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Abstract 
Species detection is one of the older problems encountered by science. This detection 
implicitly needs the identification of several features that are peculiar of a group, or taxa, 
such that their cumulative presence or absence defines the category of the target. Initially, 
taxonomies were based on morphological characters, with some limitations as there are 
species lacking the needed informative features, as prokaryotic or cryptic species. From 
the discovery of genotype, sequences have proven as powerful features to be used to infer 
taxonomy and phylogenetic trees. A sample can be affiliated to a taxonomy by finding a 
homology to an already taxonomically classified sequence present in a public database. 
However, if the target sequence does not have a match, then a phylogenetic tree 
constructed together with the found similar sequences can be used to infer their 
relationships. This type of taxonomy annotation can be challenging as there is not a 
consensus about how much distant two taxa have to be to be considered of different 
species.  
In this PhD thesis I consider two taxonomically challenging case studies, the first involving 
a complex of morphologically cryptic interbreeding Anuran species, the second a bacterial 
endosymbiont of a ciliate protozoa. 
The first case is focused on Pelophylax, a genus of morphologically cryptic anuran species 
that show a form of sexual parasitism, called hybridogenesis, where inter-species mate 
produces viable offspring. Some species can be identified on a bio-acoustic basis, but the 
presence of hybrids makes the detection unaffordable. The identification is more precisely 
performed using mitochondrial DNA (mtDNA) and Short Tandem Repeats (STR) markers. I 
coupled these two techniques to classify animals sampled in the Po Valley, near Pavia, 
where two autochthonous taxa can be found together with allochthonous. A correct 
detection of these species is important to assess the conservation status of the local taxa 
and the impact of the allochthonous ones. 
The second case is focused on the study if a prokaryotic endosymbiont of a ciliate Protista, 
where morphological traits are virtually useless to determinate the taxonomy. Due to 
differences between host and symbionts, it is possible to use molecular traits to discern the 
species, as using 16s rRNA for Bacteria and 18s rRNA for Eukaryotes. However, this 
approach may only provide species identification, not genomic information, which is 
needed to get a functional understanding of the symbiotic system, as also of the 
endosymbiotic species, which may be unknown. With this purpose, both organisms are 
sequenced together by using Whole Genome Sequencing (WGS) with Next Generation 
Sequencing (NGS) technologies. However, this procedure allows to obtain portion of the 
genomes fragmented into different contigs, which than have to be deconvolved to obtain 
separate genomes. We then decided to develop a fully automated tool, called SeqDex, 
able to deconvolve host-endosymbiont dataset by coupling partial taxonomic affiliations 
(homology derived) to composition analysis to predict the affiliations of all the sequences 
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using state of the art machine learning algorithms. The second case study is composed by 
three Spirostomum samples, which showed evidence of presence of a Neisseriales 
bacterium inside the ciliate cells. I have used SeqDex to deconvolve this dataset to 
reconstruct partially the endosymbionts genomes and perform functional analysis to infer 
their role and the nature of the relationship that bound the hosts and the bacteria.  
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Thesis outline 
The aim of my thesis is to define methodological approaches that can be used in species 
detection, primarily in cases where common widely used features fails. 
To do so, in Chapter 2 I used molecular markers to discriminate organism belonging to 
cryptic taxa, in condition where most of these species coexist. The picture is complicated 
by the presence of a form of sexual parasitism that bond the species, as also allochthonous 
taxa introductions. I chose to use a double marker approach, by coupling mitochondrial 
DNA phylogenetic signal with nuclear DNA regions, able to give species specific 
discrimination. 
Chapter 3 will describe the tool developed to deconvolve dataset of whole genome 
sequencing of both host and its endosymbionts by using state of the art machine learning 
classifiers and k-mer frequencies. I used this tool in Chapter 4 to deconvolve the datasets 
of three different Spirostomum samples sequenced with their endosymbionts. The tool 
developed in Chapter 3 allowed to obtain genomic sequences of the three bacteria, which 
have been used to perform functional analysis and infer the relationships that bond hosts 
and endosymbionts in Chapter 4. 
Due to the high diversity between the two case studies, Chapter 1 is a general introduction 
to the problems that will be discussed in detail in the Chapters 2, 3 and 4, while Chapter 5 
is a general discussion of the two case studies. 
 

The problem of species classification 
The classification of organisms is one of the oldest problems faced by science. The 
capability of including an organism in a precise taxon requires the identification of several 
features that are peculiar of the known taxa such that their cumulative presence or absence 
defines the category of the target. This bears the need to have previously defined a taxon 
by means of its peculiar and conserved characteristic. Classification initially was mostly 
focused on the description of edible, beneficial or poisonous species in order to preserve 
and transmit this information. In ancient Egypt, these species were represented in wall 
paintings or transcribed into paper rolls, as the Ebers Papyrus (1550 BC), one of the oldest 
papyrus rolls containing the description of medical plants (Aboelsoud, 2010). Later, 
Aristotele (382-322 BC) expanded this description to all organism (Mayr, 1982). His 
purpose was not only to record which organisms are harmful or beneficial to humans, but 
to find the characteristics shared by similar organisms and assign names reflecting those 
peculiarities and similarities to others, giving birth to the first detailed classification of living 
things.  
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Historical considerations from Linnaeus 
to Woese 
The Aristotelian classification was maintained until the 18th century, when Carl Linnaeus 
used it as a basis for creating the binary nomenclature still in use. Linnaeus introduced 
species names coupled with the Genus, and also the ranked hierarchy where species with 
similarities have to be grouped together in higher order groups, the actual Genera, 
Families, Orders, Classes, Phyla and Kingdoms (Linnaeus, 1753; Linne,́ 1735). Key to the 
success of the Linnaean systematics was the identification of traits (or combinations 
thereof) with high discriminatory power. He took advantage of these features to write 
dichotomous keys allowing to define species affiliations. This is the birth of modern 
taxonomy. A species was defined as a group of organisms that share fixed properties (a 
type) and is nowadays referred to as typological species definition (Gould, 1979; Smith, 
1989). This definition bears a lot of problems, as there are cases where variation at certain 
features is not sufficient for discrimination or might be absent, such as in microorganisms 
or cryptic species, which results in the inclusion of potentially unrelated organisms in a 
same taxon (Lewin, 1981; Ruse, 1969). The definition of species was reviewed in 1970 by 
Robert Sokal, who introduced the phenetic concept of species: a group of organisms 
constitute a species if they have a similar phenotype (term used to indicate all the 
observable characteristics) which is different from other organisms (Sokal and Crovello, 
1970). It differs from the typological species concept as it involves distance/similarity matrix 
summarizing the comparison among organisms based on multiple characteristics to cluster 
the organisms, and it accepts some degree of variation. This concept is still used nowadays 
by taxonomists to recognize species in the field (Ghiselin, 1974). It is a useful operational 
definition which allows easy classification of organisms, but still bears the problems of the 
typological species concept: it is hard to apply to organisms that lacks clear informative 
characters. 
The Linnaean nomenclature is still used nowadays, even if it changed meaning after the 
evolutionary theory was published by Charles Darwin in On the origin of species (1859). As 
more and more evidences in support to Darwin’s theory were found, academics begun to 
interpret the taxonomy in an evolutionary perspective, leading to evolutionary systematics. 
Focusing on its persistence over time, the species was defined by George Gaylord 
Simpson (1951) as “an entity composed of organisms which maintain their identity from 
other such entities through time and over space, and which has its own independent 
evolutionary fate and historical tendencies” (Laporte, 1994; Mayden, 1997). Evolutionary 
systematics rose from studies that linked fossils to modern species and it is focused on 
reconstructing the evolutionary history of current and past organisms, together (Cavalier-
Smith, 2010; Chambers, 2009; Huxley, 1882).  
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In the early 1900s, another approach entered the toolbox of taxonomists: cladistics or 
phylogenetic systematics, thanks to the birth of phylogenetic methods. In particular, 
phylogeny aims to reconstruct the evolutionary history and relationships among organisms 
by using similarities/dissimilarities between groups of taxa and then report the most 
probable tree. The first phylogenetic tree of life was drawn by Ernst Haeckel in 1866 (Figure 
1), even though the term phylogenesis was introduced only in 1921, by Robert John Tillyard 
(Tillyard M. A., 1921), and the mathematical models still in use nowadays where developed 
in the second half of the 20th century, e.g. Maximum Likelihood (Cavalli-Sforza and 
Edwards, 1967); Parsimony (Camin and Sokal, 1965); Neighbour Joining (Saitou and Nei, 
1987); Bayesian Inference using Markov Chain-Monte Carlo (Li et al., 2000; Mau et al., 
1999; Rannala and Yang, 1996). The formalization of cladistics is attributed to Willi Henning 
in his book Phylogenetic systematics (Hennig, 1966). A cladistics species is the smallest 
group of individuals that can be identified by a set of features. Even though cladistic and 
evolutionary systematics originated in the same period, the latter dominated until the past 
few decades.  

Figure 1 - The tree of life drawn by Ernst Haeckel in 1866; figure from: (Hossfeld and Levit, 2016). The root 
suggests the idea of a common primordial ancestor from which all other forms emerged. Haeckel drawn this 
tree based on paleontological, embryological and systematic data. 
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All these classifications were based on phenotypic features, since molecular characters 
were not accessible until 20th century. The major limitation was that it was hard to take into 
account phenotypic plasticity, leading to possible misclassifications. For instance: it is 
impossible to correctly assign cryptic taxa, as they lack distinctive characters with respect 
to their taxon; moreover, some morphological characters can be typical of, and limited to, 
some life stages or gender, hindering the identification of the set of features with maximum 
informative power. For this reason, methods based on phenotypic traits are highly 
dependent on the ability and the knowledge of the target organism by specialists, and 
misclassifications are consequently common. 
At the beginning of 1900 Hugo de Vries rediscovered Gregor Mendel’s works, published 
in 1866, leading to the rise of genetics and an explosion of new disciplines. Genetics 
focused at the beginning on the identification of hereditary blocks, called genes, and the 
mechanisms by which these interact. The term genetics was first coined by William Bateson 
(Bateson, 1906). This discipline was not only influenced by Mendel’s works, but also by the 
discoveries of nucleic acids by Friedrich Miescher (1869), of chromosomes and their 
behaviour during cell division (Walther Flemming, Eduard Strasburger and Edouard Van 
Beneden, 1880-1890), and by the theory of the equilibrium model of a gene in a population 
proposed by G. H. Hardy and Wilhelm Weinberg (Hardy, 1908). Molecular biology arose 
in 1930, even though the term was coined in 1938 by Warren Weaver, as a synthesis of 
genetics, biochemistry, microbiology and physics and studies life phenomena and 
organisms focusing on macromolecules, either nucleic acids and/or proteins (Weaver, 
1970). Population genetics arose first with the work of Ronald Fisher in 1919 (Fisher, 1919, 
1930), and then of J. B. S. Haldane, Seawall Wright, John Maynard Smith and Theodosius 
Dobzhansky. It applies genetic mechanisms to the study of population dynamics. 
In the first half of the 20th century, Ernst Mayr (Mayr, 1943) defined the species as a group 
of populations potentially interbreeding and reproductively isolated by others. This 
definition, named ‘the biological species concept’, is one of the most widely used and 
encounters problems when dealing with: asexual taxa, such as prokaryotes, or 
parthenogenetic species (Gevers et al., 2005; Rosselló-Mora, 2001; Templeton, 1989); 
interbreeding taxa, like those that admit some degree of hybridization, or ring species 
(Figure 2), where the members of adjacent populations interbreed but distant ones cannot 
(Zachos, 2016); cases where it is impossible (or hardly possible) to verify reproductive 
isolation, like in extinct taxa (Teueman, 1924). 
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Figure 2 - The figure reassumes the problematics of ring species. A parental population diverges along two 
fronts of a barrier in A and B. The populations of each lineage can interbreed and allow some degree of gene 
flow, however the terminal populations that came in contact at the opposite fronts of the barrier cannot 
hybridize and there is not gene flow. Figure from: (Cacho and Baum, 2012) 

 
All these disciplines needed to be supported by technical discoveries for data manipulation 
and for hypothesis testing. Among all, the description of the DNA double helix structure 
(Watson and Crick, 1953) and the experimental procedure to isolate nucleic acids (Avery 
et al., 1944) opened the door to the DNA era. Starting with this era, evolutionary systematics 
has been replaced by cladistics, which moreover shifted its focus form morphological 
characters to genes and genomes. The advancements in genetics influenced molecular 
biology, population genetics and phylogenetics studies. By applying the evolutionary 
theory to genetics, scientists observed that even distantly related organisms may share 
features, as the molecular apparatuses for DNA and protein synthesis. The comparisons 
between these highlighted that their sequences are highly similar but not identical and the 
variations may be the results of mutations that can be used as informative features on which 
one could implement phylogenetic methods to be used to define taxonomy. In 1977 two 
laboratories independently developed the first sequencing technologies and were able to 
sequence the first genomes (Maxam and Gilbert, 1977; Sanger et al., 1977). The results 
obtained during this DNA era incited some scientists to focus on genomes, leading to the 
rise of the genomic era and the development of more affordable, faster and cheaper 
technologies, nowadays called Next Generation Sequencing (NGS) methods. These 
technologies are based on another important methodological discovery of this period: the 
Polymerase Chain Reaction (PCR), by Kary Mullis (Mullis et al., 1987). This technique allows 
to duplicate exponentially a DNA molecule to obtain enough copies for sequence it. 
The availability of genes and proteins sequences allowed to pinpoint the presence of 
homologies, with a certain degree of variation, shared between even distant taxa. The 

complex (Euphorbia tithymaloides L.) conforms to the
ring-species model.

The slipper spurge E. tithymaloides is by far the most
variable and widespread species of the Pedilanthus clade
of Euphorbia, with a range that includes Mexico, Florida,
Central America, northern South America, and most
islands in the Caribbean (figure 2) [14,15].

Eight subspecies of E. tithymaloides have been recognized
based on geography and vegetative and reproductive traits
(see electronic supplementary material, table S1). Owing
to intergradation, subspecies assignation can be challen-
ging, particularly among the Greater Antillean (GA)
subspecies smallii, jamaicensis, bahamensis and parasitica,
which bear close resemblance to the mainland populations
traditionally assigned to subspecies tithymaloides. On the
other hand, subspecies angustifolia (figure 3a) and padifolia
(figure 3b) are more easily distinguishable since their fea-
tures are fairly constant within the entity and clearly
different from other subspecies. Individuals of subspecies
angustifolia are viny shrubs about 1 m tall, with very thin,
narrow and puberulent leaves and slender stems, and
cyathia with short involucral tubes that occur in tropical
deciduous forests in the eastern GA, including the Virgin
Islands. In contrast, plants assigned to subspecies padifolia
are stout shrubs up to 2 m in height with a thick main axis
and have broad succulent and glabrous leaves with obtuse
apices, and cyathia with relatively long involucral tubes.
Individuals of the latter subspecies are found mainly in
the Lesser Antilles (LA), with some records in the Virgin
Islands only a few kilometres from populations of subspecies
angustifolia [15]. Plants of subspecies parasitica, which have
also been reported in the eastern GA, resemble those of
subspecies padifolia in most regards but (like subspecies
smallii, jamaicensis, bahamensis and tithymaloides) have
acute leaf apices and round (rather than truncate) nectar
spurs (see electronic supplementary material, table S1).

Based on his careful morphological study of these organ-
isms, Robert Dressler [15] suggested that angustifolia and
parasitica (p.137): ‘ . . . are broadly sympatric and appear
to behave as distinct species [...], each closely tied in to
the mainland population by a different chain of taxa.’
Although Dressler’s formulation did not specifically

hypothesize that E. tithymaloides might be a ring species,
such a scenario seems a priori plausible in this case given
(i) the circular distribution of E. tithymaloides around the
rim of the Caribbean, and (ii) the oceanic currents within
the Caribbean Sea [16–18] which would tend to promote
dispersal to adjacent islands and inhibit direct migration
across the Caribbean Sea.

We use two low-copy nuclear regions and a molecular
phylogenetic approach to test the hypothesis that the
E. tithymaloides species complex in the Caribbean fits
the ring-species model. Under a ring-species scenario, we
would expect statistical support for a phylogenetic pattern
involving two colonization fronts of the Caribbean whose
terminal forms remain distinguishable despite co-occurring
and show reduced or no gene flow. Examples of alternative
scenarios would be that the several forms in the Caribbean
are derived from a single invasion (and thus sister to each
other) rather than conforming to two colonization fronts
whose termini meet, or that the Caribbean populations
originated from multiple long-distance dispersal events
directly from mainland populations.

2. MATERIAL AND METHODS
Sampling, laboratory methods and analyses are detailed in

the electronic supplementary material.

(a) Taxon and gene sampling

We sequenced two nuclear regions for 1–16 individuals for

each of 40 natural populations of E. tithymaloides spanning as

much of the taxonomic and geographical ranges of the species

complex as possible, and two populations of its sister species,

Euphorbia personata. For brevity, we will refer to these two

regions as SGN (region based on Solanum Gene Network

Unigene SGN-U342009), and G3p (GAPC-2 locus of the

glyceraldehyde 3-phosphate dehydrogenase subunit C gene) [14].

The subspecies retusa is only known from very few scattered

locations in the Peruvian and Brazilian Amazon and lacks any

compelling differences from E. t. ssp. tithymaloides from

Venezuela [15]. Given that E. t. ssp. tithymaloides is commonly

cultivated and used in folk medicine in the area, it is likely that

subspecies retusa is an escape from cultivation of plants that ori-

ginated from Venezuela [15]. Based on these issues, we decided

to exclude the subspecies retusa from the present study.

Despite intensive field and herbarium work in Florida, we

were unable to locate populations of E. t. ssp. smallii. Areas

where healthy and thriving populations were reported as

late as 1982 have been destroyed by real estate development.

We thus fear that E. t. ssp. smallii might be now extinct. How-

ever, since this subspecies is only marginally insular and very

similar to E. t. ssp. tithymaloides [15], it is unlikely that its

inclusion in our study would have substantially changed

our conclusions.

A combination of single-stranded conformation poly-

morphism (SSCP) gel separation of PCR products and

cloning was used to isolate all alleles present in each of the

individuals analysed. Thus, the resulting data matrix has no

missing data. Briefly, once the procedures were standardized,

the approach for allele separation was as follows. After geno-

mic PCR, direct sequencing was performed. Those PCR

products that yielded overlapping sequence reads or double

peaks were ran in SSCP gels for allele separation [19–21].

If SSCP allele separation failed owing to co-migration of

different sequences, cloning was used to recover both alleles.

gene flow
no gene flow

parental
population

Pop A1
Pop A2 Pop A3

Pop A4

Pop B1
Pop B2

Pop B3

Figure 1. According to the ring-species model, a parental
population diverges along two fronts around an area of unsui-
table habitat so that its terminal forms behave as distinct
species upon secondary contact.

2 N. I. Cacho and D. A. Baum First ring species in plants

Proc. R. Soc. B

 on June 15, 2012rspb.royalsocietypublishing.orgDownloaded from 
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mathematical models developed for the morphology based phylogenesis are then used to 
infer the phylogenetic relationship on distance matrix calculated on the differences of 
aligned sequences.  
In the early 1960s, Émile Zuckerkandl and Linus Pauling coupled speciation events dated 
with fossils information with differences among species sequences and proposed the 
molecular clock concept: by observing a fairly constant substitution rate among lineages, 
they proposed that this rate can be considered constant and therefore the distance based 
on the comparison of the sequences can be translated into time since evolutionary 
separation, with the possibility of dating speciation events (Zuckerkandl and Pauling, 
1962). This “molecular clock” hypothesis was based only on empirical evidences, but the 
theoretical basis soon followed when Motoo Kimura completed the theoretical formulation 
of the neutral theory (Kimura, 1968). Unfortunately, the next years showed that the 
substitution rate of different proteins or within the same protein but at different sites is not 
always as constant as proposed, leading to possible problems in the translation of 
sequence differences into time units. 
Initially, phylogenetic studies on sequences were focused only on eukaryotes. 
Microbiologists used phenetic traits, some showed in Figure 3, to differentiate among 
species. Carl Woese in the sixties was working on bacterial proteins, the protein making 
machinery, the ribosomes, and rRNA genes (Prakash et al., 2013). Based on its results and 
intuition, he supposed that ribosomes were the most conserved macromolecular 
complexes in prokaryotes and therefore they may represent the best targets to reconstruct 
their phylogenetic relationship. Then, he begun to catalogue the ribosomal genes 
sequences of known prokaryotes around 1966. In 1977 he proposed a method to use the 
SSU rRNA (Small Subunit ribosomal RNA) to reconstruct the relationships among taxa and 
published the first prokaryotic phylogenetic tree (Prakash et al., 2013; Woese and Fox, 
1977). This approach proved to be so powerful to revolutionize prokaryotes studies, 
preparing the ground to the analysis of complex samples through metagenomic. In this 
latter field, relevants have been the works of Norman R. Pace, one of the collaborators of 
Woese, which implemented an experimental procedure to use a ribosomal based 
taxonomy even on not cultivable microorganisms. In detail, he cloned target sequences 
into cultivable organisms to then sequence them (Pace et al., 1986). 
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Figure 3 - The figure shows the different morphological features used to phenetically classify bacteria. 
(credits: microbiologyinfo.com) 

 
Of all the SSU macromolecular components, the 16S sequence has been chosen as a 
marker as it was supposed that it was present in all bacteria (Woese et al., 1990). The 
comparison of sequences coming from different organisms later highlighted the presence 
of 9 hypervariable regions interleaved with highly conserved regions (Janda and Abbott, 
2007), such that the variable ones provide resolution for distinguishing different species 
and the conserved allow to find anchoring points for quasi-universal PCR primers. Recent 
studies indicated in certain cases an insufficient resolution power at genus and species 
level for some lineages (Adeolu and Gupta, 2013; Drancourt et al., 2000; Mignard and 
Flandrois, 2006; Woo et al., 2003), probably due to the presence of species sharing highly 
similar or identical sequences, as also the presence of some erroneous taxonomic 
assignment of some 16S sequences deposited in databases (Janda and Abbott, 2007). 
These limitations of the applicability of 16S induced scientists to search for other markers. 
The first eukaryotic phylogenetic marker proposed was the 18S rRNA gene and it was used 
to draw the first phylogenetic tree of the animal kingdom (Field et al., 1988). At the 
beginning of 2000s, some studies reported the difficulty in interpreting the phylogenetic 
relationships at the species level for some mollusc taxa (Meyer et al., 2010). This is likely 
due to the presence of introns in the genes and of recombination events in the eukaryotes 
genomes, which could lead to insertion or deletion (indel) that may create problems in the 
comparison (Doyle and Gaut, 2000). Some others criticisms are bound to the polyploidy 
(Doyle and Gaut, 2000). In 2003, Paul Hebert proposed a new approach to use gene 
information to determine the taxonomy of eukaryotic species, called DNA barcoding. The 
concept at the base was using a gene, universally present in all organisms, as a barcode 
to recognize species. He proposed to use mitochondrial genes instead of 18S rRNA 
(Hebert et al., 2003) as they seldom have indels (that can lead to non-functional frameshifts) 
and introns, are haploid and rarely recombine. In detail, he proposed to use the cytochrome 
c oxidase I (COI) gene as it showed robust conserved flanking regions found previously 
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by Folmer and colleagues (Folmer et al., 1994) who exploited them to design primers able 
to recognize phylogenetically distant taxa too. The use of this region initially showed better 
phylogenetic signal than any other mitochondrial gene (Knowlton and Weigt, 1998), even 
though later studies reported some problem in the species discrimination capability of 
certain taxa, inducing the search for other suitable genes.  
 

Sequence-based modern-day 
classification 
The first generation of sequencing technologies, in particular the Sanger sequencing, 
constituted an enormous advancement for time but they were characterized by a limited 
throughput, such that even sequencing a full bacterial genome required significant efforts 
in terms of cloning, sequencing and assembling. With the recent advancements in 
technology, that leaded to the NGS methods, the situation drastically changed, even if they 
required the development of additional tools and the concomitant increase of 
computational resources to manage the huge amounts of short-reads generated in each 
run. Basically, the huge advantage of those new approaches is that the cloning step can 
be avoided, and that the throughput is so high that even tiny quantities of DNA or RNA can 
be used proficiently. The result of the introduction of NGS technologies was an exponential 
increase in the number of full genomes and specific DNA regions in the public databases, 
such that modern-day classification started to heavily rely on the comparison of new 
sequences from a sample of interest with those available in specialized databases. 
One of the most widely used algorithms to compare sequences to large databases is 
BLAST (Basic Local Alignment Tool, (Altschul, 1990)) that is based on the Smith-Waterman 
algorithm. BLAST was born in an era when biological sequence databases were much 
smaller than today and therefore speed was not the limiting issue, and none the less is still 
one of the most used software, even if much faster tools are today available. 
Alignment algorithms can be classified in global or local: the first ones align entire 
sequences while the second looks for local alignments on sub-sequences such that they 
are more appropriate when two sequences share homologies that do not span their entire 
length. This latter is preferred as it allows to use raw sequences instead of recovering 
sequences that are homologous over their entire length. BLAST is based on a local 
alignment algorithm. Its functioning is reassumed in Figure 4. Searching for local 
alignments make the algorithm more affordable. However, this alignment algorithm 
becomes computationally intensive when comparing large numbers of sequences to big 
databases. At today several improvements exist of this algorithm that reduce execution 
time.  
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Figure 4 - The figure describes the functioning of the Smith-Waterman algorithm implemented in Blast. The 
algorithm starts by splitting the query sequence in all the overlapping words (for instance, w=3 for proteins 
in the default parameterization of Blastp). For each word wi, the algorithm prepares a table composed by all 
words of length w and then exploits a substitution matrix (by default it is Blosum62), to quantify the degree of 
similarity with wi. At this point, only words whose alignment’s score is above a defined threshold are kept as 
possible hits to wi. This procedure is repeated for all words contained in the query sequence. All the kept 
words are searched throughout the database, and when an identical match is found, the algorithm proceeds 
by trying to extend this seed alignment. Extension proceeds one amino acid (or nucleotide) at a time, and 
after each addition, the updated alignment score is calculated. Extension proceed up to the site that causes 
the score to decrease of a value larger than the drop off threshold. In this example, the similarity index 
increases from 5 to 29, and then further extension causes the score to drop below the threshold and therefore 
the algorithm stops and output a local alignment that is called HSP, high scoring pair. To guide the 
identification of significant alignments, Blast calculates the so-called E-value (E in the figure) that depends 
not only on the score S of the alignment, but also on the size of the query and the database. 

 
To speed up the comparison, some authors developed tools that find similar sequence, 
with high accuracy, but avoiding the alignment step. One of the examples is the naïve 
Bayesian classifier implemented within the framework of the Ribosome Database Project 
(RDP, (Cole et al., 2014)). This algorithm takes all the 16S rDNA gene sequences in the 
database to calculate the probability of observing every possible word of length k (usually 
called k-mers, here the length is 8) (Wang et al., 2007). This can be achieved by exploiting 
the Jeffreys-Perks law of succession, i.e. that the probability of words is given by the 
number of their occurrences divided by the total number of words. Similarly, the probability 
of observing every word can be calculated on a subset of the entire sequence database, 
for instance by only considering sequences from a well-defined taxonomic group. While in 
the previous case the probabilities can be thought of as background probabilities in the 
entire database, when calculating them by only considering sequences from a certain 
taxonomic group, we are calculating the probabilities specific for that group. At the end of 
the procedure, each word has its probability calculated on the basis of the probability 
model developed for each taxonomic group present in the database. These models can 

Blast algorithm
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be used to calculate the probability that a certain sequence comes from one of the 
taxonomic groups present in the database by applying the Bayes theorem. 
As there are no complicate calculations to be performed, alignment-free tools are very fast, 
even when working with large dataset. However, this kind of implementation strongly relies 
on the presence of a previously trained model for the taxonomic group from where the 
query sequence really comes from, otherwise the algorithm will output nonetheless the 
taxonomic group with the highest probability, only because the database misses the model 
for the right taxonomic rank.  
The taxonomic identification of new samples based on the comparison to sequences 
deposited in specialized database is not free of problems. By comparing two sequences 
is possible to observe some degree of variation. The problem lays in the impossibility to 
define a consensus as different sequences may show different degrees of intra-species 
and inter-species variations (Janda and Abbott, 2007). This influence also the selection of 
the regions to be used for the comparison. In a good marker the intra-species variation 
must be less than the inter-species (Liu et al., 2017). Interbreeding, or horizontal gene 
transfer in prokaryotes, can confuse the phylogenetic signal if the gene under studies is 
involved in this interspecific exchange. 
 

Aims of the work 
In this Thesis, I will consider two distinct case studies, the first concerning morphologically 
cryptic interbreeding species of frogs (Amphibia), and the second concerning 
endosymbiont bacteria of a ciliate (Protozoa). Cryptic species are challenging to recognize 
morphologically due to the absence of informative features. Also, as discussed above, the 
interbreeding capability complicate the possibility to recognize taxa by using molecular 
markers. Therefore, I used an approach where multiple markers are selected to 
differentially amplify the species and that can be combined to get the classification, even 
for hybrids. 
Similarly, the morphology of bacteria is not taxonomically informative, such that the most 
common approach is today based on the analysis of DNA sequences. Even in this case, 
the identification/classification can be challenging, especially when dealing with species 
that are under-represented in the databases or strongly divergent in terms of sequences; 
this is particularly true having to do with endosymbionts, as their life-style most of the times 
implies non-cultivability and a peculiar evolutionary path, often proceeding in a completely 
independent way with respect to related, free-living species. As a consequence, the 
genomics of endosymbionts often requires to sequence the bacterium and its host together 
and then apply tools able to identify the sequences coming from different sources. To 
improve the latter step, that is the deconvolution of DNA molecules of different origin in a 
sequencing run containing several organisms, I implemented a tool exploiting state-of-the-
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art machine learning techniques. This tool was then used to obtain the genomic sequences 
of the Spirostomum endosymbionts, and I conclude by performing computational 
functional analysis to better characterize the nature of this strict relationship. 
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CHAPTER 2 

Molecular characterization of the species of the Pelophylax 
esculentus complex in Northern Italy 
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Introduction 
Pelophylax is widespread in Eurasia and it comprises at least 12 morphologically cryptic 
species around the Mediterranean basin and Europe. It has been supposed that these 
species have originated in allopatry, as a result of the geographical isolation associated to 
glaciations (Canestrelli and Nascetti, 2008). 
As cryptic species lack the morphological features that univocally mark the taxa, it is 
impossible to apply phenetic or typological species concepts. Some of these species can 
be discriminated by using bioacoustic records of male mating calls (Sinsch and Schneider, 
2009) but even when exploitable for taxonomy assignment, this approach has huge limits: 
only reproductive males produce mating calls and therefore the technique is blind to 
females and non-reproductive males; moreover, it gives no information about population 
composition and dynamics. 
Species discrimination based on molecular markers can also be difficult. Indeed, these 
taxa show an outstanding form of sexual parasitism, called hybridogenesis (Schultz, 1969) 
where two species mate producing a viable and fertile hybrid offspring that excludes one 
of the parental genomes in the germinal line cells (Figure 5). The hybrid lineage can then 
survive only by sharing its areal with the parental taxon whose genome has been excluded, 
whereas the other taxon needs to be absent. 

