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Chapter 1
Introduction

In basic tests of Physics, the scattering of photons has been widely used to
investigate both the structure of matter and the nature of light. The identi-
fication of the light with electromagnetic waves is based on the experiments
performed by Faraday and the theoretical studies driven by Maxwell. The
Compton effect [1], i.e. the wavelength shift of light scattered off an electron,
contributed in establishing the particle-wave duality and at the same time
opened the way to study the internal structure of composite particles.

On the heels of the discovery of the four fundamental interactions and
the consequent investigation of the sub-nucleon structure, Compton scattering
re-confirmed itself as a very clean process to study this structure, both theo-
retically and experimentally. The connection that can be established, thanks
to the optical theorem, between scattering of photons at low frequency and
absorption of photons of high frequencies, stresses once more the universal-
ity of photons as probes of nucleon structure. This connection links the nu-
cleon photo-absorption spectrum with low-energy coefficients that represent
the response of the nucleon to the quasi-static electromagnetic field, i.e. the
polarizabilities, and gives rise to a variety of sum rules [2–5].

The nucleon polarizabilities have been studied within different theoreti-
cal frameworks, mainly chiral perturbation theory (χPT) [6–10] and fixed-t
dispersion relations (DRs) [11–18]. In this work, we focus on the fixed-t sub-
tracted DRs, which are derived from the properties of analyticity, causality
and unitarity of the Compton scattering amplitude.

1.1 The analytical structure of the scattering

amplitude

The dispersive approach requires the knowledge of the analyticity properties of
the scattering amplitudes. Some generic results can be deduced by considering
that real Compton scattering (RCS) off the nucleon is a 2 → 2 process, as
described in Fig. 1.1. In order to define the correct number of independent
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1. Introduction

p1 p3

p2 p4

s

t

Figure 1.1: Graph of a generic 2 → 2 process. The s- and t-channels are
indicated by the arrows.

Lorentz invariant variables for the description of the process, we follow the
simple scheme given in Ref. [19]. Due to momentum conservation, we have
three independent four-momenta (12 components), four on-mass-shell condi-
tions (p2

i = m2
i ), and three rotations and three Lorentz boosts that characterize

the choice of the reference frame and cannot affect the scattering invariant am-
plitude. Thus, we are left with 12 − 4 − 6 = 2 independent variables and a
very convenient choice is given by the usual Mandelstam variables, i.e.

s = (p1 + p2)2 = (p3 + p4)2,

t = (p1 − p3)2 = (p2 − p4)2,

u = (p1 − p4)2 = (p2 − p3)2, (1.1)

which are not independent from each other, but are constrained by the relation

s+ t+ u =
4∑
i=1

m2
i . (1.2)

In the RCS process, the incoming and outgoing photons are real, i.e. their four-
momenta squared are identically 0. The constraint in Eq. (1.2) is simplified
as s + t + u = 2M2

N , where MN is the nucleon mass. Furthermore, we can
introduce the crossing-symmetric variable ν as

ν =
s− u
4MN

, (1.3)

thus identifying (ν, t) as the two independent variables for the description of the
process. The boundaries of the physical regions in the s-, u- and t-channel [17]
are determined by the zeros of the Kibble function Φ(s, t, u), i.e.

Φ(s, t, u) = t(us−M4
N) = 0, (1.4)

and correspond to kinematical regions that are practically accessible, as shown
in Fig. 1.2.
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1.2. Real Compton scattering and the nucleon polarizabilities
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Figure 1.2: Mandelstam plane for the RCS process. The dashed-blue lines
represent the particle-production thresholds, the black-dashed lines are in cor-
respondence of the poles, while the red solid curves delimit the physical region
of the s- and u-channels.

Moreover, the general theory of scattering (see Ref. [19], for instance),
states that as soon as the threshold for particle production is reached in one
channel, a branch cut appears in the complex plane of the corresponding Man-
delstam variable. Thus, the kinematic constraints and the intermediate states
involved in RCS determine the analytical structure of the amplitudes that will
be used for the description of this scattering process. For instance, by looking
at Fig. 1.2, we can easily identify the branch cuts in the ν variable, that are
related to the s and u channel intermediate states of RCS. At fixed values of t,
they run along the lines |ν| ≥ νthr, where νthr is the threshold of inelastic chan-
nels of the RCS process. In Ch. 3, we will start from this analytical structure
that leads to the dispersion relations of the RCS amplitudes.

1.2 Real Compton scattering and the nucleon

polarizabilities

The analysis of the real Compton scattering can give us a very clean access
to the properties related to the internal structure of the nucleon. The RCS

3



1. Introduction

amplitude can be separated into a Born contribution, describing the scattering
off a point-like nucleon with anomalous magnetic moment, and a structure-
dependent part, referred as non-Born term. The non-Born contribution is
parametrized by polarizabilities, which describe the response of the nucleon’s
internal degrees of freedom to an external electromagnetic field. In the low-
energy expansion (LEX) of the non-Born amplitudes, the leading-order ef-
fects are given by static polarizabilities, that are defined in the limit of zero
frequency of the photon field and therefore measure the response to a static
external electromagnetic field. The leading-order spin-independent polarizabil-
ities are the scalar dipole electric and magnetic polarizabilities, αE1 and βM1,
respectively, while four spin-dependent polarizabilities appear at the next order
and involve the nucleon-spin degrees of freedom. They have been the subject of
intense research both experimentally and theoretically [12, 13, 17, 18, 20, 21].
In this thesis, we will mainly focus on the extraction of αE1 and βM1 from the
RCS experimental data.

Apart from the key role that the scalar dipole static polarizabilities have
in the study of the internal structure of the nucleon, they also enter in other
processes that are sensitive to the nucleon structure. For example, the mag-
netic polarizability gives one of the main contributions to the hadronic correc-
tions in the muonic-hydrogen determination of the proton charge radius (see
Refs. [22, 23] and references therein). Moreover, it plays a big role in the
electromagnetic contribution to the proton-neutron mass shift [24], expressed
by the Cottingham’s sum rule [25]. Also for these reasons, a very accurate
measurement of αE1 and βM1 is in order.

If we want to generalize the description of the nucleon response to an exter-
nal electromagnetic field of arbitrary energy, we have to introduce the dynam-
ical polarizabilities that encode an explicit energy dependence of the response
of the internal degrees of freedom of a composite object. This is well known
from many branches of Physics (see Refs. [26–28], for instance). The dynamical
polarizabilities of the RCS process have been studied in different theoretical
frameworks, using dispersion relations or effective field theories [9, 29–32]. In
this thesis, we will focus on the extraction of the dipole scalar dynamical po-
larizabilities (DDPs) from the available RCS experimental data below pion
production threshold.

1.3 A new approach for the fit

In the last 30 years, a large number of extractions of the scalar polarizabilities
have been performed on RCS data, using both the DR approach (see, for
instance, Refs. [33–36] or χPT (see, for instance, Refs. [8, 37, 38]). In this
thesis, we present our contribution, introducing a fitting technique that has
never been applied before in the analysis of Compton data.

The traditional fitting technique is based on the least square method, i.e. on
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1.4. Outline of the thesis

the minimization of the χ2 function, defined as:

χ2 =
∑
i

(
Ei − Ti
σi

)2

. (1.5)

Here, T is the prediction given by the model and the index i runs over the
number of data points, whose measured values and statistical uncertainties are
labeled as E and σ, respectively. The minimum of this function is assumed to
follow a χ2 distribution, from which the statistical significance of the fit results
is computed. However, this assumption is rigorously true only if all the terms
in round brackets of Eq. (1.5) are independent Gaussian variables.

If the experimental points are affected by both statistical and systematic
uncertainties, some correlation terms arise among the Ei value. Thus, the
(Ei−Ti)/σi terms are neither Gaussian distributed, nor independent variables.
As an important consequence, the goodness-of-fit distribution cannot be a χ2,
thus making necessary the development of a method that is able to provide
the correct statistical significance for the fit results. To this aim, we will apply
a Monte-Carlo fitting method, based on the parametric bootstrap [39]. As a
result of our analysis, we will be able to recover the correct goodness-of-fit
probability distribution in all those cases where the traditional χ2 approach
fails.

1.4 Outline of the thesis

In this thesis, we show our extraction of both the static and the dynamical
scalar dipole polarizabilities of the proton from the unpolarized differential
cross section RCS data below the pion-production threshold.

In Ch. 2, we give a comprehensive description of the RCS process, intro-
ducing the formalism adopted for the description of the scattering amplitudes,
such as the low-energy expansion, which allows us to obtain the expression of
the scattering amplitudes in terms of the static polarizabilities. Furthermore,
we introduce the definition of the dynamical polarizabilities from a multipole
expansion of the scattering amplitudes and we derive a convenient parametriza-
tion of the dynamical polarizabilities from the LEX, to be used in the fit to
the RCS data.

In Ch. 3, we introduce the DR formalism, in the fixed-t unsubtracted and
subtracted variant. We show how to derive dispersion integrals from the
Cauchy’s theorem, thus relating the real and imaginary part of the scatter-
ing amplitudes. The dispersion integrals can be evaluated, through the optical
theorem and the unitarity relation, from known information on other scatter-
ing processes (e.g., pion-photoproduction). Furthermore, the DRs applied to
forward RCS allow us to define a variety of sum rules that all relate a measured
electromagnetic structure quantity to an integral over a photo-absorption cross
section on the nucleon, which is linked to the forward RCS through the optical
theorem.

5



1. Introduction

In Ch. 4, we describe the fitting technique that is adopted for the extraction
of the polarizabilities from the proton RCS data. The algorithm itself is based
on the parametric bootstrap, which is a Monte-Carlo method that can be
successfully applied in the presence of correlated and/or systematic errors.
We develop a toy model, simulating random data from a Breit-Wigner (BW)
distribution, which is then used to rigorously analyze the features of the fitting
technique. Then, we derive for the first time the goodness-of-fit distribution,
even for those situations in which the standard χ2 distribution would not be
applicable.

In Ch. 5, we make some sensitivity tests, to infer which of the static po-
larizabilities can be extracted with good accuracy from the RCS unpolarized
cross section data. Moreover, we discuss the statistical significance of the RCS
data base, making several tests that let us to conclude that no clear outliers
are present in the current data set. On the basis of all these tests, we perform
the extraction of the dipole scalar static polarizabilities, αE1 and βM1, also
considering the propagation of the uncertainties of all the polarizabilities that
are not taken as fit parameters, as well as the systematic errors of the experi-
mental data. The statistical significance of the fit results is obtained from the
bootstrap method.

In Ch. 6, we show our results of the first extraction of the scalar dipole
dynamical polarizabilities from the proton RCS data below pion-production
threshold. We again apply the fitting technique described in Ch. 4, which
allows us to obtain a realistic uncertainty band from the propagation of the
systematic uncertainties of the experimental data.

In Ch. 7, we perform some sensitivity tests to the static polarizabilities on
recent data for the RCS beam asymmetry [40]. We also combine these data
with the unpolarized cross section measurements, with the goal of obtaining a
more precise extraction of the magnetic polarizability βM1. Furthermore, we
look at forward RCS, evaluating three well known sum rules from the total
photo-absorption cross section data: the Baldin sum rule [3] (involving the
sum of the electric and magnetic polarizabilities), the Gerasimov [4], Drell and
Hearn [5] (GDH) sum rule (involving the nucleon anomalous magnetic mo-
ment) and the Gell-Mann, Goldberger and Thirring [2, 41] (GGT) sum rule
(for the forward spin polarizability). We perform a preliminary analysis of
these sum rules by evaluating the integrals directly from the available experi-
mental data, without using any phenomenological parametrization. The aim is
to develop a new method of analysis that allows one to obtain a more realistic
evaluation of the error bands. Being a preliminary evaluation, only the pure
statistical fluctuations of the experimental data are included in the analysis,
while the systematic errors are neglected.

In Ch. 8, we draw our conclusions and we also outline possible future strate-
gies for a better determination of the scalar polarizabilities as well as of the
spin polarizabilities.
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Chapter 2
Compton scattering off the
nucleon

Compton scattering off the nucleon is a valuable tool to investigate the electro-
magnetic internal structure of the nucleon. In this chapter, we describe the real
Compton scattering process, where both the incoming and the outgoing photons
are real, and we introduce the physical meaning of the photon-nucleon inter-
action through an effective Hamiltonian description. We then discuss some
of the observables that can be experimentally measured and that can provide
relevant information on the electromagnetic structure of the nucleon.

2.1 Introduction

Real Compton scattering (RCS), i.e. the elastic scattering of a real photon off
the nucleon, is a physical process that can give a clean access to the internal
structure of the nucleon. At very low energy, the incoming photon carries
a quasi-static electromagnetic field and the response of the nucleon can be
parametrized in terms of static polarizabilities. This is a reflection of the com-
posite structure of the nucleon: the nucleon system cannot be described as
a point-like particle characterized by only its static properties (mass, electric
charge and anomalous magnetic moment), but its internal constituents cause
the appearance of a collective response to the external field. As soon as the
incoming photon energy increases, the nucleon becomes sensitive to the tem-
poral and spatial variation of the external field. In this framework, relaxation
mechanisms, baryonic resonances and meson production thresholds of the nu-
cleon give rise to dispersive corrections to the static polarizabilities, and the
nucleon response is conveniently described in terms of dynamical polarizabil-
ities, i.e. polarizabilities with an explicit dependence on the incoming photon
energy.

In this work, we will discuss a new extraction of both the static and dynam-
ical scalar dipole polarizabilities, using a new statistical technique applied to

7



2. Compton scattering off the nucleon

the available RCS data below the pion production threshold and a theoretical
framework based on fixed-t dispersion relations. The nucleon polarizabilities
from RCS data have been widely analyzed in the literature, mainly adopting
two different theoretical frameworks: (I) fixed-t dispersion relations (DRs),
in the unsubtracted [11–13] and subtracted [14–18] formalism, and (II) chiral
perturbation theory (χPT) with explicit nucleons and Deltas, in the variant
of heavy-baryon χPT (HBχPT) [6–8] and manifestly covariant [9, 10] χPT
(BχPT). Some alternative approaches can be found in Ref. [42] (“dressed K
matrix”) and in Ref. [43] (chiral Lagrangian approach with constraints from
unitarity and analyticity), but they have never been used for a fit of the po-
larizabilities to the RCS data.

Such a high number of models and theories provides a very important
benchmark for the theoretical framework and allow us to better control the
model dependence in the extraction of the nucleon polarizabilities from RCS
data.

In this chapter, we will discuss the RCS amplitude, how it can be parametrized
and how the polarizabilities enter the physical observables.

2.2 Real Compton scattering

Real Compton scattering off the nucleon corresponds to the reaction:

γ(q) +N(p)→ γ(q′) +N(p′),

where the four-momenta of the participating particles are in brackets and both
the incoming and the outgoing photons are real, i.e. q2 = q′2 = 0. The reaction
is shown in Fig. 2.1. The RCS amplitude Tfi is defined by

〈f |S − 1|i〉 = i(2π)4δ4(q + p− q′ − p′)Tfi, (2.1)

and it is related to the differential cross section dσ/dΩ through the following
relation

dσ

dΩ
= Φ2|Tfi|2, (2.2)

where the phase factor Φ is given by

Φ ≡
{

1
8πMN

E′γ
Eγ

lab frame,
1

8π
√
s

c.m. frame
. (2.3)

The labels “lab frame” and “c.m. frame” stand for laboratory and center-of-
mass reference frames, respectively. Here, Eγ = q0, E ′γ = q′0 are the incident
and outgoing photon energies in the lab frame, respectively. Being a 2 → 2
process, RCS can be described by two independent kinematic invariants. Using
the usual Mandelstam variables with their constraints, i.e.

s = (p+ q)2 = (p′ + q′)2, t = (p− p′)2 = (q − q′)2,

u = (p− q′)2 = (q − p′)2, s+ t+ u = 2M2
N , (2.4)

8



2.2. Real Compton scattering

γ(q) γ(q′)

N(p) N(p′)

Figure 2.1: Graph of the RCS process.

we can define the crossing symmetric variable ν as

ν =
s− u
4MN

. (2.5)

The two independent invariants are then chosen to be ν and t, which are
expressed in the lab reference frame as

ν =
1

2
(Eγ + E ′γ), t = −2EγE

′
γ(1− z), (2.6)

where z = cos θlab and the scattered photon energy E ′γ can be written as

E ′γ ≡ Eγ +
t

2MN

= Eγ

[
1 +

Eγ
MN

(1− z)

]−1

. (2.7)

In the most generic form, the scattering amplitude for the RCS process can be
formally decomposed as

Tfi = ū(p′)ε′∗µCµνενu(p), (2.8)

where εν = (0, ε) and ε′µ = (0, ε′) are the polarization1 four-vectors of the
incoming and outgoing photon, respectively, while u(p) is the Dirac nucleon
spinor with momentum p and Cµν is the tensor that describe the electromag-
netic interaction of the nucleon with the incoming and outgoing photons. In
Sec. 2.3, we will show two possible parameterizations for the Cµν tensor in
terms of invariant amplitudes.

2.2.1 Effective Hamiltonian description

If we want to describe the RCS process in terms of low-energy effective Hamil-
tonians [9, 15], to lowest order in energy, i.e. when the wavelength of the
photons is much larger than the size of the target, one has

H(0) =
(p− eA)2

2MN

, (2.9)

1The photon polarization vector ε is chosen in the radiation gauge, i.e. ε · q = 0.

9



2. Compton scattering off the nucleon

where p is the momentum operator and A is the vector potential. This term
contributes at O(ω0

B) in the scattering amplitude of RCS2 and correspond to
the well-known Thomson term, i.e.

T Thomsonfi = −2e2q2ε · ε′, (2.10)

completely determined by the charge of the nucleon3, as well as by the photon
polarization vectors. As the energy of the incoming photon increases, the
nucleon structure becomes visible and the photon wavelength is short enough
to probe it. The corresponding effective Hamiltonian needs to fulfill some
constraints: (I) it must be quadratic in the fields, (II) it has to be gauge
invariant and (III) it must be a rotational scalar and invariant under parity
(P) and time reversal (T) transformations. The simplest form is

H(2) = −1

2
4π
(
αE1E

2 + βM1H
2
)
, (2.11)

where E and H are the static electric and magnetic fields, respectively. This
contribution enters the RCS amplitudes at O(ω2

B). With the definitions of the
electric and magnetic dipole moments,

pel = −δH
(2)

δE
= 4παE1E, µmag = −δH

(2)

δH
= 4πβM1H , (2.12)

we recognize the proportionality constants αE1 and βM1 in Eq. (2.11) as the
electric and magnetic polarizabilities, respectively. In a naive picture of the
nucleon, when the external electric field is applied, the charge distribution of
the nucleon is stretched by the external field, thus causing the appearance of
an electric polarization vector pel, which is proportional to the photon electric
field via the electric polarizability αE1. Since the resulting electric polarization
is along the direction of the external field, the polarizability αE1 is positive4.
The external quasi-static photon also brings a magnetic field that causes two
effects in the magnetic polarization µmag: (I) a paramagnetic effect due to the
alignment of the spin magnetic moments of the internal constituents of the
nucleon in the direction of H and (II) a diamagnetic effect due to the pion
induced currents that, according to Lenz’s law, tend to generate a magnetic
field opposite to the external one. As a result, we expect the magnetic polar-
izability βM1 to be small, being determined by two contributions of opposite
sign5.

If the energy of the incoming photon becomes larger (i.e., its wavelength
becomes smaller), one finds four possible interaction terms that obey the re-
quirements of gauge, P and T. The corresponding effective Hamiltonian at

2Here and in the following, the subscript B stands for the Breit reference frame.
3e2 ' 4π/137 and q = 0(1) for the neutron (proton).
4This is not always true: for instance, χPT predicts αE1 < 0 for the neutral pion π0 [44].
5This picture does not hold in general for the hadrons. For instance, chiral perturbation

theory predicts βM1 ≈ −αE1 for pions [44].
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2.2. Real Compton scattering

O(ω4
B) is

H(4) = −1

2
4π
(
αE1,νĖ

2 + βM1,νḢ
2
)
− 1

12
4π
(
αE2E

2
ij + βM2H

2
ij

)
, (2.13)

where

Eij =
1

2
(∇iEj +∇jEi), Hij =

1

2
(∇iHj +∇jHi). (2.14)

In Eq. (2.13), one becomes sensitive to the spatial and time variations of the
electromagnetic field. The parameters αE2 and βM2 represent quadrupole po-
larizabilities and measure the electric (Qij) and magnetic (Mij) quadrupole
moments induced in a system in the presence of an applied field gradient via

Qij =
δH(4)

δEij
=

1

6
4παE2Eij, Mij =

δH(4)

δHij

=
1

6
4πβM2Hij. (2.15)

On the other hand, the quantities αE1,ν , βM1,ν represent the dispersive correc-
tion to the lowest order static polarizabilities αE1 and βM1 or, equivalently, the
response of the nucleon to the external time-dependent fields, i.e.

pel(ωB) = 4παE1(ωB)E(ωB)

= 4π(αE1 + αE1,νω
2
B +O(ω4

B))E(ωB), (2.16)

µmag(ωB) = 4πβM1(ωB)H(ωB)

= 4π(βM1 + βM1,νω
2
B +O(ω4

B))H(ωB). (2.17)

From Eqs. (2.16) and (2.17) we learn that, if we consider a time-dependent elec-
tromagnetic field, the polarizabilities need to become energy dependent, thus
making the definition of the dynamical polarizabilities, αE1(ωB) and βM1(ωB)
(i.e. with an explicit energy-dependence) necessary. We will come back to this
point in Ch. 6, where we will fit the scalar dipole dynamical polarizabilities to
the RCS proton data.

Up to now we have neglected the spin-dependence of the nucleon: the first
spin-dependent contribution in the Hamiltonian appears at O(ω3

B) as

H(3) = −1

2
4π
[
γE1E1σ ·E × Ė + γM1M1σ ·H × Ḣ

− 2γM1E2EijσiHj + 2γE1M2HijσiEj] , (2.18)

where the four γ... are the so-called spin polarizabilities. The γE1E1 and γM1M1

polarizabilities describe the spin-dependence of the dipole electric and mag-
netic photon scattering (E1 → E1 and M1 → M1). On the other hand,
γE1M2 describes the dipole electric to quadrupole magnetic transition of the
photon field due to the spin-dependent interaction with the nucleon. Simi-
larly, γM1E2 corresponds to the spin-dependent response of the nucleon to an
incoming dipole magnetic field that is scattered in a quadrupole electric field
in the final state. Also the spin polarizabilities, as the electric and magnetic

11



2. Compton scattering off the nucleon

polarizabilities, show dispersive corrections due to the time-dependence of the
electromagnetic field. At O(ω5

B) the effective interaction reads

H(5) = −1

2
4π
[
γE1E1,νσ · Ė × ËγM1M1,νσ · Ḣ × Ḧ (2.19)

−2γM1E2,νσiĖijḢj + 2γE1M2,νσiḢijĖj + 4γE2E2εijkσiEjlĖkl

+4γM2M2εijkσiHjlḢkl − 6γM2E3σiEijkHjk + 6γE2M3σiHijkEjk

]
,

where

Eijk =
1

3
[∇i∇jEk +∇i∇kEj +∇j∇kEi]

− 1

15

[
δij∇2Ek + δjk∇2Ei + δik∇2Ej

]
, (2.20)

and similarly for H, are the spherical tensor gradient of the electric and mag-
netic fields, respectively. In Eq. (2.19), four polarizabilities (the ones labeled
with the subscript ν) are dispersive corrections to the O(ω3

B) polarizabilities
defined in Eq. (2.18). The remaining polarizabilities are new structure con-
stants that probe the octupole excitation of the system.

2.3 Invariant amplitudes of the real Compton

scattering

As shown in Ref. [12] and references therein, starting from a basis of indepen-
dent and orthogonal four-vectors, we can parametrize the scattering amplitude
Tfi through six invariant functions Ti:

Tfi = ū(p′)ε′∗µ
[
−P

′
µP
′
ν

P ′2
(T1 + γ ·KT2)

− NµNν

N2
(T3 + γ ·KT4) + i

P ′µNν − P ′νNµ

P ′2K2
γ5T5

+ i
P ′µNν + P ′νNµ

P ′2K2
γ5γ ·KT6

]
ενu(p), (2.21)

where γ5 is conventionally defined as γ5 ≡
(

0 1
1 0

)
.

The four-vectors P , P ′, K and N are defined as

P µ =
1

2
(p+ p′)µ, P ′µ = P µ −KµP ·K

K2
,

Kµ =
1

2
(q + q′)µ, Nµ = εµαβγP ′αQβKγ,

where Q is given by

Qµ =
1

2
(p− p′)µ =

1

2
(q′ − q)µ, (2.22)

12



2.3. Invariant amplitudes of the real Compton scattering

and the antisymmetric tensor εµαβγ is fixed by the condition ε0123 = −1. The
Ti amplitudes are functions of ν and t and are free from kinematic singularities
but can be affected by kinematic constraints arising from the denominators of
Eq. (2.21), that can vanish in the limit of forward or backward scattering. To
circumvent this problem, we work with the tensorial basis proposed in Ref. [11],
resulting in the set of amplitudes

A1 =
1

t
[T1 + T3 + ν(T2 + T4)], A2 =

1

t
[2T5 + ν(T2 + T4)],

A3 =
1

η
[T1 − T3 −

t

4ν
(T2 − T4)], A4 =

1

η
[2MNT6 −

t

4ν
(T2 − T4)],

A5 =
1

4ν
(T2 + T4), A6 =

1

4ν
(T2 − T4), (2.23)

where η is defined as

η ≡ 4ν2 + t− t2

4M2
N

= 2EγE
′
γ(1 + z). (2.24)

Like the Ti amplitudes, the Ai do not have any kinematic singularities: in
addition, they are free from any kinematic constraints and are symmetric under
crossing:

Ai(ν, t) = Ai(−ν, t), i = 1, . . . , 6. (2.25)

These properties turn out to be very useful in the dispersion relation (DR)
approach, as described in Ch. 3.

The scattering amplitude Tfi can thus be conveniently expressed in terms
of the invariant amplitudes Ai as [12]

Tfi =
1

N(t)

{
2MNε

′∗ · εEγEγ
[(

1− t

4M2
N

)
(−A1 − A3)− ν2

M2
N

A5 − A6

]
+ 2MNs

′∗ · sEγE ′γ
[(

1− t

4M2
N

)
(−A1 − A3) +

ν2

M2
N

A5 − A6

]
− 2iσ · ε′∗ × ενEγE ′γ(A5 + A6) + 2iσ · s′∗ × sνEγE ′γ(A5 − A6)

+ iσ · q̂s′∗ · εE2
γE
′
γ

[
A2 +

(
1− E ′γ

MN

)
A4 +

ν

MN

A5 + A6

]
− iσ · q̂′ε′∗ · sEγE ′2γ

[
A2 +

(
1 +

Eγ
MN

)
A4 −

ν

MN

A5 + A6

]
− iσ · q̂ε′∗ · sE2

γE
′
γ

[
−A2 +

(
1− E ′γ

MN

)
A4 −

ν

MN

A5 + A6

]
+ iσ · q̂′s′∗ · εEγE ′2γ

[
−A2 +

(
1 +

Eγ
MN

)
A4 +

ν

MN

A5 + A6

]}
, (2.26)

where N(t) = (1 − t/4M2
N)1/2 and s and s′ are defined as s = q̂ × ε and

s′ = q̂′ × ε′, respectively.

