
UNIVERSITY OF PAVIA

FACULTY OF ENGINEERING

Department of Electrical, Computer
and Biological Engineering

Ph.D. in Electronics, Computer Science
and Electrical Engineering

HPC and Cloud Computing

Candidate
Luigi SANTANGELO
XXXII Cycle

Advisor
Prof. Marco FERRETTI

Academic Year 2018/2019

iii

Abstract

L’utilizzo di infrastrutture cloud, quale alternativa ai tradizionali sistemi on-premise,
è diventato nel corso degli anni una interessante opportunità per eseguire appli-
cazioni commerciali. Le organizzazioni aziendali infatti possono beneficiare dei nu-
merosi vantaggi offerti dalle piattaforme cloud, e questo si traduce in una signi-
ficativa riduzione dei costi e in una maggiore efficienza nella gestione dei sistemi
informativi. Tuttavia, tale affermazione potrebbe non essere vera per le applicazioni
scientifiche, storicamente progettate per essere eseguite su sistemi HPC ad altissime
prestazioni.

Un confronto tra sistemi cloud e infrastrutture ad alte prestazioni non sempre
vede le prime vincenti su queste ultime, soprattutto quando solo le prestazioni e
l’aspetto economico vengono presi in considerazione. Questa affermazione è con-
fermata dai risultati dei test sperimentali, descritti in questa tesi, ottenuti dopo aver
migrato sul cloud due applicazioni scientifiche (chiamate rispettivamente Cross Mo-
tif Search e BloodFlow), basate su due differenti modelli di comunicazione. Test di
prestazioni e scalabilità ottenuti eseguendo le due applicazioni su due infrastrutture
simili (cloud e HPC) hanno mostrato che le due applicazioni si comportano meglio
quando sono eseguite sul sistema HPC, soprattutto per BloodFlow, la cui esecuzione
è fortemente condizionata dall’infrastruttura di rete, essendo basata su un modello
di comunicazione molto intensivo.

Anche sotto l’aspetto economico, il cloud risulta essere non conveniente se con-
frontato con il costo di un sistema HPC. Questo risultato è stato ottenuto confrontando
il costo per eseguire una applicazione generica per un’ora su tre differenti architet-
ture cloud (Google, Amazon, Microsoft) con il costo necessario per eseguire la medes-
ima applicazione per il medesimo tempo su un sistema HPC (nello specifico su Mar-
coni). Sebbene la piattaforma cloud di Google risulta essere più economica rispetto
alle altre due alternative, il costo rimane diverse volte più alto del costo di Mar-
coni, anche se si utilizza un cluster cloud con “prerilasciabilità”, ovvero un cluster
di istanze la cui esecuzione può essere interrotta automaticamente dall’infrastruttura
cloud, senza alcun preavviso, quando altri task richiedono l’accesso a tali risorse. In
definitiva, anche sotto l’aspetto economico, il cloud computing sembra non essere
conveniente per l’esecuzione di applicazioni scientifiche.

Tuttavia un confronto tra sistemi cloud e HPC che prenda in esame solo l’aspetto
economico e di performance è iniquo, perché ci sono moltissimi altri fattori che ren-
dono il cloud vincente sui sistemi HPC. Infatti, quando ad esempio viene preso in
esame il tempo di consegna e la preferenza dell’utente, il panorama sulla conve-
nienza cambia. Un equo confronto tra sistemi cloud e HPC dovrebbe quindi pren-
dere in esame non solo le prestazioni e il costo, ma anche il tempo di attesa dei job, il
numero dei job interrotti dal sistema, il tempo di setup, il tempo di disponibilità del
sistema e la preferenza dell’utente. Ad esempio, i job sottomessi in un sistema HPC
non vengono eseguiti immediatamente ma vengono inseriti in una coda in attesa che
le risorse richieste dal job siano disponibili. Il tempo di attesa di un job nella coda
varia in base a diversi fattori, quali il numero delle risorse fisiche disponibili, il nu-
mero di job già sottomessi ma in attesa di essere eseguiti, e, qualche volta, anche dal

iv

numero di job già eseguiti dall’utente nell’ultimo periodo di tempo o da fattori sim-
ili. Il tempo in cui i risultati saranno disponibili dipende quindi non solo dal tempo
impiegato dal job per completare la sua esecuzione ma anche dal tempo in cui il
job è rimasto in attesa nella coda. Un utente sensibile al tempo potrebbe quindi es-
sere disposto a pagare di più per avere risultati velocemente e quindi l’architettura
da scegliere potrebbe essere differente in base alle sue preferenze. La scelta della
migliore architettura quindi può essere vista come un problema decisionale basato
su molteplici attributi. Un opportuno modello, basato su tali attributi, potrebbe
aiutare i ricercatori a capire quale architettura può essere la migliore in base alla
loro preferenza, il tempo di esecuzione del job, il costo per la sua elaborazione e il
tempo di attesa nella coda. L’architettura selezionata quindi potrebbe non essere
la più performante né la più economica, ma quella che massimizza la funzione di
utilità che descrive il modello.

Dopo aver introdotto il cloud computing e aver esaminato costi, benefici e com-
promessi derivanti dall’utilizzo dei sistemi cloud, questa tesi confronta le prestazioni
di due differenti applicazioni scientifiche eseguite su un sistema HPC e su un clus-
ter di macchine virtuali, entrambi aventi una configurazione simile, nonchè i costi
affrontati per eseguire le due applicazioni sulle due differenti architetture. I risultati
mostrano che entrambe le applicazioni target si comportano meglio sull’architettura
HPC, dove anche i costi risultano essere inferiori, e ciò si mantiene vero anche ot-
timizzando il software attraverso opportune attività di profilazione. Viene inoltre
mostrato come, attraverso la combinazione di parametri applicativi e di rete, sia pos-
sibile costruire un modello analitico per la predizione del tempo di comunicazione,
ma che comunque non tiene conto della contesa delle risorse e della congestione di
rete, rendendo di fatto il tempo stimato sensibilmente inferiore rispetto al tempo
speso dalle applicazioni all’interno delle funzioni MPI. Il modello analitico resta
tuttavia indicativo della complessità del modello di comunicazione. Infine viene
definita una funzione utilità basata sulla funzione di aggregazione geometrica pe-
sata, che prende in considerazione la preferenza dell’utente, il tempo di esecuzione,
il costo di esecuzione, il tempo di attesa stimato e il tempo di avvio di un cluster di
macchine virtuali. Tale modello è stato utilizzato per valutare per quali esecuzioni
delle due applicazioni in esame il cloud risulta essere più conveniente rispetto al
sistema HPC. Per rispondere a tale domanda, è stato necessario ottenere una stima
del tempo medio di attesa dei job sottomessi su Marconi, nonché il tempo di avvio
di un cluster di macchine virtuali. I risultati dimostrano che il modello è robusto ed
esiste inoltre un significativo numero di esecuzioni di entrambe le applicazioni per
le quali l’infrastruttura cloud sembra essere l’ambiente migliore per l’esecuzione di
applicazioni scientifiche.

v

Introduction

Up to a few years ago, scientific applications were designed, developed and built to
be executed just on high performance infrastructures or on-premise systems, which
were, and are, able to guarantee high performances reducing execution time and
increasing application scalability. Since 2006, however, the traditional IT landscape
has started to change. The birth of Cloud Computing brought along several op-
portunities for business users who started replacing their own on premise systems
with the emerging cloud services. As time goes by, cloud infrastructures became
soon more powerful, reliable, affordable and secure, conquering the interest of the
scientific community. Despite the considerable amount of advantages which can be
met relying on cloud computing, there are a lot of barriers which slow down the
transition towards the emerging environment. One of the most relevant factors lim-
iting the transition is the complexity of moving applications. Indeed, moving an
application into the cloud is not effortless and might take a huge amount of time.
Therefore, before starting to move an application into the cloud, it might be worth
having in advance an idea about how the application will behave when run in a
different infrastructure. It is then crucial, for researchers, to understand trade-offs,
costs and benefits related to moving an application into the cloud. Indeed, appli-
cations which are able to run quickly on HPC systems, might perform worse when
run on a different infrastructure, such as in the cloud. There are several factors lim-
iting the performance of an application running in the cloud, such as the virtualized
environment, the architecture of the physical CPU, the amount of RAM, and so on,
but, as highlighted in many works, perhaps the most important factor limiting the
performance of a large amount of scientific applications is the interconnection net-
work. For communication-intensive applications, the network infrastructure may
soon become a bottleneck, reducing performance and scalability.

A rich set of different interconnection technologies (such as Infiniband, Intel
Omni Path or Ethernet) have been developed to reduce the overhead introduced
by the network layer and increase application scalability and performance. All these
technologies are currently used in HPC systems. Indeed, according to the Top500
list (Top500 Release June 2018), 49.4% of the HPC systems uses Gigabit Ethernet
technology to interconnect nodes, 27.8% uses Infiniband, 7.8% uses Omni Path and
the remaining 15% makes use of proprietary or custom interconnection networks.
Cloud service providers try to keep in step with the HPC systems by studying and
introducing new components in their interconnection model, making the cloud en-
vironment more attractive and promising even for running scientific applications,
traditionally executed on HPC systems [1–6]. This is also the case for many bioinfor-
matics applications, and bio-scientists are thinking to move their parallel code to the
cloud infrastructures. As this activity is not effortless and can take a huge amount of
time, before moving an application to the new infrastructure, a deep analysis of the
application and the new infrastructure layer should be done, in order to get insights
about how the application will behave being run in the cloud and how it might be
adapted in order to reduce the impact of the communication. It might be useful to
know in advance the impact of the application communication, because this might

vi

help researchers to get hints and insights about how the application will perform
on a different architecture. Parameters describing the application, the underlying
network infrastructure and the application communication model can be used to
build an analytical model which is able to give a perspective about how much bet-
ter or worse the application might behave being run on such infrastructure. But
performance is not the unique factor to keep into account during the infrastructure
comparison. Indeed, even though a system performs worse than another, it might
be convenient to use it according to a different perspective, such as the economical
aspect or something else. So, a fair comparison between different infrastructures,
such as cloud and HPC, should take into account several factors, and not just the
performance one. Building a proper utility function might help researchers to un-
derstand which platform is the best for running a scientific application. The selected
infrastructure might not be the most performing but that one which maximize the
utility function.

This thesis focuses on the assessment of the cloud infrastructure both from a per-
formance and an economical perspective, to understand whether or not it could be
considered a feasible place for running scientific applications. We start describing a
methodology for predicting the impact of the communication. The key element of
our methodology is an analytical model which is based on application-related and
network-related parameters. The former parameters are gathered using profiling
and tracing tools such as Intel VTune, the latters are instead gathered using a tool
based on the pLogP model. Profiling and tracing activities are also useful to spot
and remove bottlenecks limiting the application performance. An analytical model
describing the application communication model and network infrastructure can be
built by combining both application-related and network-related parameters. The
analytical model describes how the time spent in communication changes when the
concurrent MPI process number grows up and then can be used to get hints and
insights about how the application will perform being run on that infrastructure. To
validate our methodology we used two different applications, named respectively
Cross Motif Search and BloodFlow, based on different communication patterns. We
tried to predict the application behaviour on two different architectures, a real HPC
system, named Marconi, and a cloud infrastructure provided by Google. Before
moving and running the applications on both architectures, the related analytical
model has been built. To validate our model, the applications have been executed
on both architectures and then the predicted behaviour has been compared to the ob-
served one. Results show that applications suffer more when executed in the cloud
and the lessen in performance is due to the increase in the time spent by both ap-
plications inside the MPI functions, and this decline in performance is higher when
the communication among processes gets higher. Although our methodology is not
able to predict the time spent by the application inside the MPI functions, there is
a good correlation between the predicted and the observed behaviour. Results also
show that CPU-intensive applications or based on the master/worker communica-
tion model can be successfully executed in the cloud because the overhead intro-
duced by the virtual infrastructure can be considered negligible. For such applica-
tions, their behaviour is comparable to those observed in a real HPC system. On the
other hand, communication-intensive applications might perform and scale badly
because of the overhead introduced by the network infrastructure layer. Thus cloud
environment is still not suitable for running applications based on more complex
communication pattern, making use of a huge amount of collective operations. Al-
though cloud infrastructure showed a lack in performance for some applications, it
might be worth from the economical perspective. We compared the cost a researcher

vii

should afford for running an application on Marconi and on three different cloud
infrastructures provided respectively by Google, Amazon and Microsoft. Results
show that the cloud infrastructure is not convenient at all for running scientific appli-
cation from the economical point of view either. This is true if just performance and
cost are taken into account, but when the turnaround time comes into account, the
conclusion might be slightly different. As known, indeed, in all HPC systems, each
job before being run is put in a queue until the requiring resources (such as memory
and cpus) are available. The time spent waiting in the queue depends on several
factors, such as the number of jobs which are submitted before and not already com-
pleted, the amount of available resources and the amount of resources required by
each job. If the waiting time in the HPC system is too high, using cloud solutions
might improve the turnaround time, making the cloud infrastructure more appeal-
ing for those users who need results as fast as possible. We decided to go further on
our analysis in order to understand whether or not cloud infrastructure can be con-
sidered as an interesting place when the aim is the optimization of the turnaround
time. Building an evaluation model might help researchers to understand which
platform might be the best depending on the user’s preference, the execution time,
the cost for computing and the expected waiting time in the queue. To build such a
model, a characterization of the workload of a real HPC system needs to be done in
order to understand the job waiting time depending on the job geometry (job size,
amount of memory, maximum runtime), job failure, setup time and maintenance
time. Many previous works [7–14] have already characterized the workload of the
HPC systems, but most of them aimed to evaluate the resource utilization and im-
prove the scheduling algorithms to get the highest system utilization possible. Many
others instead tried to predict the waiting time using machine learning techniques
[15–18]. In our work, instead, we characterize the workload of Marconi in order to
assess the job waiting time. Such time is then introduced in a utility function which
is used to evaluate the best infrastructure (between Marconi and Google Cloud) for
running both target applications (Cross Motif Search and BloodFlow).

This thesis is structured as follows: chapter 1 gives an overview about cloud
computing, describing it from different perspectives and all the factors making the
cloud appealing. The chapter also gives a wide list of advantages and disadvantages
users can run into working with the cloud infrastructure; chapter 2 describes the
HPC system and the virtual cluster built on the cloud infrastructure and used in all
the experiments described later, and assess the network performance of both archi-
tectures using the pLogP model, which is deeply described in Appendix B; chapter
3 describes Cross Motif Search and BloodFlow, the two main applications used for
our tests that have been moved to the cloud infrastructure; chapter 4 gives the results
we got tracing and profiling the applications using several tools. The chapter also
highlights the bottlenecks limiting the application performance; chapter 5 describes
all the activities we did in order to remove bottlenecks and improve the application
performance before moving them to the cloud; chapter 6 summarizes performance
and scalability of both applications running on the native HPC infrastructure; after
describing application-related parameters and network-related parameters, chapter
7 shows how to use those parameters to build the analytical model which can be
used to get insight about how the applications might perform being run on a target
infrastructure; chapter 8 shows the results we got after moving and running the ap-
plications in the cloud and compares the predicted application behaviour with the
real one; as described in chapter 9, although applications based on a simple com-
munication pattern might perform well even in the cloud, HPC system proves to
be the winner, not just from the performance perspective but also even from the

viii

economical perspective. The chapter indeed compares the cost for running the same
application on three different cloud infrastructures and on an HPC system; the chap-
ter then highlights the importance of using other factors for evaluating the goodness
of the cloud infrastructure, such as the turnaround time and the user expectancy.
The chapter also provides a utility function based on the weighted geometric aggre-
gation function where the attributes taken into account by the formula are the user
preference, the execution time, the cost for computing, the expected waiting time in
the queue for HPC system and the virtual instance startup time for the cloud; chap-
ter 10 gives a wide characterization of the workload submitted on Marconi in nine
months. Although, for our purpose, just the waiting time characterization is needed,
the chapter describes the submitted jobs from different perspectives and also makes
a clusterization of the jobs using the k-means method; chapter 11 studies the virtual
instance startup time, which is the time spent by a virtual instance, running on the
cloud infrastructure, to get ready to execute jobs; chapter 12 builds the evaluation
function using the waiting time and the virtual instance startup time, and then ap-
plies the function to evaluate all runs of both applications. In chapter 13 we draw
the conclusions of our research.

ix

Contents

Abstract iii

Introduction v

1 Cloud Computing 1
1.1 The birth of the Cloud . 1
1.2 What is cloud computing? . 1
1.3 Essential characteristics of cloud computing 1
1.4 The service models of Cloud Computing 2
1.5 The deployment model of Cloud Computing 3
1.6 Virtualization techniques . 4
1.7 How Cloud Computing has really changed the life 8
1.8 How interest in Cloud Computing has changed 8
1.9 The cloud service provider . 10
1.10 The price of the cloud . 10
1.11 Advantages and disadvantages . 11

1.11.1 More business, less IT . 11
1.11.2 Pay for what you need . 11
1.11.3 Time to deployment . 12
1.11.4 No upfront costs . 12
1.11.5 Focusing on the business . 14
1.11.6 Scaling for saving costs . 14
1.11.7 No planning . 15
1.11.8 No electricity and location costs 15
1.11.9 Meet the economy of scale . 15
1.11.10 Better utilization of on-premise infrastructure 16
1.11.11 More power for free . 16
1.11.12 Cloud is greener . 16
1.11.13 All that glitters is not gold . 16

1.12 Costs, benefits and trade-offs . 17
1.12.1 Trade-offs from the performance point of view 17
1.12.2 Trade-offs from the economical point of view 18

1.13 Wrapping up . 19

2 HPC and Cloud Infrastructure 21
2.1 Marconi . 21

2.1.1 The architecture . 21
2.1.2 The interconnection network . 22

2.2 Cloud Infrastructure . 22
2.2.1 The architecture . 22
2.2.2 The interconnection network . 23

2.3 Comparing network performance between both infrastructures 24

x

3 Cross Motif Search and BloodFlow 27
3.1 Cross Motif Search . 27

3.1.1 The OpenMP implementation . 28
3.1.2 The hybrid implementation . 28
3.1.3 Communication model in Hybrid-CMS 29
3.1.4 The protein dataset . 30

3.2 BloodFlow . 30
3.3 Communication model . 31

3.3.1 The datasets . 32

4 Profiling and tracing activities 33
4.1 Profiling Cross Motif Search . 33

4.1.1 Spin Time and Overhead Time . 33
4.1.2 Heap Contention . 34
4.1.3 Wasted Time spent in external function 34
4.1.4 Variance in the task computation time 34
4.1.5 MPI Communication . 35

4.2 Profiling BloodFlow . 36
4.2.1 Vectorization . 36
4.2.2 Memory footprint . 36
4.2.3 MPI Communication . 36
4.2.4 Time consuming functions . 40
4.2.5 I/O Bound . 40

5 Application optimization 41
5.1 Cross Motif Search . 41

5.1.1 Introducing the new selection policy 41
5.1.2 Longest Job First: a new policy for selection tasks 42
5.1.3 Application performance after introducing Longest Job First policy 43
5.1.4 Side effects of the Longest Job First policy 43
5.1.5 When LJF is winning . 43
5.1.6 The location-aware implementation 44
5.1.7 Global Load Balancing Factor of the location-aware implemen-

tation . 46
5.2 BloodFlow . 47

6 Application Scalability 49
6.1 Cross Motif Search . 49

6.1.1 Scalability and performance on Marconi 49
6.2 BloodFlow . 49

6.2.1 Scalability and application performance on Stampede and Comet 49
6.2.2 Scalability and application performance on Marconi 50
6.2.3 Factors making Marconi more efficient 53
6.2.4 Understanding the lack in scalability 53

7 Building the analytical model 55
7.1 Cross Motif Search . 57

7.1.1 Application-related parameters . 57
7.1.2 Network-related parameters . 57
7.1.3 Cross Motif Search Analytical Model 58
7.1.4 Speculation of the execution on the cloud 59

xi

7.2 BloodFlow . 60
7.2.1 Application-related parameters . 60
7.2.2 Network-related parameters . 60
7.2.3 BloodFlow Analytical Model . 61
7.2.4 Speculation of the execution on cloud 62

8 Validation 63
8.1 Cross Motif Search . 63
8.2 BloodFlow . 63

9 The evaluation model 67
9.1 Performance and Economical comparison 67
9.2 Building the evaluation function . 68

10 Marconi workload characterization 71
10.1 Jobs and Partitions on Marconi . 71

10.1.1 Submitted, Queued and Started jobs 71
10.1.2 Jobs per Partitions . 71
10.1.3 Jobs and Queues on Marconi A1 73

10.2 Submissions by date and time . 73
10.2.1 Submissions by period of time . 73
10.2.2 Submissions by hours . 73
10.2.3 Submissions by week day . 75
10.2.4 Inter-arrival time . 75
10.2.5 Inter-delivery time . 75

10.3 Job Geometry . 77
10.3.1 Number of required cores . 77
10.3.2 Required core number per queue 78

10.4 Job Execution Time . 78
10.4.1 Job States . 78
10.4.2 Job Elapsed Time in general . 79
10.4.3 Gini index and Lorenz curve . 81
10.4.4 Job Elapsed Time by Queue . 81
10.4.5 Accuracy between Time Limit and Elapsed Time 82
10.4.6 Number of Running jobs . 83

10.5 Job Clusterization . 84
10.6 Job Waiting time . 86

10.6.1 A global perspective . 86
10.6.2 Waiting time by queues . 87
10.6.3 Waiting time by clusters . 87
10.6.4 Correlation between Job Geometry and Job Waiting Time 87
10.6.5 Correlation between Time Limit and Waiting Time 89
10.6.6 Ratio between Elapsed Time and Waiting Time 89
10.6.7 Relative Waiting Time by Queues and by Clusters 91

10.7 Total system Utilization . 93

11 Virtual Instance Startup and Stop Time 95

12 Applying the evaluation model on both applications 97

13 Conclusion 99
13.1 Future works . 100

xii

A Introduction to MPI 101
A.1 Blocking and non-blocking behaviour . 101

A.1.1 Blocking Synchronous Send . 102
A.1.2 Blocking Ready Send . 103
A.1.3 Blocking Buffered Send . 103
A.1.4 Blocking Standard Send . 105
A.1.5 Non-blocking Standard Send . 106

A.2 What you should consider when you work with MPI 107

B Measuring network performance 111
B.1 Some analytical models . 112
B.2 PLogP model . 113
B.3 PLogP Drawback . 113
B.4 Extending pLogP model for collective operations 114
B.5 PLogP models for collective functions . 114
B.6 Working with heterogeneous architectures 115

xiii

List of Figures

1.1 Full virtualization architecture . 5
1.2 Paravirtualization architecture . 6
1.3 Operating system level virtualization architecture 6
1.4 Application level virtualization architecture 7
1.5 An example of storage virtualization . 7
1.6 An example of network virtualization . 8
1.7 Number of times the word “Cloud Computing” has been searched for . 9
1.8 Regions where the word “Cloud Computing” has been searched for . . . 9
1.9 The cloud infrastructure fits the business growth better than on-premise

infrastructure . 12
1.10 With the cloud infrastructure, consumers can buy what really needed . 13
1.11 Comparing the time-to-deployment with and without the cloud 13
1.12 Traditional IT infrastructure requires large upfront investment 14
1.13 Cloud computing can save money . 15

3.1 Secondary structure similarities found by CMS 28
3.2 Communication model in Hybrid-CMS 29

4.1 Time spent by CMS in serial code and inside MPI functions 35
4.2 Time spent by CMS in serial code and inside MPI functions 35
4.3 Time spent by BloodFlow inside and outside MPI functions 39

5.1 Cross Motif Search scalability comparison 42
5.2 Cross Motif Search scalability comparison after introducing Longest Job

First policy . 43
5.3 Number of protein pairs received by each MPI process before introduc-

ing LJF . 45
5.4 Total number of intranode and internode messages sent by CMS master

before introducing LJF . 45
5.5 Number of protein pairs received by each MPI process after introducing

LJF . 46
5.6 Total number of intranode and internode messages sent by CMS master

after introducing LJF . 46
5.7 Completion time of the 24 MPI processes used to run CMS in the location-

aware implementation . 47

6.1 Cross Motif Search Scalability on Marconi 50
6.2 BloodFlow Scalability on Stampede . 50
6.3 BloodFlow Scalability on Comet . 51
6.4 BloodFlow Scalability on Marconi . 51
6.5 BloodFlow Scalability all three HPC systems 52
6.6 BloodFlow Scalability on Marconi using the small dataset 52

xiv

8.1 Comparing Cross Motif Search Scalability on Marconi and on Cloud
Infrastructure . 64

8.2 Comparing BloodFlow Scalability on Marconi and on Cloud Infrastruc-
ture . 64

8.3 Time spent inside and outside MPI functions by BloodFlow 65

10.1 Amount of jobs started on each Marconi partition 72
10.2 Amount of jobs started in the queues of Marconi A1 partition 73
10.3 Amount of jobs per days submitted on Marconi 74
10.4 Amount of jobs per hours submitted on Marconi 74
10.5 Amount of jobs per weekday submitted on Marconi 75
10.6 Inter-arrival time of the jobs submitted on Marconi 76
10.7 Inter-delivery time of the jobs submitted on Marconi 76
10.8 Inter-delivery time of the jobs submitted on Marconi 77
10.9 Number of required concurrent cores . 77
10.10 Jobs requiring less than or equal to a fixed CPU number 78
10.11 Number of cores required by processes belonging to the queues 79
10.12 Completed jobs grouped by state . 79
10.13 Cumulative Job Elapsed Time . 80
10.14 Job Elapsed Time . 80
10.15 Lorenz curve . 81
10.16 Elapsed Time per Queue . 82
10.17 Accuracy between Time Limit and Elapsed Time 82
10.18 Accuracy by Queue between Time Limit and Elapsed Time 83
10.19 Running Jobs per day . 83
10.20 Job Clusterization . 84
10.21 Cumulative Job Waiting Time . 86
10.22 Job Waiting Time distribution . 86
10.23 Job Waiting Time per Queue . 87
10.24 Job Waiting Time per Cluster . 88
10.25 Correlation between Required Cores and Job Waiting Time 89
10.26 Correlation between Time Limit and Job Waiting Time 90
10.27 Cumulative Relative Waiting Time . 90
10.28 Cumulative Relative Waiting Time per Queue 91
10.29 Cumulative Relative Waiting Time per Cluster 91
10.30 Number of cores concurrent occupied by running jobs 93

11.1 Virtual Instance Startup Time . 96
11.2 Virtual Instance Stop Time . 96

12.1 Preferred architecture for running Cross Motif Search 98
12.2 Preferred architecture for running BloodFlow 98

A.1 An example of Blocking Synchronous Send 103
A.2 An example of Blocking Ready Send . 104
A.3 An example of Blocking Buffered Send 104
A.4 An example of Blocking Standard Send with message smaller than the

threshold . 105
A.5 An example of Blocking Standard Send with message larger than the

threshold . 105
A.6 An example of Non-Blocking Standard Send with message smaller than

the threshold . 106

xv

A.7 An example of Non-Blocking Standard Send with message larger than
the threshold . 107

B.1 pLogP parameters . 114
B.2 An example of the Broadcast function . 115

xvii

List of Tables

1.1 Worldwide public cloud service revenue forecast (billions of U.S. Dollars). 9
1.2 Cost per month for buying a cluster of four different virtual instances

provided by three different service providers. 10

2.1 PLogP Parameters for Marconi Interconnection Network. 23
2.2 Google Cloud Virtual Instances configurations. 23
2.3 PLogP Parameters for Cloud Interconnection Network. 24

4.1 Mean number of times each function has been invoked by BloodFlow
running on Marconi on different runs. 37

4.2 Time (in seconds) spent by BloodFlow running on Marconi inside each
MPI function on different runs. 38

4.3 Mean message size (in bytes) sent by each process running on Marconi
on each single MPI operation. 39

6.1 HPC system configuration comparison. 51

7.1 Application-related parameters required to build the analytical model. . 56
7.2 Application-related parameters required to build the Cross Motif Search

analytical model. 58
7.3 Network-related parameters gathered on Marconi. 58
7.4 Network-related parameters gathered on Google Cloud. 59
7.5 PLogP model for collective operations used by BloodFlow. 60
7.6 Amount of intranode and internode communication for each MPI func-

tion on Marconi. 61
7.7 Predicted communication Time in seconds for different runs of Blood-

Flow on Marconi . 62
7.8 Predicted communication Time in seconds for different runs of Blood-

Flow on Google Cloud . 62

9.1 Cost per hour for running a scientific application on three different
cloud infrastructures. 67

10.1 Submitted, queued and started jobs on Marconi. 72
10.2 Covariance Coefficient Value for each cluster. 85
10.3 CPU number interval and Elapsed Time Interval for each cluster. 85
10.4 Job Waiting Time per Queue. 87
10.5 Job Waiting Time per Cluster. 88
10.6 Relative Job Waiting Time per Queue. 92
10.7 Relative Job Waiting Time per Cluster. 92
10.8 Marconi’s interruptions. 94

12.1 Cluster where each execution of Cross Motif Search and BloodFlow
belongs to. 97

xviii

A.1 MPI Sending and Receiving calls. 102

B.1 PLogP models for some collective functions. 116

1

Chapter 1

Cloud Computing

1.1 The birth of the Cloud

The term Cloud Computing was first used on 2006, August 24th, when Amazon, one
of the most famous online trading company, announced, with a post on his website
[19], a new service called Elastic Compute Cloud that was able to provide resizeable
computing capacity in the cloud. The birth of this service opened a new paradigm in
computer science, allowing users to obtain and configure computation and storing
capacity in an automatic way, without any (or at least with a small) human interac-
tion, and paying just for what was really used by consumers. Since then, customers
all over the world started to exploit the Amazon’s Infrastructure for running their
own applications such as simulation and web hosting. At same time, many other
companies started offering cloud services and the request of cloud computing re-
sources grew more and more. Although the term was coined in 2006, it was officially
defined only five year later.