Figure 5 – The hybridogenetic system probably originated from an ancient interspecific mate between RR 
(Ridibundus lineage genome) and LL (Lessonae lineage genome). This produced viable offspring RL which 
exclude one of the parental genomes from the germinal cells, in this case L. This hybrid generation produces 
only gametes R and a backcross with the parental LL is needed to maintain the lineage; thus, they have to 
coexist. Backcross with the parental RR will produce only RR offspring, so this species needs to be absent 
to allow the survival of the hybrid lineage. 

 

RR

LRLL
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LL
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Various interspecific mating occurred in the history of the Pelophylax genus, as shown in 
Figure 6, leading to the formation of several hybridogenic complexes: the P. hispanicus 
complex in the Italian peninsula (Uzzell and Hotz, 1979), the P. grafi complex in Spain (Graf 
et al., 1977), and the most studied, the P. esculentus complex, in Northern Italy and central 
Europe (Dubois, 1992; Frost et al., 2006). In this latter complex, ancient mating between P. 
lessonae and P. ridibundus produced the P. esculentus hybrid (Tunner and Heppich, 
1981). This complex is one of the most common in Europe and produced different 
outcomes that have been studied in detail. The P. esculentus complex is divided into three 
systems: the L-E, the R-E and the E system (Christiansen and Reyer, 2009; Tunner and 
Heppich, 1981; Uzzell et al., 1976; Vinogradov et al., 2008). The first, and the most studied 
one, is diffused in Northern Italy, Swiss and France (Figure 6), and is composed by P. 
lessonae and P. esculentus which in its germinal line cells exclude the P. lessonae genome 
(hereafter L) and transmit the P. ridibundus genome (hereafter R) clonally (Pagano et al., 
1997). Here, the two species need to co-occur to maintain the systems: P. esculentus 
produce only R gametes and needs L gametes to maintain the hybridogenetic lineage 
(Figure 5, Figure 6); instead the P. ridibundus parental species need to be completely 
absent, as crossing between them and the hybrid will produce pure RR offspring, leading 
to the extinction of P. esculentus. Mating between hybrids have been reported to produce 
not viable offspring in most cases (97%) as the clonally transmitted genome accumulate 
aberrant mutation that may be not compatible with life if in homozygosis (Holsbeek and 
Jooris, 2010). As male frogs usually choose a bigger female to reproduce with, it has been 
supposed that the first interspecific mating happened between males P. lessonae and 
females P. ridibundus (this species usually have body size bigger than the previous). The 
hybrids RL were supposed to have the mitochondrial DNA (mtDNA) of P. ridibundus, which 
is maternally inherited. However, RL hybrids show prevalence of mtDNA of P. lessonae, 
probably due to introgression of this parental character imputable to crossing with LL 
females, which was then maintained, as it may bring advantages in tadpole development 
in hypoxic water pond (Plenet et al., 2000a, 2000b; Spolsky and Uzzell, 1984).  
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Figure 6 - Overview of the hybridogenetic systems of the Pelophylax complexes in Europe and the 
geographical distribution of the parental and hybridogenetic species. Figure from: (Holsbeek and Jooris, 
2010) 

 
The R-E system is diffused at the opposite limit of the Pelophylax range respect to the L-E 
system, in East Europe (Figure 6), and is composed by P. ridibundus and P. esculentus 
which exclude in the germinal line cells the R or L in a proportion of 3:1 (Uzzell et al., 1976; 
Vinogradov et al., 2008).  
Between the L-E and R-E ranges, there are areas where all three species co-occur, or 
where only hybrids can be found, the E system. Here, among diploid RL hybrids, also 
polyploid hybrids can be found (usually triploid), which genotype is formed by one or 
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multiple copies of L or R, and that exclude one of the two parental genome to guarantee 
the hybrids lineages maintenance (Christiansen and Reyer, 2009; Uzzell et al., 1980). 
In the past few decades the Italian rage of the L-E system in the Po Valley has endured the 
introductions of alien Pelophylax taxa ascribable to P. ridibundus lineages coming from 
Southern, Eastern, Central and Western Europe, called P. kurtmuelleri, P. bedriagae and 
P. ridibundus (East and West Europe clade) (Lanza, 1962). 
It has been supposed that these introductions may have different outcomes. The Southern, 
Central and Eastern taxa seem to be not capable to induce the sexual parasitism. For this 
reason, it has been hypothesized that the mate with the P. lessonae will produce sterile 
hybrids, which will also compete, and probably win due to higher body mass, with the 
autochthonous taxa (Holsbeek and Jooris, 2010; Hotz et al., 1985; Hotz and Uzzell, 1983). 
On the contrary, the Western Europe taxon is capable to induce hybridogenesis, and 
mating with P. lessonae will lead to establishment of new hybridogenetic lineages, that may 
substitute the autochthonous (Holsbeek and Jooris, 2010). Also, P. lessonae males should 
mate preferentially with P. ridibundus females due again to the higher body mass, leading 
to a reduction of density of the P. lessonae populations. For these reasons, methods are 
needed to correctly identify autochthonous and allochthonous taxa, as also to recognize 
the hybrids and their origins. Some approaches have been proposed, but none of these 
are fully comprehensive. 
Some authors identified some morphological characters that might help scientists to 
discriminate among P. lessonae lineages, P. ridibundus lineages and their hybrid. However 
two problems comes with these measurements: these publications are in German, so not 
accessible to most, dissipating their usefulness; these features seem to be capable to 
discriminate lineages, but not the species (or clade), and therefore they are unable to 
discriminate between European P. lessonae and Italian P. bergeri, or between Center 
Europe P. ridibundus and P. bedriagae and P. kurtmuelleri. Plotner compared these 
morphological characters to other molecular methods to try to discern the geographical 
origins of individuals and so infer their species affiliations (Plotner et al., 2008). He 
concluded that using morphological features coupled with mtDNA ND3 gene allows to 
correctly assign the taxonomies. However, the mitochondrial DNA allows to reconstruct the 
phylogenesis of this maternally transmitted organelle, not to discriminate among hybrids, 
which do not have their own mtDNA haplotype, nor to reconstruct the history of both 
maternal and paternal genomic DNAs. 
Another approach involves the use of particular genomic regions, called microsatellites or 
Short Tandem Repeats (STR), which are loci of repetitive DNA where a motif is repeated a 
certain number of times. The first microsatellite where discovered in 1984, even if the term 
was coined later, in 1989 (Richard et al., 2008). The use of STR regions spreads around 
the 1990s for paternity test. These regions show higher mutation rates compared to genes, 
due to the repetitions themselves. The high variability of a marker makes it suitable to obtain 
information on taxa at low taxonomic levels, even at the population or individual level. Some 
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authors found microsatellites specific for L, R or both lineages, where the two genomes are 
discriminated by a very different numbers of repetitions. Moreover, some of these STRs 
can be used to quantify the ploidy and allowing the study of polyploid hybrids (Arioli, 2007; 
Christiansen and Reyer, 2009; Garner et al., 2000; Zeisset et al., 2000). However, the 
information derived from these regions are hard to use as they were selected for 
discriminating L and R lineages, not the species.  
We then decided to use a mixed approach, which involves the use of mtDNA to reconstruct 
phylogenetic history of this maternally inherited marker, coupled with the use of 
microsatellite loci to support mitochondrial data, to find hybrids and to infer their parental 
taxa. The main aim of this chapter is to use this molecular markers-based approach to 
identify Pelophylax species in the Po valley: the autochthonous and the allochthonous taxa, 
but also the hybrids, native or newly established. 
 

Material and Methods 
Field sampling 
Before performing any collection of animal samples, we asked and obtained permission 
from the Italian Ministry of the Environment (Prot. 0003221/PNM of the 15/02/2017 DIV II). 
A total of 90 animals have been captured by hand or by net, mostly at night and using 
flashlights, from middle March until late July 2017. Sampling sites were chosen according 
to bibliography and to indications of presence of the taxa of interest (see Table 1). We 
selected sites to collect samples from populations composed by only one of the species of 
interest (hereafter referred as ‘pure’) or by multiple species mixed together (hereafter 
referred as ‘mixed’). The allochthonous taxa are frequently present in the Po plain in mixed 
populations. Where possible, we chose to collect specimens of allochthonous taxa in the 
first site of introduction to be highly sure to sample pure populations. This was possible for 
P. kurtmuelleri and P. ridibundus Western Europe (Table 1). 
Samples were collected by toe clipping, a technique to collect biological tissue that 
involves the asportation, with sterilized scissor, of the last part of a toe (except the third). 
Samples were preserved in ethanol 96% until subsequent analyses. 
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Table 1 – List of the sampling sites chosen according to (Lanza, 1962; Lanza et al., 2007) 

BASIN PROVINCE - LINEAGES (TAXA) 

Ticino 
Pavia - native (L-E system) 
Milano - native (L-E system) 

Staffora Pavia - alien (P. kurtmuelleri, P. bedriagae, P. ridibundus East 
Europe) 

Adige Trento – alien (P. ridibundus West Europe) 
Impero Imperia – alien (P. kurtmuelleri) 
Neva Savona – alien (P. kurtmuelleri) 

 
 

DNA analysis 

Previous to extraction, tissue samples have been rehydrated in sterile water for 10 minutes 
at room temperature. The genome extractions have been performed using GenElute 
Mammalian Genomic DNA Miniprep Kit (Sigma-Aldrich, Saint Louis, USA), following the 
manufacturer instructions. For each sample, two markers were amplified: the mitochondrial 
gene ND3 (NADH dehydrogenase subunit 3) and 9 microsatellite loci, selected as they 
amplify only the L, only R, or both (see Table 2). All the amplifications were done using 0.05 
U of the Hot Start Taq DNA polymerase (Biotechrabbit, Anaheim US) in a total reaction 
volume of 20 µl for the ND3 and 10 µl for the microsatellite. The thermal cycles used for 
each marker where the same reported in the publications. 
The ND3 was amplified in each sample and then verified by gel electrophoresis; the 
fragments of the target length have been excised and purified using GenElute Gel 
Extraction Kit (Sigma-Aldrich, Saint Louis, USA), following the manufacturer’s instructions. 
The purified PCR products have been sequenced using the forward primer (Eurofins 
Genomics, Ebersberg, Germany).  
Considering the STR marker, the forward primer of each microsatellite was fluorescently 
labelled for detection on an ABI3130 capillary sequencer. Each STR locus was amplified 
individually but, previous to sequencing, we mixed them considering fluorescence dye and 
expected lengths. Sequencing was carried out at Eurofins Genomics (Ebersberg, 
Germany). 
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Table 2 – List of all the primer used to amplify the 9 microsatellite loci and the mtDNA ND3 marker 

Primer Sequence (5'-3) Type Target Reference 

ND3 L AGTACACGTGACTTCCAATC mtDNA L, R (Plotner et al., 
2008) 

ND3 H TTGAGCCGAAATCAACTGTC mtDNA L, R (Plotner et al., 
2008) 

RICA18 F CTCTGCTCCCTCAGCTATGC STR L (Garner et al., 
2000) 

RICA18 R AAAAAGTGGTCCTTTCATTTTGAG STR L (Garner et al., 
2000) 

RICA1a27 
F CAAATGGGTCATCCACACC STR L (Christiansen and 

Reyer, 2009) 
RICA1a27 
R GTTCAAGGGGGTCGAAATAC STR L (Christiansen and 

Reyer, 2009) 
RICA5 F CTTCCACTTTGCCCATCAAG STR L (Garner et al., 

2000) 
RICA5 R ATGTGTCGGCAGCTATGTTC STR L (Garner et al., 

2000) 
Res22 F ATACAGGGCTTAGTGAAATGAA STR R (Zeisset et al., 

2000) 
Ress22 R AAGGGGTTAAAGGTGTGACTAT STR R (Zeisset et al., 

2000) 
Re2CAGA3 
F ATGTCGTTAGAGTTCATAGG STR R (Arioli, 2007) 

Re2CAGA3 
R ATCTCAAGTAATCTGTCTGTC STR R (Arioli, 2007) 

Rrid169A F CGGAACTCCGCTTTAATCAC STR R (Christiansen and 
Reyer, 2009) 

Rrid169A R CCCATGTTGTCGTTGAGCTA STR R (Christiansen and 
Reyer, 2009) 

Ga1a19red 
F GCACACTATTTCTGCTGTATTGC STR L, R 

(Arioli, 2007; 
Christiansen and 
Reyer, 2009) 

Ga1a19 R CAGGGGATTTTCCCATCAG STR L, R 
(Arioli, 2007; 
Christiansen and 
Reyer, 2009) 

Ca1b6 F AAACTCGCGGTTTCCCTTAG STR L, R (Arioli, 2007) 
Ca1b6 R GAGCCAGGTTAAGATAACTGGAG STR L, R (Arioli, 2007) 

RICA1b5 F CCCAGTGACAGTGAGTACCG STR L, R (Garner et al., 
2000) 

RICA1b5 R CCCAACTGGAGGACCAAAAG STR L, R (Garner et al., 
2000) 
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Data analysis 

ND3 sequences electropherograms have been imported in Geneious (Drummond et al., 
2011) and manually checked. The ND3 sequences of all 90 samples have been then 
aligned and compared to already published sequences using online BLAST algorithm 
(https://blast.ncbi.nlm.nih.gov/Blast.cgi) to identify species-specific lineages. Also, MEGA 
6 (Tamura et al., 2013) was used to build a Neighbour-Joining (NJ) tree according to p-
distance between pairs, using reference sequences both from native and alien lineages 
previously detected (data not shown). Node supports were estimated by bootstrap 
procedure (1000 replicates, (Felsenstein, 1981)). P. nigromaculatus ND3 sequence was 
used as outgroup. A haplotype network of the obtained ND3 haplotypes was built in 
TCS1.21 (Clement et al., 2000) according to the parsimony algorithm of (Templeton et al., 
1992), which estimates the minimum number of connections required to join haplotypes 
assuming a statistical threshold of 95%. 
STR alleles scoring and dimensioning were conducted in Geneious 11. Structure 3.2 
(Pritchard and Wen, 2002) was used to perform a cluster analysis: each STR allele is 
assigned to a group, allowing to infer the belonging of each individual to one or more taxa. 
We performed the Structure analysis using admixture, with 100’000 runs, burn-in of 10’000, 
6 replicates per run and testing for different number of clusters (from 1 to 8). The best 
number of clusters was inferred using Structure Harvester (Earl and VonHoldt, 2012). Prior 
to clustering, we checked for deviation from Hardy-Weinberg equilibrium (HWE) by using 
Genepop On The Web software (Raymond and Rousset, 1995; Rousset, 2008), and for 
presence of artefacts in the STR data (null alleles, large allele dropout, stuttering) by using 
Micro-Checker (Van Oosterhout et al., 2004).  
 

Results 
Genomic DNA was successfully obtained from all toe-clipped samples. The extracts were 
enough concentrated and free of inhibitors to allow both mtDNA ND3 and microsatellite 
amplifications.  
The NJ tree and the haplotype network analyses (Figure 7) allow us to discern among 5 
different mtDNA lineages, corresponding to P. ridibundus (Western Europe lineage, RIDW), 
P. ridibundus (Eastern Europe lineage, RIDE), P. kurtmuelleri (KURT), P. bedriagae (BED) 
and a clade that merges P. lessonae (L) and native P. esculentus haplotypes (E). As 
expected, the ND3 was not able to identify the hybrids. As discussed before, the P. 
esculentus does not have its own mitochondrial haplotype but has the P. lessonae one. 
Thus, by using only this marker is impossible to identify the hybrids. 
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Figure 7 – On the left: the Neighbour Joining (NJ) tree constructed on the ND3 sequences of the 90 samples 
under analysis. Pelophylax nigromaculatus has been used as an outgroup. On the right: the haplotype 
network build using the ND3 haplotypes. Each circle is a haplotype associated to a species. In the Groups 
box each colour is associated to a species: BED stands for P. bedriagae; RIDW stands for P. ridibundus from 
Western Europe; RIDE stands for P. ridibundus Eastern Europe; L/E stands for P. lessonae and P. esculentus; 
KURT stands for P. kurtmuelleri. 

 
To assess the absence of deviation from HWE and artefacts we used only the data that 
amplified only the L genome or the R. In detail, we obtained two sub-datasets by extracting 
the samples where only the STR loci L (R) specific where amplified, without the loci R (L) 
specific. Then, we checked for HWE and artefacts only in these two sub-datasets 
considering all the STR regions amplified (the three L (R) specific plus the three a-specific). 
No artefacts and no statistically significant HWE deviations were detected. 
By using the Structure Harvester tool, we chose 4 as best number of clusters. We then used 
the taxonomy of the individuals of the pure populations, inferred by the sampling locality 
and confirmed by the ND3, to extend the information to each cluster. The Structure results 
are reassumed in Figure 8. The clusters correspond to (1) in red P. ridibundus East Europe 
and P. bedriagae; (2) in yellow P. kurtmuelleri; (3) in blue P. ridibundus West Europe; (4) in 
green P. lessonae.  
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Figure 8 – The graph reassumes the results of the cluster analysis performed with Structure with k=4. On the 
x-axis there are the individuals and on the y-axis is reported the likelihood of the membership to each cluster. 
The red cluster is composed by RIDE and BED; the yellow is composed by KURT; the blue is composed by 
RIDW; the green is composed by L. As is possible to see, most of the samples have haplotypes completely 
belonging to a cluster, whereas others show a mixed signal. These are supposed to be hybrids, 
autochthonous (pink stars, E) and allochthonous (purple stars). 

 
In the Figure 8, considering the likelihood of each sample, it is possible to observe the 
presence of individuals that fully or almost completely belongs to a unique cluster, whereas 
others show a mixed signal, suggesting that these can be the hybrid lineages. We 
hypothesized that the samples that in the figure are marked with the pink stars are the 
native P. esculentus hybrids, whereas the one marked with the purple stars are new hybrid 
lineages. We were able to discriminate between native and new hybrids making some 
considerations. The Pelophylax species, not considering the hybrids, can be reassumed 
as belonging to two lineages: the ridibundus and the lessonae. In the sampling sites we 
recovered only one lessonae-lineage species, the P. lessonae. However, all other species 
interested in this study belong to the ridibundus-lineage. Indeed, we are absolutely sure 
that the STR targeting the L genome amplify only the haplotypes present in the P. lessonae, 
but this does not hold true for the R. The Eastern and the Western Europe P. ridibundus are 
phylogenetically close, as also RIDE and P. bedriagae, where the latter is considered by 
some author a sub-species of the first. It is possible that Structure software fails to assign 
an organism to a cluster because the multi-locus genotypes might not be enough specific 
to discriminate such close ridibundus-lineage species. Thus, we coupled the output of the 
Structure with the mtDNA ND3 haplotype and the sampling sites to assess the nature of 
the hybrids: if the sample has a likelihood to belong to the L green cluster and it was 
sampled in pure P. lessonae populations, then we supposed it is a native P. esculentus; If 
the sample comes from mixed populations, then we supposed that it is a new hybrid.
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Discussion 
The described molecular marker-based approach allows to assign a highly trustable 
taxonomy to Pelophylax tissue samples. The combined use of the two markers, the mtDNA 
and the STR, has proven to be a valuable approach to develop a molecular based 
taxonomy of these morphologically cryptic species, showing however some limitations.  
The STR markers are not specifically developed to discriminate the Pelophylax species, 
thus leading to some uncertainty in the accuracy of the Structure output that we overcame 
by coupling it to the mtDNA and geographical data. This coupling was done by hand, which 
then resulted in a procedure highly dependent on the user. Using the geographical data 
may attempt the validity of the taxonomies inferred: we have considered the sampling sites 
as in bibliography allochthonous species where not recorded in certain localities, such as 
the valley northern to the Po river; however we cannot know if the aliens are really absent 
in these localities or if their presence are not already been detected.  
The described molecular marker-based approach is a first attempt to use molecular data 
to identify morphologically cryptic species and has proven to be a valuable method. 
However, the limitations shown highlighted the need to search for STR markers highly 
species specific, not only lineage specific, as also to implement the coupling of the data to 
be completely user free to make this method widely applicable.  
In conclusion, the results shown are promising but further advancements are needed to be 
able to apply this approach by routine and on huge dataset. 
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CHAPTER 3 

SeqDec: a sequence deconvolution tool for genome separation of 
endosymbionts from mixed sequencing samples 
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Introduction 
The first observations of the presence of bacteria living inside the cells of other organisms 
date at the beginning of the 20th century. In this period microorganisms could be studied 
only by using the microscope. This technique allowed Lynn Margulis to observe the 
features that lead her to hypothesize that the mitochondrion might have originated after an 
endosymbiotic event (Sagan, 1967), an idea that was accepted coldly by the scientific 
community. Working on the 16S rRNA gene, Woese developed the tools that allowed to 
obtain strong support to the endosymbiont hypothesis (Schwartz and Dayhoff, 1978), which 
provided renewed impetus to the theory. During the 20th century, revealed that 
endosymbiosis is widespread and typically involves a eukaryotic host and a bacterial 
symbiont.  
Endosymbiotic systems were initially studied by both optical and electron microscopy 
techniques to observe the presence of bacteria within cells of a eukaryotic host, their 
structure and if they were actively replicating. These methods allow to visually localize the 
bacteria inside the cell of the host but gives no information about the nature of the 
endosymbiotic relationship. Endosymbionts are usually unculturable, and it is therefore 
challenging to retrieve enough DNA for sequencing in a pure form. They also often lack 
sequenced relatives and, when available, they are often quite divergent, limiting their utility 
as reference genomes. Also, the amplification of 16S can be difficult as the primer may 
amplify the mtDNA of the hosts as well, or other associated bacteria, confounding the 
signal. The works of Pace, who developed the technique to sequence 16S genes of mixed 
samples, make possible to obtain the 16S of the endosymbiont and surpass this limitation 
(Pace et al., 1986). However, to demonstrate that a bacterium is actually an endosymbiont 
it is not sufficient to show that the sequence belongs to an intracellular bacterium. The 
amplified 16S sequence can be used to develop probes for Fluorescence In Situ 
Hybridization (FISH). The probe will anneal only to the endosymbiont, marking it univocally. 
Using this technique is possible to verify the presence of the bacteria under analysis and 
their localization. However, this approach gives no information about the nature of the 
relationship among host and endosymbiont. 
The turning point in endosymbiotic studies was the possibility to sequence the full genome 
of an organism from tiny DNA quantities. By analysing the complete genomic sequences 
of an endosymbiont, we can perform functional analysis to obtain more information about 
the nature of the symbiosis. To sequence the endosymbiont genome some authors adopt 
molecular procedures to physically separate it from the host (Ishida et al., 2014; Matsuo et 
al., 2010). However, this method is hardly widely applicable. A more general approach is 
performing the sequencing using NGS of the whole endosymbiotic system such that the 
output contains both genomic information of the host and of the symbiont. The sequences 
of the two genomes are separated using bioinformatics tools, to obtain the taxonomic 
affiliations and to perform functional and comparative analysis. The few available methods 
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performing this separation, also called deconvolution or binning, generally exploit a 
composition analysis of the sequences.  
GC is the simplest compositional measure of a DNA sequence, and it is known that it has 
some phylogenetic inertia, i.e. it is maintained in evolutionary time such that related 
organisms tend to be similar in GC content. However, as it is a very simplistic measure, 
phylogenetically distant species can have similar GC content. Karlin and colleagues in the 
1990s studied the composition of DNA sequences by considering the frequencies of short 
polynucleotide of variable length k, called k-mers. They observed that these bring a 
stronger phylogenetic signal than the GC content, that likely derives from different codon 
usage, differences in the specificity of the restriction endonucleases, and from slightly 
different mechanisms of DNA modification, replication and repair (Gentles, 2001; Karlin, 
1998; Karlin et al., 1994, 1998; Karlin and Burge, 1995; Karlin and Ladunga, 1994; Teeling 
et al., 2004). The resolution power of this compositional analysis improves with the length 
of the k-mers, up to a limit that depends on the length of the sequences where the k-mers 
are counted. Intuitively, the longer the k-mer, the longer the DNA sequence has to be to 
minimize the noise in the counts.  
Another useful variable to discern the symbiont’s and the host’s DNAs is the sequencing 
coverage, that is how many reads in total are mapping on a certain sequence normalized 
by its total length. This should be able to provide a partial separation of the DNA from the 
different sources because we can expect a different multiplicity of the two genomes. In 
general, the host has a larger genome than the endosymbiont, but at the same time the 
symbiont may have multiple genome copies per cell or multiple cells per host cell. The 
information of the coverage however may not be sufficient for host/endosymbiont DNA 
separation. It is moreover possible that non-target sequences may be present in the sample 
and thus sequenced. In example, protozoan usually fed on bacteria and, even if it is starved 
and washed prior to whole genome DNA extraction, the host may retain some DNA 
molecules of the eaten cells, which are then sequenced, ‘wasting’ reads and influencing 
coverage values of the whole sample. The more these signals are present, the stronger is 
the influence of this factor over the sequencing and over the coverage of the host and 
endosymbiont sequences. Also, endosymbiotic systems that involve more than a bacterial 
endosymbiont are not uncommon (Brown et al., 2016, 2018; Campbell et al., 2015; Gruber-
Vodicka et al., 2019; Husnik and McCutcheon, 2016; Seah and Gruber-Vodicka, 2015). The 
number of cells of each bacterial taxon per host may be lower compared to a system where 
there is only one endosymbiont. In parallel, the coverage might result reduced as if there 
are more genomes the sequencing depth is divided onto these. Lastly, it has to be 
considered that NGS technologies are based on amplification, and different sequences 
may be amplified not with the same efficiency leading to unpredictable unequal coverage. 
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Published deconvolution tools 

The only tool developed for binning sequences coming from endosymbiotic Whole 
Genome Sequencing (WGS) data is Blobology (Kumar et al., 2013), which exploits the GC 
content and the coverage to separate contigs coming from the host from contigs of the 
symbiont. The method starts with the alignment of the contigs against an appropriate 
database to associate taxonomical categories to the contigs. It should be stressed that 
very often this step results in a very partial taxonomy coverage of the starting contigs, and 
this is the reason making tools like the Blobology so important in this context. We will call 
(taxonomy) labelled contigs those for which taxonomy information is available after this 
comparison step. The GC content and the coverage are used by Blobology as a 
bidimensional coordinate system for contig positioning, and the taxonomy from the 
previous step is used as a colour scheme. At this point the user leverages the positions of 
the labelled contigs to define a region that mostly contains sequences from the symbiont. 
As the partition is far from perfect, a post-processing of the results is necessary to reduce 
false positives and negatives, usually by performing additional comparisons with sequence 
databases, also at the protein level. This step is however time consuming and the whole 
procedure highly subjective, as it requires the user to take important decisions on the basis 
of relatively few labelled contigs. As a consequence, there are no easy ways to assess how 
changing the region for selection affects the performances of the classification. When 
Blobology’s features do not allow to efficiently separate sequences from the host and the 
symbiont, most authors select contigs of interest based upon taxonomic affiliations 
obtained through comparison with public databases or databases specifically built with 
genomes of organisms related to those in the sample, or they exploit additional features, 
but this makes the procedure even more subjective (Brown et al., 2016, 2018; Kostygov et 
al., 2016; Small et al., 2016). Additionally, reads are sometimes mapped back to the 
assembled sequences and only those mapping on target contigs are re-assembled; this is 
repeated iteratively until no more contigs are added or no more sequences are elongated 
(Chung et al. 2017). In other works, Blobology is performed on contigs selected on the 
basis of the expected taxonomic affiliations (Wang and Chandler, 2016), or sequences are 
manually inspected to try to locate overlapping sequences and obtain a circular bacterial 
chromosome (Kostygov et al., 2016). As in classical genome sequencing efforts, the use 
of different sequencing technologies has been exploited to improve the genome 
reconstructions, but this clearly requires a larger budget, and DNA in higher amounts and 
with higher quality (Campbell et al., 2015; Floriano et al., 2018; Husnik and McCutcheon, 
2016; Nikoh et al., 2018).  
The problem of identifying DNA sequences of a symbiont in a sample that also contains 
host DNA bears strong similarities to the taxonomical binning used in shotgun 
metagenomics. However, the much higher complexity of DNA mixtures characteristic of 
metagenomic samples with respect to symbiotic systems makes the algorithmic 
requirements slightly different in the two cases. In the specific case of endosymbionts, 
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additional assumptions can be done to improve the performances of the classification. 
Therefore, while existing metagenomic solutions could be appropriate with endosymbiotic 
systems, specific tools could benefit by leveraging biological knowledge on the system.  
Metagenomic tools to address the binning of metagenomic sequences can be (i) reference 
based (Gregor et al., 2016; Seah and Gruber-Vodicka, 2015) or (ii) reference-free (Kang et 
al., 2019; Teeling et al., 2004; Wu et al., 2014, 2016). Tools belonging to the former category 
obtain taxonomic annotation of contigs through homology searches, and the performances 
are consequently strongly dependent on the presence of related genome sequences in the 
reference database. As it has been recently demonstrated, this is rarely the case in 
metagenomic samples, especially for less studied environments (Pasolli et al., 2019). 
Reference-free methods often exploits the differences in composition of the genomes in 
the community and are therefore less dependent on existing sequences in the databases. 
Briefly, DNA k-mers of a predefined length are counted in the contigs under analysis, and 
a clustering/classification algorithm is run to group together the compositionally similar 
sequences. The classification is in this case completely unsupervised, as it makes no use 
of available taxonomical information. This allows the identification of Operational 
Taxonomic Units (OTUs) with no counterpart in public repositories, and consequently the 
resulting OTUs can only partially be mapped to existing taxonomic groups, depending on 
the availability of similar DNA sequences.  
Currently, a large number of reference free methods are available, as they are easily 
scalable to the size of metagenomic datasets; here we briefly describe some recent 
implementations that we used to put in scale the performance of our tool. MetaBAT2 (Kang 
et al., 2019) uses tetranucleotide frequencies and coverage to calculate a distance matrix 
among the contigs and to group them using a K-medoid clustering approach. The 
calculation of the distances can be unreliable with short sequences (the authors suggest 
to avoiding using contigs shorter than 2 kbp), which may result in a strong reduction of the 
number of contigs in highly fragmented assemblies. MaxBIN (Wu et al., 2016) implements 
an expectation maximization algorithm where tetramer frequencies and coverage are used 
separately to calculate the probability that two contigs come from the same genome; the 
probabilities are then combined, up to convergence of the parameters. The software 
provides additional information about the identified bins, like inferred genome size, GC 
content, completeness and coverage. BusyBee Web (Laczny et al., 2017) bins sequences 
in metagenomic samples by using a hybrid classification approach: calculation of the k-
mer frequencies (either 4 or 5 bp long) is followed by unsupervised binning on a subset of 
the data using DBSCAN (Ester et al., 1996); at the end a Random Forest (Cutler et al., 2007) 
model trained on the labels from the unsupervised step is used to predict the unused part 
of the data. BusyBee can moreover integrate the identified bins with Prokaryotic taxonomic 
information or user-provided custom affiliations.  
Here we present SeqDex, a tool written in R that combines partial taxonomic affiliations, 
obtained through combined homology searches from different databases, with 
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composition analysis to predict the taxonomic affiliations of all the contigs present in an 
assembly produced from the sequencing of mixed samples involving a host and its 
endosymbiont(s). SeqDex is innovative as it additionally implements a graph-based 
strategy to transfer taxonomical labels and because we provide a full characterization of 
the performances in a case-by-case way, helping the user to understand how effective the 
classification is. We provide both a comparison with similar methods, and several 
performance measures to summarize and rank the different tools.  
 