13



2. Compton scattering off the nucleon

2.3.1 Low energy expansion and static polarizabilities

We first decompose the Ai amplitudes in terms of the Born and non-Born
contributions, i.e.

Ai(ν, t) = ABi (ν, t) + ANBi (ν, t), (i = 1, . . . , 6). (2.27)

The Born term is associated with the pole diagrams shown in Fig. 2.2, where a
single nucleon is exchanged and the photon-nucleon vertices are in the on-shell
regime. It is completely determined by the mass, the electric charge e and the
anomalous magnetic moment eκN/2MN of the nucleon as [11]

ABi (ν, t) = − 4MNe
2ri(t)

(4MNν − t)(4MNν + t)
, (2.28)

where e2 ' 4π/137. The pole residues ri(t) are defined as

Figure 2.2: The direct (on the left) and crossed (on the right) Born diagrams
that contribute to the RCS process.

r1 = −2q2 + r3
t

4M2
N

, r2 = 2qκN + 2q2 + r3
t

4M2
N

,

r3 = κ2
N + 2qκN , r4 = κ2

N , r5 = r3, r6 = −2q2 − r3. (2.29)

The non-Born contribution subsumes all the structure-dependent information,
and can be expanded in a Taylor series of the ν and t variables around the
point ν = t = 0, i.e.

ANBi (ν, t) = ANBi (ν, t)|(ν2=t=0) +
∂ANBi (ν, t)

∂ν2

∣∣∣∣
(ν2=t=0)

ν2

+
∂ANBi (ν, t)

∂t

∣∣∣∣
(ν2=t=0)

t+O(ν4, t2), (2.30)

thus introducing the low-energy expansion (LEX) of the RCS amplitudes. Ac-
cording to the following definitions,

ai ≡ ANBi (ν = 0, t = 0),

ai,ν ≡
∂ANBi (ν, t)

∂ν2

∣∣∣∣
(ν2=t=0)

,

ai,t ≡
∂ANBi (ν, t)

∂t

∣∣∣∣
(ν2=t=0)

, (2.31)
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2.3. Invariant amplitudes of the real Compton scattering

and using the expression given in Eq. (2.6), we can rewrite the non-Born con-
tributions as

ANBi (ν, t) = ai + EγE
′
γ[ai,ν − 2(1− z)ai,t] + . . . (2.32)

This LEX is equivalent to the low-energy expansion used for the description of
the RCS process in terms of an effective Hamiltonian, as shown in Sec. 2.2.1.
Thus, we can make a connection between the coefficients of Eq. (2.32) and
the static polarizabilities introduced in Sec. 2.2.1. The results, up to the fifth
order in energy, are

4παE1 = −a1 − a3 − a6,

4πβM1 = a1 − a3 − a6,

4πγE1E1 =
a2 − a4 + 2a5 + a6

2MN

,

4πγM1M1 =
−a2 − a4 − 2a5 + a6

2MN

,

4πγM1E2 =
−a2 − a4 − a6

2MN

,

4πγE1M2 =
a2 − a4 − a6

2MN

,

4παE2 = −12 (a1,t + a3,t + a6,t) +
3a3

M2
N

,

4πβM2 = 12 (a1,t − a3,t − a6,t) +
3a3

M2
N

,

4παE1,ν = 3a1,t − a1,ν + a3,t − a3,ν + a6,t − a6,ν +
−a3 − 4a5

4M2
N

,

4πβM1,ν = −3a1,t + a1,ν + a3,t − a3,ν + a6,t − a6,ν +
4a5 − a3

4M2
N

,

4πγE2E2 =
a2,t − a4,t + 3a5,t + 2a6,t

6MN

+
a2 + 2a4

48M3
N

,

4πγM2M2 =
−a2,t − a4,t − 3a5,t + 2a6,t

6MN

+
2a4 − a2

48M3
N

,

4πγM2E3 =
−a2,t − a4,t − a6,t

3MN

+
2a4 − a2

24M3
N

,

4πγE2M3 =
a2,t − a4,t − a6,t

3MN

+
a2 + 2a4

24M3
N

,

4πγE1E1,ν =
−3a2,t + a2,ν + a4,t − a4,ν − 5a5,t + 2a5,ν − 2a6,t + a6,ν

2MN

+
−3a2 − 2(a4 − 2a5)

16M3
N

,

4πγM1M1,ν =
3a2,t − a2,ν + a4,t − a4,ν + 5a5,t − 2a5,ν − 2a6,t + a6,ν

2MN

15



2. Compton scattering off the nucleon

+
3a2 − 2 (a4 + 2a5)

16M3
N

,

4πγM1E2,ν =
18a2,t − 5a2,ν + 2a4,t − 5a4,ν + 10a5,t + 12a6,t − 5a6,ν

10MN

+
9a2 − 2 (a4 + 5a5)

40M3
N

,

4πγE1M2,ν =
−18a2,t + 5a2,ν + 2a4,t − 5a4,ν − 10a5,t + 12a6,t − 5a6,ν

10MN

+
−9a2 − 2(a4 − 5a5)

40M3
N

. (2.33)

All the static polarizabilities in Eq. (2.33) can be written as Pmain/M
n
N +

Prec/M
n+2
N , where Pmain and Prec are linear combinations of the ai, ai,ν and

ai,t coefficients, with the recoil contributions Prec/M
n+2
N being a consequence

of the choice of the reference frame6.

It is also useful to define two combinations of the leading-order spin polar-
izabilities, which enter in the scattering amplitudes at forward and backward
scattering angles. They are the forward spin polarizability, γ0, and the back-
ward spin polarizability, γπ, defined as

γ0 = −γE1E1 − γM1M1 − γM1E2 − γE1M2,

γπ = −γE1E1 + γM1M1 + γM1E2 − γE1M2. (2.34)

2.3.2 Multipoles decomposition and dynamical polariz-
abilities

The multipole interactions that have been introduced in Sec. 2.2.1 to define the
static polarizabilities can be obtained by performing a multipole expansion of
the incoming and outgoing photon fields in the Compton scattering amplitude.
Working in the c.m. frame, the scattering amplitude Tfi reads [45, 46]:

Tfi = 8πW
6∑
i=1

ρiRi(ω, θc.m.). (2.35)

Here θc.m. is the photon scattering angle in the c.m. frame, W =
√
s and

ρ1 = ε′∗ · ε, ρ2 = s′∗ · s,
ρ3 = iσ · ε′∗ × ε, ρ4 = iσ · s′∗ × s,
ρ5 = i(σ · q̂s′∗ · ε− σ · q̂′ε′∗ · s),

ρ6 = i(σ · q̂′s′∗ · ε− σ · q̂ε′∗ · s). (2.36)

6The static polarizabilities are conveniently defined in the Breit frame, as discussed in
Sec. 2.2.1.
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2.3. Invariant amplitudes of the real Compton scattering

The relations between the amplitudes Ri and Ai can be found in App. A.
Following [11], we can now write the Ri amplitudes through a multipole ex-
pansion of the form:

R1 =
∑
l≥1

{[(l + 1)f l+EE + lf l−EE](lP ′l + P
′′

l−1)− [(l + 1)f l+MM + lf l−MM ]P
′′

l },

R2 =
∑
l≥1

{
[(l + 1)f l+MM + lf l−MM ](lP ′l + P

′′

l−1)− [(l + 1)f l+EE + lf l−EE]P
′′

l

}
,

R3 =
∑
l≥1

{
[f l+EE − f l−EE](P

′′

l−1 − l2P
′

l )− [f l+MM − f l−MM ]P
′′

l

+ 2f l+EMP
′′

l+1 − 2f l+MEP
′′

l

}
,

R4 =
∑
l≥1

{
[f l+MM − f l−MM ](P

′′

l−1 − l2P
′

l )− [f l+EE − f l−EE]P
′′

l

+ 2f l+MEP
′′

l+1 − 2f l+EMP
′′

l

}
,

R5 =
∑
l≥1

{[f l+EE − f l−EE](lP
′′

l + P
′′′

l−1)− [f l+MM − f l−MM ]P
′′′

l

+ f l+EM [(3l + 1)P
′′

l + 2P
′′′

l−1]− f l+ME[(l + 1)P
′′

l+1 + 2P
′′′

l ]},
R6 =

∑
l≥1

{[f l+MM − f l−MM ](lP
′′

l + P
′′′

l−1)− [f l+EE − f l−EE]P
′′′

l

+ f l+ME[(3l + 1)P
′′

l + 2P
′′′

l−1]− f l+EM [(l + 1)P
′′

l+1 + 2P
′′′

l ]}. (2.37)

Here Pl = Pl(x) are the Legendre polynomials of x = cos θc.m., the super-
script ”′” stands for the derivative and the multipole amplitudes are labeled
as f l±TT ′ = f l±TT ′(ω), with T, T ′ = E,M , corresponding to transitions T → T ′.
The superscript l± indicates the angular momentum l of the initial photon
and the total angular momentum is given by j = l ± 1

2
. The advantage of

the multipole expansion is that all the energy dependence is included in the
multipoles f l±TT ′(ω), while the angular dependence is described by the Legendre
polynomials.

From the multipoles introduced in Eq. (2.37), we can define the dynamical
polarizabilities [29, 30], i.e. polarizabilities with an explicit and full dependence
on the photon energy ω, as

αEl(ω) = a(l)
(l + 1)f̄ l+EE + lf̄ l−EE

ω2l
,

βMl(ω) = a(l)
(l + 1)f̄ l+MM + lf̄ l−MM

ω2l
,

γElM(l+1)(ω) = b(l)
f̄ l+EM
ω2l+1

,

γMlE(l+1)(ω) = b(l)
f̄ l+ME

ω2l+1
,
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2. Compton scattering off the nucleon

γElEl(ω) = c(l)
f̄ l+EE − f̄ l−EE
ω2l+1

,

γMlMl(ω) = c(l)
f̄ l+MM − f̄ l−MM

ω2l+1
, (2.38)

with a(l) = (l(2l − 1)!!))2, b(l) = 22−l(2l + 1)!!, c(l) = (2l − 1), and the bar
indicates the non-Born part of the multipoles.
If we focus only on dipole-dipole and dipole-quadrupole transitions (which is
equivalent to fix lmax = 1 in the multipole expansion), we obtain

αE1(ω) =
2f̄ 1+

EE + f̄ 1−
EE

ω2
,

βM1(ω) =
2f̄ 1+

MM + f̄ 1−
MM

ω2
,

γE1M2(ω) = 6
f̄ 1+
EM

ω3
,

γM1E2(ω) = 6
f̄ 1+
ME

ω3
,

γE1E1(ω) =
f̄ 1+
EE − f̄ 1−

EE

ω3
,

γM1M1(ω) =
f̄ 1+
MM − f̄ 1−

MM

ω3
. (2.39)

Inserting these definitions in the l = 1 terms of the multipole expansion of
Eq. (2.37), we obtain

RNB
1,l=1 = αE1(ω)ω2,

RNB
2,l=1 = βM1(ω)ω2,

RNB
3,l=1 = [γE1E1(ω) + γE1M2(ω)]ω3,

RNB
4,l=1 = [−γM1M1(ω) + γM1E2(ω)]ω3,

RNB
5,l=1 = −γM1E2(ω)ω3,

RNB
6,l=1 = −γE1M2(ω)ω3, (2.40)

from where we can clearly see that the electric (magnetic) dipole-dipole tran-
sitions of R1,l=1 (R2,l=1) are entirely described by αE1(ω) (βM1(ω)). On the
other hand, the R3,4,5,6 amplitudes depend only on the spin-dependent dynam-
ical polarizabilities. The dynamical polarizabilities of Eq. (2.39), in the limit
ω → 0, reduce to the corresponding static polarizabilities7.

As a cross-check, we can perform the LEX introduced in Eq. (2.32) of the
Ai amplitudes and use the relation between Ri and Ai (see App. A for details),

7This is not always true, as discussed in Ref. [9], since the unmixed spin polarizabilities
of higher angular momentum, like γE2E2(ω) and γM2M2(ω) for instance, diverge in the limit
of ω → 0. This effect is a consequence of the transformations required for the connection
between the Breit frame, where the static polarizabilities are defined, and the c.m. frame,
where the multipole expansion defining the dynamical polarizabilities is performed.
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2.3. Invariant amplitudes of the real Compton scattering

thus obtaining

RNB
1,l=1 = αE1ω

2 +O(ω3),

RNB
2,l=1 = βM1ω

2 +O(ω3),

RNB
3,l=1 = (γE1E1 + γE1M2)ω3 +O(ω4),

RNB
4,l=1 = (−γM1M1 + γM1E2)ω3 +O(ω4),

RNB
5,l=1 = −γM1E2ω

3 +O(ω4),

RNB
6,l=1 = −γE1M2ω

3 +O(ω4), (2.41)

We will focus on the proton scalar dipole dynamical polarizabilities (DDPs),
αE1(ω) and βM1(ω), as well as their static partners αE1 and βM1, that can be
fitted to the RCS unpolarized cross section data. It is convenient to express the
DDPs in terms of the Ai amplitudes, which will be adopted in the dispersion
relations framework described in Ch. 3. This is schematically done as follows:

1. write Eq. (2.37) as function of dynamical polarizabilities defined in Eq. (2.39);

2. fix a value for lmax, i.e. the maximum photon angular momentum for the
multipole expansion;

3. compute R
(k)
i (ω, x) ≡ ∂kRi(ω,x)

∂xk
up to k = lmax − 1;

4. fix a specific value for cos θc.m., e.g. x = 0;

5. invert the obtained results in order to write the dynamical polarizabilities
in terms of R

(k)
i .

Following these prescriptions and restricting ourselves to the DDPs, we obtain

αE1(ω) = −−10R1(ω, 0)− 2R
(2)
1 (ω, 0)− 5R

(1)
2 (ω, 0)

10ω2
,

βM1(ω) = −−5R
(1)
1 (ω, 0)− 10R2(ω, 0)− 2R

(2)
2 (ω, 0)

10ω2
. (2.42)

Using the relation (encoded in Eq. (A.1)) between the Ai and the Ri amplitudes
given in App. A, it is finally possible to obtain the DDPs as function of the
Ai amplitudes and, once introduced the definition of the static polarizabilities
given in Eq. (2.33), we obtain the following expressions for the LEX of the
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2. Compton scattering off the nucleon

DDPs:

αE1(ω) = αE1 +
βM1

MN

ω +

(
αE1,ν +

5αE1 − 2βM1

8M2
N

)
ω2

+

(
8αE1,ν + αE2 + 12βM1,ν

8MN

+
γM1E2 − γM1M1

8M2
N

+
βM1 − 2αE1

8M3
N

)
ω3

+ [αL4 +
1

480M4
N

(−72αE1 − 57βM1

+ 6MN(25γE1E1 − 25γE1M2 + 39(γM1E2 − γM1M1))

+ M2
N(1248αE1,ν + 95αE2 + 540βM1,ν + 26βM2)

− 12M3
N(15γE1E1,ν − 15γE1M2,ν − 69γE2E2 + 12γE2M3 + 25γM1E2,ν

− 25γM1M1,ν − 12γM2E3 + 51γM2M2))]ω4

+ [αL5 +
1

2400M5
N

(15αE1

+ 5M2
N(612αE1,ν + 38αE2 + 1008βM1,ν + 89βM2)

− 210βM1 + 15MN(−46γE1E1 + 46γE1M2 + 33(γM1M1 − γM1E2))

+ 12M3
N(55γE1E1,ν − 55γE1M2,ν − 6(35γE2E2 − 22γE2M3 + 5γM1E2,ν

− 5γM1M1,ν + 38γM2E3) + 555γM2M2))ω5 +O(ω6), (2.43)

βM1(ω) = βM1 +
αE1

MN

ω +

(
5βM1 − 2αE1

8M2
N

+ βM1,ν

)
ω2

+

(
αE1 − 2βM1

8M3
N

+
8βM1,ν + βM2 + 12αE1,ν

8MN

+
γE1M2 − γE1E1

8M2
N

)
ω3

+ [βL4 +
1

480M4
N

(−72βM1

+ M2
N(1248βM1,ν + 95βM2 + 540αE1,ν + 26αE2)

− 57αE1 + 6MN(25γM1M1 − 25γM1E2 + 39(γE1M2 − γE1E1))

− 12M3
N(15γM1M1,ν − 15γM1E2,ν − 69γM2M2 + 12γM2E3 + 25γE1M2n

− 25γE1E1,ν − 12γE2M3 + 51γE2E2))]ω4

+ [βL5 +
1

2400M5
N

(15βM1

+ 5M2
N(612βM1,ν + 38βM2 + 1008αE1,ν + 89αE2)

− 210αE1 + 15MN(−46γM1M1 + 46γM1E2 + 33(γE1E1 − γE1M2))

+ 12M3
N(55γM1M1,ν − 55γM1E2,ν − 6(35γM2M2 − 22γM2E3 + 5γE1M2,ν

− 5γE1E1,ν + 38γE2M3) + 555γE2E2))ω5 +O(ω6). (2.44)

The αL4,5 and βL4,5 coefficients takes into account the higher order terms in the
multipole expansion and are related to 6th-order polarizabilities, which have
never been defined in literature. The expression given in Eqs. (2.43) and (2.44)
are an extension of the LEX results given in Ref. [9] up to ω3.
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2.3. Invariant amplitudes of the real Compton scattering

In the expressions of Eqs. (2.43) and (2.44), the coefficients related to the
odd powers of ω are the recoil contributions due to the transformation from
the Breit frame to the c.m. frame. In the coefficients of the even powers of ω,
we can notice both recoil terms and dispersive corrections.

2.3.3 Real Compton scattering observables

Since the RCS process is described by six complex invariant amplitudes, we
expect 11 independent observables8 that can be expressed in terms of the
thirteen independent Wij functions introduced in Ref. [12]. We can distinguish
several observables depending on the polarization of the incoming or outgoing
photon, as well as of the target or recoil nucleon. Following the notation used in

z = zγ = zN

x = xγ = xN

z′γ

x′
γ

x′ = x′
N

z′ = z′N

q

q′

p′

Figure 2.3: Convention for the definition of the polarization in the lab frame,
where the y axes point out of the plane.

Fig. 2.3 and the labels used in Ref. [12], it is possible to define the asymmetries
Σi, Σα and Σiα, where i = (1, 2, 3) or (1′, 2′, 3′) refers to the photon Stokes
parameters that define the incoming or outgoing photon polarization matrix
densities9, while α = (xN , yN , zN) or (x′N , y

′
N , z

′
N) refers to the right-hand axes

along which the nucleon spin could be aligned. The superscript ′ in the indices
of Σiα refers to the scattered photons or to the recoil nucleons. According
to this notation, we can identify 13 independent observables, which can be
chosen as in Table 2.1. The full list of polarization observables, also including
the ones with the recoil nucleon polarization, can be found in Ref. [12]. We

8This number comes from the 12 real functions defining the 6 complex functions Ai minus
an overall phase factor.

9For the purposes of this chapter, it is sufficient to know that for i = 1 the photons
are linearly polarized with a π/4 angle with respect to the scattering plane, for i = 2
the photons are circularly polarized and for i = 3 the photons are linearly polarized either
parallel or perpendicular to the scattering plane. For a comprehensive description we address
to Refs. [12, 16]
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2. Compton scattering off the nucleon

photon

nucleon

unpolarized linear circular
x y z

unpolarized dσ/dΩ Σ3

linear
x Σ1x , Σ1′x Σ2x , Σ2′x

y Σy Σ3y , Σ3′y

z Σ1z , Σ1′z Σ2z , Σ2′z

circular

Table 2.1: Polarization observables for RCS, classified according to the degree
of polarization of the photon or the nucleon. See text for the notation.

focus our attention on two RCS observables: the unpolarized differential cross
section dσ/dΩ (neither the nucleons nor the photons are polarized) and the
beam asymmetry Σ3, where the incoming photons are linearly polarized either
parallel (‖) or perpendicular (⊥) to the scattering plane, while the nucleons
are unpolarized, i.e.

Σ3 =
σ‖ − σ⊥
σ‖ + σ⊥

.

The unpolarized cross section and the beam asymmetry can be written as

dσ

dΩ
= Φ2W00, Σ3 =

W03

W00

, (2.45)

where the functions Wij can be expressed in terms of the invariant amplitudes
as [12]

W00(ν, t) =
1

2
(4M2

N − t)(|T1|2 + |T3|2)− 1

2
(s−M2

N)(u−M2
N)(|T2|2 + |T4|2)

+ MN(s− u)<(T1T
∗
2 + T3T

∗
4 )− t|T5|2 + (M4

N − su)|T6|2

=
1

4
(4M2

N − t)
(
t2|A1|2 + η2|A3|2

)
− 1

4

(
t3|A2|2 − η3|A4|2

)
− ν2t (t+ 8ν2)|A5|2

+
1

2
η (t2 + 2M2

Nη)|A6|2 + <
{

2ν2t2(A1 + A2)A∗5

+
1

2
η2(4M2

NA3 + tA4)A∗6

}
, (2.46a)

W03(ν, t) =
1

2
(4M2

N − t)(|T1|2 − |T3|2)− 1

2
(s−M2

N)(u−M2
N)(|T2|2 − |T4|2)

+ MN(s− u)<(T1T
∗
2 − T3T

∗
4 )

=
ηt

2
<
{(

(4M2
N − t)A1 + 4ν2A5

)
A∗3 + 4M2

NA1A
∗
6

}
, (2.46b)

We can now perform a LEX directly on the Wij functions, thus obtaining a
LEX on the observables that we are interested in. In order to do so, it is
convenient to split the Born part from the non-Born term. Once we define
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2.3. Invariant amplitudes of the real Compton scattering

r0 = e2/4πMN , the Born contributions of W00 and W03 read [12]

1

(8πMN)2
WB

00 =
r2

0

2

{
q4(1 + z2) +

EγEγ
′

4M2
N

[
4q3(q + 2κN)(1− z)2

+ 2q2(9− 10z + z2)κ2
N

+ 4q(3− 2z − z2)κ3
N + (3− z2)κ4

N

]}
, (2.47)

1

(8πMN)2
WB

03 = −r
2
0

2
(1− z2)

[
q4 +

EγEγ
′

4M2
N

(κ2
N + 2qκN)2

]
, (2.48)

while the first order in the EγEγ
′ expansion of the non-Born terms can be

written as

WNB
0k = U

(2)
0k EγEγ

′ + U
(4)
0k (EγEγ

′)2 +O(Eγ
3Eγ

′3), (k = 0, 3). (2.49)

The two first-order terms U
(2)
00 and U

(2)
03 are

1

(8πMN)2
U

(2)
00 = −r0q

2
[
(1 + z2)αE1 + 2zβM1

]
, (2.50)

1

(8πMN)2
U

(2)
03 = r0q

2(1− z2)αE1, (2.51)

while the two higher-order terms U
(3)
00 and U

(3)
03 are given in App. B.

The LEX of the non-Born contribution to the unpolarized differential cross
section thus reads

dσ

dΩ

NB

=

(
E ′γ
Eγ

)2 {
− e2q2

8πMN

[
(1 + z)2(αE1 + βM1)

+ (1− z)2(αE1 − βM1)
]
EγE

′
γ +O(EγE

′
γ)

2
}
. (2.52)

We observe that at forward scattering angles (z = 1) only the sum αE1 + βM1

contributes, while at backward scattering angles (z = −1) only the difference
αE1 − βM1 contributes.
If we look at the LEX of the beam asymmetry Σ3 in the Breit frame as per-
formed in Ref. [47], we obtain

ΣNB
3 = −4MN cosϑB sin2 ϑB

αem(1 + cos2 ϑB)2
βM1ω

2
B +O(ω4

B), (2.53)

where both the photon energy and the scattering angle are defined in the Breit
reference frame as

ωB =
2−M2

N + t/2√
4M2

N − t
, ϑB = arccos

(
1 +

t

2ω2
B

)
. (2.54)

This means that at the lowest order in ωB, the non-Born part of Σ3 depends
only on the magnetic polarizability βM1, that could be extracted from the ex-
perimental data independently of αE1. In practice, when the photon energy
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2. Compton scattering off the nucleon

approaches 80 MeV, the contributions related to the spin polarizabilities and
to αE1 (which enters at order O(ω4

B)) also start being relevant, thus making
a simultaneous fit of the polarizabilities necessary. First results of the beam
asymmetry with lower statistics [40] provided a proof-of-principle that the
scalar polarizabilities can be accessed in this way. Furthermore, new measure-
ment of both the unpolarized cross section and the beam asymmetry have been
performed at MAMI with unprecedent precision [48, 49] and hold the promise
to provide a more accurate determination of the scalar polarizabilities.

24



Chapter 3
Dispersion relations and real
Compton scattering

In this chapter, we show how the dispersive approach can be conveniently used
for the description of the RCS process. We derive the dispersion relations for
the Compton invariant amplitudes Ai(ν, t), starting from the Cauchy formula
for the integral of a complex and analytical function. We briefly show how
the dispersive integrals are obtained in the RCS framework, using the unitar-
ity constraint, and we discuss, as a particular case, the forward limit of the
RCS process, with the derivation of the Baldin and Gerasimov-Drell-Hearn
sum rules.

3.1 Introduction

The origin of DRs can be traced back to the classical theory of light dispersion.
In the two well-known papers of Kramers [50] and Kronig [51], the authors
found out a relation between the real and the imaginary part of the refraction
index as a consequence of both causality and unitarity requirements.

The causality constraint, formulated in the quantum mechanical frame-
work, was adopted in the work by Gell-Mann, Goldberger and Thirring [2],
where the electromagnetic interaction was described in a perturbative frame-
work, thus leading to DRs for the forward Compton scattering. Later, in
Ref. [52], Goldberger went beyond the limits imposed by perturbation theory.
On these solid foundations, a number of sum rules could be derived, combining
the low-energy theorems [41, 53–55] and DRs for the forward RCS. The most
famous sum rules are the ones obtained (I) by Baldin [3] for the sum of the
scalar dipole polarizabilities and (II) by Gerasimov-Drell-Hearn (GDH) [4, 5]
for the anomalous magnetic moment. These sum rules all relate a measured
electromagnetic structure quantity to an integral over a photo-absorption cross
section on the nucleon and thus are model-independent relations.

In the 1960s there was a strong effort for the extension of the DR formalism
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3. Dispersion relations and real Compton scattering

to non-forward RCS (see Refs. [56–58], for instance), but only recently have
high-precision experiments allowed it to become a practicable tool. The most
successful application is the extraction of the nucleon static polarizabilities [11–
14, 16, 17], analyzing RCS observables from low energies up to the ∆(1232)-
resonance. When the polarizabilities acquire an explicit energy dependence,
the dynamical polarizabilities are defined [12], as shown in Ch. 2, and can
be evaluated in the framework of DRs [17, 30] or chiral perturbation theory
(χPT), as in Ref. [9, 29]. In Ref. [59], we extracted for the first time the
dipole dynamical polarizabilities from the proton RCS data, as we will discuss
in Ch. 6, using the theoretical framework of fixed-t subtracted DRs. In this
chapter, we introduce the DR formalism for RCS, following in particular the
works of Refs. [14–18].

