the manual intervention of the
user and keeping the eigenproblem numerical stable also after an arbitrarily
number of refinement cycles.
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Figure 4.1: © 2018 IEEE– Cross-section of a generic metallic waveguide with
the different sets of collocation points used to define the RBFs.

An other important aspect to highlight is that the present theory will
permit to start the simulation without the need of a time consuming precon-
ditioning step as generally happens in all the previous works published in the
literature [4, 15].

In this chapter the VMM and the automatic refinement technique are pre-
sented, therefore most of this chapter is based on [3] and will reuse extensively
the material of that work.

4.2 The Meshless Variational Approach with

RBFs

In Fig. 4.1 the generic hollow waveguide shielded with a perfect conductor
is shown where Ω is the cross section, while Γ is the boundary. In this
case the electromagnetic field can be completely represented through 2 set
of solutions which are called TE and TM modes and are subjected of the
Helmholtz equation [5]

∇2Φ(~r) + k2Φ(~r) = 0 ~r ∈ Ω (4.1)

with a proper boundary condition (BC): the Neumann BC for the first set
and the Dirichlet BC for the second one, leading to

∂Φ(~r)

∂n
= 0 ~r ∈ Γ, for TE modes (4.2)

Φ(~r) = 0 ~r ∈ Γ, for TMmodes (4.3)
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where Φ is the Hertz-Debye potential, k = ω
√
µε is the wavenumber, ω is

the angular frequency, ε and µ are the electric permittivity and the magnetic
permeability of the medium, respectively, ~r is the generic observation point,
and n̂ is the outward normal unit vector to the boundary (Fig. 4.1).

Equation (4.1) has an equivalent variational formulation ( see [7] for ref-
erence), for this reason can be found by extremizing the following functional

I(Φ) =
1

2

∫
Ω

∇Φ · ∇Φ− k2Φ2 dS (4.4)

under (4.2) in the case of TE modes or (4.3) in the case of the TM ones. The
basic idea of the VMM is to apply the RBF approximation ( see Chap. 2) to
the variational problem of (4.4) and thus to write the unknown potential as

Φ(~r) = ΦT (~r) a (4.5)

where Φ(~r) = [φ1(~r), φ2(~r), .., φN(~r)]T is built with the RBFs evaluated in
the point ~r and a = [a1, a2, .., aN ]T is composed by the unknown coefficients
ai. As in the previous chapter, N CPs, are defined and in particular L are
the internal collocation points (ICPs) that lie within Ω, and M = N −L are
boundary collocation points (BCPs) that lie on Γ (see Fig. 4.1). In particular,
the ICPs are with indexes j = 1, . . . , L while the BCPs are with indexes with
j = L+ 1, . . . , N .

The RBF used from now on are defined as in the previous chapter

φi(~r) = e−ci|~r−~ri|
2

(4.6)

where the shape parameter ci is defined as in [9]

ci =
ξi
σh2

, (4.7)

ξi is a scalar value generated randomly within a normal distribution in the
interval (0, 1) for every CP, h is the average distance which can be computed
as in (3.7), and σ is a parameter typically selected by using preconditioning
algorithms, like the leave-one-out cross validation (LOOCV) algorithm [4].
As will be shown in Sec. 4.4 this step can be avoided by setting σ = 1.

Sometime, as explained in [10, 11], to improve the accuracy and reduce
the dependence of the solution on the position of the ICPs some CP are
added in proximity of the boundary and in particular close to every BCP
but translated δ = h/2 toward the inner side and thus in the direction −n̂,
where n̂ is the normal outgoing unit vector on the contour Γ (see Fig. 4.1).
This points are called margin collocation points (MCPs).
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4.2.1 TE Modes

The case of the TE modes is the simpler as in this case the BC must not
be imposed explicitly since the Neumann BC is a natural property of the
functional (4.4). See [12] for reference. On substitution of (4.5) in (4.4), the
functional I(Φ) becomes a function of the coefficients a

I(a) =
1

2

[
aT (X + Y )a− k2aTZa

]
(4.8)

where the entries of the matrices X, Y , and Z are

Xij =

∫
Ω

∂φi(r)

∂x

∂φj(r)

∂x
dS

Yij =

∫
Ω

∂φi(r)

∂y

∂φj(r)

∂y
dS

Zij =

∫
Ω

φi(r)φj(r) dS

(4.9)

thus the extremization of the functional I(a), can be enforced by deriving,
respect to the vector a, its expression as follows

∂I(a)

∂a
= 0 . (4.10)

This permits to obtain the following equation where the matrices A and B
are introduced

(X + Y )︸ ︷︷ ︸
A

a− k2 Z︸︷︷︸
B

a = 0 (4.11)

For this reason the TE eigenmodes can be computed by solving the following
eigenproblem

Aa− k2Ba = 0 (4.12)

with dimension N ×N (i.e., the total number of CPs), and A and B always
real, symmetric, and non-singular.

4.2.2 TM Modes

When computing the TM modes, instead, the BC must be explicitly en-
forced, as the Dirichlet BC is an essential condition in the case of the problem
(4.4). See [12] for reference. Reminding that the BCPs are indexed from L+1
to N , the Dirichlet BC can be rewritten as

ΦT (~rj)a = 0 for j = L+ 1, . . . , N (4.13)
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By partitioning the vector of the unknowns as follows

a =

[
x
b

]
(4.14)

where x = [a1, a2, .., aL]T and b = [aL+1, aL+2, .., aN ]T , equation (4.13) be-
comes [

M N
] [x

b

]
= 0 (4.15)

where the matrices M and N have been introduced

M =

φ1(rL+1) . . . φL(rL+1)
...

. . .
...

φ1(rN) . . . φL(rN)

N =

φL+1(rL+1) . . . φN(rL+1)
...

. . .
...

φL+1(rN) . . . φN(rN)

 (4.16)

By defining the embedding matrix E

E =

[
I

−N−1M

]
(4.17)

where I is the L× L identity matrix, the unknown vector a can be written
as a function of x

a = E x (4.18)

Note that (4.17) and (4.18) correspond to a change of base.
By embedding the Dirichlet BC (4.18) into the expression(4.8), it is pos-

sible to write the functional I(Φ) as a function of x

I(x) =
1

2

[
xTET (X + Y )Ex− k2xTETZEx

]
(4.19)

Deriving, then, equation (4.19) respect to the x to extremize the functional
the eigenproblem correspondent to the TM modes is obtained which leads to

ET (X + Y )E︸ ︷︷ ︸
A

x− k2 ETZE︸ ︷︷ ︸
B

x = 0
(4.20)

Note that the size of the problem (4.20) has a reduced size respect to the
case of the TE modes and in particular L× L.

Briefly the TM modes can be computed by solving the following eigen-
problem

Ax− k2Bx = 0 (4.21)

with dimension L× L (i.e., the total number of ICPs), where a = E x and
A and B are always real, symmetric, and non-singular.
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Figure 4.2: © 2018 IEEE–Flowchart of the procedure for the automatic
iterative refining algorithm.

4.3 Adaptive Refinement of the Collocation

Points

It is well-known in literature that the presence of sharp corners inside the
cross-section can originate problems about the convergence of the solution.
This aspect has been studied and a series representation of the TE and TM
potentials around the singularities have been found(see [13, 14]). In this work
this procedure has not been used since its purpose is to demonstrate that the
meshless method permits an automatic refinement that does not need the
manual intervention over the grid definition. Some articles can be found in
the literature that suggest how generate a software based refinement(see [15,
16]). These methods are a good starting point, but present some limitations
to point out: i) they do not analyze the case of sharp corners; ii) they do
not explain how to compute the shape parameter and leave this task to the
LOOCV algorithm that is time consuming and increases the computational
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complexity; iii) some of them suggest to minimize a residual error function
that depends at least on two parameters that give a weight to the error
over the BC (e.g. Neumann) and the one over the Helmholtz equation. The
choice of these parameters is suggested on the base of the experimental results
obtained, but it is not clear how a change over these values can affect the
precision of the algorithm; iv) when evaluating the error over Helmholtz and
BC equation they do not explain which eigenvalues take into account. The
algorithm, presented in this section, has the same steps than [15, 16] but
with a different implementation. A qualitative description of it is shown in
Fig. 4.2.

4.3.1 Local Definition of the RBFs’ Parameters

In [15, 16] the shape parameter is a global value ( common to all the RBFs
defined over the whole simulated area). This seems not intuitive, as the cross-
section under study will present some regions with a more rapid variation of
the expected solution. Moreover a generic automatic refinement technique
would generate new CPs in proximity of certain regions instead of others.
For this reason different density of CPs is expected in different parts of the
domain. A global definition of the shape parameter, even if recalculated at
every step by the LOOCV algorithms, seems thus questionable.

One of the main contributions of [3] is that, starting from these consid-
erations, it defines a slightly different family of RBFs

φi(~r) = e−χi|~r−~ri|
2

(4.22)

where, for the i-th RBF, local shape parameter χi is

χi =
1

σλ2
i

(4.23)

Note that in equation (4.23) a local length λi is used instead of the global

parameter h, as in the case of (4.7). λi will be used during the refinement
and its significance will be clear later.

4.3.2 Automatic Refinement Algorithm

The presented algorithm is based on the same steps as [15, 16], but some
steps have a different and more general implementation. The procedure is
shown in Fig. 4.2, and is discussed in detail as follows:

• Step 1: Generate the starting CPs and ci
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For all the CPs, λi = h where h is found by using (3.7) and χi = ci where
ci is computed with (4.7) by setting σ = 1. This choice permits to compute
the initial solution without the need of a preconditioning step.

• Step 2: Find the Starting Solution
By using the using (4.11) and the (4.20) for the TM and TE modes respec-
tively, the set of the eigenvalues km and eigenvectors am = [am,1, am,2, . . . , am,N ]T

is found for every m-th mode.

• Step 3: Evaluation of the error on each CP
It is well-known that on every ICP, and for every BCP the Helmholtz equation
must be satisfied. Moreover, on the BCPs also the the boundary condition
is required. So for every j-th CP a total error Ej is calculated

Ej = Hj +

{
Bj if j > L (Boundary Points)

0 if j ≤ L (Internal Points)
(4.24)

where Hj is a contribution taking into account the error over the Helmholtz
equation (for both the ICPs and the BCPs), while Bj does it for the boundary
condition (for the BCPs).

Consider the case in which the user is interested in evaluating, with a
certain degree of accuracy, the first Q modes. In that case it is possible to
define Hj through the following summation

Hj =

Q∑
m=1

eHm,j
mean

j
{eHm,j}

j = 1, . . . , N (4.25)

where the contribution of the single eigenmode has been introduced

eHm,j =

∣∣∣∣∣
N∑
i=1

am,i
[
∇2φi(ρj) + k2

mφi(ρj)
]∣∣∣∣∣ (4.26)

Note that, to normalize the various contributions in(4.25), every value eHm,j
is weighted by a factor 1/mean

j
{eHm,j}.

A similar policy has been used to define Bj

Bj =

Q∑
m=1

eBm,j
mean

j
{eBm,j}

j = L+ 1, . . . , N (4.27)

where

eBm,j =



∣∣∣∣ N∑
i=1

am,i
∂φi
∂n

(ρj)

∣∣∣∣ (TE modes)

∣∣∣∣ N∑
i=1

am,iφi(ρj)

∣∣∣∣ (TM modes)

(4.28)
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Figure 4.3: © 2018 IEEE–Generation of the new CPs: four new ICPs are
generated starting from the n-th ICP, and two new BCPs are generated
starting from the n′-th BCP.

Moreover, note that the values∇2φi(ρj), φi(ρj), and ∂φi
∂n

(ρj) can be calculated
ones for all at the beginning of the refinement algorithm. They are in fact
constant values that do not depend on the solution. Ones they are calculated
they can be stored and used at every cycle just reading the memory.

• Step 4: Generation of the New CPs From the previous steps, for every CP
the total error Ej is obtained. The refinment procedure is applied to all the
CPs which satisfy the following relation

Ej > α max
i
{Ei} (4.29)

where α = 0.5. The choice of α arbitrary, but has effects on the performance

of the algorithm. In particular high values of this parameter will imply the
need of more cycles to achieve the wanted level of accuracy, while a low value
will make each cycle slower.