Methods 
The SeqDex workflow 

SeqDex couples both Unix based programs and custom R script developed using the 
following R packages: Seqinr (Charif and Lobry, 2007), Taxonomizr (cran.r-
project.org/web/packages/taxonomizr/index.html), randomForest (Liaw and Wiener, 2002), 
e1071 (cran.r-project.org/package=e1071), uwot (cran.r-project.org/package=uwot), 
DBscan (Ester et al., 1996), igraph (Csardi and Nepusz, 2006). SeqDex bash script is 
available at Appendix 5.  
All the step of the SeqDex workflow are described below and, extensively, in the User 
Manual in Appendix 4. 
 
1. Coverage calculation 
 
SeqDex calculates sequencing depth using the BEDtools coverage (Quinlan and Hall, 
2010); fragment counts per contig are then normalized by contig length. SeqDex considers 
the case of using FLASh or similar software to merge overlapping reads. Such software 
produces single-end reads when a pair was overlapped otherwise both reads in a pair are 
kept. When this happens, SeqDex considers the paired- and the single-end reads 
separately to provide a correct estimation of the coverage expressed in number of 
sequenced DNA fragments divided by the length of the contig. Moreover, when the mates 
map on different contigs, they contribute half a count. 
 
2. k-mer frequency calculation 
 
GC content and k-mer frequencies are calculated by SeqDex with the Seqinr package on 
both strands. The counts for complementary k-mers are combined such that all k-mers, 
comprising the palindromes, get the same weight. As count matrices for long k-mers have 
a high dimensionality, the computational time needed for the analysis increases, and this 
step provides a reduction of the dimensions with no loss of information. SeqDex considers 
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contigs longer than a user-defined threshold as short sequences can diverge from the 
genome composition reducing the prediction capability of the model. 
SeqDex by default calculates frequencies for 3-mers on contigs longer than 1 kbp. 
 
3. Taxonomy affiliations 
 
SeqDex assigns taxonomy affiliations to contigs on the basis of homologies: contigs are 
compared to a nucleotide database by using BLAST+ (Camacho et al., 2009), after filtering 
at a defined percentage of identity and length of the HSP (High Scoring Pair). Thresholds 
can be changed by the user by editing the SeqDex bash script (see below for default 
values). The association of taxonomical codes to contigs is obtained by using Taxonomizr. 
As contigs potentially have multiple homologs in the database, SeqDex calculates the 
proportion (TaxonDensity) of alignments pointing towards a certain taxonomic category 
over the whole set of homologies for each contig. All contigs with a TaxonDensity value 
below the defined threshold, have their taxonomy label removed; in this way SeqDex 
reduces the risk of wrong or inconsistent taxonomical assignments. The database can be 
defined by the user, and it is used to assign a taxonomic origin to contigs in the input. The 
only limitation is that sequence titles must conform to NCBI format. 
One of the problems working with symbiont sequences is the usually low identity level they 
share with sequences present in databases, therefore we endowed SeqDex with the ability 
of merging the taxonomic information retrieved for both nucleotide and proteins. Protein 
evolutionary rates are much slower than those characterizing nucleotide sequences, 
meaning that in some case it might be possible to find homologs by using the protein but 
not the corresponding gene. Protein coding genes are predicted with Prodigal (Hyatt et al., 
2010) (default options, except for procedure set to ‘meta’), and protein sequences are 
compared to a protein reference database by using Diamond (Buchfink et al., 2015) 
(default options). As before, the reference database may be the NCBI nr or a custom 
database with titles in NCBI format. 
We stress the fact that considering the taxonomy coming from protein comparisons can be 
particularly advantageous when the symbiont is from taxa that are under-represented in 
the public repositories. However, adding the protein derived taxonomy affiliations may 
increase calculation time.  
SeqDex exploits the presence of 16S genes within the assembly to identify the contigs of 
the target organisms in a final step of the workflow. rRNA genes in the assembly are 
identified by using Barrnap (https://github.com/tseemann/barrnap) then the contigs 
carrying the 16S genes are compared to RDP 16S database by using BLAST to add a 
taxonomic label to the 16S gene.  
All homologies detected by BLAST and Diamond are taken into account, not only the best, 
allowing to compare multiple significant taxonomy affiliations for the same contig, which 
may highlight incongruencies.  
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If both nucleotide and protein homologies are used, SeqDex merges the affiliations and 
assigns a unique label to contigs.  
By default, SeqDex considers contigs longer than 1kbp, nucleotide (protein) HSP length 
over 200 bp (70 aa), identity percentage over 70% (80%), and a final TaxonDensity larger 
than 0.75 (implying that 75% of the HSPs in the BLAST provided the same taxonomic 
information).  
 
Extending taxonomy information 
Symbionts have often evolved for long time in an environment endowed with a very peculiar 
fitness landscape; this translates in their usually divergent genomic properties (extremely 
reduced gene content, AT richness...). Furthermore, we are only scratching at the surface 
of the diversity of existing symbionts and very often the study of novel symbionts leads to 
the discovery of novel genera or even families (Castelli et al., 2019). For the above reasons, 
the taxonomy assignment based on blast generally leads to relatively few contigs being 
labelled. This affects the parameterization of the machine learning models in a negative 
way, as it reduces the number of labelled cases on which the models are trained. One way 
to cope with this in SeqDex is by including protein comparisons. Nonetheless, the 
taxonomy coverage of contigs from symbiotic communities is often low (i.e. only a small 
fraction of contigs has significant similarities to sequences in the database such that we 
can assign a taxonomic label to the contig). 
To further improve the taxonomy coverage of a sample, SeqDex exploits the information 
related to the paired end reads mapped back on the assembly. Basically, SeqDex builds 
a graph where two vertices (contigs) “a” and “b” are connected if there is at least one pair 
of reads for which one mate maps on contig “a” and the other on contig “b”. This graph is 
related to the graph used by assemblers for scaffolding. Edges are weighted by the 
number of read pairs in support, therefore they can be filtered to only keep the highly 
supported ones (option EDGES, default = 10). If we assume that the genomes present in 
the sequenced pool are different enough, as we expect in host-symbiont cases, then the 
connected components (CC) in this graph mostly comprise vertices corresponding to non-
overlapping regions from the same genome. Therefore, the taxonomy label associated to 
one vertex can in principle be transferred to vertices of the same CC. Reads can however 
randomly map on genomes from phylogenetically distant genomes and filtering edges on 
their weight provides a way to remove most of the chimeric associations. Additionally, the 
user can control the maximum degree of vertices, as highly connected ones are more 
prone to be responsible for the connections involving contigs from different sources 
(VERTICES, default =5). As a partial error control strategy, SeqDex checks for discordant 
taxonomical signals within each CC on the basis of the homology-defined taxonomy, and 
it only applies the transfer when most labelled contigs in the CC provide the same 
information (can be controlled by setting MIXEDCOMP, default = 0.2). Alternatively, the 
user can choose to transfer the labels up to a certain distance from labelled vertices 
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(VERTEXDIST, default=all), which may be a compromise between the risk of wrongly 
propagating taxonomic information (likely reduction in precision when extending taxonomic 
information far away from labelled vertices), and the opposite risk of strongly reducing the 
recovered information (likely reduction in recall when not transferring labels to short 
contigs, especially in the case of highly fragmented assemblies). In this case, transfer 
proceeds up to the defined distance from the labelled node but if node n has a different 
taxonomy label, the transfer is performed up to node n-2. The increment of performances 
related to this approach is shown in Appendix Table 7. 
 
4. Predicting taxonomic affiliations 
 
The above steps prepare the input for the classification tasks performed by SeqDex and is 
represented by the matrix containing k-mer frequencies for each contig and the 
corresponding taxonomic affiliations. In a standard run, SeqDex performs a classification 
of the contigs at the level of Superkingdom. In this way, host and symbiont/contaminants 
contigs are separated. Model training is performed with RandomForest and Support Vector 
Machine (for further detail see Appendix 2). In both cases, SeqDex performs model training 
100 times on 66% of the contigs fulfilling all the thresholds and calculates the performances 
of the classification on the remaining 33%. All models are kept in memory and are used for 
performing the classification of the contigs without a taxonomy label. Different models can 
assign different labels to the same contig, therefore after 100 predictions, SeqDex returns 
the percentage of times each contig was included in a certain taxonomy category, and the 
final label corresponds to the category with the highest percentage.  
 
Extending the predictions 
In the next step, the graph obtained by exploiting the pairing information is used again, to 
improve the predictions through a transfer strategy and consistence check similar to the 
one used for extending taxonomy labels. The feasibility of such a transfer is decided on a 
case-by-case basis by following the same rules defined in section “Extending taxonomy 
information” with the difference that, when it is not possible to extend the predictions, the 
taxonomy labels predicted for contigs are discarded (and marked as ‘misclassified’) 
instead of being kept. 
 
5. Unsupervised clustering 
 
In a hypothetical condition, only host and endosymbiont genome sequences will be present 
in the dataset, so the classification step at Superkingdom level will allow to retrieve the 
Bacterial contigs. However, this is rarely the case. Usually, contaminants are also present, 
but we noticed that SVM and RF are not able to provide satisfactory performances in these 
cases (data not shown). For this reason, SeqDex performs a final step to cluster sequences 
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in groups of similar composition and thanks to the identification of the cluster containing 
the target 16S gene, is able to recover contigs deriving from the target genome. By 
enabling this optional analysis (CLUSTERING, default = yes), SeqDex will (i) take the output 
of the classification step at the lowest selected taxonomic rank, (ii) apply a UMAP 
transformation to the data (R package uwot, NCOMP, default = 2) (iii) cluster the new 
variables with DBscan (Ester et al., 1996) and (iv) identify the cluster comprising the contig 
carrying the target 16S gene, (v) flag all the contigs in the same cluster as belonging to the 
target genome (for further information, see Appendix 2 and 4). This is the final taxonomy 
prediction made by SeqDex and the results are based on this set of contigs. 
If several 16S genes with the taxonomic affiliation of interest are present, SeqDex will use 
the one with the highest coverage. 
As discussed before, coverage and/or GC content may be also highly informative, 
depending on the specific symbiotic system. In these cases, the user can decide to 
perform the clustering by adding the coverage and/or the GC content to the data matrix 
storing the UMAP coordinates (TYPE, can be k-mers, gc, cov and combinations thereof 
e.g. TYPE=k-mers, gc adds the GC content as a variable in the clustering together with k-
mers; default = k-mers). 
 
Extending the final taxonomy prediction 
As done at the end of the machine learning classification, the clustering can be improved 
by using the same transfer strategy based on the read pairs-based graph. This is because 
methods based on k-mers are meaningful only when performed on contigs above a certain 
length (which depends on the selected k). Sometimes a consistent proportion of the 
assembly is excluded for this reason, with information loss. However, since short contigs 
are present in the graph built using the pairing information, SeqDex transfers the clustering 
belonging within a CC as done in “Extending the prediction”. 
 
6. Standard SeqDex Output 
 
In standard usage, SeqDex produces the following output files: 
 Taxonomy folder: several files for the homology searches and taxonomy affiliations. 
 Coverage folder: k-mer frequencies, GC content, coverage; 
 SVMoutput and RFoutput folders: input and output files for the machine learning 

step. 
 ClusteringOutputSVM and ClusteringOutputRF folders: several files related to the 

DBscan clustering output. More specifically, this folder also contains the file with the 
name of the contigs in the target clusters and the fasta file with the sequences of the 
target contigs.  

See Appendix 4 for further details. 
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Data 

To develop and test SeqDex we used three datasets: (i) a simulated dataset composed by 
Saccharomyces cerevisiae and Neisseria gonorrhoeae; (ii) a published dataset of an 
endosymbiont sequenced together with the host (Ca. Fokinia solitaria) (Floriano et al., 2018) 
that was extensively curated and re-sequenced to complete and close the genome; (iii) a 
dataset of a nematode (Pratylenchus penetrans) sequenced with his two endosymbionts 
(Wolbachia pipientis and Ca. Cardinium hertigii) (Brown et al., 2016, 2018); in this case the 
genomes of the two symbionts were only partially assembled by the authors. 
 
1. Simulated dataset 
 
We simulated paired-end reads from the Saccharomyces cerevisiae and Neisseria 
gonorrhoeae genomes by using the wgsim package (https://github.com/lh3/wgsim) 
changing the following parameters: number of read pairs set to one million; read length: 
100 bp; fraction of indels set to 0.01; probability that an indel is extended equal to 0.05; 
outer distance between the two ends of 2000 bp. Paired reads for both genomes were 
randomly sampled and merged to obtain a dataset composed by Saccharomyces 
cerevisiae and Neisseria gonorrhoeae in a 9:1 proportion. We assembled the reads using 
SPADes (Bankevich et al., 2012), with k-mer length ranging from 31 to 91. We selected the 
best assembly using QUAST (Gurevich et al., 2013) based upon the N50 statistic. SeqDex 
were run using only nucleotide comparisons against a custom database composed by the 
two genomes present in the dataset, classification at Superkingdom level with k-mers of 
length 3 and both machine learning algorithms, and the clustering was disabled. 
 
2. Real world dataset – Ca. Fokinia solitaria, endosymbiont of a ciliate 
 
Ca. Fokinia solitaria and its host were sequenced using Illumina HiSeq 2500 to generate 
14’783’394 150 bp paired-end reads, as reported by the authors (Floriano et al., 2018). We 
assembled the reads obtained by the authors using SPADes, with k-mer length ranging 
from 31 to 91, and then chose the best assembly using QUAST, based on the N50 statistics. 
In SeqDex taxonomies were assigned using BLAST against the NCBI nt database 
(downloaded in October 2018), with default options but excluding Ca. Fokinia solitaria 
genome; the 16S rRNA genes were compared to RDP 16S database downloaded in 
October 2018. SeqDex was run with default parameters using Alphaproteobacteria as 
target class for the final clustering. 
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3. Real world dataset – Wolbachia-Cardinium dual endosymbionts of a 
nematode 
 
P. penetrans and its endosymbionts where sequenced using Illumina MiSeq to generate 
301 bp long paired end reads (accession: SRR3097580) for a total of 10’563’810 pairs 
(Brown et al., 2016). Reads where quality checked with fastQC (Andrews, 2010), adapters 
where removed using Trimmomatic (Bolger et al., 2014) and overlapping pairs were 
merged using FLASh. Assembly was performed with SPADes, using default parameters 
and k-mer length of 21, 33, 55, 77, 99. The best assembly was chosen using QUAST. 
SeqDex was run on both endosymbionts using both nt and nr NCBI databases, the same 
RDP 16S databases of Ca. Fokinia solitaria, two classification iterations on Superkingdom 
and Class taxonomic levels and the final clustering searching as target 
“unclassified_Bacteroidetes” for Ca. Cardinium hertigii and “Alphaproteobacteria” for 
Wolbachia. 
 

Performance calculation 
Regarding the study cases shown in the paper, we calculated additional statistics to 
highlight the behaviour of SeqDex that exploit the availability of genome sequences of the 
symbionts as from previous publications (Brown et al., 2016, 2018; Floriano et al., 2018). In 
these cases, we perform comparisons of the performances of the different methods based 
on counting True Positives and Negatives (TP, TN respectively), False Positives and 
Negatives (FP, FN respectively), that are used to calculate sensitivity, accuracy, precision 
and F1 scores (Appendix Table 1, for further information see Appendix 1). We stress that 
these statistics can be calculated here because the true labels can be derived for all 
contigs thanks to the availability of the symbiont genomes. The performances of tools 
performing the taxonomical classification of contigs are generally based on numbers of 
correct/wrong classifications; however, the many contigs obtained from short reads have 
very heterogeneous lengths such that weighting the error made in the classification with 
respect to the length of the sequences should provide a much better characterization of 
the true capability of a tool. For instance, a tool mis-classifying a very short contig performs 
better than one mis-classifying a very long one and yet both have the same performances 
if we refer to raw contig counts. For this reason, we also compare the contigs assigned to 
each taxonomical category with the source genome, and we calculate performances 
based on the total number of nucleotides that were correctly assigned, with respect to the 
genome length. To evaluate this, we used QUAST which provides a comparison among an 
assembly and a reference genome.  
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Details about third party tools parameters 

We compared SeqDex with the methods Blobology (Kumar et al., 2013), MetaBAT2 (Kang 
et al., 2019), BusyBee (Laczny et al., 2017) and MaxBin (Wu et al., 2014). If not otherwise 
specified, only contigs longer than 1000 bp were considered, with GC content and 
coverage values calculated as described before. 
MetaBAT was run on contigs by changing minimum contigs length (-m, set to >1500 bp), 
percentage of ‘good’ contigs (--maxP, set to 90), minimum score of an edge for binning (--
minS, set to 80) and minimum size of a bin as the output (-s, set to 150000). MaxBIN was 
performed using default parameters, and only k-mer length was changed in BusyBee Web 
(k=4). 
 

Results 
SeqDex pipeline 

SeqDex is written mainly in R but can be run from a bash script where the user can change 
most parameters (Appendix Table 2 lists all scripts that are part of SeqDex, and that are 
available for download at github.com/ComparativeSystemsBiologyGroup/SeqDex; see 
Appendix 4 for the manual and Appendix 5 for the SeqDex bash script).  
The workflow is shown in Figure 9 and each step is described in Methods:  
(1) Coverage calculation. We indicate the whole set of contigs in the assembly as A; 
(2) Identification of 16S rRNA genes to identify target bacteria (the identity of the symbiont 

in these situations is often achieved through PCR amplification and sequencing);  
(3) Comparison with sequence databases to associate contigs to taxonomic affiliations for 

a subset T (with T ⊆ A) of the contigs; this can additionally be performed at the protein 
level;  

(4) Taxonomy extension using the paired read graph of the assembly;  
(5) k-mer frequencies are calculated for all contigs in C (C ⊆ A such that contigs in C are 

longer than a defined threshold).  
(6) Random Forest (RF) (Cutler et al., 2007) and Support Vector Machine (SVM) (Cortes 

and Vapnik, 1995) models are trained on data for contigs in T∩C by exploiting k-mer 
frequencies and the partial taxonomical affiliations obtained in 3 and 4. Then, the 
trained models can be used to predict taxonomical affiliations of the contigs with no 
taxonomical label. At this point, all contigs in C have a taxonomical affiliation, coming 
from step 3 and 4 or predicted here. The problem is split into nested classifications by 
considering different taxonomical depths: a first classification separates Prokaryotic 
from Eukaryotic sequences; contigs included in the former can then be used for more 
stringent classifications by applying the model at a stricter level of taxonomical 
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categories. At the end of this step SeqDex provides a taxonomy for the contigs. This 
can be used as is or it can be processed in the following optional step.  

(7) Useful when the user knows there may be more species in the assembly (e.g. bacterial 
contaminants, in addition to the target organism(s)). The machine learning approach 
has unsatisfying performances at this level (data not shown) and therefore was 
replaced by the following strategy. First, the k-mer matrix undergoes dimension 
reduction using the UMAP transformation (McInnes et al., 2018); then a DBscan 
clustering (Ester et al., 1996) provides a partition of the contigs into clusters. The cluster 
containing the 16S rDNA gene with the right taxonomical affiliations is defined as the 
target cluster. Then, paired end reads mate graph is used to control the clustering and 
also to extend it to contigs shorter than the defined threshold (A – C), so that the final 
target cluster contain also contigs that were excluded in (5). The contigs falling in the 
target cluster are now retrieved. 

The entire SeqDex procedure can be run using default parameters but the scripts are 
customizable, as the user is able to change several key parameters. 
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Figure 9 - Contigs are used to obtain the read-pair graph by exploiting the paired sequencing (left branch). 
The network is used in several steps of the procedure, for instance, to extend the taxonomy information 
obtained through sequence comparison (middle branch). The k-mer frequencies are also calculated (right 
branch) and combined with the (extended) taxonomy. The contig dataset is then split in two depending on 
the presence of taxonomy labels; the labelled contigs are used to train the machine learning models (grey 
box) after partitioning the contigs again into a training and a test set. Training of the models is repeated N 
times to provide error estimations that are independent of the actual contigs in the train and test sets. As a 
default, classification is performed at the only Superkingdom level; if the user wants to proceed down in the 
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taxonomy hierarchy, additional iterations, each time focusing on a different taxonomic rank (green branch) 
can be performed. After that, SeqDex uses the trained models to predict the taxonomic affiliations of 
unlabelled contigs. Again, the read-pair network can be used to correct the predictions made by the machine 
learning models. At this point, contigs can be recovered, and two possible alternatives exist: a) when there 
is more than one bacterium in the sequencing, the user can proceed by directing SeqDex on the flow 
indicated with (a): (i) run UMAP, (ii) DBscan on the UMAP transformed k-mer frequencies, (iii) identify the 
cluster containing the target 16S gene, (iv) extend predicted taxonomy information using the read-pair graph 
and (v) extract the contigs identified as coming from the target organism. Alternatively, (b) SeqDex can 
directly extract the contigs classified as coming from the target organism after the machine learning step. 

 
Case studies 

1. Simulated Saccharomyces cerevisiae-Neisseria gonorrhoeae 
dataset 

We use this simulated dataset as an example of a very simple case with a eukaryote (as 
the host) and a bacterium (playing the role of the symbiont). Such simple situations are 
very rare in real-world cases, where usually more prokaryotes can be found, most of which 
are usually not the symbionts. Therefore, in this case we proceeded by only classifying at 
the Superkingdom level, which could be done when preliminary analyses (e.g. PCR 
amplification) show the presence of only one bacterial 16S rDNA. 
To assess the performance of the Blobology approach, we selected the contigs included 
in the region defined by GC content >= 0.3 and coverage <= 0.05 fragments/nt on the 
basis of an enrichment of contigs with the target taxonomic affiliation in that region. 
BusyBee crashed reporting an error after identifying one only cluster in the dataset. 
MetaBAT completed the analysis but still found only one bin. The results of these two tools 
are therefore not shown for this study case. 
MaxBIN correctly identified two bins, one mainly composed by contigs with taxonomic 
affiliation Bacteria, which was selected as target. 
Finally, we performed SeqDex with RF and SVM focusing on the Superkingdom level. 
Taxonomic affiliations were obtained by comparison to a database composed only by the 
genomes of the two organisms used for this simulation, thus this homology search was 
enough to classify all contigs. To use SeqDex we randomly discarded 33% of these 
affiliations.  
The contigs retrieved after each method were used to calculate the fraction of the genome 
of Neisseria and to calculate sensitivity, precision, accuracy and F1 scores as described 
before (Figure 10a and Appendix Figure 4, Table 3 and Appendix Table 3).  
SeqDex outperforms Blobology in F1 score and sensitivity, both considering the total length 
and the number of contigs, but the latter has higher precision. This could be explained 
considering that these two organisms have different GC content and that the simulated 
sequencing produced widely different average coverages for the two genomes. 
Considering MaxBIN, SeqDex give similar sensitivity and accuracy but higher precision 
and F1 score. 
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Figure 10 - Genome-based F1 scores. For all datasets and targets considered in the work. a) Simulated 
dataset; b) Ca. Fokinia solitaria dataset; c) and d) Pratylenchus penetrans dataset: c) Ca. Cardinium hertigii; 
c) Wolbachia pipientis. 
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Table 3 - Performances calculated with respect to the whole genome sequence of Neisseria gonorrhoeae. 

 Blobology MaxBin SeqDex-SVM SeqDex-RF 

Sensitivity 0.7442 0.9634 0.9586 0.9586 

Precision 1.0000 0.9518 0.9862 0.9862 

Accuracy 0.9909 0.9969 0.9980 0.9980 

F1 score 0.8533 0.9576 0.9722 0.9722 

 
2. Real world Ca. Fokinia solitaria dataset 
 
We applied the Blobology approach by using GC and coverage boundaries comparable 
to those used by the authors in the original publication (>30% GC, coverage between 0.3 
and 8 fragments per nucleotide). 
MetaBAT identified 10 bins, MaxBIN 5 bins and BusyBee Web 8 bins. 
Our model exploited the presence of five complete 16S genes, belonging to Class 
Gammaproteobacteria (RDP code: S000653219), Alphaproteobacteria (two different 16S 
genes with RDP codes S000607898 and S004400661, the latter of which 100% identical to 
Ca. Fokinia solitaria,), Epsilonproteobacteria (RDP code: S003597162), Bacteroidia (RDP 
code: S001493056). Of these, the contig containing the 16S gene from Ca. Fokinia have a 
coverage of 2.78 fragments per nucleotide, while the others range from 0.02 to 0.27, 
reflecting the presence of a much higher copy number for the endosymbiont with respect 
to the other bacterial species in the sample.  
For this dataset, we run the entire classification pipeline implemented in SeqDex: SVM and 
RF are used to define the contigs coming from Eukaryotes and Bacteria; then, the k-mer 
frequencies of the contigs with Bacteria affiliation (predicted or deriving from the blast), 
undergo the UMAP transformation that produces two new variables that DBscan uses to 
define clusters. The whole procedure resulted in 16 and 8 clusters for SVM and RF, 
respectively. In Figure 10b and Table 4 we report the statistics relative to the cumulative 
length correctly classified by each approach, while performance statistics based on contig 
counts are shown in Appendix Table 4 and Appendix Figure 5. Considering cumulative 
length, BusyBee web performed poorly: even if it has sensitivity values that are comparable 
to the other methods, its precision, accuracy and F1 score are extremely low. Blobology 
shows performance statistics comparable to MetaBAT, MaxBIN and SeqDex. It has to be 
considered that this represents an uncommon situation: host and endosymbiont have 
different GC content and the symbiont is very abundant, at least compared to other bacteria 
present, as the sample to be sequenced was carefully selected in lab on the basis of the 
strength of the 16S signal by Fokinia. Among the remaining tools, they all performed good, 
with MaxBIN having lower precision and F1 scores and MetaBAT shows lower sensitivity 
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and F1 score than SeqDex. Among all, SeqDex with both machine learning algorithm shows 
higher sensitivity, precision, accuracy and F1 scores. 
 
Table 4 - Performances of the classifications with respect to the whole Ca. Fokinia solitaria genome 

 Blobology BusyBee MetaBAT MaxBIN SeqDex - SVM SeqDex - RF 

Sensitivity 0.8684 0.9966 0.9864 0.9966 0.9966 0.9966 

Precision 0.9843 0.1422 1.0000 0.9246 1.0000 1.0000 

Accuracy 0.9973 0.8881 0.9997 0.9984 0.9999 0.9999 

F1 score 0.9227 0.2489 0.9932 0.9592 0.9983 0.9983 

 
3. Real world Wolbachia-Cardinium dataset 
 
This study case has additional levels of complexity because the host is multicellular, it 
contains at least two endosymbionts whose genomes are still incomplete. Moreover, as 
often for endosymbionts, the most closely related genomes from databases are not highly 
similar. 
When plotting the contigs in Blobology space (GC Vs coverage), the sequences from the 
two symbionts did not form discernible clusters and also overlap with host’s contigs (Figure 
11); it is therefore difficult to define regions enriched in sequences coming from one or the 
other symbiont and with the exclusion of host's contigs. For the Blobology strategy, we 
tentatively defined the Cardinium region as defined by a GC content below 50% and by a 
coverage in between 0.001 and 0.3 fragments per nucleotide; the Wolbachia region was 
defined by a GC content below 40% and a coverage in between 0.01 and 0.1 fragments 
per nucleotide. We defined these thresholds based on the shape of the Blobology plot, by 
observing the location of contigs containing the symbionts 16S genes and exploiting the 
position of contigs aligning to the draft genomes available for the targets. 
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Figure 11 - In the main panel we show the Blobology plot obtained for the Pratylenchus dataset as an example 
of cases when host and symbiont(s) are not clearly discernible in the GC and coverage dimensions. In the 
inset we represent the contigs from the symbionts (as identified through homology) in the UMAP space used 
by SeqDex to partition the contigs from the symbionts. 

 
BusyBee identified 29 bins, but the two targets belong to the same bin. MetaBAT discovers 
11 bins and MaxBIN 24 and both manage to assign one bin per symbiont. Our analysis 
exploited the presence of four complete and three partial 16S genes, belonging to Class 
Alphaproteobacteria (3 complete genes with RDP codes: S003299234, S000830683, 
S001548999; the latter is identical to reference Wolbachia pipientis at 99.98%), 
Gammaproteobacteria (a complete gene with RDP code S000711119), Betaproteobacteria 
(a partial gene with RDP code S000691097), Cytophagia (a complete gene with RDP code 
S004482339 and a partial gene with RDP code S004414660, identical to Ca. Cardinium 
hertigii at 100%).  
In this dataset, we run SeqDex with two nested iterations. In detail: (1) taxonomic affiliations 
were used to predict the Superkingdom of contigs having no homologs in the database 
and then we only select contigs predicted as Bacteria (predicted and derived from 
homology); (2) the second iteration works on these contigs to predict the Class; (3) Contigs 
with Cytophagia affiliation where selected as potentially containing Cardinium contigs, and 
the additional clustering step was performed; (4) Similarly, the contigs predicted as coming 
from the Alphaproteobacteria Class where used for the clustering step to identify the 
Wolbachia contigs. SeqDex with SVM (RF) identified 8 (5) clusters within the Cytophagia 
dataset and 17 (6) within the Alphaproteobacteria one. As for the Ca. Fokinia, we then 
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identified the cluster of interest by looking for the Cardinium and Wolbachia 16S genes. 
The performance statistics are summarized in Figure 10c, Table 5, Appendix Figure 6 and 
Appendix Table 5 for the Cardinium; Figure 10d, Table 6, Appendix Figure 7, Appendix 
Table 6 for the Wolbachia. 
We concluded that the Blobology approach shows high sensitivity, comparable to other 
methods, but low precision, accuracy and F1 scores for both organisms. BusyBee 
performed similar to Blobology, except for accuracy, which is higher. Both methods 
basically failed to classify the two endosymbionts. Considering the total length of contigs 
correctly deconvolved for Cardinium, SeqDex, MaxBIN and MetaBAT showed comparable 
performance statistics, even though MetaBAT performed worse than the other two in 
accuracy, and SeqDex slightly better in F1 score. Instead, considering total length of 
Wolbachia, MaxBIN performed worse than others in precision and F1 scores. 
 