3.2 The dispersive approach

The dispersion relations provide an integral relation between the real and imag-
inary part of a complex function. As shown in Eq. (2.26), the RCS scattering
amplitude Tfi can be written in terms of the amplitudes Ai(ν, t) introduced in
Eq. (2.23), that are complex functions of real variables and, at fixed values of
t, can be seen as functions of ν only. Using the Cauchy integral formula for
the non-Born part of the Ai amplitudes, one can write

ANBi (ν + iε, t) =
1

2πi

∮
ANBi (ν ′, t)

ν ′ − ν − iεdν
′, (3.1)

where

ANBi (ν, t) = lim
ε→0

ANBi (ν + iε, t). (3.2)

When the pion-production threshold is reached in the s-channel, i.e. sthr =
(M +mπ)2, the corresponding value of ν reads

νthr(t) =
sthr −M2

N

2MN

+
t

4MN

= mπ +
m2
π + t/2

2MN

. (3.3)

On the other hand, when the pion-production threshold is reached in the u-
channel, the corresponding value of ν is given by −νthr. Working in the fixed-t
framework, we will omit the t dependence in νthr(t), thus simply using νthr
from here on.

The Ai amplitudes have two branch cuts on the real axes: the right-hand
cut (RHC), which is related to the s channel and lies in the region [νthr,∞),
and the left-hand cut (LHC), related to the u-channel and extending in the
range [−νthr,−∞). Considering the analyticity properties of the amplitudes
ANBi , we can take the contour of integration in the complex ν plane shown in
Fig. 3.1, where the paths along the real axis are shifted by a quantity ±iε′ and
the upper and lower semicircles have radius R. Assuming that the function

26



3.2. The dispersive approach

-ν thr νthr

ℜ(ν)

ℑ(ν)

Figure 3.1: Integration contour for the s-channel and the u-channel in the ν
complex plane: the black solid lines are the RHC and LHC along the real axes,
while the red lines correspond to the integration contour chosen for the Cauchy
integral of Eq. (3.1).

decreases fast enough when ν → ∞, the integrals along the upper and lower
semicircles vanish and the Cauchy integral of Eq. (3.1) can be simplified as

ANBi (ν + iε, t) =
1

2πi
lim
ε′→0

[∫ ∞
νthr

Ai(ν
′ + iε′, t)

ν ′ + iε′ − ν − iεdν
′

+

∫ νthr

∞

ANBi (ν ′ − iε′, t)
ν ′ − iε′ − ν − iεdν

′

+

∫ −νthr
−∞

ANBi (ν ′ + iε′, t)

ν ′ + iε′ − ν − iεdν
′ +

∫ −∞
−νthr

ANBi (ν ′ − iε′, t)
ν ′ − iε′ − ν − iεdν

′
]
. (3.4)

The integral in Eq. (3.1) is thus reduced to the sum of two integrals along the
right-hand cut and the left-hand cut, while the two contributions arising from
the semicircles of radius ε′ vanish in the limit of ε′ → 0.

Using the Schwartz reflection principle, we obtain

lim
ε′→0

[
ANBi (ν ′ + iε′, t)− ANBi (ν ′ − iε′, t)

]
= lim

ε′→0

[
ANBi (ν ′ + iε′, t)− ANBi

∗
(ν ′ + iε′, t)

]
= 2i=ANBi (ν ′, t). (3.5)

Since ABi (ν, t) are real functions, the imaginary part of ANBi can be simply
written as =Ai(ν, t). Reversing the direction of the integral

∫ νthr
∞ → −

∫∞
νthr

,
we can combine the two first integrals in Eq. (3.4) to obtain

2i

∫ ∞
νthr

=Ai(ν ′, t)
ν ′ − ν − iεdν

′. (3.6)
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3. Dispersion relations and real Compton scattering

The integral along the LHC is evaluated in the same way, leading us to the
result:

ANBi (ν + iε, t) =
1

π

∫ ∞
νthr

=Ai(ν ′, t)
(

1

ν ′ − ν − iε +
1

ν ′ + ν + iε

)
dν ′. (3.7)

If we recall the identity in Eq. (3.2) and the principle value (P) prescription,
i.e.

1

ν ′ ± ν − iε = P
(

1

ν ′ ± ν

)
+ iπδ(ν ′ ± ν), (3.8)

we can write

<[Ai(ν, t)] = ABi (ν, t) +
2

π
P
∫ ∞
νthr

ν ′=[Ai(ν
′, t)]

ν ′2 − ν2
dν ′. (3.9)

The result we just derived in the framework of fixed-t unsubtracted DRs holds
if and only if the functions Ai(ν, t) decrease fast enough for ν → ∞, in order
to ensure that the contributions of the integrals along the upper and lower
semicircles are vanishing.

An alternative approach is provided by subtracted dispersion relations
(sDRs) that allow us to apply the dispersive formalism to functions that do
not decrease fast enough for ν → ∞ or to just improve the convergence of
the integrals. As shown in Ref. [19], using the Cauchy integral definition in
Eq. (3.1) for a generic ν0 value, and performing some algebra, one can rewrite
the difference ∆i(ν, ν0) ≡ ANBi (ν + iε, t)− ANBi (ν0 + iε, t) as

∆i(ν, ν0) =
ν − ν0

2πi

∮
ANBi (ν ′, t)

(ν ′ − ν0 − iε)(ν ′ − ν − iε)
dν ′. (3.10)

The subtraction point ν0 can be chosen arbitrarily: a convenient choice, driven
by the definition of the static polarizabilities in terms of ANBi (0, 0), is ν0 = 0,
giving for the expression in Eq. (3.10)

ANBi (ν + iε, t) = ANBi (0, t) +
ν

2πi

∮
Ai(ν

′, t)

(ν ′ − iε)(ν ′ − ν − iε)dν
′. (3.11)

The Cauchy integral is evaluated again along the contour shown in Fig. 3.1:
applying the steps described above, we obtain a dispersive integral of the form

<[ANBi (ν, t)] = ANBi (0, t) +
2

π
ν2P

∫ ∞
νthr

=[Ai(ν
′, t)]

ν ′(ν ′2 − ν2)
dν ′. (3.12)

This relation is true only if the integral along the upper and lower semicircles
(when R→∞) in the ν complex plane vanish. As we will see, this is the case
for all the six amplitudes Ai, thanks to the extra power in ν ′ at the denominator
of the integral in Eq. (3.13) that improves the fall-off of the integrand function
for ν ′ →∞.
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3.2. The dispersive approach

The result of Eq. (3.12) is obtained by one subtraction at ν = 0, but the
functions ANBi (0, t) still need to be determined. This can be done using again
subtracted DRs, this time in the t-channel, and fixing t = 0 as the subtraction
point, i.e.

ANBi (0, t+ iε) = ANBi (0, 0) +
[
At−polei (0, t)− At−polei (0, 0)

]
+

t

2πi

∮ =Ai(0, t′)
(t′ − iε)(t′ − t− iε)dt

′, (3.13)

where the t-channel pole contribution At−polei is isolated in order to have an
analytical function that satisfies the Cauchy integral formula in the complex t
plane [14]. Similarly to Eq. (3.2), we have

ANBi (0, t) = lim
ε→0

ANBi (0, t+ iε). (3.14)

Unlike for the ν variable, Ai is not even in t and the two branch cuts along

tL tR

ℜ(t)

ℑ(t)

Figure 3.2: t-channel integration contour in the t complex plane: the black
solid lines are the RHC and LHC along the real axes, while the red lines are
the integration contour for the Cauchy integral in Eq. (3.13).

the real axes are not symmetric. The t RHC starts at the two-pion production
threshold (tR = 4m2

π), while the LHC is related to the opening of the s-channel1

at ν = 0 (tL = −2m2
π−4MNmπ). Due to the analytical properties of ANBi (0, t),

a possible contour of integration in the t-complex plane is shown in Fig. 3.2,
where the branch cuts are avoided as shown before. In the limit of the radius

1The expression for t at ν = 0 reads t = 2(M2 − s) and at the opening of the s-channel
we have s = (MN +mπ)2.
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3. Dispersion relations and real Compton scattering

of the semicircle going to infinity, we obtain2

ANBi (0, t) = ANBi (0, 0) +
[
At−polei (0, t)− At−polei (0, 0)

]
(3.15)

+
t

π

∫ ∞
tR

=t[Ai(0, t′)]
t′(t′ − t) dt′ +

t

π

∫ tL

−∞

=t[Ai(0, t′)]
t′(t′ − t) dt′.

For the RCS we restrict ourself to small (negative) values of t, well below the
opening of the LHC, and then the integral is not evaluated in principal value.
Combining Eqs. (3.12) and (3.15), we have the expression for the real part of
the Ai amplitudes of RCS in the fixed-t subtracted DRs formalism:

<[Ai(ν, t)] = ABi (ν, t) + ANBi (0, 0) +
[
At−polei (0, t)− At−polei (0, 0)

]
+

2

π
ν2P

∫ ∞
νthr

=s[Ai(ν ′, t)]
ν ′(ν ′2 − ν2)

dν ′

+
t

π

∫ ∞
4m2

π

=t[Ai(0, t′)]
t′(t′ − t) dt′ +

t

π

∫ −2m2
π−4MNmπ

−∞

=t[Ai(0, t′)]
t′(t′ − t) dt′. (3.16)

In the following sections, we will show how the dispersive integrals in Eq. (3.16)
can be evaluated for the RCS process, considering first the forward Compton
scattering amplitude, whose imaginary part can be related to the total photo-
absorption cross section.

3.2.1 The forward limit and the sum rules

In the forward limit (t = 0), the RCS process can be described as a function of ν
only. The photon 4-vectors of the momentum qµ = (q0,q) and the polarization
εµλ = (0, ελ) should satisfy ελ ·q = 0 due to the transverse polarization. Labeling
with n̂x,y,z the unit vectors in the x, y, z directions, we can fix the z-axis
according to the direction of q = q0n̂z and the two photon polarization vectors
can be accordingly written as

ε± = ∓ 1√
2

(n̂x ± in̂y), (3.17)

that correspond to circularly polarized photons with helicities ±1 respectively.
If we recall that, at t = 0, qlab0 ≡ ν, we can write the forward Compton
scattering amplitude in the most generic form as

Tfi(ν, θ = 0) = ε′
∗ · εf(ν) + iσ · (ε′∗ × ε)g(ν). (3.18)

The expression of Eq. (3.18) is built on the independent vectors (ε, ε′, q = q′)
and the proton spin operator σ. Furthermore, it is linear in the polarization

2Again, the subtraction (at t = 0, here) ensure that the integrals on the semicircles vanish
as soon as R→∞.
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3.2. The dispersive approach

vectors and obeys the transverse gauge (ε′ · q′ = ε · q = 0). In addition, it is
invariant under rotational and parity transformations. Imposing the photon
crossing symmetry, the amplitude Tfi(ν, θ = 0) has to be invariant when ε′ ↔ ε
and ν ↔ −ν: as a consequence, f(ν) is an even and g(ν) an odd function, i.e.

f(ν) = f(−ν), g(ν) = −g(−ν).

These two functions can be determined by scattering photons with helicity
λ = 1 off nucleons with helicity λN = ±1/2, where the two possible Comp-
ton forward amplitudes can be denoted by T1/2(ν, θ = 0) and T3/2(ν, θ = 0),
respectively. The two forward amplitudes can thus be written as

f(ν) =
T1/2 + T3/2

2
, g(ν) =

T1/2 − T3/2

2
. (3.19)

Once defined the unpolarized and the helicity-difference cross sections of total
photo-absorption as, respectively,

σ(ν) ≡ 1

2
(σ3/2 + σ1/2), ∆σ(ν) ≡ (σ3/2 − σ1/2), (3.20)

and using the optical theorem, we can write

=f(ν) =
ν

8π

[
σ1/2(ν) + σ3/2(ν)

]
=

ν

4π
σ(ν),

=g(ν) =
ν

8π

[
σ1/2(ν)− σ3/2(ν)

]
= − ν

8π
∆σ(ν). (3.21)

We do not consider the pure electromagnetic processes (such as e+e− pair
production in the Coulomb field of the proton) that enter at higher order in
αem ' 1/137. We shall consider all the couplings of the proton to the hadronic
channels, thus starting at the photon energy in the lab frame given by the
pion-production threshold at t = 0, i.e. ν0 = mπ(1 +mπ/2M).

Applying the steps described in Sec. 3.2, one can write the following DRs
for the f and the g functions

<f(ν) = f(0) +
ν2

2π2
P
∫ ∞
ν0

dν ′
σ(ν ′)

ν ′2 − ν2
, (3.22)

<g(ν) = − ν

4π2
P
∫ ∞
ν0

dν ′
ν ′∆σ(ν ′)

ν ′2 − ν2
. (3.23)

The integral of Eq. (3.22) is computed in the subtracted DR framework, be-
cause the ν dependence of σ(ν) does not guarantee the convergence of the
unsubtracted integral3. If both the integrals in Eqs. (3.22) and (3.23) exist, we

3This is in agreement with the Regge parametrization of the higher-energy behavior of
σ(ν) through a soft pomeron exchange mechanism [60], according to which σ ∼W 0.2, where
W is the center-of-mass energy.
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3. Dispersion relations and real Compton scattering

can perform a Taylor expansion around ν = 0, thus obtaining the results

<f(ν) = f(0) +
1

2π2

∞∑
n=1

[
ν2n

∫ ∞
ν0

dν ′
σ(ν ′)

ν ′2n

]
, (3.24)

<g(ν) = − 1

4π2

∞∑
n=1

[
ν2n−1

∫ ∞
ν0

dν ′
∆σ(ν ′)

ν ′2n−1

]
. (3.25)

Comparing these expansions with the results given by the low energy theorem
of Low [53], Gell-Mann and Goldberger [2], we obtain4

f(ν) = − e2q2

4πMN

+ (αE1 + βM1)ν2 +O(ν4), (3.26)

g(ν) = − e2κ2
N

8πM2
N

ν + γ0ν
3 +O(ν5). (3.27)

Comparing the expressions in Eqs. (3.24) and (3.26), we can identify the well-
known Baldin sum rule [3], i.e. :

αE1 + βM1 =
1

2π2

∫ ∞
ν0

dν
σ(ν)

ν2
. (3.28)

On the other hand, the first two terms in Eqs. (3.25) and (3.27) give

IGDH =

∫ ∞
ν0

dν
∆σ(ν)

ν
=
πe2κ2

2M2
, (3.29)

γ0 = − 1

4π2

∫ ∞
ν0

dν
∆σ(ν)

ν3
, (3.30)

which define, respectively, the Gerasimov [4], Drell and Hearn [5] (GDH) sum
rule involving the nucleon anomalous magnetic moment and the Gell-Mann,
Goldberger and Thirring [2, 41] (GGT) sum rule for the forward spin polar-
izability. We will come back on this point in Ch. 7, where we will give an
estimate of these sum rules using the available experimental data of the total
photo-absorption cross section as inputs.

3.3 How to evaluate the dispersive integrals

In this section, we show how the dispersive approach can be applied to the RCS
invariant amplitudes. We will present both the unsubtracted and subtracted
formalism, as described in Sec. 3.2. For a more detailed description of the DR
formalisms, we address to Refs. [11, 14].

4The predictions given by the LETs assume that the leading terms for ν → 0 are com-
pletely determined by the Born terms.
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3.3. How to evaluate the dispersive integrals

3.3.1 Unsubtracted dispersion relations

As shown in Eq. (3.9), we can apply the unsubtracted fixed-t DRs approach
to the Ai amplitudes that fully describe the RCS process, if and only if the
Ai(ν, t) functions are analytical functions of ν and if they are vanishing fast
enough for ν →∞. If this last constraint is not fulfilled, the integral along the
upper and lower semicircles of radius R do not vanish. The Regge prediction
for real Compton scattering [11] at high energy and at fixed-t states that:

A1,2(ν, t) ∼ να(t), A3,5,6(ν, t) ∼ να(t)−2, A4(ν, t) ∼ να(t)−3, (3.31)

where α(t) is the Regge trajectory, with α(t) ' 1. From Eq. (3.31), we notice
that in the high-energy region the integral of Eq. (3.1) for the amplitudes
A1(ν, t) and A2(ν, t) do not converge, thus making the unsubtracted DR not
applicable. Instead, one can introduce finite energy sum rule [11], by using a
Cauchy loop of finite size, i.e.

<Ai(ν, t) = ABi (ν, t) + Ainti (ν, t) + Aasi (ν, t), (3.32)

where

Ainti (ν, t) =
2

π
P
∫ νmax

νthr

ν ′=Ai(ν ′, t)
ν ′2 − ν2

dν ′ (3.33)

is the integral in the s channel from the threshold νthr to the upper limit of
νmax and Aasi (ν, t) stands for the “asymptotic contribution” corresponding to
the integrals along the finite semicircle of radius νmax.

From Eq. (3.31), we know that the A3,4,5,6 amplitudes drop fast enough at
infinity and satisfy unsubtracted DRs. Accordingly, their asymptotic contri-
butions can be evaluated as

Aasi (ν, t) =
2

π

∫ ∞
νmax

ν ′=Ai(ν ′, t)
ν ′2 − ν2

dν ′, (i = 3, 4, 5, 6). (3.34)

On the other hand, for the A1,2 amplitudes the asymptotic contributions are
given by the integrals over the upper semicircle, i.e.

Aas1,2(ν, t) =
1

π
=
∫
ν′=νmaxeiφ

ν ′A1,2(ν ′, t)

ν ′2 − ν2
dν ′, (3.35)

with 0 < φ < π. The Aas1,2 terms can be seen as the contribution of scalar
and pseudo-scalar t-channel exchanges with JPC = 0++ and 0−+. Following
Ref. [11], they are assumed to be saturated with the lightest scalar and pseudo-
scalar particles, corresponding to the π0-pole for the A2 amplitude and to an
effective σ-meson, representing a correlated pion pair, for the A1 amplitude.

In detail, the asymptotic part of A1 is parametrized as:

Aas1 (ν, t) ' Aσ1 (t) ≈ FσγγgσNN
t−m2

σ

, (3.36)
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3. Dispersion relations and real Compton scattering

where mσ stands for the mass of the effective σ meson, while Fσγγ and gσNN
are the σγγ and σNN couplings, respectively.
The asymptotic contribution Aas2 is calculated as

Aas2 (ν, t) ' Aπ
0

2 (t) ≈ Fπ0γγgπNN
t−m2

π0

τ3Fπ(t), (3.37)

where mπ0 is the π0 mass, τ3 = 1 (−1) is the isospin factor for the proton
(neutron) and the function Fπ(t) is an off-shell form factor Fπ(t) = (Λ2

π −
m2
π)/(Λ2

π − t), with the cutoff parameter Λπ = 0.7 GeV determined from the
nucleon axial radius and the pion size. The product of the πNN and π0γγ
couplings is given by [11]

Fπ0γγgπNN = −16π

√
g2
πNN

4π

Γπ0→γγ

m3
π0

. (3.38)

While the evaluation of the Aas2 (ν, t) term is well established, being related
to the well known π0 pole, the Aas1 (ν, t) term introduces a quite strong model
dependence in the definition of the “σ meson”.

As shown in Sec. 3.2, an alternative approach is the subtracted DRs, where
the convergence of the integral is guaranteed by the presence of an additional
power in ν at the denominator of the integrand. In this framework, sDRs could
avoid the dependencies on the effective σ-meson properties and on the choice
of νmax.

3.3.2 Subtracted dispersion relations

In order to overcome the non convergence of the dispersion integrals for the
A1,2(ν, t) amplitudes, according to Eq. (3.31), the fixed-t subtracted dispersion
relations provide a valid solution. As shown in Eq. (3.16), the subtraction
point can be chosen at (ν = 0, t = 0), thus relating the six subtraction con-
stants to the static polarizabilities αE1, βM1 and the four leading-order spin
polarizabilities.

In the next subsections, we will briefly show how the integrals in the s- and
t-channels are evaluated in the DR framework.

3.3.2.1 s-channel dispersion integrals

The imaginary part of the s-channel Compton scattering amplitude can be
determined from the unitarity relation

2=sTfi =
∑
X

(2π)4δ4(PX − Pi)T †XfTXi, (3.39)

where the sum runs over all the possible intermediate states that can be reached
by the initial γN state. Due to the third power of ν ′ in the denominator of
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3.3. How to evaluate the dispersive integrals

the integrals in Eq. (3.12), the main contribution is determined by the πN
intermediate states, while the contribution from heavier mesons and multi-
meson intermediate states is suppressed. In detail, the πN contribution is
evaluated through the last updated version of the MAID5 multipole analy-
sis [63] at energies Eγ ≤ 1.5 GeV, combined with a multipole expansion of
the helicity amplitudes6 up to the maximum angular momentum jmax = 7/2
in the high energy region (Eγ ≥ 400 MeV) and jmax = 3/2 in the low energy
region (Eγ ≤ 400 MeV). The higher partial waves of the multipole expansion
with j ≥ jmax + 1 are evaluated analytically in the one-pion exchange (OPE)
approximation. The multi-pion intermediate states are approximated by the
inelastic decay channels of the πN resonances: the resulting contribution to
=sAi is

[=sAi]N∗→ππN,ηN,... = R[=sAi]N∗→πN , (3.40)

where the ratio R is given by

R =
1−Bπ

Bπ

=
Γinel(W )

Γπ(W )
. (3.41)

Here, Bπ is the single-pion branching ratio of the resonance N∗, the inelastic
widths Γinel(W ) of the decays N∗ → (ππN, ηN, πππN, . . . ) are parametrized
as in Ref. [11], and Γπ(W ) is the energy-dependent pionic width [64].

In Fig. 3.3 are shown the A1 and A2 amplitudes as function of the upper
limit νupper for the integral of Eq. (3.12), as taken from Ref. [14]: unsubtracted
DR calculations for one-pion and two-pion channels are compared with the
corresponding results from sDRs. In sDRs the sensitivity to the multi-pion
channel is very small, while the unsubtracted DRs have a strong dependence
on the multi-pion channels, that amounts to nearly 30% in the case of the A2

amplitude; the sDRs are, on the other hand, saturated already at νupper ∼ 0.4
GeV.

3.3.2.2 t-channel dispersion integrals

In the t-channel, the pole contribution enters the amplitude A2 and is given
by the π0 exchange as

Aπ
0

2 (0, t) =
Fπ0γγgπNN
t−m2

π

, (3.42)

where the coupling Fπ0γγ is determined starting from the π0 → γγ reaction as

Γπ0→γγ =
1

64π
m3
π0F 2

π0γγ, (3.43)

5Since the available phenomenological analysis for the pion photoproduction channel
are given without uncertainties, it is not possible to quantify the corresponding theoretical
uncertainties in the dispersion calculation of RCS. However, to control the uncertainties
from this channel, different analysis of pion-photoproduction, such as MAID, SAID [61] and
the HDT [62] dispersive analysis, have been employed and compared, finding a difference
typically less than 1-2% for RCS observables at low energies [16].

6We refer to Ref. [15] and to Appendix B and C of Ref. [11] for a more comprehensive
description.
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Figure 3.3: Amplitudes A1 and A2 as function of the upper limit of integration
νupper: unsubtracted dispersion integral for the one-pion channel (dotted curve)
and for the two-pion channel (dashed-dotted curve) compared to subtracted
dispersion integral in Eq. (3.16) for the one-pion channel (dashed curve) and
for the two-pion channel (solid curve) [14].

using Γπ0→γγ = 7.74 eV [65] and g2
πNN/4π = 13.72 [66]. The contribution

from the RHC in the t-channel in Eq. (3.16) can be computed using the t-
channel unitarity relation, taking into account all the possible intermediate
states, as shown in Fig. 3.4. For small values of t, well below the KK̄ pro-
duction threshold, the imaginary part is essentially saturated by the ππ in-
termediate states. For this reason, the imaginary parts in the t-channel from
4m2

π → +∞ are calculated using the γγ → ππ → NN̄ channel as input. In a
first step, a unitarized amplitude for the γγ → ππ subprocess is constructed
from available experimental data. This information is then combined with
the ππ → NN̄ amplitudes determined by analytical continuation of πN scat-
tering amplitudes [67]. In practice, the upper limit of integration along the
positive-t cut is taken equal to t = 0.78 GeV2, which is the highest t value
at which the ππ → NN̄ amplitudes are tabulated in Ref. [67]. This serves
well for the present purpose, since the subtracted t-channel dispersion inte-
grals show good convergence already below this value. The integrals along
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3.3. How to evaluate the dispersive integrals

the LHC cut in Eq. (3.16), where the integration variable runs from −∞ to
−2(m2

π + 2Mmπ) ≈ −0.56 GeV2, lies in the kinematical unphysical region. As
long as we stay at small (negative) values of t, this integral is strongly sup-
pressed by the denominator t′(t′ − t), and can be approximated by taking the
analytical continuations at ν = 0 and negative t of the most important contri-
butions from the ∆−resonance and non-resonant πN in the physical s-channel
region.

We address to Ref. [14] for a more detailed description of the evaluation of
the t-channel integrals for RCS.

.   .   .

2  Im 

π

π

π

π

π

π

K

K

Figure 3.4: t-channel unitarity diagrams for real Compton scattering [14].
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Chapter 4
A new bootstrap-based fitting
technique

In this chapter, we present a new fitting technique based on the parametric
bootstrap method. Its working principle relies on the idea of producing artificial
measurements, using the estimated probability distribution of the experimental
data. In order to investigate the main properties of this technique, we use a
toy model and we analyze several fitting conditions. Then, we compare the
results obtained with the new method to the outcome of the standard χ2 mini-
mization procedure. Furthermore, we analyze the effect of the data systematic
uncertainties both on the probability distribution of the fit parameters and on
the shape of the goodness-of-fit distribution. Our conclusion is that only the
bootstrap procedure is able to provide reliable confidence levels and p-values,
when systematic uncertainties are included in the analysis, thus improving the
results given by the χ2 minimization procedure. The results shown here are
mainly based on our work of Ref. [68].

In Ch. 5 and Ch. 6 we will extensively use this technique for the fit of the
scalar dipole static and dynamical polarizabilities.

4.1 A brief summary of a best-fit procedure

The main goal of a best-fit procedure is the estimate of some unknown param-
eters, which a given model T depends on and that are collected in an array,
θ. The more commonly used algorithm is the so-called least-square method,
which is based on the function:

χ2
stand(θ) =

∑
i

(
Ei − Ti(θ)

σi

)2

, (4.1)
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4. A new bootstrap-based fitting technique

where Ei are the experimental values and σi are their statistical uncertainty.
The minimum of χ2

stand(θ), i.e.