1.2 What is cloud computing?

To describe Cloud Computing, we will use the official definition provided by the
National Institute of Standards and Technology (NIST), the U.S. government entity
that formally describes standards. According to its definition, released in Septem-
ber 2011, [20], Cloud Computing is a model for enabling ubiquitous, convenient,
on-demand network access to a shared pool of configurable computing resources
(e.g. networks, servers, storage, applications and services) that can be rapidly pro-
visioned and released with minimal management effort or service provider interac-
tion.

The NIST definition lists five essential characteristics of cloud computing: on-
demand self-service, broad network access, resource pooling, rapid elasticity or ex-
pansion and measured service. It also lists three service models (software, platform
and infrastructure) and four deployment models (private, community, public and
hybrid) that together categorize ways to deliver cloud services. To better under-
stand Cloud Computing, all characteristics, service and deployment models will be
described. A good description about cloud computing, issues and challenges can be
found in [21].

1.3 Essential characteristics of cloud computing

According to the National Institute of Standards and Technology definition, Cloud
Computing is characterized by five important factors:

2 Chapter 1. Cloud Computing

1. On-demand Self Service: a consumer, having a specific need, can get con-
figurable resources, such as CPU time, network, storage, software, in an au-
tomatic way, without any human interaction with the provider of these re-
sources;

2. Broad Network Access: all resources are delivered over the network and con-
sumers can get access using the preferred platform, such as computers, lap-
tops, PDAs, mobile phones;

3. Resource Pooling: all resources are managed in a shared pool and are de-
livered to the consumers depending on their needs. The physical resources
become invisible but at the same time they appear to be infinite from the con-
sumer perspective. Users do not have either control or knowledge about where
their data are stored or computed. The physical resources can be shared among
different consumers;

4. Rapid Elasticity: consumers can scale-up and down their cloud infrastructure
whenever they want. This approach reduces the upfront costs. Indeed, con-
sumers can start with a small resource configuration and scale up according
to the business growth, increasing hardware resources only when there is an
increase in their needs;

5. Measured Service: Cloud computing is based on the pay-per-use model. Con-
sumers pay just for what they really use (for example processors per hours or
storage per days). Providers make use of an appropriate mechanism to mea-
sure resource usage for each consumer.

1.4 The service models of Cloud Computing

In its original definition, from the service model perspective, Cloud Computing was
classified in just three classes, but many others have been added lately although the
official definition has not been modified yet. According to the original definition,
the three service models are:

1. Software as a Service (SaaS): consumers can just use applications that are de-
ployed on a hosting environment. The applications can be accessed through
the network using different clients, such as browsers, PDAs, and so on. Con-
sumers do not have any control on the infrastructure layer, such as network,
server, operating system, storage. Sometimes, just small application configu-
ration settings can be modified. Examples of Software as a Services include
Google Gmail and Google Docs;

2. Platform as a Service (PaaS): consumers can use a cloud platform where ap-
plications can be developed and deployed. The platform supports the entire
life-cycle and provides programming languages, libraries, services and tools
which can be used by developers. No control on the underlying infrastructure
(network, server, operating system, storage) is allowed, just a few application-
hosting configuration can be set up but the consumers keep the complete con-
trol over the deployed applications. An example of Platform as a Service is
Google AppEngine;

3. Infrastructure as a Service (IaaS): consumers can directly use the cloud infras-
tructure such as processing, storage and network. They can also create and

1.5. The deployment model of Cloud Computing 3

destroy all instances they need for deploying and running their own appli-
cations. Managing the underlying cloud infrastructure is usually not allowed,
but customers can have control over the operating system and the storage, with
a limited control over the networking component. Examples of Infrastructure
as a Service are Amazon EC2 and Google Compute Engine.

As Internet has become more reliable and faster, cloud providers started to offer
new technology as cloud services. All these services are identified as Xaas (Anything
as a service), and can be listed as follows even though the list may not be exhaustive
because other new models might be defined in the future:

4. Data Storage as a Service (DaaS): consumers store their own data on the cloud.
Typical storage interfaces are used, such as File Systems. Examples of Data
Storage as a Service include Google Drive;

5. Blockchain as a Service (BaaS): this model represents those platforms that
include tools for creating blockchain applications;

6. Business Process as a Service (BPaaS): typical business processes, such as Hu-
man Resource functions, Procurement functions and Advertising functions,
are automated and provided by cloud infrastructure. A company can focus on
its own business objectives instead of managing technology and services that
are behind the business service. This can help consumers to save their time
focusing on their business instead of wasting time in other activities which are
outside the company business vision;

7. Database as a Service (DBaaS): consumers can store and retrieve their data to
and from a database, without setting up physical hardware or software. All
administrative tasks are managed by the service provider. Usually consumers
do not know where their data are stored or computed. Examples of Database
as Service are Google BigTable, Apache HBase and Amazon S3;

8. Function as a Service (FaaS): this is an emerging new model which is chang-
ing the way users interact with cloud services. In this model, consumers can
use a platform where application functionalities can be developed and run on,
without building the infrastructure needed to develop and launch an applica-
tion. Consumers then pay depending on the number of times the functions
have been invoked or the time spent to compute the functions. This kind of
model is usually described as Serverless Computing. Examples of Function as
a Service are OpenLambda or IronFunctions.

1.5 The deployment model of Cloud Computing

From the deployment model perspective, Cloud Computing can be classified in 4
different types:

1. Public Cloud: in this model, cloud services are provided by private compa-
nies, called service providers, which allow consumers to use the physical in-
frastructure using one or more service models. Popular public service providers
are Amazon, Google and Microsoft;

2. Private Cloud: sometimes an organization might decide to build its own cloud
infrastructure. Usually this happens for several reasons:

4 Chapter 1. Cloud Computing

(a) To optimize the utilization of existing in house resources;

(b) To reduce the data transfer among local IT infrastructure and public cloud;

(c) To keep its data safe, making the data not accessible by anyone.

In this model, the organization which owns the cloud infrastructure is respon-
sible for the management, and the services are usually not available to other
companies;

3. Community Cloud: sometimes, some organizations having their own physi-
cal infrastructure decide to join together, building a cloud environment on all
physical infrastructures. All the different organizations joined together main-
tain and share the same cloud infrastructure which is usually not accessible by
not members;

4. Hybrid Cloud: this model is a combination of two or more deployment mod-
els (private, public and community). Integration among different clouds is
done by using connectors in order to optimize data exchange across different
platforms.

1.6 Virtualization techniques

In the previous paragraph, many interesting cloud features have been described.
Briefly, we said that consumers can get all the resources they need, through the net-
work and in an automatic way, without any human interaction and without taking
care about the amount of the required resources. Furthermore, consumers can scale
up and down the resource configuration in real time, paying according to what is re-
ally used. Behind all these features there is just one word: virtualization. To achieve
the shrinking and growing of resources, indeed, physical infrastructure has to be
virtualized. Said in few words, virtualization is a way to hide the physical charac-
teristics of computing resources from the way of which other systems, applications
or end users interact with those resources.

There are several ways to virtualize the IT infrastructure, depending on the level
where the virtualization is applied:

• Full Virtualization: Figure 1.1 shows the architecture of full virtualization.
The horizontal blue boxes at the bottom represent the physical system and the
operating system (host OS) running above it. The vertical orange boxes, in-
stead, represent all the traditional applications running on the host. One of
these applications (on the right side), is the hypervisor, which is a component
used to hide the underlying physical infrastructure. The hypervisor hides the
host operating system and creates a virtual hardware layer where a new oper-
ating system, named Guest OS and well-known as Virtual Machine or Virtual
Instance, can be executed on. The guest operating system is unaware that it is
working on a virtual hardware layer. Indeed, as traditional operating systems,
also the Guest OS exploits resources, such as CPU, memory, network inter-
face, persistent disk, but instead of being real, such resources are virtual and
are mapped into the physical resources. All interactions among Guest OS and
the hardware are intercepted by the Hypervisor and translated to the physical
hardware. In this approach, the Guest Operating System is completely isolated
and cannot interact in any way with the physical hardware. The Guest OS is-
sues commands to what it thinks is actually hardware. All virtual devices are

1.6. Virtualization techniques 5

FIGURE 1.1: Full virtualization architecture

implemented via software, and this is the main reason why this virtualization
technique is not able to achieve good performance;

• Paravirtualization: In order to improve performance of Full Virtualization, in
the paravirtualization approach (Fig. 1.2) some more expensive functions is-
sued by the Guest Operating System can be directly executed on the physical
hardware instead of being executed on the virtual hardware. The Host OS
has direct access to the hardware while the Guest OS has limited access to the
hardware. In the paravirtualization, the guest operating system needs to be
aware that it is working on a virtualized environment. It can use traditional
calls to interact with the hypervisor and privileged hypercalls to interact with
the physical hardware. To achieve this aim, guest operating system needs to be
modified (hypercalls need to be available to the guest operating system) and,
of course, unmodified operating systems cannot work properly in a paravirtu-
alized environment;

• Hardware-assisted Virtualization: both full virtualization and paravirtualiza-
tion techniques are totally or partially implemented via software. In order to
reduce the overhead introduced by such virtualization methods, since 2005
Intel and AMD started producing CPUs with a new extension of the x86 archi-
tecture, called Intel VT-x and AMD-V, respectively. This extension makes the
CPU able to support virtualization natively reducing the overhead, increasing
performance and reducing the number of changes needed in the guest operat-
ing systems;

• Operating System Level Virtualization: this method is also well-known as
Container-based Virtualization. Figure 1.3 shows the architecture of the Op-
erating System Level Virtualization. On the Host operating system, running

6 Chapter 1. Cloud Computing

FIGURE 1.2: Paravirtualization architecture

FIGURE 1.3: Operating system level virtualization architecture

on the physical hardware, several applications are running (the orange verti-
cal boxes on the left side). A special application, named Container Daemon, is
running as well on the host OS. The daemon communicates with the container
where several other applications are running (the light orange vertical boxes
on the right side). Applications running inside the container are isolated, and
they cannot directly interact with other applications running on the host. The
container may look like a real computer from the point of view of programs
running on it. In this approach, the virtualization layer runs on the host oper-
ating system and then containers are lighter than the Virtual Instance. Exam-
ples of applications which can be used to achieve such kind of virtualization
are Docker and Singularity;

• Application Level Virtualization: this virtualization (Fig. 1.4) is similar to the
previous one, but in this solution just one application can be put on its own
environment. Different applications work on different environments and all
environments are isolated to each others. Applications usually do not interact
and conflict with each others and are usually accessible through the network.
An example of application used to virtualize applications is Citrix.

1.6. Virtualization techniques 7

FIGURE 1.4: Application level virtualization architecture

FIGURE 1.5: An example of storage virtualization

The benefits of virtualization are widespread and well-known today and the
techniques described above are just related to server virtualization, which is the
most familiar type of virtualization. However, virtualization is not just related to
servers, but also network, storage and more can be virtualized.

• Storage Virtualization: this virtualization hides the physical storage architec-
ture to users and applications running on systems making use of such storage
systems. Figure 1.5 shows an example of the storage virtualization. On the left
side, the traditional disk mapping is shown. In this architecture, three differ-
ent servers (green, orange and blue) use three different volumes (having the
same colours). Each volume is equipped with a different number of physical
disks. In this configuration, users working on each server need to be aware
about the physical resources they are using. A user working on the blue host
cannot use disks which belong to the orange volume and the same happens for
the others. By virtualizing the storage, users actually do not know where their
data are stored. Indeed, all users can use all the physical disks belonging to the
whole architecture. The new storage management yields better performance
as read and write operations are spread across all physical volumes and can be
executed in a parallel way, boosting the performance of the systems;

• Network Virtualization: this technique can simplify the network manage-
ment. As shown in Fig. 1.6, the physical network infrastructure is virtual-
ized in two different virtual networks (red and blue). This allows the net-
work administrator to define rules and policy which have to be satisfied when
packages are sent across the network. For example, although router C and E

8 Chapter 1. Cloud Computing

FIGURE 1.6: An example of network virtualization

are physically interconnected to each others, in the blue virtual network both
routers cannot send packets directly but the messages need to follow a differ-
ent route (through routers A and B). This configuration allows the network
administrator to split the physical network in subnets and enable or disable
communications among authorized or unauthorized nodes belonging to dif-
ferent subnets.

1.7 How Cloud Computing has really changed the life

The way to work for computer science engineers has deeply changed after intro-
ducing cloud computing, and it is still changing because new technologies and new
services are coming up, bringing along dramatic impact on how we work, live and
entertain ourselves. Let’s suppose we want to develop an application for validating
credit cards. In the traditional enterprise computing, the computer science engineer
needs to procure and buy a server enough performing for running the application,
pay for the purchase, bring it on site, configure it, setup a network connection, build
and deploy the application, than manage the whole infrastructure; after introducing
Cloud Computing things got different. Indeed, computer science engineer needs
just to buy the virtual server with a minimal configuration, build and deploy the ap-
plication, pay for what he really uses, and finally manage the virtual infrastructure.
Serverless computing has changed again the computer science engineer job because
it is just needed to buy the service, build and deploy the application and pay for the
function calls. Developers and operators do not need to spend time setting up and
tuning auto scaling policy or systems, and all system activities are managed by the
service provider. Consumers then can really focus on what they are able to do bet-
ter, leaving to the service provider all those activities which are behind the business
objectives.

1.8 How interest in Cloud Computing has changed

The interest in Cloud Computing is growing more and more. Figure 1.7 indeed
shows the number of searches for “cloud computing” made using Google Search
Engine. As represented by the blue line, since October 2006, there has been a signifi-
cant rising in the number of times the words “Cloud Computing” has been searched
for. Figure 1.8, instead, shows the regions from where the words have been searched
the most [22].

1.8. How interest in Cloud Computing has changed 9

FIGURE 1.7: Number of times the word “Cloud Computing” has been
searched for

FIGURE 1.8: Regions where the word “Cloud Computing” has been
searched for

Furthermore, all forecasts predict an interesting growth in the number of en-
terprises which decide to move their own applications and infrastructures into the
cloud by 2020 with an important rising in the revenue of many cloud service providers.
According to Gartner’s forecast [23, 24], the worldwide public cloud services market
is projected to grow 17.49% in 2019 to total $ 214.3 billions and the growth might rise
up over 81% in 2022 when the worldwide public cloud service revenue forecast is $
331.2 billions (Tab. 1.1).

TABLE 1.1: Worldwide public cloud service revenue forecast (billions
of U.S. Dollars).

2018 2019 2020 2021 2022

Business Process Services (BPaaS) 45.8 49.3 53.1 57.0 61.1
Application Infrastructure Services (PaaS) 15.6 19.0 23.0 27.5 31.8
Application Services (SaaS) 80.0 94.8 110.5 126.7 143.7
Management and Security Services 10.5 12.2 14.1 16.0 17.9
System Infrastructure Services (IaaS) 30.5 38.9 49.1 61.9 76.6

Total 182.4 214.3 249.8 289.1 331.2

10 Chapter 1. Cloud Computing

TABLE 1.2: Cost per month for buying a cluster of four different vir-
tual instances provided by three different service providers.

Amazon Google Microsoft

Type C5d.9x Large N1-standard-32 D32 v3
Location London London London
Instance Number 4 4 4
Operating System RHEL RHEL RHEL
Virtual CPUs per Instance 36 32 32
RAM per Instance 72 GB 120 GB 128 GB
SSD HD Capability 900 GB 375 GB 384 GB

Cost per Month 6,441.60 $ 4,526.57 $ 6,069.84 $

1.9 The cloud service provider

To satisfy the rising cloud service demand many companies nowadays offer to their
customers a huge broad of services, from software as a service to anything as a ser-
vice. One of the leader in the cloud service field is doubtless Amazon, the well-
known company which provided the first cloud service. But the list is full of other
companies, such as Google, Microsoft, IBM, VmWare, Red Hat, Adobe and so on.

1.10 The price of the cloud

Cloud services are based on the pay-per-use model. This allows consumers to pay
for what is really used, depending on the amount of resources required and for the
time the consumers use those services. Pay-per-use allows consumers to easily adapt
the changing business needs without overcommitting budgets. The consumer only
pays for the services he consumes, and once he stops using them, there are no ad-
ditional costs or termination fees. The payment model the cloud is based on is not
new, as it is similar to what citizens pay for utilities like water and electricity.

Different service providers use different functions to compute the price to be
paid by the consumers, such that the same service might have different costs when
provided by different service providers. Table 1.2 shows the cost paid monthly by
a hypothetical consumer making use of a specific resource configuration. The ta-
ble shows the price per month that a customer should pay to use a cluster of four
virtual instances, each of them having a specific configuration, provided by three dif-
ferent service providers. The instance configurations are slightly different because
all scenarios represent one of the predefined configurations made available by each
different service providers. Costs are updated at November 2018.

To encourage the usage of cloud services, many service providers offer free cred-
its for academic purpose. Students can use, after registration, all the provided cloud
services, giving them the ability to learn about the cloud platform. Several providers
also offer education credits. University faculty can apply for grants for their com-
puter science courses.

To have an idea of how much a consumer should pay to get cloud resources,
many service providers usually make available tools for computing the price for a
fixed configuration. For Amazon, Google, IBM and Microsoft, the tools can be found
at [25–28]. Cloudorado [29] has instead developed and made freely available a price

1.11. Advantages and disadvantages 11

comparison service of several cloud computing providers. It could be also referred
as a price calculator for multiple cloud hosting providers, since the comparison is
performed by calculating price for individually set server needs. It currently focuses
on Infrastructure as a Service (IaaS) providers.

1.11 Advantages and disadvantages

Deciding whether or not moving an application or an infrastructure to the cloud is
not an easy task to deal with, and it should be taken into account carefully. Cloud
environments indeed can bring along several advantages but also some drawbacks.
Before moving toward to the cloud solution, managers need to understand whether
or not it is worth doing it. In the following, many important advantages and disad-
vantages are described.

1.11.1 More business, less IT

The business growth of a company is not always straight rising up in time, but it
goes up and down according to the market request. This is much truer for those
startups which are coming into the global market. Thus, the on-premise IT infras-
tructure needs to be powerful enough to be able to keep step with the business and
cope with sudden market demands. To avoid losing customers and money, in the
traditional IT, companies usually buy hardware and software more powerful than
what is really needed. For the most of the time, however, such large infrastructure
is underutilized or not utilized at all. It is easy to notice that from the company per-
spective this is just a cost. Figure 1.9 describes this scenario. The black line represents
the demand amount in a specific time. According to the fluctuations in the market,
the demand varies in time. To cope with the sudden rising of the predicted demand,
the capacity of the traditional hardware, represented by the black straight line needs
to be much larger than what is really needed. This requires a large capital expendi-
ture. Furthermore, if the market does not respect the prediction, all the purchased IT
infrastructure becomes soon a fixed asset no more able to build wealth but rather a
cost for the company. Worse yet, if the business growth prediction is pessimistic and
the actual demand breaks out, the capacity of the traditional IT might not be able to
deal with such requests, leading to loss of customers and money. With the cloud, in-
stead, companies can save their money avoiding buying unnecessary infrastructure.
Thanks to its elasticity, the cloud fits better market demands (blue line) avoiding the
purchase of unnecessary infrastructure. IT managers indeed can start with a small
configuration and then enlarge it according to the business growth.

1.11.2 Pay for what you need

As said before, in the traditional IT infrastructure, both hardware and software, after
being bought, need to be scaled up according to the predicted business growth. To
deal with rising demand, companies need to buy, right from the start, an amount of
licences larger than that really needed. When the demand grows more, the amount
of available assets might not be enough to fulfil the demand anymore. The existing
infrastructure then needs to be scaled up. As time goes by, however, the asset end-of-
life time approaches more and more, making not convenient anymore to buy more
licences for the existing infrastructure. The infrastructure becomes not able to fulfil
the demand with an unavoidable loss in customer and money. Figure 1.10 shows
this scenario. Fitting better to the demand and thanks to the pay-per-use model,

12 Chapter 1. Cloud Computing

FIGURE 1.9: The cloud infrastructure fits the business growth better
than on-premise infrastructure

cloud can reduce the cost for buying licences and the company just pay for what it
really needs.

1.11.3 Time to deployment

Cloud can also reduce the time to put a new infrastructure on line. Using cloud
solutions, indeed, the total time to deployment is reduced because some traditional
activities, such as the procurement, are dropped and many others are reduced, such
as installation, configuration and test. Figure 1.11 compares the time to deployment
spent with the cloud and without the cloud. With a cloud solution, time to deploy-
ment is heavily reduced allowing the company to deliver products in the market
sooner. Cloud computing also enables faster comparison among all possible solu-
tions from different providers.

1.11.4 No upfront costs

Being based on the on-demand model, cloud infrastructure allows dropping off the
upfront costs. In the traditional IT, indeed, before starting their own business, or-
ganizations need to face up a large upfront investment for purchasing all the re-
quired hardware and software infrastructure, needed to support the business. The
amount of infrastructure an organization should buy is usually predicted with a de-
tailed capacity planning. This infrastructure is provisioned with fixed capacity and
its amount is always higher than the predicted market trend (Fig. 1.12 With cloud
solution instead, managers can just buy what they really need to start the business.
Fitting better the market trend, cloud solution can drop the upfront costs off.

1.11. Advantages and disadvantages 13

FIGURE 1.10: With the cloud infrastructure, consumers can buy what
really needed

FIGURE 1.11: Comparing the time-to-deployment with and without
the cloud

14 Chapter 1. Cloud Computing

FIGURE 1.12: Traditional IT infrastructure requires large upfront in-
vestment

1.11.5 Focusing on the business

In the traditional IT, all the activities related to the management of the IT is in charge
of the business himself. Hardware and software need to be bought, managed, up-
dated and replaced when needed. A proper infrastructure management requires
knowledge which is often out of the business aim. For many companies, indeed,
technology is just used to support the production and not as the business itself. To
deal with IT requires enough human resources and these need to be hired and prop-
erly trained before being able to manage the infrastructure. With cloud solutions,
instead, all the IT management is in charge of the cloud service provider, allowing
the manager to focus on its own business instead of spending time and money on
something that is out of the business itself.

1.11.6 Scaling for saving costs

Companies using cloud services can shrink and stretch the cloud infrastructure ac-
cording to the predicted business growth, but such scaling operations can also be
made with a more fine-grain frequency, allowing reducing further the cost faced up
by the company. Usually the customer demand is not always uniform making the
systems well utilized during peak period but idle most of the times when the peak
period is over. Fluctuations may occur seasonally, monthly, weekly or even daily. If
the IT capacity stays the same along all the period, such as when the organization
makes use of the traditional IT, since the entire infrastructure is running all days in a
week, the company wastes resources during the normal days. For making cloud so-
lutions more appealing, service providers have developed an auto scaling solution
which is able to balance this problem by increasing or decreasing capacities auto-
matically depending upon a pattern. Figure 1.13 shows how it is possible to reduce
by 25% off the cloud cost using an auto scaling solution.

1.11. Advantages and disadvantages 15

FIGURE 1.13: Cloud computing can save money

1.11.7 No planning

A physical infrastructure is not usually bought straight away, but the procurement
business process follows a consolidate sequence of phases which start from the plan-
ning and end with the good purchase. In the traditional IT, then, the purchase of the
IT needs to be carefully planned enough time in advance. Being based on virtual-
ization, from the customer perspective, cloud infrastructure instead appears to be
infinite and immediate, and it can be acquired and released whenever the customer
wants and without any planning: the resources seem to be always available.

1.11.8 No electricity and location costs

After being bought, the physical infrastructure needs to be stored. Usually compa-
nies reserve one or more rooms to be used as data centre, which need to be equipped
with proper solutions to keep all servers safe and secure. Data centre is not a single
thing, but rather, a conglomeration of elements, including servers, storage subsys-
tems, networking switches, routers and firewalls, as well as the cabling and physical
racks used to organize and interconnect the IT equipment. A data centre must also
contain an adequate infrastructure, such as power distribution and supplemental
power subsystems, including electrical switching; uninterruptible power supplies;
backup generators and so on; ventilation and data centre cooling systems, such as
computer room air conditioners. Making use of cloud solutions, organizations get
rid of all costs related to building and maintaining the data centre as well as the costs
related to energy consumption and those related to safety and security practices.

1.11.9 Meet the economy of scale

Building and maintaining a data centre is not costless. Amortized plants, amortized
IT assets, operating and energy are typical costs an organization may have . Some
of these costs are always constant and do not change frequently in time. Others are
instead variable and increase depending on several factors, such as IT load, number
of racks, average rack density or data centre square footage. Others, finally, might
instead decrease, in proportion, depending on other factors. For example, a sys-
tem administrator managing hundreds of systems will hardly get a salary which is
thousands of times higher than another system administrator managing tens or even

16 Chapter 1. Cloud Computing

fewer systems. Based on this observation, managing thousands or even more sys-
tems, public clouds appear financially more attractive because a private data centre
may not benefit from the same economies of scale.

1.11.10 Better utilization of on-premise infrastructure

Sometimes companies might be concerned about moving their own data to the cloud
and prefer to keep them safe inside their own infrastructure, losing all the already
mentioned advantages. When security reasons stop the migration towards the pub-
lic cloud, companies can however take advantages by building a private or a com-
munity cloud. A private or community cloud is completely built and managed by
the organization or the team of organizations which decided to join together, and
this might be hard for those companies with a lack in the know-how, but, on the
other hand, private or community clouds offer more flexibility: if a company needs
to have things built in a very specific way, with specific hardware, it has control
over that. Building a cloud infrastructure over the on-premise system allows the
company to achieve a better utilization of the underlying physical architecture. The
private cloud offers most of the advantages of the public cloud: self-service and scal-
ability, multi-tenancy, the ability to provision machines and computing resources
on-demand, compliance and improved security.

1.11.11 More power for free

In order to provide higher quality services, cloud providers need to keep step with
technology, upgrading their systems and replacing old-fashioned systems with new
and more powerful ones. The new systems are usually put in production environ-
ment and then provided to customers for free, without any raise in costs. This means
that customers will have more powerful systems at the same cost.

1.11.12 Cloud is greener

An important aspect that companies should keep in mind is about the impact of a
data centre on the environment. Keeping devices on implies energy consumption
and then CO2 emissions which have bad effects on our environment. Making use
of cloud solutions, companies can reduce the energy use and carbon footprint of
computing. A six-month study conducted by Lawrence Berkeley National Labo-
ratory (Berkeley Lab) and Northwestern University with funding from Google has
found that moving software applications from local computer systems to centralized
cloud services could cut energy consumption by up to 87 percent — about 23 billion
kilowatt-hours. This is roughly the amount of electricity used each year by all the
homes, businesses and industries in Los Angeles [30].

1.11.13 All that glitters is not gold

As described before, there are several advantages related to the usage of cloud solu-
tions. Before moving applications and infrastructure to the cloud, however, compa-
nies should also carefully think about the disadvantages which are related to such
new technology. Here is a small list of possible disadvantages that should be kept in
mind:

1.12. Costs, benefits and trade-offs 17

• Cloud is not always cheaper than on-premise solutions. Indeed, if an applica-
tion has a regular and predictable requirement for computing services it may
be more economical to provide that service in-house;

• Cloud services might not be always available. Some outages might happen
and these might make cloud infrastructure inaccessible. Furthermore, working
with remote systems implies having a good internet connection. If this goes
down, services are no more accessible although they are working properly;

• Data stored in a cloud infrastructure are potentially accessible by unauthorized
people, such as technicians working for the service provider, who can steal
data and make a not appropriate usage of it;

• Being accessible through the network, cloud services can be accessible by any-
one. Hackers can attack computing resources and steal data;

• Migrating applications into the cloud infrastructure might not be easy or cheap
and the migration costs might be higher than the money saved using the cloud;

• Deciding to buy cloud services, companies become highly tied to the service
provider and all future business decision might be shaped by service provider;

• If the physical infrastructure where cloud services work on is not designed to
allow customer applications to work properly, those applications might per-
form badly. This is actually true for scientific applications which sometimes
need to rely on a high performance network infrastructure.

1.12 Costs, benefits and trade-offs

This paragraph summarizes several previous works talking about the costs and ben-
efits which are related to the usage of cloud infrastructure rather than HPC systems.
The researches cover both economical and performance aspects which are the two
main important aspects a user usually should consider. Indeed, a user who is in-
terested in running a job for getting some results, may be much more interested in
getting the results in the fastest possible time or in the cheapest way or further any
trade-off between the two. The papers described in this section try to understand
in which circumstances a user might prefer HPC infrastructure rather than cloud
computing.

1.12.1 Trade-offs from the performance point of view

Running the same application on two or more different infrastructures can yield
different performance results. This depends on several factors, many of them are
strictly related to the application itself but many others instead are dependent on
the architecture where the application is executed on [31]. An application designed
to be run on a specific infrastructure might have bad performance when executed
in a different one [32–34]. Sometimes, better performance might be achieved just
by making small changes in the application [35, 36] or by tuning system parame-
ters (such as HTTP congestion window size or MPI parameters) [37–42]. Most of
the times, instead, the decrease in performance is mainly affected by the infrastruc-
ture layer, and this is truer for cloud infrastructures, which are usually built on a
virtualized layer. Virtual instances, indeed, work on the hypervisor which hides
the underlying physical layer. Therefore, the interaction between application and

18 Chapter 1. Cloud Computing

devices brings unavoidable overheads, which turns into decrease in performance.
Applications running on a virtualized environment might suffer from not negligible
overhead, as described in [43], which can highly affect the application performance.
Nevertheless, performance of a single node on the cloud is similar to traditional
clusters, and virtualization brings negligible overhead [44] but when the number of
concurrent virtual instances or virtual cores increases, the effect of the virtualized en-
vironment might become more perceptible, and might badly affect the application
performance even up to 60%, mostly for tightly coupled applications [45]. Many
efforts have been done in these years to lessen the effects of virtualization, introduc-
ing new technologies [31, 44–48] but several researches show that cloud computing
is still not ready for running scientific applications, mostly because of the lack in
performance mainly due to the low performance interconnection network used by
large commercial cloud infrastructures [31, 32, 34, 43, 44, 46, 49], which have consid-
erably higher latency and lower bandwidth than Infiniband or proprietary intercon-
nections. Other reasons which might contribute to reduce performance in the cloud
is that on such infrastructure many virtual instances share the same network and, in
general the physical layer. However, in some cases, performance can be improved
just by setting up properly the infrastructure layer, as described in [47, 50]. Actually
the debate about the utility of cloud computing for running scientific applications
is still open and in the recent past it has been also tried to understand if a cluster
made of virtual instances could reach the top500 list. This is the question authors
in [51] tried to answer running a scientific application on an Amazon cluster made
of 126 cores. Results show that performance on a single node on EC2 are similar
to that observed on real HPC systems, but the amount of memory and the network
infrastructure are not able to keep the performance when the number of nodes in-
creases. The application used for the test is LINPACK, which is the same benchmark
tool used to assess the performance of HPC systems for the Top500 list. Authors
concluded the paper saying that cloud seems not to be ready to be used for running
HPC applications. Anyway, since November 2013, a cluster made of 26,496 Amazon
instances reached the 64th place of the prestigious list [52], although nowadays the
cluster has been put out of the list (in June 2017, the cluster was in the 438th place).