Table 5 - Performances of the classifications with respect to the whole Ca. Cardinium hertigii genome 
retrieved from the Pratylenchus penetrans dataset. 

 Blobology BusyBee MetaBAT MaxBIN SeqDex – SVM SeqDex - RF 

Sensitivity 1.0000 0.9781 0.8793 0.9289 0.9388 0.929 
Precision 0.0033 0.3466 0.6789 0.6394 0.6649 0.6682 

Accuracy 0.1423 0.9946 0.9981 0.9983 0.9985 0.9985 

F1 score 0.0067 0.5118 0.7662 0.7575 0.7785 0.7773 
 
Table 6 - Performances of the classifications with respect to the whole Wolbachia pipientis genome retrieved 
from the Pratylenchus penetrans dataset. 

 Blobology BusyBee MetaBAT MaxBIN SeqDex – SVM SeqDex - RF 

Sensitivity 0.9974 0.9922 0.9800 0.9810 0.9868 0.9868 
Precision 0.0034 0.2091 0.4469 0.2096 0.4273 0.4327 
Accuracy 0.5042 0.9936 0.9974 0.9936 0.9977 0.9978 
F1 score 0.0068 0.3454 0.6139 0.3453 0.5963 0.6016 
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Discussion  
The comparison of our model with Blobology, BusyBee Web, MaxBIN and MetaBAT points 
out the generally superior performances of our method for all tested datasets.  
In the simulated dataset Blobology, MetaBAT and BusyBee Web failed to separate 
Neisseria from Saccharomyces while SeqDex and MaxBIN showed similar good 
performances. In the Ca. Fokinia dataset, SeqDex and MetaBAT showed similarly good 
performance, while Blobology and BusyBee performed worse. In the Pratylenchus 
penetrans dataset, SeqDex with both SVM and RF performed slightly better than MetaBAT 
and MaxBIN concerning Cardinium, and it outperforms MaxBIN on Wolbachia. By 
comparing the whole-genome based performances for Ca. Fokinia solitaria (Figure 10b, 
Table 4, Appendix Figure 5, Appendix Table 4) with those calculated for Cardinium (Figure 
10c, Table 5, Appendix Figure 6, Appendix Table 5) and for Wolbachia (Figure 10d, Table 
6, Appendix Figure 7, Appendix Table 6), we see they are lower in the latter. The published 
target genomes are however incomplete, and this might explain this difference, as the 
presence of correctly assigned contigs that are missing from the assembly would 
artifactually degrade the performances. Indeed, this dataset illustrates that SeqDex can 
also be helpful with complex datasets.  
We tested our model in a variety of condition: an unrealistic simulated dataset composed 
by only two organisms; a real dataset sequenced with high coverage, with a strong signal 
from the endosymbiont, and lower for non-target bacteria; a final real dataset containing 
two different endosymbionts and contaminant sequences. The performance analysis 
pointed out that SeqDex has comparable and sometimes superior performance to the other 
tools, which likely reflect the slightly different purpose for which most of the other tested 
tools were designed. The use of the paired-reads derived graph provides a boost to the 
performances when taxonomy labels derived from homology searches are particularly 
deficient. For instance, in all tested cases the use of the graph to refine and extend 
taxonomies and predictions only provided a marginal improvement, except in the case of 
Wolbachia from the Pratylenchus dataset, for which the precision increases 10-100 times 
depending on the algorithm used for the classification. This shows that our procedure can 
be extremely helpful in particular cases.  
In conclusion, SeqDex showed high reliability on all datasets, with high precision, accuracy 
and F1 score. Differently from other tools, it provides and returns error estimation of the 
classification, such that the user understands if additional refinements are necessary and 
more importantly if the method can be applied. 
We stress that in many situations it should be better to combine the output of different tools 
to achieve optimal results. This can be done in a conservative way, for instance retaining 
only the contigs predicted as coming from the target by all applied tools, or using some 
sort of majority rule. 
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Future developments will focus on a modification of the machine learning algorithms to 
include sequence length-dependent weights for contigs (Freitas et al., 2007) as the 
machine learning algorithms that are commonly employed in these situations seek an 
optimization of the classification based on contig counts only (e.g. same weight is given to 
the wrong/right classification of a contig of 100’000 nucleotides and a contig of 2’000). To 
conclude, another way to improve these approaches is the integration of clade-specific 
gene syntenies to further refine the composition-based classification. 
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In recent years, the advent of NGS technology has made genome sequencing much 
cheaper than in the past; the high parallelization capability and the possibility to sequence 
more than one organism at once have opened the door to processing whole symbiotic 
consortia. However, this approach needs the development of specific bioinformatics tools 
able to analyze these data. In this work, we describe SeqDex, a tool that starts from a 
preliminary assembly obtained from sequencing a mixture of DNA from different organisms, 
to identify the contigs coming from one organism of interest. SeqDex is a fully automated 
machine learning–based tool exploiting partial taxonomic affiliations and compositional 
analysis to predict the taxonomic affiliations of contigs in an assembly. In literature, there 
are few methods able to deconvolve host–symbiont datasets, and most of them heavily 
rely on user curation and are therefore time consuming. The problem has strong similarities 
with metagenomic studies, where mixed samples are sequenced and the bioinformatics 
challenge is trying to separate contigs on the basis of their source organism; however, 
in symbiotic systems, additional information can be exploited to improve the output. To 
assess the ability of SeqDex to deconvolve host–symbiont datasets, we compared it to 
state-of-the-art methods for metagenomic binning and for host–symbiont deconvolution 
on three study cases. The results point out the good performances of the presented tool 
that, in addition to the ease of use and customization potential, make SeqDex a useful 
tool for rapid identification of endosymbiont sequences.

Keywords: symbiont, deconvolution, machine learning, binning, NGS

INTRODUCTION

In recent years, we experienced a huge improvement in sequencing technologies. In particular, NGS 
machines have reached throughput levels and costs that make whole genome and metagenome 
sequencing technically easy and cheap.

In this article, we deal with a speci!c problem that arises when the sequencing is performed on 
heterogeneous DNA mixtures containing the DNA of a host and of its symbiont(s). Such “mixed 
samples” sequencing approach is widely used in the study of symbionts (Brown et al., 2016; Brown 



 

 54 

 
 
 
 
 
 

CHAPTER 4 

Three novel bacterial endosymbionts of Spirostomum spp. 
 

  



 

 55 

Introduction 
Symbiosis is a term coined in 1877 by Albert Bernhard Frank to describe the mutualistic 
interaction between algae and fungi in lichens. The current definition was instead 
formulated in1879 by Heinrich Anton de Bary as the living together of unlike organisms 
(Douglas, 1994). In 1949, Edward Haskell proposed to classify symbioses based on the 
effect each organism involved has on the other(s). Basically, the interaction can be positive 
(+), negative (-) or neutral (0); their combination for a couple of organisms defines 6 type 
of interactions (Table 7): mutualism (+,+), commensalism (0,+ or +,0), 
predation/herbivory/parasitism (-,+ or +,-), amensalism (0,- or -,0), competition (-,-), 
neutralism (0,0) (Pringle, 2016). These interactions can be facultative or obligate: in the first 
case the two organisms can live separately; in the second case one or both of them depend 
on the other for survival. 
 
Table 7 - The interaction between two organisms can be described and defined by the type of action each 
has on the other. The table reassumes all type of interaction and provide their current definition. + means that 
the action of an organism over the other is positive, 0 that is neutral and – that is negative. 

  Org 2 

Org 1 

 + - 0 
+ Mutualism Predation/herbivory/parasitism Commensalism 
- Predation/Herbivory/Parasitism Competition Amensalism 
0 Commensalism Amensalism Neutralism 

 
In 1967 Lynn Margulis proposed a new type of symbiotic interaction, the endosymbiosis, 
where an organism, usually a bacterium, lives inside the cell of a host (Sagan, 1967). In 
detail, she proposed that the mitochondrion originated from an endosymbiosis. This theory 
received little support in the beginning, but when Robert Schwartz and Margaret Dayhoff 
published new evidences supporting the bacterial ancestry of both mitochondria and 
chloroplasts (Schwartz and Dayhoff, 1978), it became clear to the scientific community that 
this type of symbiotic interaction had a fundamental importance in the evolution of 
eukaryotes, raising the interest in characterizing such systems. Studies dealing with 
different aspects of endosymbiosis increased, also as a consequence of the 
methodological improvements taking place in those years, resulting in a wide recognition 
of the evolutionary importance of symbioses in general and endosymbiosis in particular. 
Endosymbiotic relationships can be observed throughout the whole tree of life and are 
frequent in Protozoans, as in Trypanosomatide, Ciliates, and Amoebidae, but also in 
Hexapoda, as aphids, ants, psyllids, and cycads.  
One of the first observed endosymbionts is Wolbachia pipientis (Alphaproteobacteria, 
order Rickettsiales), which was found inside the cells of the mosquito Culex pipiens (Hertig, 
1936; Hertig and Wolbach, 1924). In the last few decades various studies have found 
Wolbachia species in numerous arthropods and nematodes (Bandi et al., 1998, 2001; 
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Jeyaprakash and Hoy, 2000; Taylor and Hoerauf, 1999; Wenseleers et al., 1998; Werren et 
al., 1995; Werren and Windsor, 2000). Wolbachia is usually located in the gonads of the 
host, behaving as a sexual parasite as it provokes male killing, feminization, 
parthenogenesis or, more importantly, cytoplasmic incompatibility in gametes, a situation 
where infected males can produce offspring only if mating with infected females (Figure 
12). Although behaving as a parasite, organisms infected by Wolbachia usually have 
fitness advantages over the others, up to the extreme that some hosts are not able to 
reproduce without the symbiont, as it is the case with some nematode (Brugia Malayi and 
Wuchereria bancrofti); other hosts may benefit from the symbiosis as they develop 
resistance to viruses, insecticides or show higher percentage of successful emergence of 
adults from larvae (Berticat et al., 2002; Foster et al., 2005; Kaiser et al., 2010; Teixeira et 
al., 2008).  

Figure 12 – The image explains cytoplasmic incompatibility phenomenon. Infected females can proficiently 
mate with both infected and non-infected males; a non-infected female mating with a non-infected male also 
produces viable progeny. On the contrary, the mating between a non-infected female and an infected male 
does not produce offspring. This results in the infected female being compatible with both infected and non-
infected male, whereas the non-infected female can produce offspring only when mating with the non-
infected male. This leads to a fitness advantage of the infected female as it ensures the transmission of 
Wolbachia, which can be passed to the offspring only by the mother. 

 
Another well studied case is the aphid endosymbiont, Buchnera aphidicola. It has one of 
the smallest genomes known, as the long term and stable relationship with the aphid 
resulted in the loss of many genes (van Ham et al., 2003). The bacterium cannot live outside 
the host, which gain some benefits from this association: aphids fed on plant sap that has 
serious nutritional deficiencies, especially concerning amino acids, that are however 
produced and released to the host by Buchnera (Douglas, 1998). 
The studies on insect endosymbionts revealed that some hexapods harbour two bacteria: 
a primary endosymbiont, which derives from an ancient association, and a secondary 
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Male

Wolbachia infected Not infected
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endosymbiont, whose relationship to the host is more recent. A well-studied example is 
Homalodisca vitriperennis, a species of cycads that harbour a primary endosymbiont - 
Sulcia muelleri - and a secondary endosymbiont - Baumannia cicadellinicola. These 
bacteria are both obligate and are present in the cells of a specific organ called 
bacteriome. The relationship that keeps together the host and the endosymbionts is 
mutualistic: Sulcia has one of the smallest genomes known and is unable to live outside the 
host, but it produces and shares essential amino acids; Baumannia seems to be able to 
produce its own membrane and plasma, but misses important functions, such as the 
production of LPS, and thus is not able to live outside the host. Its role is to provide vitamins 
and cofactors (Wu et al., 2006) to the host. S. muelleri has been found in other sap feeding 
insects inhabiting the same specialized tissue.  
In Protista lots of endosymbiosis are found, mainly in ciliates, probably due to their diet, as 
they fed on bacteria. One example is the endosymbiosis between host of the genus 
Paramecium and Holospora bacterial species. First observations date back to 1969 (Preer, 
1969). Holospora species inhabit the nucleus of the host and can be found in two forms: a 
reproductive short form and an infective elongated form, a dimorphism that is quite 
common in the Alphaproteobacteria group. The reproductive form divides in the host 
nucleus during growth. Then, if the Paramecium starves or if protein synthesis is inhibited, 
the reproductive form differentiates into the infective, which divides into the nucleus and 
escapes the host to infect another cell. An excess of the infective Holospora form into the 
nucleus can inhibit the Paramecium growth and eventually kill it. Due to this behaviour, it 
was initially supposed that Holospora was a parasite; however, later studies demonstrated 
that infected host cells acquire the capability to resist to heat and osmotic stress after 
colonization. Holospora species are unculturable outside the host indicating that this 
relationship is likely obligate for the bacterium. However, the symbiont is not essential for 
the host (Fujishima and Kodama, 2012). 
All these endosymbiotic systems examples reveal quite a complicate picture: the 
organisms may establish positive, negative or neutral relationships, as in symbiosis, that 
can moreover be facultative or obligatory. It can be hard to define the type of relationship 
as suggested by the Wolbachia and the Holospora examples: the symbionts may act as 
parasites in some conditions, but they might provide some advantage to the hosts. This 
highlights the difficulties to restrain such multiple faceting relationships to a unique type. 
The studies conducted on the genome of the endosymbionts have pointed out the unicity 
of obligate endosymbiotic systems. As obligatory, the relationship is vital for the bacterium, 
which means that the prokaryote can hardly be cultivated because is adapted to the stable 
and rich condition of the cytoplasm of the host cell. The endosymbiosis can be essential 
also for the host such that the bacterium is needed for survival and/or reproduction.  
In the past few decades Siv Andersson and colleagues compared the available sequences 
of the endosymbionts genomes and observed that these bacteria showed similar 
characteristics: reduced genome size, high level of pseudogenization, lack of genes that 
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are essential in free-living species, i.e. the genes involved in growth, replication and 
survival. They supposed that the isolation in which the endosymbionts incur in hosts cells 
facilitated the accumulation of degenerative mutations on genes which are no more 
needed, as those involved in sensing the environment or in the production of molecules 
that are usually essentials but that are available in the intracellular milieu (Andersson and 
Kurland, 1998; Gil et al., 2002; McCutcheon and Moran, 2012; Moran and Wernegreen, 
2000). As a result, the adaptations of the endosymbionts often take evolutionary paths that 
are highly divergent with the respect to their free-living counterparts. This, together with a 
true genetic isolation of the endosymbiont, makes so that its sequences evolve 
independently from its relatives and, as a consequence, taxonomic assignment by single 
gene comparisons (e.g. even the 16S rDNA) can become problematic. 
Besides this, reaching a trustable taxonomic assignment nonetheless gives no information 
about the nature of the relationship that keeps the organisms together. One may for 
instance ask if there is some sort of metabolic complementation or dependency, because 
this may indicate a synergy of the system over the single entities and therefore a 
relationship which is beneficial to one or all the components of the system.  
When studying a newly discovered endosymbiosis, analyses going beyond the simple 
taxonomical assignment are needed.  
Given the difficulty in obtaining a reliable taxonomic assignment based on a single gene, 
and the interest in understanding the nature of the symbiotic relationship, sequencing the 
genome of the endosymbiont represents today one of the most proficient approaches. It 
requires the post-processing phase described above to separate sequences coming from 
the different genomes in the system, which may be tricky, but it can allow to perform 
taxonomic assignment by using many genes e.g. it enables a phylogenomic approach that 
is certainly superior with respect to the single gene approach (Ciccarelli, 2006; Gao and 
Gupta, 2012; Rokas et al., 2003). In addition, by analysing the bacterial genomes and their 
functional content we can get information to derive a more complete picture of the system 
under study.  
 

Endosymbiosis in the genus Spirostomum 
The ciliate protozoa of the second case study of this thesis belong to the genus 
Spirostomum. This taxon is characterized by unicellular organisms with an elongated, 
flexible and highly contractile cell that can reach 4 mm in length. The species of this genus 
can inhabit fresh or salt water (Lynn, 2010). Spirostomum species are mainly described 
morphologically, even if diagnostic traits are often difficult to interpret. Indeed, molecular 
markers, such as 18S, have been used to revise and provide a more rigorous taxonomy 
(Schmidt et al., 2007).  
Spirostomum is not a widely studied ciliate genus. However, some studies showed that the 
species of this genus can be associated with a variety of epibiont bacteria that are localized 
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at the outer membrane and endosymbiont bacteria living within cells or even associated 
with the mitochondrion (Fokin et al., 2005; Harrison et al., 1976). In (Fokin et al., 2005) 
bacterial taxonomy of these Spirostomum-associated bacteria was inferred by 
fluorescence in situ hybridization using probes specific for Alphaproteobacteria, 
Betaproteobacteria, Gammaproteobacteria, Deltaproteobacteria and gram-positive 
bacteria. The authors mostly detected Alphaproteobacteria and Gammaproteobacteria, 
but much more can be discovered. 
 

Material and Methods 
DNA analysis 

We collected a total of three samples: two from Kolleru lake (India, named S8 and S9) and 
one from Bosco Bazzoni (Trieste, Italy; S0). The samples were collected and maintained 
as in (Boscaro et al., 2014). Through18S and 16S gene sequencing we assigned a 
taxonomy to the hosts and the endosymbionts. 
The host and the endosymbiont genomes were sequenced together, by performing a 
Whole Genome Amplification (WGA) on live cells using the REPLI-g Single Cell kit (Qiagen). 
Libraries for sequencing were prepared using the Nextera XT library Prep Kit (Illumina) and 
sequenced on an HiSeq X in an external facility (Admera Health LLC, NJ, USA) in paired 
end, with 150 bp read long.  
 
Data analysis 
The quality of the reads was assessed with fastQC; Trimmomatic was used to cut the 
remaining adaptors and the low qualities regions. Read pre-processing ended by 
performing FLASh to merge the overlapping read pairs (Andrews et al., 2012; Bolger et al., 
2014; Magoc and Salzberg, 2011). The resulting reads were assembled using SPADes with 
k-mers length ranging from 31 to 101 (Bankevich et al., 2012). The best k-mer length for 
each sample was identified using Quast (Gurevich et al., 2013) that calculates several 
statistics on the assembly, such as the distribution of contig lengths, the number of contigs 
and the N50.  
We ran SeqDex (see Chapter 3, (Chiodi et al., 2019)) on each sample to retrieve the 
sequences coming from the endosymbiont by exploiting both nucleotide (nt, downloaded 
by NCBI in October 2018) and protein (nr, downloaded in November 2018) homology 
searches for assigning preliminary taxonomy affiliations, at a minimum percentage of 
identity of 80% and 85%, respectively. We also enabled the use of GC content and 
coverage together with k-mers in the final clustering step (for further information, see the 
user manual in Appendix 4). The mapping files of each of the three samples used by 
SeqDex were obtained with BEDtools (Quinlan and Hall, 2010).  
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Reads mapped on the contigs identified by SeqDex as of endosymbiont origin were re-
assembled using SPADes, as above. The re-assembled contigs were analysed with 
BUSCO, a software that exploits a database of universally conserved genes to predict the 
percentage of completeness of an assembly. As the endosymbionts come from the 
Betaproteobacteria, we ran BUSCO using the corresponding database (downloaded from 
busco.ezlab.org on May 2019) (Simão et al., 2015). Prokka (Seemann, 2014) was used to 
predict coding sequences (CDS), and to annotate the corresponding proteins. The 
predicted proteomes of the three endosymbionts were used as input for OrthoFinder 
(Emms and Kelly, 2015, 2018), together with the proteomes of 168 additional genomes 
downloaded from the NCBI repository, chosen among the Neisseriales in NCBI and those 
classified as Neisseriaceae or Chromobacteriaceae in GTDB (gtdb.ecogenomic.org), and 
9 genomes of Gammaproteobacteria or non-Neisseriales Betaproteobacteria as 
outgroups; they mostly come from complete genomes but also comprise incomplete 
assemblies coming for instance from metagenomic samples (Appendix 6).  
After running OrthoFinder, we selected all the sequences of single copy core orthologs 
from each organism for alignment and phylogenetic analysis. The sequences were 
concatenated together and aligned with Muscle (Edgar, 2004); Gblocks was used to select 
conserved regions (default parameters) (Castresana, 2000); RAxML was used to 
reconstruct the phylogenetic relationships among the species using an empirically 
estimated gamma distribution for taking into account evolutionary rate variation, the WAG 
evolutionary model and empirically estimated amino acid equilibrium frequencies 
(GAMMA+WAG+F), with 100 bootstrap replicates (Stamatakis, 2014).  
To obtain biologically meaningful information on these symbionts, we performed 
preliminary comparative genomics analysis to assess the ability of the symbionts to interact 
with the environment; we reasoned that it surely requires the ability to sense the conditions 
of the surrounding space, a task that in bacteria is often associated to two-component 
systems. We hypothesize that the number of proteins involved in two component systems 
might change depending on the necessity for interaction with the outside environment and 
therefore we counted proteins with similarity to Pfam models (El-Gebali et al., 2019) built 
on Histidine Kinases, Methyl-accepting chemotaxis proteins and Response Regulator 
domains. Scanning on proteins was made by using the software HMMer3.1b2 (hmmer.org). 
Additionally, a bacterium interacts with its environment by importing/exporting chemicals 
through specific transporters and also in this case one can expect that a free-living species 
should require a vaster array of transporters. To explore if this evolutionary pattern is indeed 
significant for our species, we counted the number of ABC transporters in these genomes. 
Finally, the secretome of the bacteria - the ensemble of proteins that get secreted outside 
the cell – might also show interesting evolutionary patterns when contrasting free-living and 
endosymbiont species, as the latter lives in a very constant and protected environment, 
and are therefore expected to show a reduction in the number of secreted proteins. To 
have an approximation of the size of the secretome, we used SignalP (Almagro Armenteros 
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et al., 2019) with the gram negative model for predicting the presence of secretion signal 
peptides at the N-terminal of the proteins. Another ability that might not be necessary 
during endosymbiosis is motility, and we checked this by using a Pfam model of the PilC 
protein, that is involved in the pilus mediated adherence to surfaces or the host cells in 
commensals and pathogens. The Pfam models used are listed in Table 8. 
 
Table 8 – List of the Pfam models used to predict with HMMer the presence of protein domains involved in 
the interaction with the environment as stimuli sensing (HisKA, MCP), response (RR), transmembrane 
transport (ABC) and movement (PilC) 

Target Model Pfam code 

Histidine kinase A HisKA PF00512 
Methyl-accepting 
chemotaxis MCPsignal PF00015 

Response Regulator receiver RR PF00072 

Neisseria PilC propeller Neisseria_PilC PF05567 
ABC transporter ABC_tran PF00005 

 

Results 
The comparison of the 18S genes sequenced from our three Spirostomum species 
revealed that S8 corresponds to S. teres while both S0 and S9 to S. minus. On the converse, 
the 16S sequences of the endosymbionts were not sufficient to identify the endosymbiont’s 
species by similarity only. A preliminary phylogenetic tree was built using all the 16S gene 
sequences of the Neisseriales available in NCBI (data not shown) and showed that the 
Betaproteobacteria found in our samples belong to the Neisseriaceae family. 
The total DNA extractions allowed to obtain enough material to perform the WGS of the 
three samples, resulting in 43’766’268 (S0), 41’701’334 (S8) and 41’525’275 (S9) reads.  
With SeqDex we were able to obtain genomic contigs of the endosymbionts in samples S0 
and S9, but processing of the S8 sample did not worked as expected. By comparing the 
coverage of the 16S genes of the three samples, we observed that the coverage in the S8 
sample is almost 10 times lower than the coverage in the S0 and S9 samples. We supposed 
that this influenced the quality of the assembly and the performance of SeqDex on this 
sample (Table 9).  
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Table 9 – The table shows the coverage values of the contigs containing the 16S target gene in the three 
samples, the total number of fragments used in the assemblies and the coverage normalized by number of 
fragments and multiplied by 10^6 

Sample Coverage Number of 
fragments Coverage/reads 

S0 5.60 36851159 0.15 
S9 5.33 41525275 0.14 
S8 0.78 41701334 0.02 

 
We decided to compare the genomic contigs of the three endosymbionts obtained with 
SeqDex by using the Average Nucleotide Identity (ANI) calculator of EZBioCloud (Yoon et 
al., 2017) to assess if we could use S0 and/or S9 as a reference to improve the processing 
of sample S8. The results are shown in Table 10: S0 and S8 are highly similar and thus can 
be considered as part of the same species.  
 
Table 10 - The table shows the Average Nucleotide Identity (ANI) calculated using EZBioCloud web tool. 

 Total length (bp) ANI value vs S9 ANI value vs S8 
S0 999600 70.71 % 96.76 % 
S9 1052640 - - 
S8 358020 70.94 % - 

 
We used the reassembled S0 contigs as a reference to obtain the contigs of the 
endosymbiont in S8 by using Quast. The reads mapping only to the S8 endosymbiont 
contigs were retrieved and assembled using SPADes as done for the other two samples; 
the best assembly was chosen based on the Quast output.  
In Table 11 we show the total length and the number of reassembled contigs for each 
sample together with the number of CDS found by Prokka and the percentage of 
completeness calculated with BUSCO. 
 
Table 11 – The table shows various characteristic relative to the reassembled genomic contigs of the three 
endosymbionts 

 Number of 
Contigs 

Total length 
(Bp) CDS (Prokka) Completeness in % 

(BUSCO) 
S0 34 1014825 948 63.4 
S9 55 1076025 962 61.9 
S8 26 894166 823 57.2 
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With OrthoFinder we found 37 single copy core orthologs. After the elaboration with Muscle 
and Gblocks we ended with an alignment of 6250 positions that was used to reconstruct 
the phylogenetic relationships among these genomes with RAxML (Figure 13). In the tree, 
four main named groups can be observed: Neisseriaceae is composed only by genomes 
belonging to this family (hereafter: clade Neisseriaceae); Chromobacteriaceae, is 
composed by genomes of the family and a Xenophilus genome (hereafter: clade 
Chromobacteriaceae); Chromobacteriaceae + Neisseriaceae is instead composed by 
Chromobacteriaceae plus a Neisseriaceae genome (hereafter: Clade A); 
Chromobacteriaceae + others is composed mainly by Chromobacteriaceae plus some 
Burkholderiales and a Neisseriaceae (hereafter Clade B; for further detail, see Figure 13). 
We compared our tree to the last published phylogenomic tree of the Neisseriales family 
(Adeolu and Gupta, 2013). In this article the authors observed that the order is composed 
by two families: the Neisseriaceae and the Chromobacteriaceae. These two families are 
congruent to our Neisseriaceae and Chromobacteriaceae clades. However, we included 
more genomes than Adeolu and Gupta in our analysis, and not only complete assemblies 
but partial ones that often come from metagenomic studies, whom assigned taxonomy 
might not be sure.  
The three endosymbionts under analysis are basal to the Neisseriaceae clade. 
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Figure 13 – Phylogenetic tree of the Neisseriales obtained with RAxML. The family is composed by two order: 
Chromobacteriaceae and Neisseriaceae, which in the tree are well differentiated and form two separated 
sister clusters. Inside Chromobacteriaceae order, Chromobacterium genus contains Xenophilus AP218F, 
which is classified as a Burkholderiales. Inside the Neisseria genus there are also two Morococcus 
cerebrosus genomes, a Bergella denitrificans, a Uruburella suis and a Kingella potus, all species of the genus 
Neisseriaceae. In the tree there are also other two clusters, one composed mainly by Chromobacteriaceae 
plus Rivicola pingtungensis, which is classified as a Neisseriaceae (clade A), the other composed mainly by 
Chromobacteriaceae plus Burkholderiales (genus Chitinimonas, 3 genomes, and Janthinobacterium, 1 
genome) and Neisseriaceae (Amantichitinium usialicus) (clade B). 
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Figure 14 shows the tree obtained with RAxML integrated with the information about the 
number of predicted domains for each Pfam model used, the number of proteins with a 
signal peptide found by signalP, the number of xenologs genes as defined by OrthoFinder 
- genes that likely reached a genome from another by means of Horizontal Gene Transfer 
(HGT) - and the number of duplicated genes also found by OrthoFinder. Considering the 
tree, we highlighted 5 major clades: the blue clade is the Neisseriaceae clade of the tree 
in Figure 13; the red clade is inside the blue one and is composed by the three 
endosymbionts under analysis (hereafter: clade E); the green clade is the 
Chromobacteriaceae clade; the orange is clade B; the purple is composed by outgroup 
genomes. We decided to not consider the clade A from Figure 13 for further analysis as it 
is composed only by few genomes. In the heatmap the counts of each kind of protein were 
normalized with respect to the total number of proteins in each genome and is presented 
for clarity in a log10 scale. As a consequence of the partiality of our genomes, some genes 
may be missing because they are not in the genome or because they have not been 
sequenced or retrieved, but without a complete genome to be used as a reference, it is 
impossible to tell which one explanation is true for all genes. However, we can make the 
hypothesis that the loss of genes due to the methodology should be homogeneously 
distributed among all protein families, which should not be true for proteins or protein 
domains that were purged from the genome in evolutionary time as a consequence of the 
life style of the bacterium. Therefore, with this analysis we hoped to detect some pattern in 
the evolution of the size of the different protein families and to be able to connect them to 
the endosymbiotic lifestyle. All the clades are well differentiated, indicating that within a 
clade there is a tendency to conserve a certain family size, but this is not true when 
evolutionary time increases, and species from different clades are more different. The 
Chromobacteriaceae and A clades seem concordant even if the first is pure and the 
second is mixed. The clade E, basal to the Neisseriaceae’s one, seem to diverge from it 
when considering the proportion of ABC transporter domains and signal peptides.  
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Figure 14 - The figure shows the phylogenetic tree obtained with RAxML together with a heatmap reassuming 
for each genome the number of predicted Pfam domains, signal peptides, xenologs and duplicated genes, 
normalized by total number of proteins and reported in a log 10 scale. In the tree we highlighted 5 major 
clades: the blue is composed only by Neisseriaceae; the green that is composed only by 
Chromobacteriaceae; the orange that is composed mainly by Chromobacteriaceae; the purple that is 
composed only by the outgroups; the red clade is inside the blue clade and is composed by the three 
endosymbionts. 