χ2
min =

∑
i

(
Ei − Ti(θ̂)

σi

)2

. (4.2)

is in correspondence to the optimal parameter set θ̂. This procedure is fairly
safe when only statistical uncertainties are included in the data analysis. How-
ever, as soon as we try to include some systematic errors, the χ2 minimization
method fails and one has to resort to a modification of χ2

stand, by introduc-
ing [69]

χ2
mod(θ) =

∑
i

(
fEi − Ti(θ)

fσi

)2

+

(
f − 1

σsys

)2

. (4.3)

Here, f is a normalization factor common to all the data that has to be treated
as an additional fit parameter, while σsys is the evaluated systematic uncer-
tainty in root mean square (rms) units. However, if we consider a database
composed by many subsets, this solution becomes impractical, since a different
normalization factor has to be used for each subset, thus increasing the number
of fit parameters. As a matter of fact, the minimization function becomes:

χ2
mod(θ) =

∑
k

{[ ∑
i∈ set k

(
fkEi − Ti
fkσi

)2
]

+

(
fk − 1

σsysk

)2
}
. (4.4)

However, Eq. (4.3) holds if and only if the systematic uncertainties are Gaus-
sian distributed, since

χ2
mod(θ, f) = −2 lnL(θ, f) , (4.5)

where the Likelihood function L(θ, f) is the product of the normal distributions
(with mean and standard deviations given by the experimental data) and the
normal distribution modeling the common systematic scale uncertainty, i.e.

L(θ, f) =
∏
i

[
1

σ2
i

√
2π
e
− (fEi−Ti(θ))

2

2fσ2
i

]
· 1

σ2
sys

√
2π
e
− (f−1)2

2σ2sys . (4.6)

Moreover, also the systematic uncertainty σsys may change from point to point,
thus introducing some correlation terms that are difficult to implement cor-
rectly in this framework. Furthermore, in the presence of non-Gaussian (and
non-independent) uncertainties, the χ2

min is not distributed according to a stan-
dard χ2 distribution, since it is not the sum of squared independent Gaussian
variables. This means that the p-values can not be evaluated from the χ2

distribution.
An additional complication is given by the uncertainty propagation of the

non-fitted parameters θf ,which the model T could depend on, in addition to
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4.2. Minimization strategies

the fitting parameters θ. If we suppose that those additional parameters θf
are taken from some experimental evaluation, they should appear in the form

θf = θ̄f ± σf , (4.7)

where θ̄f and σf are their estimated values and uncertainties (in rms units),
respectively.

Thus, the total uncertainty of the fit parameters should be written as the
sum of the pure contribution from the minimization itself and the uncertainty
related to the effect caused by σf . This last contribution can be estimated,
even if under the linear approximation, from the standard uncertainty propa-
gation, i.e.

δθ̂extra,ab '
∑
cd

(
∂θa
∂θf,c

∣∣∣∣
θa=θ̂a

)
σf,cd

(
∂θb
∂θf,d

∣∣∣∣
θb=θ̂b

)
, (4.8)

where the indexes a, b run over the components of θ, while c, d on the compo-
nents of θf . The quantity δθ̂extra,ab thus include both the covariances and the
variances, obtained when a ≡ b. Furthermore, the terms in round brackets are
evaluated as

∂θx
∂θf,y

∣∣∣∣
θx=θ̂x

=

[(
∂T

∂θx

)−1
∂T

∂θf,y

]
θx=θ̂x

. (4.9)

If the analytical structure of the model is strongly non-linear, the derivative
term ∂T

∂θf,y
could yield to some singularity or, at least, could be hard to be

computed, even numerically.
Our new fitting technique that we are going to thoroughly describe in this

chapter, is able to provide a valid solution to all these drawbacks. We decided
to apply it within the framework of the least square, but it can be used with
other minimization schemes, as the Maximum Likelihood (ML) approach.

4.2 Minimization strategies

We will show two well-known minimization methods, which are commonly
used in order to find the minimum of the χ2 function: the gradient method
and the simplex method, which differ for both the working principle and the
speed of convergence. As a reference, in this explanation we follow the Minuit
manual [70], the minimization package used throughout this work.

4.2.1 The gradient method

We consider a generic function F depending on a variable x. As it is indicated
by the name of the method, the minimum value of the function F can be
found looking at the gradient and at its speed of descent. This strategy is
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4. A new bootstrap-based fitting technique

called steepest descent, because the choice is to follow the direction of the
negative gradient vector in order to find the minimum.

The key point is the calculation of n-order derivatives, and it could turn
out to be not that easy if the function F is strongly non linear in x. The
algorithm computes the derivative by finite differences, namely

∂F

∂x

∣∣∣∣
x=x0

' F (x0 + d)− F (x0)

d
, (4.10)

where d > 0 and x0 is the starting value of x in the hunt of the minimum.
Using the Taylor expansion,

F (x) = F (x0) +
∂F

∂x

∣∣∣∣
x=x0

(x− x0) +
1

2

∂2F

∂x2

∣∣∣∣
x=x0

(x− x0)2 + . . . , (4.11)

we can notice that the gradient method introduces an intrinsic error given by

δ ' d

2

∂2F

∂x2

∣∣∣∣
x=x0

. (4.12)

The distance d has to be small enough to optimize the algorithm, but still large
enough to have a computational error smaller than δ. Unfortunately, there is
no possibility to find an algorithm that gives us the optimal value of d, so it
has to be found by empirical trials.
The procedure can be refined through the choice of a symmetric interval with
respect to x0, so that the first derivative assumes the form

∂F

∂x

∣∣∣∣
x=x0

' F (x0 + d)− F (x0 − d)

2d
, (4.13)

and the intrinsic error δ is now proportional to the third derivative ∂3F/∂x3.
The price to pay is that for the evaluation of n first derivatives, the function
has to be called 2n times, assuming that F (x0) is known. On the other hand,
the second derivative is given for free, since we can write

∂2F

∂x2

∣∣∣∣
x=x0

' F (x0 − d) + F (x0 + d)− 2F (x0)

d2
. (4.14)

The gradient method works very well for a one dimensional function, even if
the starting point x0 cannot be too far from the x̂ value that corresponds to the
minimum of F . However, as soon as we increase the dimension of the domain,
some complications arise, because we need to fix how to vary the gradient
vector. If we change one variable at a time, we could find a local minimum
but we would not have any possibility to control it after a change of the values
of the remaining variables. For this reason, we have to find a strategy that is
able to take into account the reciprocal dependence of all the variables.

To this aim, we have to make a strong approximation, i.e. that the function
is completely defined by its first and second derivatives. It is then clear that
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this method is not adapted to “hill-behaving” function, with rapid variations.
Under this assumption, we have a quadratic form:

F (x) = F (x0) + gT (x− x0) +
1

2
(x− x0)TG(x− x0), (4.15)

where g stands for the gradient (evaluated in x0) and G is the second derivative
matrix. The minimum is directly determined by

xmin = x0 −G−1g ≡ x0 − Vg, (4.16)

where V, given by the inverse of the second-derivative matrix, is the covariance
matrix.

The main condition required by this method is that the second-derivative
matrix (or, equivalently, the covariance matrix) has to be positive-definite,
otherwise the minimum is not stable or, even worst, it is not a minimum at
all. Some necessary and sufficient conditions for G to be positive-definite are
the following ones:

* the determinants of all the upper left square sub-matrices (square matri-
ces built up starting from the top left element and descending along the
diagonal) are positive;

* the scalar number eTGe is positive for each vector e;

* the covariance matrix V is positive definite.

4.2.2 The simplex method

A completely different algorithm is the simplex method, which is a geometrical
technique. The minimum of the generic function F is searched starting from
an arbitrary initial set of F values and applying the algorithm for a given
number of iterations. Basically, this method is based on simplex, defined as a
n-dimensional figure determined by its n+1 vertexes: a 2d simplex is a triangle,
a 3d simplex is a tetrahedron and so on. The key point is the evaluation of the
function at the vertexes of the simplex, and the method can be represented for
the bi-dimensional case as in Fig. 4.1. We consider a bi-dimensional domain
for F , i.e. F = F (x1, x2). In the (x1, x2) plane, we define a triangle having
vertices P1, P2, P3 and we evaluate the function F in these points. We will
find a point (PL) in which the function has the lowest value and another point
(PH) in which the function has the highest value. Let assume that P1 = PL,
P3 = PH and define P̄ as the middle point between P1 and P2, i.e.

P̄ =
P1 + P2

2
. (4.17)

The basic idea of this method is to replace the “worst” point PH , thus defining
a new simplex at each iteration of the algorithm. The first attempt is to reflect
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Figure 4.1: Two-dimensional example of the simplex algorithm: the points P ?

and P ?? stand for the trial points in searching the minimum of the function [70].
See text for explanation.

PH with respect to P̄ , finding the point P ? = P̄ +(P̄ −PH): if F (P ?) < F (PL)
the trial point is replaced with P ?? = P̄ +2(P̄ −PH), while if F (P ?) > F (PH),
P ?? is calculated as P ?? = P̄ + 1

2
(P̄ − PH). The point P ?? where the function

takes the lowest value will have the role of PH for the next simplex, while in the
case that none of them are useful, a new simplex is built around PL starting
from the original simplex and rescaling it by a factor of 0.5. The algorithm can
be modified changing the scaling factor and the contraction/expansion step,
but the underlying principle is the same.

Generalizing in more than two dimensions, we can define the point P̄ as
the “center of mass” of a simplex in which the “worst point” PH is excluded,

P̄ =
n+1∑
i=1

Pi
n+ 1

− PH , (4.18)

and then iterating the simplex method as explained above.

The main advantage of this algorithm is that no calculation of derivatives
is required, so it can be performed also in those cases where the algebra is
difficult and without the drawback of an intrinsic approximation as in the gra-
dient method. The main disadvantage of this technique is that no estimate is
provided for the uncertainties on the variables of the function F . The new tech-
nique we propose gives a possible solution to this problem, but still exploiting
the advantages of the simplex method.
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4.3 Outline of the new method

Our new fitting method is based on the parametric bootstrap technique (see, for
instance, Ref. [39] and references therein). The underlying idea is to assume
that each Ei is the ML estimate of its true (and unknown) value Ei. For fixed
value of the kinematical variable x, the true probability distribution p(x, Ei) is
approximated as

p(x, Ei) ' p(x,Ei) (4.19)

thus replacing the unknown true probability distribution with the (known1)
probability distribution of the measured value Ei. Then a random bootstrap
sample Eb

1, E
b
2 . . . E

b
n is generated, for each Ei, according to p(x,Ei), thus de-

termining an estimate of the true model parameters θb1 by the minimization
of the standard χ2 function in Eq. (4.1). Repeating this bootstrap cycle a
(very) large number nb of times, we get a sample θ̂b1, θ̂

b
2 . . . θ̂

b
nb

, from which we
are finally able to reconstruct the true probability distribution for every fit
parameter. For instance, the sample mean and the sample standard deviation
are given as

θ̂b =
1

nb

nb∑
i=1

θ̂bi , σθ̂b =

[
1

nb − 1

nb∑
i=1

(
θ̂bi − θ̂b

)2
]1/2

. (4.20)

4.3.1 A general example

As a general example, we consider the case of a database composed of different
and independent subsets and with a total of n experimental points, having both
statistical and uniformly distributed systematic uncertainties (scaling factors),
independent of each other. The true value Ei of each experimental point can
then be written as:

Ei = Ei ± σexp
i ±∆Esys

i (4.21)

where σexp
i is the standard deviation of the Gaussian statistical uncertainty

and ∆Esys
i is the half width of the uniform systematic uncertainty2. Such an

artificial “measurement” is assumed to be Gaussian distributed around each
experimental data point, with a standard deviation given by its statistical
fluctuation. Then, a shift equal to the estimated systematic uncertainty is
applied to all the points of every subset, independently one from each other.
This last property is crucial, because it reflects the independence of different
experimental setups. If we define a cycle as when the number of bootstrapped
points are equal to the total number of points in the considered experimental
set, the bootstrap sampling can be finally described as:

Bij = (1 + δij)(Ei + γijσi), (4.22)

1We assume, for now, that the probability distribution of the measured value is known
for every i; we will be back on this point later in the chapter.

2These distributions are just reasonable choices and they can be easily changed to cope
with every specific situation.
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4. A new bootstrap-based fitting technique

where Bij is a generic bootstrapped point with the index i running over the
number of data points (n) and the index j indicates the jth bootstrap cy-
cle. The γij parameters are sampled from the standard Gaussian distribution
N [0, 1], while the δij are random numbers uniformly distributed, in each sub-
set, as U [−∆k,+∆k], being ±∆k the percentage systematic uncertainty of
each subset k (k runs from 1 to the number of the different data subsets ns).
If only statistical uncertainties have been taken into account, the systematic
sources can be easily excluded from this procedure by just imposing δij ≡ 0.
After a complete cycle and once defined the rescaled statistical uncertainty
σij ≡ (1 + δij)σi, the minimization procedure is performed on the function:

χ2
j =

n∑
i=1

(Bij − Ti(θ)

σij

)2

, (4.23)

and all the fit results are stored.
We will show in detail the big advantages of the bootstrap-based technique.

Already at this point, we can notice that, for instance, the systematic errors
can be very easily included in the minimization procedure, thus allowing us
to reduce the overall number of free parameters (see Eq. (4.3), and comments
therein). Furthermore, any kind of uncertainty distributions of the experimen-
tal data can be easily implemented on the basis of Eq. (4.22). In addition,
Eq. (4.20) shows that this technique is able to provide reliable estimates of the
fitting parameter uncertainties, even if the minimization algorithm does not
give them explicitly. This is, for instance, the case of the simplex, as pointed
out in Sec. 4.2.2. Moreover, the probability distribution of the fitted param-
eters is not assumed to be a-priori Gaussian, but it is reconstructed from the
probability distribution assigned to every experimental data point.

If we consider the more complicated situation in which there are some ad-
ditional model parameters θf , as shown in Sec. 4.1, the sampling itself and
the cyclic structure of this algorithm prove useful. If we know the proba-
bility distributions g(θf ,σf ), based on the statistical uncertainty σf , we can
add a sampling from g(θf ,σf ) at every bootstrap cycle, thus modifying the
minimization function of Eq. (4.23) according to

χ2
b,j =

n∑
i=1

(Bij − Ti(θf,j,θ)

σij

)2

, (4.24)

whose minimum value can be written as

χ̂2
b,j =

n∑
i=1

(
Bij − Ti(θf,j, θ̂j)

σij

)2

. (4.25)

Once more, this fitting technique is very adaptable to each specific configu-
ration like, for instance, additional correlated model parameters. In such a
situation, a correlated sampling from g(θf ,σf ) could be performed, with no
modifications to the algorithm itself.
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4.4 The relation with a traditional χ2

The value of χ̂2
b,j given in Eq. (4.25) cannot be treated as the standard χ̂2 value

commonly used to assess the goodness of a fit in the standard procedure, i.e.

χ̂2 =

ndata∑
i=1

(
Ei − Ti(θf , θ̂)

σi

)2

, (4.26)

due to the artificial statistical fluctuations inherent to each bootstrapped sam-
pling. Nevertheless, a connection between χ̂2

b,j and χ̂2 should exist, being the
Bij point obtained from the Ei measurements.

In order to more easily find the desired connection between χ̂2
b,j and χ̂2, the

following definitions are useful:

εij ≡
1

σi

[
Ti(θf , θ̂)− Ti(θf , θ̂j)

1 + δij

]
,

ηij ≡
1

(1 + δij)σi

[
Ti(θf , θ̂j)− Ti(θf,j, θ̂j)

]
. (4.27)

They allow us to write the Ti(θf,j, θ̂j) terms of Eq. (4.25) as

Ti(θf,j, θ̂j) = (1 + δij)
[
Ti(θf , θ̂)− σi(εij + ηij)

]
, (4.28)

thus yielding to the decomposition

χ̂2
b,j = χ̂2 +

∑
i

γ2
ij +

∑
i

ε2ij +
∑
i

Dij +
∑
i

Φij, (4.29)

where

Dij ≡ 2

[
εijγij +

1

σi
(εij + γij)(Ei − Ti(θf , θ̂))

]
, (4.30)

Φij ≡ η2
ij + 2ηij

[
(εij + γij) +

1

σi
(Ei − Ti(θf , θ̂))

]
. (4.31)

The sum
∑

i εij quantifies the difference between the model evaluated at the

global best values of the fitting parameters θ̂ and the model evaluated at the
jth best values of θ (i.e., θ̂j), taking into account both the statistical and
systematic uncertainties. The ηij term is related to the effect introduced by
the uncertainties of the additional parameter set θf on the model evaluation
of the generic observable Ei.

The expression in Eq. (4.29) gives a crucial cross-check about the self-
consistency of the fitting method, since the value obtained by the difference

χ̂2
b,j −

(∑
i

γ2
ij +

∑
i

ε2ij +
∑
i

Dij +
∑
i

Φij

)
(4.32)
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has to be identical, within the small numerical approximations introduced by
the Monte-Carlo procedure, to the value calculated from Eq. (4.26). If not,
there could be some mistakes in the sampling or in the generation of the random
numbers.

4.5 Evaluation of the expected goodness-of-fit

distribution

We could wonder which is the goodness-of-fit distribution of the χ̂2 variable
obtained in the bootstrap framework. Usually, it is assumed to be a χ2 or,
equivalently, the term [Ei−Ti(θf , θ̂)]/σi is assumed to be Gaussian distributed
as G[0, 1]. However, this is a very strong statement, since we are forcing all
the experimental points to be Gaussian distributed around the model results
obtained with the best estimate of the parameters, i.e. Ei ∈ G[Ti(θf , θ̂),σ2

i ].
In our approach, we do not make any assumptions on the distribution of the

measured values around our model results, but we analyze an ideal experiment
in which all the points are exactly the values predicted by our model. The
sampling shown in Eq. (4.22) can be performed replacing each experimental
data with Ti(θf , θ̂), thus obtaining

Mij = (1 + δij)(Ti(θf , θ̂) + γijσi). (4.33)

Based on this new sampling, the minimization function and its minimum (at
every jth bootstrap cycle) can be respectively defined as

χ2
th,j =

n∑
i=1

(Mij − Ti(θf,j,θ)

σij

)2

, (4.34)

χ̂2
th,j =

n∑
i=1

(
Mij − Ti(θf,j, θ̂′j)

σij

)2

. (4.35)

The sampled parameters θf,j are exactly the same as in Eq. (4.24), while the
fit values of the parameters at every bootstrap cycle are, in general, different
from the ones obtained from the fit of the bootstrapped data: for this reason
we use θ̂′j instead of θ̂j.

Following the steps described in Sec. 4.4, we can introduce the variables:

ε′ij ≡
1

σi

[
Ti(θf , θ̂)− Ti(θf , θ̂

′
j)

1 + δij

]
,

η′ij ≡
1

(1 + δij)σi

[
Ti(θf , θ̂

′
j)− Ti(θf,j, θ̂′j)

]
,

D′ij ≡ 2ε′ijγij,

Φ′ij ≡ η′ij
2

+ 2η′ij
(
ε′ij + γij

)
, (4.36)
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which give the following decomposition of the χ̂2
th,j variable

χ̂2
th,j = χ̂2

th +
∑
i

γ2
ij +

∑
i

ε′ij
2

+
∑
i

D′ij +
∑
i

Φ′ij. (4.37)

Here, χ̂2
th is defined as in Eq. (4.26), replacing Ei with Ti(θf , θ̂). This parame-

ter is equal to zero by construction, but we explicitly leave this decomposition
as a cross-check3 since, within the small numerical approximations introduced
by the procedure itself, we should obtain:

0 = χ̂2
th,j −

[∑
i

γ2
ij +

∑
i

ε′ij
2

+
∑
i

D′ij +
∑
i

Φ′ij

]
. (4.38)

All the sensitivity of the theoretical model on the additional parameter set θf
is confined in the Φ′ij term, that will play an important role as a cross-check
of the fitting procedure as well as in the determination of the goodness-of-
fit distribution. In the χ̂2 variable, there is no dependence on the additional
model parameters, thus convincing us that the most realistic distribution for
the quality of the fit can be defined as

χ2
u,j =

n∑
i=1

(Mij − Ti(θf ,θ)

σij

)2

, (4.39)

with a minimum at

χ̂2
u,j =

n∑
i=1

(
Mij − Ti(θf , θ̂′j)

σij

)2

= χ̂2
th,j −

∑
i

Φ′ij. (4.40)

Thus, the additional model parameters affect the determination of the θ̂ vector,
but they do not introduce any bias in the probability distribution which the
variable χ̂2 belongs to. This new parameter χ̂2

u,j is independent on any model
or assumption about the probability distribution functions of the experimental
data. Furthermore, when the systematic uncertainties are not included in the
analysis and when the Φ′ij term can be neglected, the expression in Eq. (4.40) is
basically determined by the pure χ2 contribution, given by the sum of squared
Gaussian variables

∑
i γ

2
ij. This is a consequence of the bootstrap sampling,

which is simplified as Bij ∈ G[ Ti(θf , θ̂), σ2
i ]. The small additional corrections

due to the
∑

i ε
′
ij

2 and
∑

iD
′
ij terms can introduce a tiny model-dependent

distortion to this simple picture, as it will be discussed later.

On the other hand, when systematic errors are included in the data anal-
ysis, the sampled points are generated from the convolution U [−∆i,∆i] ∗
G[ Ti(θf , θ̂), σ2

i ]. As a consequence, the terms
∑

i ε
′
ij

2 and
∑

iD
′
ij cannot be

3We will discuss this point in the comments related to Table 4.2 later in the text.
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neglected, and a distortion is introduced to the standard χ2-distribution.
We can summarize these considerations as:

without systematics: χ̂2
u,j =

∑
i

γ2
ij +

∑
i

ε′ij
2

∣∣∣∣∣
δij=0

+
∑
i

D′ij

∣∣∣∣∣
δij=0

∼
∑
i

γ2
ij,

with systematics: χ̂2
u,j =

∑
i

γ2
ij +

∑
i

ε′ij
2

∣∣∣∣∣
δij 6=0

+
∑
i

D′ij

∣∣∣∣∣
δij 6=0

. (4.41)

Some other useful quantities that will be discussed later in this chapter are
the terms of Eq. (4.29) and Eq. (4.41), divided by the number of degrees of
freedom ndof , i.e.

χ̂2
r =

1

ndof

{
χ̂2
b,j −

[∑
i

γ2
ij +

∑
i

ε2ij +
∑
i

Dij +
∑
i

Φij

]}
,

χ̂2
th,r =

1

ndof

{
χ̂2
th,j −

[∑
i

γ2
ij +

∑
i

ε′ij
2

+
∑
i

D′ij +
∑
i

Φ′ij

]}
,

γ2
r ≡

1

ndof

∑
i

γ2
ij, ε2r ≡

1

ndof

∑
i

ε2ij, Dr ≡
1

ndof

∑
i

Dij,

Φr ≡
1

ndof

∑
i

Φij, ε′
2
r ≡

1

ndof

∑
i

ε′ij
2
, D′r ≡

1

ndof

∑
i

D′ij,

Φ′r ≡
1

ndof

∑
i

Φ′ij, χ2
b = γ2

r + ε2r +D2, χ2
th = γ2

r + ε′
2
r +D′r

2
.

(4.42)

Provided that the number of bootstrap replicas is sufficiently high, the χ̂2
u,j

entries reconstruct the goodness-of-fit distribution p(χ2
th), from which we can

obtain the p-value associated to the variable χ̂2
r from the two-sided χ2 test:

p-value =


CDF (X), if CDF (X) < 0.5,

1− CDF (X), if CDF (X) ≥ 0.5,

where X is the value of the χ̂2
r value obtained at the end of the fit and

CDF (X) =

∫ X

−∞
p(χ2

th)dχ
2
th. (4.43)

In the following, we will omit the X dependence in the cumulative distribution
functions (CDFs).

4.6 A toy model to describe the new method

In order to deeper analyze all the features related to the bootstrap-based fitting
technique, we implement a toy model, simulating random data from a Breit-
Wigner (BW) distribution. The choice of this function is related both to the
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important role that it plays in physics (it is commonly used for the description
of resonance phenomena) and to the strong non linearity in the parameter
space. This mathematical feature will turn out to be useful in the application
of the fitting technique, making the toy model not too trivial. The BW function
is then defined as

BW (x; I, µ,Γ) =
I

πΓ

Γ2

(x− µ)2 + Γ2
, (4.44)

where, I is an overall scale factor, µ is the peak position and Γ specifies the
half-width at half-maximum.

The simulated data are obtained by the cumulative inversion method, which
is based on the fact that every CDF is uniformly distributed as U [0, 1]. Thus,
we can sample a variable ξ ∈ U [0, 1] and then consider is as an outcome of the
BW cumulative distribution, i.e.

ξ =
1

π
arctan

[
x− µ

Γ

]
+

1

2
. (4.45)

Thus, the x variable is distributed according to Eq. (4.44), provided that we
impose I ≡ 1. Repeating this procedure for a large number of times, we can
simulate the experimental measurements from the standard BW distribution.
We then have the freedom to rescale the BW function, changing all of its
parameters at will. Our chosen values for the µ, Γ, and I parameters of
Eq. (4.44) are:

µ0 = 0, Γ0 = 1, I0 = 250. (4.46)

Using this procedure, we generate 30000 events, collecting those that fall in
the x range [−4, 4] and diving them into 3 different subsets. We then build a
100-bin histogram, in order to simulate a counting-event experiment, obtaining
the result shown in Fig. 4.2. For each subset, we can denote the content and
the statistical fluctuation of the ith histogram bin by Bi and σB,i, respectively.
The bootstrapped data are obtained from Eq. (4.22), i.e.

Bij = (1 + δij) [Bi + γijσB,i] . (4.47)

Once the sampling is performed, we need to establish the fitting conditions
that can better test the fitting procedure. Our choice is to perform the fit
under the following configurations:

* Fit3p: 3 fit parameters (I, µ and Γ);

* Fit2p+1f : 2 fit parameters (I and Γ), and one fixed parameter (µ = µ0);

* Fit2p+1s: 2 fit parameters (I and Γ), and one sampled parameter (µ ∈
G[µ0, σ

2
µ0

]). The σµ0 term is chosen as k/100, with k = {3, 20} in such a
way to investigate how the size of the uncertainties on θf affects the fit
results.
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Figure 4.2: Simulated data from the Breit-Wigner distribution. They are
separated into the three subsets denoted by the different colors.

In order to simulate a systematic offset to our toy data, we assume that each
subset is affected by a box distributed systematic scale uncertainty with: ∆1 =
0.04, ∆2 = 0.06 and ∆3 = 0.03.

For each condition, the fit is performed with 10000 bootstrap replicas both
with and without the inclusion of the systematic uncertainties. In this last
case, we add the superscript ′ to every fit label.

4.6.1 Fit results

We collect all the fit results, obtained under the different configurations, in
Table 4.1, while the probability distributions of the fitted parameters are given
in Figs. 4.3 and 4.4. In Table 4.2, we list also the expected values of the
contributions of χ̂2

b,j (see Eq. (4.29)) and of χ̂2
th,j (see Eq. (4.37)), labeled

as E [. . . ] and divided by ndof . Their probability distributions are shown in
Figs. 4.6 and 4.9. Furthermore, the CDFs of the goodness-of-fit distributions
are displayed in Figs. 4.10 and 4.11.

In order to provide a more schematic analysis of our fitting technique, we
devote the next subsections to the discussion of each fitting condition one-by-
one.