1.12.2 Trade-offs from the economical point of view

Running applications on the cloud infrastructure is not free of charge and further-
more the cloud price might also be higher than the cost for running the same ap-
plications on an on-premise system. A comparison among costs, then, can help re-
searchers to choose the proper infrastructure from an economical perspective. Of
course, for a good cost-benefit comparison between cloud and HPC systems, several
factors should be taken into account [53] such as costs of servers, network, power,
software, cooling, real estate, facility, support and maintenance, computation time,
amount resources, amortization and so on.

In several works, described in the follows, many authors have compared the cost
for running an application in an HPC system against the cost for running the same
application into the cloud. Authors in [33] compare the cost per hour for the Ama-
zon Cloud with the cost per hour for an HPC system, computed as function of the
amount of jobs submitted for the execution in a period, the number and the speed
of the cores in the HPC architecture, the maintenance cost for the infrastructure but
without taking into account other factors such as waiting time, job failure and job
setup time. According to this research, cloud seems to be not convenient from the

1.13. Wrapping up 19

economical perspective. Authors in [32] instead used a utility function to under-
stand, from the economical point of view, whether cloud computing can be seen
as a good trade-off. The utility function represents a class of users who are less or
more interested in having results faster and about how much they are willing to pay
more. Using these functions, authors showed that there are some cloud configura-
tions which can be considered as interesting for different classes of users. In [44],
instead, authors compare the cost for running a suite of applications on the cloud
and on an in-house cluster, but without taking into account neither maintenance
and training costs nor upfront costs needed to buy the physical infrastructure.

1.13 Wrapping up

Understanding whether or not cloud infrastructure can be a feasible place for run-
ning applications from both economical and performance point of view is really im-
portant, especially for scientists who are much more interested in running their own
scientific applications with a performance as high as possible. As moving an applica-
tion on a different infrastructure is not effortless, having in advance such knowledge
might help scientists to understand if moving the application to the cloud is worth
doing it. This is the thread leading this research.

21

Chapter 2

HPC and Cloud Infrastructure

This chapter describes both physical and virtual infrastructures used along all tests
described in this work.

2.1 Marconi

2.1.1 The architecture

Marconi [54] is the new Italian Tier-0 system, co-designed by Cineca and based
on the Lenovo NeXtScale platform, that substitutes the former IBM BG/Q system
named Fermi. Actually, Marconi is made of three different partitions, named re-
spectively A1, A2 and A3. The first partition, which has been used in all the tests
described in this work, is composed of 1512 nodes having each two 18-core Intel
Xeon E5-2697 v4 processors, based on the Broadwell architecture and running at
2.30 GHz. Each core has 3.5 GB of RAM for a total of 128 GB per node. All cores in
the same processor share a single 45 MB L3 cache. Both processors, instead, share
128 GB RAM. Each processor can connect to the RAM using four channels having a
bandwidth of 76.8 GB/s. There are also two QPI links per processor, based on In-
tel QuickPath Technology, which provide high-speed, point-to-point connections for
data transfer inside and outside the processor. All nodes are interconnected by Intel
OmniPath Architecture, 100 Gb/s. Since the end of 2016 a new partition, named A2,
has been added, equipped with the latest generation of the Intel Xeon Phi product
family (Knights Landing). The new partition is composed of 3600 nodes having a
single 68-core processor Xeon Phi 7250 CPU (Knights Landing) at 1.40 GHz. Each
core has 16 GB/node of MCDRAM and 96 GB/node of DDR4.

Jobs on Marconi are submitted through Slurm [55], an open source job schedul-
ing system for large and small Linux clusters. Using Slurm, users can specify, through
a bash script, the task to run, the amount of required resources (number of cores and
amount of memory), the wall time, which is the time the job might be left running
the most, and finally the queue where the job has to be put on. All partitions offer
several queues, each of them having different features. For example, queue named
knl_usr_dbg can host jobs requiring no more than two nodes and running less than
30 minutes, while knl_usr_prod can host jobs requiring even more than 1024 nodes
and running up to 24 hours. A queue is not handled like a pure FIFO queue. Each
job is assigned a priority index which is computed with a complex formula taking
into account many factors such as the waiting time in the queue, the size of the job
(core number and amount of memory), the required wall time and furthermore a fair
share factor which slows down jobs submitted by users who have almost spent their
month-hours. Because of this scheduling policy, the waiting time spent by a job in
the queue can be high.

22 Chapter 2. HPC and Cloud Infrastructure

2.1.2 The interconnection network

The characterization of the interconnection network is of paramount importance
when a researcher wants to understand how an application based on a commu-
nication pattern might behave being run on a system with a fixed interconnection
network. In literature, there are several models which can be used to characterize
the network layer, but we decided to use pLogP model. An overview about other
models can be found in Appendix B, as well as a deep explanation about pLogP
model. All parameters in pLogP are measured sending and receiving messages be-
tween just two nodes belonging to the same parallel architecture. When the network
infrastructure is not homogeneous or symmetric, pLogP can still be applied but the
nodes need to be grouped into clusters and the pLogP parameters need to be gath-
ered for all clusters [56].

In Marconi, according to the well-known physical network architecture, a com-
munication between two processes can be classified into intranode and internode
communication. With the term intranode communication we refer to a communica-
tion between two cores belonging to the same node; with the term internode instead
we represent a communication between two cores belonging to two different nodes.
The default communication fabric used by the HPC system is shm:tmi that makes
use of shared memory for intranode communication and TMI for internode commu-
nication.

Since the communication on Marconi can be classified into intranode and intern-
ode, a complete characterization of the Marconi interconnection network requires to
gather all pLogP parameters for both intranode and internode communications.

Table 2.1 shows the pLogP parameters we gathered on Marconi for both intran-
ode and internode communications. All times are expressed in seconds. The values
represented in the table have been gathered running the pLogP tool ten times and
taking the median value for each message class. We decided to use median instead
of mean in order to ignore any outlier. The numerical values nearby the g parameter
represent the size of the message. As expected, internode communication is more
expensive than intranode.

2.2 Cloud Infrastructure

2.2.1 The architecture

The cloud infrastructure used for our tests is provided by Google. We decided to use
Google instead of any other provider because University of Pavia signed an agree-
ment with the famous American company for getting free credits to spend on all
cloud services. By using Google Compute Engine console, we instantiated a clus-
ter made of four virtual instances (n1 series). To have a better comparison between
cloud and HPC systems, we decided to use a cloud configuration matching as much
as possible the node configuration on Marconi system. The following characteris-
tics are related to virtual instances as shown in the Google Console, and not to the
real bare metal where cloud infrastructure works on. Each virtual instance has eight
virtual CPUs. Each virtual CPU is actually a single hardware hyper-threaded on an
Intel Xeon E5 v5 (Broadwell), running at 2.2 GHz, 24 GB of memory RAM and 56
MB of L3 cache [57]. All four virtual machines run on the same geographic zone
(us-central-c1) and are interconnected to each others with a Virtual Private Cloud
Network [58–60]. Each vCPU has a 2-Gbps outbound cap for peak performance.
Each additional vCPU increases the network cap, up to a theoretical maximum of

2.2. Cloud Infrastructure 23

TABLE 2.1: PLogP Parameters for Marconi Interconnection Network.

PLogP Parameters Internode Intranode

L 2.50E-06 4.00E-07
g([0B, 0B]) 1.00E-06 6.00E-07
g([1B, 4B]) 1.00E-06 6.00E-07
g([4B, 0.5KB]) 1.20E-06 6.00E-07
g([0.5KB, 1KB]) 1.45E-06 6.00E-07
g([1KB, 2KB]) 1.55E-06 6.00E-07
g([2KB, 5KB]) 1.80E-06 1.00E-06
g([5KB, 6KB]) 2.60E-06 1.50E-06
g([6KB, 10KB]) 3.00E-06 1.95E-06
g([10KB, 20KB]) 4.70E-06 3.00E-06
g([20KB, 50KB]) 1.25E-05 6.20E-06
g([50KB, 100KB]) 1.21E-05 1.22E-05
g([100KB, 200KB]) 2.99E-05 1.85E-05
g([200KB, 0.5MB]) 4.55E-05 3.74E-05
g([0.5MB, 1MB]) 1.09E-04 8.59E-05

TABLE 2.2: Google Cloud Virtual Instances configurations.

Cloud

Number of nodes 3 VM
Cores per node 8 vCPU
CPU Intel Xeon E5
CPU Architecture Broadwell
CPU Frequency 2.20 GHz
Memory RAM per node 24 GB
L3 Cache 56 MB
Interconnection Network Unknown
Operating System CentOS 3.10 - 64 bit
MPI Version OpenMPI v3.0

16 Gbps for each virtual machine [A60]. The operating system installed on each vir-
tual instance is a 64-bit CentOS 3.10 equipped with OpenMPI version 3.0. Table 2.2
shows a detailed configuration of the cloud infrastructure.

2.2.2 The interconnection network

After setting up the cluster of virtual instances, we proceeded to get a complete char-
acterization of the interconnection network, as we did on Marconi. As the cloud in-
terconnection network is hidden to the user, before starting gathering pLogP param-
eters, a preliminary analysis was needed in order to discover 1) if the interconnec-
tion network is symmetric, and 2) how the cores (vCPUs) can be grouped together
according to the node (virtual instance) they belong to. Using a custom tool, we
have been able to classify all communications in two classes, as well as on Marconi:
intranode and internode. Here too, with intranode communication we describe a
communication between two processes running on two cores belonging to the same

24 Chapter 2. HPC and Cloud Infrastructure

TABLE 2.3: PLogP Parameters for Cloud Interconnection Network.

PLogP Parameters Internode Intranode

L 3.41E-05 1.00E-07
g([0B, 0B]) 1.42E-05 3.00E-07
g([1B, 4B]) 1.42E-05 3.00E-07
g([4B, 0.5KB]) 1.42E-05 3.00E-07
g([0.5KB, 1KB]) 9.50E-06 6.00E-07
g([1KB, 2KB]) 1.77E-05 7.00E-07
g([2KB, 5KB]) 2.62E-05 1.30E-06
g([5KB, 6KB]) 3.19E-05 2.30E-06
g([6KB, 10KB]) 3.19E-05 2.30E-06
g([10KB, 20KB]) 4.39E-05 3.10E-06
g([20KB, 50KB]) 5.74E-05 5.70E-06
g([50KB, 100KB]) 1.87E-04 1.00E-05
g([100KB, 200KB]) 3.20E-04 1.91E-05
g([200KB, 0.5MB]) 5.10E-04 4.43E-05
g([0.5MB, 1MB]) 9.01E-04 9.74E-05

virtual instance; with internode communication we refer instead to a communica-
tion between two processes running on two cores belonging to two different virtual
instances. After clusterization, we used pLogP for gathering all the required pa-
rameters. Table 2.3 shows the pLogP parameters we gathered on the cloud for both
intranode and internode communications. All times are expressed in seconds.

As for Marconi, even for the cloud the pLogP parameters have been gathered
running ten times the pLogP tool and taking the median value for each message
class. Here too, the numerical values nearby the g parameter represent the message
size. As on Marconi, even on the Cloud Infrastructure, the internode communication
is more expensive than the intranode one.

2.3 Comparing network performance between both infras-
tructures

As highlighted above, on both architectures the internode parameters are higher
than the intranode ones. This means that sending a message between two processes
belonging to different nodes (or virtual instance) is more expensive than sending
the same message between two processes belonging to the same node. Furthermore,
all parameters gathered on the cloud are higher than the corresponding parameters
gathered on Marconi. It is also worth noting that on the cloud the ratio between
intranode communication and internode communication is much higher than the
same ratio on Marconi: an intranode communication in the cloud affects more the
application performance than on Marconi. To make the difference more noticeable,
let’s consider a 6-KB message, which is, as described later, the typical message size
used by one of the applications described in this work. According to the pLogP
model, described in Appendix B, it is possible to compute the time spent to send a
message having a fixed size. The time spent on Marconi for sending up an internode
message is equal to 5.10E-06 seconds (2.50E-06 for L parameter plus 2.60E-06 for g
parameter), while the same message sent in an intranode communication takes only

2.3. Comparing network performance between both infrastructures 25

1.90E-06 seconds (4.00E-07 for the L parameter plus 1.50E-06 for the g parameter).
Then the ratio between internode and intranode on Marconi is almost equal to 2.68.
In the cloud instead this ratio is 27.5 (more than 10 times higher than on Marconi).
This ratio in the cloud gets equal to 120 when a 4-byte message is sent against 3.5 on
Marconi.

27

Chapter 3

Cross Motif Search and BloodFlow

This chapter describes two different applications which are used in the experiments
described in the follows. The first application is a proteomic application, named
Cross Motif Search, based on a simple communication pattern. The second instead,
named BloodFlow, is a haemodynamics application based on a complex communi-
cation pattern. We decided to choose such applications because, from the commu-
nication point of view, one is the opposite of the other and can therefore be con-
sidered as representative of a wide range of scientific applications. Studying such
applications might help to understand the behaviour of many other similar appli-
cations. Cross Motif Search and BloodFlow have been compiled and executed first
on Marconi and then on the cloud infrastructure, and their performance results are
described in chapter 4.

3.1 Cross Motif Search

The recognition of similar motifs in the secondary structures of a protein pair is an
important problem in bioinformatics. Due to the computational complexity O(m2)
in the number m of candidate motifs within a protein, exhaustive search for recur-
ring geometrical pattern takes a long time. Furthermore, to process in a reasonable
time a large dataset containing several thousands of proteins, such as the PDB [62],
a parallel implementation of the algorithm is required. Actually, there are several al-
gorithms in literature [63–67], such as ProSMoS [68, 69], PROMOTIF [70] and MASS
[71], but for our research we decided to use Cross Motif Search, which has been
designed and developed at University of Pavia.

Cross Motif Search (CMS) [72] is a biological application which is able to search
for recurring geometrical patterns in the secondary structures of proteins. A single
run of CMS is able to look for similarities between a pair of proteins. The algorithm,
instead of considering the topological/biological description, as used by other algo-
rithms, relies on the geometrical description of the structural motifs, which can be
simply viewed as line segments. The two most common types of secondary struc-
tures, named alpha helix and beta pleated sheet, are represented as simple line seg-
ments in a 3D space and then CMS uses the generalized Hough transform [73] to
find recurring geometrical patterns. Segment co-occurrences are detected, with a
chosen accuracy in 3D position, within the protein structure. After completing the
research, the application displays the outcoming similarities by using a 3D visual-
izer (Fig. 3.1). CMS has been coded according to different parallel paradigms, to
expose the best approach for speeding-up protein analysis.

28 Chapter 3. Cross Motif Search and BloodFlow

FIGURE 3.1: Secondary structure similarities found by CMS

3.1.1 The OpenMP implementation

The first version of CMS was purely sequential and was able to find recurring pat-
terns of structural elements of a set of proteins in a serial way. In order to exploit
the multi-core and many-core architectures and make the computation faster even
on a large dataset of proteins, the original implementation was then extended with
a new version, called OpenMP-CMS making use of the OpenMP standard [74]. The
key idea in OpenMP implementation was to parallelize the inner kernel of a sin-
gle CMS run, so that searching for the geometrical motifs in a single pair could be
distributed on multiple threads, all of them cooperating together in order to find
recurring geometrical patterns. Scalability tests, made on a single Intel Xeon server
equipped with 32 64-bit cores, revealed that OpenMP-CMS was able to scale up to
8 threads. In those tests, a small dataset containing 200 proteins files was used. The
intrinsic limits imposed by the greedy structure of the algorithm was the main factor
limiting the application scalability. Nevertheless, as the number of proteins in the set
increases, the execution time of the algorithm becomes unmanageable. So, in order
to improve performance, a new hybrid implementation was developed with an MPI
approach, to benefit from HPC large facilities.

3.1.2 The hybrid implementation

The hybrid solution [75], named Hybrid-CMS, extends the OpenMP version and
makes also use of MPI as standard for sending and receiving messages, making the
application able to be executed not only on a shared memory architecture but also
on a distributed memory architecture. In this implementation, the protein data set
is shared at the file system level and the whole problem (which is the computation
of the total dataset) is decomposed in small tasks which are sent among several MPI
processes. After starting the application, two different sets of processes are created.
The first set contains just one process, named master; the other set instead contains

3.1. Cross Motif Search 29

FIGURE 3.2: Communication model in Hybrid-CMS

n-1 processes, named workers. The master process is responsible to select the next
task and send it to the workers. Then, the master implements the load balancing
policy. Master and workers communicate to each others using send and receive
point-to-point MPI functions, such as MPI_Send and MPI_Recv. At the startup, the
master reads the dataset, then generates all possible protein couple combinations.
When a worker is ready, it sends a READY message to the master, asking for a new
task to compute. The master, then, sends to the requiring worker the name of two
proteins not compared yet. After receiving the new task, the worker spawns into
one, two or more OpenMP threads (depending on the configuration) that cooper-
ate in order to find recurring geometrical patterns in the secondary structure of that
given protein pair. The number of threads created by each process is the same for
all running processes and it is defined before the application starts. After sending
a task, the master waits for the next request coming from any worker. The worker,
instead, after completing his job, inquiries again the master for the next task, if any.
The application stops when all possible couples have been submitted to the workers
for computing. In the follows, we will refer to the notation x:y to describe, respec-
tively, the process number and the thread number. So for example, 16:4 means that
the application has been executed with 16 MPI processes. Each MPI process, after
getting the protein pair, spawns into 4 OpenMP threads cooperating together. This
run uses 64 cores to compute the whole dataset.

3.1.3 Communication model in Hybrid-CMS

After starting the Hybrid-CMS implementation, the master process retrieves, from
the file system, the list of all XML files belonging the dataset of interest in the cur-
rent computation. It distributes the workload by assigning couples of proteins to
each worker sending messages that contain protein couple names according to the
protocol depicted in Fig. 3.2.

The communication pattern is very simple. Indeed, only data exchanges between
master and workers are allowed. No communication among workers happen during

30 Chapter 3. Cross Motif Search and BloodFlow

the whole execution and no collective operations are used to gather or scatter data.
Figure 3.2 shows the communication pattern among the master and two workers.
At time t0, the master invokes the receiving function, waiting until it gets a ready
message from any worker. When a worker is ready, at time t1, it sends the ready
message (4 bytes) to the master, asking for the next task to compute, then it invokes
the receiving function waiting for the reply. A task is merely the protein pair to be
processed. Due to the latency and network bandwidth, the message sent from the
worker at time t1 is completely received by the master at time t2. When the master
receives the message, it returns to the worker a 6-Kbyte message containing a pro-
tein pair not already processed. After receiving the message at time t3, the worker,
at time t4, performs a CMS run on the protein pairs. After completing its own task,
the worker sends a new ready message to the master for the next task and the com-
munication cycle begins again. When all protein pairs have been compared, the
master broadcasts an EOF (end of computation) message to all workers concluding
its execution. The number of messages sent and received from master and workers
depends on the number of proteins belonging to the entire dataset. Having n protein
files, the number of messages sent and received from the master is always equal to

N =
n ∗ (n − 1)

2
(3.1)

As described in [75], the load balancing algorithm of Hybrid-CMS can be classified
as dynamic, synchronous, demand-driven, centralized and one-time assignment.

To avoid useless wasting time and improve the performance, the master is imple-
mented in multi threaded mode. After starting the application, indeed, the master
process spawns into two concurrent OpenMP threads. The first one, named primary
master, waits for the requests coming from the workers; the secondary master in-
stead behaves as any other worker, but differently from that, it communicates with
the primary master by using the shared memory instead of sending and receiving
MPI messages through the network.

3.1.4 The protein dataset

The large dataset, used to study scalability, efficiency and speed-up of Hybrid-CMS,
contains 1,549 protein files, for total number of combination equals to 1,198,926, ac-
cording to the formula 3.1. Each protein in such dataset belongs to a distinct super-
family in the Protein Data Bank [62], which nowadays contains more than 145,000
biological macromolecular structures. To build the dataset, we selected from the
Structural Classification Protein (SCOP) [76] the first member of each superfamily.
The first member is defined as the first in lexicographic order. Then, we sorted (again
lexicographically) the resulting subset of proteins, selecting the first 1549 as the large
dataset used for our tests. A complete list of all proteins can be found in [74].

Selecting the dataset in such way, we can almost assure that the Q score (basically
a biological measure of the similarity between two proteins) of any two proteins in
the dataset is quite low. And this is coherent with the original aim of CMS that is
uncovering previously unseen similarities in unfamiliar proteins.

3.2 BloodFlow

BloodFlow is a tool which can be used by surgeons and doctors for getting support
during study and analysis of the cardiovascular systems in order to run simulations

3.3. Communication model 31

of patient specific haemodynamic of an aorta through computational fluid dynamic
analysis.

The application is able to simulate biomedical problems linked the cardiovascu-
lar system [77, 78]. In order to simulate the detailed three-dimensional blood flow of
a patient specific vessel during a whole heartbeat, this tool relies on a Navier-Stokes
partial differential equation system, which is solved by using numerical approxima-
tions. For the numerical solutions of the Navier-Stokes partial differential equation
system, the application makes use on LifeV [79, 80], an open source parallel library,
written in C++ and MPI, which is able to solve the differential equation system using
the Finite Element Method [77] for the numerical approximation. The core compo-
nent of LifeV is Trilinos [81] that is used in the library to perform parallel linear
algebra operations. Some difficulties are linked to the computational mesh made up
to few millions of elements, the moderate Reynolds number (up to few thousands in
the ascending aorta) and the possibility of turbulent flows, in particular in diseased
cases. For all these reasons, such a type of simulations is computationally expensive
and may take up to several hours also in a High Performance Computing context.
More in details, the unsteady Navier-Stokes equations — for which the numerical
solution generally consists in the velocity and the pressure of the fluid in each point
of the computational mesh — are discretized both in space and in time resulting, for
the most common biomedical applications, in tens of millions of spatial degrees of
freedom and up to thousands of time steps for each heartbeat.

3.3 Communication model

Describing the application communication model is not easy because many compo-
nents are involved and each of them uses its own pattern to send e receive data. As
described above, the application in mainly based on LifeV, a parallel library written
in C++ for the approximation of Partial Differential Equations (PDEs) by the finite
element method in one, two and three dimensions. For an exhaustive explanation of
LifeV, a good work for a deep explanation is [82]. Parallelism in LifeV is achieved by
domain decomposition strategies. In a typical simulation, the main steps involved
in the parallel solution of the finite element problem using LifeV are the following:

1. All the MPI processes load the same (not partitioned) mesh.

2. The mesh is partitioned in parallel using ParMETIS. At the end each process
keeps only its own local partition.

3. The degrees of freedom (DoF) are distributed according to the mesh partitions.
By looping on the local partition, a list of local DoF in global numbering is built.

4. The Finite Element (FE) matrices and vectors are distributed according to the
DoFs list. In particular, the matrices are stored in row format, for which whole
rows are assigned to the process owning the associated DoF.

5. Each process assembles its local contribution to the matrices and vectors. Suc-
cessively, global communication consolidates contributions to shared nodes (at
the interface of two subdomains).

6. The linear system is solved using an iterative solver, typically either a Pre-
conditioned Conjugate Gradient (PCG). The preconditioner runs in parallel.
Ideally, the number of preconditioned iterations should be independent of the
number of processes used.

32 Chapter 3. Cross Motif Search and BloodFlow

7. The solution is downloaded to mass storage in parallel using HDF5 for post-
processing purposes.

On each of these steps, communication among processes is performed using MPI
as communication standard. A deeper overview about the MPI functions used in
communication will be done in chapter 4.

3.3.1 The datasets

Data computed by BloodFlow are stored in a flat file containing information about
vertices and tetrahedra. On all our tests, three different datasets have been used,
named respectively Test1, Test2 and Test3. The first two datasets are examples of real-
size study case; Test3, instead, is characterized by a smaller mesh. More in detail, the
Test1 mesh is made of 6 million tetrahedra corresponding to 24 millions degrees of
freedoms (DoF); Test2 mesh is made of 3 millions tetrahedra and 12 millions DoF;
and Test3 is made of about 600,000 tetrahedra and 2.4 millions DoF. For the purpose
of this paper, the small dataset has been used just for profiling activities while the
two larger datasets have been used to study application scalability and performance
on different architectures.

33

Chapter 4

Profiling and tracing activities

Before starting to move both applications to the cloud, an extensive in-depth analysis
has been done on both applications. We used several profiling and tracing tools in a
black-box way, helping us to spot bottlenecks (intrinsic and external factors) limiting
the application performance. Removing such points by applying small adjustment
could improve the application performance and scalability. This chapter describes
all the results we got running and profiling both applications on Marconi (which is
the infrastructure where the applications have been designed to be executed on). The
aim of profiling and tracing activities is dual: on one hand we can spot bottlenecks
which, once removed, improve the application performance and on the other hand
we can get all needed information to build the analytical model, that is described in
chapter 4.

4.1 Profiling Cross Motif Search

On Cross Motif Search, profiling and tracing activities have been done not just for
harvesting application-related parameters, which will be described and used later in
chapter 8, but also for spotting bottlenecks limiting the application performance.

4.1.1 Spin Time and Overhead Time

During our tests, we noticed that, varying the number of threads, cooperating to-
gether in order to find recurring geometrical patterns in the secondary structure of
a given pair protein, Spin Time (that is the wait time during which the CPU is busy
because of a synchronization between threads) and Overhead Time (that is the time
the system takes to deliver a shared resource from a releasing owner to an acquiring
owner) varied too accordingly. Both factors were close to zero when the number of
threads was equal to 1 and increased with the rising of those. As a consequence, CPU
Time (the total time spent by all threads) was greater when the protein pair was com-
puted by more threads, and this effect was more evident when the protein couple
took less time (because the impact of Spin Time and Overhead Time was greater). For
example, the execution of a couple of proteins with 4 concurrent threads took a CPU
Time equals to 4.24 seconds, with a Spin Time equals to 18.81% and an Overhead Time
equals to 6,36% of the Elapsed Time (that is the time required to look for recurring
geometrical patterns in a single protein pair). Running the same protein pair with
a single thread, Spin Time and Overhead Time fell down close to zero and the CPU
Time was equals to 2.23 seconds. This analysis explains the behaviour described in
the follows, where the pure MPI implementation (256:1) performed better than any
other hybrid one. Then, it seems to be quite clear that the OpenMP component is
simply a burden, rather than an enhancement.

34 Chapter 4. Profiling and tracing activities

4.1.2 Heap Contention

We also observed that using OpenMP, the lib_malloc function took more CPU Time
and represented a bound for the application. In the pure MPI version, instead, that
function took less time. This increase in the time was due to the high number of
heap contentions among the threads. As described in [83], indeed, malloc functions
allocate a block of memory in the heap. As the heap is shared among all threads, it
is necessary to add synchronization to gate access to the shared heap. This is a well-
known problem and several solutions have been already described. For example, it
is possible to use kmp_malloc and kmp_free functions in order to maintain a per-thread
heap attached to each thread utilized by OpenMP and avoid the usage of the lock
that protects access to the standard system heap. In [84], instead, is described ssmal-
loc that is a locality-conscious memory allocator, which can somehow solve the heap
contention problem. Unfortunately, using these functions is not always possible, be-
cause malloc are also used inside external procedures, where there is no control and
no possibility to modify source code. Here too, the OpenMP component seems to be
a burden, rather than an enhancement.

4.1.3 Wasted Time spent in external function

Using profiling tools, we also discovered a high number of remote cache accesses
producing several low level cache misses. Most of them were introduced by the trim
function in the boost library (used in CrossMotifSearchChain.cpp at row 50). As ex-
plained in boost documentation [85], trim algorithm is used to remove trailing and
leading spaces from a string, where space is recognized using given locales. A lo-
cale [86] is an immutable indexed set of immutable facets used for parsing and for-
matting of all data. Internally, a locale object is implemented as if it is a reference-
counted pointer to an array of reference-counted pointers to facets: copying a locale
only copies one pointer and increments several reference counts. To maintain the
standard C++ library thread safety, both the locale reference count and each facet
reference count are updated in thread-safe manner. This places a huge overhead in
memory contention, to preserve coherency, and this is paid even if the feature is not
used within the application.

4.1.4 Variance in the task computation time

The last interesting aspect we observed profiling the application is that the time
spent by the workers to complete a task is not always the same for all protein cou-
ples, because it depends on several factors such as geometrical tolerances, maximum
size of the motif searched by CMS, similarity score of the proteins in the pair, and
size of the proteins in the pair. Indeed, as shown in previous tests [87] the fastest pro-
tein pair (2b1y.xml and 2hep.xml) took just 0.000030 seconds, while the slowest one
(1k32.xml and 1bgl.xml) took 946.978223 seconds. The average time was 0.2318196
seconds with a variance of 5.96 seconds and a standard deviation equals to 2.44 sec-
onds, ten times greater than the mean time. Although it is not possible to predict
the completion time of a task, in [88] we showed that there is a good correlation ρ =
0.653 between the size of the protein pair (as the product of the number of secondary
structures in both protein files) and the elapsed time. As described in chapter 5, we
exploited this observation to increase the load balancing factor.