 

Figure 15 highlights the differences among the 5 clades. Each chart shows for each marker 
the proportion reported in the heatmap of Figure 14. Clade E is similar to the 
Neisseriaceae’s one when considering HisKA, MCPsignal, RR, TAT signal peptides, 
proportion of xenologs and duplicated genes. However, it shows a higher proportion of 
ABC_transporters predicted domains and lower LIPO and SP signal peptides compared to 
the other clades. 
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Figure 15 - Each chart refers to a different proportion of the marker considered (proteins domains predicted 
with HMMer using Pfam model, signal peptides predicted with signalP, xenologs and duplicated genes 
calculated by OrthoFinder). In the graphs, the points are the numbers of each marker normalized by total 
number of proteins in the, whereas the boxplot reassumes their distribution for each clade. The colours of the 
points are concordant to the clades described previously. Blue= Neisseriaceae clade (neiss); red= 
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endosymbionts under analysis (endo); Green= Chromobacteriaceae clade (chromo); Orange= clade B, 
composed mainly Chromobacteriaceae (chromo2); Purple= outgroup clade(out). 

 

Discussion 
The molecular and bioinformatic analyses allowed to obtain fairly complete genomes of two 
samples out of three. The S8 sample has a lower 16S gene coverage compared to S0 and 
S9. This could be due to a lower abundance of the endosymbiont in the sample or a larger 
contaminant level. Even if ciliate cells are starved and washed prior to amplification and 
sequencing, they might retain DNA sequences coming from the bacteria they have fed on, 
and these can end being sequenced. By using S0 as a reference, we obtained the genomic 
sequences in the S8 samples, even if the total length of the reassembly is shorter than the 
other two samples (Table 11). This suggest that maybe the low performance of SeqDex 
can be imputable to both the highly presence of contaminating sequences and a lower 
abundance of the bacteria inside the host cell. 
The percentages of completeness calculated by BUSCO and reported in Table 11 suggest 
that the obtained genomes of the three samples are incomplete. To calculate these 
percentages, BUSCO compares the input proteome to a database composed by the core 
genes of a certain taxonomic group. We used the betaproteobacteria database, that is 
composed mainly by free living and pathogen species. As endosymbionts are missing from 
the set of genomes used to define the Betaproteobacteria core, we explain the low 
percentage of completeness reported by BUSCO as derived from two contributions: the 
first is the decrease due to the endosymbiotic life style of the bacterium, and this is a true 
genome reduction; the second is the fact that our sequencing was not able to catch the 
entire genome of the endosymbiont. For these reasons, we think that the BUSCO 
percentage represents a lower bound for the true completeness of our assemblies. 
The phylogenetic tree in Figure 13 shows high bootstrap values, so it is highly affordable, 
even if presents some mixed groups composed by organism of different classification. We 
compared our phylogenesis to the one recently published by (Adeolu and Gupta, 2013). 
The authors used a phylogenomic approach similar to ours: they build a long protein 
concatemer to then reconstruct the phylogenetic tree based on the maximum-likelihood. 
The differences of our tree with the published one could be mainly due to wrong taxonomic 
assignment of metagenomic derived samples, but we can’t exclude some phylogenetic 
misplacement that however, seeing the exceptionally high bootstrap values, should be only 
a few. Moreover, our tree includes more species than the tree published by Gupta et al., 
and the phylogenesis might have slightly changed. 
The endosymbionts in our samples are basal to the Neisseriaceae, with S0 and S8 most 
close, probably belonging to the same species, and S9 just slightly farther. S0 and S8 come 
from different host species, S. minus and S. teres, respectively while the two Spirostomum 
of the same species seem to have different endosymbionts (S0 and S9, found both in S. 
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minus). Thus, we may infer that there is no co-cladogenesis nor co-phylogenesis among 
host and endosymbionts, a condition that is instead frequently found in most obligate 
endosymbiosis indicating that a species is strictly associated with a certain host species 
since long time. At the same time, the fact that we find the same endosymbiont in different 
host species might indicate that this endosymbiosis might be quite widespread among 
ciliates. 
In stable endosymbiosis, bacteria usually face genomic rearrangements with many genes 
loss as they adapt to the stable and rich conditions of the intracellular milieu. The genes 
involved in the interaction with the external environment may be the ones more drastically 
affected by these rearrangements. We chose to perform a functional analysis on the 
proteins of all the organisms used in the phylogenomic analysis to be able to compare 
genomic properties of our endosymbionts to their relatives and highlight the differences in 
an evolutionary perspective. We decided to predict the presence of protein domains 
involved in environmental signal perception and processing (HisKA, MCPsignal, RR), 
motility (Neisseria_PilC) and the exchange of substances (ABC_tran), as also to predict the 
presence of standard (SP_Sec_SPI), lipoprotein (LIPO_sec_SPII) or Tat (TAT_tat_SPI) 
signal peptides.  
The closest relatives of the endosymbionts under analysis belong to the Neisseriaceae 
clade, which is a family mainly comprising obligate pathogens or commensals (Adeolu and 
Gupta, 2013). This clade shows a generally low proportion of domains for detecting and 
responding to external stimuli, as some HisKA and RR are present, but not MCP was 
observed. The endosymbionts even show a reduced proportion of domains involved in the 
detection and response to stimuli: HisKA and RR domains have low abundance in these 
genomes, whereas some MCP signal domains are present, in opposition to the 
Neisseriaceae clade. The differences between the two clades considering these three 
domains are, although, not so pronounced in agreement with their phylogenetic placement 
(Figure 13). The proportion of domains involved in the detection and response to external 
stimuli highly reflects the lifestyle of the organisms. Chromobacteriaceae is a family 
composed mainly by free-living species, with some facultative pathogens, and the 
Chromobacteriaceae and B clades, which is mainly composed by Chromobacteriaceae, 
show the higher proportion of these environment interaction domains. The obligate host-
associated lifestyle of the Neisseriaceae reflects in their proportion of proteins containing 
HisKA, RR and MCP signal domains, that are lower than in the Chromobacteriaceae clade. 
The Neisseriaceae are adapted to a life in association with an host, thus they need to 
respond to external stimuli, as these capabilities may be involved in the establishment of a 
commensal relationship or in the development of the pathogenicity, however they live in a 
more stable condition compared to the free-living. The endosymbionts show the lower 
proportion of these domains among all the clades analysed. Thus, in accordance to the 
observed trend, they might be adapted to a more stable condition compared to the 
Neisseriaceae, as the intracellular milieu of a host. 
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The clade E differentiates from the Neisseriaceae one as it shows an increased proportion 
of ABC transporter domains, more than all other clusters, and a lower proportion of 
standard and lipoproteins signal. The presence of a higher proportion of ABC transporter 
domains among all Neisseriales highlights the importance of the exchange of products with 
the external environment: the endosymbionts may not have more ABC transporter domains 
than the other Neisseriales but the fact that their proportions are larger, might suggest that 
they are important for the survival, as while likely undergoing a genome reduction, these 
species kept ABC transporters in higher proportion.  
The signal peptides are regions that flags the proteins that will be targeted by the secretion 
system and are involved in the interaction with the environment, as in virulence and 
pathogenesis. Bacteria secrete proteins to identify, bind, degrade complex metabolites 
and transport them into the cell, as also to adapt and interact with the environment, and to 
communicate (Gagic et al., 2016). Species of the Neisseria genus secrete proteins and 
lipoproteins to actively uptake iron when its concentration is low, as when growing in the 
blood of mammals where free iron is extremely low; to prevent the activation of the immune 
system of the host; to produce biofilms in commensals lifestyles, or to induce the 
aggregation of multiple bacterial cells as a defence against phagocytosis during infections; 
to adhere to the host cells and invade them (Tommassen and Arenas, 2017). The gram 
negative organisms, as the Neisseriales, usually have a secretion system of type Sec, 
which transports standard signal peptides (SP) and lipoproteins (LIPO), but not TAT 
peptides (these are transported by the Tat secretion systems); this is confirmed by the 
charts in Figure 15 that show the fairly absence of TAT signal peptides in the proteins of 
the considered clades. We show that our endosymbionts have a reduced proportion of 
proteins carrying secretion signal peptide. This may be compatible to a symbiotic lifestyle. 
If these bacteria have adapted to the stable and rich environment present inside the host 
cell, it is possible that genes encoding proteins needed for the interaction with the external 
milieu, communication and also, maybe, pathogenicity are no more needed. Thus, these 
genes may have faced degenerative mutation, deletions, up to removal. 
An evidence that might suggest that these Spirostomum and endosymbiont species are 
bound by a stable symbiotic relationship is the absence of any gene related to the 
production, secretion and maintenance of the LPS barrier. During a manual exploration of 
the proteins obtained with Prokka by using the KEGG database we observed the complete 
absence of the lipopolysaccharide biosynthetic pathway in all three endosymbionts 
(Kanehisa et al., 2016). Besides knowing that our genomes are incomplete, the total 
absence of an entire pathway of almost 20 genes in the three samples is a strong indication 
that the process is indeed missing in the genome. The LPS barrier is important for the 
survival of the gram negatives but, as suggested by the Baumannia cicadellinicola example 
discussed previously, being mostly important for protection, it may be one essential 
function becoming accessory once the environment becomes as stable as the intracellular 
milieu. 
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Obligate endosymbionts, such Buchnera aphidicola, are considered to have the more 
stable genomes among bacteria as they show no rearrangements, no HGT and low 
mutation rate (Mira et al., 2002). Horizontal transfer of genes is an important source of 
variation, introduces novelties and allows to replace degenerated genes. However, the 
frequency of such events is reduced by an intracellular lifestyle like in endosymbionts, 
particularly in the obligated ones, or obligate parasites such as Chlamydia and Rickettsia 
species (Wernegreen, 2015). It is possible that the regions involved in the integration of 
horizontally transmitted genes may be involved in the loss of portion of genomic regions 
that results from the high mutation rate, duplications and pseudogenization that bacteria 
may face during the establishment of an obligate endosymbiosis (Andersson and Kurland, 
1998; Darby et al., 2007; Gil et al., 2002; McCutcheon and Moran, 2012; Mira et al., 2002; 
Moran and Wernegreen, 2000). In our endosymbionts, it is possible that the sequences 
that OrthoFinder catalogues as xenologs are really genes present in their genome due to 
HGT, but they could also represent genes that were erroneously included in the assembly. 
Also, the fact that the proportion of xenologs genes shown in Figure 14 and Figure 15 are 
completely in line with the other clades suggests that these genomes have faced horizontal 
gene transfers, but it is not known if they are a residual trace of HGT not already removed 
from the genome, or if the bacteria is still currently able to exchange genes.  
Another important source of variation is the duplication of genes or portion of the genomes. 
Bacteria, both free-livings and commensals, show a high level of duplication events in their 
genomes, as these allow to relax selective constrains on genomic regions and thus favour 
the introduction of novelties. Comparative studies on genomic rearrangements show rare 
rearrangements in obligate endosymbionts (Wernegreen, 2015). However, studies 
conducted on facultative and young obligate endosymbionts showed a different picture: in 
the very first phase of the establishment of the relationships the bacterial genome shows 
high pseudogenization, explosion of insertion sequences and other mobile elements, as 
also inversions and duplications (Wernegreen, 2015). We are not able to compare the 
duplication rate of endosymbionts during the establishment of the symbiotic relationship to 
other bacteria as there are not published studies about it. However, we consider the fact 
that our bacteria show a proportion of duplicated genes consistent with the non-
endosymbionts, as the Neisseriales (Figure 14 and Figure 15), as indicating the presence 
of genomic rearrangements compatible with the establishment of an endosymbiosis. Also, 
in parallel to the considerations done for the xenolog proportions, we are not able to say if 
our endosymbionts are currently facing these rearrangements or if these are the residuals 
of events already happened but not still purged. 
In conclusion we can say that besides the absence of co-cladogenesis or co-phylogenesis, 
the presence of closely related endosymbionts in Spirostomum species coming from 
distant sampling sites, together with all the considerations done on the comparative 
functional analysis performed, suggests that this relationship could be stable even if likely 
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not obligate, and widespread across the host genus. However, more effort to complete the 
three genomes is needed to completely characterize the system.  
This work represents one of the few examples of Betaproteobacteria endosymbionts, and 
as far as known, one of the firsts Neisseriales endosymbionts description, highlighting the 
fact that the order may be composed also by not pathogen or commensal species that, at 
today, are completely underrepresented.  
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CHAPTER 5 

General discussion 
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This thesis considers two case studies where the currently used techniques for species 
identification do not provide an affordable taxonomic affiliation. The first one concerns the 
identification of morphologically cryptic anuran taxa which is complicated by the presence 
of interspecific breeding with production of viable and fertile offspring due to a form of 
sexual parasitism. The second case study is a putative endosymbiosis involving a 
bacterium of the Neisseriales order and a host belonging to the genus Spirostomum. Here, 
the taxonomy determination is complicated by the fact that the bacteria belong to new and 
not already described species with no closely related sequences in the public databases.  
Cryptic species are morphologically similar groups of taxa, such that some may completely 
lack phenotypic informative characters that may be used to determine the taxonomic 
affiliations. It is therefore important to find features that can be used for a correct taxonomic 
affiliation. The characters investigated may be the life history, the behaviour, the 
vocalisations, the physiology, as also the genotypic data. Lots of examples can be found 
in the literature. One is Bemisia tabaci, a worldwide vegetable, ornamental and field crop 
pest, that was thought to be cosmopolitan but is in reality a complex of morphologically 
indistinguishable cryptic species. In this case the species can be determined by using a 
singular informative mtDNA marker, but a mating test is needed to confirm the reproductive 
isolation and thus the existence of different species according to the biological species 
concept (Xu et al., 2010). However, the breeding tests are not error-free, as the absence 
of offspring may be due to reproductive isolation or induced by the absence of some 
environmental condition needed for successful reproduction, as observed for wild animals 
kept in captivity. Another example is provided by the lizards of the genus Diporiphora, 
which exhibit little morphological informative characters. The authors in (Smith et al., 2011) 
used two markers, one nuclear and the other mitochondrial, to be able to differentiate the 
two species under study. As said before, the mtDNA genes have demonstrated to have 
good resolution power and good stability to be used as universal marker for species 
determination. These, moreover, have been preferred to nuclear markers which have 
introns, can undergo recombination events and diverge through the acquisition of 
insertions and/or deletion that complicate sequence alignment and taxonomic 
reconstruction. Thus, exploiting a single marker may be error prone, especially when 
rearrangements are common in one or more of the taxa under analysis. 
The approach used in Chapter 2 allows to take advantage of the resolution power of the 
mtDNA marker and to overcome its limitation in the detection of hybrids by using STR 
nuclear markers, avoiding all the problems linked to nuclear genes sequences. Our study 
is not the first one in which mtDNA data are coupled to STRs to identify cryptic species and 
putative hybrids (Fekete et al., 2012; Trigo et al., 2013); however, it represents the first 
attempt to use these data to identify pure species and hybrids in the Pelophylax complex. 
Indeed, this approach needs more implementations, as species specific microsatellite are 
needed to make it more affordable. 



 

 75 

The second study case of this thesis focused on three samples of ciliates of the genus 
Spirostomum that harbour endosymbionts. This case study is complicated by the difficulty 
to obtain the data to perform the taxonomic affiliation of the bacteria, as morphology is little 
informative, the endosymbiont sequences are hard to isolate, and the databases miss 
sequences that are closely related to those from the endosymbiont. Moreover, these three 
bacteria likely belong to new species. In this case, it is also important to perform a functional 
analysis to get an idea of the possible role of the endosymbiont within the host; to get this 
information, we worked to extract the genomic sequences of the endosymbiont. To achieve 
this task, we developed SeqDex (Chapter 3), a bioinformatic tool designed to partition the 
different genome sequences present in a sample. In our case, SeqDex helped in isolating 
the endosymbiont genomic sequences from all the rest (host + contaminants).  
SeqDex is based on state-of-the-art machine learning models that use compositional 
properties to provide the separation of genomic sequences from different sources in a 
mixed sample. Additionally, I worked carefully to implement the code required to calculate 
performance measure of the classification made by SeqDex, to inform the user about the 
goodness of the solution found. 
SeqDex was tested on several test-cases before running it on the three samples of my 
thesis, on which it performed quite well, allowing to retrieve a good proportion of the 
genome of each symbiont. 
As the preliminary 16S gene sequence analysis suggested that the three endosymbionts 
belong to the Neisseriales family, we used the available genomes to place our samples in 
a phylogenomic tree of the family. This analysis confirmed the absence of very close 
relatives to the endosymbionts in the family. The complete absence of known Neisseriales 
endosymbionts in the literature makes hard to analyse and interpret the genomic data: not 
knowing phylogenetically close examples means that we have no idea of the molecular 
functions or pathways that might be important for these bacteria. Many endosymbiotic 
systems have been previously studied, but often show peculiarities depending on the 
specific requirements of the host. The only shared characteristics are the rearrangements 
and gene loss faced by the obligate endosymbionts, but what genes and pathways are 
lost, it depends on the specific situation. For instance, some symbiont produces essential 
amino acids, other vitamins and so on, depending on the metabolic abilities of the host and 
the environmental requirements. One may be tempted to think that symbionts from different 
clades that are in a relationship with host’s also from different clades should nevertheless 
show some common evolutionary trend and therefore should have faced similar genomic 
rearrangements in addition to specific ones, but the truth is that we do not have enough 
information to confirm this. One property that should be general enough is the ability of 
interacting with the environment. Free living bacteria must be able to detect population 
density, the presence of nutrients in the environment and to transduce this information in 
the cell with appropriate signalling pathways. For this reason, we focused our comparative 
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genomics analyses on the interaction with the environment (detection of stimuli, transport, 
signalling), in addition to HGT and gene duplications.  
The picture that emerged from this analysis suggests that these bacteria might be 
facultative symbionts still undergoing rearrangements and gene losses probably towards 
an obligate symbiotic behaviour. The high proportion of transporter domains compared to 
the other clades suggest that these genes are conserved, maybe because are involved in 
the interaction with the host.  
The nature of the relationship, thus the action each organism takes on the other in the 
endosymbiotic system, remains unclear. The examples described in the introduction of 
Chapter 4 highlighted the difficulty to restrain these actions to a unique type. It is possible 
that our bacteria are endosymbionts, facultative or nearly obligated, that interact positively 
or in a neutral manner with the host; it is also possible that they are pathogens, as most of 
the Neisseriaceae are, or that they have been pathogens which then lose their 
pathogenicity and established a mutualistic and, maybe, obligate relationship. To be able 
to better define the endosymbiotic system more analyses, and maybe more samples, are 
needed.  
The analyses conducted in Chapter 4 represent the first attempt to study completely ex 
novo an endosymbiotic relationship involving a Neisseriaceae bacterium. Also, the 
analyses allowed to obtain some information about the bacteria and the endosymbiotic 
relationship, even if these are not exhaustive.  
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Appendix 1 – Performance calculation 
 
During the development of a classification method it is important to calculate and evaluate 
performances. It is possible to achieve this task when the developed method is a classifier 
that requires testing on a set for which the true categories are known. Also, as today there 
are many bioinformatic implementations for performing widely different analyses, when 
presenting a new tool, it is important to provide a comparison with other available methods 
to understand how the new and the old tools perform on the same datasets. 
Consider the case of a dataset D composed by elements associated to a set of numerical 
or categorical features and classified in two classes, a and b. The task is to measure how 
good a general classifier is in assigning objects to the a and b classes by exploiting the 
features associated to data points. We thus define True Positives (TP) the elements that 
were in class a (b) and that the classifier assigns to class a (b); True Negatives (TN), as 
the elements that the classifier tells do not belong to class a (b) and indeed they don’t; 
False Positives (FP) as the elements that it assigns to class a (b) but they don’t belong to 
it; and False Negatives (FN) the elements that belonge to class a (b) but the classifier 
assigned outside of a (b). 
To compare the performance of several classifiers, the above quantities can be used to 
summarize the different kinds of errors that can be done and therefore provide a compact 
representation of a classifier’s behaviour. Additionally, the above quantities have been 
combined to obtain more meaningful measures.  
Sensitivity, also called recall, is the proportion of TP over the total number of positives: 

𝑇𝑃
(𝑇𝑃 + 𝐹𝑁) 

 
Sensitivity quantifies the avoidance of FN. If the sensitivity is low, it means that the FN 
outperforms the TP and so the classification method used determine the wrong 
classification most of the times. 
The accuracy is a measure of how well the method classify the elements of the dataset and 
is calculated as: 

(𝑇𝑃 + 𝑇𝑁)
(𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁) 

 
It is a measure of how much the classification in close to the reality.  
Precision is a measure associated to the accuracy of the predictions. It is calculated as:  

𝑇𝑃
(𝑇𝑃 + 𝐹𝑃) 
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The F1 score is a way to combine in an even more compact form two of the quantities 
introduced above. It is calculated as the harmonic mean between sensitivity and precision:  

2 ∙
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦)
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦) 
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Appendix 2 – Machine Learning 
Classification Models 
 
Machine learning (ML) is a family of algorithms that learns how to perform a defined task 
without having explicitly provided instructions. In particular, ML classification algorithms 
are used to make previsions on the data and thus classify them. There are two type of ML 
algorithms: supervised or unsupervised. Supervised ML uses data for which the classes to 
be predicted are known such that it can be trained on these. The model is then constructed 
to be able to correctly predict the already known classes. The so-obtained model can then 
be used to classify unlabelled objects, a situation that is common when the classification 
of the objects can be done precisely by using expensive (or time consuming) technology 
and one wants to check if the classification is feasible with a different kind of data which is 
cheaper (faster) to obtain. It is for instance the case of the prediction of antibiotic 
resistances in pathogens. The whole process takes weeks in Mycobacterium tuberculosis 
but by exploiting genome sequences it is possible to provide the same result in a matter of 
days; highly appealing. 
Unsupervised algorithms are instead able to find clusters and patterns in the data, and 
they can use them as the labels used in supervised algorithms to predict new observations. 
ML classification algorithms are widely used to classify DNA or protein sequences: they 
can be used to deconvolve data obtained by the sequencing of mixed samples, as in 
metagenomic studies; or during comparison to a database to reconstruct the taxonomic 
affiliation of an organism.  
Supervised ML algorithms frequently used to classify sequences are Support Vector 
Machine (SVM) and Random Forest (RF). As supervised algorithms, they need to have 
already classified objects in the dataset to train the model. These objects need to be 
representative of the variability of the dataset and their labels have to be highly reliable to 
construct a model with good classification performances. This labelled dataset is randomly 
divided into a training set and a test set; the former is used for obtaining the values of the 
parameters of the model, the latter to check how good a certain parameterization is, in a 
fairly standard cross validation framework. Most of the labelled object go in the training set, 
but there is not a consensus (e.g. can be 66% train and 33% test, or 90% and 10%, 
respectively).  
Support Vector Machine (SVM) is a machine learning algorithm used in classification and 
regression problems (Cortes and Vapnik, 1995; Meyer, 2014). Given a set of labelled 
objects described by n variables, SVM search for the optimal hyperplane that separates 
the classes (Appendix Figure 1). In addition, among all the possible hyperplanes found, 
SVM chooses the one with maximal margin between the closest points to the plane, called 
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Support Vectors. SVM perform a linear separation of the space for the classification: each 
area delimited by the intersection of the planes is assigned to a label. However, if it is not 
possible to separate labels by using linear planes, the algorithm transforms the space using 
a kernel to reconduct it to a problem with a linear solution. 
  
 

 
Appendix Figure 1 – The charts reassume how SVM works. In this example, we have to separate the objects 
of a dataset composed by blue points and red stars. Both are described by two variables: X1 and X2. The 
algorithm searches for all possible planes to separate the two classes (left chart). Some degree of mistakes 
can also be allowed. Among all the found planes, SVM chooses the one with the maximum margin (right 
chart). The margin is defined as the distance between the closest point to the hyperplane among all in the 
dataset (called support vectors). As is possible to see, there are various plane found in the left chart; however, 
the algorithm chooses the one in the right chart as it makes no mistakes and have the higher marginal 
distance between the support vectors. 

 
Random Forest (RF) is a ML algorithm based on the classification tree (Breiman, 2001; 
Cutler et al., 2007). A classification tree is formed by decision points that fork in branches. 
The decision points are associated to rules that are used to decide if a sample has to be 
assigned to a branch or another. At the end, branches end in leaves, each assigned to a 
class present in the dataset used for the construction of the tree. Random Forest grows a 
user-defined number of trees. During the construction of the model, for each tree the 
dataset is randomly divided into a training and a test set. At each split of each tree, the 
algorithm randomly samples a subset of the features and then test them to find a rule for 
the decision point. These trees are a modification of the classical classification ones and 
are called decision tree. At the end, the model is composed by all the tree constructed as 
described (see Appendix Figure 2). The prediction of the classification of the data is done 
by considering all the votes of all the trees in the forest.  
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Appendix Figure 2 – Random Forest classification algorithm from (Denisko and Hoffman, 2018). In the figure: 
A is the input dataset, where each object is characterized by 5 features; B and C are the two trees in the 
random forest D and constructed using at each split a rule build on one of the features randomly sampled; E 
is the output. A decision tree is composed by decision point that fork in branches. The decision points have 
rules on which decide to assign an object to one branch or the other. Branches terminates in the final leaves. 
The decision to which class belong each object of the dataset is done by combining all the votes of the trees 
of the forest. 

 
The most frequently used unsupervised ML algorithm is the clustering analysis. This class 
of methods analyse the data to find similarities and dissimilarities. There exists various 
different type of clustering algorithms, and, due to the extent of the argument, they will not 
be discussed in detail. Briefly, the most widely used methods are k-means and hierarchical 
clustering. However, these algorithms work well in dataset that form circular (or spherical, 
depending on the number of dimensions) clusters, but the sequence analysis data might 
form groups of irregular shapes. In this condition, it is preferable to use an algorithm based 
on the proximity of the data. One affordable method is DBscan, which is a density-based 
clustering algorithm (Ester et al., 1996). As described in Appendix Figure 3, it identifies 
cores point as the ones that have at least a minPts points within a distance Eps; reachable 
points as points that are within Eps from a core points; outliers that within Eps do not have 
a core nor a reachable point. After defining all the points in the dataset, DBscan clusters 
together all the core and reachable points connected. This algorithm is based on spatial 
proximity and density, thus is able to identify clusters of irregular shape. The parameters 
minPts and Eps can simply be tuned on the dataset, thus allowing a simple customization 
and automatization of the method. Also, it allows easily to identify outliers that can be thus 
excluded from further analysis. 
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Appendix Figure 3 – The figure reassumes how DBscan classify the data. Eps is the maximum spatial 
distance considered. The circle around the data in the figure are designed on this value. minPts is the 
minimum points within Eps that have to be present to consider the point a core point. In the figure, as 
minPts is 4, O is defined as a core point. P is defined as a density reachable point as it near a core point 
within Eps; q is defined also as density reachable point as it is near within Eps to another density reachable 
point, that is near O. DBscan analyses singularly each point multiple times to revise their classification 
considering their neighbourhood, and give as an output the list of the point and their cluster belonging. All 
the outgroup points are classified as belonging to a fake cluster label (usually named 0). (from (Hahsler et 
al., 2019)) 
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Appendix 3 – Chapter 3 Supplementary 
material 
 
Appendix Table 1 - Performance statistics, formula and meaning. TP = True Positive; FP = False Positive; TN 
= True Negative; FN = False Negative. The performances are calculated for both numbers of contigs and 
with respect to the known symbiont genomes. In the latter case, the positives are all the nucleotides from the 
target genome, and we consider what fraction of the genome has been correctly attributed to the target bin 
by the different tools. 

Performance 
statistic Formula Meaning 

Sensitivity/Recall 𝑇𝑃
(𝑇𝑃 + 𝐹𝑁) 

The fraction of relevant instances that have 
been detected over the total amount of 
relevant instances. 

Precision 𝑇𝑃
(𝑇𝑃 + 𝐹𝑃) 

Or positive predictive value, is the fraction 
of relevant instances among the retrieved 
instances. 

Accuracy (𝑇𝑃 + 𝑇𝑁)
(𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁) 

Proportion of correct results over all cases 
obtained 

F1 score 2 ∙
𝑇𝑃

(2 ∙ 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁) 
Measure of test accuracy, integrating 
precision and sensitivity 

 
Appendix Table 2 - List of SeqDex scripts 

Name Description 
SeqDex.sh SeqDex main executable file 
rRNA16S.R Identification of 16S genes in the sample 

Taxonomy.R Find taxonomic affiliation of the contigs and calculate the 
TaxonDensity 

GCKmersCov.R k-mers frequencies, coverage and GC calculations 

SVM.R Prediction of taxonomy using Support Vector Machine (SVM) 
RF.R Prediction of taxonomy using Random Forest (RF) 
Clustering.R DBScan of the output of SVM.R and/or RF.R 
Func.R Function used by the scripts  
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Appendix Table 3 - The table shows sensitivity, accuracy, precision and F1 scores calculated over the 
number of target organism’s contigs correctly deconvolved by running Blobology, MaxBIN and SeqDex with 
both algorithm on the simulated dataset 

Statistics Blobology MaxBIN SeqDex-SVM SeqDex-RF 

Sensitivity 0.7916 0.9583 0.9560 0.9560 
Precision 1.0000 0.9583 0.9886 0.9886 
Accuracy 0.9743 0.9897 0.9935 0.9935 
F1 score 0.8837 0.9583 0.9720 0.9720 

 
Appendix Table 4 - The table shows sensitivity, accuracy, precision and F1 scores calculated over the 
number of target organism’s contigs correctly deconvolved by running Blobology, BusyBee, MetaBAT, 
MaxBIN and SeqDex with both algorithm on the Ca. Fokinia solitaria dataset. 

Statistics Blobology BusyBee MetaBAT MaxBin SeqDex-SVM SeqDex-RF 

Sensitivity 0.8333 0.9444 0.7778 0.9444 0.9444 0.9444 
Precision 0.6818 0.0265 1.0000 0.3696 1.0000 1.0000 
Accuracy 0.9982 0.8885 0.9988 0.9946 0.9998 0.9998 
F1 score 0.7500 0.0516 0.8750 0.5313 0.9714 0.9714 

 
Appendix Table 5 - The table shows sensitivity, accuracy, precision and F1 scores calculated over the total 
number of Cardinium contig correctly deconvolved by running Blobology, BusyBee, MetaBAT, MaxBIN and 
SeqDex with both algorithm on the partially deconvolved real dataset 

Statistics Blobology BusyBee MetaBAT MaxBin SeqDex-SVM SeqDex-RF 

Sensitivity 1.0000 0.9292 0.7100 0.8142 0.8584 0.8319 
Precision 0.0012 0.4234 0.7474 0.5786 0.6467 0.6667 
Accuracy 0.1236 0.9986 0.9992 0.9992 0.9994 0.9994 
F1 score 0.0024 0.5817 0.7282 0.6765 0.7376 0.7402 

 
Appendix Table 6 - The table shows sensitivity, accuracy, precision and F1 scores calculated over the total 
number of Wolbachia contig correctly deconvolved by running Blobology, BusyBee, MetaBAT, MaxBIN and 
SeqDex with both algorithm on the partially deconvolved real dataset. Here, the taxonomic affiliations are 
obtained through combination of the information obtained by comparing contigs to nt and nr database. 