Fit3p

Before discussing our results, an important cross-check is in order. In the boot-
strap framework, if only statistical uncertainties are included, the fit results
should be the same as one would obtain with the standard fit procedure using
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DATA

Fitting conditions I µ (10−3) Γ (10−1) χ̂2
r p-value Symbol

Fit3p 247.0+1.4
−1.5 1.8+7.1

−7.6 9.8± 0.1 0.98 45% ◦
Fit′3p 247.0+4.0

−4.2 1.8+7.1
−7.7 9.8± 0.1 0.98 35% ◦

Fit2p+1f 247.0+1.4
−1.5 fixed 9.8± 0.1 0.98 43%

Fit′2p+1f 247.0+4.0
−4.2 fixed 9.8± 0.1 0.98 34%

Fit2p+1s (3%) 247.0+1.4
−1.5 sampled 9.8± 0.1 0.98 43%

Fit′2p+1s (3%) 247.0+3.9
−4.3 sampled 9.8± 0.1 0.98 34%

Fit2p+1s (20%) 243.0+4.2
−5.0 sampled 10.0+0.2

−0.3 1.05 25%
Fit′2p+1s (20%) 242.0+5.9

−6.2 sampled 10.0+0.2
−0.3 1.05 19%

Table 4.1: Results from the fit applied to the toy data in the different conditions
described in the text. Each p-value is calculated from the expected goodness-
of-fit distribution, which is reconstructed in the framework of the bootstrap
technique. The different symbols refer to the point styles of Figs. 4.3 and 4.4.

Eq. (4.1) and Eq. (4.2). In this case we obtain

I = 247.0± 1.5, µ = (1.7± 7.4) · 10−3,

Γ = (9.8± 0.1) · 10−1, χ̂2 = 0.98, (4.48)

which are in (almost) perfect agreement with the values given in Table 4.1 and
corresponding to the Fit3p condition. The only tiny difference is the asym-
metry of the bootstrapped 1-σ range for I and µ, which is completely absent
in the standard minimization procedure. This feature can be explained by
considering that (I) the standard fitting technique assume a-priori Gaussian
distributed parameters, (II) the finite number of replicas introduces a small
bias and (III) the number of bins used for the histograms introduces a numer-
ical approximation in the evaluation of the CDFs, from which the 1-σ range
is computed. We can reduce this difference by increasing both the number of
replicas and the binning for the histograms. For instance, with 100000 replicas
and 200-bin histograms, we obtain a completely symmetric range for all the
fitted parameters.

The approximations introduced in our procedure can be kept under con-
trol by examining the reconstructed probability distribution and fitting it to a
Gaussian distribution. In the left panel of Fig. 4.5, we show that the fitted re-
sults obtained in the Fit3p configuration (black dots) are in excellent agreement
with the expected Gaussian shape, according to Ref. [71].

The different contributions of χ̂2
b,j (see Eq. (4.29)), corresponding to the

Fit3p condition, are given in the first line of Table 4.2 (upper part) and in
Fig. 4.6 (black curves). We can notice that for the χ̂2

th,j variable (see Eq. (4.37)
and Fig. 4.7), the term E [χ̂2] is numerically very close to zero (see Table 4.2),
as expected. Furthermore, its distribution is basically a pure reduced χ2 dis-
tribution, as previously discussed in Eq. (4.41) and shown in the left plot of
Fig. 4.10, due to the quite small and almost opposite values of E [ε′] and E [D′r].
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1.34±
2.86)·10

−
2

0

F
it

2
p
+

1
s

(3%
)

O
(10
−

5)
1.01±

0.08
(6.78±

6.72)·10
−

3
(−

1.34±
1.33)·10

−
2

(5.46±
8.16)·10

−
2

F
it ′2

p
+

1
s

(3%
)

O
(10
−

4)
1.01±

0.08
(5.26±

3.67)·10
−

2
(−

1.39±
2.83)·10

−
2

(5.46±
8.15)·10

−
2

F
it

2
p
+

1
s

(20%
)

O
(10
−

1)
1.01±

0.08
(11.0±

31.6)·10
−

2
(−

1.6±
16.4)·10

−
2

1.97±
2.43

F
it ′2

p
+

1
s

(20%
)

O
(10
−

1)
1.01±

0.08
(15.4±

31.4)·10
−

2
(−

1.9±
17.0)·10

−
2

1.97±
2.43

Table 4.2: The expected values of the different components of χ̂2
b,j (upper

panels) and χ̂2
th,j (lower panels), as shown in Eq. (4.42). The different symbols

refer to the point styles in Figs. 4.3–4.5 and 4.10–4.12.
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Figure 4.3: Probability distributions for the fit parameters I (left panels), µ
(central panels) and Γ (right panels) for the Fit3p (upper panels) and Fit2p+1f

(lower panels) configurations. The red (black) points correspond to the results
with (without) the inclusion of the systematic uncertainties in the fit procedure.
In the Fit2p+1f case, the mean value µ is not fitted but kept fixed at zero.

These properties fully confirm the considerations outlined in Sec. 4.4 and
Sec. 4.5 and point out that, when only statistical uncertainties are included in
the data analysis, the goodness-of-fit distribution related to the χ̂2

r variable is
almost a pure χ2.

Fit′3p

Due to the mathematical expression of the BW distribution in Eq. (4.44), the
only parameter that is affected by the inclusion of a common scale factor is
I, while µ and Γ remain almost the same: this feature is clearly visible from
the second line of Table 4.1 and from the top panel of Fig. 4.3. The results
obtained under this configuration can be compared with the ones obtained
using the χ2

mod defined in Eq. (4.3), leaving the normalization factors for each
subset as additional free parameters:

χ2
mod =

∑
k

{[ ∑
i∈ set k

(
fkEi − Ti
fkσi

)2
]

+

(
fk − 1

σsysk

)2
}
, (4.49)

where σsys
k = ∆k/

√
3, k = 1, 2, 3. In this case we obtain the values

I = 246.7± 3.5, µ = (1.7± 7.5) · 10−3,

Γ = (9.8± 0.1) · 10−1, χ̂2 = 0.99, (4.50)

which are very similar to the results shown in Table 4.1 and referred to the
Fit′3p configuration. The slightly smaller uncertainty on I is (at least partially)
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Figure 4.4: Probability distributions for the fit parameters I (left panels), µ
(central panels) and Γ (right panels) Fit2p+1s (3%) (upper panels) and Fit2p+1s

(20%) (lower panels) configurations. The red (black) points correspond to the
results with (without) the inclusion of the systematic uncertainties in the fit
procedure. The mean value µ is not shown here, being sampled from its known
value µ0.

due to the additional fit parameters that are present in Eq. (4.49) with respect
to the bootstrap case. As a cross-check, we consider only one data set and we
compare the modified χ2 approach with the bootstrap one: the two results are
identical and yield to I = 243.8± 6.2.

We stressed in Sec. 4.5 that, when systematic errors are included in the
data analysis, the goodness-of-fit distribution is not a proper χ2. This is clearly
visible from the χ̂2

b,j decomposition (red lines in the upper panel of Fig. 4.6),
where we can notice an increased dispersion of the ε2r distribution (see also
Table 4.2). However, the E [χ̂2] value is the same as the one obtained in the
Fit3p configuration, and it is also in agreement with the results given by the
χ2
mod procedure. This means that, even if the value of the reduced χ2 obtained

at the end of the fit is the same, the inclusion of systematic errors can provide
a different statistical significance. As a matter of fact, the p-value given in
Table 4.1 is reduced by 10% with respect to the one obtained considering only
statistical fluctuations.

We can examine the goodness-of-fit distribution in more detail. The CDF
reconstructed by our technique is shown by the red dots of Fig. 4.10 (left
panel) and it is quite far from the reduced χ2-function. This feature is caused
by the correlations between the data caused by the systematic uncertainties
and it can be more thoroughly analyzed by looking at the plots in Fig. 4.7 (red
curves): there, both the ε′2r and the D′r term give a significant contribution to
χ̂2
th,j, thus distorting the effect of the predominant γ2

r term. The size of the
distortion depends both on the magnitude of the systematic bias and on the
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4.6. A toy model to describe the new method

analytical structure of the model T .
Furthermore, we could wonder what are the probability distributions of

the fitted parameters: we do not expect a Gaussian shape, due to the corre-
lation effects introduced by the systematic uncertainties. In Fig. 4.5, we show
the probability distributions of the I parameter. The distributions are recon-
structed under the Fit′3p condition by using 100000 replicas (central panel),
in order to increase the precision. To investigate the effect of the bias, we
also increased the scaling factor by a factor 3 (right panel). In both cases, we
notice a strong deviation from the Gaussian shape, which becomes even more
pronounced when the systematic biases increase. This behavior can be quali-
tatively explained by the fact that, given the sampling defined by Eq. (4.22),
the distribution of the I parameter results from the convolution of a uniform
and a Gaussian function and its shape depends on the ∆/σi ratio.

We stress that all these statistical features would not be noticed in the
framework given by the χ2

mod function, where the goodness-of-fit distribution
is assumed to be a Gaussian and no distortion in the fitted parameters distri-
bution is observed.
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Figure 4.5: Probability distributions for the fitted parameter I, obtained with
100000 bootstrap cycles and 100 histogram bins under the Fit3p (left panel),
Fit′3p (central panel) and Fit′3p with 3 ·∆k (right panel) configurations. These
distributions are compared to the best-fit Gaussian curves (blue solid curves).
At the bottom of each plot are also quoted the corresponding χ̂2

r values.

Fit2p+1f

The results obtained under this configuration are almost identical to the ones
from Fit

(′)
3p conditions, as can be seen from Table 4.1 and Table 4.2. We just

use them as a benchmark to compare the results of the Fit
(′)
2p+1s conditions,

where the uncertainty of the non-fitted parameter is included in the bootstrap
sampling.
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4. A new bootstrap-based fitting technique

Fit2p+1s

Under this fitting configuration, we analyze the effect of the uncertainties of
the non-fitted parameter on the fitted results. If the uncertainty is small (σµ0 =

3%), we obtain almost the same values as in the Fit
(′)
2p+1f configuration, as can

be seen by looking at Table 4.1 and Table 4.2, and at Figs. 4.8 and 4.11 (left
panels). Also the probability distributions of the fit parameters I and Γ are
still compatible with a Gaussian function. This feature is ensured by the small
value of E [Φ], which is now non-zero by definition. As a matter of fact, if we
increase σµ0 up to 20%, the E [Φ] term increases and causes huge differences

with respect to the Fit
(′)
2p+1f condition. The outputs are shown in Table 4.1 and

Table 4.2, while the decomposition of the χ̂2
th,j variable is shown in Fig. 4.9.

Now, the Φ′r term gives a sizable distortion with respect to a pure reduced χ2

and basically overwhelms the effect due to the systematic errors, as can be seen
in Fig. 4.11. Furthermore, the fitted parameters are definitely non-Gaussian
distributed, as shown by the lower panels of Fig. 4.4.

All these features can be used to validate the choice of fixing the µ0 param-
eter rather than fit it. With such a big uncertainty σµ0 , both the parameters
distributions and the χ̂2

th,j CDF suggest that this configuration shows huge
drawbacks.
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Figure 4.6: Decomposition of the χ̂2
b,j parameter in the Fit3p configuration

when systematic uncertainties are excluded (black curves) and included (red
curves). Upper panels (from left to right): χ̂2, χ2

b and γ2
r components. Lower

panels (from left to right): ε2r, Dr and Φr components. See Eq. (4.42) for the
notation.
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Figure 4.7: Decomposition of the χ̂2
th,j parameter in the Fit3p configuration

when systematic uncertainties are excluded (black curves) and included (red
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2
th and γ2

r components. Lower

panels (from left to right): ε′2r, D
′
r and Φ′r components. See Eq. (4.42) for the

notation.

4.7 A more realistic situation: data with a sys-

tematic offset

Up to now we have shown how to deal with systematic uncertainties by the
bootstrap sampling. However, the simulated data are not affected by any
intrinsic bias, thus not reflecting a more realistic experimental situation where
all the data are shifted by some unknown quantity .

In order to take into account these aspects, we assume that each data set has
a multiplicative offset δ∗k lying inside the estimated uncertainty range [−∆,∆].
For our purposes, we fix δ∗1 = 3%, δ∗2 = 4% and δ∗3 = −2%, and rescale all the
points and their corresponding statistical uncertainties as E∗i = (1 + δ∗k)Ei and
σ∗i = (1 + δ∗k)σi, respectively.

We now apply the bootstrap sampling of Eq. (4.22), replacing Ei and σi
with E∗i and σ∗i , respectively, and perform the fit under the Fit3p and Fit′3p
conditions. Our results are:

Fit3p: I = 250.7+1.4
−1.5, µ = (1.9± 7.4) · 10−3, Γ = (9.8± 0.1) · 10−1,

χ̂2 = 1.07, p− value ' 20%, (4.51)

Fit′3p: I = 250.7± 4.0, µ = (1.9+7.2
−7.6) · 10−3, Γ = (9.8± 0.1) · 10−1,

χ̂2 = 1.07, p− value ' 30%. (4.52)

We can see that both the central values and the uncertainties of the fit param-
eters are very similar to the previous results given in Table 4.1; however, the χ̂2

increased and the goodness-of-fit distribution, even when the systematic errors
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Figure 4.8: Decomposition of the χ̂2
th,j parameter in the Fit2p+1s (3%) config-
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th,r, χ
2
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r components. Lower panels
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are not included in the data analysis, is not a pure reduced χ2-distribution.
This effect is already visible in Fig. 4.12 and, as expected, the discrepancy
increases with |δ∗k|.

4.7.1 Estimate of the systematic bias

The bootstrap framework can also provide a technique for the estimate of the
“unknown” data offset. Using our toy model, we can apply the bootstrap fit
in the Fit3p condition and let the parameter δij span a range at least as wide
as4 [−∆,∆] only for one chosen set, while we assume that all other data sets
are not affected by any systematic offset. This choice is justified when the
considered data set is made by several (and independent) subsets, since, in
such situation, the cumulative effect of all the biases should be small because
of statistical compensation.

Under this configuration, we study the behavior of the χ̂2
b,j parameter as

a function of δij, in order to find the value δ̃ where χ̂2
b,j has a minimum.

We define 100 bins in the δij domain, thus obtaining for each of them the
expected value E

[
χ̂2
b,j(δij)

]
and its statistical fluctuation. Then, we choose a

fourth-order polynomial to fit the χ̂2
b,j function: this is a particular choice, but

the determination of the minimum itself is very robust and is not influenced
by the specific choice of the fitting function. Once all these steps are well
under control, we can repeat the procedure for all the subsets, one-by-one, and

4In our case, we fix δij ∈ U [−1/2, 1/2].
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Figure 4.9: Decomposition of the χ̂2
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evaluate all the δ̃k values.

This strategy, when considering the offset only on set 1, yields to the results
shown in Fig. 4.13, i.e. δ̃ = −3.1% ' −δ∗1. Due to the high statistics, the
uncertainty on the determination of the minimum is O(10−7) and it can be
neglected5. The estimate of the bias relies on the idea that, if we want to
“force” all the points of set 1 to be in good agreement with the other subsets,
we need to shift each datum back to its starting value or, in other words, we
should rescale every point by a factor −δ∗1.

If we use the χ2
mod framework and we consider only set 1 as affected by an

offset, we should write

χ2
mod,1 =

[∑
set 1

(
f1Ei − Ti
f1σi

)2
]

+

[ ∑
set 2,set 3

(
Ei − Ti
σi

)2
]

+

(
f1 − 1

σsys1

)2

, (4.53)

where the additional fit parameter f1 plays the role of a rescaling factor. In-
deed, we expect that the 1 − f1 term is as close as possible to δ∗1; after the
minimization of the χ2

mod,1 function, we obtain 1 − f1 = (2.60 ± 1.16)% ' δ∗1,
as expected. We can apply this strategy also to the subsets 2 and 3, thus
obtaining the results shown in Fig. 4.13 and listed in Table 4.3. Our term of
comparison is given, again, by the χ2

mod framework, where we can fit the fk
parameters one by one or simultaneously, as shown in Eq. (4.49).

5In the most general case, such uncertainty can be computed with the standard error
propagation applied to the function chosen to fit the data of Fig. 4.13.

61



4. A new bootstrap-based fitting technique

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.7  0.8  0.9  1  1.1  1.2  1.3

C
D

F
(χ

2
th

)

χ
2

th

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.7  0.8  0.9  1  1.1  1.2  1.3
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.7  0.8  0.9  1  1.1  1.2  1.3

C
D

F
(χ

2
th

)

χ
2

th

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.7  0.8  0.9  1  1.1  1.2  1.3

Figure 4.10: CDFs for the χ2
th in the Fit3p (left panel) and Fit2p+1f condi-

tion (right panel), when systematic uncertainties are included (red points) or
discarded (black points). The solid blue line is the CDF of the reduced χ2-
distribution.
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Figure 4.11: CDFs for the χ2
th in the Fit2p+1s condition (3%, left panel) and

(20%, right panel), when systematic uncertainties are included (red points)
or discarded (black points). The solid blue line is the CDF of a reduced χ2

distribution.

We can notice that, when we apply Eq. (4.49), the central value of the
rescaling factors fk well reproduces the δ∗ offset, but their uncertainties become
significantly large. This reduces the accuracy of any estimate of the systematic
offset in this framework. Nevertheless, the fitted parameters obtained from the
minimization of the χ2

mod function, i.e.

I = 247.7± 3.6, µ = (1.7± 7.5) · 10−3,

Γ = 0.98± 0.01, χ̂2
mod = 1.01, (4.54)

are, within their estimated uncertainties, in agreement with the Fit′3p results
shown in Table 4.1. However, the correlation introduced to the data by the
systematic errors causes a distortion in the goodness-of-fit distribution with
respect to a reduced χ2 function. In other words, the χ2

mod is not the sum of
squared and independent Gaussian variables, and we are not able to assign a
reliable p-value to the fitted results.
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Figure 4.12: CDFs for the χ2
th in the Fit′3p condition (red points) and Fit3p

condition (black points). The solid blue line is the CDF of a reduced χ2

distribution.

The bootstrap-based estimate of the bias seems to fail for set 3, while it
works well for the other two subsets. The reason for this behavior is that, when
we try to estimate δ∗3, we are implicitly assuming that the other two subsets
are not affected by any systematics, while they are both rescaled by positive
numbers, δ∗1 and δ∗2 respectively. On contrary, when only set 1 or 2 are affected
by the offset, the other two subsets are rescaled by factors of opposite signs,
thus introducing a compensation that allow us to correctly determine the values
of the offsets. With more than three sets and considering realistic situations,
the true (and unknown) offsets are more likely to be random distributed and
the cancellation effects should be more relevant. Once we collected all the

set number known sys. bootstrap χ2
mod (one-by-one) χ2

mod (simultaneous)

δ∗k (%) −δ̃k (%) 1− fk (%) 1− fk (%)

1 3.0 3.1 2.2± 1.1 2.6± 1.5
2 4.0 3.8 3.2± 1.1 3.3± 1.6
3 −2.0 −6.2 −4.1± 1.0 −2.1± 1.4

Table 4.3: Estimated offset values for each subset. Results from the bootstrap
(third column) and from the χ2

mod when the normalization factors fk are fitted
one-by one (fourth column) or simultaneously (last column). The known values
are given in the second column, while the sets labels are in the first column.

estimates of the real systematic offsets, we can include them in the fitting
procedure by rescaling all the data points and their statistical uncertainties by
a factor (1+δ̃k). At this stage, we could perform a traditional χ2 minimization6,

6The systematic offsets have already taken into account, thus we only deal with the
statistical fluctuations.
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Figure 4.13: The E
[
χ̂2
b,j

]
value as a function of δij. The black points are

from the bootstrap technique, fitted with a fourth-order polynomial fit (yellow
curve). The value δ̃ is represented by the vertical green line, compared with
the known −δ∗ (red line). The numerical results are given for subset 1 (a), 2
(b) and subset 3 (c).

obtaining the results

I = 250.1± 1.5, µ = (1.4± 7.5) · 10−3,

Γ = (9.8± 0.1) · 10−1, χ̂2
mod = 1.01, p-value = 46%. (4.55)

Alternatively, we can apply the bootstrap-fit by setting δij = 0 in Eq. (4.22),
thus obtaining almost the same fitting results

I = 250.1± 1.5, µ = (1.6± 7.4) · 10−3,

Γ = (9.8± 0.1) · 10−1, χ̂2
mod = 1.01, p-value = 45%. (4.56)

Even if the results of this technique are promising, we do not recommend to use
this algorithm for the ultimate estimate of the real systematic offset, because
we would introduce a strong model dependence. The working principle of this
procedure can be summarized as the trial of “forcing” all the points to be in
very good agreement with the model on which the χ2 is built. Thus, we suggest
using the bootstrap-based estimate of the real bias just as a cross-check for the
stability of the fit or for the self-consistency of a given data set.
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Chapter 5
Extraction of the dipole scalar
static polarizabilities from
proton real Compton scattering
data

In this chapter, we show the results of the extraction of the static dipole scalar
polarizabilities of the proton, i.e. αE1 and βM1, from the available real Compton
scattering data below pion production threshold. The theoretical framework is
given by the fixed-t subtracted DRs, described in Ch. 3, while the fitting strategy
follows the method outlined in Ch. 4.

We focus our attention on the data analysis, including all the sources of
uncertainties and propagating the errors on the input used in the DRs frame-
work. Furthermore, we discuss in detail the quality of the present data set and
the dependence of the fit results from different theory inputs, notably, DRs and
chiral perturbation theory.

Our analysis, within the fixed-t sDR framework, yields αE1 = (12.03+0.48
−0.54)×

10−4fm3 and βM1 = (1.77+0.52
−0.54)× 10−4fm3, with p-value = 12%.

The contents of this chapter are mainly based on our works of Refs. [68,
72].

5.1 Sensitivity to the dipole scalar polarizabil-

ities

As shown in Ch. 2 and Ch. 3, the RCS amplitudes in the subtracted DR for-
malism are given in terms of six subtraction constants, related to the leading-
order static polarizabilities and dispersion integrals. The dispersion integrals
can be evaluated with good accuracy using as input the experimental infor-
mation from other scattering processes (notably, pion photoproduction), while
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scattering data

the remaining unknown static polarizabilities can be fitted directly to RCS
data.

In order to check the sensitivity of the unpolarized differential cross section
to the static polarizabilities, we first try to follow the scheme shown in Ref. [73],
thus defining the derivative term

dO
dp

, (5.1)

where O is the experimental observable and p labels each of the six static
polarizabilities.

As a matter of fact, this term can be numerically computed, since we can
make the approximation

dO(p)

dp
' O(p+ δp)−O(p)

δp
. (5.2)

However, the electric and magnetic polarizability sum and difference, i.e. αE1±
βM1, are expressed in different units from the four spin polarizabilities. Thus,
the derivative term introduced in Eq. (5.1) does not have the same units for all
the static polarizabilities, making difficult any direct sensitivity comparison.

In order to overcome this problem, we propose to introduce the sensitivity
parameter R, defined as

R = 100× O(p+ δp)−O(p)

O(p)
, (5.3)

where one polarizability at a time is varied. The R value is a pure number,
thus allowing a very simple comparison among the sensitivity of the observable
to different polarizabilities. Once the test-parameter R is defined, we need to
fix the amount of the variation δp: we assume δp = 0.05p, i.e. a variation of
the polarizability by 5%.

By looking at the behavior of R as function of the kinematical variables,
we can investigate the sensitivity of the observable to each polarizability and
decide, on this basis, which of them should be used as free parameter in a fit.
Furthermore, we could introduce a modification of the R parameter, i.e.

Rexp = 100× O(p+ ∆p)−O(p)

O(p)
, (5.4)

where ∆p labels the experimental uncertainty related to the polarizability
p. This parameter can be used to estimate the necessary accuracy in the
measurements of the observables to improve the precision in the extraction of
the polarizabilities.

We use both the expressions in Eqs. (5.3) and (5.4), applied to the unpolar-
ized differential cross section and referred to the polarizability set αE1 + βM1,
αE1 − βM1, γπ, γ0, γE1E1 and γM1M1. The values of the uncertainties ∆p are
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Figure 5.1: Ratio R as function of the photon energy Eγ, referred to the
individual leading-order static polarizabilities and at different values of the
scattering angle θlab: 45◦ (red solid curve), 60◦ (blue dashed curve), 85◦ (green
dotted curve), 112◦ (black dash-dotted curve), 135◦ (orange dash-dot-dotted
curve), 155◦ (yellow dashed curve).

given in the next section, for each of the six static polarizabilities. By look-
ing at Figs. 5.1 and 5.2, we notice that the sensitivity of the RCS differential
cross section to αE1 + βM1 is higher in the forward region, while αE1 − βM1

contributes more in the backward region, even if the absolute values of R for
the two combinations of polarizabilities indicates a quite low sensitivity to
the difference αE1 − βM1. Moreover, in the scattering region θlab ≤ 60◦, the
sensitivity to αE1 − βM1 is very close to zero, thus suggesting that the data
below such scattering angle are not that much sensitive to this polarizability
difference, as we shall check later in this chapter.

Furthermore, the sensitivity to every spin polarizability is low and increases
as soon as we approach the pion-production threshold. The forward spin po-
larizability γ0 gives an almost negligible contribution to the differential cross
section. On the other hand, in the backward scattering angle region, the dif-
ferential cross section becomes as sensitive to the backward spin polarizability
γπ as to αE1 − βM1.

However, if we look at the behavior of Rexp, we can make some important
remarks. Apart from γ0 (whose contribution to the differential cross section is
negligible also in this case), the three spin polarizabilities γE1E1, γM1M1 and γπ
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Figure 5.2: Ratio R as function of the photon energy Eγ for each static po-
larizability: αE1 + βM1 (red solid curve), αE1 − βM1 (blue dashed curve), γπ
(green-dotted curve), γ0 (black dash-dotted curve), γE1E1 (orange dash-dot-
dotted curve) and γM1M1 (yellow dashed curve). R is shown for different
values of the scattering angle θlab.

become much more relevant, especially in the energy regions where Eγ ? 100
MeV. This feature stresses that the experimental uncertainties related to those
three spin polarizabilities is much higher than the ideal one (namely, about
5% of the measured value), thus “artificially” increasing the sensitivity of the
differential cross section to them. On the other hand, the comparison between
R and Rexp for αE1 ± βM1 shows that the experimental uncertainties of those
two polarizabilities is close to the lowest value that could be appreciated by
analyzing the RCS data.

These preliminary sensitivity tests convinced us that the spin polarizabili-
ties input play a significant role even in the extraction of the static scalar dipole
polarizabilities, thus implying a very careful choice of the input values used in
the data analysis. Moreover, their statistical fluctuations are not negligible at
all, thus suggesting us that we would better include them in a fit to the proton
RCS data. Furthermore, the considerations made on the sensitivity to γπ, sug-
gest that the backward spin polarizability could be fitted simultaneously with
the difference αE1 − βM1. We will come back to this point in Sec. 5.3, where
we will define our fitting conditions.
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Figure 5.3: As in the caption of Fig. 5.1, but related to Rexp.