Consider the case in which the n′-th BCP satisfies the (4.29). Starting
from it, two new boundary collocation points (NBCPs) are generated λn′/4
far from it along the direction tangential to the boundary line (see Fig. 4.3).
Remember that every point must be associated to a local length and a local
shape parameter. In particular if the n′-th boundary point has a local length
λn′ and a local shape parameter χn′ it generates two NBCPs with λ = λn′/2
and c = 4 χn′ . If, instead, the n-th CP, which satisfy the relation (4.29), is an
ICP with a local length λn and a local shape parameter χn, four NICPs with
λ = λn/2 and c = 4 χn are generated from it (see Fig. 4.3). All the new
collocation points NCPs (where NCP = NICP ∪ NBCP) wich are generated
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outside the domain Ω are discarded. All NCPs are added to the grid, while
the CPs correspondent to the added NCPs are eliminated.

• Step 5: Solution of the eigenproblem. Same as step 2. This is the most
time consuming part as it happens in all the the other methods in which an
adaptive procedure can adopted (see [17] for the case of FEM).

• Step 6: Convergence check
Calling k

(p)
m the wavenumber of the m-th mode at the p-th step ( p = 0

corresponds to the initial solution) it is possible to compute

K(p)
m =

∣∣∣k(p)
m − k(p−1)

m

∣∣∣
k

(p)
m

(4.30)

The solution is considered converged when

K(p) =
1

Q

Q∑
m=1

K(p)
m < β . (4.31)

K(p) is called convergence index at the p-th step, while β is a parameter that
must be less than 1. Some consideration about its choice will be done in
Sec. 4.4.

4.4 Numerical Results

All the simulations described in the following subsections have been con-
ducted with a fixed value of σ = 1 in (4.7). This demonstrates that no
preconditioning is needed, reducing the computation time.

To validate the efficiency and the accuracy of the VMM the results given
by this method have been compared with the theoretical values. When no
analytical solution was available, instead, the comparison has been done with
the results given by ANSYS HFSS as independent validation. HFSS is a
commercial software based FEM (see [17]).

4.4.1 Rectangular Waveguide

In this section the proposed algorithm is verified by simulating a WR90
waveguide (rectangular cross-section with dimensions 22.86×10.16 mm2).
Defining N = 248 CPs as in Fig. 4.4, the whole simulation requires about
0.47 s to find the TE modes with the result presented in Fig.4.5(a), where
the error over the frequency respect the analytical solution is shown in a
logarithmic scale. For the TM modes and, again, 248 collocation points the
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Figure 4.4: © 2018 IEEE–WR90 rectangular waveguide (22.86×10.16 mm2)
and the collocation points used for the analysis by the variational meshless
method. Note that the CPs are defined randomly inside the domain (with a
uniform distribution) and equidistributed on the boundary.
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Figure 4.5: © 2018 IEEE– Error in the calculation of the cut-off frequency
of a WR90 rectangular waveguide by the variational meshless method with
248 collocation points: (a) TE modes; (b) TM modes.

simulation time is approximately 0.47 s. and the obtained result is shown in
Fig. 4.5(b).
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Table 4.1: © 2018 IEEE–Error in the Calculation of the Cutoff Frequencies
of the First 5 TE and 5 TM Modes of a WR90 Rectangular Waveguide

Mode Analytical Meshless Method Relative Error
fc (GHz) fc (GHz) (%)

TE10 6.561679790 6.561679977 0.0000029
TE20 13.123359580 13.123360632 0.0000080
TE01 14.763779527 14.763783394 0.0000262
TE11 16.156262798 16.156266743 0.0000244
TE30 19.685039370 19.685044402 0.0000256

TM11 16.156262798 16.156126299 0.0008449
TM21 19.753271946 19.752746249 0.0002661
TM31 24.606299212 24.605428787 0.0003537
TM41 30.114107202 30.112613561 0.0004960
TM12 30.247849269 30.247498959 0.0001158

Note that 50 TE and 50 TM modes are calculated with an error lower
than 0.1%. 121 TE and 112 TM modes were calculated with an accuracy
better than 1%, and more than 180 TE and 160 TM modes were calculated
with a precision better than 5%. To appreciate the accuracy of the VMM,
in Table 4.1 the numerical results are repeated for the first 5 TE and TM
modes.

The port-only simulation of the same structure conducted with HFSS
required 502 triangles on wave port, and 30 s of total time, to compute just
25 modes between TE and TM.

Note furthermore that in general the number of the TM-modes computed
is lower than that of the TE-Modes. This is due to the embedding procedure
of (4.20) that reduces the dimension of the eigenproblem from N to L.

To evaluate the precision of the shaping of the obtained potentials a
correlation matrix C has been created with indexes m and n, in which it
is calculated the integral over the cross section of the product between the
m-th potential obtained with the VMM Φm(x, y) and the n-th theoretical
potential obtained with the analytical formulas ΦA

n (x, y).

Cmn =

∣∣∣∣∫
Ω

Φm(x, y) ΦA
n (x, y) dS

∣∣∣∣ (4.32)

The results for the first 5 TE and TM modes are reported in Tab. 4.2. By
noting that the desired values should be 1 on the diagonal and 0 otherwise
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Table 4.2: © 2018 IEEE–Correlation matrices of the first 5 TE and 5 TM
modes of a WR90 rectangular waveguide.

Mode TE01 TE20 TE01 TE11 TE30

TE01 1 1.6E-07 2.4E-08 1.0E-08 5.9E-08
TE20 1.6E-07 1 3.3E-07 1.5E-07 5.4E-08
TE01 2.4E-08 3.3E-07 1 2.0E-07 3.3E-08
TE11 1.0E-08 1.5E-07 2.0E-07 1 3.8E-07
TE30 5.9E-08 5.4E-08 3.3E-08 3.8E-07 1

Mode TM11 TM21 TM31 TM41 TM12

TM11 1 6.4E-06 2.1E-06 1.6E-05 8.3E-07
TM21 6.4E-06 1 4.3E-06 3.6E-06 8.7E-06
TM31 2.1E-06 4.3E-06 1 1.7E-05 3.9E-06
TM41 1.5E-05 3.5E-06 1.7E-05 1 1.3E-05
TM12 7.9E-07 8.7E-06 4.0E-06 1.3E-05 1

Figure 4.6: © 2018 IEEE– WC25 circular waveguide (radius = 3.175 mm)
and the collocation points used for the analysis by the variational meshless
method. Note that the CPs are defined randomly inside the domain (with a
uniform distribution) and equidistributed on the boundary.

the reader can appreciate a the accuracy of the proposed method. The or-
der of accuracy on the evaluated entries of the correlation matrix over the
first 5 TE modes is in the order of 10−8 − 10−7. While for the first 5 TM
modes the precision ranges between 10−7 and 10−5. The second case has a
slightly lower accuracy. It is interesting to note that this level of precision has
been achieved with a completely random grid of the ICPs (generated with a
uniform distribution).

4.4.2 Circular Waveguide

In this section the proposed algorithm is verified by simulating a WC25
waveguide (circular cross-section with a radius of 3.17 5mm) shown in Fig. 4.6.
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Figure 4.7: © 2018 IEEE– Error in the calculation of the cut-off frequency
of a WC25 circular waveguide by the variational meshless method with 210
collocation points: (a) TE modes; (b) TM modes.

The simulation was run on a circular waveguide with an equivalent radius
of 3.180166 mm. This is done to avoid the systematic error due to the dis-
cretized representation of arcs through a set of nodes. This resize guarantees
the same area for the circular domain and the approximated 45-edges polyg-
onal one.

Defining N = 210 CPs (L = 165 ICPs and M = 45 BCPs) as in Fig. 4.6,
the whole simulation requires about 0.37 s to find the TE modes with the
result presented in Fig.4.7(a). For the TM modes and, again, 210 CPs the
simulation time is approximately 0.37 s. and the obtained result is shown in
Fig. 4.7(b). It is noted that 105 TE-modes and 82 TM-modes are calculated
with an error below 1%. To appreciate the accuracy of the VMM, in Table 4.3
the numerical results are repeated for the first 5 TE and TM modes.

The port-only simulation of the same structure conducted with HFSS
required 502 triangles on the wave port, and 60 s of total time, to compute
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4.4. Numerical Results

Table 4.3: © 2018 IEEE–Error in the Calculation of the Cutoff Frequencies
of the First 5 TE and 5 TM Modes of a WC25 Circular Waveguide

Mode Analytical Meshless Method Relative Error
fc (GHz) fc (GHz) (%)

TE11 27.688204719 27.6881968900 0.000028
TE11 27.688204719 27.6881972677 0.000027
TE21 45.930416173 45.9303958628 0.000044
TE21 45.930416173 45.9303998489 0.000035
TE01 57.622199595 57.6222017549 0.000004

TM01 36.164397617 36.1643806256 0.000047
TM11 57.622199587 57.6221758132 0.000041
TM11 57.622199587 57.6221765391 0.000040
TM21 77.230835451 77.2308249923 0.000013
TM21 77.230835451 77.2309199130 0.000109

just 25 modes between TE and TM.

4.4.3 Three-Quarter Circular Waveguide

To test the efficiency of the automatic refinement procedure a third ex-
ample is considered with a sharp corner. This is the case of the three-quarter

  R f

(a) (b)

Figure 4.8: © 2018 IEEE–Three-quarter circular waveguide (R = 3.175 mm)
and the collocation points used for the analysis by the variational meshless
method. (a) Initial configuration with 196 CPs (step 0 of the refinement
process). (b) Final configuration with 368 CPs (step 9 of the refinement
process).
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Figure 4.9: © 2018 IEEE– The refinement process for the analysis of the
three-quarter circular waveguide: (a) Convergence parameter K(p) vs the
refinement step p; (b) Evolution of the error of the first 25 modes during the
refinement process. The error is calculated considering the values of the step
9 as a reference.

circular waveguide in Fig. 4.8.

The starting grid used to compute the initial solution is shown in Fig. 4.8(a)
and consists of 196 CPs. After nine refinement cycle the algorithm produced
the final grid with 368 CPs shown in Fig. 4.8(b). Note that, as expected,
the region with higher density of CPs at the end of the refinement is in the
proximity of the sharp corner.

The convergence parameter K(p) of equation (4.31) was evaluated on the
first Q = 25 modes and its variation during the refinement steps is shown in
Fig. 4.9(a).

In Fig. 4.9(b), instead, the error of the first 25 eigenvalues computed
during various steps respect to those computed at the 9-th is shown. As can
be noted there is an effective convergence. To evaluate the accuracy of the
computed modes, their values are reported in Table 4.4 and compared when
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Table 4.4: © 2018 IEEE–Cutoff Frequencies fc After Five Steps of Refine-
ment for the Three-Quarter Circular Waveguide. When Available, the Ana-
lytical Results are Used to Calculate the Errors, and the HFSS Results are
Given for Comparison.

# WC25 Meshless Method HFSS
fc (GHz) fc (GHz) Error % fc (GHz) Error %

1 — 21.0710 — 21.0600 —
2 — 33.9280 — 33.9500 —
3 45.8980 (TE21) 45.8967 0.0030 45.9250 0.0586
6 57.5837 (TE01) 57.5817 0.0034 57.6125 0.0499
10 77.1785 (TM21) 77.1885 0.0128 77.2200 0.0537
11 79.9106 (TE41) 79.9073 0.0042 79.9530 0.0530
16 100.779 (TE22) 100.777 0.0030 100.835 0.0547
19 105.429 (TE02) 105.429 0.0009 105.487 0.0551
32 139.495 (TE42) 139.492 0.0022 — —
34 144.980 (TE81) 144.973 0.0046 — —

possible with the analytical solution. It is noted, in fact, that the modes
of a circular waveguide with the same radius and satisfying the electric wall
condition at φ = 0 and φ = π/2 have the same cutoff frequencies and modal
field patterns as their correspondent solutions in the three-quarter waveguide
(see Fig. 4.8). All the results were, in any case, compared also with those
given by ANSYS HFSS after a port-only simulation with 477 triangles that
lasted 40 s of total time to determine 25 modes. Note, in Table 4.4, that after
5 refinement cycles the maximum error over the first 25 modes is achieved in
the case of the 10-th mode and is about 0.0128% while K(5) is below 10−4.
This suggests that the equation (4.31) is a reasonable policy to evaluate the
convergence of the algorithm and that a value of β ranging from 10−3 to 10−4

can be a good choice.

The VMM required 16 s to compute the initial solution, and to run 5
refinement cycles. After this simulation time, more than 400 modes between
TE and TM were computed. The computation time for nine refinement steps
was, instead, 50 s.

4.4.4 Double-Ridge Waveguide

The fourth example is the case of the double-ridge waveguide in Fig. 4.10.