4.1. Profiling Cross Motif Search 35

FIGURE 4.1: Time spent by CMS in serial code and inside MPI func-
tions

FIGURE 4.2: Time spent by CMS in serial code and inside MPI func-
tions

4.1.5 MPI Communication

Profiling activities showed that Cross Motif Search spends 93.68% of the total exe-
cution time inside the application source code and the remaining 6.32% inside MPI
calls (Fig. 4.1). The effect of the interconnection facility is not a dominant factor for
this application. However, the most active MPI function is the MPI_Recv call, where
our application has spent nearly all the time, leaving a very small percentage for
MPI_Send and an even more negligible percentage inside other MPI calls. Due to the
amount of time spent inside the MPI functions and the amount of data exchanged
among processes, our application cannot be defined as communication-intensive.

Nevertheless, the time spent inside the MPI functions is not representative for
the real time spent in communication. This is due to a problem known as Late
Sender (Fig. 4.2). As described above, indeed, the communication model of Cross
Motif Search makes just use of MPI_Send and MPI_Recv functions, which block pro-
cess execution until data are completely sent or received. This means that, due to
the coarse-grained parallelism of our application (a protein computation might take
even several seconds), the master might wait for a long time inside the receiving
function, making the time spent inside the MPI functions not representative for mea-
suring the actual communication time, because it includes also the synchronization
time. This is the reason why the time-based metrics provided by the profiler are
likely to be almost useless for measuring the time spent in communication.

According to the formula 3.1, the profiled amount of messages exchanged among
master and workers is as the same as that expected: n*(n-1)/2 4B messages sent from
the workers to the master and the same amount of 6 KB messages sent back from
the master to the workers, where n is the number of protein files belonging to the
dataset.

36 Chapter 4. Profiling and tracing activities

4.2 Profiling BloodFlow

As described in chapter 3, instead of using Test1 and Test2 datasets, to profile Blood-
Flow we decided to use a third dataset, named Test3, a smaller dataset for a faster
execution. The following paragraphs summarize the factors which might affect the
application performance, regardless the physical infrastructure where the applica-
tion is executed on.

4.2.1 Vectorization

The first analysis we did on the application was to make a vectorization analysis
to understand the relevance of the floating-point processing, the efficiency of the
compiler in detecting and generating vectorized loops, without any action by the
programmer, and the degree of architectural optimization possible through AVX-like
instruction set. Surprisingly enough, the profiling tools showed that the utilization
of the Floating Point Unit is quite low, just 0.11% of CPU time. Moreover, a high
percentage (64.49%) of floating-point instructions are scalar, 34.35% of instructions
are 128-bit packed FP instructions and just 1.15% are 256-bit packed FP instructions.
From the execution point of view, the vectorized loops represent just the 16.3% (32.26
seconds) of the total CPU time (198.09 seconds). The number of the vectorized loops
is 63 against a total of 507 loops. Almost half of the vectorized loops (33) have been
vectorized using AVX2 instruction set; 27 instead have been vectorized using AVX
instruction set, and the last three loops have been vectorized using SSE (one loop)
and SSE2 (two loops) instruction sets. There is no gain in 256-bit support, because
there is apparently not enough fine-grain data parallelism.

These results highlight that several loops cannot be auto-vectorized, probably be-
cause of various factors, among which non-contiguous memory accesses, plus data
dependencies. Furthermore, because of the limited number of 256-bit packed FP in-
structions (just 1.15% of the total floating-point instructions), we speculate that there
is no advantage in running the application on Knights Landing architecture making
use of AVX512 Instruction set.

4.2.2 Memory footprint

Running the application with the small dataset and using 16 MPI processes running
on 16 different cores, the mean quantity of memory used by each process was 1156.97
MB with a peak of 1258.04 MB. Reducing the number of running processes and then
the cores number used, the memory allocated by each process grows up. Indeed,
running the application with just 4 MPI processes, the mean quantity of memory re-
quired by each process becomes 3637.39 MB with a peak of 3787.31 MB. This amount
of memory is higher than the RAM available on each core on Marconi, then it seems
to be hard to run the BloodFlow on Marconi with a small number of concurrent
cores because of the large amount of memory RAM required by the application, un-
less users decide to reserve a memory size larger than the default size. This can
be done according to the billing policy but the application execution becomes more
expensive.

4.2.3 MPI Communication

After starting the application, all concurrent MPI processes work together in order
to compute the entire dataset. The typical concurrent communication pattern used

4.2. Profiling BloodFlow 37

TABLE 4.1: Mean number of times each function has been invoked by
BloodFlow running on Marconi on different runs.

P2P Functions 8 MPI 16 MPI 32 MPI 64 MPI

MPI_ISend 3,476 7,007 13,277 24,503
MPI_RSend 17,378 28,578 51,441 84,097
MPI_Send 16,502 24,192 36,824 57,049
MPI_Recv 37,356 59,777 101,514 166,029
MPI_Wait 13,720 18,915 25,596 34,305
MPI_WaitAll 9,266 9,182 9,246 9,195

Collective Functions 8 MPI 16 MPI 32 MPI 64 MPI

MPI_Barrier 14,241 14,191 14,244 14,518
MPI_BCast 420 776 1,490 2,926
MPI_AllGather 1.67 3.40 9.18 12.89
MPI_AllGatherv 510 510 508 510
MPI_AllToAll 1 1 1 1
MPI_Reduce 15 14 13 12
MPI_AllReduce 34 34 34 34
MPI_Scatter_Reduce 5,769 5,588 5,477 5,516
Other MPI functions 2,192 2,192 2,192 2,192

by the application is an all-to-all communication to scatter and gather data across
all processes and this is done by using both point-to-point and collective operations.
Indeed, many MPI functions are used by the application.

Table 4.1 shows the complete list of MPI functions (point-to-point as well as col-
lective) used to distribute messages. The numerical values represent the number
of times each function has been invoked using four different configurations (from
8 to 64 concurrent MPI processes). These data are related to a single MPI process.
This means that, to get the total amount of times each function has been invoked by
all processes, the relative value needs to be multiplied by the number of concurrent
MPI processes. For example, the total number of MPI_ISend invoked by all eight
processes is equals to 3,476 * 8 = 27,808.

As shown in Tab. 4.1, the number of times each point-to-point function is in-
voked by each MPI process grows when the number of processes rises. For collec-
tive operations, instead, the number of times each collective operation is invoked
by each MPI process is almost the same for all configurations, except for the func-
tion MPI_BCast, which increases exponentially. Another important aspect which is
worth noting is that the collective function that has been invoked the most in all
execution is the MPI_Barrier.

Table 4.2 shows the time spent by all processes inside point-to-point and collec-
tive functions. It is worth noting that the time depicted in Tab. 4.2 is just the time
spent inside each MPI function and should not be considered as the time our applica-
tion spends in communications, as we shown in [89]. This time might overestimate
the real communication time because it also includes synchronization time among
processes, network congestion and resource contentions among the processes, mak-
ing the time spent inside the MPI functions not representative for measuring the
communication time.

As shown in Tab. 4.2, the functions where the application spends more time

38 Chapter 4. Profiling and tracing activities

TABLE 4.2: Time (in seconds) spent by BloodFlow running on Mar-
coni inside each MPI function on different runs.

P2P Functions 8 MPI 16 MPI 32 MPI 64 MPI

MPI_ISend 0.14 1.04 5.78 22.91
MPI_RSend 2.34 7.76 29.58 130.35
MPI_Send 0.49 2.56 13.58 64.87
MPI_Recv 1.95 6.71 33.65 127.54
MPI_Wait 24.03 62.13 152.52 332.99
MPI_WaitAll 2.27 5.40 15.91 39.54

Collective Functions 8 MPI 16 MPI 32 MPI 64 MPI

MPI_Barrier 61.72 117.39 218.69 319.90
MPI_BCast 1.19 2.45 5.74 13.32
MPI_AllGather 1.67 3.40 9.18 12.89
MPI_AllGatherv 0.00 0.01 0.05 0.09
MPI_AllToAll 0.10 0.09 0.14 0.22
MPI_Reduce 0.00 0.01 0.06 0.15
MPI_AllReduce 99.24 145.98 211.47 304.66
MPI_Scatter_Reduce 25.00 43.60 59.79 88.75
Other MPI functions 1.17 4.13 16.60 51.02

Observed Time 221.31 402.67 772.73 1,509.18

are MPI_Wait, MPI_Barrier, MPI_AllReduce and MPI_Reduce_Scatter, and such time
grows rapidly when the process number rises. The wide overhead introduced by
MPI might reduce performance and application scalability, which will be shown in
chapter 6.

To better understand the impact of the MPI functions on each run, Fig. 4.3 shows
the ratio among the time spent inside the MPI functions and the time spent outside
them. When 64 concurrent MPI processes are used, the time spent inside MPI func-
tions is more than a quarter of the elapsed time, and the ratio rises up when the
process number increases.

Another important set of application-related parameters is the amount of data
sent and received across all MPI processes. Table 4.3 shows the mean message size
(in bytes) sent by all processes on each single MPI operation. To compute the total
amount of data sent/received on each operation, the mean size, showed in Tab. 4.3,
has to be multiplied by the number of times each operation has been invoked (Table
4.1).

According to the results described above, the application can be defined as tightly-
coupled and the MPI communications might affect the application performance. Be-
cause of this, we observed that the application seems to not be able to be run in
the cloud, where some commercial cloud infrastructure are built on Ethernet inter-
connections, having much higher latency and lower bandwidth that Infiniband or
OmniPath Architecture.

We can also speculate that the application performance will get worse when the
application is executed on Marconi’s Knight Landing partition because of the higher
MPI latency measured on the new Marconi A2 partition for two main reasons: lower
CPU frequency, worse intranode and internode latency.

4.2. Profiling BloodFlow 39

FIGURE 4.3: Time spent by BloodFlow inside and outside MPI func-
tions

TABLE 4.3: Mean message size (in bytes) sent by each process running
on Marconi on each single MPI operation.

P2P Functions 8 MPI 16 MPI 32 MPI 64 MPI

MPI_ISend 5,693 1,824 553 160
MPI_RSend 43,946 21,909 9,393 4,010
MPI_Send 498 293 159 81
MPI_Recv 21,193 10,807 4,889 2,083
MPI_Wait 0 0 0 0
MPI_WaitAll 0 0 0 0

Collective Functions 8 MPI 16 MPI 32 MPI 64 MPI

MPI_Barrier 0 0 0 0
MPI_BCast 11,297 6,211 3,276 1,708
MPI_AllGather 107 207 401 793
MPI_AllGatherv 38,784 67,502 127,140 240,845
MPI_AllToAll 131 262 524 1,048
MPI_Reduce 8 8 8 8
MPI_AllReduce 18 25 36 57
MPI_Scatter_Reduce 37 71 138 272

40 Chapter 4. Profiling and tracing activities

4.2.4 Time consuming functions

Profiling activities also revealed that CPU time is highly consumed by the func-
tion LID inside the package Epetra_BlockMap. This function, that returns local ID
of a global ID, takes 418.032 seconds corresponding at 12.43% of the total CPU time
(3363,989 seconds). The most time-consuming loop, instead, is inside the function
ConstructFilledGraph in Ifpack_IlukGraph package, that performs the actual construc-
tion of the geometry of the mesh. It is a scalar loop consuming 7.4% of the total CPU
time. Both functions belong to the Trilinos library.

4.2.5 I/O Bound

The Input / Output does not represent a bound for our application. Indeed, the time
spent by all processes waiting for an I/O operation is less than 0.02% of the elapsed
time. Each process reads files for an amount of 45.2 MB of data and writes files for
an 25.7 KB, just for the log files.

41

Chapter 5

Application optimization

The profiling process ended with a list of possible point where appropriate updates
might increase the application performance reducing the wasted time. By remov-
ing such bottlenecks, the application might be executed better not just on the HPC
infrastructures but also on the Cloud, which is the main aim of this thesis. In the
follows, we describe all the activities we decided to do in order to make both appli-
cations more performing.

5.1 Cross Motif Search

Cross Motif Search is a small application making just use of a few external compo-
nents. Being also co-developed by the author of this thesis, source code update did
not require too much time, so we decided to optimize the source code where needed
according to the results we got after profiling.

Profiling activities revealed that many intrinsic and external factors make the
pure MPI implementation more performing than the hybrid solution, which makes
use of OpenMP. Advanced OpenMP optimizations (such as a better memory man-
agement) do not seem to change the pattern in a major fashion: the extent of the
change is in any case limited to the calls in the application code, while external func-
tions cannot be directly controlled.

For this reason, we decided to keep the current system level software architecture
and replace just the trim function with an analogous, lighter one, allowing us to
reduce the Elapsed Time. It is worth noting that poor performance in a trivial function
call was only exposed by running the application in a thread-sensitive environment.

Figure 5.1 compares the execution time obtained fixing to 256 the number of the
threads simultaneously running, before and after replacing the heavy function (blue
and red lines). The results show a not-negligible improvement in performance, but
here again, one more time, the fastest execution remains the pure MPI implementa-
tion.

5.1.1 Introducing the new selection policy

As described in chapter 3 the load balancing policy used by Hybrid-CMS selects the
next protein pair to be processed and assigns it to a free worker process. As also
described in chapter 4, there is a great variance in the time spent by each process to
compute a single protein pair. When a worker process completes the computation
of a received protein pair, it sends a message to the master process requiring another
task. If all protein pairs have already been sent to the other processes, the requester
waits before finishing off its own execution, doing nothing, until all other processes
complete their tasks. When all processes have completed their own computation,
all workers and master can release the reserved computing resources (CPU) and

42 Chapter 5. Application optimization

FIGURE 5.1: Cross Motif Search scalability comparison

the application ends. It is clear that the time spent by a worker waiting for the
completion of the other workers is just wasted time. So, it is desirable that such time
is as small as possible. Reducing the wasted time does not affect the time to complete
a single task, but the whole time required to compute the entire dataset, which is the
main aim of Cross Motif Search. So, because we are interested in reducing the time
required to compute the entire dataset and not the time required for computing just a
single protein pair, we aimed to reduce the wait time spent by the processes waiting
for other processes, introducing a new load balancing scheme: this turns out to be
the Longest Job First policy. The Longest Job First policy has been introduced as a
new selection policy used for choosing the next protein pair to send to the worker
processes.

5.1.2 Longest Job First: a new policy for selection tasks

The original selection policy used by the hybrid implementation of Cross Motif
Search was named Randomly Selected Policy: the next protein pair to send was
randomly selected. Using this policy, we discovered [87] that the Global Load Bal-
ancing factor [91] was equals to 0.64597: the closer this value to 1, the better the load
balancing. Varying the order the protein pairs are sent with, Global Load Balancing
changes as well, getting better or even worse. Then the execution time (the time
spent by the application to compute the entire dataset) is tightly dependent to the
order the protein pairs are sent to the worker processes. This observation led us to
introduce a new selection policy, named the Longest Job First: instead of sending
protein pair in a random way, the protein pairs are sent according to its expected
completion time: protein pairs requiring more time are sent before then the others
requiring less time. Even though it is very difficult to get in advance a precise esti-
mate of the elapsed time required by a process to compute a pair of proteins, in [92]
it has been noticed that there is a good correlation among the size of the protein pair
(as the product of the number of secondary structures in both protein files) and the
elapsed time, as described in chapter 4. Then, we decided to modify the application
by preparing the list of protein pairs sorted according to the product of the num-
ber of secondary structures in both protein files, and then to apply the Longest Job
First policy. Running the application with the new selection policy, we measured a

5.1. Cross Motif Search 43

FIGURE 5.2: Cross Motif Search scalability comparison after introduc-
ing Longest Job First policy

Global Load Balancing factor of 0.99976 [88], which is higher than that observed with
the previous policy. We also implemented a third different policy to submit protein
pairs, the Shortest Job First policy, but even this approach yields worse results. The
Global Load Balancing factor indeed was equals to 0.57905.

5.1.3 Application performance after introducing Longest Job First policy

Figure 5.2 compares the time spent by Cross Motif Search using different configu-
ration. The blue line represents the original implementation of the hybrid CMS; the
red line instead is the elapsed time we got running the optimized version; the yel-
low line instead represents the time spent by CMS after introducing the Longest Job
First policy. Here again, one more time, the pure MPI solution (represented by the
run labelled with 256:1) yields the best result.

5.1.4 Side effects of the Longest Job First policy

The load balancing algorithm used by Hybrid-CMS for delivering protein pairs is
on-demand. Anticipating the computation of the longest protein pairs (and then de-
ferring the shortest protein pairs to the end of the execution) yields an increase in
communication between master and workers processes at the end of the application
execution. This behaviour might affect the performance of the application when the
number of MPI processes simultaneously running is high and the interconnection
bandwidth is not enough large to support the increase in communication. More-
over, if the application makes use of just one master process for delivering proteins
pairs, the time spent by each worker waiting for the next protein pair might increase
sensitively. These side effects have been confirmed by the profiling.

5.1.5 When LJF is winning

The Longest Job First policy is just one of the several policies that can be used for
selecting tasks. Others can be found in [93–96]. The effectiveness of each policy is
tightly connected to the specific application domain and a policy achieving good
performance in a context might yield bad results in a different context. In this
paragraph, we want to summarize all factors and constraints that might make the
Longest Job First policy winning:

44 Chapter 5. Application optimization

• There is a large variance of the elapsed time during the computation of each
possible task;

• All tasks are independent: there is no communication between two processes
computing two different tasks;

• All tasks have the same priority: a task is never more important than any other;

• All tasks are known before the computation starts: in Cross Motif Search, in-
deed, the dataset is read at the startup and all possible combinations among
all protein files are known when the application starts;

• The aim is reducing the total computation time and not the time of a single
task;

• The tasks cannot be suspended or interrupted;

• Even though a precise estimation of the elapsed time required by a process
to complete the task is difficult or impossible, a heuristic about the presumed
time required to complete the task has to be known.

5.1.6 The location-aware implementation

When we described cloud infrastructure and HPC system in chapter 2, we classified
communications in intranode and internode, depending on the node where both
processes involved in the communication belong to. Internode communications are
more expensive than the intranode ones, because the messages are sent through the
fabric while the intranode communications are usually solved through shared mem-
ory. It becomes clear that reducing the internode communications might bring along
better performance most over for those architectures, such as the cloud, where the
ratio between intranode and internode communication is higher. In order to reduce
the time spent by the application for sending and receiving messages, we have iden-
tified a new method for distributing the tasks among the processes that minimize
the internode communication increasing the intranode one. This new improvement
exploits the coarse-grain granularity of all tasks and makes Cross Motif Search ap-
plication able to be successfully executed on the Cloud Infrastructure. The new, last
implementation adopts a new task selection policy which takes into account both
predicted completion time of a protein pair and the location of the worker within
the virtual cluster.

In this new Cross Motif Search implementation, named location-aware CMS [90],
before starting the protein comparison, master and workers establish a handshake,
which is the process of negotiation between two participants (master and workers)
before they start sending useful information. Each worker sends to the master the
position where it is running. This information is stored in a table and afterwards
used by the master to understand whether or not the worker belongs to its same
instance. After completing the handshake phase, the computation phase starts. As
in the previous version, each worker sends to the master a 4-byte message for getting
the next task. The master, instead of sending back the next protein pair, inquires
about the position of the requiring worker. If the worker belongs to the same virtual
instance as the master, the protein pair having the lowest predicted computation
time is sent back. Otherwise, the master returns a protein pair having the highest
predicted computation time.

5.1. Cross Motif Search 45

FIGURE 5.3: Number of protein pairs received by each MPI process
before introducing LJF

FIGURE 5.4: Total number of intranode and internode messages sent
by CMS master before introducing LJF

The rationale of the policy is to reduce as much as possible the communication
overhead, by placing short, frequent tasks close by to the sending master. As in the
previous implementation, the master spawns into two threads: the first, primary
master, is responsible to the communication; the secondary master instead commu-
nicates with the primary master by shared memory and always computes the protein
pair having the lowest predicted computation time, as the other intranode workers.

Before introducing the locality-awareness policy, the tasks were almost uniformly
distributed across all processes. Figure 5.3 shows the number of tasks received by
each process in a previous test. As the scheduling algorithm is on-demand, it is im-
possible to predict in advance how many protein couples a process might receive
and this amount changes in different runs, but it is easy to note that the tasks were
distributed quite uniformly among all processes.

By summing up the amount of tasks received by each worker according to the
infrastructure configuration, it is possible to compute the amount of intranode and
internode communications, showed in Fig. 5.4.

46 Chapter 5. Application optimization

FIGURE 5.5: Number of protein pairs received by each MPI process
after introducing LJF

FIGURE 5.6: Total number of intranode and internode messages sent
by CMS master after introducing LJF

The number of internode communication is more than twice than the intranode
one. This behaviour might be considered negligible for applications running on a
real HPC system, such as on Marconi, where the ratio among intranode and in-
ternode communication is quite low, but for the Cloud Infrastructure the unbalance
among intranode and internode communication might compromise the application
performance.

With the location-aware policy, the internode communications have been heavily
reduced, as shown in Fig. 5.5. Using the new selection policy, indeed, the number of
intranode communication is much higher than the intranode one, as shown in Fig.
5.6. In the optimized implementation, the intranode communication count is more
than 13 times higher than the internode one.

5.1.7 Global Load Balancing Factor of the location-aware implementation

The new selection policy changes completely the strategy used by the master to send
tasks to the workers and this might bring to the conclusion that an imbalance among

5.2. BloodFlow 47

FIGURE 5.7: Completion time of the 24 MPI processes used to run
CMS in the location-aware implementation

processes might arise. To compare the effectiveness of the optimized implemen-
tation with respect to the previous one, we computed the Global Load Balancing
Factor for the last implementation, taking into account the time for each process to
complete its execution.

Figure 5.7 shows the final section of the execution of all 24 MPI processes used in
our test. Depending on the time last task was received by each process, the comple-
tion time can be different. However, also in the location-aware implementation, all
MPI processes are well balanced, and the Global Load Balancing Factor is still very
close to the ideal value:

LB =
avg(Tp)

max(Tp)
=

10833.8835
10841.0137

= 0.9993423 (5.1)

5.2 BloodFlow

The profiling process we did on BloodFlow highlights that the application is not
able to exploit all the features provided by the physical architectures. Improving
application performance is then possible but it requires an extensive activity which
might involve many libraries, such as the Trilinos Library, which are beyond our
scope. The optimization process is then not effortless and might take a huge amount
of time. As the aim of this thesis is not the application optimization but just under-
standing whether or not this application can be successfully executed on the cloud,
we decided to leave the application as it is and go further, building the analytical
model, described in the chapter 7, to get insight about how the application might
perform in the cloud.

49

Chapter 6

Application Scalability

6.1 Cross Motif Search

6.1.1 Scalability and performance on Marconi

To study scalability and performance of Cross Motif Search, we used the last op-
timized version of CMS based on the Longest Job First policy and the location-
awareness, described in chapter 5. Being OpenMP a burden rather than an enhance-
ment, as many time highlighted by the results showed in chapter 5, we also decided
to get rid of such technology, studying scalability and performance just for the pure
MPI solution.

Figure 6.1 shows the time spent by the pure-MPI solution varying the number
of MPI processes from 16 to 256. As shown, the scalability of CMS is very high:
doubling the number of concurrent processes, the execution time is halved.

6.2 BloodFlow

6.2.1 Scalability and application performance on Stampede and Comet

In previous works [97–99], scalability and application performance have been first
measured on Stampede and Comet and using the largest dataset described in chap-
ter 3. As the authors were not interested in the biomedical significance of the results,
instead of considering the total application execution time, in order to study appli-
cation performance and scalability, they decided to run only the first 10 time steps of
the 1000 whole simulation (each step extends over 1 ms); in the following, execution
time is the average of a single time step. Since most common clinical applications
need at least of three simulated heartbeats, the total necessary execution time is at
least three thousand times longer than what we refer as execution time in this thesis.
The execution time is split over the three most costly operations performed during
a time step: the assembly of the finite element matrix (assembly); the building of the
preconditioner of the linear system (preconditioning) and the solution of the precon-
ditioned linear system (solving).

Figures 6.2 and 6.3 show the application scalability on both platforms and us-
ing different core numbers. Results about the time spent by application running on
Stampede and using 48 and 96 cores are missing because the application experienced
a crash during the runs. According to the results we got profiling and tracing the ap-
plication we speculate that the reason is mainly due to the high amount of memory
required by the application when a small number of CPU are used.

Comparing figures 6.2 and 6.3, BloodFlow seems to have the same asymptotic
behaviour on both architectures but it stops scaling at 384 cores on Comet while on
Stampede it is able to scale up to 768 cores. On both architectures, increasing more

50 Chapter 6. Application Scalability

FIGURE 6.1: Cross Motif Search Scalability on Marconi

FIGURE 6.2: BloodFlow Scalability on Stampede

the core numbers beyond these limits, the execution time rises up. Furthermore,
we did not observe any advantage in using the AVX2 instruction set on Comet over
AVX only on Stampede. Even this behaviour can be justified according to the results
we got profiling the application: the application showed a limited number of 256-bit
packed FP instructions (just 1.15% of the total floating-point instructions). Further-
more, computation on Stampede is faster than on Comet; apparently, this might be
explained by the fact that the CPUs in Stampede have a faster clock (2.7Ghz) than in
Comet (2.5Ghz), as shown in Tab. 6.1.

6.2.2 Scalability and application performance on Marconi

Figure 6.4 shows the scalability results we got running the application on Marconi,
using the largest two datasets and varying the number of concurrent MPI processes
from 36 to 2,304. Although the results seem to be more regular than on Stampede
and Comet, even on Marconi the application showed the same behaviour: the appli-
cation is able to scale very well up to a specific configuration. Increasing more the
core number, the execution time rises up.

Figure 6.5 compares all three different architectures [101]. Although the CPU
clock frequency on Marconi is lower than on Stampede and on Comet, as shown in

6.2. BloodFlow 51

FIGURE 6.3: BloodFlow Scalability on Comet

TABLE 6.1: HPC system configuration comparison.

Marconi A1 Stampede Comet

Nodes 1,512 6,400 1,94
Processor Intel Xeon E5-2697 Intel Xeon E5-2680 Intel Xeon E5-2680
CPU Frequency 2.30 GHz 2.70 GHz 2.05 GHz
Architecture Broadwell Sandy Bridge Haswell
Procs per node 2 2 2
Cores per proc 18 8 12
RAM per core 3.50 GB 4.00 GB 5.30 GB
Network 100 Gb/s

FIGURE 6.4: BloodFlow Scalability on Marconi

52 Chapter 6. Application Scalability

FIGURE 6.5: BloodFlow Scalability all three HPC systems

FIGURE 6.6: BloodFlow Scalability on Marconi using the small
dataset

Tab. 6.1, the application performs better on Marconi, where the application is able
to scale up to 1,152 cores and 576 cores for test1 and test2 respectively.

Figure 6.6 shows the mean execution time obtained for each main phase (on the
left) and the total execution time (on the right) when the smaller dataset has been
used, varying the number of concurrent MPI processes from 4 to 2048.

The behaviour is similar to that observed using the two largest dataset. Indeed,
even using the small mesh, the application seems to be able to scale up to fixed point,
512 cores, then, increasing more the concurrent process number, the total execution
time rises up. Clearly, the problem size (dimension of the mesh, in test3 it is 1/5 of
the smallest between test1 and test2) has no influence on scalability.

The first attempts to run the application on Marconi using the small dataset and
just 4 processes did not end well. The application indeed crashed after being exe-
cuted. A behaviour similar to those observed running the application on Stampede
and using 48 and 96 cores. The explanation seems to be strictly related to the amount
of memory available in the system. As shown in chapter 4, running the application
with a small number of concurrent cores requires an amount of memory RAM higher
than the amount of actually available in the system, making the application unable
to run. Anyway, the billing policy on Marconi [100] allows the user to reserve a
higher amount of RAM but with a higher cost. Then, just for the first run shown in
6.6 (4 MPI processes), the amount of memory used for that run has been 4.5 GB per
process (instead of 3.5 GB for the other runs).

6.2. BloodFlow 53

6.2.3 Factors making Marconi more efficient

The previous paragraph showed that although Marconi relies on less powerful pro-
cessors, the application performs better than on the others. Table 6.1 briefly com-
pares the configuration of all three different HPC infrastructures, but we spotted
four important factors making Marconi more efficient than the other two systems:

• Lower MPI latency: on Marconi the intranode MPI latency is 0.5 microsec-
onds (against 1.03 microseconds for Stampede and Comet) while the internode
MPI latency is 1.1 microseconds (against 1.97 microseconds for Stampede and
Comet);

• Higher Bandwidth: on Marconi the interconnection bandwidth is 100 Gb/s
against 56 Gb/s on Stampede and Comet;

• Larger RAM for each node: on Marconi each core has got up to 3.5 GB against
2.0 GB for Stampede (Comet instead has got a higher amount of RAM, that is
5.3 GB);

• Larger L3 cache: on Marconi all cores in the same node share a 45 MB L3 cache
against 20 MB for Stampede (no information about Comet);

6.2.4 Understanding the lack in scalability

The reason of the lack in scalability for BloodFlow, now, is quite clear. As described
in chapter 4, the application communication model is quite complex and the time
spent inside the MPI functions gets higher when the number of concurrent MPI pro-
cesses rises up. Then, increasing the number of MPI over a specific configuration,
the elapsed time starts to grow. What has been observed studying the application
scalability is compatible with that observed profiling the application with a differ-
ent number of concurrent MPI processes. Indeed, as shown in chapter 4, increasing
further the number of concurrent MPI processes, the number of invoked functions
and the time spent inside of them rises up heavily, becoming quickly higher than
the time spent by all processes in computation, and when this happens, there is no
convenience in running the application with a higher number of cores. It becomes
clear that the interconnection network plays a major role.