5.2 Discussion on the proton real Compton

scattering database

As pointed out in Ref. [74], the values obtained for αE1 and βM1 from a fit
of the unpolarized differential cross section strongly depend on the choice of
the data set. Indeed, the scientific community has not reach so far a common
agreement on the definition of the data set of the proton RCS unpolarized
cross section below pion-production threshold [20, 59, 74].

For this reason, an in-depth discussion on the quality of the experimental
data is in order. In Table 5.1, we list all the available data sets for RCS in
the energy range below pion production threshold (∼ 150 MeV in lab frame).
Note that for the sets [75–77] and [78], we use the Baranov data-selection [79].
Furthermore, as done also in Refs. [8, 20], we discard the data from Table I
in the Hallin paper [80], because it is not clear if they are really independent
from the data given in Table II of the same work. The data sets we are going
to discuss are labeled as:

� FULL, which includes all the available data sets below pion-production
threshold listed in Table 5.1, for a total of 150 data points.

� SELECTED, which is based on the data selection proposed in Refs. [8,
20], corresponding to the FULL data set except for the data from Refs. [75,
81, 82], a single point (θlab = 133◦, Eγ = 108 MeV) from Ref. [35] and
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Figure 5.4: As in the caption of Fig. 5.2, but related to Rexp.

a single point (θlab = 135◦, Eγ = 44 MeV) from Ref. [34], for a total of
137 data points.

� TAPS, which is the most comprehensive available subset with 55 data
points below pion-production threshold [35].

We divide sets 6 and 7 from Refs. [82, 83] (and sets 11 and 12 from Ref. [33]
as well), even if they are from the same experimental measurements, because
they differ for the values of the systematic errors. The goal of our analysis
is to perform some consistency checks of the data set and to look for the
possible occurrence of outliers. In order to do so, we apply a traditional χ2

minimization, using the gradient technique described in Sec. 4.2.1, thus not
including the systematic errors in our tests. This choice is motivated by the
aim of investigating the pure statistical features of the experimental data and
to work in a well-established fitting condition.

From here on, the scalar dipole electric and magnetic polarizabilities are
expressed in 10−4 fm3 units, while the four leading-order spin-dependent po-
larizabilities are given in 10−4 fm4 units. For all the tests shown in this section,
we impose the constraint of the Baldin sum rule αE1 + βM1 = 13.8 ± 0.4, as
evaluated in Ref. [21], and also adopted in the fit of Refs. [8, 35, 36]. The re-
maining parameters of fixed-t subtracted DRs are taken from the experimental
values extracted from double-polarization RCS [36], i.e. γE1E1 = −3.5 ± 1.2
and γM1M1 = 3.16 ± 0.85, and from the GDH experiments [85, 86], i.e. γ0 =
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set label Ref. first author points number θlab (◦) Eγ (MeV) symbol

1 [75] Oxley 4 70− 150 ' 60
2 [76] Hyman 12 50, 90 55− 95 •
3 [77] Goldansky 5 75− 150 55− 80
4 [81] Bernardini 2 ' 135 ' 140

5 [78] Pugh 16 50− 135 40− 120
6 [82, 83] Baranov 3 90, 150 80− 110
7 [82, 83] Baranov 4 90, 150 80− 110
8 [34] Federspiel 16 60, 135 30− 90

9 [84] Zieger 2 180 100, 130
10 [80] Hallin 13 45− 135 130− 150
11 [33] MacGibbon 8 90, 135 95− 145
12 [33] MacGibbon 10 90, 135 95− 145

13 [35] Olmos de Leon 55 60− 155 60− 150

Table 5.1: Angular and energy coverage of the available experimental data on
unpolarized cross section for proton RCS.

−1.01±0.08±0.10 1. For the backward spin polarizability, we take the weighted
average of the values extracted at MAMI [13], i.e. γπ = −8.0± 1.8. Here and
in the following, we used the standard convention to exclude the t-channel π0-
pole contribution from the spin polarizabilities. These contributions amount

to γπ
π0−pole = −46.7 [16], γπ

0−pole
M1M1 = −γπ0−pole

E1E1 = 1
4
γπ

0−pole
π , while they vanish

in the case of the forward spin polarizability.
The statistical fluctuation related to αE1 + βM1 is taken into account as

εαE1,βM1
=
√

(ε2αE1+βM1
+ ε2αE1−βM1

)/2. This fitting condition will be labeled as

test-fit.
The result of the test-fit applied to the FULL data set leads to the best

values
αE1 = 11.99± 0.31, βM1 = 1.81± 0.31, χ̂2 = 1.25, (5.5)

which are, within the error bars, in good agreement with the ones given in
Ref. [89].

As mentioned in Sec. 5.1, the sensitivity of the differential cross section to
the difference αE1 − βM1 is basically negligible for θlab ≤ 60◦, thus suggesting
that the data in that region are not contributing to the determination of the
αE1 − βM1 value. If we then exclude the data in the region where θlab ≤ 60◦

(thus reducing the amount of data to 115 points), we do not expect different
fitted values with respect to the result obtained using the FULL data set in
the analysis. The result obtained with the angular-reduced data set are then

αE1 = 11.95± 0.30, βM1 = 1.86± 0.30, χ̂2 = 1.60, (5.6)

which are almost identical to the ones given in Eq. (5.5). The main effect of the
exclusion of the forward-angle data is the increasing of the reduced χ2 value,

1This value is consistent with the fitting conditions adopted for the extraction of the spin
polarizability in Ref. [36]. We note that recent reevaluations [87, 88] of γ0 give a slightly
smaller central values, with uncertainties consistent with the value used in Ref. [36].
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which loses statistical significance as soon as we omit the data with θlab ≤ 60◦.
As a consequence, it is advisable to include also the forward scattering data in
the analysis, even if the sensitivity of the unpolarized differential cross section
to αE1 − βM1 is very small in this angular region.

5.2.1 The Jackknife resampling

In order to discuss the consistency of the data set, one can resort to a par-
ticular case of the non-parametric bootstrap technique, i.e. the Jackknife. If
we consider a data set D = {di}, i = 1, . . . , n, composed by n points, we can
define n data subsets by removing one datum at a time, i.e. Dk = D \ {dk},
where k = 1, . . . , n. We then perform a fit of the model T (θ) to every Dk

data set, thus obtaining a best value of the parameters θ̂ for each set: from
the n-tuple of θ̂k, we can compute the average θ̂Jack and its sample standard
deviation σJack. An outlier k is expected to give a result far from the average

value, i.e. | θ̂k−θ̂Jack
σJack

| � 1. Instead, if there are no evident outliers, we expect

that all the variables θ̂k follow, at least approximately, Gaussian confidence
levels [90]. In this way, we can identify possible deviations of a data subset
from the other ones.

If we now apply the Jackknife to the FULL, TAPS and SELECTED data
sets previously defined, we can infer some information on the self-consistency
of those data sets. In Fig. 5.5, we show the best values of αE1 and βM1 versus
the index k of the excluded point in each subset. In the case of the FULL
data set, we note that the statistical fluctuations are well in agreement with
the expected Gaussian confidence levels (∼ 95% of the occurrences within
the 2σ range), thus allowing us to conclude that there is no clear evidence
of outliers. On the other hand, in the case of the SELECTED data set, we
obtain very similar results, with less pronounced fluctuations (∼ 98% of the
occurrences within the 2σ range). This does not necessarily imply that there
is an improvement in the data set. Instead, this behavior may simply reflect
the fact that the data points excluded from the set are not “close enough to”
the model predictions.

The same test applied to the TAPS data set shows a clear dependence of
the values of αE1 and βM1 on the scattering angle. This feature is due to
the fact that the data are ordered by increasing scattering angles and that
the sensitivity of the unpolarized RCS cross section to αE1 − βM1 is higher in
the backward scattering region (see the discussion in Sec. 5.1): when a single
datum is removed in the backward region, the value of βM1 decreases and αE1

increases.
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Figure 5.5: Results from the Jackknife (blue curve) for αE1 (left panels) and
βM1 (right panels). The red (yellow) lines correspond to the 1-σ (2-σ) sample
standard deviations. From top to bottom: results for the FULL data set,
TAPS data set and the SELECTED data set.
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5.2.2 Residual analysis

Another possible test is the analysis of the residuals, defined as

ξi ≡
Ei − T̂i
σi

, (5.7)

where Ei is the ith experimental datum with the uncertainty σi and T̂i is the
model prediction obtained with the best values of the fitted parameters. If
the model is able to correctly describe the experimental data, each value Ei
can be considered a possible outcome of the probability distribution of Ti. In
this case, the variable ξi defined in Eq. (5.7), is standard-Gaussian distributed
as G[0, 1]. Note that this property is rigorously true if only statistical errors
are included in the data analysis, otherwise there would be no reason for the
experimental points to be Gaussian distributed around the theoretical model.

The results of the residual analyses applied to the FULL and SELECTED
data sets are shown in left panels of Fig. 5.6, where we can observe that the
ξi variable has mean value and standard deviation in fairly good agreement
with the expectations. In the right panels of Fig. 5.6, we show also a q-q plot,
which represents the CDF(ξi) compared to the expected CDF(z), where z is
a Gaussian distributed variable according to N [0, 1]. The straight blue line is
given by CDF(z) vs CDF(z), while the blue error bands show the 1σ (or 2σ)
uncertainty regions due to the data set dimension.

In the case of the SELECTED data set, we observe again less pronounced
statistical fluctuations mostly due to the exclusions of the subsets 1 [75] and
7 [82]. This is shown also by the fact that the CDF(ξi) for the SELECTED
data set approaches the maximum value of unity faster than in the case of
the FULL data set. If we look at the FULL data set more carefully, we note
that there are three points lying outside the 3σ range: this configuration can
happen with a 1% probability, if we assume only Gaussian fluctuations. Such
a value, even if not extremely low, points to possible outliers inside the data
set. On the other hand, the SELECTED data set has only 2 points outside the
2σ range; in this case the associated probability is ' 3%. This probability is
comparable with the previous one, thus suggesting that the exclusion of some
data points does not really improve the data set or, in other words, that at
least some of the discarded points are not definitely outliers.

The residual analysis thus let us to state that the FULL and SELECTED
data sets have a very similar statistical significance: this ambiguity can be only
resolved with new sets of precise and accurate data [48]. In the mean time, since
there is not a clearly identified source of possible experimental problems that
could affect the data that have been excluded from the SELECTED data base,
we prefer not to discard any point to keep the highest sensitivity to αE1−βM1.
Instead, we suggest to treat the suspicious points with the approach outlined
below.
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Figure 5.6: Residual analysis applied to the FULL (top panels) and SE-
LECTED (lower panels) data set. The left panels show the values of ξi (blue
curves), with their mean value (black curves) and their sample standard de-
viation band (red curves). The right panels are the q-q plots of ξi compared
with the results expected in the case of a normal distribution (diagonal blue
line). The dark (light) blue band shows the 1σ (2σ) uncertainty region due to
the data set dimension. The labels of the data sets are described in Table 5.1.

5.2.3 The χ2 per set

Another useful indicator is given by the “χ2 per set” variable, i.e.

χ2
set ≡

1

nset

nset∑
i=1

(
Ei − T̂i
σi

)2

, (5.8)

where nset is the number of points for each subset. If the model T̂i is able to
well describe the data, all the χ2

set values should be fairly close to one. However,
if χ2

set � 1, we would not be allowed to exclude all the points of such subset,
being the parameter χ2

set strongly model-dependent.
The numerical results of this test, applied to the FULL data set, are shown

in Fig. 5.7, where we can notice that most of the subsets has χ2
set ≈ 1, while

the subsets 1 [75] and 7 [82] give higher χ2
set values. As mentioned before,

these subsets are indeed excluded in the definition of the SELECTED data
set. However, the small number of points (4 for each subset) does not allow us
to exclude the occurrence of pure statistical fluctuations. Instead of discarding
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some data, we could follow the suggestion given in Ref. [91], where the statis-

tical errors are rescaled by a factor
√
χ2
set, which is different for every subset,

and the traditional χ2 minimization is performed. The validity of this method
relies on the assumption that a large χ2

set value may suggest underestimated
measurement uncertainties, that should be, in principle, equally attributed to
all the points of a given subset. The result of the fit is a new set of best values
for the fitted parameters (θ̂′), while the minimum of the χ2 function is equal
to 1, by construction.

This strategy is again model dependent, but it can be used as an indica-
tion for the identification of outliers. If there are no data subsets that behave
as outliers and then could determine very different values for the fitted pa-
rameters, we would expect that p̂′ ' p̂. In our case, the values of the fitted
parameters obtained from the FULL data set with and without rescaling of
the statistical errors are consistent within the (large) fit errors, i.e.

no rescaling : αE1 − βM1 = 10.17± 0.47, (5.9)√
χ2
set rescaling : αE1 − βM1 = 9.36± 0.50. (5.10)

If, as a cross-check, we exclude both subsets 1 and 7 from the data analysis,
and we perform a test-fit, we obtain αE1 − βM1 = 9.01 ± 0.50, which is very
similar to the result shown in Eq. (5.10), obtained with the rescaling method.
The two values are so similar because the rescaling method strongly reduces
the impact of all the data points belonging to subsets with a relatively high
χ2
set. On the other hand, the rescaling procedure does not improve the accuracy

of the extraction, since the error bars in Eqs. (5.9) and (5.10) are very similar.
Furthermore, the difference between the central values in Eqs. (5.9) and (5.10)
can be related to the angular distribution of the experimental data of sets 1
and 7, which is mainly in the backward scattering region, where the sensitivity
to αE1 − βM1 is higher, as shown in Sec. 5.1.

In summary, also the χ2 per set analysis let us to conclude once more that
there is no clear evidence of outliers that should be excluded from the fit.

5.2.4 Behavior of the minimization function

A further test can be performed by examining the behavior of the minimization
function in the parameter space. If some outliers are excluded from a given data
set, we would expect that the minimum of the χ2 function is more pronounced
and closer to 1, i.e. the fitted parameters are known with higher precision. In
Fig. 5.8 we show the χ2 function of the test-fit versus the fit parameters αE1

and βM1 for the FULL data set (with and without rescaling the statistical

error by a factor
√
χ2
set), for the TAPS data set and for the SELECTED data

set [20]. In the case of the SELECTED data set, we indeed observe that the
minimum value of the reduced χ2 function is closer to 1, but the shape of
the minimization function is the same as in the case of the FULL data set,
i.e. the errors on the fitted parameters remain ultimately the same. Also this
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set term for each data subset of the FULL set. The labels of the

data sets are described in Table 5.1.

test provides an additional indication of the non-clear presence of outliers, thus
convincing us once more that there are no strong enough motivation for the
exclusion of some data points from the FULL data set.

5.2.5 Summary of the tests

All the previous consistency tests led us to the conclusion that there are no
strong motivations for the exclusion of any data point from the global RCS
data set below pion-production threshold, even though we observed significant
deviations for a few data points at the backward scattering angles.

From the residual analysis we learn that the FULL and the SELECTED
data sets have almost the same statistical significance, thus implying very
similar error bars for the fitted parameters. We showed a possible strategy
that allows one to deal with some suspicious points, by the use of the

√
χ2
set;

however, we do not recommend to use this technique for a conclusive fit of αE1

and βM1. Our choice is to intensively use the new fitting technique, shown in
Ch. 4, based on the parametric bootstrap. In the next sections of this chapter,
we will discuss all the information that can be inferred by using this technique.

5.3 The extraction of the dipole static scalar

polarizabilities

The tests shown in the previous section suggested that the systematic uncer-
tainties are likely to be relevant in the extraction of αE1 and βM1. For all
the reasons described in Ch. 4, our choice for the data analysis is to use the
bootstrap-based fitting technique.

Thus, we fit the static scalar dipole polarizabilities in the framework of
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Figure 5.8: The χ2 profile as function of αE1 (a) and βM1 (b). The black
curves are the results for the original FULL data set, while the yellow curves
correspond to the results for the FULL data set with the

√
χ2
set rescaling of

the statistical errors. The purple and red curves show, respectively, the results
for the TAPS and the SELECTED data set.

subtracted fixed−t DRs, where the static polarizabilities enter through the
ai coefficients defined in Eq. (2.31) as subtraction constants. We apply the
bootstrap-based fitting technique described in Ch. 4 under different fitting
conditions, switching on/off the systematic errors and using two sets of free
parameters: i) the scalar dipole polarizabilities, with and without the con-
straint of the Baldin sum rule for the polarizability sum αE1 +βM1, and ii) the
scalar dipole polarizabilities constrained by the Baldin sum rule along with the
backward spin polarizability γπ.

Thanks to the bootstrap samplings, we are able to provide realistic prob-
ability distributions and p-values for the fitted parameters. The technique
described in Ch. 4 is thus performed using N = 10000 bootstrap replicas
and including the propagation of the statistical uncertainties related to those
polarizabilities that are not treated as free parameters in the fit. In partic-
ular, we take2 γ0 ∈ G[−1.01, 0.132] from Ref. [85, 86], γE1E1 ∈ G[−3.5, 1.22]
from Ref. [36] and γM1M1 ∈ G[3.16, 0.852] from Ref. [36]. When keeping
fixed the backward spin polarizability, we propagate the error of γπ using
γπ ∈ G[8.0, 1.82] from Ref. [13]. Furthermore, the Baldin sum rule constraint
is implemented using αE1 + βM1 ∈ G[13.8, 0.42] from Refs. [8, 21, 35, 36]. The
uncertainties on the fitted αE1 and βM1 thus automatically include the prop-

2The uncertainty value 0.132 is the sum of the squares of the statistical and systematic
errors.
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agation of the errors of the spin polarizabilities and the Baldin sum rule. The
statistical and systematic uncertainties of the experimental data are taken into
account as described in Sec. 4.4, except for the TAPS data points [35]. As dis-
cussed in Ref. [20], they are affected by a 5% point-to-point systematic error,
and, accordingly, the statistical error of each point is modified as follows

σi,TAPS →
[
σ2
i,TAPS +

(
5

100
Ei,TAPS

)2
]1/2

. (5.11)

5.3.1 Results and discussion

As mentioned in Sec. 5.3, we perform the fit of αE1 and βM1 under different
configurations, that are labeled as follows:

* Fit 1: with Baldin sum rule, and systematic errors excluded: αE1 − βM1

as free parameter;

* Fit 1′: like Fit 1, but with systematic errors included;

* Fit 2: without Baldin sum rule, and systematic errors excluded: αE1 +
βM1 and αE1 − βM1 as free parameters;

* Fit 2′: like Fit 2, but with systematic errors included;

* Fit 3: with Baldin sum rule, and systematic errors excluded: αE1 − βM1

and γπ as free parameters;

* Fit 3′: like Fit 3, but with systematic errors included.

We fit both the FULL and the TAPS data sets, in order to analyze the most
comprehensive data set (FULL) and the biggest subset (TAPS) in the energy
region below the pion-production threshold. Our numerical results are shown
in Table 5.2, while the probability distributions for the fitted parameters are
given in Figs. 5.9, 5.10 and 5.11.

Even if the best values of αE1 and βM1 strongly depend on the choice of the
data set, they are all consistent within the uncertainties, giving confidence in
the stability of our results. Furthermore, the values of αE1 and βM1 from the
Baldin-unconstrained fit are well compatible with the Baldin sum rule value:
for instance, in the Fit 2′ condition applied to the FULL data set, the fitting
result gives αE1 + βM1 = 13.40± 1.71.

As extensively discussed in Ch. 4, the inclusion of systematic errors does
not really change the central values of the fitted parameters, but increases
their uncertainties. This effect is mostly visible for the TAPS data set, fitted
in the Fit 2 and Fit 2′ conditions, while it is reduced for the FULL data set,
where the effects of the systematic errors in the different subsets are, at least
partially, compensated (see Figs. 5.9-5.11). Apart from the larger errors on
the fitted parameters, the most important effect of the inclusion of systematic
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errors is the increasing of the p-values. By looking at Table 5.2, we can notice
that for the FULL data set the p-values are always increased as soon as the
systematic errors are included in the data analysis, while the central values of
the χ̂2/dof do not change. This feature means that higher values of χ̂2/dof are
more likely to occur when systematic errors are included in the data analysis,
as is clearly visible from the CDFs of χ̂2 shown in Figs. 5.12 and 5.13. This
effect is mostly absent when we fit the TAPS data set by itself: in this case,
the systematic errors become a common scale factor for all the data points. As
a consequence, the p-values are essentially unaffected while the uncertainties
in the fitted parameters become bigger (see Fig. 5.11). Furthermore, we note
that under the Fit 1 condition, taking into account only the statistical (Gaus-
sian) errors, the p-value of the fit is about 3%, which is very close to the 1%
occurrence probability discussed in Sec. 5.2.2. However, when the systematic
errors are included in the fitting procedure (Fit 1′), the statistical significance
strongly increases (12%). This indicates that the occurrence probability of the
FULL data set is higher, when taking properly into account all the data error
sources. In summary, the analysis with and without the systematic errors con-
vinced us once more that the identification of outliers in the FULL data set
should not be done on the basis of only statistical errors.

As outlined in Sec. 5.1, the sensitivity of the RCS differential cross section
to γπ is high enough to encourage a fit of the backward spin polarizability
as well. In the Fit 3′ condition, we both propagate the uncertainty of the
unfitted polarizabilities and include the systematic errors. Our best value for
γπ, once the π0-pole contribution is summed as γtot

π = γπ + γπ
0−pole

π , is in very
good agreement with the values extracted within the fixed-t unsubtracted DR
analysis [13, 35, 92, 93]:

LARA [92] : γtot
π = −40.9± 0.4± 2.2,

SENECA [93] : γtot
π = −39.1± 1.2± 0.8± 1.5,

TAPS [35] : γtot
π = −35.9± 2.3,

Fit 3′(FULL) : γtot
π = −38.11+2.85

−2.94. (5.12)

Note that the results of Refs. [92, 93] are obtained using data above the pion-
production threshold, while the result of Ref. [35] is extracted from the com-
plete TAPS data set, ranging up to photon energies of 165 MeV.

From all the results discussed in this section, and recalling the conclusions
on the bootstrap method of Ch. 4, we can conclude that the inclusion of the
systematic errors is crucial in the analysis of the RCS data since, at least for the
FULL data set, the p-values change significantly (see Fig. 5.12). We want to
stress that this behavior can be observed only thanks to the bootstrap method,
since it is not possible to compute the correct p-values without resorting to the
Monte Carlo replicas, once the systematic errors are included. A more detailed
discussion of this feature is addressed in the next section.
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Figure 5.9: Probability distributions of the fitted scalar dipole static polariz-
abilities αE1 (left panels) and βM1 (right panels) in the Fit 1 (black curve) and
Fit 1′ (red curve) conditions. The results are obtained using the FULL data
set (upper panels) and the TAPS data set (lower panels).

5.3.2 Goodness-of-fit distributions

We discuss here the goodness-of-fit distributions related to the Fit 1 and Fit
1′ conditions, as well as the χ2 decomposition, using the same procedure and
notation described in Ch. 4. For the quantities shown in Eq. (4.42), we can
evaluate both the expected values (Table 5.3) and the probability distributions
(Fig. 5.15). From the numerical values of Table 5.3, we can conclude that: (I)
the errors on the fitted parameters cannot be small, due to the relatively big
values of the E

[
ε′2
]

and E [D′] terms, (II) the systematic errors could be rele-

vant in the data analysis, being the E
[
ε′2
]

term increased by a factor 5 as soon
as the systematic errors are included in the data analysis and (III) the sam-
pling of the unfitted parameters is under control, given that the E [Φ] is small.
Furthermore, it we do not propagate the uncertainties of the unfitted polar-
izabilities, the goodness-of-fit distributions shown in Fig. 5.11 (black curves)
get closer to a proper reduced χ2, thus enlightening once more the role of the
sampling for the fixed polarizabilities. All these considerations are in perfect
agreement with the discussion of the results in Sec. 5.3.1.

The goodness-of-fit CDFs are shown in Fig. 5.14, and the distortion effect
caused by the systematic errors is clearly visible. Unlike the behavior presented
by the toy model of Ch. 4, when the systematic errors are excluded, the limit
probability distribution for the χ̂2 variable is not so close to a proper χ2.
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Figure 5.10: Probability distributions of the fitted scalar dipole static polariz-
abilities αE1 (left panels) and βM1 (right panels) in the Fit 2 (black curve) and
Fit 2′ (red curve) conditions. The results are obtained using the FULL data
set (upper panels) and the TAPS data set (lower panels).
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Figure 5.11: Probability distributions of the fitted static polarizabilities αE1

(left panels) and βM1 (central panels) and the backward spin polarizability γπ
(right panels) in the Fit 3 (black curve) and Fit 3′ (red curve) conditions. The
results are obtained using the FULL data set (upper panels) and the TAPS
data set (lower panels).

This feature is related to the analytical structure of the fitted model, to the
sensitivity on the fitting parameter and to the presence of some offsets in the
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Figure 5.12: Cumulative distribution functions for the variable χ̂2/dof in the
case of Fit 1 (left panel, black curve), Fit 1′ (left panel, red curve), Fit 3 (right
panel, black curve), Fit 3′ (right panel, red curve), using the FULL data set.
The dashed-blue curves are the cumulative distribution functions of a pure
reduced χ2.
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Figure 5.13: The same as in Fig. 5.12 but neglecting the errors on the polar-
izability values not treated as free parameters in the fit procedure.

experimental data3; it can be quantified also with the E
[
ε′2
]

and E [D′] terms,
which are not so small to be discarded even when only the statistical errors
are included in the analysis. This difference with the expected χ2 distribution
is indeed not a surprise, but it is well explained by the decomposition given in
Eq. (4.41) and it is clearly visible in Figs. 5.12 and 5.13.

5.3.3 Correlation coefficients among fit parameters

In the bootstrap framework, the correlation coefficients ρ among the fit pa-
rameters are obtained from the reconstructed probability distribution in the
parameter space. In Table 5.4, we list these coefficients for all the different
fitting conditions used in this work. In the Baldin-constrained fits, we do not

3This behavior was already observed for the toy model analysis in Ch. 4.
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obtain ραE1−βM1
= −1, due to the fact that αE1 +βM1 is not fixed to its central

value, but is sampled within its uncertainty with a Gaussian distribution.

5.3.4 The fitted differential cross section

Another advantage provided by our fitting technique, is that we are able to
compute the probability distribution of every function of the fitted parameters.
If we consider a generic function φ of the parameters set θ, we can reconstruct
the probability distribution p(φ) by collecting φj ≡ φ(θ̂j), i.e. the function
evaluated on the best values of θ at every bootstrap cycle, labeled with j. In
this way, all the possible correlations among the parameters are automatically
taken into account, with no need to use the (approximated) propagation of the
uncertainties. If we apply this procedure to the differential cross section, we
can compute a realistic n-σ error band. In Fig. 5.16, we show the results for the
RCS differential cross section obtained in the Fit 1′ configuration as function
of the lab photon energy Eγ and the lab scattering angle θlab, in comparison
with the experimental data of the FULL data set. The orange (gray) bands
correspond to the 2-σ (1-σ) error range, computed in the bootstrap framework.