The starting grid used to compute the initial solution is shown in Fig. 4.10(a)
and consists of 228 CPs. After nine refinement cycle the algorithm produced
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Figure 4.10: © 2018 IEEE–Double ridge waveguide (x = 30 mm, y = 20
mm, x′ = 10 mm, and y′ = 6 mm) and the collocation points used for the
analysis by the variational meshless method. (a) Initial configuration with
228 CPs (step 0 of the refinement process). (b) Final configuration with 469
CPs (step 9 of the refinement process).

the final grid with 469 CPs shown in Fig. 4.8(b). Note that, as expected, the
regions with higher density of CPs at the end of the refinement are those in
the proximity of the sharp corners.

The convergence parameter K(p) of equation (4.31) was evaluated on the
first Q = 25 modes and its variation during the refinement steps is shown in
Fig. 4.11(a).

Fig. 4.11(b) shows, instead, the error of the first 25 eigenvalues, computed
during the various steps, respect to those computed at the 9-th. As can be
noted there is an effective convergence of the solutions.

In this case no analytical solution is available. For this reason only the
results given by ANSYS HFSS can be used as an interdependent validation.
The commercial software was run with a port-only simulation that lasted
57 s and needed 307 triangles on the input port to find all the 25 modes
that the program could compute. The comparison between HFSS and the
VMM is reported in Tab. 4.5. After the third refinement cycle the difference
between the two methods was lower than 0.5% for all the 25 modes taken
into account. Note that the results of HFSS cannot be considered as an exact
reference, as it clearly resulted from Table 4.4.
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Figure 4.11: © 2018 IEEE– The refinement process for the analysis of the
double-ridge waveguide: (a) Convergence parameter K(p) vs the refinement
step p; (b) Evolution of the error of the first 25 modes during the refinement
process. The error is calculated considering the values of the step 9 as a
reference.

The VMM lasted 16 s to define the geometry, calculate the initial solution
and run nine refinement cycles. While it required only 2.9 s to simulate until
the third cycle.
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Table 4.5: © 2018 IEEE–Cutoff Frequencies of the Double-Ridge Waveguide
Calculated by the Variational Meshless Method (After Three Refinement
Steps) and by HFSS.

# Meshless HFSS Diff. # Meshless HFSS Diff.
(GHz) (GHz) (%) (GHz) (GHz) (%)

1 3.357 3.344 0.39 14 20.942 20.930 0.06
2 7.832 7.814 0.23 15 20.988 20.990 0.01
3 7.854 7.835 0.24 16 20.992 20.990 0.01
4 9.825 9.777 0.49 17 21.062 21.020 0.20
5 14.925 14.940 0.10 18 22.639 22.620 0.08
6 15.000 14.980 0.13 19 22.913 22.880 0.14
7 15.082 15.060 0.15 20 23.603 23.560 0.18
8 15.114 15.090 0.16 21 24.161 24.130 0.13
9 15.189 15.200 0.07 22 26.303 26.250 0.20
10 16.914 16.890 0.14 23 26.391 26.360 0.12
11 17.010 16.980 0.18 24 26.673 26.660 0.05
12 17.635 17.600 0.20 25 27.490 27.500 0.04
13 20.215 20.160 0.27
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Figure 4.12: © 2018 IEEE– Condition number of N with respect to the
inversion vs the refinement step.

4.4.5 Study of the Numerical Stability of the Algo-
rithm

Equations (4.22) and (4.23) give a slightly different definition of the RBFs
respect to the classical one. This is done through the local shape parameter
χi and the local length λi.

Thanks to this, the stability of the algorithm during the refinement pro-
cedure is improved. In fact, the RBFs centered on the NCPs are stretched
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respect to those that generated them. For this reason, when adding new CPs,
no correlation occurs due to the proximity of the new defined RBFs and in
the various matrices presented in Sec. 4.2.1, Sec. 4.2.2 no similar raws and
columns appear.

To appreciate this aspect, the method has been run in the case of the
double-ridge waveguide (Fig. 4.10), both using the classical definition of
RBFs (3.7)-(4.6) as well as their adaptive definition given by (4.22)-(4.23).
The condition number of matrix N with respect to the inversion, computed
in (4.17), has been calculated at every refinement step by using the command
cond(N) in Matlab.

In Fig. 4.12 the results given by both the adaptive and classical approach
are given.

It can be noted that after seven refinement cycles the classical approach
exceeds a condition number of 1016 and stops working after nine cycles be-
cause of the ill-conditioning of N . The adaptive approach, instead, permits
to keep the condition number constant and thus the problem well-conditioned
after an arbitrarily number of cycles and the program never stops running.

This is an interesting result as, at best of our knowledge, in the literature
are not found other cases in which after increasing the number of RBFs, the
condition number remains constant.

4.5 Conclusion

In this chapter a novel method, wich uses the meshless method in con-
junction with the variational technique, has been presented.

All the details of the theory have been given and various examples were
used to appreciate its accuracy and the reliability.

An automatic refinement technique was also developed and validated. It
is based on a new definition of the RBFs that permits to keep the problem
well-conditioned after an arbitrarily number of cycles.

The VMM appears a promising technique to compute an high number of
modes with a limited number of unknowns.

In the Chap. 5 an example of application of the VMM is presented. In
particular, the the method is used in conjunction to the mode matching
technique [18] which can take advantage of the flexibility and the accuracy
that the VMM permits.
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Chapter 5
Mode Matching with
Variational Meshless Method

5.1 Introduction

As shown in Chap. 3, the VMM appears a useful technique to compute
a high number of modes with a relative number of unknowns. Moreover,
the new definition of the shape parameter proposed in [1] permits to define
the CPs without particular requirements on the spatial regularity. All these
advantages seem useful when the VMM is used in conjunction with the mode
matching technique (MM) [2, 3] when, in particular, tens or hundreds of
modes, computed with an high level of accuracy, are required to calculate
the coupling coefficients between two different cross-sections.

In this chapter the theory behind the use of the VMM in conjunction with
the MM (MM-VMM) is presented for the particular case of the step junction
between two waveguides with different cross-sections.

The theory and the results reported in in the following pages were pre-
sented in [4], therefore most of this chapter is based on that paper and will
reuse extensively the material of that work.

5.2 Coupling Coefficients Calculation by the

Variational Meshless Method

Consider the case of the step junction between two waveguides with dif-
ferent cross-sections and shown in Fig. 5.1.

Inside the q-th waveguide the electromagnetic field is the sum of various

67



5. MM-VMM © 2019 IEEE

x

y

z
S2

Sq

Gp

Gq

Sp

Figure 5.1: © 2019 IEEE– Generic step junction between two hollow waveg-
uides of different cross-section.

contributions given by the solution of the Helmholtz equation with a proper
boundary condition (BC) which can be the Neumann BC for the TE modes
and the Dirichlet BC for the TM modes [5]

∇2Φ(q)(~r) + k(q)2
Φ(q)(~r) = 0 ~r ∈ Sq

∂Φ(q)(~r)

∂n
= 0 (for TE modes) ~r ∈ Γq

Φ(q)(~r) = 0 (for TM modes) ~r ∈ Γq

(5.1)

where Sq and Γq are the cross section and the contour of the qth waveg-
uide, respectively (Fig. 5.1), n̂ is the outward normal on Γq, and k(q) is the
wavenumber.

The starting point is the solution of (5.1) by using the VMM presented in
[6] and Chap.4. In that case the unknown field patterns Φ(q) are discretized
by using the RBFs as follows

Φ(q)(~r) =

Nq∑
i=1

a
(q)
i φ

(q)
i (~r) (5.2)

where φ
(q)
i (~r) are the RBFs as defined in [1], a

(q)
i is a set of unknown coeffi-

cients, and Nq is the number of CPs lying on Sq.
Recall that the VMM solves (5.1) by extremizing the following func-

tional [6]

I(Φ) =
1

2

∫
Ω

∇Φ · ∇Φ− k2Φ2 dSq (5.3)

This brings to the following matrix eigenproblem(
A(q) −K(q)2

B(q)
)
a(q) = 0 (5.4)
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where A(q) and B(q) are real and symmetric matrices, the diagonal matrix
K(q) = diag{k(q)

1 , k
(q)
2 , . . . , k

(q)
Nq
} has the unknown wavenumbers as entries,

and the mth column of a(q), namely a
(q)
m =

[
a

(q)
1,m, a

(q)
2,m, . . . , a

(q)
Nq ,m

]T
, is the

eigenvector correspondent to k
(q)
m .

In [3] it is explained how to find, from the solution of (5.4) (i.e., the cut-off

wavenumbers k
(q)
m and the potentials Φ

(q)
m (~r)), the propagation constants βm

of the propagating modes, the attenuation constant αm of the modes under
cut-off, the modal admittances Yc,m, and the electric modal fields

~e (q)
m =


(
∂xΦ

(q)
m x̂+ ∂yΦ

(q)
m ŷ
)
× ẑ for TE modes(

∂xΦ
(q)
m x̂+ ∂yΦ

(q)
m ŷ
)

for TM modes
(5.5)

When calculating the admittance and the scattering matrix of a step junction
between the qth waveguide with the pth one, as explained in [3, Sec. 3.5 &
3.7], the evaluation of the coupling matrix W (p,q) is required. This quantity
has a dimension that varies with the number of modes taken into account in
both the waveguides and its entries are

W (p,q)
m,n =

∫
Sp∩Sq

~e (p)
m ~e (q)

n dS

=


Cx,x
m,n + Cy,y

m,n TM mode – TM mode

Cx,y
m,n − Cy,x

m,n TM mode – TE mode

Cy,y
m,n + Cx,x

m,n TE mode – TE mode

Cy,x
m,n − Cx,y

m,n TE mode – TM mode

(5.6)

in which

Cτ,µ
m,n =

∫
Sp∩Sq

∂τΦ
(p)
m ∂µΦ(q)

n dS

=

Np∑
i=1

Nq∑
j=1

a
(p)
i,ma

(q)
j,n

∫
S1∩S2

∂τφ
(p)
i ∂µφ

(q)
j dS

(5.7)

and where ∂τ stands for partial derivative with respect to the variable τ =
{x, y}, and Np and Nq are the number of CPs of the pth and the qth waveg-
uide, respectively. Note that the derivative of the RBFs are known analyti-
cally and can be, for this reason, easily computed (see [7]).
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5.3 Numerical Results

To validate the efficiency and the accuracy of the MM-VMM the results
given by this method have been compared with those obtained by ANSYS
HFSS as independent validation.

5.3.1 Step Junction Between Two Rectangular Waveg-
uides

x

y a1

a2

b2

c1

c2z

Port 1

Port 2

b1

(a)

(b) (c)

Figure 5.2: © 2019 IEEE– Step junction between two rectangular waveg-
uides: (a) Domain under study (a1 = 15.8 mm, b1 = 7.9 mm, c1 = 15.8 mm,
a2 = 22.9 mm, b2 = 10.2 mm, c2 = 22.9 mm); (b) Position of the CPs in the
small rectangular cross-section; (c) Position of the CPs in the big rectangular
cross-section.

Consider the step junction in Fig. 5.2(a) between two different rectangular
waveguides. This example is taken from the literature [8].

First of all the VMM has been applied to the two waveguides separately
and then the MM technique has been used to evaluate the whole response
of the topology. The code used 174 CPs (i.e., 174 unknowns) on the small
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Figure 5.3: © 2019 IEEE– Step junction between two rectangular waveg-
uides: (a) Comparison between HFSS and this method in the evaluation of
|S11| and |S21|; (b) Convergence analysis of the MM-VMM when varying the
number of modes considered in the two waveguides;

waveguide, and 260 CPs on the big one. See Fig. 5.2(b) and Fig. 5.2(c)
respectively. The VMM did not need to refine the solution through any
refinement technique ( see [6]).

In Fig. 5.3(a) the obtained response in frequency of the S parameters is
shown. The simulation was run by considering 10 modes on the small waveg-
uide and 20 modes on the larger one and 951 points in frequency (ranging
from 6 GHz to 25 GHz) were evaluated.

The simulation lasted 1.51 s to compute the modal fields and the coupling
coefficients, and 0.47 s to compute the cascade for all the frequency points.

In Fig. 5.3(a) there is also a comparison between the results obtained
with the MM-VMM and those given by ANSYS HFSS after a simulation that
needed 30536 tetrahedra, 309 triangles on the input port and 356 triangles
on the output one.
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Figure 5.4: © 2019 IEEE– Waveguide component comprising two step junc-
tions between a rectangular and a ridge waveguide: (a) Domain under study
(a = 19.05 mm, b = 9.525 mm, c = 20 mm, w = 6 mm, h = 4.5 mm);
(b) Position of the CPs in the rectangular cross-section; (c) Position of the
CPs in the ridge cross-section after the automatic refinement.