55

Chapter 7

Building the analytical model

As already described, the main aim of this thesis is to understand if moving two
different scientific applications (BloodFlow and Cross Motif Search), respectively
based on a complex and on a simple communication pattern, is worth doing it or
not from both economical as well as performance perspective. When considering
the porting of an MPI application from a fabric-based infrastructure to the cloud
environment, the pattern of communication as well as the interconnection network
are of paramount importance, because both of them are the most important factors
limiting the performance of many parallel scientific applications. As moving any
application to a different infrastructure is not effortless and can take a huge amount
of time, instead of moving straight away CMS and BloodFlow to the cloud, we de-
cided to do a deep analysis to predict the application performance and understand
if the porting is worth doing it.

In this chapter we want to build an analytical model which is able to describe
the complexity of the communication pattern where the applications are based and
then provide insights about how the applications will behave being run on a dif-
ferent platform. By looking at such models, analysts may understand whether or
not it is worth moving the application on that platform. To build a proper model,
parameters describing the communication model (application-related parameters)
as well as the network infrastructure (network-related parameters) need to be gath-
ered. Application-related parameters describe the application and its execution, and
they are always the same regardless the infrastructure layer where the application
is executed. When the communication model is well-known, application-related pa-
rameters can be gathered by looking up the documentation. Other times, instead,
most over when application has been designed and built by others, information
about the communication pattern used by processes to send and receive messages
has to be harvested in a black-box manner, using, for instance, profiling and trac-
ing tools. For gathering network-related parameters, several models can be used, as
described in Appendix B, but for our experiments we decided to use pLogP [102]
model, which has already been used in chapter 2 to characterize the Marconi and
Cloud interconnection network. Differently from the application-related parame-
ters, which are always the same regardless the infrastructure where the application
is executed on, the network-related parameters are strictly related to the network
infrastructure and need to be gathered on all different network layers. Table 7.1
shows the list of application-related parameters and network-related parameters we
decided to use to build the analytical model. It is worth noting that all these param-
eters can be gathered by knowing the communication model or by inspecting the
application execution using profiling tools. All application related parameters for
both applications are described in chapter 3, while the network related parameter
for Marconi and the cloud interconnection networks are described in chapter 2.

By combining together both parameter sets, an accurate analytical model can be

56 Chapter 7. Building the analytical model

TABLE 7.1: Application-related parameters required to build the an-
alytical model.

Application-related parameters

Number of concurrent MPI processes
MPI functions used by the application
Number of times each MPI function is invoked
Message size sent/received
How these parameters change varying the number of concurrent processes

Network-related parameters

Number of concurrent MPI processes
Intranode and internode communication number
Network latency (L parameter, see PLogP)
Network Bandwidth (g parameter, see PLogP)
PLogP model for collective functions

built and this can help to understand how much the interconnection layer affects
the application performance. Extending the pLogP model (see formula B.2) for both
intranode and internode communications and for all message sizes, the analytical
model for computing the time spent to send a message in a point-to-point commu-
nication can be built as follows:

T = Tintra + Tinter

where
Tintra = nintra ∗ (Lintra + gintra(M))

Tinter = ninter ∗ (Linter + ginter(M))

(7.1)

where n is the number of times the sending function has been invoked, L and g
are the pLogP parameters, representing respectively the latency and the minimum
time interval between consecutive message transmissions or receptions, and M is
the message size.

The model described so far can be applied just for point-to-point functions. For
collective functions instead that model can be still applied, but it has to be extended,
according to the implementation of the collective functions (see Table B.1). To be
clearer, let’s suppose we are interested about building the analytical model for com-
puting the time spent by an application to perform the broadcast operation. Let’s
also suppose that the number of concurrent MPI processes is N and they are grouped
into k different clusters. As described in Appendix B, the way the message is sent
among processes depends on the function implementation. To make the things eas-
ier, we can suppose, without losing in generality, that the broadcast operation is
implemented with the linear algorithm. This means that the root process sends the
message to each of the N-1 receivers, one at time. This means that the number of in-
tranode communications is 1/k of the total communication, while the internode com-
munication is (k-1)/k of the total communications. According to the pLogP model for
the broadcast implementation, the analytical model for the broadcast function is the
follows:

7.1. Cross Motif Search 57

T = Tintra + Tinter

Tintra = nintra ∗ ((N − 1) ∗ gintra(M) + Lintra)

Tinter = ninter ∗ ((N − 1) ∗ ginter(M) + Linter)

nintra =
1
k
∗ n

ninter =
k − 1

k
∗ n

(7.2)

where M is the message size, N is the process number, n is the number of times the
broadcast function has been invoked, k is the number of clusters. As an application
usually makes use of several collective functions, for each of them the corresponding
analytical model needs to be built. At the end, all analytical models are put together
into the final formula:

PCT = ∑
i

ni
intra ∗ f i

intra + ∑
i

ni
inter ∗ f i

inter (7.3)

where fi is i-th MPI function, ni
intra is number of times the i-th MPI function has been

invoked by a process for intranode communication and ni
inter is number of times the

i-th MPI function has been invoked by a process for internode communication.
The Predicted Communication Time (PCT) formula is able to compute the pre-

dicted communication time for an application running on a target platform.
After having described how to build in general the analytical model to compute

the predicted communication time, the following paragraphs show the correspond-
ing values for the application-related parameters and network related parameters
for both applications gathered on Marconi and on the cloud infrastructure.

7.1 Cross Motif Search

7.1.1 Application-related parameters

The communication model where Hybrid Cross Motif Search relies on, is very sim-
ple. As already described in chapter 3, the application makes use of just two primi-
tives (Send and Receive), and there is no communication among workers. Regardless
the number of concurrent processes used to compute the whole dataset, the total
amount of messages exchanged between master and workers is always the same,
and, as shown in the formula 3.1, it can be computed in advance, as it depends just
on the number of protein files belonging to the dataset. Table 7.2 shows the appli-
cation related parameters we got profiling the application on Marconi and using 24
concurrent MPI processes (three node with 8 cores). Here we represent only one
configuration (24 cores) because the others were very close to this, as the number of
messages exchanged among processes is always the same and the small variation in
the time spent inside the MPI functions can be considered as negligible and does not
affect the application-related parameters used to build the analytical model.

7.1.2 Network-related parameters

To build the analytical model and then predict the communication time spent by
the application, both application-related parameters and network-related parame-
ters need to be combined together. Differently from the application-related param-
eters, which depend only on the application and are always the same given a fixed

58 Chapter 7. Building the analytical model

TABLE 7.2: Application-related parameters required to build the
Cross Motif Search analytical model.

Number of concurrent
MPI Processes

24

MPI functions used by
the application

Send / Receive
Message size Message number

4 B 1,198,926
6 KB 1,198,926

How these parameters
change varying the
number of concurrent
processes

The number of messages exchanged among master
and workers is fixed as it does not depend on the
number of concurrent processes

TABLE 7.3: Network-related parameters gathered on Marconi.

Number of nodes 3
Number of cores per node 8

Internode Intranode
Number of 4-byte messages 82,601 1,116,325
Number of 6-KB messages 82,601 1,116,325
L 2.50E-06 4.00E-07
g(4-B) 1.00E-06 6.00E-07
g(6-KB) 2.60E-06 1.50E-06

configuration, the network-related parameters are strictly dependent on the under-
lying infrastructure layer and need to be gathered for all different infrastructures
where the application runs.

In chapter 2, we showed all network-related parameters for different message
sizes gathered on Marconi and on the Cloud, while chapter 5 gave a description
about the number of intranode and internode messages are sent using the location-
aware implementation, when the application was executed with 24 processes run-
ning on three different nodes. Although the scheduling algorithm is on-demand
and then the number of tasks received by a worker might change in different runs,
in order to build the analytical model we can suppose such number as invariant and
always the same regardless the number of concurrent processes, but supposing fixed
the number of clusters.

Tables 7.3 and 7.4 summarize all network related parameters required to build
the Cross Motif Search Analytical Model for both infrastructures.

7.1.3 Cross Motif Search Analytical Model

According to the formula 7.3, the analytical model for Cross Motif Search for both
infrastructure can be built as following:

7.1. Cross Motif Search 59

TABLE 7.4: Network-related parameters gathered on Google Cloud.

Number of nodes 3
Number of cores per node 8

Internode Intranode
Number of 4-byte messages 82,601 1,116,325
Number of 6-KB messages 82,601 1,116,325
L 3.41E-05 1.00E-07
g(4-B) 1.42E-05 3.00E-07
g(6-KB) 3.19E-05 2.30E-06

PCTMarconi = ninter ∗ f send
inter + nintra ∗ f send

intra =

= ninter ∗ [Linter + ginter(4B)] + ninter ∗ [Linter + ginter(6KB)]+
+nintra ∗ [Lintra + gintra(4B)] + nintra ∗ [Lintra + gintra(6KB)] =

82, 601 ∗ (2.50E − 06 + 1.00E − 06)+
+82, 601 ∗ (2.50E − 06 + 2.60E − 06)+

+1, 116, 325 ∗ (4.00E − 07 + 6.00E − 07)+
+1, 116, 325 ∗ (4.00E − 07 + 1.50E − 06) = 3.95 s

(7.4)

PCTCloud = ninter ∗ f send
inter + nintra ∗ f send

intra =

= ninter ∗ [Linter + ginter(4B)] + ninter ∗ [Linter + ginter(6KB)]+
+nintra ∗ [Lintra + gintra(4B)] + nintra ∗ [Lintra + gintra(6KB)] =

82, 601 ∗ (3.41E − 05 + 1.42E − 05)+
+82, 601 ∗ (3.41E − 05 + 3.19E − 05)+

+1, 116, 325 ∗ (1.00E − 07 + 3.00E − 07)+
+1, 116, 325 ∗ (1.00E − 07 + 2.30E − 06) = 12.57 s

(7.5)

Summarizing, the predicted time spent by Cross Motif Search in communication
is equal to 3.95 seconds on Marconi and 12.57 seconds on the cloud.

7.1.4 Speculation of the execution on the cloud

Analysing the analytical model, many interesting observation can be raised:

• The analytical model does not depend on the number of concurrent MPI pro-
cesses, as the whole amount of messages sent and received depends only on
the number of protein file belonging to the dataset. Keeping fixed the dataset
and varying the number of concurrent MPI processes, the communication is
always the same;

• The impact of the communication on the Cloud is three times higher than the
communication on Marconi;

60 Chapter 7. Building the analytical model

TABLE 7.5: PLogP model for collective operations used by Blood-
Flow.

MPI Function Algorithm pLogP Model

Barrier [115] Double Ring T = 2*P*(L+g(0))
Broadcast [115, 124, 125] Linear T = L + (P-1)*g(m)
AllGather [115] Ring T = (P-1)*(L+g(m))
AllToAll [115] Pairwise exchange T = (P-1)*(L+g(m))
Reduce [115] Flat Tree T = L + (P-1)*g(m)
AllReduce [115] Recursive Doubling T = (log2P + 2)*(L+g(m))
ScatterReduce Ring T = (P-1)*(L+g(m))

• The predicted communication time we got using pLogP is not comparable to
the time spent by the application inside the MPI functions, revealed by the pro-
filer, as the pLogP measures only the real communication time, while the time
spent inside MPI functions can be affected by many factors such as synchro-
nization time among processes, network congestion and resource contentions
among the processes, making the time spent inside the MPI functions not rep-
resentative for measuring the communication time;

• If compared with the CPU time, which is shown in Fig. 6.1, the predicted
communication time for both architecture is very small and does not affect at
all the application performance even being run on the cloud infrastructure.

7.2 BloodFlow

7.2.1 Application-related parameters

By using tracing tools, we have been able to gather all the required application-
related parameters varying the number of concurrent processes from 8 to 64. All of
them have been widely described in chapter 4.

7.2.2 Network-related parameters

The pLogP parameters describing Marconi and Cloud network infrastructures have
already been gathered and presented in chapter 2. As also showed in chapter 4,
BloodFlow relies not only on the point-to-point functions but also on the collective
operations, and both of them should be kept into account during prediction. Predict-
ing the communication time for collective operation is not so immediate, because it
is important to consider the internal implementation of each functions, as described
in Appendix B. Different algorithms, indeed, yield different performance and the
number of intranode or internode messages exchanged in a collective function can
be different depending on the implementation. Table 7.5 shows a small list of collec-
tive function, used in the prediction. The algorithm name nearby each MPI function
represents the name of the implementation of the function. A wider list of collective
functions can be found in Appendix B.

Although here we don’t want to go through a complete description of the func-
tion implementation, Tab. 7.6 shows, for each collective function, the amount of
intranode and internode communication, supposing to use cluster made of k nodes
each of them equipped with c cores.

7.2. BloodFlow 61

TABLE 7.6: Amount of intranode and internode communication for
each MPI function on Marconi.

Internode Intranode

MPI_Isend (k-1)/k * NMPI_Isend 1/k * NMPI_Isend
MPI_Rsend (k-1)/k * NMPI_Rsend 1/k * NMPI_Rsend
MPI_Send (k-1)/k * NMPI_Send 1/k * NMPI_Send
MPI_Barrier k/c * NMPI_Barrier (c-k)/c * NMPI_Barrier
MPI_Bcast (k-1)/k *NMPI_Bcast 1/k * NMPI_Bcast
MPI_Allgather k/c * NMPI_AllGather (c-k)/c * NMPI_AllGather
MPI_AllgatherV k/c * NMPI_AllGatherV (c-k)/c * NMPI_AlGatherV
MPI_AllToAll (k-1)/k *NMPI_AllToAll 1/k * NMPI_AllToAl
MPI_Reduce (k-1)/k *NMPI_Reduce 1/k * NMPI_Reduce
MPI_AllReduce (k-1)/k *NMPI_AllReduce 1/k * NMPI_AllReduce
MPI_Scatter 1/k * NMPI_Scatter (k-1)/k *NMPI_Scatter

7.2.3 BloodFlow Analytical Model

We are now ready to build the analytical model for computing the Predicted Com-
munication Time for BloodFlow. By combining the data showed in Tab. 2.1, repre-
senting the pLogP parameters on Marconi, in Tab. 4.3, representing the mean mes-
sage size for all point-to-point and collective operations, and in Tab. 4.1, representing
the number of times each function is invoked, we can estimate the actual time spent
by our application for all communications. Just for example, we show how to com-
pute the predicted communication time only for the MPI_Reduce function, giving
for the others just the final result.

PCTMPI_Reduce = ninter ∗ f inter
MPI_Reduce + nintra ∗ f intra

MPI_Reduce =

(k − 1)
k

∗ NMPI_Reduce ∗ ((k ∗ c − 1) ∗ ginter(m) + Linter)+

1
k
∗ NMPI_Reduce ∗ ((k ∗ c − 1) ∗ gintra(m) + Lintra)

(7.6)

where k is the number of nodes, c is the number of cores per node, g and L are the
pLogP parameters, m is the message size, N is the number of times the function has
been invoked. Supposing to have a cluster made of 4 different nodes k each of them
equipped with 8 cores c, the predicted communication time for the MPI_Reduce on
Marconi can be computed as follows:

PCTMPI_Reduce = [(4 − 1)/4 ∗ 34 ∗ ((4 ∗ 8 − 1) ∗ 1.20E − 06 + 2.50E − 06)]
+[1/4 ∗ 34 ∗ ((4 ∗ 8 − 1) ∗ 6.00E − 07 + 4.00E − 07)] =

0.00117385s
(7.7)

The total predicted communication time can then be computed summing up the
predicted communication time for all collective functions.

Tables 7.7 and 7.8 show the predicted communication time for BloodFlow when
it is executed on Marconi and on the Cloud. Times are expressed in seconds.

62 Chapter 7. Building the analytical model

TABLE 7.7: Predicted communication Time in seconds for different
runs of BloodFlow on Marconi

8 MPI 16 MPI 32 MPI 64 MPI

Predicted Communication Time 1.89 5.07 8.56 35.14

TABLE 7.8: Predicted communication Time in seconds for different
runs of BloodFlow on Google Cloud

8 MPI 16 MPI 32 MPI 64 MPI

Predicted Communication Time 27.22 71.55 180.32 518.51

7.2.4 Speculation of the execution on cloud

Comparing tab. 7.7 and 7.8 representing the predicted communication time on Mar-
coni and on Cloud, it is easy to notice that on Cloud the values are not only higher
than the corresponding predicted values on Marconi, but also they increase much
more quickly than on Marconi. This suggests that application scalability might be
quite reduced and the breakpoint we observed on Marconi at 512 cores (fig. 6.4) can
come before in the cloud, even at 64 cores or fewer. This outcome led us to state that
for all applications based on a complex communication pattern such as BloodFlow,
Cloud Infrastructure might not be a competitive choice for running such applica-
tions, from a performance point of view.

63

Chapter 8

Validation

To evaluate the correctness of the model and verify our speculations, we moved and
ran both applications on the cloud infrastructure. The following two paragraphs
show the result we got running Cross Motif Search and BloodFlow on the cloud and
give a comparison with the results we got running both applications on Marconi.

8.1 Cross Motif Search

Figure 8.1 compares the performance results obtained running the application on
both architectures. Although the cloud infrastructure was set-up to be very close to
the HPC configuration, Marconi is slightly superior in raw performance. The reason
is mainly due to the overhead introduced by the communication, the virtualization
layer and to the interfering jobs being run on the same physical bare-metal. Ac-
cordingly our speculation, the outcome we got highlights that Google Cloud Infras-
tructure can be a good choice for running parallel applications having a small, but
not negligible, communication based on master/worker model, such as our CMS
application.

8.2 BloodFlow

Figure 8.2 compares the scalability of BloodFlow when it runs on Marconi and on
the Cloud Infrastructure. As shown, on the cloud our application seems to be able
to scale up 32 cores. On Marconi, instead, the application was able to scale up to 512
cores as shown in Fig. 6.6.

The loss in scalability is mainly due to the increase in the time spent inside the
MPI function when the core number grows up, as highlighted by the profiling ac-
tivities. Figure 8.3, indeed, shows the time spent inside and outside MPI functions
varying the MPI process number. Using 32 virtual cores, the time spent inside all
MPI functions is almost equal as the time spent outside, and when the core number
grows up further, the time spent inside the MPI function is much higher than the
time spent in the rest of the application.

According to our speculation, Cloud environment cannot be considered as a fea-
sible place for running scientific applications based on a very complex communi-
cation pattern, because the interconnection network plays an important role in the
application performance.

64 Chapter 8. Validation

FIGURE 8.1: Comparing Cross Motif Search Scalability on Marconi
and on Cloud Infrastructure

FIGURE 8.2: Comparing BloodFlow Scalability on Marconi and on
Cloud Infrastructure

8.2. BloodFlow 65

FIGURE 8.3: Time spent inside and outside MPI functions by Blood-
Flow

67

Chapter 9

The evaluation model

9.1 Performance and Economical comparison

According to the results shown in figures 8.1 and 8.2, it is clear that Cross Motif
Search is able to scale very well even on the cloud but BloodFlow performs worse as
it stops scaling at 32 cores, much before than on the HPC system.

This comparison highlights that scientific applications based on a complex com-
munication pattern, such as BloodFlow, might meet several troubles being run on the
cloud while those applications based on simple communication model, like Cross
Motif Search, are good candidates to be executed on a cloud environment, because
of the small impact of the interconnection network. In conclusion, cloud computing
does not seem to be yet a convenient place for running scientific application from
the performance perspective.

To understand if Cloud Computing can be convenient at least from the econom-
ical perspective, we estimated the cost for running a virtual instance on three differ-
ent cloud platforms provided respectively by Google, Amazon and Microsoft. Each
virtual instance runs a Red Hat Enterprise Linux distribution and is equipped with
8 cores, 16 GB of memory RAM and 100 GB of Hard Disk. All virtual instances have
also been built on a physical cluster based in London. Table 9.1 shows the cost per
hours for all three providers. The table shows that Microsoft is slightly more expen-
sive than the other two providers but Google wins the comparison as the Amazon
billing policy is less convenient because, for example, the cost is computed by hours
and not by seconds as in Google.

Even though Google is the cheapest solution, it is still more expensive than Mar-
coni, where the cost per hour for 8 cores is two times lower than Google. And even
using preemptible instances (that is instances that can be stopped if other tasks re-
quire accessing to those resources) the cost, which is dropped by half, stays still too
much higher than on Marconi. In conclusion, not even from the economical perspec-
tive cloud seems to be convenient.

TABLE 9.1: Cost per hour for running a scientific application on three
different cloud infrastructures.

Service Provider $ per hour

Google Cloud 0.41
Amazon AWS 0.41
Microsoft Azure 0.53

68 Chapter 9. The evaluation model

9.2 Building the evaluation function

Looking at the results showed in the previous paragraph, cloud computing does
not seem to be a convenient place for running scientific application, neither from
the performance perspective nor from the economical one. But the landscape might
be different if the comparison takes into account other factors making cloud com-
puting so appealing for the users [7–9, 15]. For example, jobs on HPC systems are
not usually executed on-the-fly, but they are put in a queue until the required re-
sources are available and afterwards are scheduled. Sometimes, depending on the
number of the jobs waiting in the queue and the amount of the physical resources,
the waiting time might be quite long. In the cloud infrastructure, instead, there is
not any waiting time as the resources are immediately available. In our vision, a
fair comparison between cloud and HPC infrastructures should take into account
not just performance and economical aspects but also waiting time, job failure, job
setup time, maintenance time as well as the user preferences. A time-sensible user
might be willing to pay a bit more for getting the results sooner and then the cho-
sen architecture will be different according to its preferences. Choosing the right
infrastructure can be essentially seen as a multi-attribute decision-making problem.
A proper model based on all these attributes might help researchers to understand
which platform might be the best one depending on the user preference, the execu-
tion time, the cost for computing and the expected waiting time in the queue. The
selected architecture might not be the highest performing one, nor the most afford-
able, but that one which optimizes the utility function describing the model.

To measure the goodness of each platform using several attributes, we built a
utility function based on the weighted geometric aggregation function [128]. The
attributes taken into account by the formula are user preference, execution time,
cost for computing, expected waiting time in the queue for HPC system and virtual
instance startup time for the cloud. The following formulas describe the utility func-
tion we adopt for measure the convenience to use the HPC infrastructure UM rather
than the Cloud system UC for running any application.

UM =

(
TM + WM

max(TM + WM, TC + SC)

)λ

∗
(

CM

max(CM, CC)

)(1−λ)

(9.1)

UC =

(
TC + SC

max(TM + WM, TC + SC)

)λ

∗
(

CC

max(CM, CC)

)(1−λ)

(9.2)

In formulas 9.1 and 9.2, TM and TC are the elapsed time spent by a fixed job run-
ning respectively on Marconi and on the Cloud, while CM and CC are the cost for
running that job respectively on the HPC system and on the cloud. All four parame-
ters are already available as the have been assessed running Cross Motif Search and
BloodFlow on both infrastructures. The parameter λ instead is the user preference.
Its value ranges between 0 and 1. Having λ=0 means that the user is more sensible
to the cost (and then the user would like to have the results with a lower cost, with-
out being interested about the time to completion for getting such results); on the
opposite, λ=1 is the preference of a user who is mainly interested to minimize the
time to completion and then optimize the turnaround time. The last two parameters,
WM and SC are respectively the waiting time a job has to wait to be executed on the
HPC system (waiting for all required resources are available) and virtual instance
startup time, which is the time a cluster of virtual instances takes to get ready to run
a job. Both parameters are still unknown and have to be assessed (as described in
chapters 10 and 11) to be put into the evaluation model. Using the utility function,

9.2. Building the evaluation function 69

it is then possible to set turnaround time as a criterion for assessment. The model is
then used to evaluate all runs of Cross Motif Search and BloodFlow applications on
both Marconi and Cloud. If UC is lower than UM, users should choose Cloud as the
best platform for running the applications, else Marconi is the best one.

As already mentioned, the utility function takes the time spent by the applica-
tions to be executed on the cloud and on Marconi and their relative costs. Further-
more, it requires Waiting Time and Virtual Instance Startup Time which need to be
characterized. For this reason, in order to get both parameters, the following chap-
ters 10 and 11 make a characterization of both times.

71

Chapter 10

Marconi workload characterization

The results described in this chapter refer to the jobs which have been submitted
on Marconi during eight months, from the 23rd of January (when SLURM was open
to the scientific community) up to the 26th of September 2018 (when A1 partition
was closed). To submit a job, users should declare the amount of resources (number
of cores and amount of memory RAM) required to run the job, the maximum time
limit within the job has to complete its execution and the queue where the job has
to be put for execution. When the required resources are available and according
to the scheduling policy, the job is started. The job then runs until it completes its
execution. Jobs can end in a regular way or with an error. For example, jobs running
beyond the time limit are killed by the system with the signal Timeout, even the
execution is not completed yet.

10.1 Jobs and Partitions on Marconi

10.1.1 Submitted, Queued and Started jobs

During the observed period of time, the amount of jobs submitted on Marconi has
been equal to 2,121,429, but 51,449 jobs have been almost immediately cancelled by
the user or by the system without being put in the waiting queue. The remaining
2,069,980 jobs, then, have been put on the queue even though for a small amount of
time before being executed. Furthermore, 130,837 queued jobs have been cancelled
by the users or the system after being put in the waiting queue but before being run,
so that even this small subset of jobs is ignored from our analysis. At the end, the
number of jobs executed on Marconi during the observed period of time is equal to
1,939,143 (see Table 10.1).

All the results described in this chapter take into account only started jobs, since
only all jobs inside such subset yielded significant results from the user perspective.

10.1.2 Jobs per Partitions

All started jobs have been submitted on all three different partitions (as shown in
Fig. 10.1) but that one which has been used the most is A1 (based on the Broadwell
architecture), with the 52.65% of the total jobs, followed by A2, with 525,239 jobs,
and by A3 with 346,729 jobs. A small amount of jobs has been submitted for the
execution on the sys partition which is not accessible to the end users but only by
technicians for running management applications.

As we are mainly interested to understand for which run of our target applica-
tions cloud computing can optimize the turnaround time, we focused our analysis
on just those jobs submitted on A1 partition, being this the partition used for run-
ning our applications. Furthermore, such partition exposes a finer-grain parallelism

72 Chapter 10. Marconi workload characterization

TABLE 10.1: Submitted, queued and started jobs on Marconi.

Submitted jobs 2,121,429

Before queueing

Cancelled by the user 34,562
Cancelled by the system 13,119
Failed 3,710
System Error 58

Queued jobs 2,069,980

After queueing

Cancelled by the user 125,261
Cancelled by the system 414
Failed 4,242
System Error 920

Started jobs 1,939,143

FIGURE 10.1: Amount of jobs started on each Marconi partition

10.2. Submissions by date and time 73

FIGURE 10.2: Amount of jobs started in the queues of Marconi A1
partition

as it allows the users to reserve the exact number of core they need, and this can
be smaller than the amount of cores belonging to a node. Then the reserved re-
sources and the allocated resources are always the same, differently from the other
partitions where the allocated resources is always a multiple of the core number in a
node. Being the cost proportional to the allocated resources, A1 partition guarantees
that the cost corresponds to the amount of resource really required and used. For
these reasons, the following analysis is restricted to those 1,020,900 jobs which have
been submitted and started on A1 partition.

10.1.3 Jobs and Queues on Marconi A1

Inside A1 partition, jobs are submitted on seven different queues, but that one used
the most is the bdw_usr_prod queue, with 615,996 jobs, corresponding to the 60.34%
of the total jobs started in A1 partition, as shown in Fig. 10.2 .

10.2 Submissions by date and time

10.2.1 Submissions by period of time

The number of jobs submitted every day is quite variable, indeed it ranges between
698 and 23,884, with a mean of 4,150 jobs per days, a median of 3,383 and a standard
deviation equal to 2,762. Figure 10.3 shows the number of jobs submitted on each
day of the observed period of time. Red horizontal lines represent the first and the
third quartile, while the blue line is the median value.

10.2.2 Submissions by hours

The highest number of jobs is submitted between 9 AM and 1 PM (267,946 jobs) (Fig.
10.4, but users submitted their works all day long, as a confirm that Marconi is an
HPC system used by many organizations all over the World.

74 Chapter 10. Marconi workload characterization

FIGURE 10.3: Amount of jobs per days submitted on Marconi

FIGURE 10.4: Amount of jobs per hours submitted on Marconi

10.2. Submissions by date and time 75

FIGURE 10.5: Amount of jobs per weekday submitted on Marconi

10.2.3 Submissions by week day

From a day perspective, instead, Friday is the day when the highest number of jobs is
submitted. As expected, Saturday and Sunday recorded instead the lowest number
of submitted jobs, as shown in Fig. 10.5.

10.2.4 Inter-arrival time

Jobs on Marconi are submitted frequently. Figure 10.6, indeed, shows the time in
seconds between two consecutive jobs. As shown in the figure, 64.81% of the started
job has been submitted after one second or less from its previous, while almost 92%
of total jobs has been submitted within a minute. There are some jobs coming after
several minutes from the previous. The highest delay has been recorded by the job
13496, that came after 35,078 seconds (more than 9 hours) after its previous. Median
and mean values are respectively 0 and 20.81 seconds, with a standard deviation
equal to 108.30.

10.2.5 Inter-delivery time

From the user perspective, an interesting aspect to evaluate is how much the HPC
system is able to deliver completed jobs. All the jobs submitted on A1 partition have
been taken into account on this analysis, without making any difference between
jobs having completed their execution successfully and those having not. The inter-
delivery time is highly dependent of many factors, such as the inter-arrival time,
the length of each job and the amount of resource available, but the closer the inter-
delivery time to the inter-arrival time, the higher the system throughput. Figure
10.7 the cumulative inter-delivery time for all jobs. As shown, only 38.05% of the
executed jobs have been delivered after less than 1 seconds from the previous job,
but 90.52% have been delivered after less than one minute.

Figure 10.8 shows the inter-delivery time (in seconds) for each executed job. Me-
dian and mean time are respectively 4 and 20.88 with a standard deviation equals
to 80.85 seconds. All of these values are not too much far from the corresponding

76 Chapter 10. Marconi workload characterization

FIGURE 10.6: Inter-arrival time of the jobs submitted on Marconi

FIGURE 10.7: Inter-delivery time of the jobs submitted on Marconi

10.3. Job Geometry 77

FIGURE 10.8: Inter-delivery time of the jobs submitted on Marconi

FIGURE 10.9: Number of required concurrent cores

values we got in the inter-arrival analysis. This means that inter-arrival and inter-
delivery are quite balanced and in a pure FIFO queue, jobs should not wait too long
before being run.