Furthermore, we can cross-check the stability of our fitted results in terms
of the experimental observable. This can be done by comparing the dif-
ferential cross section evaluated at the best values of the fitted parameters
(dσ/dΩ(α̂E1, β̂M1)) with the mean value of the differential cross section (for
fixed value of angle and energy) as obtained from the reconstructed probabil-
ity distribution, i.e.

E [dσ/dΩ] ≡ Ej
[
dσ/dΩ(α̂E1,j, β̂M1,j)

]
. (5.13)
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If these two values are almost identical (as it happens in our case), the fitted
results are stable, and we are formally allowed to compare (dσ/dΩ(α̂E1, β̂M1))
to the experimental data. As a further cross-check, we show also the differ-
ential cross section at forward angle θlab = 0o from our analysis (red band) in
comparison with the results obtained with the empirical forward RCS ampli-
tudes of Refs. [88, 94] (blue band). The last ones are evaluated from dispersive
sum rules, using as input the total photo-absorption cross sections fitted to
the available experimental data. In particular, we used the empirical ampli-
tudes from the fit I of Refs. [88, 94], that are tabulated from Eγ = 50 MeV
and correspond to αE1 + βM1 = 14.29 ± 0.27 and γ0 = −0.929 ± 0.105. The
two different curves are almost in perfect agreement, thus confirming again the
stability of the fit and the robustness of the adopted dispersive framework.

5.3.5 Comparison with other extractions of the static
dipole scalar polarizabilities

We show in Fig. 5.18 the available results for the extraction of the scalar dipole
static polarizabilities from RCS at low energies. Numerically, our results read

αE1 = 12.03+0.48
−0.53, βM1 = 1.77+0.52

−0.54,

ραE1−βM1
= −0.72, χ̂2 = 1.25, p-value = 12%, (5.14)

and are shown by the red solid curve. The ellipse in the αE1 vs βM1 plane
is obtained by the approximation for the 1-σ range of a 2-dimensional Gaus-
sian, even if we could have obtained the 68% area directly from the bootstrap
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Figure 5.16: The RCS differential cross section (blue curve), evaluated with
the scalar dipole polarizabilities of Eq. (5.14) and the experimental values
of Ref. [36] for the leading-order spin polarizabilities, as function of the lab
photon energy (Eγ) and lab scattering angle (θlab). The orange (gray) bands
correspond to the 2-σ (1-σ) error band obtained in the bootstrap framework
(see text for more detail). The experimental data are from the FULL data set,
with the labels reported in Table 5.1. In the last figure for θlab = 155◦, we
show also the two data points at θlab = 180◦ of Ref. [84] .
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Figure 5.17: Results for the differential cross section at forward angle as
function of the photon lab energy, obtained from the empirical amplitudes
of Refs. [88, 94] (blue band) and our analysis (red band).

technique4. Thus, the red ellipse of Fig. 5.18 is obtained according to

1

1− ρ2
αE1−βM1

[
u2
αE1
− 2ραE1−βM1

uαE1
vβM1

+ v2
βM1

]
= 1, (5.15)

where we defined

uαE1
=
αE1 − α̂E1

σαE1

, vβM1
=
βM1 − β̂M1

σβM1

. (5.16)

Here, the superscriptˆ is used for the best value, while σ... are the uncertainties
of the fitted parameters.

We remark that our results include both the propagation of the statistical
errors of the fixed polarizabilities αE1 + βM1, γ0, γπ, γE1E1 and γM1M1 and the
effects introduced by the systematic errors.

The results in Eq. (5.14) are in very good agreement with the ones ob-
tained using a traditional χ2 fitting procedure in a fixed-t subtracted DRs
framework [17]. In Fig. 5.18, the fits shown by black curves have been ob-
tained within unsubtracted DRs [33–35], while the experimental constraint on
the difference αE1 − βM1 from Zieger et al. [84] is shown by the light-green
band. Two results from the χPT framework are shown: the BχPT predictions
of Ref. [9] (green solid curve) and the 68% ellipse of the Baldin constrained
fit of Ref. [8, 37], using the SELECTED data set and the HBχPT framework.
These last results are in excellent agreement also with the fit within BχPT
of Ref. [38]. Finally, the Baldin sum rule is represented by the orange band,

4The two different results are almost identical, but the output from the bootstrap does
not have a regular boundary, because of the numerical approximations of the method.
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Figure 5.18: Results for αE1 vs βM1 obtained in different frameworks. The
light-green band shows the experimental constraint on the difference αE1 −
βM1 from Zieger et al. [84], while the orange band is the average over the
available Baldin sum rule evaluations [21]. The experimental extractions are
from Federspiel et al. [34] (straight black line), obtained from the fit of αE1 −
βM1 constrained by αE1 + βM1 = 14.0; MacGibbon et al. [33] (short-dashed
black curve, unconstrained fit); TAPS [35] (solid black curve, unconstrained
fit). The green solid curve is the BχPT prediction from Ref. [9], while the blue
solid curve shows the fit with the constraint αE1 + βM1 = 13.8 ± 0.4 within
HBχPT from Refs. [8, 37]. The solid black circle shows the PDG results [89].
The solid red curve is the extraction from this work (Fit 1′), using fixed-t
subtracted DRs.

while the latest value from the PDG [89] is shown in a solid black disk and it
correspond to5

αE1 = 11.2± 0.4, βM1 = 2.5± 0.4. (5.17)

We note that there is a discrepancy between the values obtained in the frame-
work of effective field theories [8, 9, 20] and the results obtained using DRs,
even if they are compatible within the 2σ-range. In order to shed some
light on the origin of the difference between the results from the extraction
within HBχPT and fixed-t subtracted DRs, we performed some test-fits, in
the condition described in Sec. 5.2, using fixed-t subtracted DRs with input
from the central values of HBχPT predictions for the spin polarizabilities.

5They differ from the 2012 and earlier editions by inclusion of the data fit analysis within
HBχPT [8].

88



5.4. Estimate of the real bias

The results for the leading-order spin polarizabilities in HBχPT read [8, 37]
γE1E1 = −1.1± 1.9, γM1M1 = 2.2± 0.5(stat)± 0.6, γ0 = −2.6± 0.5(stat)± 1.8,
and γπ = 5.6± 0.5(stat) ± 1.8, and are quite different from the experimental
values used in our DR analysis. Furthermore, we noticed a different evalua-
tion for the π0-pole contribution calculated in Ref. [8], which is −45.9 for γπ.
In Table 5.5, we compare the test-fit values for αE1 and βM1 in the case we
use the results of the spin polarizabilities and the π0pole from the experimen-
tal extraction [36] or the corresponding values from HBχPT [8, 37], with the
π0-pole contribution reported in [8] (results in brackets). This analysis has
been performed for both the FULL and SELECTED data sets, in order to
investigate the dependence of the results not only on the values of the spin po-
larizabilities, but also on the choice of the data set. If we focus on the central
values of βM1, we notice that the different input for the spin polarizabilities
affects the results by 20-30%, while the choice of the data set leads to a 40-50%
increase. It is certainly too simplistic to estimate the model dependence of the
two extractions with the different values of the spin polarizabilities. However,
in the energy range below pion production threshold, this gives a rather good
indication of the main effects due to the model dependence.

5.4 Estimate of the real bias

We want also to discuss the possible estimate of the experimental bias, follow-
ing the procedure described in Sec. 4.7. In Figs. 5.19 and 5.20 we show the
results applied to the RCS data base, under the Fit 1 condition in the boot-
strap framework6. From this test we can notice that the sets with a small
number of experimental points show a flat χ2 profile, thus signaling that the
evaluation of the systematic error would not have a strong influence on the
final-fit result. Furthermore, the estimated bias lies perfectly in the published
range for the most of subsets, thus confirming the validity of the method.

Once the δ̃k parameters are determined for all the subsets (see Table 5.6),
we can rescale all the experimental points according to

E ′i = (1 + δ̃k)Ei, σ′i = (1 + δ̃k)σi, (5.18)

where both the measured values and their statistical fluctuations are rescaled
by the same quantity. We can now perform a traditional χ2 minimization
(test-fit condition), thus obtaining

αE1 = 12.08± 0.24, βM1 = 1.69± 0.24, χ̂2 ∼ 0.9, (5.19)

which are in perfect agreement with the values that can be obtained from a fit
in which the systematic errors are not included, as shown in Eq. (5.5):

αE1 = 11.99± 0.31, βM1 = 1.81± 0.31, χ̂2 ∼ 1.25. (5.20)

6In this framework, the values of the unfitted polarizabilities are taken as described in
Sec. 5.2.
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Figure 5.19: Estimate of δ̂k for the data subsets from 1 to 6: black points are
the results of the preliminary bootstrap cycle, the yellow curve is the 4th-order
polynomial fit described in Sec. 4.7.1, the red lines are at the fixed values ±∆k

and the green line is fixed at δ̂k.
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Figure 5.20: As in Fig. 5.19, but referred to the data from subsets 7-13.
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If, on the other hand, we minimize the χ2
mod given in Eq. (4.4), we obtain

αE1 = 11.94± 0.40, βM1 = 1.86± 0.40, χ̂2 ∼ 1.26, (5.21)

which are, again, almost identical to the results of Eq. (5.5), where no system-
atic errors are included.

The normalization factors7 fk can be compared with the estimate of the
systematic errors obtained in the bootstrap framework, as shown in Table 5.6.
As noticed in Sec. 4.7.1, the estimate of the realistic systematic errors is more
reliable due to the high number of data subsets. The values obtained with
the two methods are, almost in all cases, in very good agreement. Another
possibility is to introduce the rescaled bootstrap sampling, i.e.

Sij = (1 + δ̃k)(Ei + γijσi), (5.22)

where the only random number are the Gaussian variables γij, since the offsets
are not known and can be fixed once for all before performing the global fit.
The results obtained in this way are identical to the ones given in Eq. (5.19),
as expected.

It is noteworthy to compare the statistical significance of the results given
in Eq. (5.19) with the ones given in Eq. (5.5): the former ones have a p-value
' 20%, while the latter ones have a p-value ' 2%. As already discussed in
this work, the inclusion of the systematic errors is crucial in the determination
of the correct statistical significance.

5.5 The data above the pion-production thresh-

old

We restricted the analysis of the unpolarized differential cross section to the
energy region below the pion production threshold, where the Ai amplitudes
are real. However, the fixed-t subtracted DRs can be successfully applied up to
Eγ ' 300 MeV, as pointed out in Ref. [17], thus suggesting us to include also
the experimental data collected for 150 MeV ≤ Eγ ≤ 300 MeV in the fit of
αE1 and βM1. As a first step, we would like to compare the existing data with
the predictions given by DRs, using as inputs the values quoted in Ref. [89] for
αE1 and βM1 and we fix the spin polarizabilities to the experimental extractions
quoted in Sec. 5.3. The results of this comparison is shown in Figs. 5.21 and
5.22, from which we can see that the energy behavior of the experimental
differential cross section is well reproduced by the theoretical curves. On
this basis, we can perform a test-fit of αE1 − βM1, using the traditional χ2

7We recall that, in the χ2
mod framework, the normalization factors are free parameters

and their values, together with their uncertainties, are related to the estimate of the realistic
systematic error for each subset.
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Figure 5.21: The RCS differential cross section (solid black curve), evaluated
with the scalar dipole polarizabilities of Ref. [89] and the experimental values
of Ref. [36] for the leading-order spin polarizabilities, as function of the lab
photon energy (Eγ) and lab scattering angle (θlab). The experimental data are
labeled according to Table 5.1 and Table 5.7.
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Figure 5.22: The RCS differential cross section (solid black curve), evaluated
with the scalar dipole polarizabilities of Ref. [89] and the experimental values
of Ref. [36] for the leading-order spin polarizabilities, as function of the lab
photon energy (Eγ) and lab scattering angle (θlab). The experimental data are
labeled according to Table 5.1 and Table 5.7.
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5.5. The data above the pion-production threshold

minimization and not including the systematic errors in the analysis. Our
numerical values are

αE1 = 11.01± 0.24, βM1 = 2.80± 0.24, χ̂2 ∼ 3.3, (5.23)

which are quite different from the ones shown in Eq. (5.20). However, the high
value of the reduced χ̂2 suggest that a very low statistical significance can be
assigned to the fit result. Furthermore, the uncertainties of the fitted polariz-
abilities in Eqs. (5.20) and (5.23) are almost of the same size, thus suggesting
that the accuracy in the extraction of αE1 and βM1 does not improve. As a
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Figure 5.23: Residues obtained with the values of Eq. (5.23) as function of the
photon energy in the lab frame. The colors and the type of each point follows
the same nomenclature as in Fig. 5.21.

consistency-test on the experimental data above the pion-production threshold,
we can compute the residues evaluated with the best-fit values of Eq. (5.23)
and plot them as a function of Eγ. The results are shown in Fig. 5.23, where
we can notice that, as soon as we cross the pion-production threshold, the
statistical fluctuations strongly increase, suggesting some inconsistency of the
data-base. A further cross-check can be performed on the χ2 value, using a
variant of the Jackknife sampling described in Sec. 5.2.1. Given a data set
D = {di}, i = 1, . . . , n, composed by n points, we can define n data subsets by
adding one datum at a time, i.e. Dk = {dj}, where j = 1, . . . , k and k = 1, . . . n,
for increasing values of energy. We then apply a test-fit to every Dk data set
and look at the reduced χ2 as function of the energy Eγ: the results are shown
in Fig. 5.24. We can notice that, increasing the number of data points to
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Figure 5.24: Reduced χ2 (solid black curve) obtained from the fit of all the Dk

data sets as function of the photon energy in the lab frame. The vertical red
line is the pion-production threshold.

be fitted, the χ2 tends to converge toward a stable number (1.25, as given in
Eq. (5.5)), which is reached at the pion-production threshold. As soon as the
threshold is crossed, the χ2 value tends to increase and do not seem to reach
a plateau for higher energy.

According to the results shown in this section, we have decided not to
include the data above the pion-production threshold in the extraction of the
scalar dipole polarizabilities αE1 and βM1.
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5.5. The data above the pion-production threshold

FULL data set

fit conditions αE1 βM1 γπ χ̂2/dof (p-value)

Fit 1 12.00+0.41
−0.47 1.80+0.46

−0.48 fixed 1.25 (3%)

Fit 1′ 12.03+0.48
−0.54 1.77+0.52

−0.54 fixed 1.25 (12%)

Fit 2 11.82+0.81
−0.91 1.54+0.95

−1.00 fixed 1.26 (4%)

Fit 2′ 11.86+0.93
−0.99 1.54+0.95

−1.05 fixed 1.26 (13%)

Fit 3 12.08+0.61
−0.64 1.71+0.70

−0.75 8.52+2.72
−2.93 1.26 (4%)

Fit 3′ 12.12+0.68
−0.77 1.68+0.77

−0.79 8.59+2.85
−2.94 1.26 (13%)

TAPS data set

fit conditions αE1 βM1 γπ χ̂2/dof (p-value)

Fit 1 11.87+0.50
−0.54 1.93+0.52

−0.56 fixed 1.32 (7%)

Fit 1′ 11.82+0.50
−0.55 1.98+0.52

−0.56 fixed 1.32 (7%)

Fit 2 11.62+0.86
−0.96 1.57+1.01

−1.04 fixed 1.34 (8%)

Fit 2′ 11.89+1.50
−1.67 1.76+1.83

−2.00 fixed 1.34 (8%)

Fit 3 11.74+0.68
−0.78 2.06+0.77

−0.84 6.95+2.81
−3.09 1.34 (9%)

Fit 3′ 11.67+0.68
−0.77 2.12+0.76

−0.78 6.85+2.83
−3.07 1.34 (9%)

Table 5.2: Results of the fits for the static polarizabilities αE1, βM1 and γπ
using the FULL and TAPS data sets and different fit conditions, together with
the corresponding χ̂2/dof and p-values.

fitting conditions Fit 1 Fit 1′

E [χ̂2] 10−6 10−6

E [γ2] 1.01± 0.11 1.01± 0.11

E
[
ε′2
]

(2.09± 2.97) · 10−2 (10.3± 4.8) · 10−2

E [D′] (−1.30± 2.75) · 10−2 (−1.35± 5.36) · 10−2

E [Φ] (3.62± 7.66) · 10−2 (3.62± 7.86) · 10−2

Symbol • •
Table 5.3: Decomposition of the bootstrap χ2, with the notation of Eq. (4.42),
referred to the analysis of RCS proton data [72].
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FULL data set

fit conditions ραE1−βM1
ραE1−γπ ρβM1−γπ

Fit1 −0.64 −− −−

Fit 1′ −0.72 −− −−

Fit 2 0.59 −− −−

Fit 2′ 0.52 −− −−

Fit 3 −0.84 0.86 −0.88

Fit 3′ −0.87 0.84 −0.86

TAPS data set

fit conditions ραE1−βM1
ραE1−γπ ρβM1−γπ

Fit 1 −0.74 −− −−

Fit 1′ −0.74 −− −−

Fit 2 0.47 −− −−

Fit 2′ 0.23 −− −−

Fit 3 −0.85 0.82 −0.84

Fit 3′ −0.86 0.81 −0.83

Table 5.4: Correlation coefficients ρ among the fit parameters in the different
fitting conditions described in Sec. 5.3.1. The columns 2-4 correspond, from
the left to the right, to the correlation coefficients between αE1 and βM1, αE1

and γπ, βM1 and γπ.

FULL SELECTED

αE1 11.99± 0.31 (11.47± 0.30) 11.02± 0.33 (10.46± 0.32)

βM1 1.81± 0.31 (2.33± 0.30) 2.78± 0.33 (3.34± 0.32)

Table 5.5: Results for αE1 and βM1 from the test-fit of the FULL and the
SELECTED data set, and taking different values for the leading-order spin
polarizabilities: the experimental results from Ref. [36] and the values pre-
dicted in HBχPT [20] (results in brackets).
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5.5. The data above the pion-production threshold

k fk − 1 (%) δ̃k (%) k fk − 1 (%) δ̃k (%)
1 7.5± 2.3 8.6 8 0.0± 1.9 −0.4
2 −0.6± 4.8 −2.0 9 −4.7± 3.6 −11.6
3 −4.5± 2.1 −5.6 10 −5.7± 2.5 −9.2
4 −2.5± 6.5 −5.6 11 −0.4± 2.8 −1.7
5 3.0± 4.3 3.7 12 −0.7± 2.4 −2.6
6 −0.3± 0.9 −2.9 13 −0.1± 1.3 −2.1
7 7.5± 2.4 14.8

Table 5.6: Estimate of the realistic systematic errors in the RCS analysis for
each data subset (labeled with k): results from the χ2

mod method (1 − fk)
compared with the results of the bootstrap framework (δ̃k).

set label Ref. first author points number θlab (◦) Eγ (MeV) symbol
4 [81] Bernardini 15 ' 60− 135 ' 160− 280
10 [80] Hallin 64 25− 135 150− 290

13 [35] Olmos de Leon 10 60− 155 155, 165
14 [95] DeWire 77 50− 130 210− 335 G#
15 [96, 97] Nagashima 8 130 200− 335 G#
16 [98, 99] Baranov 8 120− 130 210− 350 G#
17 [96] Gray 12 60− 65 205− 340 G#
18 [97] Genzel 14 45− 120 235− 335 G#
19 [100, 101] Peise 12 45− 140 210, 150 G#
20 [101, 102] Molinari 4 60− 110 280, 310 H#
21 [103] Wissmann 5 75− 135 210− 310 H#
22 [92, 104] Wolf 2 75 310, 350 H#
23 [105] Blanpied 9 ∼ 75 250− 350 H#
24 [93] Camen 182 50− 150 265− 345 H#

Table 5.7: Angular and energy coverage of the available experimental data
on unpolarized cross section for proton RCS in the energy region above the
pion-production threshold.
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Chapter 6
Scalar dipole dynamical
polarizabilities from proton real
Compton scattering data

In this chapter, we show the results of the extraction of the scalar dipole dy-
namical polarizabilities (DDPs) of the proton, i.e. αE1(ω) and βM1(ω), from
the available RCS data below the pion-production threshold. We show some
preliminary tests, which can be used for a critical analysis of the sensitivity of
the differential cross section to the DDPs.

The global results of the fit are obtained from the bootstrap-based fitting
technique shown in Ch. 4, within the theoretical framework of the fixed-t sDR
framework described in Ch. 3. This chapter is mainly based on our work [59],
which represents the first extraction of the DDPs from the proton RCS data.

6.1 Parametrization of the scalar dipole dy-

namical polarizabilities

In Sec. 2.3.2 we presented the multipole expansion of the RCS amplitudes. The
sums performed over the angular momentum l given in Eq. (2.37) are supposed,
in principle, to go until infinity. However, they have in practice to be truncated
at some finite value lmax. As already stated, the convergence for the multipole
expansion is rather fast in the energy range below pion-production threshold,
and it is basically reached for lmax = 3, as shown in Fig. 6.1. It is also true that
the main contribution is given by the l = 1 terms, which are the ones that can
be related to the DDPs through Eq. (2.39). On the other hand, the sensitivity
to the higher angular momentum multipoles is suppressed. This makes us
confident that it is possible to extract the scalar DDPs αE1(ω) and βM1(ω)
from the experimental data below the pion-production threshold, by assuming
that the contribution from higher multipoles can be calculated within sDRs
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Figure 6.1: Differential cross section as function of the photon lab energy.
Multipole expansion for lmax = 1 (dashed blue curve), lmax = 2 (dotted green
curve) and lmax = 3 (dashed-dotted black curve) are compared to the sDRs
calculation (solid red curve), with the same input values for the static polariz-
abilities. The results are shown for θlab = 45◦ (left panel) and for θlab = 155◦

(right panel).

with a minimum of model dependence.
In Ch. 2, we have derived the LEX of the DDPs, corresponding to express-

ing the DDPs as polynomials of the form
∑kmax

k=0 pkω
k, where the pk coefficients

are combinations of the static polarizabilities. The results in Eqs. (2.43) and
(2.44) can be conveniently rewritten as

αLEX
E1 (ω) = αE1 +

βM1

MN

ω +

(
αE1,ν +

5αE1 − 2βM1

8M2
N

)
ω2

+

(
8αE1,ν + αE2 + 12βM1,ν

8MN

+
γM1E2 − γM1M1

8M2
N

+
βM1 − 2αE1

8M3
N

)
ω3

+
[
αL

4 +
1

480M4
N

(−72αE1 − 57βM1 + 6MN(25γE1E1 − 25γE1M2

+ 39(γM1E2 − γM1M1)) +M2
N(1248αE1,ν + 95αE2 + 540βM1,ν + 26βM2)

− 12M3
N(15γE1E1,ν − 15γE1M2,ν − 69γE2E2 + 12γE2M3 + 25γM1E2,ν

− 25γM1M1,ν − 12γM2E3 + 51γM2M2))
]
ω4

+
[
αL

5 +
1

2400M5
N

(15αE1 + 5M2
N(612αE1,ν + 38αE2 + 1008βM1,ν + 89βM2)

− 210βM1 + 15MN(−46γE1E1 + 46γE1M2 + 33(γM1M1 − γM1E2))

+ 12M3
N(55γE1E1,ν − 55γE1M2,ν − 6(35γE2E2 − 22γE2M3 + 5γM1E2,ν

− 5γM1M1,ν + 38γM2E3) + 555γM2M2))
]
ω5, (6.1)

βLEX
M1 (ω) = βM1 +

αE1

MN

ω +

(
5βM1 − 2αE1

8M2
N

+ βM1,ν

)
ω2
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6.1. Parametrization of the scalar dipole dynamical polarizabilities

+

(
αE1 − 2βM1

8M3
N

+
8βM1,ν + βM2 + 12αE1,ν

8MN

+
γE1M2 − γE1E1

8M2
N

)
ω3

+
[
βL

4 +
1

480M4
N

(−72βM1 +M2
N(1248βM1,ν + 95βM2 + 540αE1,ν + 26αE2)

− 57αE1 + 6MN(25γM1M1 − 25γM1E2 + 39(γE1M2 − γE1E1))

− 12M3
N(15γM1M1,ν − 15γM1E2,ν − 69γM2M2 + 12γM2E3 + 25γE1M2n

− 25γE1E1,ν − 12γE2M3 + 51γE2E2))
]
ω4

+
[
βL

5 +
1

2400M5
N

(15βM1 + 5M2
N(612βM1,ν + 38βM2 + 1008αE1,ν + 89αE2)

− 210αE1 + 15MN(−46γM1M1 + 46γM1E2 + 33(γE1E1 − γE1M2))

+ 12M3
N(55γM1M1,ν − 55γM1E2,ν − 6(35γM2M2 − 22γM2E3 + 5γE1M2,ν

− 5γE1E1,ν + 38γE2M3) + 555γE2E2))
]
ω5, (6.2)

where we follow the notation used in Ref. [59].
In Eqs. (6.1) and (6.2), the terms with even power of ω contain both re-

tardation effects and recoil terms. The terms with odd powers of ω are recoil
contributions, which, in addition to the contributions from the static polar-
izabilities of lower orders, can include terms with the static scalar and spin-
dependent polarizabilities of higher multipolarity.

In particular, the first dispersive contributions enter at O(ω2) and cor-
respond to the static polarizabilities αE1,ν and βM1,ν . The recoil terms at
O(ω3) are given in terms of the static dipole scalar and spin polarizabili-
ties, the fourth-order dipole scalar polarizabilities αE1,ν and βM1,ν and the
quadrupole scalar polarizabilities αE2 and βM2. In particular, αE1,ν , βM1,ν and
the quadrupole polarizabilities enter as recoil terms with the same suppression
factor in 1/M . The static spin dipole polarizabilities enter with a coefficient in
1/M2 and the static scalar dipole polarizabilities enter with a factor in 1/M3.