In Fig. 5.3(a) a convergence study is reported which plots the obtained
S11 taking into account different numbers of modes in both the waveguides.
Note that 10&20 modes seem enough to consider the method convergent.

5.3.2 Step Junction Discontinuity in a Rectangular Waveg-
uide

Consider the topology shown in Fig. 5.4(a) and presented in [9]. It consists
in the cascade of two rectangular and a ridge waveguides .

Both the input and output rectangular waveguides were analyzed by using
304 randomly distributed CPs [as shown in Fig. 5.4(b) ]. The ridge, instead,
was analyzed by using the automatic refinement technique presented in [6]
because of the presence of two sharp corners. Starting from 281 CPs, after 4
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Figure 5.5: © 2019 IEEE– Comparison between HFSS and this method in
the evaluation of the |S11| and |S21| in the case of Fig. 5.4.

cycles of refinement, the procedure led to the 341 CPs shown in Fig. 5.4(c),
with an higher density of the CPs in proximity of the critical region where
the potential presents more rapid variations.

In Fig. 5.5 the frequency obtained response of the S parameters is shown.
The simulation was run by considering 97 modes on the rectangular waveg-
uides and 82 modes on the ridge one and 201 points in frequency (ranging
from 8 GHz to 25 GHz) were evaluated.

The simulation lasted 8.01 s to compute the modal fields and the coupling
coefficients, and 4.57 s to compute the cascade for all the frequency points.

In Fig. 5.5 there is also a comparison between the results obtained with
the MM-VMM and those given by ANSYS HFSS after a simulation that
needed 40367 tetrahedra, 319 triangles on the input and 328 triangles on the
output port.

5.4 Conclusion

In this chapter the VMM has been used in conjunction with the MM
technique (MM-VMM). This last one can take advantage of the flexibility
that the VMM permits in the definition of the CPs and the high number
of modes that it can compute with a limited number of unknowns. Two
examples were used to demonstrate the efficiency and the accuracy of the
method.
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Chapter 6
The Variational Meshless
Method for Inhomogeneous
Waveguides

6.1 Introduction

In the previous chapter, VMM [1] has been presented and applied to
the eigenmode analysis of a shielded waveguide with a general shape and
filled with a homogeneous media. In this case it is possible to represent
the electromagnetic field as a combination of TE and TM modes, and the
simulation is reduced to the solution of two scalar problems (one for the TE
modes and the other for the TM ones) [2]. In particular the analysis consists
in the solution of the scalar Helmholtz equation with a proper BC.

In this chapter a different problem will be considered and its treatment
will need an extension of the theory. It is the evaluation of the dispersion
diagram of the modes propagating inside a shielded waveguide filled with an
inhomogeneous media.

As explained in [3], in fact, this will require the solution of a vector
problem and in particular the Vector Helmholtz equation with a proper BC.

When dealing with this kind of problem it is possible to use the magnetic
field or the electric field as working variable. Both approaches are in principle
equivalent. In this work the magnetic field is used to define the problem as
this vector quantity is continuous inside the regions with inhomogeneous
dielectrics.

In this chapter all the theory is presented and some implementation as-
pects are also discussed.
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Figure 6.1: © 2019 IEEE– Geometry of the cross-section of an arbitrarily
shaped waveguide including different dielectric materials. The CPs where
the RBFs are centered are grouped into internal CPs and boundary CPs.

It will be possible to appreciate as, also in the case of the vector rep-
resentation of the fields, the VMM requires a significantly lower number of
unknowns than FEM to reach the same level of accuracy.

Some numerical results will be shown to validate the theory. The method
can also be improved by exploiting the geometrical symmetries when possible.
This aspect is analyzed in Chap. 7.

The theory and the results reported in in the following pages were pre-
sented in [4], therefore most of this chapter is based on that paper and will
reuse extensively the material of that work.

6.2 Theory

6.2.1 Starting Problem

In Fig. 6.1 an inhomogeneous waveguide shielded by a perfect conductor
and with cross-section Ω and boundary Γ is shown.

The aim of this work is the evaluation of the dispersion digram of the
modes propagating inside it [2]. They will present a propagation along z
which is the direction normal to the cross-section and can be written as
~H(x, y, z) = ~h(x, y) e−jβz where j here is the imaginary unit ( see [2] for
instance).

The vector wave equation (i.e. the Helmholtz equation ) can be imposed
by assuming this dependence on the x,y, and z coordinates.

The dispersion diagram can be computed by setting the value of β and
finding the wavenumber correspondent to each mode [3].
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6.2. Theory

Beside the Helmholtz equation, both the divergence condition (DC) and
the BC (which is the electric wall condition) must be imposed to avoid the
computation of some spurious solution [3, 5]. For this reason the problem
will be completely represented by the following set of equations

∇×
(

1

εr
∇× ~H(x, y, z)

)
− k2

0µr
~H(x, y, z)= 0 in Ω (6.1)

∇ · ~H= 0 in Ω (6.2)

n̂ · ~H(x, y, z)= 0 on Γ (6.3)

where k0 = 2πf
√
µ0ε0 is the wavenumber in vacuum, f is the frequency,

µ0 is the vacuum permeability, ε0 is the vacuum permittivity, and n̂ is the
outward normal on Γ (see Fig. 6.1). As explained in [3], the problem (6.1)
has an equivalent variational formulation

F ( ~H) =
1

2

∫
Ω

(
1

εr
∇× ~H · ∇ × ~H − k2

0µr
~H · ~H

)
dΩ (6.4)

and the solution to the equation (6.1) can be found by rendering stationary
this functional. While the DC and the BC have to be enforced explicitly.

Note that adopting the electric field as working variable, also the normal
component discontinuity should have been enforced at the material interfaces.

6.2.2 RBF Approximation

To discretize the problem the RBF approximation is used, as done in the
previous chapter. In this case the vector magnetic field is decomposed as in
[3]

~H(x, y, z) = [x̂Hx(x, y) + ŷHy(x, y) + jẑHz(x, y)] e−jβz . (6.5)

Note that that the z-component of the field is jHz. This is done to keep
the resulting eigenproblem real after all the algebric manipulations that are
needed to complete this task.

Ones the CPs are defined ( as in Fig. 6.1 ) every component of the mag-
netic field can be approximated by using the RBFs in a similar way than the
previous chapter. In particular, by defining hτi (x, y) the RBF centered in the
i-th CP, with τ = x, y, z, the component along the direction τ can be written
as

Hτ (x, y) =
N∑
i=1

aτi h
τ
i (x, y) (6.6)
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Where N is the total number of CPs defined on the cross-section. Beside
them, L are the ICPs and M = N − L are the BCPs, as shown in Fig. 6.1.

The Gaussian RBFs are used as in the case of the homogeneous structures

hτi (x, y) = e−ξ
τ
i ci[(x−xi)2+(y−yi)2] (6.7)

where (xi, yi) is the position of the i-th CP and the shape parameter ci is

defined as in (4.7).

Note that the Gaussian RBFs (6.7) are C∞, and this allows a simple
treatment during their differentiation.

6.3 Numerical Implementation

6.3.1 Matrix Representation of the Variational Prob-
lem

Substituting (6.5) and (6.6) into (6.4), the following matrix expression is
obtained

F (a) =
1

2

[
aTCa− k2aTTa

]
(6.8)

where the unknown vector a has been introduced

a = [ax1 , a
x
2 , . . . , a

x
N , a

y
1, a

y
2, . . . , a

y
N , a

z
1, a

z
2, . . . , a

z
N ]T (6.9)

and the matrices C and T can be partitioned as follows

C =


C11 C12 C13

CT
12 C22 C23

CT
13 CT

23 C33

 T =


T 11 0 0

0 T 22 0

0 0 T 33

 (6.10)
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All the matrices Cαβ and T αβ in (6.10) are N ×N and their entries are

C11(i, j) = +

∫
Ω

1

εr

∂hxj
∂y

∂hxi
∂y

dΩ + β2

∫
Ω

1

εr
hxjh

x
i dΩ

C22(i, j) = +

∫
Ω

1

εr

∂hyj
∂x

∂hyi
∂x

dΩ + β2

∫
Ω

1

εr
hyjh

y
i dΩ

C33(i, j) = +

∫
Ω

1

εr

(
∂hzj
∂x

∂hzi
∂x

+
∂hzj
∂y

∂hzi
∂y

)
dΩ

C12(i, j) = −
∫

Ω

1

εr

∂hxj
∂y

∂hyi
∂x

dΩ

C13(i, j) = +β

∫
Ω

1

εr

∂hzj
∂x

hxi dΩ

C23(i, j) = +β

∫
Ω

1

εr

∂hzj
∂y

hyi dΩ

T 11(i, j) = +

∫
Ω

µrh
x
j h

x
i dΩ

T 22(i, j) = +

∫
Ω

µrh
y
j h

y
i dΩ

T 33(i, j) = +

∫
Ω

µrh
z
j h

z
i dΩ

(6.11)

Note that, thanks to the variational technique, the problem has been relaxed
of one degree over the derivative order which is now less or equal to 1 instead
of 2 as in the case of the Helmholtz equation (6.1). Moreover the derivative
can be calculated analytically as the discretization is dealing with RBFs. In
particular

∂hτi
∂x

(x, y) = −2ξτi c(x− xi)hτi (x, y)

∂hτi
∂y

(x, y) = −2ξτi c(y − yi)hτi (x, y)
(6.12)

Note that that C and T are real, symmetric, and nonsingular. Moreover,
there is not dependence on β in the case of the marix T , while in the case of
matrix C it is possible to write

C = C0 + βC1 + β2C2 (6.13)

where C0, C1, C2 are also β-independent.
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6.3.2 Matrix Representation of the Divergence Condi-
tion

Substituting (6.5) and (6.6) into (6.2), the following matrix expression is
derived

∇ · ~H =
N∑
i=1

axi
∂hxi
∂x

+
N∑
i=1

ayi
∂hyi
∂x

+ β

N∑
i=1

azih
z
i (6.14)

and applying the Method of Moments (MoM) and using hzj as test functions,
this brings to

Da = 0 (6.15)

which can be partitioned as

D =
[
D11 D12 D13

]
(6.16)

and the Dαβ are all N ×N matrices with the following entries

D11(i, j) =

∫
Ω

hzj
∂hxi
∂x

dΩ

D12(i, j) =

∫
Ω

hzj
∂hyi
∂y

dΩ

D13(i, j) = β

∫
Ω

hzj h
z
i dΩ

(6.17)

Note that matrix D has dimension N × 3N and, thus, has a nullity of 2N .
Also in this case it is possible to write D as a matrix polynomial of β

D = D0 + βD1 (6.18)

where D0, and D1 are both β-independent.

6.3.3 Matrix Representation of the Boundary Condi-
tion

Substituting (6.5) and (6.6) in (6.3), applying the MoM procedure on the
boundary Γ, and using the hzj centered on the BCPs, as test functions, the
following matrix equation is obtained

Ba = 0 (6.19)

which can be partitioned as

B =
[
B11 B12 0

]
(6.20)
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where 0 is the M ×N null matrix and Bαβ are M ×N matrices, and their
expressions are

B11(i, j) =

∫
Γ

cos(θo)
[
hzj(xo, yo)h

x
i (xo, yo)

]
dl

B12(i, j) =

∫
Γ

sin(θo)
[
hzj(xo, yo)h

y
i (xo, yo)

]
dl

(6.21)

where θo is the angle between n̂ and x̂ on the boundary observation point
(xo, yo) as shown in Fig. 6.1. Note that the matrix B is β-independent.

6.3.4 Final Eigenproblem

Beside the equation (6.10), the DC and BC must be imposed. This re-
duces the degrees of freedom associated to the vector a. This last one, in
fact, must lie in the null space of D ( see (6.15) ). This implies that

a = EDx (6.22)

where x is a 2N × 1 unknown vector and ED is a 3N × 2N matrix which
is an orthonormal basis for the null space of D obtained with the singular
value decomposition (SVD). Note that the computational complexity of the
SVD, for an n × m matrix, is O (min(nm2,mn2))) [6]. For this reason its
application to the matrix D has a cost of O (3 N3)).

The equation (6.22) can be substituted in (6.19) obtaining

x = EBz (6.23)

where z is an unknown vector and EB is an orthonormal basis for the null
space of BED, also obtained with the SVD algorithm. The rank of B is M ,
the dimension of EB is 2N × (N + L), and z is an (N + L)× 1 vector.