10.3 Job Geometry

10.3.1 Number of required cores

A huge amount of jobs has been submitted to be run in serial. Indeed, 341,833 jobs,
corresponding to a third of the started jobs, have used only a single core while 83%
of the jobs has been executed with 64 or fewer cores. The remaining jobs, instead,
have used up to 7,488 concurrent cores. The median value is 18 while the mean is
58.67, as shown in Fig. 10.9.

Figure 10.10 shows the cumulative distribution function representing the num-
ber of jobs requiring less than or equal to a fixed CPU number. The y-axis shows

78 Chapter 10. Marconi workload characterization

FIGURE 10.10: Jobs requiring less than or equal to a fixed CPU num-
ber

the number of submitted jobs, the x-axis instead shows the number of cores. The
vertical red line represents 64 cores.

10.3.2 Required core number per queue

A closer look to the job geometry per each queue (Fig. 10.11) shows that the queue
named dbw_usr_prod is not only the most used but also the queue where jobs re-
quired the highest amount of cores (up to 7,488). All other jobs being run on the
other queues, instead, always required less than 800 cores. Furthermore, the queue
bdw_meteo_prod seems to be completely unbalanced as there is a high number of jobs
running in serial mode. Indeed, for such queue, minimum value as well as first
quartile and median are equal to 1.

10.4 Job Execution Time

As described at the beginning of this chapter, we are characterizing only those jobs
which have been successfully submitted on A1 partition and have been put in a
queue for the execution. After a while, according to the Marconi scheduling policy
and the resource availability, the job is executed until an event occurs. Such event
can be the normal execution completion or some error such as Timeout, Cancelled or
Failed.

10.4.1 Job States

Although 82.77% of the started job have regularly completed their execution (844,975
jobs), there is a significant amount of jobs which were cancelled by the user (26,557
jobs) or by the system (28 jobs). More than 80 thousand jobs failed their execution,
likely due to an application problem, and more than 40 thousands (4% of the total
jobs) instead were killed by the system because the Time Limit, defined by the user at
submission time, was smaller than the time required to complete the job execution.
Jobs killed for timeout represents a big deal for the users as they waste computation
time without producing any significant result. A minor percentage of jobs is instead

10.4. Job Execution Time 79

FIGURE 10.11: Number of cores required by processes belonging to
the queues

FIGURE 10.12: Completed jobs grouped by state

represented by jobs which failed their execution due to a node fail or for needing a
higher amount of memory. Figure 10.12 shows all job termination states, the number
as well as the percentage of the jobs that have completed their execution with such
state.

10.4.2 Job Elapsed Time in general

As showed in the previous paragraph, just 844,975 jobs have completed their execu-
tion correctly. A half of all completed jobs terminated their execution in less than 43
seconds, while 80% stayed running for less than 1,400 seconds (almost 23 minutes),
as shown in Fig. 10.13. Only a negligible percentage of jobs (0.06%) took more than
24 hours to complete its execution, with a maximum elapsed time equals to 417,311.

As also showed in Fig. 10.14, the median elapsed time is equal to 43 seconds with
a mean of 2,385 seconds.

80 Chapter 10. Marconi workload characterization

FIGURE 10.13: Cumulative Job Elapsed Time

FIGURE 10.14: Job Elapsed Time

10.4. Job Execution Time 81

FIGURE 10.15: Lorenz curve

10.4.3 Gini index and Lorenz curve

An interesting perspective to be evaluated is how equally the resources (that is the
usage of CPUs) are used by the jobs. Figure 10.15 shows the Lorenz curve which
describes how the CPU time is distributed among jobs. The x-axes shows the per-
centage of jobs executed on Marconi, the y-axes instead shows the percentage of
CPU time used by a job. Each point belonging to the rounded curve in the bottom
of the picture represents the percentage of CPU Time that has been used by a per-
centage of jobs. The 45-degree line is the line of equality and corresponds to the
perfect equality distribution, while the dashed vertical line corresponds to the per-
fect inequality distribution. As shown in the figure, the curve is very close to the
inequality line, this means that a huge amount of resources (CPU time) are used by
a small amount of jobs. Indeed, further analysis reveals that 93.18% of the whole
jobs uses only 6.82% of the CPU Time.

Our distribution also showed a very high Gini coefficient, equals to G = 0.96. Gini
index is a statistical measure of distribution to study inequality within a distribution.
It usually comes with the Lorenz Curve as it provides an analytical description of the
inequality level. The coefficient ranges from 0 to 1. The closer the value to zero, the
more equally the distribution. The value 1 represents a perfect inequality.

10.4.4 Job Elapsed Time by Queue

As showed in figure 10.16, under the elapsed time perspective almost all queues are
similar to each others. Two of them, instead, bdw_all_serial and bdw_fua_gw, show

82 Chapter 10. Marconi workload characterization

FIGURE 10.16: Elapsed Time per Queue

FIGURE 10.17: Accuracy between Time Limit and Elapsed Time

a large collection of jobs with an higher elapsed time, although the longest job has
been submitted in the bdw_usr_prod.

10.4.5 Accuracy between Time Limit and Elapsed Time

As already described, if the time required by a job to complete its execution is larger
than the time limit defined by the user at submission time, the job is killed by the
system. To avoid killing jobs for timeout, users usually define a higher time limit,
which, according to the scheduling policy, might affect the time spent by the job in
the waiting queue. Figure 10.17 shows the accuracy of the time limit respect the
elapsed time. The accuracy factor has been computes as follows:

Accuracy = ElapsedTime ∗ 100/TimeLimit (10.1)

This value ranges between 0 and 100. The closer to 100, the higher the accuracy.
As represented in Fig. 10.17, the median is equal to 3.3, while the mean is equal

to 11.74, and this behaviour is similar if compared to the results of each queue (Fig.

10.4. Job Execution Time 83

FIGURE 10.18: Accuracy by Queue between Time Limit and Elapsed
Time

FIGURE 10.19: Running Jobs per day

10.18). For all queues, the median values ranges between 2.39 (for bdw_all_serial
queue) and 10.44 (for bdw_usr_dbg queue). This result shows that Marconi users do
not always know in advance the time an application might spend being run on the
HPC system and, to avoid the job is killed, they use a time limit which is much
higher the elapsed time.

10.4.6 Number of Running jobs

The highest number of jobs concurrently running on the HPC system is 491, but the
trend goes up and down as shown in Fig. 10.19. The time when the number of con-
current jobs is zero corresponds to the time when Marconi was put in maintenance.

84 Chapter 10. Marconi workload characterization

FIGURE 10.20: Job Clusterization

10.5 Job Clusterization

A trivial way to classify jobs is according to the queue where the jobs have been
submitted. Anyway, as shown in the previous paragraphs, inside each queue the
variance of the jobs, their geometry, the elapsed time and the waiting time is very
high. To get sets of more homogeneous jobs, we decided to clusterize jobs according
to their geometry and the time spent running. We decided to use k-means as parti-
tioning method for job clusterization. Instead of fixing priori the number of clusters,
we iterated k-means method several times, until the covariance coefficient was not
lower than 1.1 for all clusters. The covariance coefficient (cc) for thei-th cluster is
computed as follows:

cci =
sd(Ji

ElapsedTime) + sd(Ji
CPUNumber)

mean(Ji
ElapsedTime) + mean(Ji

CPUNumber)
(10.2)

where sd is the standard deviation function, mean instead is the mean function and J
is the set of jobs belonging to the i-th cluster.

Our test shows that the ideal cluster number is 16. Figure 10.20 shows all clus-
ters found running k-means method on the workload. Table 10.2, instead, shows the
number of jobs belonging to each cluster and the corresponding covariance coeffi-
cient.

Table 10.2 shows that the largest cluster is also that having the highest covariance
factor. Jobs belonging to this cluster are characterized by a higher diversity but, as
shown in Fig. 10.20, all of these jobs (dark green circles) exhibit a small amount of
required CPUs (less than 34) and also a very small elapsed time (not higher than 46
seconds). Table 10.3 shows, for each cluster, the interval of the CPU required by the
jobs belonging to each cluster and the interval of their elapsed time.

10.5. Job Clusterization 85

TABLE 10.2: Covariance Coefficient Value for each cluster.

ID Job Number Covariance Coefficient

1 11,200 0.1678488
2 81,175 0.4429892
3 45,725 0.1932386
4 41,561 0.2196228
5 30,803 0.2362751
6 1,836 0.3503713
7 256,963 0.8988784
8 21,305 0.2922092
9 5,642 0.2662690

10 9,961 0.1785923
11 33,553 0.3376443
12 63,532 0.1992133
13 18,884 0.7526654
14 24,117 0.1981165
15 39,642 0.3964350
16 159,076 0.4780405

TABLE 10.3: CPU number interval and Elapsed Time Interval for each
cluster.

ID CPU Interval Elapsed Time Interval

1 1 - 4752 34387 - 62258
2 1 - 4176 1864 - 8176
3 1 - 1872 735 - 1234
4 1 - 512 282 - 534
5 1 - 216 200 - 335
6 2048 - 7488 1 - 6643
7 1 - 34 1 - 46
8 1 - 5760 6960 - 19590
9 1 - 5760 62227 - 417311

10 1 - 5760 18892 - 34880
11 1 - 180 103 - 208
12 1 - 1872 1035 - 2593
13 162 - 2088 1 - 920
14 1 - 1024 473 - 803
15 1 - 72 39 - 117
16 30 - 162 1 - 111

86 Chapter 10. Marconi workload characterization

FIGURE 10.21: Cumulative Job Waiting Time

FIGURE 10.22: Job Waiting Time distribution

10.6 Job Waiting time

10.6.1 A global perspective

An overview on the waiting time of all jobs started on A1 partition shows that the
time spent by each job waiting to be executed is not negligible as it can last even
several days. Indeed, 56,754 jobs, corresponding to 5.56% of the total submitted
jobs, had to wait at least 24 hours before being run. Only 19.21% of the jobs, instead,
has been executed almost immediately, while almost fifty percent of the jobs waited
at least two minutes before being run (Fig. 10.21).

Figure 10.22 shows for each queued jobs, the time spent waiting for being run.
Horizontal red line represents a wait time of 24 hours. The median waiting time
is equal to 121 seconds, with a mean equals to 18,227 seconds, a maximum value
equals to 1,779,294 seconds (more than 20 days) and a standard deviation equals to
82,339.37 seconds.

10.6. Job Waiting time 87

FIGURE 10.23: Job Waiting Time per Queue

TABLE 10.4: Job Waiting Time per Queue.

Queue min 1st quart. median mean 3rd quart. max

bdw_all_rcm 0 2 14 212 47 10,838
bdw_all_serial 0 1 30 2,414 146 1,382,508
bdw_fua_gw 0 2 58 9,206 446 674,984
bdw_fua_gwdbg 0 1 2 16 3 1,439
bdw_meteo_prod 0 1 3 365 118 209,874
bdw_usr_dbg 0 13 86 2,191 681 398,366
bdw_usr_prod 0 42 392 29,48 7,486 1,779,294

10.6.2 Waiting time by queues

A deeper analysis on the waiting time shows that many jobs are affected by the
waiting time regardless the queue where each job is submitted. The queue where
the waiting time affects the most the job execution is the bdw_usr_prod, which is also
the most used. Inside such queue, the median waiting time is 392 seconds, while the
third quartile and the mean value are respectively equal to 7,486 and 29,481 seconds.

But even for the other queues the maximum waiting time is however not neg-
ligible being always over than 1,439 seconds as shown in Fig. 10.23 and in Table
10.4.

10.6.3 Waiting time by clusters

We also did a similar analysis using clusters we found using k-mean technique. As
described in Fig. 10.24 and in Table 10.5, the median value for all clusters ranges
between 3 seconds (cluster 7) and 92,094 seconds (cluster 1).

10.6.4 Correlation between Job Geometry and Job Waiting Time

Figure 10.25 shows the correlation between the number of required cores for each job
and the job waiting time. Although for a fixed geometry the waiting time spreads
across several values, it is possible to notice a small correlation (ρ = 0.20) between
core number and waiting time. Indeed, the maximum waiting time goes down

88 Chapter 10. Marconi workload characterization

FIGURE 10.24: Job Waiting Time per Cluster

TABLE 10.5: Job Waiting Time per Cluster.

Queue min 1st quart. median mean 3rd quart. max

Cluster 1 0 2,537 92,094 219,940 332,596 1,779,294
Cluster 2 0 3 256 21,624 11,680 1,008,409
Cluster 3 0 89 1,413 15,821 6,475 1,011,275
Cluster 4 0 192 1,089 12,145 4,127 523,31
Cluster 5 0 57 479 7,045 3,258 523,31
Cluster 6 0 11,795 67,414 276,079 677,283 873,641
Cluster 7 0 1 3 1,537 148 1,382,508
Cluster 8 0 81 2,620 40,195 42,378 1,318,36
Cluster 9 0 59 4,940 97,509 97,442 1,431,388
Cluster 10 0 268 31,233 149,690 152,391 1,522,522
Cluster 11 0 3 120 4,250 810 523,317
Cluster 12 0 5 670 22,854 3,840 907,381
Cluster 13 0 2 4 3,389 120 1,256,129
Cluster 14 0 179 2,196 22,78 17,882 1,011,712
Cluster 15 0 28 132 7,348 910 1,200,751
Cluster 16 0 2 25 1,183 229 1,065,234

10.6. Job Waiting time 89

FIGURE 10.25: Correlation between Required Cores and Job Waiting
Time

when the number of required cores rises up. The scheduling policy of Marconi then
favours larger jobs, using the smaller ones to fill the unused cores.

10.6.5 Correlation between Time Limit and Waiting Time

If Marconi, from one side, favours those larger jobs, on the other side, instead, jobs
submitted with larger Time Limit might wait a longer time. This behaviour is shown
in Fig. 10.26, which shows the correlation between the Time Limit and the Waiting
time. In the figure, it is possible to notice that the maximum waiting time for a fixed
class of jobs having the same Time Limit rises up when the time limit grows.

The correlation between Time Limit and Job Waiting Time is slightly higher than
the correlation between Job Geometry and Job Waiting Time (ρ = 0.27).

10.6.6 Ratio between Elapsed Time and Waiting Time

In previous paragraph we characterized the waiting time without taking into ac-
count the elapsed time. Instead of considering the absolute waiting time, it is worth
studying the time spent by a job waiting in the queue respect the time spent by the
same job to complete its execution. Indeed, a waiting time of five minutes might
appear to be a small amount of time if compared with a job taking several hours
to be completed, but the same waiting time might be considered too high if the job
elapsed time is just a few minutes. We define the relative waiting time as follows:

RelativeWaitingTime = WaitingTime/ElapsedTime (10.3)

This value is always greater than or equal to 0. Better values are closed to 0. The
higher the relative waiting time, the greater the impact of the waiting time respect
to the elapsed time.

As shown in Fig. 10.27, more than 50% of all executed jobs has been waiting
in the queue for almost the same time spent in computation, while the 80% of all
executed jobs has been waiting in the queue for almost 15 times the time spent by
the job in computation.

90 Chapter 10. Marconi workload characterization

FIGURE 10.26: Correlation between Time Limit and Job Waiting Time

FIGURE 10.27: Cumulative Relative Waiting Time

10.6. Job Waiting time 91

FIGURE 10.28: Cumulative Relative Waiting Time per Queue

FIGURE 10.29: Cumulative Relative Waiting Time per Cluster

A synthetic analysis on the relative waiting time shows a median value equals
to 1, first and third quartile equal respectively to 0.1 and 8.8, a mean equals to 203.5
and a standard deviation of 2,651.25.

10.6.7 Relative Waiting Time by Queues and by Clusters

So far we have grouped all jobs in two different ways: according to the queue
where the jobs have been submitted and according to the clusters, discovered us-
ing k-means method, where the jobs belong to. As the main aim of this work is
to characterize the waiting time the jobs might experience on an HPC system like
Marconi, we studied how the relative waiting time changes depending on both clas-
sifications. Figures 10.28 and 10.29 show how the relative waiting time is distributed
respectively on all queues and on all clusters. Tables 10.6 and 10.7, instead, show the
numerical values of such distribution, in particular the minimum and the maximum
value, the first and the third quartile, and finally, the median and the mean value.

On both representation, the mean value is almost always greater than the third
quartile. This highlights that the distribution is badly affected by some outlier mak-
ing the mean value and the maximum value much higher than the median value.

92 Chapter 10. Marconi workload characterization

TABLE 10.6: Relative Job Waiting Time per Queue.

Queue min 1st quart. median mean 3rd quart. max

bdw_all_rcm 0.00 0.00 0.51 100.97 2.62 3,671.00
bdw_all_serial 0.00 0.01 0.09 82.76 0.99 230,418.00
bdw_fua_gw 0.00 0.00 0.02 1,032.68 0.53 95,233.00
bdw_fua_gwdbg 0.00 0.00 0.06 1.128 0.50 52.00
bdw_meteo_prod 0.00 0.00 0.14 13.57 1.31 3,4899.00
bdw_usr_dbg 0.00 0.11 1.89 122.91 14.16 46,260.50
bdw_usr_prod 0.00 0.30 3.10 314.60 23.60 377,678.05

TABLE 10.7: Relative Job Waiting Time per Cluster.

Queue min 1st quart. median mean 3rd quart. max

Cluster 1 0.00 0.06 2.17 5.50 8.15 42.96
Cluster 2 0.00 0.00 0.07 6.21 2.54 248.46
Cluster 3 0.00 0.09 1.48 15.84 6.91 1,015.34
Cluster 4 0.00 0.46 2.51 29.57 9.74 1,461.78
Cluster 5 0.00 0.23 1.88 25.82 12.24 2,528.10
Cluster 6 0.00 81.32 708.14 2,341.14 3,387.19 69,066.80
Cluster 7 0.00 0.04 0.50 409.09 11.00 313,432.00
Cluster 8 0.00 0.01 0.23 3.38 3.51 133.06
Cluster 9 0.00 0.00 0.06 1.33 1.28 20.95
Cluster 10 0.00 0.01 1.12 5.27 5.84 64.79
Cluster 11 0.00 0.02 0.76 28.31 5.45 4,120.61
Cluster 12 0.00 0.00 0.47 14.39 2.51 507.77
Cluster 13 0.00 0.40 0.80 381.70 4.60 37,7678.50
Cluster 14 0.00 0.28 3.40 37.16 27.68 1,809.86
Cluster 15 0.00 0.35 1.80 99.38 12.53 20,702.60
Cluster 16 0.00 0.20 1.50 284.07 13.87 166,114.00

10.7. Total system Utilization 93

FIGURE 10.30: Number of cores concurrent occupied by running jobs

For this reason, median value can better describe the waiting time because it is in-
sensitive to the presence of the outliers.

By looking at the Tables 10.6 and 10.7, it is possible to notice that the median of
the relative waiting times for queue-oriented distribution ranges between 0.02 and
3.10, while on the cluster-oriented distribution the presence of the cluster 6 makes
the spread higher than the other distribution (from 0.06 to 708.14). Making a drill
down cluster 6 (having the highest median), we observed that all jobs belonging to
bdw_usr_production queue are characterized by a large number of required cores (be-
tween 2048 and 7488) and an elapsed time which is always lower than 6643 seconds
but with a very high waiting time (up to 873,641 seconds). In Fig. 10.20, these jobs
cover the dark green area on the bottom-right side of the picture.

10.7 Total system Utilization

During the observed period of time, Marconi has been working almost all the time,
except for some small intervals where the system was put closed for maintenance.
Figure 10.30 shows the number of concurrent cores busy during the whole observed
time. The maximum value is 25,153, corresponding to 97% of the total number of
core belonging to the HPC infrastructure, which is 25,920, as described in chapter 2.

Anyway, to compute the real total system utilization, maintenance periods of
time, which made Marconi closed, need to be taken in account. The analysed work-
load contains all jobs submitted from January 2018, the 23rd, at 9.00 AM to November
2018, the 26th, at 7.00 PM, for a total of 5,914 hours. According to the system log, the
HPC infrastructure was closed for maintenance for 53 hours. Table 10.8 shows the
time when the infrastructure has been completely closed. These times are compa-
rable with the job execution trend shown in Fig. 10.19 and 10.30, where the lines
fall down to zero when the system was closed and the jobs stopped. However, this
amount takes into account just the time when the infrastructure has been completely
closed to the users and no node was accessible. Partial closing are instead not com-
puted because they affected only a small number of nodes, even just one, and users
would have anyway submitted jobs for being executed in the working nodes. As the
number of cores belonging to A1 was 25,920, the total core-hours can be computed
as

94 Chapter 10. Marconi workload characterization

TABLE 10.8: Marconi’s interruptions.

Day From To Lenght

02/13/2018 08.30.00 13.00.00 04.30.00
03/08/2018 09.30.00 13.00.00 03.30.00
03/26/2018 08.30.00 15.00.00 06.30.00
04/19/2018 08.00.00 16.00.00 08.00.00
05/10/2018 12.00.00 18.00.00 06.00.00
06/19/2018 10.00.00 15.00.00 05.00.00
06/29/2018 14.00.00 17.30.00 03.30.00
07/24/2018 08.30.00 16.30.00 08.00.00
11/18/2018 10.00.00 18.00.00 08.00.00

TotalCoreHours = (5, 914 − 53) ∗ 25, 920 = 151, 917, 120 (10.4)

.
To compute the Total System Utilization we used the following formula :

TSU = CoreHourUsed ∗ 100/CoreHoursAvailable (10.5)

According to the workload, core-hours used in the observed period of time was
equal to 112,247,824, then the TSU is equal to

TSU = 112, 247, 824 ∗ 100/151, 917, 120 = 73.89% (10.6)

As the core-hours available in the period does not take in account the single
core or the subset of cores closed for maintenance, as said above, such Total System
Utilization can be considered as a lower bound.

95

Chapter 11

Virtual Instance Startup and Stop
Time

The evaluation model described in chapter 9 takes not only the waiting time, which
has been characterized in the previous chapter, but also the virtual instance startup
time. Many works [103–105] have already studied Virtual Instance Startup Time and
its relations with other factors such as the time of the day, operating system image
size, instance type, data centre location and number of instances requested at the
same time. Those researches have stated that the average virtual machine startup
time, which is the time a user should wait before having the first successfully ssh
login, on a single core Linux system running on the Amazon EC2 infrastructure is
about 90 seconds, while a similar system equipped with 16 virtual cores takes 146
seconds. The following analysis instead covers the startup time and the stop time
measured running single virtual instance built on a physical infrastructure provided
by Google, hosted in the West US (us-west2-a) equipped with Centos 7 as operating
system, 50 GB of virtual disk and using different virtual hardware configurations.
Both times have been measured starting and stopping virtual instance from a cus-
tom tool written using the Google SDK. As the starting and stopping commands
block until the operation is completed, measuring the waiting time spent by the
commands gives an assessment of the time spent for starting and stopping the vir-
tual instances.

Figures 11.1 and 11.2 show respectively the startup time and the stop time mea-
sured varying the number of virtual cores from 1 to 16 and the amount of RAM
memory from 3.75 GB to 60 GB. For each configuration, the virtual instance has
been started and stopped ten times. The first picture shows the startup time for all
five configurations. The startup time seems not to be heavily affected by the virtual
instance configuration. Indeed, the median startup time observed using 16 cores is
not too much higher than that one measured using a smaller configuration. For all
configurations, the median startup time is about 10 seconds. Even the stopping time
seems to be not badly affected by the configuration as the median value for each
configuration is almost the same and it does not go beyond 21 seconds.

96 Chapter 11. Virtual Instance Startup and Stop Time

FIGURE 11.1: Virtual Instance Startup Time

FIGURE 11.2: Virtual Instance Stop Time

97

Chapter 12

Applying the evaluation model on
both applications

The utility function described in chapter 9 takes the time spent by the applications
to be executed on the cloud and on Marconi and their relative costs. Furthermore, it
requires the Virtual Instance Startup Time and the Waiting Time. Previous two chap-
ters gave us a measure of the time spent by a virtual instance to get ready to start the
application. The startup time seems not to be dependent to instance configuration.
Then, according to the previous analysis, we can fix to 10 the startup time Sc in the
utility function.

For the parameter WM, which is the job waiting time measured on Marconi, in-
stead of using a static value for all runs, we decided to identify the cluster where
each run of Cross Motif Search and BloodFlow might belong to, according to the job
geometry. Then, median relative waiting time RWM for the selected cluster is chosen
as factor to determine the waiting time to put into the utility function for a fixed run.
The job waiting time WM then can be easily computed as follows:

WM = RWM ∗ TM (12.1)

where TM is the job elapsed time. To be clearer, let’s consider the first run of Cross
Motif Search. The application took 15,074.32 seconds using 16 cores. According
to the job clusterization defined in Table 10.3, the run might belong to the cluster
number 8, where the median relative waiting time for all job in that cluster is 0.23
(see Table 10.7). Then for this run, the waiting time WM is equal to 15,074.32 * 0.23
= 3,467.09 seconds. The last run of BloodFlow, instead, took 51.22 seconds using
128 cores. Then this run belongs to the cluster number 16 (see Table 10.3), having a
relative waiting time equals to 1.50 (see Table 10.7). Then for such run, the waiting
time is equal to 76.83 seconds (51.22 * 1.50 = 76.83).

Table 12.1 shows the cluster where each run of both applications belongs to.
Now, we have got all information needed to fill the utility function and then un-

derstand for which runs of both target applications cloud was more convenient ac-
cording to our evaluation model which takes into account not only the performance

TABLE 12.1: Cluster where each execution of Cross Motif Search and
BloodFlow belongs to.

CPU Number 4 8 16 32 64 128 256

Cross Motif Search 8 8 2 12 3
BloodFlow 14 4 5 11 15 16

98 Chapter 12. Applying the evaluation model on both applications

FIGURE 12.1: Preferred architecture for running Cross Motif Search

FIGURE 12.2: Preferred architecture for running BloodFlow

and the cost but also the turnaround time and the user preference.
Figures 12.1 and 12.2 show which architecture might be the preferred for each

run depending on the user preference. For 22% of all Cross Motif Search runs, Cloud
Infrastructure might be the best architecture for running the application. The per-
centage rises up to 48% for the BloodFlow application. These results are heavily
affected by the chosen relative waiting time. Indeed, for the Cross Motif Search
application, the relative waiting time for each cluster where the runs belong to is
always lower than all the relative waiting time used for the BloodFlow application.
Just increasing the relative waiting time of the cluster number 2 from 0.07 to 0.40,
the cloud preference for Cross Motif Search rises up from 22% to 28%.

It is worth noting that the increase we introduced changing the relative waiting
time from 0.07 to 0.40, is not negligible. In fact, supposing to have an elapsed time
of 3,681.70 sec (which is the real elapsed time Cross Motif Search took being run on
Marconi using 64 cores), changing the relative waiting time from 0.07 to 0.40, the
waiting time goes from 258 seconds to 1,473. According to this observation, we can
state that our model is robust, since a high perturbation of the relative waiting time
brings a small variation in the convenience to use the cloud infrastructure rather
than the HPC system. The results presented above also show that although cloud
computing might be more expensive and less powerful than the HPC system, when
turnaround time becomes important, cloud computing can be a convenient alterna-
tive for running scientific applications.

99

Chapter 13

Conclusion

Cloud infrastructure has emerged as an interesting and convenient alternative of
on-premise system for running a broad range of software applications, such as web
sites, customer relationship management systems, enterprise resource planning sys-
tems, business performance management systems and so on. Because of the wide
number of advantages brought along by such technology, many enterprises are think-
ing to move their own software and infrastructure toward the cloud, reducing costs
and increasing the system availability. But when performance are important, the
landscape might be quite different. Indeed, applications that are designed to be
executed on an HPC system, might behave worse when executed on the cloud in-
frastructure. This has been proven in this work, where we moved two applications
to the cloud , named Cross Motif Search and BloodFlow. Both applications can be
considered as opposite to each other as they are based two different communication
models, so they can represent a huge range of scientific applications. Even though
Cross Motif Search showed a good scalability on the cloud (similar to that observed
running the application on the HPC system), both applications performed worse
when executed on the cloud, most over for BloodFlow where, using a large num-
ber of concurrent MPI processes, the time spent to compute the entire dataset grew
fastly becoming soon unmanageable, making cloud infrastructure not useable for
that application. Profiling activities we did on both applications revealed that the
main factor affecting the application performance is the network infrastructure and
even optimizing the code, cloud environment lie behind the HPC infrastructure.

It seems to be clear that, as moving an application to the cloud is not effortless,
before starting such activities it might be worth knowing in advance how an appli-
cation might behave being executed on the cloud, and in general on a different in-
frastructure. As one of the most important factor which might affect the application
performance is the interconnection network, we built an analytical model describ-
ing the communication model of both applications. Gathering application-related
and network-related parameters of the HPC system and the cloud infrastructure, we
have been able to build the analytical model for our target applications. Even though
such model cannot be used to predict the time spent by the application inside MPI
functions, it might be useful to get hint and insight about how the application might
perform being run on a infrastructure.

In conclusion, cloud computing does not seem to be a convenient place for run-
ning scientific application at least from the performance perspective. In order to un-
derstand if at least under the economical point of view cloud might be interesting,
we made a similar analysis comparing the cost for running a generic scientific appli-
cation in a cloud environment provided by three different service provider (Google,
Amazon and Microsoft). Results showed that the cost a researcher must afford for
running its application on the cloud is higher than the cost afforded to run the same
application for the same amount of time on an HPC system. So not even from the

100 Chapter 13. Conclusion

economical perspective, cloud computing seems to be convenient at all. Anyway,
taking into account other factors making the cloud more appealing, the landscape
in the user convenience changes. Choosing the right infrastructure, then, can be
essentially seen as a multi-attribute decision-making problem. We introduced an
evaluation model, based on a weighted geometric aggregation function, that takes
into account a set of parameters, among which job geometry, cost, execution and
turnaround time. The notion of user preference modulates the model, and allows to
determine which platform, cloud or HPC, might be the best one.