Statistics Blobology BusyBee MetaBAT MaxBin SeqDex-SVM SeqDex-RF 

Sensitivity 0.9643 0.9286 0.8846 0.8574 0.9286 0.9286 
Precision 0.0006 0.1048 0.5349 0.0390 0.3170 0.3333 
Accuracy 0.5974 0.9979 0.9996 0.9945 0.9995 0.9995 
F1 score 0.0012 0.1884 0.6667 0.0745 0.4727 0.4906 
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Appendix Table 7 - Performances of the classification made by SeqDex with or without the graph built by 
exploiting pairing information, and the ratio among the two. 

FOKINIA  Based on contigs number Based on length 

Performance ML With graph Without 
graph Ratio w/o With graph Without 

graph Ratio w/o 

Sensitivity SVM 0.971428571 0.833333333 1.165714286 0.996623147 0.973410781 1.023846424 
precision SVM 1 1 1 1 1 1 

Accuracy SVM 0.999836681 0.999464573 1.000372308 0.999937259 0.999505694 1.000431779 
F1 SVM 0.985507246 0.909090909 1.084057971 0.998308718 0.986526262 1.011943377 

Sensitivity RF 0.971428571 0.833333333 1.165714286 0.996623147 0.973410781 1.023846424 
precision RF 1 1 1 1 1 1 
Accuracy RF 0.999836681 0.999464573 1.000372308 0.999937225 0.999505694 1.000431745 

F1 RF 0.985507246 0.909090909 1.084057971 0.998308718 0.986526262 1.011943377 
CARDINIUM  Based on contigs number Based on length 

Performance ML With graph Without 
graph Ratio w/o With graph Without 

graph Ratio w/o 

Sensitivity SVM 0.859649123 0.840707965 1.022530009 0.938849397 0.932346207 1.006975081 
precision SVM 0.649006623 0.655172414 0.990589055 0.665173353 0.663342462 1.002760099 

Accuracy SVM 0.999369281 0.999372763 0.999996516 0.998466562 0.998443755 1.000022843 
F1 SVM 0.739622642 0.736434109 1.004329692 0.778664269 0.775169794 1.004508013 
Sensitivity RF 0.833333333 0.814159292 1.023550725 0.929061562 0.92437096 1.005074372 

precision RF 0.669014085 0.643356643 1.039880588 0.668413434 0.662456787 1.008991752 
Accuracy RF 0.999396704 0.999335867 1.000060877 0.998472048 0.998427092 1.000045027 
F1 RF 0.7421875 0.71875 1.032608696 0.777473488 0.771798725 1.007352647 

WOLBACHIA  Based on contigs number Based on length 

Performance ML With graph Without 
graph Ratio w/o With graph Without 

graph Ratio w/o 

Sensitivity SVM 0.928571429 0.964285714 0.962962963 0.986758222 0.991960115 0.994755946 

precision SVM 0.313253012 0.002291242 136.7175368 0.426951454 0.019491726 21.90424071 
Accuracy SVM 0.99946069 0.891543372 1.121045506 0.997716523 0.914579092 1.090902396 

F1 SVM 0.468468468 0.004571622 102.4731398 0.596017506 0.0382322 15.58941167 
Sensitivity RF 0.928571429 0.892857143 1.04 0.986758222 0.984143075 1.002657284 

precision RF 0.329113924 0.036603221 8.991392405 0.432357843 0.187743061 2.302923154 
Accuracy RF 0.999497253 0.993902889 1.005628683 0.997765858 0.992685221 1.005118074 
F1 RF 0.485981308 0.070323488 6.910654206 0.601265347 0.315331034 1.906775044 
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Appendix Figure 4 - The barplots show sensitivity, accuracy, precision and F1 score calculated for number 
of contigs (Ncontig) and amount of bp (Bp) of target organisms obtained by using Blobology, MaxBIN and 
SeqDex, with both algorithms, to deconvolve the simulated dataset. 
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Appendix Figure 5 - The barplots show sensitivity, accuracy, precision and F1 score of number of contigs 
(Ncontig) and amount of bp (Bp) of the Ca. Fokinia solitaria identified by using Blobology, BusyBee Web, 
MetaBAT, MaxBIN and SeqDex, with both machine learning algorithms, to deconvolve the dataset. 

 

0.00

0.25

0.50

0.75

1.00

SensitivityPrecision Accuracy F1

Ncontig

0.00

0.25

0.50

0.75

1.00

SensitivityPrecision Accuracy F1

Va
lu
e

Bp

test
Blobology
BusyBee
MetaBAT
MaxBIN
SVM
RF



 

 104 

 
Appendix Figure 6 - The barplots show sensitivity, accuracy, precision and F1 score calculated for number 
of contigs (Ncontig) and amount of bp (Bp) of Cardinium correctly deconvolved by using Blobology, BusyBee 
Web, MetaBAT, MaxBIN and SeqDex, with both machine learning algorithms, to deconvolve the dataset. 
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Appendix Figure 7 - The barplots show sensitivity, accuracy, precision and F1 score calculated for number 
of contigs (Ncontig) and amount of bp (Bp) of Wolbachia correctly deconvolved by using Blobology, BusyBee 
Web, MetaBAT, MaxBIN and SeqDex, with both machine learning algorithms, to deconvolve the dataset. 
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Appendix 4 - SeqDec Manual 
 
Introduction 
SeqDex is an automated approach for the extraction of contigs from target species in whole 
genome sequencing of symbiont(s) together with the host. It uses taxonomic affiliations 
obtained through comparison to reference databases, coupled with a composition-based 
strategy to identify genomic contigs of the target organism(s). The workflow has four main 
phases: (i) data are prepared for subsequent analysis; (ii) taxonomic affiliation are 
associated to contigs and used to train supervised machine learning models (SVM, RF) on 
k-mer frequencies; (iii) the models are used to predict the taxonomy of unlabelled contigs; 
(iv - optional) unsupervised clustering (DBscan) can be used to refine the classification at 
lower taxonomic ranks. 

 

Dependencies 

1. Packages  

The dependencies that can be installed via terminal are: 
Samtools 
Bedtools 
NCBI-BLAST+ 
Barrnap 
Prodigal 
Diamond 
Seqtk 
 
Of these, only Prodigal and Diamond are optional (see above). 
Most of SeqDex has been developed in R, so it requires the following R packages: 
 
Taxonomizr 
Seqinr 
randomForest 
e1071 
Uwot 
Dbscan 
Parallel 
doParallel 
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Foreach 
Optparse 
Ggplot2 
igraph 
 
Of these, only Taxonomizr needs some manual curation. As described elsewhere 
(https://cran.r-project.org/web/packages/taxonomizr/vignettes/usage.html), Taxonomizr is 
used to convert NCBI accession number in taxonomic information. To do so, it uses a sql 
file that stores the information for the conversion. This file (accessionTaxa.sql) have to 
be downloaded and compiled. We make the user note that following the instruction for 
‘preparation’ and use prepareDatabase(‘accessionTaxa.sql’) command, a file 
containing only nucleotide NCBI accession number will be generated; for using SeqDex 
with proteins, then the ‘Manual preparation database’ instruction must be followed. 
Moreover, while this step needs to be done only once it has to be rerun if the database 
change.  
SeqDex uses the standard filename ‘accessionTaxa.sql’ so use this default name and 
do not create multiple versions, or it will return an internal error. 
 
2. Databases 
 
SeqDex models combine supervised and unsupervised steps. In the supervised section, 
SeqDex needs BLAST databases for defining taxonomy labels of the contigs: 
 
The minimal requirement databases are (i) a nucleotide database to which comparing the 
contigs, and (ii) the RDP rRNA database to which comparing the 16S genes found by 
Barrnap (download it form https://rdp.cme.msu.edu/misc/resources.jsp, in the unaligned 
format and then use makeblastdb from the BLAST plus suite to obtain the BLAST 
database. Do not remove the fasta file, as it is used by SeqDex to retrieve taxonomic 
information).  
 
When the target endosymbionts are particularly distant from relative genome published 
online, or when the sample under analysis is particularly complex taxonomic affiliation from 
a nucleotide-nucleotide comparison can be insufficient to train the machine learning 
models. In these cases, coupling nucleotide and protein derived taxonomy may be useful. 
To do so, the user has to install two optional dependencies (prodigal and diamond) as 
well as download a protein database to be formatted using diamond (see instructions for 
building the database).  
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Please note that to use protein-derived taxonomy affiliations you must rerun the Taxonomizr 
preparation step to include proteins in the database (see above). 
 
SeqDex workflow 

SeqDex can be divided into 3 main phases, discussed in detail below. These comprehend 
(i) an initial manipulation of the data to obtain the information needed in the subsequent 
phases; (ii) a classification/prediction through machine learning, and (iii) a final clustering 
and prediction step. 
 
Input files 
 
The inputs to SeqDex.sh are: (1) the basename of the contig/scaffold assembly file in fasta 
format, and (2) the basename of the sam file obtained when mapping reads to the 
assembly. The quality of the assembly can influence the capability of the model to 
discriminate organisms, so please take care in this step. We suggest to evaluate 
sequencing quality by using FastQC and to remove adapters and low quality bases with 
Trimmomatic or similar tools. If the sequencing has been performed in paired end mode, it 
may be important to check the overlapping and merge the overlapping mates by using 
FLASh. At this point assemble the reads with SPADes or an equivalent assembler at several 
k-mer lengths to identify the best assembly using Quast. At this point, reads can be 
mapped back on the assembly. You can choose to use whenever tool you prefer, as long 
as the assembly file is in fasta format and the mapping file in sam format. 
We considered paired end sequencing as most whole genome sequencing are performed 
by using this modality. However, SeqDex can be used also on single end sequencing data 
without modifying the code. 
 
Phase 1 - data preparation 
 
Coverage calculation 
FLASh merges overlapping paired reads, when found. Once performed, you will obtain as 
output the paired non-overlapping reads and the extended reads resulting from merging 
the overlapping mates. As Bedtools coverage do not differentiate among single reads and 
“mates” (here used in the general sense of the two reads composing a pair), we calculate 
the coverage for single and paired reads separately and then sum them. The outputs are 
saved in the Coverage folder. 
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Taxonomic affiliations 
SeqDex needs taxonomic affiliations to train the machine learning models. SeqDex.sh by 
default uses only nucleotide-derived taxonomic affiliations (TAX=NT). Insert the name of the 
nucleotide database (NTI) and the path to this file (NT) by editing the SeqDex.sh file. 
SeqDex will run blastn by using the contigs as queries. SeqDex Taxonomy.R R script then 
reads the blast output to : (1) convert the NCBI codes into taxonomy information; (2) filter 
hits by the alignment length (--aliLength, default= 200 bp) and the percentage of 
identity (--Xid, default= 70%); (3) for each taxonomic level (--taxaLevels, default= 1) 
the taxonomy Density (--taxonDensity, default= 0.75) is calculated and filtered at a 
defined threshold; (4) save the output in Taxonomy folder for subsequent analysis. 
If you wish to use another tool similar to blastn to find the taxonomy affiliations derived from 
alignment to a nucleotide database, you can add your code at line 218 of the SeqDex.sh 
file. In this case, the output name and structure need to be equivalent to the one produced 
by our blastn code. 
If you want to use protein-derived affiliations too, you must change in SeqDex.sh TAX to 
NTNR, provide the name of the database (NRI) and its path (NTR). Nucleotide workflow 
proceeds as explained above. The protein workflow implements Prodigal to obtain gene 
predictions and corresponding protein sequences, and then compare them to the NR 
database by using Diamond. Outputs are taken by SeqDex Taxonomy.R R scrip to: (1) 
convert the NCBI code into taxonomic information; (2) filter hits by the alignment length (-
-aliLength; --aliLengthNR, default= 70 aa) and the percentage of identity (--Xid; 
--XidNr, default 90 %); (3) for each taxonomic level (--taxaLevel) the taxonomy 
Density (--taxonDensity) is calculated and filtered at a defined threshold; (4) the shared 
affiliations combined with the unique affiliations, relative to both databases, are merged 
and the output is saved in Taxonomy folder. 
You may wish to repeat the machine learning classification step on more than one 
taxonomy level, i.e.: on the Superkingdom level to select only bacterial contigs, and then 
at the level of bacterial classes, to select the class of interest (e.g. Alphaproteobacteria, 
see below). To do this, you need to tell to the model to prepare the taxonomic information 
for each level considered (Superkingdom and Class) by providing a comma separated list 
taxonomy levels desired, from superkingdom to species (run Rscript Taxonomy.R --

help to see a full list of options; --taxaLevels, default=superkingdom). We suggest not 
to go too deep in the taxonomy levels: most of the times, when the sample under analysis 
shows low complexity (only one symbionts with high coverage), the classification at 
Superkingdom level is enough to then clustering and obtain the contigs relative to the target 
organism (this can be guided by preliminary rtPCR on 16S, for instance). 
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As we build SeqDex to be highly flexible, you can choose to prepare all the file at first 
entrance, run SeqDex as desired, evaluate the final output and then consider rerunning 
only certain parts by manually copying commands from SeqDex.sh to the terminal. 
 
Mate network construction 
Nucleotide and/or protein derived taxonomic affiliation can be too scarce information to 
build satisfactory predictive models. This is imputable to the peculiarities of the organism 
under analysis: stable obligate endosymbionts often show reduced genomes, with gene 
losses and high AT content. In these conditions, even if a related genome and its proteins 
are present in public databases (or, at least, in the databases used for inferring taxonomic 
affiliations), they could be too divergent to obtain good and valuable matches. 
This will reduce the number of labelled contigs, affecting negatively the parametrization 
and the performance of the machine learning models. Including protein-derived 
taxonomical affiliations could improve the number of labels obtained. However, there is the 
risk to inflate the computational time and resources for little improvement. Also, due to 
possible erroneous taxonomic affiliation of some deposited NCBI sequences, there is the 
possibility to obtain different affiliations for the same contigs coming form nt and nr 
databases. In this case, there will be no shared labels between the two databases, and 
these will be discarded, reducing the number of labels retrieved. 
To help improve the taxonomy coverage of the sample, we decided to use the information 
of paired end reads mapping in the assembly. In detail, SeqDex builds a graph based on 
mates mapping on different contigs. Here, if the edges (corresponding to the pairing 
information) that connect vertices (corresponding to contigs) are confirmed by --Edges, 
pairs (default= 10 pairs), we assume that the connected vertices (contigs) were parts of 
the same genome that have been put into different contigs due to lack of overlap. The 
complexity of such a graph can be high and the user can control it by setting the maximum 
degree of contigs (--VerticesDegree, default= 5). Highly connected contigs are mostly 
repeated regions, and their presence is basically at the basis of our difficulties in 
assembling complete genomes from short reads only. However, in this case the presence 
of intricate connected components (CC) provides a way to increase the taxonomy 
coverage of the dataset. Therefore, we set rules to exploit this graph to transfer taxonomy 
labels to contigs belonging to connected components where at least some of the contigs 
provide congruent taxonomical information derived from the homology search. The user 
can set --componentSize, which is the minimum size for a CC to be considered for trying 

label transfer (default=2). 
Use with care! 
These graph, with the parameters and the rules described below, will be applied: (i) when 
parsing the taxonomy derived from nt and/or nt to transfer the affiliations to connected 
unlabelled contigs; (ii) after each machine learning prediction step, to correct errors or give 
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additional support; (iii) after the clustering, to collect connected contigs which may be 
erroneously assigned to another group, but also to retrieve the contigs shorter than the 
threshold for length (see below). 
Rules to transfer taxonomy information: 
(1) if the CC has size 2 and only one vertex is labelled, then the label is always transferred;  
(2) if the CC has size 2 and the vertices have incongruent labels then: during (i) the two are 

maintained as they are while in (ii) and (iii) all the contigs in the CC will be labelled as 
‘misclassified’.  

(3) if the CC contains more than two vertices and there is only one type of label, then this 
is always extended;  

(4) if the CC contains more than two vertices, there are two labels and the 
underrepresented have a frequency less than --mixedComponents: during (i) the 
unlabelled contigs receive the most frequent label, whereas the second label is 
nonetheless maintained; however, in (ii) and (iii) the incongruent labels are considered 
as ‘erroneous’ and corrected;  

(5) if there are more than two labels: in (i) all the labels obtained through the BLAST search 
are kept, but no transfer occurs; in (ii) and (iii) all the contigs in the CC are labelled as 
‘misclassified’. 

In (i) the user can choose to use all contigs in each CC to transfer the taxonomy affiliations 
with the rules described above, or to limit the transferring to a certain distance from the 
taxonomy labelled contigs (--taxTransfer, default = all). 
 
rDNA 16S 
The 16S genes in the sample have to be located and their likely origin has to be identified 
at the end of the clustering step, when SeqDex looks for the cluster with the rRNA gene 
with the target taxonomy affiliation and the highest coverage among all the 16S rDNA genes 
present (if any other is present). Barrnap identifies putative 16S rRNA genes, that are then 
compared to the RDP database. The name of the fasta RDP file (RDPF), the name of the 
database file (RDPI) and the path to the folder where these are located (RDP) has to be 
specified in SeqDex.sh.  
The output of blastn is analysed by rRNA16S.R, with the selection of only one among all 
the taxonomic affiliations obtained for each 16S contigs. Only affiliations of contigs longer 
than  
--minContigLen (default= 1000) and with alignment length longer than 500 bp are saved 
in the output, in the Taxonomy folder. 16S genes can be fragmented in the assemblies, but 
we chose to consider only putative genes of at least 500 bp (change is possible, editing 
the rRNA16S.R script). 
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K-mer frequencies 
K-mer frequencies are used both to perform the machine learning classification and the 
clustering. 
In the GCKmersCov.R script, k-mer frequencies are calculated by accounting for reverse, 
complement and palindromes. Frequencies are calculated by normalizing the counts by 
the 1000/(length of the sequence). 
SeqDex calculates 3-mers frequencies by default (--Kmers). We choose this length 
because the main purpose of this model is to discriminate endosymbionts form their hosts, 
which are mostly eukaryotic, and so the trimers could implicitly summarize the information 
on codon usage and on coding density, which is very different in Bacteria and Eukaryotes. 
Moreover, the phylogenetic signal of k-mers increases with the length, but this introduces 
the necessity for setting a threshold on the length of contigs that becomes larger for longer 
k-mers. Using trimers reduces this problem, as there are only 64 combinations that reduces 
to XX variables thanks to reverse complementarity and palindrome compression. 
Nonetheless, the user can choose whichever k-mer length but going above 5-6 can cause 
memory and computational time to increase a lot. 
In GCKmersCov.R also calculates the total coverage per nucleotide by first summing for 
each contigs the single end reads coverage with half of the paired end reads coverage, to 
then divide it by the size.  
The output of GCKmersCov.R is saved in the Coverage folder and it contains the k-mers 
frequencies, the GC content, the nucleotide coverage and the contigs length. 
 
Phase 2 - machine learning classification 
 
Once completed, the output files of the phase 1 became the input file for phase 2, which 
couples K-mer frequencies with taxonomic affiliations to train machine learning models that 
are at the basis of the prediction of taxonomy for all contigs. The SVM.R and RF.R scripts 
both take as input the table with K-mer frequencies (--gcCovKmersTable), 16S rRNA 
gene table (--rRNA16S), the taxonomy table (--taxonomy) and the mate CC network (-
-network). Together with the network, arguments --Edges, --VerticesDegree, --
componentSize and --mixedComponents are needed, as described before. 
Only contigs longer than --minContigLength and having a label assigned in the 
taxonomy table will be used to build the machine learning models (labelled contigs viz 
unlabelled). The labelled dataset is randomly split into training and test set, where the 
former represents two thirds of the total and is used to train the models while the latter is 
used to test the models and to calculate error rates. This procedure is repeated, with a 
novel split of the dataset into train and test each time. The number of model build is user 
defined by setting –nmodel (default = 100). The percentage of erroneous contigs/length is 
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reported as a cumulative measure over all 100 times permuted models and therefore 
represents a measure that is largely independent on the identity of the contigs in the 
train/test datasets. The scripts calculate sensitivity, precision, accuracy and F1 score 
based on both the number of contigs and the cumulative length on the comparison 
between empirically inferred taxonomy and the predicted. 
After this procedure, the unlabelled contigs are predicted by using all the 100 models and 
then the percentage of inclusion within a taxonomical category is calculated. As output, 
only the most represented taxonomical category is reported. However, if a contig shows 
more affiliations and the 100 predictions are distributed among them such that are equally 
divided and the so percentages of belonging to each are equal (i.e.: two categories, 50% 
of presence each), the model keep them all. 
The taxonomic affiliation, predicted or obtained through blast, is integrated and eventually 
corrected using the mate CC network discussed before and following the same rules 
described above. During this step uncertain predictions can be corrected. If there are more 
taxonomical affiliations than allowed by the mate CC network parameters, then the contigs 
involved are considered ‘misclassified’. These contigs, as there is uncertainty about 
their origin, are included into the next iteration or in the output to avoid thrashing sequences 
which may turn out to be informative. Also, these scripts calculate a homogeneity (H) index, 
defined as the number of homogeneous CC divided by the total number of CC (both 
homogenous and heterogenous in terms of taxonomic predictions). It goes from 0 (all 
heterogeneous) to 1 (all homogeneous) to give an idea of how much the CCs are likely 
representing contigs from the same genome. When this value is low, we suggest not using 
the network at all. 
The user can choose to print on screen these stats or only on the output stats file (--
verbose, default TRUE). 
The machine learning algorithms have been developed to be highly parallelizable, so both 
SVM and RF support --threads argument (default 8). Nonetheless, the entire strategy, 
mainly for the 100 iterations, requires several hours. To reduce execution time, the user can 
control the number of iterations. 
We developed our SVM and RF scripts to allow easy customization of critical parameters 
for both.  
Support vector is sensible to --cost, --gamma and --cross values. Our implementation 
automatically selects best cost and gamma from a provided interval of values. The user 
can choose to use default intervals (--cost: 1e-1,1e3; --gamma: 1e-5,1e-1; --cross: 5) 
or provide its own. Also, the SVM implementation in e1071 automatically selects the best 
kernel type for the input data. For further information see https://cran.r-
project.org/web/packages/e1071/index.html. 
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The randomForest package used by SeqDex (in RF.R R script) automatically chooses 
one of the major influent parameters of the random forest algorithm (the number of variables 
tried at each split, see https://CRAN.R-project.org/package=randomFores). However, our 
implementation allows the user to choose the number of trees in the forest and if the 
sampling have to be done with or without replacement (default: --ntree 550, --replace 
TRUE).  
You can decide whether to pass the output of the machine learning to the clustering (Phase 
3) by setting CLUSTER=yes (default). When the user avoids running the clustering, the 
model gives as final output the fasta file of the contigs listed in the machine learning output. 
 
Phase 3 - clustering 
 
The clustering takes as input the taxonomy (--taxonomy), k-mer frequencies  
(--gcCovKmersTable), 16S genes (--rRNA16S), mate network (--network), and the 
Phase 2 output files (--modelOutput). If the machine learning prediction is done at 
several taxonomy ranks, only one of the taxonomy files need to be provided, as also the 
last prediction output. 
The Cluster.R script reduces the k-mer frequencies to a user defined number of 
components (--ncomponents, default= 2). As the uwot packages performs a parallelized 
form of UMAP, then the THREADS value set in the sh file will be used here too (--threads, 
default= 8) to reduce execution time. 
The user can choose to do the clustering only on these new components or also on GC 
content and/or coverage value (input, default= Kmers). In this way the user can combine 
the Blobology and the higher order composition analysis spirits in the clustering step. 
Combining these variables at this step allows to give some more weight to k-mers (2 
variables) than to coverage or GC (1 variable each). 
After obtaining these new dimensions, DBscan clusters the data. The script calculates a 
minPts value, as equal to the logarithm of the number of contigs used in clustering, and 
on this calculates the best Eps value. Usually, Eps is chosen by plotting the k Nearest 
Neighbors distances (kNN) and selecting the distance values where the curve changes 
slope. We avoid this user-dependent part by rounding the kNN distances to the first digit, 
calculating the difference between consecutive and selecting the kNN value which has the 
greatest difference from its subsequent value. 
After DBscan, each contig is assigned to a cluster and support to the assignments is 
evaluated by using the mate network, as previously done for the taxonomy and the machine 
learning prediction steps. However, here also contigs shorter than the provided length 
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(minContigLen, default= 1000) will be included in the output by extending the cluster 
belonging to all members of the CCs. 
At this point SeqDex searches for the cluster containing the target 16S gene that has also 
the higher coverage among all genes with the same label. 
Finally, the fasta file of the contigs of interest is returned as output. 
 
Output files 
 
SeqDex produces various folders with output files, most of which are used as checkpoints 
to be able to rerun the analysis, if needed.  
 
Coverage: coverage files (paired and single: sambasenamefile_PAIRED_end.bed and 
sambasenamefile_SINGLE_end.bed), the file with k-mer frequencies, GC content and 
total coverage informations (gckCovTable.txt), and the mate network file 
(contigNet.txt). 
 
Taxonomy: (i) blastn output (ContigsvsNt.txt); (ii) if performed, prodigal predicted 
proteins (prodigalContigs.faa and gff format ProdContigs) and diamond output 
(ContigsvsNr.txt); (iii) the elaboration made by Taxonomy.R, which produces one file 
per taxonomy rank (superkingdomTaxonomyIteration.txt); (iv) 16S genes 
predicted by barrnap (barrnap16s_contigs.gff, 16sContigs.fasta), the alignment 
on RDP (16sContigsvsRDP.txt), the RDP based taxonomy file 
(RDP16s_taxa_mod.txt); (v) the final elaboration performed by rRNA16S.R 
(rRNA16sTaxonomy2.txt). 
 
SVMoutput and RFoutput: for each iteration performed, the SVM/RF script produces a file 
containing statistics (superkingdomOutput_statsSVM.txt, 
superkingdomOutput_statsRF.txt; the number indicate the iteration therefore the 
taxonomy rank), a file with k-mer frequencies of the target contigs selected at the end of 
the iteration (superkingdomOutputSVM.txt, superkingdomOutputRF.txt) and the 
environment (superkingdomSVMModel.RData, superkingdomRFModel.RData; so 
that an expert user can use the SVM/RF models outside SeqDex). In the stats file is reported 
performance statistics of the models constructed in each machine learning R script. In 
detail, for each model, the prediction performed on the test set is compared to the relative 
empirically inferred taxonomy; the cumulative comparison of all test set are used to 
calculate cumulative percentage of error, sensitivity, precision, accuracy and F1 score by 
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considering both the number of contigs and the total length. At the end of this file is reported 
the H-index. 
When the clustering step is not performed, these folders also contain the fasta files of the 
contigs selected as belonging to the target organism by the machine learning algorithms 
(superkingdomOutputSVM_contigs.fasta, 
superkingdomOutputRF_contigs.fasta). 
The output file with the target contigs contains:  
- name of the contigs;  
- GC content;  
- k-mer frequencies;  
- Coverage;  
- TaxonDensity value: if it is ‘NoBlastHit’ means that the contig affiliations is not empirically 

inferred but has been predicted in this phase; if it is ‘-1’ means that the label is derived 
from the mate CC network-based extension; 

- taxonomy labels converted into numbers (the order reported in stats file); 
- percentage of times a contig has been classified in a certain taxonomical category, 

calculated over the predictions done over the 100 models performed. ’-1’ Could mean 
either that the contigs label is empirically inferred or that it comes from network-based 
extension. 

 
ClusteringOutput: if SeqDex is run enabling both SVM and RF, it will produce two clustering 
folders (ClusteringOutputSVM and ClusteringOutputRF) but only a folder named 
ClusteringOutput if only one machine learning algorithm was performed. The 
Clustering.R script produces: (i) the list of contigs in the target cluster, extended by 
using the mate network to (OutputClustering.txt); (ii) their sequences 
(OutputClusteringSVM.fasta, OutputClusteringRF.fasta); (iii) the clustering 
stats, reassuming the number of clusters obtained, the amount of contigs in each cluster, 
and the homogeneity index (output_statsClustering.txt); (iv) the final clustering 
table validated with the mate network (extendedClusteringCC.txt); (v) a file with the 
scatterplot of the contigs plotted by using two umap dimensions, and the scatterplot of the 
contigs colored by clusters (Rplots.pdf; cluster 0 is used to indicate outliers contigs, so 
the belonging to this cluster is not considered). 
The extendedClusteringCC.txt contains: 
- the names of the contigs;  
- the new umap dimensions;  
- the percent of assignment of a contigs to a label (calculated during the SVM/RF 

prediction phase);  
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- the identifier of the CC where each contig is found: if it is ‘-1’ means that the contigs does 
not belong to a CC (it is an isolated vertex); 

- The identifier of the cluster/group to which each contig belongs. 
 

Running SeqDex 
SeqDex can be run by using default parameters or by customizing one or more parameters. 
In both cases, there are options that must be specified by the user. To do this, open the 
SeqDex.sh file as text and at least provide mandatory variables: the THREADS (the number 
of threads to be used), NT (the path to the nucleotide databases file), NTI (the name of the 
nucleotide database – without extension), RDP (the path to the RDP files – database and 
fasta file must be in the same folder), RDPF (the name of the RDP fasta file), RDPI (the name 
of the RDP database – without extension), SCRIPT (the path to the folder containing the 
SeqDex folder), TAX (specify NT or NTNR to consider nt or both nt and nr-derived taxonomy 
labels), MLALG (SVM, RF, BOTH: self-explanatory), TRG (the target category at Class level – 
required only when CLUSTERING=YES), CLUSTER (YES/NO, whether to perform the 
DBscan clustering), ITER (taxonomy level on which perform SeqDex) and ITERTRG (target 
taxonomy category for ITER). If also protein-derived taxonomy affiliations are needed then 
set also the optional variables NR (the path to the protein database file) and NRI (the protein 
Diamond database), 
 
Default 
 
To run SeqDex by using default parameters, you only need to specify the above options. 
Then change permissions of the file, if needed, and run on the terminal  
./SeqDex.sh basename_mapping_file basename_contigs_fastafile  

Doing this, SeqDex.sh produces a taxonomy file at only the Superkingdom level, it 
predicts affiliation with both SVM and RF selecting only contigs from Bacteria (both 
obtained through BLAST or predicted by SeqDex) together with the misclassified ones, 
and then it performs the clustering step to retrieve the cluster with TRG 16S gene with 
higher coverage. The list of the default parameters is in tables 1-6. 
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Taxonomy parameters 
 
To change the target, the taxonomy level and the category on which performing the 
prediction and selection of the contigs: 
(1) change TRG argument in SeqDex.sh, to your taxonomy category at Class level; 
(2) change ITER (taxonomy level) and ITERTRG (taxonomy category for ITER level) 
variables to obtain taxonomic affiliation and prediction on a different level than the default. 
 