After combining (6.23) and (6.22) in (6.8) and extremizing the resulting
expression by deriving respect to the unknown vector z (as was done in the
previous chapter), the following eigensystem is obtained

C′(β)z = k2
0T

′(β)z (6.24)

in which the mass and stiffness matrices are

C′(β) = ET
BE

T
DCEDEB

T ′(β) = ET
BE

T
DTEDEB

(6.25)
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The solution of (6.24) permits to find the vector z and, thus, the starting
unknown through the following change of base

a = (EDEB) z (6.26)

Note that C′ and T ′ are real, symmetric, and nonsingular, thus leading
to a well-conditioned eigenproblem [7] and that the dimension of the problem
(6.24) is (N + L)× (N + L) instead of 3N × 3N .

Note that the matrices C′ and T ′ are both dependent on β. As the
aim of this work is to find the dispersion diagram of the generic i-th mode
propagating in the waveguide under study, the pair {β, k(i)

0 } (and, therefore,
{β, ω(i)) is the solution to find. For this reason the developed software will
solve the problem (6.24) for various values of β.

6.3.5 Implementation of the Algorithm

In Fig. 6.2 the algorithm based on the theory of this section in shown. It
has been implemented in a Matlab code that receives, as input, the geometry
the properties of the materials and the Q values of β to evaluate which are
ordered as (β1, . . . , βQ).

The steps are briefly summarized:

� the CPs are defined on the domain with a higher density in the regions
with higher dielectric constant. More in detail, the definition of the
average distance h in (3.7) is locally modified dividing it by a factor√
εr, and new CPs are added following the procedure described in [1];

� the β-independent matrices T and B, C0, C1, C2, D0, and D1 are
evaluated;

� a loop on the β values starts, generating the β-dependent matrices
C, D, and ED and than assembling the eigenproblem (6.24) through
(6.25);

� the eigenproblem is solved computing the wavenumbers of the first
modes for that particular value of β.

The β-loop stops when all the β values have been considered and the disper-
sion diagram is plotted.
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b= bi

solve the eigenproblem

i ≤ Q

define the collocation points

true

end
i++false

assemble the b–depependent

Eigenproblem C ’(b)z= k0T ’(b)z

i=1

compute the b–indepependent

Matrices C0, C1, C2, D0, D1, T, B

Figure 6.2: © 2019 IEEE–Flowchart of the implemented algorithm.

6.4 Numerical Results

The results shown in this section are obtained without the exploitation
of any geometrical symmetry. This last aspect is analyzed in Chap 7.

All the simulations described in the following subsections have been con-
ducted with a fixed value of σ = 1 in (6.15). This demonstrates that no
preconditioning is needed, reducing the computation time.

To validate the efficiency and the accuracy of the VMM the results given
by this method have been compared with the theoretical values. When no
analytical solution was available, instead, the comparison has been done with
the results given by ANSYS HFSS as independent validation.
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Figure 6.3: © 2019 IEEE– Dielectric Loaded Waveguide: (a) Geometry of
the structure (a = 10 mm); (b) Dispersion diagram calculated by the vari-
ational meshless method (gray circles) compared with the HFSS simulation
(black cross).

6.4.1 Dielectric Loaded Waveguide

The first example considered is the half-filled rectangular waveguide shown
in Fig. 6.3(a) and analyzed in [8]. In Fig. 6.3(a) all the characteristic dimen-
sions and the material properties are indicated. The VMM was applied to
this problem by using N = 100 CPs to define the unknowns and, in particu-
lar, L = 70 ICPs and M = 30 BCPs. The simulation lasted 1.2 s to compute
both the β-independent matrices and the 26 reported β-steps. The obtained
dispersion diagram was compared with that given by ANSYS HFSS after a
port-only simulation that lasted 26 s and used 284 triangles on the input
port.

This comparison is shown in Fig. 6.3(b). The average discrepancy of the
VMM vs HFSS results was in the order of 1%. Thanks to the enforcement
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Figure 6.4: © 2019 IEEE– Behavior of | ~H| (arbitrary units) for the first
mode of the Dielectric Loaded Waveguide of Fig. 6.3: (a) β = 5 rad/m;
(b) β = 1200 rad/m.

Table 6.1: © 2019 IEEE– Relative Error in the Evaluation of the Dispersion
Pairs {β, f} of the First Mode of the Dielectric Loaded Waveguide of Fig.
6.3. The Random Distributions of the CPs of Fig. 6.5 Were Considered.

Propagation Analytical #CPs = 100 #CPs = 320 #CPs = 1040
constant β frequency Fig. 6.5(a) Fig. 6.5(b) Fig. 6.5(c)
(rad/m) (GHz) E(β) (%) E(β) (%) E(β) (%)

0 5.78212 0.4518 0.2919 0.1246
100 6.81088 0.4368 0.2811 0.1273
200 9.14706 0.3937 0.2498 0.1126
300 11.92380 0.3333 0.2072 0.0927
400 14.83090 0.2725 0.1652 0.0728
500 17.79330 0.2218 0.1308 0.0564
600 20.79280 0.1828 0.1051 0.0442
700 23.82170 0.1531 0.0856 0.0350
800 26.87440 0.1300 0.0706 0.0277
900 29.94620 0.1121 0.0592 0.0223
1000 33.03360 0.0978 0.0500 0.0179
1100 36.13360 0.0865 0.0429 0.0145
1200 39.24410 0.0770 0.0370 0.0116

of the DC and BC, no spurious solutions were obtained.

In Fig. 6.4 the graph of | ~H| for the first mode is shown in the case of
β = 5 rad/m and β = 1200 rad/m. Note that by increasing β and, thus,
the frequency, the field gets more concentrated in the region with the higher
dielectric constant.
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(a)

(b)

(c)

Figure 6.5: © 2019 IEEE– Random distribution of the CPs used for the
convergence analysis of the Dielectric Loaded Waveguide: (a) 100 CPs; (b)
320 CPs; (c) 1040 CPs.

As the analytical solution for this structure exists [2], a convergence study
was reported in [4]. In particular the frequency correspondent to various
values of β ( ranging from 0 to 1200 rad/m) were found with the VMM for
the first mode.

The simulations were done with 3 different configurations of CPs. In
particular, first was analyzed the case with 100 CPs, than with 320, and
finally with 1040. In all the three cases the CPs were generated randomly
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with a normal distribution inside the domain and regularly on the boundary
as shown in Fig. 6.5.

Calling fn the frequency found though the VMM and fa the analytical
solution ( see [2]), the error is calculated es follows

E(β) =
fn(β)− fa(β)

fa(β)
(6.27)

and in Table 6.1 the obtained result is shown.
Note that, even if the randomly generated CPs can sometime spatially

overlap, the problem keeps well-conditioned thanks to the use of ξτi in (6.7)
that was proposed in [9].

6.4.2 Shielded Insulated Image Guide

The second example considered is the shielded insulated image waveguide
shown in Fig. 6.6(a) and analyzed in [10]. In Fig. 6.6(a) all the characteristic
dimensions and the material properties are indicated. The VMM was applied
to this problem by using N = 326 CPs to define the unknowns and, in
particular, L = 282 ICPs and M = 44 BCPs. The simulation lasted 8.7 s
to compute both the β-independent matrices and the 37 reported β-steps.
To obtain an independent validation, the resulting dispersion diagram was
compared with that given by ANSYS HFSS after a port-only simulation that
lasted 147 s and used 696 triangles on the input port.

This comparison is shown in Fig. 6.6(b). The average discrepancy of the
VMM vs HFSS results was in the order of 1%. Thanks to the enforcement
of the DC and BC, no spurious solutions were obtained.

In Fig. 6.7 the graph of | ~H| for the first mode is shown in the case of
β = 5 rad/m and β = 2000 rad/m. Note that by increasing β and, thus,
the frequency, the field gets more concentrated in the region with the higher
dielectric constant.
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Figure 6.6: © 2019 IEEE– Shielded Insulated Image Guide: (a) Geometry
of the structure (δ = 1 mm, w = 2.25 mm, d = 0.5 mm, a = 13.5 mm,
b = 8 mm); (b) Dispersion diagram calculated by the variational meshless
method (gray circles) compared with the HFSS simulation (black cross).
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Figure 6.7: © 2019 IEEE– | ~H| (arbitrary units) for the first mode of the
Shielded Insulated Image Guide: (a) β = 5 rad/m; (b) β = 1200 rad/m.

90



6.4. Numerical Results

²r1=1

d

3 d²r2=9.6

x

y

(a)

(b)

Figure 6.8: © 2019 IEEE– Round Double-Layer Shielded Waveguide: (a) Ge-
ometry of the structure (d = 6.35 mm); (b) Dispersion diagram calculated
by the variational meshless method (gray circles) compared with the HFSS
simulation (black cross).

6.4.3 Round Double-Layer Shielded Waveguide

The third example considered is the round double-layer shielded waveg-
uide shown in Fig. 6.8(a) and analyzed in [11]. In Fig. 6.8(a) all the charac-
teristic dimensions and the material properties are indicated. The VMM was
applied to this problem by using N = 685 CPs to define the unknowns and,
in particular, L = 640 ICPs and M = 45 BCPs. The simulation lasted 42.3 s
to compute both the β-independent matrices and the 32 reported β-steps.
The obtained dispersion diagram was compared with that given by ANSYS
HFSS after a port-only simulation that lasted 690 s and used 2426 triangles
on the input port.

This comparison is shown in Fig. 6.8(b). The average discrepancy of the
VMM vs HFSS results was in the order of 1%. Thanks to the enforcement
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Figure 6.9: © 2019 IEEE– Behavior of | ~H| (arbitrary units) for the first mode
of the Round Double-Layer Shielded Waveguide of Fig. 6.8: (a) β = 5 rad/m;
(b) β = 1500 rad/m.

Table 6.2: © 2019 IEEE– Relative Error in the Evaluation of the Dispersion
Pairs {β, f} of the First Mode of the Round Double-Layer Shielded Waveg-
uide of Fig. 6.8, Considering 685 CPs.

Propagation constant Analytical frequency Error
β (rad/m) f (GHz) E(β) (%)

0 16.80500 0.8634
5 16.80650 0.3669
90 17.26530 0.3185
200 18.96420 0.1756
300 21.34080 0.0280
400 24.24910 -0.0994
500 27.48860 -0.1995
900 41.17940 -0.2761
1400 53.09200 -0.1341
1800 58.18670 0.0393

of the DC and BC, no spurious solutions were obtained.
In Fig. 6.9 the graph of | ~H| for the first mode is shown in the case of

β = 5 rad/m and β = 1500 rad/m. Note that by increasing β and, thus,
the frequency, the field gets more concentrated in the region with the higher
dielectric constant. As the analytical solution for this structure exists [2], in
Table 6.2 the comparison between the VMM and the theory is provided in
the evaluation of the frequency correspondent to various values of β ranging
form 0 to 1800 rad/m for the first mode.
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Figure 6.10: © 2019 IEEE– Elliptic Inhomogeneous Waveguide: (a) Geom-
etry of the structure (l = 1 mm); (b) Dispersion diagram calculated by the
variational meshless method (gray circles) compared with the HFSS simula-
tion (black cross).

6.4.4 Elliptic Inhomogeneous Waveguide

The fourth example considered is the elliptic inhomogeneous waveguide
shown in Fig. 6.10(a) and analyzed in [12]. In Fig. 6.10(a) all the character-
istic dimensions and the material properties are indicated. The VMM was
applied to this problem by using N = 336 CPs to define the unknowns and,
in particular, L = 246 ICPs and M = 90 BCPs. The simulation lasted 7.44 s
to compute both the β-independent matrices and the 28 reported β-steps.
To obtain an independent validation the obtained dispersion diagram was
compared with that given by ANSYS HFSS after a port-only simulation that
lasted 112 s and used 502 triangles on the input port.

This comparison is shown in Fig. 6.10(b). The average discrepancy of the
VMM vs HFSS results was in the order of 1%. Thanks to the enforcement

93



6. The VMM for Inhomogeneous Waveguides © 2019 IEEE

|H|

x (mm)y (mm)
-5

-5

0

-10

0

5
10

5

0.01

0.02

0.04

0.03

x (mm)y (mm)
-5

-5

0

-10

0

5
10

5

0.001

0.002

0.004

0.003

|H|

(a) (b)

Figure 6.11: © 2019 IEEE– Behavior of | ~H| (arbitrary units) for the first
mode of the Elliptic Inhomogeneous Waveguide of Fig. 6.10: (a) β = 5 rad/m;
(b) β = 800 rad/m.

of the DC and BC, no spurious solutions were obtained.
In Fig. 6.11 the graph of | ~H| for the first mode is shown in the case of

β = 5 rad/m and β = 800 rad/m. Note that by increasing β and, thus,
the frequency, the field gets more concentrated in the region with the higher
dielectric constant.