As the evaluation model takes into account also the job waiting time, in order
to assess such parameters, we made a characterization of the workload of Marconi,
a real HPC system. But instead of getting only one waiting time for all jobs sub-
mitted on Marconi, we clusterized the workload according the job geometry using
k-means algorithm. Then, for each cluster, the corresponding job waiting time has
been assessed and used into our evaluation function in order to evaluate the utility
for running our target jobs on the HPC system and on the cloud infrastructure. The
model has then been used to evaluate the best architecture for several runs of two
applications, based on two different communication models. Applying our evalu-
ation model to all executions of our target application revealed that there is a not
negligible number of configuration where cloud computing seems to be the best ar-
chitecture for running Cross Motif Search and BloodFlow. Results also showed that
the model as high perturbation in the waiting time brings small variation in the re-
sults.

13.1 Future works

The evaluation model described in this work has to be intended as preliminary. Our
aim indeed is the extension of the model in order to include not just cloud and HPC
systems but also on-premise architectures and GPU-based infrastructures. Further-
more, the model should be extended to keep into account also other parameters,
such as the energy cost and other factors making cloud computing appealing. We
further aim to apply the evaluation model to other scientific applications, based on
a different communication model.

101

Appendix A

Introduction to MPI

Applications running on distributed memory architectures rely on message passing
communication for sending and receiving messages across all processes. Although
several message-passing libraries have been developed so far, many applications
make use of MPI (Message-Passing Interface) [106], which is a message-passing li-
brary interface specification developed by a consortium of academic, research, and
industry partners. Being an interface specification, it is not a real implementation
but a set of rules and specifications each implementation need to adhere. Thank-
fully to its flexibility and efficiency, the interface is now considered as the standard
for building parallel applications working on distributed memory systems. Several
parallel applications indeed rely on such technology to distribute messages across
processes running on the same infrastructure and cooperating together to achieve
an objective. MPI supports both point-to-point as well as collective communica-
tions. Actually, there are several implementations of the library such as OpenMPI
[107], IntelMPI [108], MPICH [109] and many others. Most MPI implementations
consist of a specific set of routines directly callable from C, C++, Fortran and any
language able to interface with such libraries, including C#, Java or Python.

The last definition of MPI interface includes two different sets of communication
functions named respectively point-to-point and collective. In a point-to-point oper-
ation, just two processes are involved in the communication. Such processes are said
sender and receiver. Examples of point-to-point operations are MPI_Send, MPI_Recv
or MPI_Wait. In a collective operation, instead, many processes can be involved in
the communication. Examples of collective operations are MPI_BCast, MPI_Gather,
MPI_Scatter or MPI_Reduce.

In many message-passing libraries, the method by which the system handles
messages is chosen by the library. By default, library uses the standard mode as
method to manage messages and transmissions but although it gives acceptable reli-
ability and performance for all possible communication scenarios, it may hide possi-
ble programming problems or may not give the best performance in specialized cir-
cumstances. To have more control over how the system handles the messages, pro-
grammers can select a proper communication mode to achieve better performance.
There are four different communication modes [110], named respectively standard,
synchronous, ready and buffered, which can be combined with blocking and non-blocking
calls. Communication modes as well as the blocking policy should be decided by the
programmer. Table A.1 summarizes sending and receiving calls which will be de-
scribed in this chapter.

A.1 Blocking and non-blocking behaviour

Blocking functions suspend the application execution until the message buffer is safe
to use, avoiding that data stored in the buffer may be modified by the application

102 Appendix A. Introduction to MPI

TABLE A.1: MPI Sending and Receiving calls.

Communication Mode Blocking functions Non-blocking functions

Synchronous MPI_SSend
MPI_Recv

MPI_ISSEND

Ready MPI_RSEND MPI_IRSEND

Buffered MPI_BSEND MPI_IBSEND

Standard MPI_SEND
MPI_RECV
MPI_SENDRECV
MPI_SENDRECV_REPLACE

MPI_ISEND
MPI_IRECV

before them are actually sent. Buffer overwriting might happen because usually the
buffer used to contain data to send/receive is re-used. Blocking functions guarantee
that data stored in the buffer will be not corrupted, stopping the application execu-
tion in order to avoid further buffer accesses until the data stored into the buffer are
actually sent. The most typical blocking functions are MPI_Send and MPI_Recv.

Non-blocking functions instead separate communication from computation. Us-
ing such functions, application does not stop when non-blocking function is called,
such that the application might get back to its computation. However, programmer
should control access to the buffer to avoid corrupting data previously stored inside.

A.1.1 Blocking Synchronous Send

Figure A.1 shows two processes, sender (S) and receiver (R) involved in a block-
ing synchronous communication. They make use of MPI_SSend and MPI_Recv.
At the beginning, both S and R are busy to do some computation (heavy straight
and dashed lines). Then, S completes its computation-intensive job and invokes
MPI_SSend function, which is a blocking and synchronous function. The execution
of the sender S is blocked, then, the underlying MPI system sends a ready to send
message to the receiver R which is still running in its computation. After a while,
the receiver R completes its own job, then invokes the MPI_Recv, which sends back
a ready to receive message to the sender. Due to the network latency, all messages
are not sent and received immediately but it takes some time. When the sender
(which is blocked yet) receives the ready to receive message, the data are then trans-
ferred. After completing the data transmission, the sender gets out from the blocking
stage coming back to do its computational job. Due to the latency, the data are com-
pletely received after a while and until the transmission process is not completed,
the receiver waits until the buffer is filled. In this communication there are two dif-
ferent overhead: system overhead is incurred for copying the message data from the
sender’s message buffer onto the network, and for copying the message data from
the network into the receiver’s message buffer; synchronization overhead is instead
the time spent waiting for an event to occur on another task. In the figure A.1, the
sender must wait for the receiver to be executed and for the handshake to arrive
before the message can be transferred. The receiver also incurs some synchroniza-
tion overhead in waiting for the handshake to complete. Synchronization overhead
can be significant, not surprisingly, in synchronous mode. As we shall see, the other
modes try different strategies for reducing this overhead. In this example the most

A.1. Blocking and non-blocking behaviour 103

FIGURE A.1: An example of Blocking Synchronous Send

amount of synchronization overhead is experienced by the sender but if the receiver
call precedes the sending, most of the synchronization overhead will be incurred by
the receiver.

A.1.2 Blocking Ready Send

In the blocking ready send mode, represented in Fig. A.2, the receiver has to start
the communication, sending to the sender a ready to receive message. After send-
ing the notification, the receiver waits until the buffer is filled. When the sender
completes its own computation, invokes the MPI_RSend function starting the data
transfer. When the data are completely sent, the sender can get back to its compu-
tation. When the buffer is completely filled, the receiver can use the received data
going back to its computation. In this model, if the ready to receive message hasn’t
arrived yet, the ready mode send will incur an error. Ready mode aims to mini-
mize system overhead and synchronization overhead incurred by the sending task.
In the blocking case, the only wait on the sending node is until all data have been
transferred out of the sending task’s message buffer. The receiver can still incur sub-
stantial synchronization overhead, depending on how much earlier it is executed
than the corresponding send.

A.1.3 Blocking Buffered Send

The blocking buffered send mode uses a buffer where the message is stored before it is
sent to the receiver. As shown in Fig. A.3 when the MPI_BSend function is invoked,
the sender does not stop waiting for the receiver but the message is stored in a user-
supplied buffer so that the sending task can proceed with computation that modify
the original message buffer, knowing that these modifications will not be reflected
in the data actually sent. The data will be copied from the user-supplied buffer over
the network once the ready to receive notification has arrived. Buffered mode incurs
extra system overhead, because of the additional copy from the message buffer to the
user-supplied buffer. Synchronization overhead is eliminated on the sending task –
the timing of the receiver is now irrelevant to the sender. Synchronization overhead
can still be incurred by the receiving task. Whenever the receiver is executed before
the sender, it must wait for the message to arrive before it can return.

104 Appendix A. Introduction to MPI

FIGURE A.2: An example of Blocking Ready Send

FIGURE A.3: An example of Blocking Buffered Send

A.1. Blocking and non-blocking behaviour 105

FIGURE A.4: An example of Blocking Standard Send with message
smaller than the threshold

FIGURE A.5: An example of Blocking Standard Send with message
larger than the threshold

A.1.4 Blocking Standard Send

The blocking standard send mode is the default behaviour adopted when traditional
MPI_Send and MPI_Recv functions are used. Usually MPI implementations use two
different algorithms, named eager and rendezvous, and deciding which algorithm to
use is not defined by the MPI standard, but it is left up to implementers and usually
depends on the message size and the number of tasks in the application. Figures A.4
and A.5 depict such mode. If the number of tasks and the message size are smaller
than a threshold value, then the eager protocol is used, else the rendezvous protocol
is used. Figure A.4 shows a communication between sender and receiver when the
message size is smaller than the threshold. In this case, the blocking standard send
MPI_Send copies the message over the network into a system buffer on the receiving
node. The standard send then returns, and the sending task can continue computa-
tion. The system buffer is attached when the program is started – the user does not
need to manage it in any way. There is one system buffer per task that will hold mul-
tiple messages. The message will be copied from the system buffer to the receiving
task when the receive call is executed.

106 Appendix A. Introduction to MPI

FIGURE A.6: An example of Non-Blocking Standard Send with mes-
sage smaller than the threshold

As with buffered mode, the usage of a buffer decreases the likelihood of synchro-
nization overhead on the sending task at the price of increased system overhead re-
sulting from the extra copy to the buffer. As always, synchronization overhead can
be incurred by the receiving task if a receive is posted first.

Unlike buffered mode, the sending task will not incur an error if the buffer space
is exceeded. Instead, the sending task will block until the receiving task calls a re-
ceive that pulls data out of the system buffer. Thus, synchronization overhead can
still be incurred by the sending task.

When the message size is greater than the threshold (Fig. A.5), the behaviour
of the blocking standard send MPI_Send is essentially the same as for synchronous
mode.

A.1.5 Non-blocking Standard Send

Figures A.6 and A.7 show a non-blocking standard send MPI_Isend and a non-blocking
receive MPI_Irecv. As before, the standard mode send proceed differently depend-
ing on the message size. Figure A.6 demonstrates the behaviour for message size less
than or equal to the threshold, whilst A.7 demonstrates the behaviour for message
size greater than threshold.

The sending task posts the non-blocking standard send when the message buffer
content is ready to be transmitted. It returns immediately without waiting for the
copy to the remote system buffer to complete. MPI_Wait is called just before the
sending task needs to overwrite the message buffer.

The receiving task calls a non-blocking receive as soon as a message buffer is
available to hold the message. The non-blocking receive returns without waiting for
the message to arrive. The receiving task calls MPI_Wait when it needs to use the
incoming message data (i.e. needs to be certain that it has arrived).

The system overhead does not differ substantially from the blocking send and
receive calls unless data transfer and computation can occur simultaneously. Since
the CPU must perform both the data transfer and the computation, computation
will be interrupted on both the sending and receiving nodes to pass the message.
When the interruption occurs should not be of any particular consequence for the

A.2. What you should consider when you work with MPI 107

FIGURE A.7: An example of Non-Blocking Standard Send with mes-
sage larger than the threshold

program that is running. Even for architectures that overlap computation and com-
munication, the fact that this case applies only to small messages means that no great
difference in performance would be expected.

The advantage of using non-blocking send occurs when the system buffer is full.
In this case, a blocking send would have to wait until the receiving task pulled some
message data out of the buffer. If a non-blocking call is used, computation can be
done during this interval.

The advantage of a non-blocking receive over a blocking one can be considerable
if the receive is posted before the send. The task can continue computing until the
Wait is posted, rather than sitting idle. This reduces the amount of synchronization
overhead.

The case of a non-blocking standard send MPI_Isend for a message larger than
the threshold is more interesting (Fig. A.7). For a blocking send, the synchroniza-
tion overhead would be the period between the blocking call and the copy over the
network. For a non-blocking call, the synchronization overhead is reduced by the
amount of time between the non-blocking call and the MPI_Wait, in which useful
computation is proceeding.

Again, the non-blocking receive MPI_Irecv will reduce synchronization overhead
on the receiving task for the case in which the receive is posted first. There is also
a benefit of using a non-blocking receive when the send is posted first. Consider
how the figure would change if a blocking receive were posted. Typically, blocking
receives are posted immediately before the message data must be used (to allow the
maximum amount of time for the communication to complete). So, the blocking
receive would be posted in place of the MPI_Wait. This would delay the synchro-
nization with the send call until this later point in the program, and thus increase
synchronization overhead on the sending task.

A.2 What you should consider when you work with MPI

Running the same application on different parallel architectures might yield differ-
ent performance results which depend on several factors. Here is a small list of such
factors limiting the application performance:

108 Appendix A. Introduction to MPI

• core number per CPU

• cache size

• CPU frequency

• amount of RAM

• RAM latency and bandwidth

• network latency and bandwidth

• code (pure MPI or hybrid)

As the number of factors is high, it becomes hard for an MPI implementation to
be always efficient. Programmers then should tune the implementation parameters
to fit the MPI implementation to the application. Using benchmark tools, such as In-
tel MPI Benchmark or MVAPICH2 MicroBenchmark, or profiling and tracing tools,
such as Intel VTune, can help to understand which parameters are the best for an
application. Even knowing the application communication model can help to get in-
sight about how the application behaviour can be optimized just modifying the MPI
parameters. Another factor which might affect the application performance is how
processes are assigned to the CPU. Different implementations have different ways
to do this but such behaviour can be controlled by several environment variables
such as I_MPI_PIN_PROCESSOR_LIST and I_MPI_PIN_DOMAIN for IntelMPI im-
plementation andMV2_CPU_BINDING_POLICY, MV2_CPU_BINDING_LEVEL and
MV2_CPU_MAPPING for MVAPICH2.

As described above, all MPI implementations use two different protocols for
sending messages: eager and rendezvous. Choosing which protocol to use depends
on the message size and the number of processes involved in the communication.
Eager protocol is used for sending small messages. The sender sends the mes-
sage without taking care if receiver is ready to receive it. The message, indeed,
is stored in a buffer and will be restored by the receiver when it is ready. Ren-
dezvous protocol instead is used for large messages which might not be stored in
the buffer. This protocol forces sender and receiver to be synchronized before the
message is sent. Both protocols have pros and cons. Eager protocol indeed can
reduce the synchronization time but requires to use a buffer which might be com-
pletely filled if the amount of messages to be sent is high. Rendezvous protocol
instead introduces a higher delay due to the handshake between sender and re-
ceiver. Although all implementations switch between both protocols in an automatic
way, programmers can control the usage of such protocols setting up some environ-
ment variables such as I_MPI_EAGER_THRESHOLD for the Intel implementation,
MV2_IBA_EAGER_THRESHOLD for the MVAPICH2 implementation and the op-
tions –mca btl_openib_eager_limit and –mca btl_openib_rndv_eager_limit for the Open-
MPI implementation.

Parallel architectures are usually built with hundreds or even thousands nodes
each of them equipped with tens of cores. In distributed applications, processes
running on each core cooperate together sending and receiving messages. When the
communication happens among two processes running on two cores belonging to
the same node, the communication is said intranode. If processes run on two differ-
ent nodes, instead, the communication is said internode. Intranode communications
are less expensive than the internode ones, because in an internode communication
the message is sent across the network which introduces delay due to its latency and

A.2. What you should consider when you work with MPI 109

bandwidth. The intranode communications instead are usually solved sending and
receiving messages through shared memory. This approach is used in all MPI imple-
mentations but it works fine for small messages. When messages get larger, shared
memory might not be the right solution because of the same problems well-known
as tie down CPU and cache pollution. For this reason, another method to deliver mes-
sages has been introduced. Such approach is named Kernel Assisted, which is an
ideal method for both small and large messages. This approach requires the usage
of some kernel module, such as LiMIC and KNEM, and some kernel features, such
as Cross Memory Attach. CMA has been introduced in the Linux kernel 3.2 and is
actually supported by IntelMPI, MVAPICH2 and OpenMPI. It is usually used by
default when large messages are sent, but programmers can control such approach
using the environment variable I_MPI_SHM_LMT (for IntelMPI implementation) to
specify if shared memory or kernel assisted has to be used.

111

Appendix B

Measuring network performance

Applications designed and developed to be executed on a target architecture might
behave differently, sometimes worse, when they are executed on a different infras-
tructure.

Predicting application performance is an interesting challenge and many authors
developed methods and methodology for modelling and predicting the MPI pro-
grams performance. In [111] for instance, authors define PEMPIs, a new methodol-
ogy to model and predict MPI application performance. It is based on an analytical
model which is derived from a graph representing relationships between tasks (com-
putation) and processes (communications), and from the time spent by the applica-
tion to compute each task and communicate to each others. A different approach
for the performance application prediction is described in [112, 113] where authors
developed a tool, named dPerf, based on the Rose compiler, which is able to decom-
pose the source code into an intermediate representation, name IR. Then, using PAPI
library and SimGrid as simulation environment, authors showed how to predict the
performance of an application named NAS Integer Sort. A lower level methodology
is instead defined in [114]. In this work, the total elapsed time is computed summing
up the communication time and the computation time. The authors suggest a way
to build the analytical model which is validated with several applications being run
first on the MareNostrum HPC system and then on a simulated environment using
Dimemas.

Sadly, predicting the right application performance is not easy, mostly for par-
allel applications, because their performance might be affected by several factors,
some related to the hardware, such as memory, processors and network infrastruc-
ture, others instead strictly related to the application, the communication model and
the operating system. Perhaps the two most important factors are the interconnec-
tion network and the communication model, which might limit heavily application
scalability and performance. Many efforts have been done to reduce the side effect
of the communication, trying to boost the performance of the underlying intercon-
nection network by introducing new technology, such as Infiniband, that increase
bandwidth and reduce latency. Many other researches instead focused on boosting
performance from the MPI implementation perspective, and then developing new
MPI libraries mainly optimized to be used in specific architectures.

Authors in [37] describe three different ways to optimize MPI functions:

1. Optimization below the MPI layer: this optimization relies on changing pa-
rameters below the MPI layer which affect the MPI communications. Some
tests, for example, have demonstrated that changing the TCP window size im-
pact the MPI communication performance;

2. Optimization within the MPI layer: in this optimization, the MPI library is
partially rewritten or extended in order to use new technology. For example,

112 Appendix B. Measuring network performance

some MPI implementations might be optimized for being used on the Infini-
band infrastructure as they make use of RDMA call. Others instead might
have directly access to some kernel module, to control, for example, process
migration among cores (CPU affinity) or even the usage of the eager and ren-
dezvous protocols which might affect the point-to-point and collective com-
munications.

3. Optimization on top of MPI layer: in this optimization, collective functions
are rewritten or extended in order to exploit the physical network topology
and then reducing the total amount of messages exchanged among processes.
To be comparable, different implementations of the same collective function
need to be measured. There are two different approaches to make a perfor-
mance analysis of a collective function. The first is by using an analytical
model, which is the topic of this chapter; the second instead, is by using an
empirical (experimental) approach:

(a) Analytical model approach: in this method, each implementation is trans-
lated into a mathematical expression which is able to describe a collective
function. Different implementations of the same collective function have
different analytical models. By comparing both models, researchers can
understand which implementation performs better on a given infrastruc-
ture. There are three different approaches to define an analytical model
able to describe the dynamic behaviour of the application: scalar parame-
ters, functions and statistic models. The first approach uses a set of scalar
parameters to model the application behaviour. Such parameters describe
the application behaviour under fixed conditions; the second one instead
makes use of function to have a better flexibility; the last approach instead
makes use of statistic methods (such as the Markov Model);

(b) Empirical approach: In this method, the performance of the different im-
plementations are measured running both algorithms on the target in-
frastructure. Performance are measured using profiling and tracing tools,
then the results are compared. Sometimes, instead, the physical network
infrastructure is emulated using simulator, such as Dimemas. Simulators
are able to emulate the real network infrastructure setting up parameters
such the number of nodes in the network, the number of CPU per each
node, the number of links for each node, the number of buses for each
link, the transmission directory for each link (half-duplex or full-duplex),
the resource contention level, the bandwidth for intranode and internode
communications, the latency for intranode and internode communication
and the processor speed.

B.1 Some analytical models

Performance of a collective function can be evaluated using an analytical model de-
scribing the collective function in terms of point-to-point functions and the underly-
ing infrastructure network. In literature there are several models which can be used
to describe a point-to-point communication [115–121]. Here a brief description of
some.

• Honkney model: this model assumes that the time to send a message of size
m between two nodes is a + bm where a is the latency for each message and b
is the transfer time per byte or reciprocal of network bandwidth;

B.2. PLogP model 113

• LogP: this model describes a network in term of latency L, overhead o, gap per
message g, and number of nodes involved in the communication P. The time
to send a message between two nodes according to this model is L + 2o. LogP
assumes that only constant-size, small messages are sent among nodes;

• LogGP: this model is an extension of LogP model that additionally allows for
large messages by introducing the gap per byte parameter G. LogGP model
predicts the time to send a message of size m between two nodes as L + 2o +
(m - 1)G;

• PLogP: is a further extension of the LogP model which we decided to use in all
the experiments described in this work. Next paragraph covers all about such
model.

B.2 PLogP model

PLogP [122] model is able to capture the relevant aspects of message passing in
distributed systems, describing a point-to-point communication just by using five
parameters: P is the number of the processors; L is the end-to-end latency from
process to process, that combines all contributing factors such as copying data to
and from network interfaces and transfer over the physical network; os(m), or(m)
and g(m) are respectively send overhead, receive overhead and gap. The function
g(m) is the minimum time interval between consecutive message transmissions or
receptions. It is the reciprocal value of the end-to-end bandwidth from process to
process for messages of a given size m. Overall, the time for sending a message of
size m between two nodes in the pLogP model [56] is

T = L + g(m) (B.1)

A graphical representation of all pLogP parameters is shown in Fig. B.1. To have
a numerical representation describing the time spent by a sender to send a message
to a receiver, all pLogP parameters need to be gathered and combined together ac-
cording to the formula B.2. In [102] authors describe a method for measuring all
pLogP parameters. They also developed a tool, named logp_mpi, to measure such
parameters. The tool can be downloaded from [123]. Such tool has been used in our
experiments in order to get all required pLogP parameters.

B.3 PLogP Drawback

The pLogP parameters are strictly related to the underlying physical network infras-
tructure. Because of this reason, neither application-related overheads nor tempo-
rary network congestion and resource contentions are detected. These factors might
increase the time spent by a sender waiting until all required physical resources are
free. As pLogP model does not include congestion and contention component on its
model, it might underestimate completion time for collective operations. Therefore,
during performance prediction, analysts should take care about the performance
loss due to these factors.

114 Appendix B. Measuring network performance

FIGURE B.1: pLogP parameters

B.4 Extending pLogP model for collective operations

The pLogP model described in the previous paragraph can be applied just for point-
to-point functions. For collective functions instead that model can be still applied,
but it has to be extended, according to the implementation of the collective func-
tions. Extending the model for a specific implementation might help developers
to understand the performance of the implementation and compare them with the
performance of a different one. Let’s consider the Broadcast function implemented
using the linear algorithm. Let’s suppose to have n processes and the master pro-
cess wants to broadcast a m-byte message (Fig. B.2). It starts sending the message to
the first receiver. After a while, depending on the message size and the network
bandwidth, the message is completely sent. At this time, although the receiver
has not completely received the message yet (because of the network latency), the
sender starts sending the message to the second receiver. The collective operation is
then completed when the message has been completely received by the other n-1 re-
ceivers. Figure B.2 shows such behaviour which can be described analytically using
the pLogP model as follows:

TBROADCAST = L + (n − 1) ∗ g(m) (B.2)

Many works [40, 41, 115, 124–126] tried to define different implementations of
collective functions particularly optimized for specific architecture and under spe-
cific conditions. A list of the algorithms used by the collective operations in Intel
MPI implementation can be found in [127].

B.5 PLogP models for collective functions

As described in the previous paragraph, all collective functions can be analytically
described using pLogP. This is usually done for two main reasons: 1) to evaluate the
complexity of a collective function to select the most performing one; 2) to predict the
communication time spent to complete the collective function. As described above,
different implementations of the same collective function yield different analytical

B.6. Working with heterogeneous architectures 115

FIGURE B.2: An example of the Broadcast function

models. Table B.1 shows the pLogP model corresponding to different implementa-
tions of many collective functions, supposing to use a number of processor P power
of 2 and the message is split in just one segment having a size equals to m.

B.6 Working with heterogeneous architectures

Measuring the performance of a collective function becomes harder when the archi-
tecture is heterogeneous, that is for those network infrastructures where the com-
munication between cores is not always the same but depends on some factor. For
example, the BlueGene supercomputer makes use of a Torus network, that is a het-
erogeneous network from the latency perspective. The communication between two
nodes, indeed, depends on the number of hops the message needs to done before be-
ing received from the receiver.

To make a correct analytical model for heterogeneous architectures, an exhaus-
tive comprehension of the underlying network infrastructure needs to be done. It
would be useful to know 1) how latency and bandwidth changes among cores and
2) the network symmetry (the time spent by a sender to send a message to a receiver
is as equal as the time spent for getting back the response message). After having
understood the underlying interconnection network, the whole architecture can be
subdivided in virtual clusters having homogenous nodes. Then the pLogP parame-
ters can be gathered just between two nodes belonging the same cluster and between
two nodes belonging to different clusters. Then if N is the number of nodes belong-
ing to the parallel architecture and C is the number of clusters, instead of gathering
N*(N-1) pLogP parameters, it will be needed just C*(C-1) + C measurements which
can be halved if links are symmetric [125].

116 Appendix B. Measuring network performance

TABLE B.1: PLogP models for some collective functions.

MPI Function Algorithm pLogP Model

Barrier [115] Flat-Tree Tmin = P*g(0) + 2*L
Tmax = P*(g+or) + 2*(L-or)

Double Ring T = 2*P*(L+g(0))
Recursive Doubling T = log2(P)*(L+g(0))

Barrier [115] Bruck T = log2(P)*(L+g(0))

Broadcast Linear, Flat-Tree T = L + (P-1)*g(m)
[115, 124, 125] Flat-Tree Rendezvous T=(P-1)*g(m)+2*g(1)+3*L

Pipeline, Chain T = (P-1)*(L+g(m))
Chain Rendezvous T = (P-1)*(g(m)+2*g(1)+3*L)
Binomial T = log2(P)*(L + g(m))
Binary T = (upper(log2(P+1))-1)*(L + 2*g(m)
Binary Tree T = log2(P)*(2*g(m) + L)
Splitted-binary T = (upper(log2(P+1))-1)*(L + 2*g(m))
Binomial Tree Ren-
dezvous

T = log2(P)*g(m) +
log2(P)*(2*g(1)+3*L)

Reduce [115] Flat Tree T = L + (P-1)*max(g(m), or(m))
Pipeline T = (P-1)*(L+max(g(m), or(m))
Binomial T = upper(log2(P))*(L+max(g(m),

or(m)+os(m))
Binary T = (upper(log2(P+1))-1)*

(L+2*max(g(m), or(m)))

AllToAll [115] Linear T = P*L+(P-1)*(P+1-P/2)*g(m)
Pairwise exchange T = (P-1)*(L+g(m))

Scatter [124] Flat Tree T = (P-1)*g(m) + L

117

Bibliography

[1] G. Carlyle, S. L. Harrell and P. M. Smith, Cost-Effective HPC: The Community
or the Cloud?, 2010 IEEE Second International Conference on Cloud Computing
Technology and Science, Indianapolis, IN, 2010, pp. 169-176.

[2] Rashid Hassani, Md Aiatullah, Peter Luksch, Improving HPC Application Per-
formance in Public Cloud, In IERI Procedia, Volume 10, 2014, Pages 169-176, ISSN
2212-6678.

[3] M. Mancini and G. Aloisio, How advanced cloud technologies can impact and
change HPC environments for simulation, 2015 International Conference on High
Performance Computing & Simulation (HPCS), Amsterdam, 2015, pp. 667-668.

[4] Yang, Tao, Xiaosong Ma, and Frank Mueller. Predicting parallel applications per-
formance across platforms using partial execution. ACM/IEEE Supercomputing
Conference. 2005.

[5] Chakthranont, N., Khunphet, P., Takano, R., & Ikegami, T. (2014, December).
Exploring the performance impact of virtualization on an HPC cloud. In Cloud
Computing Technology and Science (CloudCom), 2014 IEEE 6th International
Conference on (pp. 426-432). IEEE.

[6] Expsito, R. R., Taboada, G. L., Ramos, S., Tourino, J., & Doallo, R. (2013). Perfor-
mance analysis of HPC applications in the cloud. Future Generation Computer
Systems, 29(1), 218-229.

[7] Dror G. Feitelson, Dan Tsafrir, David Krakov, Experience with using the Parallel
Workloads Archive, Journal of Parallel and Distributed Computing, Volume 74,
Issue 10, 2014, Pages 2967-2982, ISSN 0743-7315,

[8] Gonzalo P. Rodrigo, P.-O. Östberg, Erik Elmroth, Katie Antypas, Richard Ger-
ber, Lavanya Ramakrishnan, Towards understanding HPC users and systems: A
NERSC case study, Journal of Parallel and Distributed Computing, Volume 111,
2018, Pages 206-221, SSN 0743-7315,

[9] S. Di, D. Kondo and W. Cirne, "Characterization and Comparison of Cloud ver-
sus Grid Workloads," 2012 IEEE International Conference on Cluster Computing,
Beijing, 2012, pp. 230-238.

[10] Pascale Minet, Eric Renault, Ines Khoufi, Selma Boumerdassi. Data analysis of
a Google data center. CCGRID 2018 : 18th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing, May 2018, Washington Dc, United States.
IEEE Computer Society, Proceedings CCGRID 2018 : 18th IEEE/ACM Interna-
tional Symposium on Cluster, Cloud and Grid Computing, pp.342 - 343, 2018

[11] Hussain, A.; Aleem, M. GoCJ: Google Cloud Jobs Dataset for Distributed and
Cloud Computing Infrastructures.Data 2018, 3, 38.