Iteration parameters 
 
To perform the iterations (that is, to perform the training of the machine learning methods 
on multiple taxonomical categories, in series):  
(1) change the default parameter in SeqDex.sh and provide a comma separated list of 
taxonomy levels (ITER), taxonomy target category for each level (ITERTRG) and the final 
target category at class level (TRG). By doing this, SeqDex will produce one taxonomy file 
for each level of interest (see above). These files will be named by the code corresponding 
to the taxonomy level pasted in front of the basename ‘taxonomyIteration.txt’ (i.e.: 
ITER=superkingdom,class, superkingdomTaxonomyIteration.txt for the first 
iteration; classTaxonomyIteration.txt for second iteration). These variables will be 
used also by both SVM.R and RF.R. 
(2) provide to SVM.R and/or RF.R scripts a comma separated list, without spaces, of the 
taxonomy files produced by Taxonomy.R. By default, SeqDex will use ITER to reconstruct 
the name of these files, but if different filenames are needed, change the TAXFILE variable 
providing a comma separated list (without spaces) of the files (with also their path). Here, 
the scripts will (i) use the labels of the first iteration (superkingdom or 
superkingdomTaxonomyIteration.txt) to predict the unlabelled contigs; (ii) 
integrate the affiliations with the mate network to validate/correct labels; (iii) select contigs 
with the target label (Bacteria) and then (iv) use only these on the subsequent iteration. 
Step (i)-(iv) will be repeated for all taxonomic levels and targets provided; 
(3) If the final clustering phase is not performed (CLUSTER=not), SeqDex will automatically 
recognize the last prediction file and return the FASTA file of the contigs in it. Else, if the 
final clustering step (CLUSTER=yes) is enabled, then the R script will use ITER together 
with MLALG to retrieve the last output prediction file and perform the clustering on it. 
However, if a different file has to be used, than simply change MODELOUT variable providing 
the file together with its path. 
Adding iterations may be meaningless if the percentages of error returned by the model 
are high. Most of the times, in our experience, you may need to adjust Taxonomy.R values 
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to use only highly sure taxonomic affiliations and predict only at Superkingdom level. We 
suggest not to go too deep in taxonomic levels: SeqDex at each iteration uses the contigs 
with the taxonomic affiliations obtained with Taxonomy.R which have been selected in the 
previous iteration; like this the number of contigs on which the model is applied will 
decrease at each iteration, and the error committed in each iteration will affect the next 
ones, making nearly impossible to go from Superkingdom to Species with affordable 
predictions. This is indeed also true for metagenomics tools, that not necessarily are able 
to provide species assignments with low error rate. Consider also that endosymbionts, 
especially the obligate ones, may not show high percentage of identity at species level 
even if close relative genomes are available. In our experience, we used at maximum only 
two iteration (Superkingdom and Class). 
 
Multiple targets dataset 
 
To deconvolve dataset with more than a target symbiont, the user can decide to: 
(1) run a SeqDex run specifying a single target organism: just run SeqDex for the first time 

on one of the target organisms, and then take advantage of coverage, taxonomy, 
rRNA16S, k-mers frequencies files already prepared to speed up subsequent run on a 
different target organism. SeqDex.sh will detect them automatically and skip the 
command lines needed to produce them, which are highly time consuming. Take care 
to rename the files of the prediction/clustering of the first organisms, or move them, to 
avoid overwriting; 

(2) modify the SeqDex.sh file to make SeqDex able to run all the targets deconvolution in 
sequences: (i) copy and paste all variable fields (line 7-143) and change them, in 
particular take care to change TRG, ITERTRG and the path of the input variable files to 
make sure it will find the file written in the first run and used by the subsequent other 
run (coverage, taxonomy, rRNA16S, k-mers frequencies); (ii) add command mkdir 
name_new_folder; cd name_new_folder; (iii) copy and paste the prediction and 
clustering, if performed, part (lines 301 to 517 of the file); (iv) add command cd ..; (v) 
repeat point (i)-(iv) for each subsequent target. Take care to change the path of each 
file that have to be provided to each new prediction-clustering R scripts. See example 
file. 

Deconvolving multiple targets dataset can be tricky. Just take care of: percentage of error 
committed by the machine learning models, as low error may involve the possibility to go 
deeper in the taxonomy levels considered; use the rRNA16sTaxonomy2.txt to find on which 
contigs the targets 16S genes are, and then check if they are correctly deconvolved in 
different groups in the final clustering step (if performed). In the latter case, if in the cluster 
of the searched target there is the 16S contigs of another target, then this means that the 
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two have not been correctly deconvolved and so you may wish to add an iteration to go 
deeper in the taxonomy and arrive to a more correct separation. 
 
Rerunning 
 
Similarly, once completed the analysis, you may want to rerun the entire script or part of it 
to see if the performance or the outputs will change significantly by changing parameters. 
The user can then choose to:  
(1) re-run the entire SeqDex.sh by changing parameters of interest and taking care to 

move or rename old files or they will be overwritten;  
(2) run only steps of interest, as each of our R scripts can be run independently by typing 

Rscript namescript.R in the terminal. Similarly, to see all the options available for 
the script, type Rscript namescrpit.R --help or Rscript namescrpit.R -h 
. As before, old files must be renamed or moved, or they will be overwritten.  

When machine learning predictions of SeqDex return high percentage of errors, we 
suggest to try to change aliLength and Xid of Taxonomy.R (and the corresponding 
parameters for the protein searches, if used). Samples with low complexity may not be 
highly influenced by these thresholds, while samples with high complexity (multiple targets, 
contaminating sequences of other bacteria, etc.) might need more affordable taxonomic 
affiliations; using stricter threshold for these values may be the right choice. To test the 
influence of these on your dataset, move or rename files to avoid overwriting (point (1)). 
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Default values of R scripts 
Appendix Table 8 - Taxonomy.R default parameters with indication of the SeqDex.sh lines in which are used. 

SeqDex.sh 
variables Taxonomy.R Default 

value Meaning 

BLAST --blast ContigsvsNt
.txt 

Contigs vs nucleotide database file. The 
path is needed if the R script is run in a 
different folder than this file (default: 
same folder) 

ITER --taxaLevels 1 Taxonomy level to consider. 1 means 
Superkingdom 

ALILENGTH --aliLength 200 Minimum alignment length to nucleotide 
hit 

XID --Xid 70 Minimum percentage of identity between 
contigs and nucleotide hit 

TAXONDENSITY --TaxonDensity 0.75 
Minimum considerable percentage (in 0-
1 scale) of belonging to a taxonomic 
affiliation of a contig 

DIAMONDD --diamond ContigsvsN
r_mod.txt 

Contigs vs protein database file. The 
path is needed if the R script is run in a 
different folder than this file (default: 
same folder) 

ALILENGTHNR --aliLengthNr 70 Minimum alignment length to protein hit 

XIDNR --XidNr 80 Minimum percentage of identity between 
contigs and protein hit 

NETWORK --network 
../Coverage
/contigNet.t
xt 

Mate CC network file with path 

EDGES --Edges 10 Minimum value for an edge to be 
considered 

VERTICES --
VerticesDegree 5 Maximum vertex degree allowed 

COMPONENTSIZE --
componentSize 2 Minimum size of the component CC 

VERTEXDIST --taxTransfer all 

If ‘all’ then all contigs in each CC is 
considered to transfer the taxonomy 
affiliations, whereas only the contigs 
distant no more than the provided value 
will be considered 
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Appendix Table 9 - rRNA16S.R default parameters with indication of the SeqDex.sh lines in which are used 

SeqDex.sh 
variables rRNA16S.R Default Meaning 

BLASTRDP --blastRDP 16sContigsvsRDP.txt 

Output file of 16S genes vs 
RDP. The path is needed if the 
R script is run in a different 
folder than this file (default: 
same folder) 

RDPTAXA --taxaRDP RDP16s_taxa_mod.txt File with RDP taxonomy 

MINLENGTH --
minContigLen 

1000 
Contigs length threshold: only 
contigs longer than this value 
will be considered 

 
Appendix Table 10 - GCKmersCov.R default parameters with indication of the SeqDex.sh lines in which are 
used. 

SeqDex.sh 
variables 

GCKmersCov
.R Default Meaning 

(input) --contigs ../“${2}”.fasta 
Contigs fasta file with its path. 
SeqDex uses the second argument 
to automatically find it 

KMERS --Kmers 3 K-mers length to be used 

SINGLE --covSingle onlymapping_sort
ed_SINGLE.bed 

Extended reads coverage file. If the 
R script is run in a different folder 
than this file, the path is also needed 

PAIRED --covPaired onlymapping_sort
ed_PAIRED.bed 

Paired end reads coverage file. If the 
R script is run in a different folder 
than this file, the path is also needed 

THREADS --threads “$THREADS” 
Number of threads to be used. 
SeqDex.sh uses the variable 
THREADS defined in line 7 
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Appendix Table 11 - SVM.R default parameters with indication of the SeqDex.sh lines in which are used. 

SeqDex.sh 
variables SVM.R Default Meaning 

KMERSFREQ 
--
gcCovKmersTa
ble 

../Coverag
e/gckCov
Table.txt 

Output of GCKmersCov.R (with path) 

RNA --rRNA16S 
../Taxono
my/rRNA1
6sTaxono
my2.txt 

Output of rRNA16S.R (with path) 

TAXFILE --taxonomy “${ITER}” Output of Taxonomy.R (with path) 

NETWORK --network 
../Coverag
e/contigN
et.txt 

Mate CC network file (with path) 

CROSS --cross 5 
Maximum number of allowed 
erroneous contigs in SVM model 
construction 

COST --cost 1e-1,1e3 Range of cost to be tested to tune 
SVM model 

GAMMA --gamma 1e-5,1e-1 Range of gamma values to be tested 
to tune SVM model 

SCALE --scale F 
Boolean value meaning whether to 
scale the data or not (usually not 
needed) 

MINLENGTH --minContigLen 1000 
Contigs length threshold: only 
contigs longer than this value will be 
considered 

NMODEL --nmodel 100 Number of models constructed 

ITERTRG --targetName Bacteria Name of the taxonomical label to be 
selected after prediction 

ITER --TaxaName Superking
dom 

Taxonomical level on which perform 
the prediction 

THREADS --threads “$THREA
DS” 

Number of threads to be used. 
SeqDex.sh uses the variable 
THREADS defined in line 7 

EDGES --Edges 10 Minimum value for an edge to be 
considered 

VERTICES --
VerticesDegree 5 Maximum vertex degree allowed 

COMPONENTSI
ZE 

--
componentSize 2 Minimum size of the component CC 

MIXEDCOMP 
--
mixedCompone
nts 

0.2 
Maximum proportion of alternative 
label in the component to consider it 
as erroneous and correct 

VERBOSE --verbose T 
Boolean value meaning if to print 
output stats of the model in screen or 
not (won’t disable stats file writing) 
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Appendix Table 12 - RF.R default parameters with indication of the SeqDex.sh lines in which are used 

SeqDex.sh 
variables RF.R Default Meaning 

KMERSFREQ 
--
gcCovKmersTa
ble 

../Coverag
e/gckCov
Table.txt 

Output of GCKmersCov.R (with path) 

RNA --rRNA16S 
../Taxono
my/rRNA1
6sTaxono
my2.txt 

Output of rRNA16S.R (with path) 

TAXFILE --taxonomy “${ITER}” Output of Taxonomy.R (with path) 

NETWORK --network 
../Coverag
e/contigN
et.txt 

Mate CC network file with path 

MINLENGTH --minContigLen 1000 
Contigs length threshold: only 
contigs longer than this value will be 
considered 

ITERTRG --targetName Bacteria Name of the taxonomical label to be 
selected after prediction 

NMODEL --nmodel 100 Number of models constructed 

ITER --TaxaName Superking
dom 

Taxonomical level on which perform 
the prediction 

REPLACE --replace T 
Boolean value meaning whether the 
RF sampling have to be done with or 
without replacement 

NTREE --ntree 500 Number of tree to be constructed by 
RF 

THREADS --threads “$THREA
DS” 

Number of threads to be used. 
SeqDex.sh uses the variable 
THREADS defined in line 7 

EDGES --Edges 10 Minimum value for an edge to be 
considered 

VERTICES --
VerticesDegree 5 Maximum vertex degree allowed 

COMPONENTSI
ZE 

--
componentSize 2 Minimum size of the component CC 

MIXEDCOMP 
--
mixedCompone
nts 

0.2 
Maximum proportion of alternative 
label in the component to consider it 
as erroneous and correct 

VERBOSE --verbose T 
Boolean value meaning if to print 
output stats of the model in screen or 
not (won’t disable stats file writing) 
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Appendix Table 13 - Clustering.R default parameters with indication of the SeqDex.sh lines in which are 
used 

SeqDex.sh 
variables Clustering.R Default Meaning 

MODELOUTSV
M --modelOutput “${ITER}” Output file of SVM.R to be used for 

clustering 

MODELOUTRF --modelOutput “${ITER}” Output file of RF.R to be used for 
clustering 

KMERSFREQ 
--
gcCovKmersTa
ble 

../Coverag
e/gckCov
Table.txt 

Output of GCKmersCov.R (with path) 

RNA --rRNA16S 
../Taxono
my/rRNA1
6sTaxono
my2.txt 

Output of rRNA16S.R (with path) 

TAXFILE --taxonomy “${ITER}” Output of Taxonomy.R (with path) 

NETWORK --network 
../Coverag
e/contigN
et.txt 

Mate CC network file with path 

TYPE --input Kmers 
Which type of input variable to be 
used for clustering (Kmers=only k-
mers frequencies reduced by umap) 

MINLENGTH --minContigLen 1000 
Contigs length threshold: only 
contigs longer than this value will be 
considered 

TRG --targetName “$TRG” 
Name of the target Class searched. 
SeqDex.sh uses TRG variable 
assigned in line 32 

THREADS --threads “$THREA
DS” 

Number of threads to be used. 
SeqDex.sh uses the variable 
THREADS defined in line 7 

EDGES --Edges 10 Minimum value for an edge to be 
considered 

VERTICES --
VerticesDegree 5 Maximum vertices degree to be 

considered 

COMPONENTSI
ZE 

--
componentSize 2 Minimum size of the component to 

be considered 

MIXEDCOMP 
--
mixedCompone
nts 

0.2 
Maximum proportion of alternative 
label in the component to consider it 
as erroneous and correct 

MDL --modelType “$MDL” Variable used to reconstruct input 
filename in case modelOutput=ITER 
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Example files 

Download the Example folder from 
figshare.com/articles/SeqDex_example_data_zip/8845841. 
This folder contains files to run the analysis on the simulated dataset. By running SeqDex 
on this example dataset you will be able to check if R dependencies have been installed 
successfully. To do so, enter in this folder in the terminal, change permissions to 
SeqDex_example.sh file (if needed), and then run ./SeqDex_example.sh remap 

contigs 

This command will automatically detect the files in Taxonomy and Coverage folders to 
pass them to SVM.R and RF.R, without final clustering step. We decided to provide these 
folders to allow an easy and fast check of the mandatory dependencies without the need 
to have also reference databases for nucleotide and 16S genes. Also, we compared the 
contigs against a database composed by only the two genomes used to create this 
simulated dataset which indeed provided an affordable taxonomy affiliation for all the 
contigs, making impossible to complete the predictive step. We then selected the blastn 
hit for 2/3 of the contigs (randomly sampled) to then perform the prediction on the other 
1/3. 
In addition, also the file used to perform SeqDex on the P. penetrans dataset 
(seqDex_Ppenetrans.sh) can be found, which contain at least two endosymbionts. We 
added it as an example of how the sh file can be modified to perform our model on more 
than a symbiont dataset. 
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Appendix 5 - SeqDec bash script 
#!/bin/bash 

#$1 basename alignment file 

#$2 basename contigs file 

echo $1 

echo $2 

##################################################################

###### 

#MANDATORY variables: these have to be assigned to run SeqDex 

THREADS=10 

 

#path to folder containing blast database files as downloaded from 

#ftp://ftp.ncbi.nlm.nih.gov/blast/db/ 

#or any other custom database with sequence titles fulfilling NCBI 

sequence #titles formatting rules 

NT=~/database/nt  

 

#file name of the blast database in $NT 

NTI=nt  

 

#path to blast database built using $RDPF downloaded from 

#https://rdp.cme.msu.edu/misc/resources.jsp 

#or any other custom database with sequence titles fulfilling RDP 

sequence #titles formatting rules 

RDP=~/database/rdp16s 

 

#fasta file used to build $RDPI 

RDPF=current_Bacteria_unaligned.fa 

 

#file name of the blast database in $RDP 

RDPI=rdp16S 

 

#home folder of SeqDex 
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SCRIPT=~/Downloads/ 

 

#taxonomy information to be used. Can be NT of NTNR 

TAX=NT 

 

#machine learning algorithm to be used. Can be RF, SVM, BOTH 

MLALG=BOTH 

 

#target taxonomy name to be used to identify the target cluster 

TRG=Alphaproteobacteria 

 

#if it is equal to 'yes', then SeqDex perform the final clustering 

step 

CLUSTER=yes 

 

#Taxonomy level/s to be used in SeqDex. One level for only one 

iteration; #a comma separated list (without spaces) for more than 

an iteration 

ITER=superkingdom 

 

#Taxonomy category target for each level defined in $ITER 

ITERTRG=bacteria 

##################################################################

###### 

#OPTIONAL variables: these variables have to be assigned only if 

$TAX=NTNR 

#path to folder containing nr database file in diamond format 

#or any other custom database with sequence titles fulfilling NCBI 

sequence #titles formatting rules 

NR=~/database/ 

 

#file name of the nr diamond database in $NR 

NRI=nrTaxonomy.dmnd  

##################################################################

###### 
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#input FILENAME used by the R scripts (default, usually no need to 

be #changed)  

 

#length of the kmers frequency calculated in GCKmersCov.R 

KMERS=3 

 

#kmers frequency table (output og gcKmersCov.R) 

KMERSFREQ=../Coverage/gckCovTable.txt 

 

#16S rRNA file produced by rRNA16S.R 

RNA=../Taxonomy/rRNA16sTaxonomy2.txt 

 

#Mate CC network file produced after coverage calculation 

NETWORK=../Coverage/contigNet.txt 

 

#taxonomy file that will be used by SVM.R, RF.R and Clustering.R R 

scripts. #By default they reconstruct these files name by using $ITER 

TAXFILE=$ITER 

 

#coverage files 

SINGLE=onlymapping_sorted_SINGLE.bed 

PAIRED=onlymapping_sorted_PAIRED.bed 

 

#print at screen output or run in silent mode 

VERBOSE=T 

##################################################################

###### 

#Shared parameters between Rscript 

 

#consider only contigs longer that $MINLENGTH 

MINLENGTH=1000 

 

#Number of SVM/RF model constructed in model training 

NMODEL=100 
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##################################################################

###### 

#Taxonomy.R parameters ONLY  

#blast output of the blast of the contigs vs $NTI 

BLAST=ContigsvsNt.txt 

 

#aliLength minimum length of an HSP to be considered for taxonomy 

in blastn #output 

ALILENGTH=200 

 

#Xid minimum percentage of identity of an HSP to be considered for 

taxonomy #in blastn output 

XID=70 

if [ $TAX == "NTNR" ]; then 

 #diamond output of the diamond of the prodigal predicted protein 

vs  #$NRI (only if $TAX=NTNR) 

 DIAMOND=ContigsvsNr_mod.txt 

 #aliLengthNR minimum length (in aa) of an HSP to be considered 

for  #taxonomy in Diamond output 

 ALILENGTHNR=70 

 #XidNr minimum percentage of identity of an HSP to be considered 

for  #taxonomy in Diamond output 

 XIDNR=80 

Fi 

 

#TaxonDensity congruence score for taxonomy from blast 

TAXONDENSITY=0.75 

##################################################################

###### 

#rRNA16S.R parameters ONLY - file names are the default, change only 

if #needed 

#output of Barrnap 16S contigs vs RDP database (blastn) 

BLASTRDP=16sContigvsRDP.txt 

 

#RDP taxonomies of the hits found by blast 
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RDPTAXA=RDP16s_taxa_mod.txt 

 

#minimum alignment legnth between the 16S gene found by Barrnap and 

the #blast hit to consider it in the subsequent analysis 

MIN16SLEN=500 

##################################################################

###### 

#CC mate network hyperparameters--use with care! 

#minimum edge value considered  

EDGES=10 

 

#maximum vertices degree considered  

VERTICES=5 

 

#minimum component size  

COMPONENTSIZE=2 

 

#maximum proportion of alternative taxonomy over the total to 

consider the #alternative as erroneous and correct/uniform the CC 

taxonomy 

MIXEDCOMP=0.2 

 

#variable to control taxonomy transfer/correction: if all, then all 

vertex #in the component will be used;  

#otherwise insert the maximum distance from taxonomy labelled vertex 

to #limit the taxonomy transfer/correction 

VERTEXDIST=all 

##################################################################

###### 

#SVM hyperparameters--use with care! see e1071 package vignette for 

#explanation 

CROSS=5 

COST=1e-1,1e3 

GAMMA=1e-5,1e-1 

SCALE=F 
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##################################################################

###### 

#RF hyperparameters--use with care! se randomForest package vignette 

for #explanation 

REPLACE=T 

NTREE=500 

##################################################################

###### 

#Clustering parameters  

#Output file produced by by SVM.R and RF.R R scripts that have to 

be used #by Clustering.R. By default they reconstruct these files 

name by using #$ITER; if more than an iteration have been performed, 

it automatically #uses the last $ITER taxonomy level. 

MODELOUTSVM=$ITER 

MODELOUTRF=$ITER 

 

#type of dimensions used for clustering. kmers=only umap reduced 

kmers #frequencies dimensions; to add coverage and/or GC content 

write kmers,cov #or kmers,GC or kmers,cov,GC 

TYPE=Kmers 

 

#number of umap component to be produced to reassume Kmers 

frequencies 

NCOMP=2 

 

#suffixes needed for reconstruct machine learning output file name 

from #$ITER (do not have to be changed) 

if [ $MLALG == "SVM" ]; then 

 MDL=SVM 

elif [ $MLALG == "RF" ]; then 

 MLD=RF 

elif [ $MLALG == "BOTH" ]; then 

 MLD1=SVM 

 MLD2=RF 

fi 
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##coverage calculation 

echo "coverage calculation" 

 

if [ -d Coverage ];then  

 echo "Using existing Coverage directory for the following 

steps. If this is not ok, please rename the directory."; 

 

else  

 echo "The Coverage directory does not exist. Creating..." 

 mkdir Coverage 

fi 

 

cd Coverage 

 

if [ -f onlymapping_sorted_PAIRED.bed ];then  

 echo "Using existing coverage outputs for the following steps. 

If this is not ok, please remove the file."; 

 

else  

 echo "The coverage outputs do not exist. Running...This will 

take a while" 

 

 samtools view --threads "$THREADS" -b ../"${1}".sam -o 

"${1}".bam 

 

 samtools view -F4 --threads "$THREADS" "${1}".bam -o 

"${1}"_onlymapping.bam 

 

 samtools view -H ../"${1}".sam > header.sam 

 

 samtools reheader header.sam "${1}"_onlymapping.bam > 

"${1}"_onlymapping_h.bam 
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 samtools sort --threads "$THREADS" "${1}"_onlymapping_h.bam > 

"${1}"_onlymapping_sorted.bam 

 

 grep "@SQ" header.sam | cut -f2,3 -d ":" --output-delimiter "

 " | sed -e 's/LN/1/g' > Scaffold_size.bed 

 

 samtools view -F1 --threads "$THREADS" -O BAM 

"${1}"_onlymapping_sorted.bam | bedtools bamtobed > 

"${1}"_SINGLE_end.bed 

 

 samtools view -f1 --threads "$THREADS" -O BAM 

"${1}"_onlymapping_sorted.bam | bedtools bamtobed > 

"${1}"_PAIRED_end.bed 

 

 coverageBed -a Scaffold_size.bed -bed -b "${1}"_SINGLE_end.bed 

> onlymapping_sorted_SINGLE.bed 

 

 coverageBed -a Scaffold_size.bed -bed -b "${1}"_PAIRED_end.bed 

> onlymapping_sorted_PAIRED.bed 

 

 samtools sort -n ../"${1}".sam -o ReadsRemap.bam -@ "$THREADS" 

 

 samtools view ReadsRemap.bam > ReadsRemap.sam 

 

 cut -f3,7 ReadsRemap.sam | grep -v "=" | grep -vi "*" | sort | 

uniq -c > contigNet.txt 

fi 

cd .. 

 

##taxonomic affiliations & 16S 

echo "taxonomy affiliation and 16S" 

 

if [ -d Taxonomy ];then  

 echo "Using existing Taxonomy directory for the following 

steps. If this is not ok, please rename the directory."; 
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else  

 echo "The Taxonomy directory does not exist. Creating..." 

 mkdir Taxonomy;  

fi 

 

cd Taxonomy 

 

if [ -f ContigsvsNt.txt ];then  

 echo "Using existing blastn output for the following steps. If 

this is not ok, please remove the file."; 

 

else  

 echo "The blastn output does not exist. Running blastn...This 

will take a while" 

 #blastn of the contigs file vs the database $NTI 

 blastn -query ../"${2}".fasta -out ContigsvsNt.txt -db 

"$NT"/"${NTI}" -outfmt "6 std qlen slen qcovs gaps qcovhsp" -

num_threads "$THREADS";  

fi 

 

if [ $TAX == "NTNR" ]; then 

 if [ -f ContigsvsNr_mod.txt ];then  

  echo "Using existing diamond output for the following 

steps. If this is not ok, please remove the file."; 

 

 else  

  echo "The diamond output does not exist. Running prodigal 

and diamond..." 

  #blastn of the contigs file vs the database $NTI 

  prodigal -i ../"${2}".fasta -a prodigalContigs.faa -f gff 

-p meta -q -o ProdContigs 

diamond blastp --db "$NR"/"${NRI}" --query prodigalContigs.faa --

out ContigsvsNr.txt --outfmt 6 qseqid qlen sseqid slen qstart qend 
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sstart send evalue bitscore length pident gaps staxids stitle qcovhsp 

-p "$THREADS" --quiet 

  cut -f1,2,3,4,5,6,7,8,9,10,11,12,13,14,16 ContigsvsNr.txt 

> ContigsvsNr_mod.txt  

 fi 

fi 

 

echo "16S rRNA genes in contigs" 

if [ -f RDP16s_taxa_mod.txt ];then  

 echo "Using existing 16S genes for the following steps. If this 

is not ok, please remove the file."; 

 

else  

 echo "The 16S genese file does not exist. Running...This will 

take a while" 

 

#find rRNAs in contigs 

 barrnap -kingdom bac --threads "$THREADS" ../"${2}".fasta --

quiet ON > barrnap16s_contigs.gff 

#extract contigs with matches to 16S_rRNA 

 grep -w 16S_rRNA barrnap16s_contigs.gff | cut -f1 > 

16scontigsName.txt ; seqtk subseq ../"${2}".fasta 16scontigsName.txt 

> 16sContigs.fasta 

#blastn contigs containing 16S rRNA against $RDPI 

 blastn -query 16sContigs.fasta -out 16sContigvsRDP.txt -db 

"$RDP"/"${RDPI}" -outfmt "6 std qlen slen qcovs gaps qcovhsp" -

num_threads "$THREADS" 

#retrieving RDP taxonomy 

 cut -f2 16sContigvsRDP.txt > RDP16s.txt; grep "$RDP"/"${RDPF}" 

-wf RDP16s.txt > RDP16s_taxa.txt 

#adapting output 

 sed "s/ /_/g" RDP16s_taxa.txt | sed "s/:/_/g" | sed "s/#/_/g" 

| sed "s/'/_/g" | sed $"s/;/\t/g" | sed "s/>//g" > 

RDP16s_taxa_mod.txt 

fi 
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cd .. 