6.5 Conclusion

In this chapter the VMM has been applied to the evaluation of the dis-
persion diagram of the modes inside a shielded waveguide filled with an inho-
mogeneous material. In this case the problem is no longer scalar and a vector
representation of the fields is needed. The magnetic field has been used as
working variable since this quantity is continuous on the interface between
two dielectric materials.

The explicit enforcement of the DC and the BC permits to obtain a
spurious-free set of solutions. The resulting eigenproblem is well-conditioned
and the accuracy obtainable with the VMM has been investigated with var-
ious examples.

Also in this case, the VMM appears a useful technique to compute a high
number of modes with a relative limited number of unknowns.
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Chapter 7
Exploitation of the Symmetries

7.1 Introduction

In this chapter the theory presented in the Chap. 4 is extend to treat
beside the electric wall condition also the magnetic wall condition in some
portion of the boundary. This is done in order to exploit the symmetries
that the cross-section of the waveguide under study could present. It is well-
known, in fact, that one or two symmetries can be present in a 2D topology
and that the whole spectrum of the modes inside a waveguide can be found
by joining those obtained simulating respectively half or a quarter of the
domain [1, 2] by imposing on every symmetry plane first the electric and then
the magnetic wall condition. In particular the modes found by imposing the
electric wall condition respect to a symmetry plane will be those odd respect
to it, while those found by imposing the magnetic wall condition will be those
even.

The theory and the results reported in in the following pages were pre-
sented in [3], therefore most of this chapter is based on that paper and will
reuse extensively the material of that work.

7.2 Theory

Consider the case in which the dispersion diagram has to be evaluated
for the modes existing inside the inhomogeneous shielded waveguide with the
cross section presented in Fig. 7.1. In the case in which a plane of symmetry
exists only half domain can be analyzed. Inside that half, N CPs are defined.
among them L are the ICPs inside the domain Ω and M = N − L are the
BCPs that lie on Γ = Γ1 ∪ Γ2 where Γ1 is the portion of the external
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Figure 7.1: © 2019 IEEE– Cross-section of a symmetric rectangular waveg-
uide filled with an inhomogeneous material. The circle represent the colloca-
tion points of the radial basis functions.

conductor that belongs to the half domain considered, while Γ1 is the line of
symmetry ( see Fig. 7.1).

The magnetic field H inside the domain must satisfy the Helmholtz vector
formula, the divergence free and a proper boundary condition. this brings to
the following set of equations [2]

∇×
(

1

εr
∇× ~H(x, y, z)

)
− k2

0µr
~H(x, y, z) = 0 in Ω (7.1)

∇ · ~H(x, y, z) = 0 in Ω (7.2)

n̂ · ~H(x, y, z) = 0 on Γ1 (7.3)

n̂ · ~H(x, y, z) = 0 or n̂× ~H(x, y, z) = 0 on Γ2 (7.4)

where k0 = ω
√
µ0ε0 is the wavenumber in the vacuum, ω is the angular

frequency, µ0 is the vacuum permeability, ε0 is the vacuum permittivity, and
n̂ is the outward normal on Γ.

The first or the second BC in (7.4) is enforced on the symmetry plane
Γ2, depending on the fact that an odd symmetry (electric wall) or a even
symmetry (magnetic wall) has to be computed.

The vector Helmholtz equation (7.1) has an equivalent variational formu-
lation [1]

F ( ~H) =
1

2

∫∫
Ω

(
1

εr
∇× ~H · ∇ × ~H − k2

0µr
~H · ~H

)
dΩ (7.5)
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7.2. Theory

As in [4] the magnetic field is first expanded in its vector components taking
into account the propagation along the z axis. This yields to the following
expression

~H(x, y, z) = [x̂Hx(x, y) + ŷHy(x, y) + jẑHz(x, y)] e−jβz (7.6)

Calling the general Cartesian direction τ , with τ = x, y, z, it is possible to
define the RBF centered in the i-th CP as hτi (x, y) and write

Hτ (x, y) =
N∑
i=1

aτi h
τ
i (x, y) = Hτ (x, y)aτ (7.7)

where Hτ (x, y) = [hτ1(x, y), hτ2(x, y), . . . , hτN(x, y)] and aτ = [aτ1, a
τ
2, . . . , a

τ
N ]T .

The problem can be discretized and, after various manipulations reported in
[4], this brings to the following matrix eigenproblem

C′(β)z = k2
0T

′(β)z (7.8)

where

C′(β) = ET
BE

T
DCEDEB

T ′(β) = ET
BE

T
DTEDEB

(7.9)

Once the eigenproblem (7.8) is solved, the original unknowns are calculated
(see (7.7) ) as

a = (EDEB) z (7.10)

To exploit the symmetries the idea is to define the matrix EB in a different
way respect to [4] to take into account a mixed boundary condition which can
be magnetic or electric wall condition in different portions of Γ. In particular
by applying the MoM procedure on the boundary Γ (i.e., testing only with
hzj centered on the BCPs) the following matrix equation is obtained

Ba = 0 (7.11)

where

B =

[
B11 B12 0
0 0 B23

]
(7.12)
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0 is the M × N null matrix and Bαβ are (2M) × N matrices, and their
expressions are

B11(i, j) =

∫
Γ

κ11(xo, yo)
[
hzj(xo, yo)h

x
i (xo, yo)

]
dl

B12(i, j) =

∫
Γ

κ12(xo, yo)
[
hzj(xo, yo)h

y
i (xo, yo)

]
dl

B23(i, j) =

∫
Γ

κ23(xo, yo)
[
hzj(xo, yo)h

z
i (xo, yo)

]
dl

(7.13)

with j = L+ 1, . . . , N and where the functions καβ are defined as

κ11(xo, yo) =

{
+cos(θo) if (xo, yo) ∈ Γ1

−sen(θo) if (xo, yo) ∈ Γ2

κ12(xo, yo) =

{
+sen(θo) if (xo, yo) ∈ Γ1

+cos(θo) if (xo, yo) ∈ Γ2

κ23(xo, yo) =

{
0 if (xo, yo) ∈ Γ1

1 if (xo, yo) ∈ Γ2

(7.14)

In (7.14) θo is the angle between n̂ and x̂ on the boundary observation point
(xo, yo) as shown in Fig. 7.1.

Similarly to [4] the unknown vector and EB is an orthonormal basis for
the null space of BED, obtained from the SVD.

To make considerations about the dimension of the final problem it is
possible to take the reasoning to extremes. If on all Γ only the electric
wall condition is enforced, the rank of B is M and the dimension of EB is
2N × (N + L). If, instead, Γ1 = ∅ i.e.all the points of boundary satisfy the
magnetic wall condition, the rank of B will be 2M and the dimension of EB

will be 2N × (N + L −M). this implies that the magnetic wall condition
reduces the dimension of the final eigenproblem (7.8) more than the electric
wall enforcement by a factor 2.

Finally in the case of Fig. 7.1 the problem size can be reduced by solving
two separate problems with about half dimension than the whole one. This
can be done by applying in both the cases the electric wall condition on Γ1

and first the electric and then the magnetic wall condition on the symmetry
plane Γ2. The solutions will be respectively the odd and even modes respect
to Γ2.
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Figure 7.2: © 2019 IEEE– Geometry of the Shielded Insulated Image Guide
(a = 13.5 mm, δ = 1 mm, w = 2.25 mm, d = 0.5 mm, b = 8 mm)
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Figure 7.3: © 2019 IEEE– Geometry considered to compute the modes of
the Shielded Insulated Image Guide exploiting symmetries: (a) even respect
to x; (b) odd respect to x.

7.3 Numerical Results

To validate the efficiency and the accuracy of the VMM the results ob-
tained by this method have been compared with those given by ANSYS HFSS
as independent validation.

7.3.1 Shielded Insulated Image Guide

The first topology analyzed is shown in Fig. 7.2 where the shielded in-
sulated image waveguide reported in [5] is represented. In the figure all the
dimensions and the properties of the material are reported.
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Figure 7.4: © 2019 IEEE– Dispersion diagram of the Shielded Insulated
Image Guide calculated by the variational meshless method in the case of
magnetic wall (gray circles), in the case of electric wall (black crosses), and
by HFSS simulation (continuous line).

At the beginning the whole domain was simulated without considering
any symmetry. N = 326 CPs were used (i.e., L = 282 ICPs and M = 44
BCPs). The simulation lasted tt = 10.61 s. In particular ti = 2.14 s were
needed to compute the initial matrices and tc = 8.21 s to run all the 37
calculations for different values of β.

The symmetry respect to the xz plane was than exploited, by simulating
separately the two cases reported in Fig. 7.3. The two sets of solutions were
than joined to obtain the complete spectrum required.

In Table 7.1 the running times ti, tc, and tt are reported for the case of
the simulation which does not exploit the symmetries, for both the partial
simulations when using the symmetries, and for the total simulation when
even and odd modes are evaluated separately.

Note that, the time to compute the initial matrices is not the sum of the
ti of the two partial cases, as the calculations of the initial matrices is in part
identical, and can be reused.

Note that when using the symmetries the total simulation time is reduced
by a factor of 43%. The obtained results are spurious-free and in agreement
with those given by ANSYS HFSS with a port-only simulation with 696
triangles on the input port.

7.3.2 Circular Double-Layer Shielded Waveguide

The second topology analyzed is shown in Fig. 7.5 where the double-layer
shielded waveguide, reported in [6], is represented and all the dimensions and
the properties of the material are given.
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Table 7.1: © 2019 IEEE– Comparison between various simulations of the
Shielded Insulated Image Guide to compute 11 modes.

Method # of ti tc tt
unknowns (s) (s) (s)

HFSS no symmetries (Fig. 7.2) 696 —- —– —-
VMM no symmetries (Fig. 7.2) 326 2.40 8.21 10.61

VMM even [Fig. 7.3(a)] 197 1.16 2.38 3.54
VMM odd [Fig. 7.3(b)] 197 1.17 2.15 3.32

VMM all symmetries together 197 1.49 4.53 6.02

²r1=1

d

3 d²r2=9.6

x

y

(a)

Figure 7.5: © 2019 IEEE– Geometry of the Circular Double-Layer Shielded
Waveguide: (3 d = 6.35 mm)

At the beginning, the whole domain was simulated without considering
any symmetry. N = 685 CPs were used (i.e., L = 640 ICPs and M = 45
BCPs). The simulation lasted tt = 51.45 s. In particular ti = 9.00 s were
needed to compute the initial matrices and tc = 42.46 s to run all the 32
calculations for different values of β.

The symmetries respect to the xz and yz planes were than exploited, by
simulating separately the four cases reported in Fig. 7.6. The four sets of
solutions were than joined to obtain the complete spectrum required. In
Table 7.2 the running times ti, tc, and tt are reported for the case of the
simulation which does not exploit the symmetries, for all the four partial
simulations when using the symmetries, and for the total simulation when
even and odd modes respect to each plane are evaluated separately.

Note that, the time to compute the initial matrices is not the sum of the
ti of the four partial cases, as the calculations of the initial matrices is in part
identical, and can be reused.
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Figure 7.6: © 2019 IEEE– Geometry of the Circular Double-Layer Shielded
Waveguide considered to compute the modes exploiting symmetries: (a) even
respect to x and even respect to y; (b) even respect to x and odd respect to
y; (c) odd respect to x and even respect to y; (d) odd respect to x and odd
respect to y.

Note that when using the symmetries the total simulation time is reduced
by a factor of 83%. The obtained results are spurious-free and in agreement
with those given by ANSYS HFSS with a port-only simulation with 696
triangles on the input port.

7.4 Conclusion

In this chapter the theory of [4] to evaluate the dispersion diagram of an
inhomogeneous filled waveguide has been extended to exploit the geometrical
symmetries when available. This permits to reduce the memory and time
consumption and to improve, thus, the performances of the VMM.

Two examples taken from the literature have been used to validate the
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Figure 7.7: © 2019 IEEE– Dispersion diagram of the Round Double-Layer
Shielded Waveguide calculated by the variational meshless method in the
case of Fig. 7.6 (a) (gray circles), in the case of Fig. 7.6 (b) (black crosses),
in the case of Fig. 7.6 (c) (black diamonds), in the case of Fig. 7.6 (d) (gray
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Table 7.2: © 2019 IEEE– Comparison between various simulations of the
Circular Double-Layer Shielded Waveguide to compute 11 modes.