118 BIBLIOGRAPHY

[12] Liu, Zitao & Cho, Sangyeun. (2012). Characterizing Machines and Workloads
on a Google Cluster. Proceedings of the International Conference on Parallel Pro-
cessing Workshops. 397-403. 10.1109/ICPPW.2012.57.

[13] Emeras, J., Ruiz, C., Vincent, J. M., & Richard, O. (2013, May). Analysis of the
jobs resource utilization on a production system. In Workshop on Job Scheduling
Strategies for Parallel Processing (pp. 1-21). Springer, Berlin, Heidelberg.

[14] Smith, W., Taylor, V., & Foster, I. (1999, April). Using run-time predictions to
estimate queue wait times and improve scheduler performance. In Workshop on
Job scheduling strategies for Parallel Processing (pp. 202-219). Springer, Berlin,
Heidelberg

[15] Kianpisheh, Somayeh & Jalili, Saeed & Charkari, Nasrolah. (2012). Predicting
Job Wait Time in Grid Environment by Applying Machine Learning Methods on
Historical Information.

[16] Kumar R., Vadhiyar S. (2015) Prediction of Queue Waiting Times for
Metascheduling on Parallel Batch Systems. In: Cirne W., Desai N. (eds) Job
Scheduling Strategies for Parallel Processing. JSSPP 2014. Lecture Notes in Com-
puter Science, vol 8828. Springer, Cham

[17] Andresen, D., Hsu, W., Yang, H., & Okanlawon, A. (2018). Machine
Learning for Predictive Analytics of Compute Cluster Jobs. arXiv preprint
arXiv:1806.01116.

[18] A. Matsunaga and J. A. B. Fortes, "On the Use of Machine Learning to Predict
the Time and Resources Consumed by Applications," 2010 10th IEEE/ACM In-
ternational Conference on Cluster, Cloud and Grid Computing, Melbourne, VIC,
2010, pp. 495-504.

[19] Announcing Amazon Elastic Compute Cloud (Amazon EC2) - beta. 2006,
August 24. Retrieved from https://aws.amazon.com/it/about-aws/whats-
new/2006/08/24/announcing-amazon-elastic-compute-cloud-amazon-ec2—
beta/

[20] The NIST Definition of Cloud Computing. 2011, September. Retrieved from
https://csrc.nist.gov/publications/detail/sp/800-145/final

[21] Dillon, T., Wu, C., & Chang, E. (2010, April). Cloud computing: issues and
challenges. In Advanced Information Networking and Applications (AINA), 2010
24th IEEE International Conference on (pp. 27-33). Ieee.

[22] Google Trends. 2018, November. Retrieved from
https://trends.google.com/trends/explore?date=2006-10-01%202018-11-
27&q=%2Fm%2F02y_9m3

[23] Gartner Forecasts Worldwide Public Cloud Revenue to
Grow 17.5 Percent in 2019. 2019, April 2. Retrieved from
https://www.gartner.com/en/newsroom/press-releases/2019-04-02-gartner-
forecasts-worldwide-public-cloud-revenue-to-g

[24] Gartner Says Worldwide IaaS Public Cloud Services Mar-
ket Grew 29.5 Percent in 2017. 2018, August 1. Retrieved from
https://www.gartner.com/en/newsroom/press-releases/2018-08-01-gartner-
says-worldwide-iaas-public-cloud-services-market-grew-30-percent-in-2017

BIBLIOGRAPHY 119

[25] AWS Simple Montly Calculator. 2019, August 30. Retrieved from
https://calculator.s3.amazonaws.com/index.html

[26] Azure Price Calculator. 2019, August 30. Retrieved from
https://azure.microsoft.com/it-it/pricing/calculator/

[27] Google Cloud Platform Pricing Calculator. 2019, August 30. Retrieved from
https://cloud.google.com/products/calculator/

[28] IBM Cloud pricing. 2019, August 30. Retrieved from
https://www.ibm.com/cloud/pricing

[29] Cloud Computing Comparison Engine. 2019, August 30. Retrieved from
https://www.cloudorado.com/cloud_server_comparison.jsp

[30] Study finds moving some computer services to cloud would save signifi-
cant energy. 2013, June. Retrieved from https://phys.org/news/2013-06-cloud-
significant-energy.html

[31] Expósito, R. R., Taboada, G. L., Ramos, S., Touriño, J., & Doallo, R. (2013). Per-
formance analysis of HPC applications in the cloud. Future Generation Computer
Systems, 29(1), 218-229.

[32] T. Passerini, J. Slawinski, U. Villa and V. Sunderam, "Experiences with Cost and
Utility Trade-offs on IaaS Clouds, Grids, and On-Premise Resources," 2014 IEEE
International Conference on Cloud Engineering, Boston, MA, 2014, pp. 391-396.

[33] A. G. Carlyle, S. L. Harrell and P. M. Smith, "Cost-Effective HPC: The Commu-
nity or the Cloud?," 2010 IEEE Second International Conference on Cloud Com-
puting Technology and Science, Indianapolis, IN, 2010, pp. 169-176.

[34] Jackson, K. R., Ramakrishnan, L., Muriki, K., Canon, S., Cholia, S., Shalf, J.,
... & Wright, N. J. (2010, November). Performance analysis of high performance
computing applications on the amazon web services cloud. In Cloud Computing
Technology and Science (CloudCom), 2010 IEEE Second International Conference
on (pp. 159-168). IEEE.

[35] Hybrid Parallelism: A MiniFE* Case Study. 2016, October 13. Re-
trieved from https://software.intel.com/en-us/articles/hybrid-parallelism-a-
minife-case-study

[36] Rashid Hassani, Md Aiatullah, Peter Luksch, Improving HPC Application Per-
formance in Public Cloud, In IERI Procedia, Volume 10, 2014, Pages 169-176, ISSN
2212-6678.

[37] Dichev, K., Lastovetsky, A.: Optimization of collective communication for het-
erogeneous HPC platforms. In: High-Performance Computing on Complex Envi-
ronments, Wiley, pp. 95–114. Wiley (2014)

[38] Intel R© MPI Library Collective Optimization on the Intel R© Xeon PhiTM Copro-
cessor Using Environment Variable Collective Operation Control. 2015, December
18. Retrieved from https://software.intel.com/en-us/articles/intel-mpi-library-
collective-optimization-on-intel-xeon-phi

120 BIBLIOGRAPHY

[39] Rabenseifner R., Träff J.L. (2004) More Efficient Reduction Algorithms for Non-
Power-of-Two Number of Processors in Message-Passing Parallel Systems. In:
Kranzlmüller D., Kacsuk P., Dongarra J. (eds) Recent Advances in Parallel Vir-
tual Machine and Message Passing Interface. EuroPVM/MPI 2004. Lecture Notes
in Computer Science, vol 3241. Springer, Berlin, Heidelberg

[40] Rajeev Thakur and William Gropp, "Improving the Performance of Collective
Operations in MPICH," in Proc. of the 10th European PVM/MPI Users’ Group
Meeting (Euro PVM/MPI 2003), Recent Advances in Parallel Virtual Machine
and Message Passing Interface, Lecture Notes in Computer Science, LNCS 2840,
Springer, September 2003, pp. 257-267.

[41] S. S. Vadhiyar, G. E. Fagg and J. Dongarra, "Automatically Tuned Collective
Communications," Supercomputing, ACM/IEEE 2000 Conference, 2000, pp. 3-3.

[42] Y. Gong, B. He and J. Zhong, "Network Performance Aware MPI Collective
Communication Operations in the Cloud," in IEEE Transactions on Parallel and
Distributed Systems, vol. 26, no. 11, pp. 3079-3089, Nov. 2015.

[43] Ramakrishnan, L., Canon, R. S., Muriki, K., Sakrejda, I., & Wright, N. J. (2012).
Evaluating interconnect and virtualization performance for high performance
computing. ACM SIGMETRICS Performance Evaluation Review, 40(2), 55-60.

[44] Zhai, Y., Liu, M., Zhai, J., Ma, X., & Chen, W. (2011, November). Cloud versus
in-house cluster: evaluating Amazon cluster compute instances for running MPI
applications. In State of the Practice Reports (p. 11). ACM.

[45] Chakthranont, N., Khunphet, P., Takano, R., & Ikegami, T. (2014, December).
Exploring the performance impact of virtualization on an HPC cloud. In Cloud
Computing Technology and Science (CloudCom), 2014 IEEE 6th International
Conference on (pp. 426-432). IEEE.

[46] High-performance computing in the cloud? 2016, October 24. Retrieved from
https://www.csc.fi/-/high-performance-computing-in-the-cloud

[47] Real World AWS Scalability. 2016, November 7. Retrieved from
https://aws.amazon.com/it/blogs/compute/real-world-aws-scalability/

[48] Solving I/O Bottlenecks to Enable Superior Cloud Efficiency.
2019, August 30. Retrieved from http://www.mellanox.com/related-
docs/whitepapers/WP_Solving_IO_Bottlenecks.pdf

[49] Viktor Mauch, Marcel Kunze, Marius Hillenbrand, High performance cloud
computing, In Future Generation Computer Systems, Volume 29, Issue 6, 2013,
Pages 1408-1416, ISSN 0167-739X.

[50] E. S. Jung, R. Kettimuthu, "Challenges and opportunities for data-intensive
computing in the cloud", IEEE Computer Society, December 2014, pp. 82-85.

[51] Napper, Jeffrey, and Paolo Bientinesi. "Can cloud computing reach the top500?."
Proceedings of the combined workshops on UnConventional high performance
computing workshop plus memory access workshop. ACM, 2009.

[52] Amazon EC2 C3 Instance cluster. 2019, August 30. Retrieved from
https://www.top500.org/system/178321

BIBLIOGRAPHY 121

[53] Nanath, K., & Pillai, R. (2013). A model for cost-benefit analysis of cloud com-
puting. Journal of International Technology and Information Management, 22(3),
6.

[54] Marconi, the new Tier-0 system. 2018, May 16. Retrieved from
http://hpc.cineca.it/hardware/marconi

[55] Slurm Overview. 2019, August 30. Retrieved from
https://slurm.schedmd.com/overview.html

[56] Steffenel, Luiz Angelo, and Grégory Mounié. "A framework for adaptive collec-
tive communications for heterogeneous hierarchical computing systems." Journal
of Computer and System Sciences 74.6 (2008): 1082-1093.

[57] Machined types. 2018, May 16. Retrieved from
https://cloud.google.com/compute/docs/machine-types

[58] Overview of Virtual Private Cloud. 2018, May 16. Retrieved from
https://cloud.google.com/vpc/docs/vpc

[59] Andromeda 2.1 reduces GCP’s intrazone latency by 4%. 2018, May 16. Re-
trieved from https://cloudplatform.googleblog.com/2017/11/Andromeda-2-1-
reduces-GCPs-intra-zone-latency-by-40-percent.html

[60] Enter the Andromeda zone: Google Cloud Platform’s
latest networking stack. 2018, May 16. Retrieved from
https://cloudplatform.googleblog.com/2014/04/enter-andromeda-zone-
google-cloud-platforms-latest-networking-stack.html

[61] Egress throughput caps. 2018, May 16. Retrieved
from https://cloud.google.com/compute/docs/networks-and-
firewalls#egress_throughput_caps

[62] Protein Data Bank. 2018, May 16. Retrieved from https://www.rcsb.org

[63] 11. Badr G, Al-Turaiki I, Mathkour H. Classification and assessment tools
for structural motif discovery algorithms. BMC Bioinformatics. 2013;14 Suppl
9(Suppl 9):S4.

[64] 12. Shapiro, J. and Brutlag, D. (2004), FoldMiner: Structural motif discovery
using an improved superposition algorithm. Protein Science, 13: 278-294.

[65] 13. Timothy L. Bailey, Mikael Boden, Fabian A. Buske, Martin Frith, Charles
E. Grant, Luca Clementi, Jingyuan Ren, Wilfred W. Li, William S. Noble; MEME
SUITE: tools for motif discovery and searching, Nucleic Acids Research, Volume
37, Issue suppl 2, 1 July 2009, Pages W202W208,

[66] 14. E. Krissinel and K. Henrick,Secondary-structure matching (SSM), a new tool
for fast protein structure alignment in three dimensions; Acta Crystallographica
Section D 2004;60(12):2256-2268

[67] 15. Liisa Holm, Chris Sander, Protein Structure Comparison by Alignment of
Distance Matrices, Journal of Molecular Biology, Volume 233, Issue 1, 1993, Pages
123-138, ISSN 0022-2836,

122 BIBLIOGRAPHY

[68] Shi S, Zhong Y, Majumdar I, Krishna SS, Grishin NV. Searching for three- di-
mensional secondary structural patterns in proteins with ProSMoS. Bioinformat-
ics 2007; 23(11):1331–1338

[69] Shi S, Chitturi B, Grishin NV. ProSMoS server: a pattern-based search using
interaction matrix representation of protein structures. Nucleic Acids Research
2009; 37(Web Server issue):W526–W531.

[70] Hutchinson G, Thornton JM. PROMOTIF—a program to identify and analyze
structural motifs in proteins. Protein Science 1996; 5:212–220

[71] Dror O, Benyamini H, Nussinov R, Wolfson H. MASS: multiple structural align-
ment by secondary structures. Bioinformatics 2003; 19(1):i95–i104.

[72] Ferretti M, Musci M. Geometrical Motifs Search in Proteins: A Parallel Ap-
proach. Parallel Computing February 2015; 42:60–74.

[73] Ballard DH. Generalizing the Hough transform to detect arbitrary shapes. Pat-
tern Recognition 1981; 13(2): 111-122

[74] Ferretti M, Musci M, Santangelo L. A Hybrid OpenMP and OpenMPI Approach
to Geometrical Motif Search in Proteins. Proceedings of the IEEE International
Conference on Cluster Computing (IEEE Cluster 2014), IEEE Computer Society,
2014; 298–304.

[75] Ferretti M, Musci M, and Santangelo L. "MPI-CMS: a hybrid parallel approach
to geometrical motif search in proteins." Concurrency and Computation: Practice
and Experience 27.18 (2015): 5500-5516.

[76] Murzin A. G., Brenner S. E., Hubbard T,. Chothia C. (1995). SCOP: a structural
classification of proteins database for the investigation of sequences and struc-
tures. J. Mol. Biol. 247, 536-540

[77] Quarteroni, A., & Valli, A. (2008). Numerical approximation of partial differen-
tial equations (Vol. 23). Springer Science & Business Media.

[78] Formaggia, L., Quarteroni, A., & Veneziani, A. (Eds.). (2010). Cardiovascu-
lar Mathematics: Modeling and simulation of the circulatory system (Vol. 1).
Springer Science & Business Media.

[79] Bertagna, Luca & Deparis, Simone & Formaggia, Luca & Forti, Davide &
Veneziani, Alessandro. (2017). The LifeV library: engineering mathematics be-
yond the proof of concept.

[80] Bertagna, L., Deparis, S., Forti, D., Formaggia, L., & Veneziani, A. (2016), “The
LifeV library: engineering mathematics beyond the proof of concept”, Tech Re-
port Dept. Math & CS, Emory University, TR2016-008, www.mathcs.emory.edu

[81] M. A. Heroux et al., “An overview of the trilinos project”, ACM Trans. Math.
Softw., vol. 31, no. 3, pp. 397-423, 2005

[82] The LifeV library: engineering mathematics beyond the proof of concept. 2017.
Retrieved from https://www.mate.polimi.it/biblioteca/add/qmox/53-2017.pdf

[83] Avoid Heap Contention among threads. 2017, July 31. Retrieved from
https://software.intel.com/en-us/articles/avoiding-heap-contention- among-
threads

BIBLIOGRAPHY 123

[84] Ran Liu, Haibo Chen, SSMalloc: a low-latency, locality-conscious memory al-
locator with stable performance scalability, Proceedings of the Asia-Pacific Work-
shop on Systems, p.1-6, July 23-24, 2012, Seoul, Republic of Korea.

[85] Boost C++ Libraries. 2017, July 31. Retrieved from
http://www.boost.org/doc/libs/1_45_0/boost/algorithm/string/trim.hpp

[86] Std::Locale CPPRefernece. 2017, July 31. Retrieved from
http://en.cppreference.com/w/cpp/locale/locale

[87] Ferretti, M., & Santangelo, L. (2018, March). Hybrid OpenMP-MPI parallelism:
porting experiments from small to large clusters. In 2018 26th Euromicro Interna-
tional Conference on Parallel, Distributed and Network-based Processing (PDP)
(pp. 297-301). IEEE.

[88] Ferretti M, Musci M, and Santangelo L. MPI–CMS: a hybrid parallel approach
to geometrical motif search in proteins. Concurrency and Computation: Practice
and Experience 27.18 (2015): 5500 5516.

[89] Ferretti, M., & Santangelo, L. (2018, September). Protein secondary structure
analysis in the cloud. In Proceedings of the 6th International Workshop on Paral-
lelism in Bioinformatics (pp. 63-70). ACM.

[90] Ferretti, M., Santangelo, L., & Musci, M. (2019). Optimized cloud-based
scheduling for protein secondary structure analysis. The Journal of Supercom-
puting, 75(7), 3499-3520.

[91] K. A. Huck and J. Labarta, "Detailed Load Balance Analysis of Large Scale Par-
allel Applications," 2010 39th International Conference on Parallel Processing, San
Diego, CA, 2010, pp. 535-544.

[92] Marconi, the new Tier-0 system. 2017, July 21. Retrieved from
http://hpc.cineca.it/hardware/marconi

[93] T. L. Casavant and J. G. Kuhl, "A taxonomy of scheduling in general- purpose
distributed computing systems," in IEEE Transactions on Software Engineering,
vol. 14, no. 2, pp. 141-154, Feb 1988.

[94] Plastino, Alexandre, Celso C. Ribeiro, and N. R. Rodriguez. "Load balancing
algorithms for SPMD applications." Submitted for publication (2001).

[95] K. Skenteridou and H. D. Karatza, "Job scheduling in a grid cluster," 2015 Inter-
national Conference on Computer, Information and Telecommunication Systems
(CITS), Gijon, 2015, pp. 1-5

[96] S. Kushwaha and S. Kumar, "Analysis of list scheduling algorithms for paral-
lel system," 2014 International Conference on High Performance Computing and
Applications (ICHPCA), Bhubaneswar, 2014, pp. 1-6.

[97] John Towns, Timothy Cockerill, Maytal Dahan, Ian Foster, Kelly Gaither, An-
drew Grimshaw, Victor Hazlewood, Scott Lathrop, Dave Lifka, Gregory D. Pe-
terson, Ralph Roskies, J. Ray Scott, Nancy Wilkins-Diehr, "XSEDE: Accelerating
Scientific Discovery", Computing in Science & Engineering, vol.16, no. 5, pp. 62-
74, Sept.-Oct. 2014

124 BIBLIOGRAPHY

[98] Stampede User Guide. 2017, July 30. Retrieved from
https://portal.xsede.org/tacc-stampede

[99] Comet System Overview. 2017, July 30. Retrieved from
https://portal.xsede.org/sdsc-comet

[100] Billing policy on Marconi. 2017, July 30. Retrieved from
http://www.hpc.cineca.it

[101] Auricchio, F., Fedele, M., Ferretti, M., Lefieux, A., Romarowski, R., Santangelo,
L., & d VENEZIANI, A. (2018). Benchmarking a hemodynamics application on
Intel based HPC systems. Paral Comput Everywhere, 32, 57.

[102] Thilo Kielmann, Henri E. Bal, and Kees Verstoep. 2000. Fast Measurement of
LogP Parameters for Message Passing Platforms. In Proceedings of the 15 IPDPS
2000 Workshops on Parallel and Distributed Processing (IPDPS ’00), José D. P.
Rolim (Ed.). Springer-Verlag, London, UK, UK, 1176-1183.

[103] M. Mao, H. Humphrey, A performance study on the VM startup time in the
cloud, IEEE 5th International Conference on Cloud Computing, June, IEEE, 2012,
pp. 423-430 (2012)

[104] Razavi K., Razorea L.M., Kielmann T. (2014) Reducing VM Startup Time and
Storage Costs by VM Image Content Consolidation. In: an Mey D. et al. (eds)
Euro-Par 2013: Parallel Processing Workshops. Euro-Par 2013. Lecture Notes in
Computer Science, vol 8374. Springer, Berlin, Heidelberg

[105] Marathe, Aniruddha & Harris, Rachel & K. Lowenthal, David & R. de Supin-
ski, Bronis & Rountree, Barry & Schulz, Martin & Yuan, Xin. (2013). A comparative
study of high-performance computing on the cloud. HPDC 2013 - Proceedings of
the 22nd ACM International Symposium on High-Performance Parallel and Dis-
tributed Computing.

[106] MPI: A Message-Passing Interface Standard. 2019, August 30. Retrieved from
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf

[107] Open MPI: Open Source High Performance Computing. 2019, August 30. Re-
trieved from https://www.open-mpi.org/

[108] Boost Distributed Application Performance. 2019, August 30. Retrieved from
https://software.intel.com/en-us/mpi-library

[109] MPICH. 2019, August 30. Retrieved from https://www.mpich.org/

[110] MPI Point to Point Communication. 2019, Au-
gust 30. Retrieved from https://www.cs.mtsu.edu/ rbut-
ler/courses/pp6330/www.navo.hpc.mil/pet/Video/Courses/MPI/Mod_2/
Slides/more.html

[111] Midorikawa, Edson Toshimi, Helio Marci De Oliveira, and Jean Marcos Laine.
"PEMPIs: a new methodology for modeling and prediction of MPI programs per-
formance." International Journal of Parallel Programming 33.5 (2005): 499-527.

[112] Cornea, Bogdan Florin, and Julien Bourgeois. "Performance prediction of dis-
tributed applications using block benchmarking methods." 2011 19th Interna-
tional Euromicro Conference on Parallel, Distributed and Network-Based Pro-
cessing. IEEE, 2011.

BIBLIOGRAPHY 125

[113] Casas, Marc, Rosa M. Badia, and Jesus Labarta. "Prediction of behavior of MPI
applications." 2008 IEEE International Conference on Cluster Computing. IEEE,
2008.

[114] Heinrich, Franz, et al. "Predicting the Performance and the Power Consump-
tion of MPI Applications With SimGrid." (2017).

[115] J. Pjesivac-Grbovic, T. Angskun, G. Bosilca, G. E. Fagg, E. Gabriel and J. J.
Dongarra, "Performance analysis of MPI collective operations," 19th IEEE Inter-
national Parallel and Distributed Processing Symposium, 2005, pp. 8 pp.-.

[116] Akihiro Nomura, Hiroya Matsuba and Yutaka Ishikawa, Network perfor-
mance model for TCP/IP based cluster computing, 2007 IEEE International Con-
ference on Cluster Computing, Austin, TX, 2007, pp. 194-203.

[117] L. Li, X. Zhang, J. Feng and X. Dong, mPlogP: A Parallel Computation Model
for Heterogeneous Multi-core Computer, 2010 10th IEEE/ACM International
Conference on Cluster, Cloud and Grid Computing, Melbourne, VIC, 2010, pp.
679-684.

[118] Hoefler T., Mehlan T., Lumsdaine A., Rehm W. (2007) Netgauge: A Network
Performance Measurement Framework. In: Perrott R., Chapman B.M., Subhlok
J., de Mello R.F., Yang L.T. (eds) High Performance Computing and Communica-
tions. HPCC 2007. Lecture Notes in Computer Science, vol 4782. Springer, Berlin,
Heidelberg

[119] Hockney, R.: The communication challenge for MPP: Intel Paragon and Meiko
CS-2. Parallel Comput. 20(3), 389398 (1994)

[120] Alexandrov, A., Ionescu, M.F., Schauser, K.E., Scheiman, C.: LogGP: Incorpo-
rating long messages into the LogP model. In: Proceedings of the seventh annual
ACM symposium on Parallel algorithms and architectures, pp. 95105. ACM Press,
New York (1995)

[121] Culler, D., Karp, R., Patterson, D., Sahay, A., Schauser, K.E., Santos, E., Subra-
monian, R., von Eicken, T.: LogP: Towards a realistic model of parallel computa-
tion. In: Proceedings of the fourth ACM SIGPLAN symposium on Principles and
practice of parallel programming, pp. 112. ACM Press, New York (1993)

[122] Kielmann, Thilo, Henri E. Bal, and Kees Verstoep. "Fast measurement of LogP
parameters for message passing platforms." International Parallel and Distributed
Processing Symposium. Springer, Berlin, Heidelberg, 2000.

[123] PLogP Source Code. 2019, August 30. Retrieved from
http://www.cs.vu.nl/pub/kielmann/

[124] Barchet-Estefanel L.A., Mounié G. (2004) Fast Tuning of Intra-cluster Col-
lective Communications. In: Kranzlmüller D., Kacsuk P., Dongarra J. (eds) Re-
cent Advances in Parallel Virtual Machine and Message Passing Interface. Eu-
roPVM/MPI 2004. Lecture Notes in Computer Science, vol 3241. Springer, Berlin,
Heidelberg

[125] Luiz Angelo Steffenel, Grégory Mounié, A framework for adaptive collective
communications for heterogeneous hierarchical computing systems, In Journal of
Computer and System Sciences, Volume 74, Issue 6, 2008, Pages 1082-1093, ISSN
0022-0000,

126 BIBLIOGRAPHY

[126] T. Hoefler, L. Cerquetti, T. Mehlan, F. Mietke and W. Rehm, "A practical ap-
proach to the rating of barrier algorithms using the LogP model and Open MPI,"
2005 International Conference on Parallel Processing Workshops (ICPPW’05),
Oslo, Norway, 2005, pp. 562-569.

[127] I_MPI_ADJUST Family Environment Variables. 2019, March 7. Retrieved
from https://software.intel.com/en-us/mpi-developer-reference-linux-i-mpi-
adjust-family

[128] Ferretti M, Santangelo L. Cloud vs On-Premise HPC: a model for comprehen-
sive cost assessment. In press, 2019.

	Abstract
	Introduction
	Cloud Computing
	The birth of the Cloud
	What is cloud computing?
	Essential characteristics of cloud computing
	The service models of Cloud Computing
	The deployment model of Cloud Computing
	Virtualization techniques
	How Cloud Computing has really changed the life
	How interest in Cloud Computing has changed
	The cloud service provider
	The price of the cloud
	Advantages and disadvantages
	More business, less IT
	Pay for what you need
	Time to deployment
	No upfront costs
	Focusing on the business
	Scaling for saving costs
	No planning
	No electricity and location costs
	Meet the economy of scale
	Better utilization of on-premise infrastructure
	More power for free
	Cloud is greener
	All that glitters is not gold

	Costs, benefits and trade-offs
	Trade-offs from the performance point of view
	Trade-offs from the economical point of view

	Wrapping up

	HPC and Cloud Infrastructure
	Marconi
	The architecture
	The interconnection network

	Cloud Infrastructure
	The architecture
	The interconnection network

	Comparing network performance between both infrastructures

	Cross Motif Search and BloodFlow
	Cross Motif Search
	The OpenMP implementation
	The hybrid implementation
	Communication model in Hybrid-CMS
	The protein dataset

	BloodFlow
	Communication model
	The datasets

	Profiling and tracing activities
	Profiling Cross Motif Search
	Spin Time and Overhead Time
	Heap Contention
	Wasted Time spent in external function
	Variance in the task computation time
	MPI Communication

	Profiling BloodFlow
	Vectorization
	Memory footprint
	MPI Communication
	Time consuming functions
	I/O Bound

	Application optimization
	Cross Motif Search
	Introducing the new selection policy
	Longest Job First: a new policy for selection tasks
	Application performance after introducing Longest Job First policy
	Side effects of the Longest Job First policy
	When LJF is winning
	The location-aware implementation
	Global Load Balancing Factor of the location-aware implementation

	BloodFlow

	Application Scalability
	Cross Motif Search
	Scalability and performance on Marconi

	BloodFlow
	Scalability and application performance on Stampede and Comet
	Scalability and application performance on Marconi
	Factors making Marconi more efficient
	Understanding the lack in scalability

	Building the analytical model
	Cross Motif Search
	Application-related parameters
	Network-related parameters
	Cross Motif Search Analytical Model
	Speculation of the execution on the cloud

	BloodFlow
	Application-related parameters
	Network-related parameters
	BloodFlow Analytical Model
	Speculation of the execution on cloud

	Validation
	Cross Motif Search
	BloodFlow

	The evaluation model
	Performance and Economical comparison
	Building the evaluation function

	Marconi workload characterization
	Jobs and Partitions on Marconi
	Submitted, Queued and Started jobs
	Jobs per Partitions
	Jobs and Queues on Marconi A1

	Submissions by date and time
	Submissions by period of time
	Submissions by hours
	Submissions by week day
	Inter-arrival time
	Inter-delivery time

	Job Geometry
	Number of required cores
	Required core number per queue

	Job Execution Time
	Job States
	Job Elapsed Time in general
	Gini index and Lorenz curve
	Job Elapsed Time by Queue
	Accuracy between Time Limit and Elapsed Time
	Number of Running jobs

	Job Clusterization
	Job Waiting time
	A global perspective
	Waiting time by queues
	Waiting time by clusters
	Correlation between Job Geometry and Job Waiting Time
	Correlation between Time Limit and Waiting Time
	Ratio between Elapsed Time and Waiting Time
	Relative Waiting Time by Queues and by Clusters

	Total system Utilization

	Virtual Instance Startup and Stop Time
	Applying the evaluation model on both applications
	Conclusion
	Future works

	Introduction to MPI
	Blocking and non-blocking behaviour
	Blocking Synchronous Send
	Blocking Ready Send
	Blocking Buffered Send
	Blocking Standard Send
	Non-blocking Standard Send

	What you should consider when you work with MPI

	Measuring network performance
	Some analytical models
	PLogP model
	PLogP Drawback
	Extending pLogP model for collective operations
	PLogP models for collective functions
	Working with heterogeneous architectures