##Rscript 

 

echo "Rscripts for kmers frequencies, SVM and final clustering step" 

echo "Taxonomy" 

 

cd Taxonomy 

#create taxonomy tables 

#build Taxonomy table with the following options (for full list run 

Rscript #TaxonomyDef.R -h at the terminal) 

#--taxaLevels 1 meaning contigs will be classified at superkingdom 

level 

#--blast output of the blast of the contigs vs $NTI 

#--aliLength minimum length of an HSP to be considered for taxonomy 

in #blastn output 

#--Xid minimum percentage of identity of an HSP to be considered for 

#taxonomy in blastn output 

#--TaxonDensity congruence score for taxonomy from blast 

#--diamond output of the diamond of the prodigal predicted protein 

vs $NRI 

#--aliLengthNR minimum length (in aa) of an HSP to be considered for 

#taxonomy in Diamond output 

#--XidNr minimum percentage of identity of an HSP to be considered 

for #taxonomy in Diamond output 

#--network network file  

#--Edges minimum edge value to be considered  

#--VerticesDegree maximum vertices degree to be considered  

#--componentSize minimum component size  

#--mixedComponents maximum proportion of alternative taxonomy over 

the #total to consider the alternative as erroneous and 

correct/uniform the CC #taxonomy 

if [ $TAX == "NT" ]; then 

 Rscript "$SCRIPT"/SeqDex/Taxonomy.R --blast "${BLAST}" --

taxaLevels "$ITER" --aliLength "$ALILENGTH" --Xid "$XID" --

TaxonDensity "$TAXONDENSITY" --network "${NETWORK}" --Edges "$EDGES" 
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--VerticesDegree "$VERTICES" --componentSize "$COMPONENTSIZE" --

mixedComponents "$MIXEDCOMP" --taxTransfer "$VERTEXDIST" 

elif [ $TAX == "NTNR" ]; then 

 Rscript "$SCRIPT"/SeqDex/Taxonomy.R --blast "${BLAST}" --

taxaLevels "$ITER" --aliLength "$ALILENGTH" --Xid "$XID" --

TaxonDensity "$TAXONDENSITY" --diamond "${DIAMOND}" --aliLengthNr 

"$ALILENGTHNR" --XidNr "$XIDNR" --network "${NETWORK}" --Edges 

"$EDGES" --VerticesDegree "$VERTICES" --componentSize 

"$COMPONENTSIZE" --mixedComponents "$MIXEDCOMP" --taxTransfer 

"$VERTEXDIST" 

fi 

  

#create tables with taxonomy assignments for 16S rRNA contigs (for 

full #list run Rscript rRNA16S.R -h at the terminal) 

#--blastRDP output of the blast of the 16S contigs vs RDP 

#--taxaRDP file with taxonomy from $RDPF 

#--minContigLeng minimum length of contigs considered by the model 

(should ##be the same of SVM/RF) 

Rscript "$SCRIPT"/SeqDex/rRNA16S.R --blastRDP "${BLASTRDP}" --

taxaRDP "${RDPTAXA}" --minContigLen "$MINLENGTH" --min16SLen 

"$MIN16SLEN" 

cd .. 

echo "gck" 

cd Coverage 

if [ -f gckCovTable.txt ];then  

 echo "Using existing K-mers frequency table. If this is not ok, 

please remove the file."; 

else  

 echo "The k-mers frequency table does not exists, running 

Rscript" 

#create tables with kmers frequencies, GC content and contigs 

coverage  

#--contigs contigs fasta file 

#--kmers length of the kmer to use for machine learning 
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#--covSingle --covPaired files created during coverage calculation 

(see above) 

#--threads number of threads to be used  

 Rscript "$SCRIPT"/SeqDex/GCKmersCov.R --contigs 

../"${2}".fasta --Kmers "$KMERS" --covSingle "${SINGLE}" --covPaired 

"${PAIRED}" --threads "$THREADS" 

fi 

cd .. 

if [ $MLALG == "SVM" ]; then 

 echo "SVM" 

 mkdir SVMoutput 

 cd SVMoutput 

#predicting taxonomic affiliation using SVM based upon output of 

#TaxonomyDef.R (for full list run Rscript SVMDef.R -h at the 

terminal) 

#--gckCovTable path and filename of the output of GCKmersCovDef.R 

files 

#--rRNA16S path and filename to output of rRNA16S.R 

#--taxonomy path and filenameto output of Taxonomy.R 

#--network network file  

#--cross --cost --gamma --scale parameters of SVM algorithm 

#--minContigLeng minimum length of contigs to be considerend by SVM 

#--targetName name of the target taxonomy of interest 

#--TaxaName taxonomy level of interest 

#--threads number of threads to be used 

#--Edges minimum edge value to be considered  

#--VerticesDegree maximum vertices degree to be considered  

#--componentSize minimum component size  

#--mixedComponents maximum proportion of alternative taxonomy over 

the #total to consider the alternative as erroneous and 

correct/uniform the CC #taxonomy 

#--verbose set to true to print on the terminal performance 

statistics and #percentage of error committed by SVM model  

 Rscript "$SCRIPT"/SeqDex/SVM.R --gcCovKmersTable 

"${KMERSFREQ}" --rRNA16S "${RNA}" --taxonomy "${TAXFILE}" --network 
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"${NETWORK}" --cross "$CROSS" --cost "$COST" --gamma "$GAMMA" --

scale "$SCALE" --minContigLen "$MINLENGTH" --targetName "$ITERTRG" 

--TaxaName "$ITER" --threads "$THREADS" --Edges "$EDGES" --

VerticesDegree "$VERTICES" --componentSize "$COMPONENTSIZE" --

mixedComponents "$MIXEDCOMP" --verbose "$VERBOSE" 

 cd .. 

 if [ $CLUSTER == "yes" ]; then 

  echo "umap e dbscan" 

  mkdir ClusteringOutput 

  cd ClusteringOutput 

#clustering contigs of the target taxonomy found with SVMDef.R. The 

#cluster of interest is identified by using 16S rRNA of target 

taxonomy #with higher coverage  

#--gckCovTable path and filename of the output of GCKmersCovDef.R 

files 

#--rRNA16S path and filename to output of rRNA16S.R 

#--taxonomy path and filenameto output of Taxonomy.R 

#--network network file  

#--input variables to be used in clustering algorithm 

#--minContigLeng minimum length of contigs to be considerend by SVM 

#--targetName name of the target taxonomy of interest 

#--threads number of threads to be used 

#--ncomponents number of components to be extract by umap algorithm 

#--Edges minimum edge value to be considered  

#--VerticesDegree maximum vertices degree to be considered  

#--componentSize minimum component size  

#--mixedComponents maximum proportion of alternative taxonomy over 

the #total to consider the alternative as erroneous and 

correct/uniform the CC #taxonomy 

 

  Rscript "$SCRIPT"/SeqDex/Clustering.R --modelOutput 

"${MODELOUTSVM}" --gcCovKmersTable "${KMERSFREQ}" --rRNA16S 

"${RNA}" --taxonomy "${TAXFILE}" --network "${NETWORK}" --input 

"$TYPE" --minContigLen "$MINLENGTH" --targetName "$TRG" --threads 

"$THREADS" --ncomponents "$NCOMP" --Edges "$EDGES" --VerticesDegree 
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"$VERTICES" --componentSize "$COMPONENTSIZE" --mixedComponents 

"$MIXEDCOMP" --modelType "$MDL"  

  seqtk subseq ../"${2}".fasta OutputClustering.txt > 

OutputClustering.fasta 

  cd .. 

 else 

  cd SVMoutput 

  A=$(echo "$ITER" | rev | cut -f1 -d "," | rev) 

  A+="OutputSVM.txt" 

  cut -f1 "${A}" > outputSVM_names.txt 

  seqtk subseq ../"${2}".fasta outputSVM_names.txt > 

outputSVM_contigs.fasta 

  cd .. 

 fi 

elif [ $MLALG == "RF" ]; then 

 echo "RF" 

 mkdir RFoutput 

 cd RFoutput 

#predicting taxonomic affiliation using SVM based upon output of 

#TaxonomyDef.R (for full list run Rscript RFDef.R -h at the terminal) 

#--gckCovTable path and filename of the output of GCKmersCovDef.R 

files 

#--rRNA16S path and filename to output of rRNA16S.R 

#--taxonomy path and filenameto output of Taxonomy.R 

#--network network file  

#--minContigLeng minimum length of contigs to be considerend by RF 

#--targetName name of the target taxonomy of interest 

#--TaxaName taxonomy level of interest 

#--replace if sampling cases of RandomForest should be done with or 

without #replacement 

#--ntree number of tree to be grown in te forest 

#--threads number of threads to be used 

#--Edges minimum edge value to be considered  

#--VerticesDegree maximum vertices degree to be considered  

#--componentSize minimum component size  
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#--mixedComponents maximum proportion of alternative taxonomy over 

the #total to consider the alternative as erroneous and 

correct/uniform the CC #taxonomy 

#--verbose set to true to print on the terminal performance 

statistics and #percentage of error committed by RF model  

 Rscript "$SCRIPT"/SeqDex/RF.R --gcCovKmersTable "${KMERSFREQ}" 

--rRNA16S "${RNA}" --taxonomy "${TAXFILE}" --network "${NETWORK}" -

-minContigLen "$MINLENGTH" --targetName "$ITERTRG" --TaxaName 

"$ITER" --replace "$REPLACE" --ntree "$NTREE" --threads "$THREADS" 

--Edges "$EDGES" --VerticesDegree "$VERTICES" --componentSize 

"$COMPONENTSIZE" --mixedComponents "$MIXEDCOMP" --verbose 

"$VERBOSE" 

 cd .. 

 if [ $CLUSTER == "yes" ]; then 

  echo "umap e dbscan" 

  mkdir ClusteringOutput 

  cd ClusteringOutput 

#clustering contigs of the target taxonomy found with RFDef.R. The 

cluster #of interest is identified by using 16S rRNA of target 

taxonomy with higher #coverage  

#--gckCovTable path and filename of the output of GCKmersCovDef.R 

files 

#--rRNA16S path and filename to output of rRNA16S.R 

#--taxonomy path and filenameto output of Taxonomy.R 

#--network network file  

#--input variables to be used in clustering algorithm 

#--minContigLeng minimum length of contigs to be considerend by RF 

#--targetName name of the target taxonomy of interest 

#--threads number of threads to be used 

#--ncomponents number of components to be extract by umap algorithm 

#--Edges minimum edge value to be considered  

#--VerticesDegree maximum vertices degree to be considered  

#--componentSize minimum component size  
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#--mixedComponents maximum proportion of alternative taxonomy over 

the #total to consider the alternative as erroneous and 

correct/uniform the CC #taxonomy 

 

  Rscript "$SCRIPT"/SeqDex/Clustering.R --modelOutput 

"${MODELOUTRF}" --gcCovKmersTable "${KMERSFREQ}" --rRNA16S "${RNA}" 

--taxonomy "${TAXFILE}" --network "${NETWORK}" --input "$TYPE" --

minContigLen "$MINLENGTH" --targetName "$TRG" --threads "$THREADS" 

--ncomponents "$NCOMP" --Edges "$EDGES" --VerticesDegree "$VERTICES" 

--componentSize "$COMPONENTSIZE" --mixedComponents "$MIXEDCOMP" --

modelType "$MDL"  

  seqtk subseq ../"${2}".fasta OutputClustering.txt > 

OutputClustering.fasta 

  cd .. 

 else 

  cd RFoutput 

  A=$(echo "$ITER" | rev | cut -f1 -d "," | rev) 

  A+="OutputRF.txt" 

  cut -f1 "${A}" > outputRF_names.txt 

  seqtk subseq ../"${2}".fasta outputRF_names.txt > 

outputRF_contigs.fasta 

  cd .. 

 fi 

elif [ $MLALG == "BOTH" ]; then 

 mkdir SVMoutput 

 cd SVMoutput 

 echo "SVM" 

#predicting taxonomic affiliation using SVM based upon output of 

#TaxonomyDef.R (for full list run Rscript SVMDef.R -h at the 

terminal) 

#--gckCovTable path and filename of the output of GCKmersCovDef.R 

files 

#--rRNA16S path and filename to output of rRNA16S.R 

#--taxonomy path and filenameto output of Taxonomy.R 

#--network network file  
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#--cross --cost --gamma --scale parameters of SVM algorithm 

#--minContigLeng minimum length of contigs to be considerend by SVM 

#--targetName name of the target taxonomy of interest 

#--TaxaName taxonomy level of interest 

#--threads number of threads to be used 

#--Edges minimum edge value to be considered  

#--VerticesDegree maximum vertices degree to be considered  

#--componentSize minimum component size  

#--mixedComponents maximum proportion of alternative taxonomy over 

the #total to consider the alternative as erroneous and 

correct/uniform the CC #taxonomy 

#--verbose set to true to print on the terminal performance 

statistics and #percentage of error committed by SVM model  

 Rscript "$SCRIPT"/SeqDex/SVM.R --gcCovKmersTable 

"${KMERSFREQ}" --rRNA16S "${RNA}" --taxonomy "${TAXFILE}" --network 

"${NETWORK}" --cross "$CROSS" --cost "$COST" --gamma "$GAMMA" --

scale "$SCALE" --minContigLen "$MINLENGTH" --targetName "$ITERTRG" 

--TaxaName "$ITER" --threads "$THREADS" --Edges "$EDGES" --

VerticesDegree "$VERTICES" --componentSize "$COMPONENTSIZE" --

mixedComponents "$MIXEDCOMP" --verbose "$VERBOSE" 

 cd .. 

 if [ $CLUSTER == "yes" ]; then 

  echo "umap e dbscan on SVM" 

 

  mkdir ClusteringOutputSVM 

  cd ClusteringOutputSVM 

#clustering contigs of the target taxonomy found with SVMDef.R. The 

#cluster of interest is identified by using 16S rRNA of target 

taxonomy #with higher coverage  

#--gckCovTable path and filename of the output of GCKmersCovDef.R 

files 

#--rRNA16S path and filename to output of rRNA16S.R 

#--taxonomy path and filenameto output of Taxonomy.R 

#--network network file  

#--input variables to be used in clustering algorithm 
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#--minContigLeng minimum length of contigs to be considerend by SVM 

#--targetName name of the target taxonomy of interest 

#--threads number of threads to be used 

#--ncomponents number of components to be extract by umap algorithm 

#--Edges minimum edge value to be considered  

#--VerticesDegree maximum vertices degree to be considered  

#--componentSize minimum component size  

#--mixedComponents maximum proportion of alternative taxonomy over 

the #total to consider the alternative as erroneous and 

correct/uniform the CC #taxonomy 

 

  Rscript "$SCRIPT"/SeqDex/Clustering.R --modelOutput 

"${MODELOUTSVM}" --gcCovKmersTable "${KMERSFREQ}" --rRNA16S 

"${RNA}" --taxonomy "${TAXFILE}" --network "${NETWORK}" --input 

"$TYPE" --minContigLen "$MINLENGTH" --targetName "$TRG" --threads 

"$THREADS" --ncomponents "$NCOMP" --Edges "$EDGES" --VerticesDegree 

"$VERTICES" --componentSize "$COMPONENTSIZE" --mixedComponents 

"$MIXEDCOMP" --modelType "$MDL1" 

  seqtk subseq ../"${2}".fasta OutputClustering.txt > 

OutputClusteringSVM.fasta 

  cd .. 

 else 

  cd SVMoutput 

  A=$(echo "$ITER" | rev | cut -f1 -d "," | rev) 

  A+="OutputSVM.txt" 

  cut -f1 "${A}" > outputSVM_names.txt 

  seqtk subseq ../"${2}".fasta outputSVM_names.txt > 

outputSVM_contigs.fasta 

  cd .. 

 fi 

 echo "RF" 

 mkdir RFoutput 

 cd RFoutput 

#predicting taxonomic affiliation using SVM based upon output of 

#TaxonomyDef.R (for full list run Rscript RFDef.R -h at the terminal) 
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#--gckCovTable path and filename of the output of GCKmersCovDef.R 

files 

#--rRNA16S path and filename to output of rRNA16S.R 

#--taxonomy path and filenameto output of Taxonomy.R 

#--network network file  

#--minContigLeng minimum length of contigs to be considerend by RF 

#--targetName name of the target taxonomy of interest 

#--TaxaName taxonomy level of interest 

#--ntree number of tree to be grown in te forest 

#--replace if sampling cases of RandomForest should be done with or 

without #replacement 

#--threads number of threads to be used 

#--Edges minimum edge value to be considered  

#--VerticesDegree maximum vertices degree to be considered  

#--componentSize minimum component size  

#--mixedComponents maximum proportion of alternative taxonomy over 

the #total to consider the alternative as erroneous and 

correct/uniform the CC #taxonomy 

#--verbose set to true to print on the terminal performance 

statistics and #percentage of error committed by RF model  

 Rscript "$SCRIPT"/SeqDex/RF.R --gcCovKmersTable "${KMERSFREQ}" 

--rRNA16S "${RNA}" --taxonomy "${TAXFILE}" --network "${NETWORK}" -

-minContigLen "$MINLENGTH" --targetName "$ITERTRG" --TaxaName 

"$ITER" --replace "$REPLACE" --ntree "$NTREE" --threads "$THREADS" 

--Edges "$EDGES" --VerticesDegree "$VERTICES" --componentSize 

"$COMPONENTSIZE" --mixedComponents "$MIXEDCOMP" --verbose 

"$VERBOSE" 

 cd .. 

 if [ $CLUSTER == "yes" ]; then 

  echo "umap e dbscan on RF" 

  mkdir ClusteringOutputRF 

  cd ClusteringOutputRF 

#clustering contigs of the target taxonomy found with RFDef.R. The 

cluster #of interest is identified by using 16S rRNA of target 

taxonomy with higher #coverage  
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#--gckCovTable path and filename of the output of GCKmersCovDef.R 

files 

#--rRNA16S path and filename to output of rRNA16S.R 

#--taxonomy path and filenameto output of Taxonomy.R 

#--network network file  

#--input variables to be used in clustering algorithm 

#--minContigLeng minimum length of contigs to be considerend by RF 

#--targetName name of the target taxonomy of interest 

#--threads number of threads to be used 

#--ncomponents number of components to be extract by umap algorithm 

#--Edges minimum edge value to be considered  

#--VerticesDegree maximum vertices degree to be considered  

#--componentSize minimum component size  

#--mixedComponents maximum proportion of alternative taxonomy over 

the #total to consider the alternative as erroneous and 

correct/uniform the CC #taxonomy 

 

  Rscript "$SCRIPT"/SeqDex/Clustering.R --modelOutput 

"${MODELOUTRF}" --gcCovKmersTable "${KMERSFREQ}" --rRNA16S "${RNA}" 

--taxonomy "${TAXFILE}" --network "${NETWORK}" --input "$TYPE" --

minContigLen "$MINLENGTH" --targetName "$TRG" --threads "$THREADS" 

--ncomponents "$NCOMP" --Edges "$EDGES" --VerticesDegree "$VERTICES" 

--componentSize "$COMPONENTSIZE" --mixedComponents "$MIXEDCOMP" --

modelType "$MDL2" 

  

  seqtk subseq ../"${2}".fasta OutputClustering.txt > 

OutputClusteringRF.fasta 

  cd .. 

 else 

  cd RFoutput 

  A=$(echo "$ITER" | rev | cut -f1 -d "," | rev) 

  A+="OutputRF.txt" 

  cut -f1 "${A}" > outputRF_names.txt 

  seqtk subseq ../"${2}".fasta outputRF_names.txt > 

outputRF_contigs.fasta 



 

 148 

  cd .. 

 fi 

fi 
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Appendix 6 – Chapter 4 Supplementary 
material  
Appendix Table 14 – list of the genomes used in the phylogenomic and functional analyses 

NCBI code Name 
GCA_000283535.1 Pseudogulbenkiania NH8B 
GCA_000812585.1 Chromobacterium piscinae 
GCA_001458475.1 Kingella kingae 
GCA_001808185.1 Jeongeupia USM3 
GCA_001809035.1 Eikenella HMSC061C02 
GCA_001855575.1 Chromobacterium sphagni 
GCA_002002905.1 Aquaspirillum LM1 
GCA_002108505.1 Neisseria dumasiana 
GCA_002216145.1 Neisseria 10023 
GCA_002237445.1 Neisseria KEM232 
GCA_002327085.1 Neisseria 10022 
GCA_002848345.1 Chromobacterium ATCC53434 
GCA_002863305.1 Neisseria perflava 
GCA_002892535.1 Neisseriaceae bacterium DSM100970 
GCA_002951955.1 Vitreoscilla C1 
GCA_003013245.1 Neisseria iguanae 
GCA_003201855.1 Rivicola pingtungensis 
GCA_003269145.1 Microvirgula AG722 
GCA_003325475.1 Chromobacterium IIBBL1121 
GCA_003325495.1 Chromobacterium IIBBL2741 
GCA_003355495.1 Crenobacter K1W11S77 
GCA_003443515.1 Chromobacterium rhizoryzae 
GCA_003538525.1 Neisseriales UBA11063 
GCA_003633895.1 Vogesella indigofera 
GCA_003952345.1 Iodobacter H11R3 
GCA_003963245.1 Neisseriaceae AWTP126 
GCA_004328945.1 Aquitalea USM4 
GCA_004341385.1 Uruburuella suis 
GCA_004363805.1 Paludibacterium purpuratum 
GCA_004919095.1 Crenobacter GY70310 
GCA_005048205.1 Chitiniphilus HX215 
GCA_900090205.1 Vogesella LIG4 
GCA_900094895.1 Snodgrassella R53583 
GCA_900230205.1 Alysiella filiformis 
GCA_900322255.1 Prolinoborus fasciculus 
GCA_900451175.1 Kingella potus 
GCA_900451195.1 Iodobacter fluviatilis 
GCA_900636515.1 Neisseria animalis 
GCF_000005845.2 Escherichia coli 
GCF_000006845.1 Neisseria gonorrhoeae 
GCF_000007705.1 Chromobacterium violaceum 
GCF_000008805.1 Neisseria meningitidis 
GCF_000011545.1 Burkholderia pseudomallei 
GCF_000020105.1 Neisseria gonorrhoeae 
GCF_000021025.1 Laribacter hongkongensis 
GCF_000025705.1 Sideroxydans lithotrophicus 
GCF_000090875.1 Neisseria oraltaxon014 
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GCF_000093025.1 Methylotenera versatilis 
GCF_000158615.1 Eikenella corrodens 
GCF_000160435.1 Kingella oralis 
GCF_000163775.2 Simonsiella muelleri 
GCF_000173875.1 Neisseria mucosa 
GCF_000173895.1 Neisseria cinerea 
GCF_000173955.1 Neisseria subflava 
GCF_000174355.1 Pseudogulbenkiania ferrooxidans 
GCF_000174655.1 Neisseria sicca 
GCF_000175275.1 Neisseria flavescens 
GCF_000176735.1 Neisseria polysaccharea 
GCF_000186165.1 Neisseria mucosa 
GCF_000190695.1 Kingella denitrificans 
GCF_000193775.1 Neisseria polysaccharea 
GCF_000194925.1 Neisseria bacilliformis 
GCF_000196295.1 Neisseria lactamica 
GCF_000213535.1 Kingella kingae 
GCF_000220865.1 Neisseria macacae 
GCF_000224255.1 Neisseria weaveri 
GCF_000226875.1 Neisseria shayeganii 
GCF_000227765.1 Neisseria wadsworthii 
GCF_000297055.2 Sulfuricella denitrificans 
GCF_000335715.1 Vogesella LIG4 
GCF_000374805.1 Chitiniphilus shinanonensis 
GCF_000376945.1 Leeia oryzae 
GCF_000382305.1 Vitreoscilla stercoraria 
GCF_000420525.1 Aquaspirillum serpens 
GCF_000422925.1 Paludibacterium yongneupense 
GCF_000425565.1 Tepidiphilus margaritifer 
GCF_000428145.1 Chitinilyticum litopenaei 
GCF_000428465.1 Chitinimonas koreensis 
GCF_000428785.1 Conchiformibius kuhniae 
GCF_000429665.1 Azovibrio restrictus 
GCF_000429785.1 Chitinibacter tainanensis 
GCF_000430805.1 Chitinilyticum aquatile 
GCF_000470375.1 Kingella kingae 
GCF_000527175.1 Pseudogulbenkiania MAI1 
GCF_000600005.1 Snodgrassella alviwKB2 
GCF_000620105.1 Microvirgula aerodenitrificans 
GCF_000620145.1 Deefgea rivuli 
GCF_000620925.1 Conchiformibius steedae 
GCF_000695545.1 Snodgrassella alviwkB29 
GCF_000695565.1 Snodgrassella alviwkB12 
GCF_000711875.1 Andreprevotia chitinilytica 
GCF_000711885.1 Chromobacterium haemolyticum 
GCF_000735045.1 Ferrovum myxofaciens 
GCF_000745895.1 Stenoxybacter acetivorans 
GCF_000745955.1 Alysiella crassa 
GCF_000751855.1 Kingella negevensis 
GCF_000758475.1 Chromobacterium haemolyticum 
GCF_000799095.1 Chitinibacter ZOR0017 
GCF_000800415.1 Neisseria meningitidis 
GCF_000813705.1 Morococcus cerebrosus 
GCF_000818035.1 Neisseria elongata 
GCF_000952105.1 Chromobacterium violaceum 
GCF_000964065.1 Aquitalea magnusonii 
GCF_000969645.2 Janthinobacterium B98 



 

 151 

GCF_000971355.1 Chromobacterium vaccinii 
GCF_001020585.1 Chromobacterium subtsugae 
GCF_001027865.1 Neisseria arctica 
GCF_001037925.1 Vogesella EB 
GCF_001043555.1 Chromobacterium LK1 
GCF_001043705.1 Chromobacterium LK11 
GCF_001063455.1 Morococcus cerebrosus 
GCF_001063965.1 Neisseria bacilliformis 
GCF_001294205.1 Amantichitinum ursilacus 
GCF_001302325.1 Gulbenkiania mobilis 
GCF_001308005.1 Neisseria 74A18 
GCF_001418035.1 Gulbenkiania indica 
GCF_001457815.1 Vitreoscilla massiliensis 
GCF_001515285.1 Aquitalea magnusonii 
GCF_001515305.1 Aquitalea pelogenes 
GCF_001517245.1 Gulbenkiania indica 
GCF_001590725.1 Snodgrassella CFCC13594 
GCF_001592185.1 Bergeriella denitrificans 
GCF_001619695.1 Crenobacter luteus 
GCF_001619865.1 Chromobacterium F49 
GCF_001648335.1 Eikenella corrodens 
GCF_001648345.1 Eikenella NML01A086 
GCF_001648355.1 Eikenella NML02A017 
GCF_001648395.1 Eikenella NML03A027 
GCF_001648415.1 Eikenella NML070372 
GCF_001648425.1 Eikenella NML080894 
GCF_001648435.1 Eikenella NML120348 
GCF_001648475.1 Eikenella NML130454 
GCF_001648495.1 Eikenella NML96A049 
GCF_001648505.1 Eikenella NML97A109 
GCF_001648535.1 Eikenella NML990057 
GCF_001676875.1 Chromobacterium subtsugae 
GCF_001811325.1 Eikenella HMSC071B05 
GCF_001813335.1 Neisseria HMSC055H02 
GCF_001815615.1 Neisseria HMSC075C10 
GCF_001815685.1 Neisseria HMSC056A03 
GCF_001855275.1 Chromobacterium vaccinii 
GCF_001855555.1 Chromobacterium sphagni 
GCF_001855565.1 Chromobacterium amazonense 
GCF_002022745.1 Neisseria lactamica 
GCF_002073715.2 Neisseria sicca 
GCF_002081815.1 Chromobacterium haemolyticum 
GCF_002081825.1 Chromobacterium haemolyticum 
GCF_002088735.1 Snodgrassella alviA112 
GCF_002108495.1 Neisseria canis 
GCF_002108575.1 Neisseria zoodegmatis 
GCF_002108595.1 Neisseria dentiae 
GCF_002108605.1 Neisseria animaloris 
GCF_002213445.1 Xenophilus AP218F 
GCF_002215055.1 Laribacter hongkongensis 
GCF_002217795.2 Aquitalea magnusonii 
GCF_002222655.1 Vitreoscilla filiformis 
GCF_002735645.1 Iodobacter BJB302 
GCF_002735695.1 Chitinimonas BJB300 
GCF_002777425.1 Snodgrassella alviApp48 
GCF_002777745.1 Snodgrassella alviWF33 
GCF_002777825.1 Snodgrassella alviNev42 
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GCF_002777855.1 Snodgrassella alviwkB298 
GCF_002777865.1 Snodgrassella alviPEB0171 
GCF_002803635.1 Neisseria N17716 
GCF_002847985.1 Neisseria perflava 
GCF_002863285.1 Neisseria sicca 
GCF_900086555.1 Neisseria weaveri 
GCF_900113545.1 Neisseria elongata 
GCF_900115065.1 Formivibrio citricus 
GCF_900119825.1 Chitinimonas taiwanensis 
GCF_900143275.1 Nitrosomonas cryotolerans 
GCF_900169325.1 Kingella denitrificans 
GCF_900176275.1 Andreprevotia lacus 
GCF_900177275.1 Pseudogulbenkiania subflava 
GCF_900177895.1 Kingella negevensis 
GCF_900187105.1 Eikenella corrodens 
GCF_900187305.1 Neisseria zoodegmatis 
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Appendix 7 – Other project 

 

Targeted genotyping by sequencing: a new way to genome profile
the cat

M. Longeri* , A. Chiodi†, M. Brilli‡,§, A. Piazza§,¶, L. A. Lyons**, G. Sofronidis††,

M. C. Cozzi* and C. Bazzocchi*,§,‡‡

*Department of Veterinary Medicine, University of Milan, Milano 20133, Italy. †Department of Earth and Environmental Sciences,

University of Pavia, Pavia 27100, Italy. ‡Department of Biosciences, University of Milan, Milano 20133, Italy. §Paediatric Clinical Research

Centre “Romeo ed Enrica Invernizzi”, University of Milan, Milano 20157, Italy. ¶Department of Biomedical and Clinical Sciences “L. Sacco”,

University of Milan, Milano 20157, Italy. **Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of

Missouri, Columbia, MO 65211, USA. ††Orivet Genetic Pet Care, Suite 102/163-169 Inkerman Street, St. Kilda, Vic. 3182, Australia.
‡‡Coordinated Research Centre “EpiSoMI”, University of Milan, Milano 20133, Italy.

Summary Targeted GBS is a recent approach for obtaining an effective characterization for hundreds

to thousands of markers. The high throughput of next-generation sequencing technologies,

moreover, allows sample multiplexing. The aims of this study were to (i) define a panel of

single nucleotide polymorphisms (SNPs) in the cat, (ii) use GBS for profiling 16 cats, and (iii)

evaluate the performance with respect to the inference using standard approaches at

different coverage thresholds, thereby providing useful information for designing similar

experiments. Probes for sequencing 230 variants were designed based on the Felis_ca-

tus_8.0. 8.0 genome. The regions comprised anonymous and non-anonymous SNPs.

Sixteen cat samples were analysed, some of which had already been genotyped in a large

group of loci and one having been whole-genome sequenced in the 99_Lives Cat Genome

Sequencing Project. The accuracy of the method was assessed by comparing the GBS results

with the genotypes already available. Overall, GBS achieved good performance, with 92–
96% correct assignments, depending on the coverage threshold used to define the set of

trustable genotypes. Analyses confirmed that (i) the reliability of the inference of each

genotype depends on the coverage at that locus and (ii) the fraction of target loci whose

genotype can be inferred correctly is a function of the total coverage. GBS proves to be a

valid alternative to other methods. Data suggested a depth of less than 119 is required for

greater than 95% accuracy. However, sequencing depth must be adapted to the total size of

the targets to ensure proper genotype inference.

Keywords DNA profiling, Felis catus, genotyping-by-sequencing, single nucleotide

polymorphisms

Introduction

The global pet care market size (major segments including

food, veterinary care and over-the-counter products) was

estimated at USD 131.7 billion in 2016 and is expected to

reach USD 202.6 billion by 2025, an estimated growth of

4.9% calculated with the Compound Annual Growth Rate

(https://www.grandviewresearch.com/press-release/global-

pet-care-market, March 2018). Cats are increasingly appre-

ciated as pets because they are known for helping reduce

stress and anxiety and for having strong interactions with

humans (Hart et al. 2018). In this context, fancy breeds are

becoming more and more popular worldwide. In pedigreed

cats, studbooks can recommend a DNA-based control of

both animal identity and traits of interest for enrolment and

selection, together with a permanent electronic identifica-

tion. The International Society of Animal Genetics (ISAG)

fosters the definition and nomenclature standardization of

panels of genetic markers for the identification and parent-

age control of domestic animals, including cats (Lipinski

et al. 2007; https://www.isag.us/committees.asp). These

panels are used by service laboratories for owners and
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