Method # of ti tc tt
unknowns (s) (s) (s)

HFSS no symmetries (Fig. 7.5) 2450 —- —– —-
VMM no symmetries (Fig. 7.5) 685 9.00 42.46 51.45
VMM even/even [Fig. 7.6(a)] 194 0.74 1.96 2.71
VMM odd/even [Fig. 7.6(b)] 194 0.81 1.84 2.65
VMM even/odd [Fig. 7.6(c)] 194 0.79 1.75 2.53
VMM odd/odd [Fig. 7.6(d)] 194 0.84 1.68 2.51

VMM all symmetries together 194 1.61 7.23 8.84

method.
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Chapter 8
The Variational Meshless
Method for Inhomogeneous
Cavities

8.1 Introduction

In the previous chapters, the VMM [1, 2] has been presented and applied
to the eigenmode analysis of a general shape shielded waveguide filled with
homogeneous or inhomogeneous media.

In both the article an essentially 2D analysis has been done, as the z
dependence could be separated and the equations were written on the cross-
section that is a surface instead of the whole domain that is a volume.

In this chapter a different problem will be considered and its treatment
will need an extension of the theory. It is the evaluation of the resonant
modes inside a cavity filled with an inhomogeneous media.

As explained in [3], also in this case, this will require the solution of
a vector problem and in particular the Vector Helmholtz equation with a
proper BC.

When dealing with this kind of problem it is possible to use the magnetic
field or the electric field as working variable. Both approaches are in principle
equivalent. In this work the magnetic field is used to define the problem as
this vector quantity is continuous inside the regions with inhomogeneous
dielectrics.

In this chapter all the theory is presented and some implementation as-
pects are also discussed.

It will be possible to appreciate as, also in the case of the vector repre-
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Figure 8.1: © 2019 IEEE, © 2020 IEEE– A generic 3D cavity filled with
an inhomogeneous material. Ω represents the volume of the structure, Γ1 is
the external surface where the electric wall condition is enforced, and Γ2 is a
symmetry plane. The circles are the collocation points where the radial basis
functions are centered.

sentation of the fields in 3D, the VMM requires a significantly lower number
of unknowns than the FEM to reach the same level of accuracy.

Some numerical results will be shown to validate the method and appre-
ciate the level of accuracy and reliability obtained when dealing with these
kind of problems. The exploitation of the geometrical symmetries is explicitly
presented.

The theory and the results reported in in the following pages were pre-
sented in [3, 4], therefore most of this chapter is based on these manuscripts
and will reuse extensively the material of these work.

8.2 Theory

8.2.1 Starting Problem

In Fig. 8.1 a generic cavity filled with an inhomogeneous dielectric mate-
rial is shown. If the electromagnetic field resonating inside this domain has to
be computed, the Helmholtz equation in conjunction with the divergence-free
condition, and a proper boundary condition must be enforced. This brings
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to the following vector system [5]

∇×
(

1

εr
∇× ~H(x, y, z)

)
− k2

0µr
~H(x, y, z) = 0 in Ω (8.1)

∇ · ~H(x, y, z) = 0 in Ω (8.2)

n̂ · ~H(x, y, z) = 0 on Γ1 (8.3)

where k0 = ω
√
µ0ε0 is the wavenumber in the vacuum, ω is the angular

frequency, µ0 is the vacuum permeability, ε0 is the vacuum permittivity, Γ1

is the external boundary of Ω, n̂ is the outward normal on Γ1, and ~H is the
magnetic field which can be approximated and, thus, discretized in a similar
way than the previous chapters

~H(x, y, z) = x̂Hx(x, y, z) + ŷHy(x, y, z) + ẑHz(x, y, z). (8.4)

A 3D geometry can present a maximum of 3 symmetry planes. In Fig. 8.1 a
case with a symmetry plane Γ2 is shown as example. As in the case of the
2D problem (see Chap. 7), the exploitation of symmetries can improve the
performances of the VMM by reducing the number f unknowns and, thus, the
computation time and memory consumption or, in the other hand, increasing
the accuracy and the number of modes computed with a fixed number of CPs.
This is achieved by simulating one half, one quarter or one eight of the cavity
for one, two or three symmetry planes, respectively. In order to do that an
additional boundary condition must to be enforced on Γ2n̂ · ~H(x, y, z) = 0 on Γo2 (odd symmetry)

n̂× ~H(x, y, z) = 0 on Γe2 (even symmetry)
(8.5)

where Γo2 is the portion of Γ2 where the odd symmetry is enforced, which
corresponds to an electric wall, whereas where Γe2 is the portion of Γ2 where
the even symmetry is enforced, which corresponds to a magnetic wall, and n̂
is the normal unit vector on Γ2. Note that Γ2 = Γo2 ∪ Γe2. Various problems
must be solved to obtain the whole set of modes. In particular if the domain
presents n symmetry planes (n = 1, 2, 3) , 2n problems must be evaluated.
This permits to consider all the even and odd symmetries that the a mode
can present.

Similarly to the cases of the previous chapters, also the vector Helmholtz
equation (8.1) has an equivalent variational formulation: [6]

F ( ~H) =
1

2

∫∫∫
Ω

(
1

εr
∇× ~H · ∇ × ~H − k2

0µr
~H · ~H

)
dV (8.6)

The resonant modes and their wavenumbers can be found by extreminzing
this expression. See the next sections.
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8.2.2 Discretization of the Variational Problem

To discretize the problem the RBF approximation is used, as done in the
previous chapters. In this case the vector magnetic field is decomposed as
in (8.4). On each CP a RBF is defined. In particular, there are N CPs
and, between them, there are L ICPs, M BCPs, and S symmetry collocation
points (SCPs) that lie on Γ2 (S = So +Se, where So and Se is the number of
SBPs lying on Γo2 and Γe2, respectively), as shown in Fig. 8.1. Each component
of the field is discretized as follows

Hτ (x, y, z) =
N∑
i=1

aτi h
τ
i (x, y, z) (8.7)

where hτi is a RBFs and aτi is the corresponding unknown coefficient.
The Gaussian RBFs are used as in the case of the 2D structures, but now

also the z dependence must be included in the RBFs definition

hτi (x, y, z) = e−ci[(x−xi)
2+(y−yi)2+(z−zi)2] (8.8)

where (xi, yi, zi) is the position of the i-th CP and the shape parameter ci is
defined as in [9]

ci =
ξτi
σh2

(8.9)

where ξi is a scalar value generated randomly within a normal distribution
in the interval (0, 1) for each CP, and σ is a parameter typically selected
by using preconditioning algorithms like the leave-one-out cross validation
(LOOCV) [8]. As will be shown in Sec. 8.3, this step can be avoided by
setting σ = 1. In (8.9), h is the average distance which can be computed in
a similar way than in the 2D case [7] but, this time, on the volume of Ω:

h =
V

1/3
Ω

N1/3 − 1
(8.10)

VΩ is the volume of Ω. By substituting (8.4), (8.7), and (8.8) in (8.6), the
following matrix equation is obtained

F (a) =
1

2

[
aTCa− k2aTTa

]
(8.11)

where the unknown vector a is defined as

a = [ax1 , a
x
2 , . . . , a

x
N , a

y
1, a

y
2, . . . , a

y
N , a

z
1, a

z
2, . . . , a

z
N ]T (8.12)
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and the following matrices have been introduced

C =


C11 C12 C13

CT
12 C22 C23

CT
13 CT

23 C33

 T =


T 11 0 0

0 T 22 0

0 0 T 33

 (8.13)

The sub-matrices Cαβ and T αβ are N ×N and their entries are

C11(j, i) = +

∫∫∫
Ω

1

εr

(
∂hxj
∂z

∂hxi
∂z

+
∂hxj
∂y

∂hxi
∂y

)
dV (8.14)

C22(j, i) = +

∫∫∫
Ω

1

εr

(
∂hyj
∂x

∂hyi
∂x

+
∂hyj
∂z

∂hyi
∂z

)
dV (8.15)

C33(j, i) = +

∫∫∫
Ω

1

εr

(
∂hzj
∂x

∂hzi
∂x

+
∂hzj
∂y

∂hzi
∂y

)
dV (8.16)

C12(j, i) =−
∫∫∫

Ω

1

εr

∂hxj
∂y

∂hyi
∂x

dV (8.17)

C13(j, i) =−
∫∫∫

Ω

1

εr

∂hxj
∂z

∂hzi
∂x

dV (8.18)

C23(j, i) =−
∫∫∫

Ω

1

εr

∂hzj
∂y

∂hyi
∂z

dV (8.19)

T 11(j, i) = +

∫∫∫
Ω

µrh
x
j h

x
i dV (8.20)

T 22(j, i) = +

∫∫∫
Ω

µrh
y
j h

y
i dV (8.21)

T 33(j, i) = +

∫∫∫
Ω

µrh
z
j h

z
i dV (8.22)

The Gaussian RBFs (8.8) are C∞ and their derivatives can be analytically
derived as follows

∂hτi (x, y, z)

∂x
= −2ci(x− xi)hτi (x, y, z) (8.23)

∂hτi (x, y, z)

∂y
= −2ci(y − yi)hτi (x, y, z) (8.24)

∂hτi (x, y, z)

∂z
= −2ci(z − zi)hτi (x, y, z) (8.25)
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8.2.3 Discretization of the Divergence Condition

Substituting (8.4), (8.7), and (8.8) into 8.2) the following matrix expres-
sion is obtained

∇ · ~H =
N∑
i=1

axi
∂hxi
∂x

+
N∑
i=1

ayi
∂hyi
∂x

+
N∑
i=1

azi
∂hzi
∂z

= 0 (8.26)

By applying the Method of Moments (MoM) and by using N RBFs hj as
test functions, the following matrix expression is obtained

Da = 0 (8.27)

which can be partitioned as

D =
[
D11 D12 D13

]
(8.28)

and the Dαβ are all N ×N matrices with the following entries

D11(j, i) =

∫∫∫
Ω

hj
∂hxi
∂x

dV (8.29)

D12(j, i) =

∫∫∫
Ω

hj
∂hyi
∂y

dV (8.30)

D13(j, i) =

∫∫∫
Ω

hj
∂hzi
∂z

dV (8.31)

Note that matrix D has dimension N × 3N and, thus, has a nullity of 2N .
In (8.29)-(8.31) the derivative are computed using (8.23)-(8.25).

8.2.4 Discretization of the Boundary and the Symme-
try Conditions

The considered problem requires the enforcement of the electric wall con-
dition (8.3) on the boundary Γ1 ( see Fig. 8.1). The performances of the
presented algorithm can, anyway, take advantage on the exploitation of sym-
metries in the case these are present in the domain under evaluation. In
particular, a 3D geometry can present n orthogonal planes of symmetry
(n = 1, 2, 3). The problem can, thus, be analyzed by computing the so-
lutions of all the 2n eigenvalue problems arising from all the combinations of
even and odd symmetries. These 2n problems are, in any case, more simple to
evaluate as their size will be approximately 1/2n. Recalling that the the so-
lution of the eigenvalue problem is proportional to the cube of the dimension
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of the matrices, it is possible appreciate the benefits in various situations.
During the design of microwave components this subdivision of the whole
problem (with various ones smaller in size) can be really useful also in the
case in which only some classes of modes are needed.

When only odd symmetries are considered, the BCs on Γ1 and Γ2 are all of
the same type (electric wall condition). In the other cases the magnetic wall
condition must be imposed on the portions of Γ2 where the even symmetry
is considered. In these cases a mixed BC must be enforced on the subdomain
under study (electric wall on Γ1 ∪Γo2 and magnetic wall on Γe2). By applying
the Method of Moments (MoM) and by using, as test functions, a set of
(M + S) RBFs hj centered on the BCPs and SCPs, the following matrix
expression is obtained

Ba = 0 (8.32)

where B can be partitioned as

B =

[
B1x B1y B1z

B2x B2y B2z

]
(8.33)

0 is the null matrix of dimension 2(M +S)× 1, while the Bατ matrices have
dimension (M + S)×N and are defined as follows

B1τ (j, i) =

∫∫
Γ1∪Γo2

n̂ · τ̂ hτi hj dS +

∫∫
Γe2

t̂ · τ̂ hτi hj dS (8.34)

B2τ (j, i) =

∫∫
Γe2

(t̂× n̂) · τ̂ hτi hj dS (8.35)

where n̂ is the normal unit vector, t̂ is an arbitrary unit vector orthogonal to
n̂ (i.e., t̂× n̂ = 0), while the symbol τ̂ stands for the unit vector along x, y,
or z (i.e., τ̂ = x̂, ŷ, ẑ).

8.2.5 Final Problem

Beside the equation (8.11), the DC and BC must be imposed. This re-
duces the degrees of freedom associated to the vector a.

Equation (8.27) states that the vector a can be written as

a = EDx (8.36)

where x is a 2N×1 vector and ED is an orthonormal basis for the null space
of D and is obtained from the SVD. Its dimension is 3N × 2N .
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Introducing (8.36) into (8.32) the the following relation is obtained

BEDx = 0 (8.37)

and thus
x = EBz (8.38)

where z is an unknown vector and EB is an orthonormal basis for the null
space of BED, obtained similarly to the previous step.

Substituting (8.38) and (8.36) into (8.11) and extremizing the resulting
expression (by deriving respect to z), the following eigensystem is obtained

C′z = k2
0T

′z (8.39)

in which the mass and stiffness matrices are

C′ = ET
BE

T
DCEDEB

T ′ = ET
BE

T
DTEDEB

(8.40)

The solution of (8.39) permits to find the vector z and, thus, the starting
unknown through the following change of base

a = (EDEB) z (8.41)

Note that the matrices C′ and T ′ are both real and symmetric.

8.3 Numerical Results

All the simulations described in the following subsections have been con-
ducted with a fixed value of σ = 1 in (8.9). This demonstrates that no
preconditioning is needed, reducing the computation time.

To validate the efficiency and the accuracy of the VMM the results given
by this method have been compared with the theoretical values. When no
analytical solution was available, instead, the comparison has been done with
the results given by ANSYS HFSS as independent validation. All the solu-
tions reported were spurious free thanks to (8.27) and (8.32).

8.3.1 Empty Rectangular Cavity

The first example considered is the rectangular hollow cavity of Fig. 8.2.
This is a useful test bench for the VMM since its analytical solution is well-
known in the literature [9]. Various cases have been simulated to test the
exploitation of the symmetries. In the following the results achieved are
listed.
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²r1
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b

c
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z

Figure 8.2: © 2019 IEEE,© 2020 IEEE– Geometry of the empty rectangular
cavity (a = 10 mm, b = 7.5 mm, and c = 5 mm, εr1 = 1).

� First of all, the whole domain has been considered with 932 CPs. The
simulation lasted 47.3 s to evaluate 500 modes. Those obtained with an
accuracy better than 0.5% were 289, while those calculated with a precision
better than 1% were 370. Fig. 8.3(a) shows the results achieved.

� Than the symmetry respect to the x−axis has been taken into account.
This reduced the size of the problem to one half by computing two cases.
492 CPs were considered. The simulation lasted 10.32 s to evaluate 500
modes. Those obtained with an accuracy better than 0.5% were 286, while
those calculated with a precision better than 1% were 347. Fig. 8.3(b)
shows the results achieved.

� Afterward the symmetries respect to the x− and z− axis have been taken
into account. This reduced the size of the problem to one quarter by
computing four cases. 322 CPs were considered. The simulation lasted
3.62 s to evaluate 500 modes. Those obtained with an accuracy better
than 0.5% were 259, while those calculated with a precision better than
1% were 329. Fig. 8.3(c) shows the results achieved.

� Than the symmetries respect to the x−, y−, and z−axis have been taken
into account. This reduced the size of the problem to one eighth by com-
puting eight cases. 260 CPs were considered. The simulation lasted 3.34 s
to evaluate 500 modes. Those obtained with an accuracy better than 0.5%
were 302, while those calculated with a precision better than 1% were 393.
Fig. 8.3(d) shows the results achieved.

� The last case considered is the exploitation of the symmetries respect to
the x−, y−, and z−axis but with 764 CPs. The simulation lasted 52.6
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Figure 8.3: © 2019 IEEE, © 2020 IEEE– Error in the calculation of reso-
nance frequencies of the empty rectangular cavity (dashed and solid gray line
corresponds to 0.5% and 1%, respectively). (a) Without exploiting symme-
tries, 289 CPs; (b) Exploiting the x−axis symmetry, 184 CPs; (c) Exploiting
the x− and z−axis symmetries, 308 CPs; (d) Exploiting the x−, y−, and
z−axis symmetries, 260 CPs.

s. 1440 modes were computed with a precision better than 0.5%, while
1924 were obtained with a precision better than 1%. Fig. 8.4 shows the
results achieved. As can be seen there is, respect to the first case, a signif-
icant improvement on the number of the calculated modes with a similar
computation time.

All these results are summarized in Table 8.1 where it can be appreciated the
two possible applications of the exploitation of the symmetries. Comparing
the first with the fourth line, it can be seen that it is possible to obtain the
same level of accuracy by reducing the calculation time by 93%. Dually,
comparing the first and the fifth line, it can be noted that the number of
modes calculated increases by a factor of 500%.
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Figure 8.4: © 2019 IEEE,© 2020 IEEE– Simulation of a eight of the domain
in Fig. 8.2, taking into account the symmetry respect to x−, y−, and z−axis
and using 764 CPs (dashed and solid gray line corresponds to 0.5% and 1%,
respectively).

Table 8.1: Summary of the Simulations of the Empty Rectangular Cavity.

Symmetries #CPs CPU #modes #modes Figure
time error<0.5% error<1%

none 932 47.30 s 289 370 Fig. 8.3(a)
x-axis 492 10.32 s 286 347 Fig. 8.3(b)
x-,z-axis 322 3.62 s 259 329 Fig. 8.3(c)
x-,y-,z-axis 260 3.34 s 302 393 Fig. 8.3(d)
x-,y-,z-axis 764 52.60 s 1440 1924 Fig. 8.4

8.3.2 Air-filled circular cylindrical cavity

The second example considered is the cylindrical hollow cavity of Fig. 8.5.
This is another useful test bench for the VMM as, also in this case, the
analytical solution is available [9]. Two cases have been simulated to test
the exploitation of the symmetries. In the following the results achieved are
listed.

� First of all, the whole domain has been considered with 585 CPs. The
simulation lasted 17.1 s to evaluate 500 modes. Those obtained with an
accuracy better than 0.5% were 199, while those calculated with a precision
better than 1% were 239. Fig. 8.6 shows the results achieved.

� The second case considered is the exploitation of the symmetries respect
to the x−, y−, and z−axis by using 680 CPs. The simulation lasted
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Figure 8.5: Geometry of the Air-filled circular cylindrical cavity (d = 10 mm,
εr1 = 1).
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Figure 8.6: © 2019 IEEE, © 2020 IEEE– Simulation of the case in Fig. 8.5,
using 585 CPs (dashed and solid gray line corresponds to 0.5% and 1%,
respectively).

45.0 s. 995 modes were computed with a precision better than 0.5%, while
1342 were obtained with a precision better than 1%. 8.7 shows the results
achieved. As can be seen there is, respect to the first case, a significant
improvement on the number of the calculated modes.
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Figure 8.7: © 2019 IEEE, © 2020 IEEE– Simulation of the case in Fig. 8.5,
exploiting the symmetry respect to x−, y−, and z−axis and using 585 CPs
(dashed and solid gray line corresponds to 0.5% and 1%, respectively).

8.3.3 Half-Filled Rectangular Cavity

The third examples taken into account is the half filled rectangular cavity
shown in Fig. 8.8(a). This structure is analyzed in [6].

The simulation has first been run without exploiting the symmetries and
required 33.48 s to compute 200 modes. The number of CPs used was 812.

The comparison between the obtained result and that given by ANSYS
HFSS is shown in Fig. 8.8(b) for the first 20 modes with the black line. The
HFSS simulation was an eigenmode analysis with 15311 tetrahedra.

Afterward the symmetries respect to the y− and z−axis have been ex-
ploited and the number of CPs considered was 332. The simulation lasted,
in this way, approximately 4 s to obtain about the same accuracy than the
previous case. This can be appreciated in Fig. 8.8(b) (gray line).

Also in this case there is the analytical solution. In Table 8.2 the com-
parison between the analytical formula, the VMM, and HFSS is given.
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Figure 8.8: © 2019 IEEE, © 2020 IEEE– Half-filled rectangular cavity:
(a) Geometry of the domain (a = 5 mm, b = 1 mm, c = 10 mm, εr1 = 1,
εr2 = 2); (b) Relative difference between the VMM and the results given
by ANSYS HFSS on the first 20 modes (black line: VMM analysis without
symmetries; gray line VMM analysis exploiting symmetries).

Table 8.2: © 2019 IEEE, © 2020 IEEE– Error in the calculation of the first
six modes of the half-filled rectangular cavity.

Mode Analytical Meshless Method HFSS
k0 (cm−1) k0 (cm−1) error % k0 (cm−1) error %

TEz
101 3.538 3.5399 0.05 3.5354 0.07

TEz
201 5.445 5.4572 0.22 5.4413 0.07

TEz
102 5.935 5.9939 0.99 5.9938 0.99

TEz
301 7.503 7.4997 0.04 7.498 0.07

TEz
202 7.633 7.6526 0.26 7.6279 0.07

TEz
103 8.096 8.0932 0.03 8.0902 0.07
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8.4 Conclusion

In this chapter the VMM has been extended to deal with the 3D problem
of finding the resonance modes inside a cavity filled with inhomogeneous
material. In this case the theory has been presented in conjunction with
the exploitation of symmetries to improve the performances of the method
reducing the computation time and the memory consumption to obtain a
certain level of accuracy or, similarly, to improve the accuracy keeping the
computational cost constant.

The theory has been validated through the comparison with analytical
formulas when possible or HFSS as independent validation.

Also in the case of finding the 3D resonant modes the VMM permits to
evaluate an high number of modes with a relative low number of unknowns.
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Chapter 9
Conclusion

In this manuscript, the Variational Meshless Method (VMM) has been
presented. It consists in the employment of the meshless method based on
the RBF in conjunction with the variational technique.

This tool permits to simulate various kind of electromagnetic problems
such as

� the 2D scalar problem of finding the eigenmodes inside an hollow waveguide
shielded by a perfect conductor

� the 2D vector problem of finding the dispersion diagram of the modes
inside an inhomogeneous waveguide shielded by a perfect conductor.

� the 3D vector problem of finding the resonant modes inside an inhomoge-
neous cavity shielded by a perfect conductor.

The VMM has been proposed and then generalized step by step to handle
all these cases showing every time the ability to calculate an high number of
modes with a relatively low number of unknowns.

In Chap.4 an authomatic refinement technique has been adopted that
permits to improve the accuracy of the solution by increasing the number of
the CPs without effects on the conditioning of the problem.

All the theory has been validated through various examples by comparing
the results of the VMM with the theory when possible or with HFSS in the
other cases.

In Chap. 5 the VMM has been used in conjunction with the mode match-
ing technique. This is useful in the optimization process when a re-simulation
of the whole structure could be too much time consuming.

Possible extensions of the VMM are:
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� calculating the scattering parameters S also in the case in which a con-
nection port is considered on the boundary of a 3D cavity. This would
permit the simulation of more general microwave circuits (e.g. not in line
circuits),

� considering more general boundary conditions (e.g. absorbing or resistive
boundary conditions).

The presented manuscript is based on the published works listed in Ap-
pendix A.
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In the following an updated list of the publications achieved during this
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A.1 Journals

[J1] V. Lombardi, M. Bozzi, and L. Perregrini,“An improved meshless method
for waveguide eigenvalue problems,” IEEE Microw. Compon. Lett., Vol. 27,
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[C6] V. Lombardi, M. Bozzi, L. Perregrini, ”The Variational Meshless Method:
Theory and Applications,” 2019 GTTi-SIEm Conference, Pavia, 2019, pp. 1-
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[C7] V. Lombardi, M. Bozzi, and L. Perregrini,“Variational Meshless Method:
Exploiting the RBFs in Electromagnetic Problems,”2019 Dolomites Research
Week on Approximation 2019 (DRWA19), Canazei, Sep. 2019.

[C8] V. Lombardi, M. Bozzi, and L. Perregrini, “Analysis of Inhomogeneous
Rectangular Cavities Using the Variational Meshless Method,”48th European
Microwave Conference (EuMC2019), Paris, France, 29 Sep.-4 Oct. 2019.
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Method: an Overview of the Theory and Applications,” 2019 IEEE Asia-
Pacific Microwave Conference (APMC) (invited), Singapore, Singapore, 10-
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[H1] Chair of the oral session: “Advanced Numerical Techniques for Mi-
crowave Circuits ans Scattering Problems,” 1th European Microwave Confer-
ence (EuMCE2019), Prague, Czech Rep., 13-15 May 2019.
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