At O(ω4), the recoil terms contain different combinations of the same po-
larizabilities entering atO(ω3), weighed with an additional power in 1/M . Fur-
thermore, they involve the higher-order spin polarizabilities defined in Ref. [15],
with a coefficient in 1/M , and the dispersive coefficients αL

4 and βL
4 corre-

sponding to sixth-order scalar polarizabilities, which have never been defined
in literature. Following Ref. [12], we can write them as combinations of the
second-order derivatives of the non-Born contribution to the Lorentz invariant
amplitudes Ai, i.e.

ai,νν =
∂2ANB

i

∂ν4

∣∣∣∣
ν2=t=0

, ai,νt =
∂2ANB

i

∂ν2∂t

∣∣∣∣
ν2=t=0

, ai,tt =
∂2ANB

i

∂t2

∣∣∣∣
ν2=t=0

, (6.3)

with i = 1, . . . , 6.
At O(ω5), one finds a recoil contribution in 1/M given by combinations

of these 18 constants, which correspond to a combination of the dispersive
effects of the sixth-order scalar polarizabilities entering at O(ω4) and new
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6. Scalar dipole dynamical polarizabilities from proton real Compton scattering data

scalar sixth-order polarizabilities, which have never been discussed so-far in
the literature. These terms are collectively indicated with the αL

5 and βL
5

coefficients in Eqs. (6.1) and (6.2), respectively.
The convergence radius of such a Taylor expansion is limited by the first

singularity, which is set by the pion-production branch cut. In particular, the
LEX of αE1(ω) fails to reproduce the non-analytical behavior of the polarizabil-
ity when approaching the pion-production threshold. This behavior is clearly
visible in Fig. 6.2, where we show both αLEX

E1 (ω) and βLEX
M1 (ω) as a function of

the cm energy ω up to O(ω5). The contribution beyond the LEX in Eqs. (2.43)
and (2.44) can be taken into account by introducing two residual functions f̃
defined by

αE1(ω) = αLEX
E1 (ω) + f̃α(ω), βM1(ω) = βLEX

M1 (ω) + f̃β(ω). (6.4)

The two functions f̃α(ω) and f̃β(ω) can be calculated using DRs, and the
results from DRs can be parametrized using the following functional form
f̃α(ω) = α̃4ω

4 + α̃5ω
5 and f̃β(ω) = β̃4ω

4 + β̃5ω
5. This particular choice allows

us to merge the αL
4 , α

L
5 , β

L
4 and βLL

5 coefficients in Eqs. (2.43) and (2.44) with
the polynomial coefficients of f̃α, β(ω) and to write the whole energy dependence
of the scalar DDPs as

αE1(ω) = αL0
E1(ω) + fα(ω), βM1(ω) = βL0

M1(ω) + fβ(ω), (6.5)

where

αL0
E1(ω) ≡ αLEX

E1 (ω)|αL
4 =αL

5 =0, fα(ω) ≡ α4ω
4 + α5ω

5,

βL0
M1(ω) ≡ βLEX

M1 (ω)|βL
4 =βL

5 =0, fβ(ω) ≡ β4ω
4 + β5ω

5.

(6.6)

with

α4,5 ≡ αL
4,5 + α̃4,5, β4,5 ≡ βL

4,5+, β̃4,5. (6.7)

The analytical expressions for the scalar DDPs in Eqs. (6.5) are the same as
in Eqs. (6.1) and (6.2), provided that the (α, β)L

4,5 coefficients are replaced by
the coefficients (α, β)4,5 in Eqs. (6.7).

In Fig. 6.3, we show the predictions for the scalar DDPs from the full
DR calculation, without LEX, in comparison with the results obtained from
Eq. (6.5), using the predictions from DRs for all the static polarizabilities
entering the αL0

E1(ω) and βL0
M1(ω) contributions and the results from the fit to

the DR calculation for the residual functions fα(ω) and fβ(ω). We note that
the parametrization in Eq. (6.5) is able to reproduce the full energy dependence
of the scalar DDPs in the energy range below the pion-production threshold1

very well, giving us confidence that it can be conveniently adopted for our
fitting procedure of the scalar DDPs to the Compton scattering data.

1We tried also different parameterizations, which worked very well and led us to the same
considerations explained in this paragraph.
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6.2. Sensitivity of the unpolarized real Compton scattering cross section to the scalar
dipole dynamical polarizabilities
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Figure 6.2: Convergence of αLEX
E1 (ω) and βLEX

M1 (ω) as function of the center-
of-mass energy ω: expansions up to O(ω0) (black solid curve), O(ω) (dashed
gray curve), O(ω2) (full green curve), O(ω3) (dashed pink curve), O(ω4) (full
orange curve) and O(ω5) (dashed purple curve) are compared with the αE1(ω)
and βM1(ω) functions (full red curve), respectively.

6.2 Sensitivity of the unpolarized real Comp-

ton scattering cross section to the scalar

dipole dynamical polarizabilities

As already done for the extraction of the static dipole polarizabilities αE1

and βM1, some sensitivity tests can be useful before performing the fit of the
DDPs to the proton RCS data. In order to do so, we label as (dσ)/(dΩ)(2)

the differential cross section in which βM1(ω) ≡ 0. From this quantity we can
check the sensitivity to αE1(ω). Similarly, the sensitivity to βM1(ω) is tested by

(dσ)/(dΩ)(3) (where we set αE1(ω) ≡ 0). If we set both the DDPs to zero, the

resulting differential cross section is named (dσ)/(dΩ)(8). Another interesting
test is given by the analysis of the contribution of the static polarizabilities
αE1 and βM1 to the DDPs. As a first check, we can set αE1(ω) ≡ αE1 and
βM1(ω) ≡ βM1, thus suppressing the energy dependence of the DDPs and
studying the sensitivity of the differential cross section to the higher-order
coefficients of the polynomial expansion in Eqs. (6.1) and (6.2) (this condition

is labeled as (dσ)/(dΩ)(9)). We can also modify this configuration, by imposing
αE1(ω) ≡ αE1 and βM1(ω) ≡ βM1 just one at a time, thus testing the impact

of the higher order terms of one DDP per time and obtaining (dσ)/(dΩ)(4) and

(dσ)/(dΩ)(5), respectively. Furthermore, we can also investigate the sensitivity
of the differential cross section to those recoil terms in Eqs. (6.1) and (6.2)
that depend on the static scalar polarizabilities, αE1 and βM1. Setting to zero
all terms but αE1 in Eq. (6.1), we obtain (dσ)/(dΩ)(6). Applying the same
prescription for the contribution from βM1(ω), we can label the corresponding

differential cross section as (dσ)/(dΩ)(7).

The results of these sensitivity tests are shown from Fig. 6.4 to Fig. 6.7, as
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6. Scalar dipole dynamical polarizabilities from proton real Compton scattering data
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Figure 6.3: The scalar DDPs αE1(ω) (left panel) and βM1(ω) (right panel) as
function of the center of mass energy ω. The solid red curves show the results
from the DR calculation, with the full energy dependence. The dashed black
curves are the results from Eq. (6.5), using the predictions from DRs for all
the static polarizabilities entering the αL0

E1(ω) and βL0
M1(ω) contributions and

the results from the fit to the DR calculation for the residual functions fα(ω)
and fβ(ω).

function of the lab photon energy Eγ and for 6 values2 of the scattering angle
θlab. From Fig. 6.4, we notice that αE1(ω) by itself gives a sizable contribution
to the differential cross section, especially for θlab ∼ 90◦, while the cross section
obtained with only the contribution from βM1(ω) deviates appreciably from the
complete result. On the other hand, the static polarizability αE1 dominates
the energy dependence of αE1(ω), as can be seen from Fig. 6.5, while the

recoil terms embedded in (dσ)/(dΩ)(6) have an almost negligible contribution

to the differential cross section. Similarly, the terms in (dσ)/(dΩ)(7) do not
contribute appreciably, and the static βM1 is clearly not representing the main
contribution in βM1(ω), as can be observed from Fig. 6.6. Finally, by analyzing
the results shown in Fig. 6.7, we can conclude that the scalar DDPs play a
very important role in the determination of the differential cross section (by

comparing (dσ)/(dΩ)(8) with the complete calculation of the differential cross
section). Moreover, the main contribution to the DDPs is given by both αE1

and βM1, being (dσ)/(dΩ)(9) very close to the complete dσ
dΩ

. This indicates
a small sensitivity of the unpolarized cross section to dispersive terms in the
scalar DDPs.

From this study, we can infer that a fit of the energy dependence of the
scalar DDPs to the proton RCS data could be very challenging. Nevertheless,
we succeeded in extracting for the first time the dipole dynamical scalar po-
larizabilities from the RCS data [59]. The results there obtained are shown in
the next sections of this chapter.

2The values of θlab are related to the proton RCS data base, as described in Table 5.1.

106



6.3. A first fit of the scalar dipole dynamical polarizabilities
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Figure 6.4: Sensitivity of the unpolarized differential cross section dσ/dΩ to
the dipole dynamical polarizabilities αE1(ω) and βM1(ω) as function of the lab

energy Eγ: dσ/dΩ (black solid curve) compared to (dσ)/(dΩ)(2) (red dashed

curve) and to (dσ)/(dΩ)(3) (blue dotted curve). See text for explanation.

6.3 A first fit of the scalar dipole dynamical

polarizabilities

Before resorting to the bootstrap-based technique described in Ch. 4 for the
fit of the DDPs from the RCS data, an internal cross-check about the ap-
proximation introduced by the LEX and the multipole expansion is in order.
If all polarizabilities but αE1 and βM1 are fixed to the DR predictions or to
the experimental measurements (as described in Ch. 5) and the bootstrap-
based technique described in Ch. 4 is applied, we expect to find a result
that is in very good agreement with the one obtained directly fitting the
static electric and magnetic polarizabilities using the full DR calculation, as
done in Ch. 5. Recalling the bootstrap sampling introduced in Eq. (4.22),
i.e. Bij = (1 + δij)(Ei + γijσi), and fixing δij = 0, the results of this cross-check
are:

αE1 = 11.8± 0.2, βM1 = 2.0∓ 0.2, (6.8)

which are almost identical3 to the values shown in Eq. (5.5). Note that the same
results can be obtained by the traditional χ2 minimization through the gradient

3In this case, no error on the Baldin sum rule is included in the data analysis.
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Figure 6.5: Sensitivity of the unpolarized differential cross section dσ/dΩ to
the dipole dynamical polarizabilities αE1(ω) and βM1(ω) as function of the lab

energy Eγ: dσ/dΩ (black solid curve) compared to (dσ)/(dΩ)(4) (red dashed

curve) and to (dσ)/(dΩ)(6) (blue dotted curve). See text for explanation.

method. This cross-check gives us confidence on the theoretical framework we
implemented to fit the energy dependence of the DDPs.

As a first step, we try to fit the complete energy-dependence of the scalar
DDPs from the RCS data. In order to do so, we fixed the recoil contributions
from the static leading-order spin polarizabilities to the experimental values
of Ref. [36], and the recoil terms from higher-order spin polarizabilities as
well as from quadrupole scalar polarizabilities to the values predicted by the
subtracted DRs [15]. The remaining polarizabilities − that enter the fit as
free parameters − are: αE1, βM1, αE1,ν , βM1,ν and the four coefficients of the
residual functions fα,β(ω) defined in Eq. (6.6), i.e. α4, α5, β4 and β5. In the
most generic situation, we do not impose the Baldin sum rule, thus leaving
both the electric and the magnetic polarizabilities as free parameters, for a
total of 8 independent fitting parameters. The systematic errors as well as the
point-to-point bias for the TAPS [35] dataset are here not included in the data
analysis. The numerical results from the eight-parameter fit, both to the FULL
and to the TAPS datasets, are shown in Table 6.1. We notice that the higher-
energy coefficients have huge uncertainties and thus can be extracted only with
a very low accuracy. This feature is mainly caused by the low sensitivity of the
RCS differential cross section to them (see Fig. 6.7, for instance) and by the
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6.4. Scalar dipole dynamical polarizabilities from the real Compton scattering data:
results and discussion
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Figure 6.6: Sensitivity of the unpolarized differential cross section dσ/dΩ to
the dipole dynamical polarizabilities αE1(ω) and βM1(ω) as function of the lab

energy Eγ: dσ/dΩ (black solid curve) compared to (dσ)/(dΩ)(5) (red dashed

curve) and to (dσ)/(dΩ)(7) (blue dotted curve). See text for explanation.

high correlations among the fitting parameters. We could also wonder how the
uncertainties of the fitted parameters in Table 6.1 affect the DDPs calculation.
Using the standard error propagation, we obtain the results shown in Figs. 6.8
and 6.9, for the FULL and the TAPS dataset, respectively. In both cases, we
observe that the 1-σ error band (in yellow) is huge.

6.4 Scalar dipole dynamical polarizabilities from

the real Compton scattering data: results

and discussion

As shown in the previous section, the attempt to fit the complete energy de-
pendence of the DDPs fails due to the low sensitivity of the differential cross
section to the higher-order coefficients of the expressions defined in Eq. (6.5).
For this reason, we adopt a different strategy: we fix fα(ω) and fβ(ω) from
the DR predictions, as well as the higher-order terms in the DDPs expressions.
Thus, the number of fitting parameters are reduced to four: the static dipole
αE1 and βM1, together with their dispersive corrections αE1,ν and βM1,ν . Fur-
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Figure 6.7: Sensitivity of the unpolarized differential cross section dσ/dΩ to
the dipole dynamical polarizabilities αE1(ω) and βM1(ω) as function of the lab

energy Eγ: dσ/dΩ (black solid curve) compared to (dσ)/(dΩ)(8) (red dashed

curve) and to (dσ)/(dΩ)(9) (blue dotted curve). See text for explanation.

thermore, by imposing the constraint of the Baldin sum rule, the number of
fit parameters reduces to three.

Moreover, the bootstrap framework gives us the possibility of automati-
cally include the error of non-fitted parameters on the fit results, as described
in Ch. 4 and already used in Ch. 5. In this framework, we include only the
propagation of the Baldin4 uncertainty, while all the other polarizabilities are
assumed to be known with no uncertainty. The results of the fit performed un-
der this configuration are shown in Table 6.2, both for the FULL and the TAPS
dataset. The corresponding probability distributions are shown in Fig. 6.10,
as a result of the bootstrap-based fitting technique. As already stressed, no
a-priori Gaussian assumption is performed here, while the entire probability
distributions (as well as the correlation terms, shown in Fig. 6.11) are ob-
tained from the sampling of Eq. (4.22). As a matter of fact, the traditional
χ2 minimization (through the gradient method) works quite well with three fit
parameters, but the covariance matrix (see Eq. (4.16), for instance) is forced to
be positive definite, thus casting some doubts on the validity of the procedure
even if the fitted parameter estimates turned out to be close to those given
in Table 6.2. As already noticed for the extraction of the static scalar dipole

4As done in Ch. 5, we take the value 13.8± 0.4.
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Figure 6.8: Results from the fit of the scalar DDPs (red solid curve) in the 8
parameter framework and for the FULL dataset: αE1(ω) on the top and βM1(ω)
on the bottom. The 68% CL area (filled in yellow) is obtained by the standard
error propagation. The dashed curves are the predictions from DRs [30].

polarizabilities, the FULL dataset could include some inconsistent data, but
the fine analysis performed in Ch. 5 made us concluding that there are no
strong enough motivations to exclude any of those data points. Furthermore,
the central values of the fitted parameters shown in Table 6.2 from the fit with
the FULL and the TAPS datasets are different, even if still compatible within
the errors5. This difference could be related to the correlation between the
different angular distributions of the two datasets and the varying sensitivity
to αE1 and βM1 in different angular regions, as shown in Sec. 5.1.

Furthermore, the fitting parameters turn out to be strongly correlated, as
clearly visible from Fig. 6.11: there, the two-dimensional joint probability dis-

5If, as an example, we consider the SELECTED dataset defined in [8, 20] and in Ch. 5,
we obtain for the fitted polarizabilities the following values: αE1 = (10.8 ± 0.9) · 10−4 fm3,
αE,1ν = (−2.6 ± 2.7) · 10−4 fm5, βM1 = (2.9 ± 1.0) · 10−4 fm3 and βM1,ν = (6.2 ± 3.0) ·
10−4 fm5. These values are compatible, within two standard deviations, with the ones given
in Table 6.2.

111



6. Scalar dipole dynamical polarizabilities from proton real Compton scattering data

0 20 40 60 80 100 120

0

5

10

15

20

25

30

ω (MeV)

α
E

1
(ω

)

0 20 40 60 80 100 120

-5

0

5

10

ω (MeV)

β
M

1
(ω

)

Figure 6.9: Results from the fit of the scalar DDPs (red solid curve) in the 8
parameter framework and for the TAPS dataset: αE1(ω) on the top and βM1(ω)
on the bottom. The 68% CL area (filled in yellow) is obtained by the standard
error propagation. The dashed curves are the predictions from DRs [30].

tributions are shown for αE1, βM1, αE1,ν and βM1,ν . We would expect that the
correlation coefficient between αE1 and βM1 is−1, due to the Baldin constraint:
however, thanks to the uncertainty propagation performed at every bootstrap
cycle, the result is −0.89. Besides this expected high (and negative) value,
the correlations between the static dipole polarizabilities and their respective
dispersive corrections are also very high (top left and bottom right panels of
Fig. 6.11, respectively).

As already shown in Sec. 5.3.4, the bootstrap-based framework provides
the automatic calculation of the uncertainty of every function of the fitted
parameters, with the considerable advantage that all the correlation terms
are straightforwardly included. Thus, for fixed value of the cm energy ω, we
can compute the probability distribution of the DDPs of Eqs. (6.1) and (6.2)
and from there we we can estimate the uncertainties at any confidence level
(CL). In Fig. 6.12, we show our fit results for the scalar DDPs, extracted from
the FULL and TAPS dataset, as function of the cm energy ω and with the
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6.5. Comparison with the fit of the scalar static polarizabilities

FULL TAPS

αE1 (10−4fm3) 11.7± 1.4 10.5± 1.8

αE1,ν (10−4fm5) −0.7± 5.7 0.4± 10.1

βM1 (10−4fm3) 0.6∓ 1.5 1.5∓ 1.8

βM1,ν (10−4fm5) 7.9± 7.2 7.3± 10.1

α4 (10−4fm7) −16.9± 44.7 −10.2± 65.1

α5 (10−4fm8) 32.0± 70.1 33.8± 99.4

β4 (10−4fm7) −1.2± 11.9 −4.4± 20.5

β5 (10−4fm8) 17.3± 35.6 11.6± 28.2

Table 6.1: Values of the LEX coefficients of the scalar DDPs from the fit to
the FULL and TAPS datasets in the eight-parameter case.

FULL TAPS

αE1 (10−4fm3) 13.3± 0.8 11.6± 1.1

αE1,ν (10−4fm5) −8.8± 2.5 −3.2± 3.1

βM1 (10−4fm3) 0.4∓ 0.9 2.2∓ 1.1

βM1,ν (10−4fm5) 10.8± 2.8 5.1± 3.7

Table 6.2: Values of the LEX coefficients of the scalar DDPs from the fit to
the FULL and TAPS datasets in the three-parameter fit.

corresponding 68% and 95% CL uncertainty bands. They are compared with
the subtracted DR predictions, obtained with the values of the static dipole
polarizabilities from the fit to the FULL and the TAPS datasets in Table 6.2.
The DR results for both the scalar DDPs are within the 68% confidence area
of the fit results just for ω . 60 MeV. At higher energy, the DR predictions
for βM1(ω) remain within the 95% CL region, while for αE1(ω) we observe
deviations from the fit results in the case of the FULL dataset and a very good
agreement, within the 68% confidence area, in the case of the TAPS dataset.
This different behavior can be again a hint of inconsistencies between the two
datasets. The larger relative error in the case of βM1(ω) also reflects the lower
sensitivity of the unpolarized RCS data to the magnetic polarizability than to
the electric polarizability.

6.5 Comparison with the fit of the scalar static

polarizabilities

We have shown in this chapter how the DDPs can be extracted from the
proton RCS data. In our framework, this can be done by a three-parameter
fit, with the results shown in Table 6.2. If we compare them with the values
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Figure 6.10: Probability distributions of the fit parameters, with 100 bins per
histogram, from the bootstrap analysis of the FULL (black curves) and TAPS
datasets (red curves): static polarizabilities αE1 (top-left) and βM1 (top-right)
and dispersive polarizabilities αE1,ν (bottom-left) and βM1ν (bottom-right).

of αE1 and βM1 obtained in Ch. 5 and listed in Table 5.2, we notice that they
are compatible within the intersection of the 1-σ uncertainty band, even if
the central values are quite different. This feature can be related to the high
correlations among the fit parameters of the DDPs: for instance, the fitted
value of αE1,ν has a quite strong effect in the determination of αE1, being their
correlation coefficient quite close to −1.

The dispersive polarizabilities that we fitted in the DDP framework, on
the other hand, can be compared with the values predicted within unsub-
tracted [12] and subtracted [15] DRs, as well as baryon χPT [9]. Our results
are, within the very large error bars, consistent with these theoretical predic-
tions and cannot discriminate between them.
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Chapter 7
The beam asymmetry and the
total photo absorption cross
sections

In this chapter, we analyze the sensitivity of the beam asymmetry Σ3 to the
dipole scalar polarizabilities αE1 and βM1. This preliminary study can serve as
guideline to establish both the accuracy that can be achieved in the extraction
of the scalar polarizabilities from this observable and which of the leading-
order static polarizabilities should be used as fit parameters. We then give an
estimate of αE1 and βM1, combining in the data analysis also the experimental
measurements of Σ3 and the unpolarized differential cross section.

The second part of this chapter is devoted to a preliminary analysis of the
unpolarized and the helicity-difference of total photo-absorption cross sections,
introduced in Sec. 3.2.1. We evaluate the GDH integral, the GGT sum rule
for the forward spin polarizability and the Baldin sum rule, using a model in-
dependent approach to calculate the propagation of the statistical uncertainties
of the experimental data.

7.1 The beam asymmetry

As shown in Sec. 2.3.3, we can identify 11 independent observables for the RCS
process, as listed in Table 2.1. As already stated in Ch. 2, we decided to focus
our attention mainly on the unpolarized differential cross section (dσ/dΩ), de-
voting some attention also on the beam asymmetry (Σ3). In Ch. 5 and Ch. 6,
we focused on the unpolarized differential cross section dσ/dΩ and we used
available experimental data to extract both the static and dynamical scalar
polarizabilities. As discussed in Sec. 2.3.3, the analysis of Ref. [47] pointed
out that the beam asymmetry Σ3 is a promising observable to extracting the
magnetic polarizability βM1 with better precision. Based on this work, new
experimental data from MAMI [40] have been recently analyzed for a new
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Figure 7.1: The DR predictions for the beam asymmetry Σ3 (red solid curve)
as a function of the scattering angle θlab, evaluated for Eγ = 90 MeV (upper
panel), 110 MeV (middle panel) and 130 MeV (lower panel). The experimental
data from Ref. [40] are shown with their statistical uncertainty.

evaluation of the magnetic polarizability. These data are shown in Fig. 7.1,
together with the DR predictions obtained using the PDG values for αE1 and
βM1 and the values of the spin polarizabilities given in Sec. 5.2. The data have
been collected for three energy bins, Eγ = {90, 110, 130} MeV, and are pre-
sented as a function of the scattering angle θlab. Following the steps described
in Ch. 5, we fit Σ3 data within the DR framework and use the bootstrap-based
technique with the goal to determine βM1 with a better accuracy. However,
as done in Ch. 5, some sensitivity tests are required to establish which of the
six leading-order static polarizabilities can be used as fit or fixed parameters.
For this purpose, we follow the sensitivity study described in Sec. 5.1, and
here applied to the beam asymmetry Σ3. Our results are shown in Fig. 7.2 for
each of the six leading-order static polarizabilities, as function of the scatter-
ing angle and the incoming photon energy. As additional and complementary
information, we show in Fig. 7.3 the R parameter defined in Eq. (5.3) at fixed
values of the photon energy. The same results are shown in Figs. 7.4 and 7.5
for the Rexp parameter defined in Eq. (5.4).

The information that we obtain from these sensitivity tests is very similar
to the ones related to the unpolarized cross section and collected in Sec. 5.1:
also the beam asymmetry Σ3 turns out to be almost insensitive to the spin
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Figure 7.4: The same as in Fig. 7.2, but for Rexp.
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Figure 7.5: The same as in Fig. 7.3, but for Rexp.
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7. The beam asymmetry and the total photo absorption cross sections

polarizabilities. However, their relatively big statistical uncertainties increase
the value of theRexp parameter (as can be seen comparing Fig. 7.2 with Fig. 7.4,
for instance), thus making non-negligible the effects due to γM1M1 and γπ. On
the other hand, the accuracy under which the dipole scalar polarizabilities αE1

and βM1 are known is quite close to their limit value. This feature is clearly
visible by comparing Fig. 7.2 with Fig. 7.4: the results for the sum αE1 + βM1

and the difference αE1 − βM1 are almost identical in the two cases.
From these tests, we learn that the beam asymmetry has the highest sen-

sitivity to the three parameters γπ and αE1 ± βM1. However, as a preliminary
look at the Σ3 data, we just tried to fit αE1 − βM1, and fix all the other
polarizabilities at the values used in Ch. 5, following the scheme of Ref. [40].

7.1.1 A test-fit of the scalar dipole static polarizabilities

Once the fit parameters are established, we can perform the fit in the test-fit
condition described in Ch. 5. We first fit the data of the beam asymmetry Σ3

shown in Fig. 7.1, thus obtaining

αE1 = 11.03± 1.97, βM1 = 2.77± 1.97, χ̂2 = 1.09. (7.1)

These numerical values are quite different from the ones obtained by a test-fit
of the unpolarized differential cross section (see Eq. (5.5), for instance), even
if they are compatible within the very large error bars. The best fit of Σ3

is then shown in Fig. 7.6 together with its 1-σ error band. These results are
compared with the calculation performed as described at the beginning of this
chapter. The two different curves (black solid and red solid, respectively) are
very similar, thus confirming the very low sensitivity of the beam asymmetry to
the difference αE1−βM1. In order to improve the statistical significance of the
fit, we could simultaneously fit both the beam asymmetry and the unpolarized
differential cross section. As a first step, we use the data given in Ref. [40] and
the FULL data set, described in Ch. 5. The fitted results are

αE1 = 11.93± 0.30, βM1 = 1.87± 0.30, χ̂2 = 1.37, (7.2)

and the corresponding best evaluation of Σ3 is shown in Fig. 7.7. These numer-
ical values are almost identical to the ones given in Eq. (5.5), thus confirming
once more the very low sensitivity of the beam asymmetry to αE1 − βM1.

However, from a simulation we checked that the uncertainty in Eq. (7.1)
could be reduced by a factor two by doubling both the number and the precision
of the data points. This accuracy level should be reached by the incoming
results from MAMI [48, 49], thus leading us to a much more precise result for
the extraction of βM1 from Σ3. However, even in this optimal situation, the
statistical fluctuation of the fit results would be much greater than the actual
uncertainty quoted by the PDG [89], thus suggesting that a simultaneous fit
of Σ3 and the unpolarized cross section would be recommended.
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Figure 7.6: The DR fitted results for the beam asymmetry Σ3 (black solid
curve) as function of the scattering angle θlab, evaluated for Eγ = 90 MeV
(upper panel), 110 MeV (middle panel) and 130 MeV (lower panel). The ex-
perimental data from Ref. [40] are shown with their statistical uncertainty.
The yellow band is the 1-σ interval as obtained from the standard error prop-
agation. The red curve corresponds to the results shown in Fig. 7.1, obtained
with the PDG values of the scalar polarizabilities and the values of the spin
polarizabilities given in Sec. 5.2.
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Figure 7.7: The DR fitted results for the beam asymmetry Σ3 (black solid
curve) as function of the scattering angle θlab, evaluated for Eγ = 90 MeV
(upper panel), 110 MeV (middle panel) and 130 MeV (lower panel). The
experimental data from Ref. [40] are shown with their statistical uncertainty.
Also the unpolarized data were included in the analysis, as described in the
text. The yellow band is the 1-σ interval as obtained from the standard error
propagation. The red curve corresponds to the results shown in Fig. 7.1,
obtained with the PDG values of the scalar polarizabilities and the values of
the spin polarizabilities given in Sec. 5.2.
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7.2. Sum rules evaluation from the data of photo absorption

7.2 Sum rules evaluation from the data of photo

absorption

As shown in Sec. 3.2.1, the optical theorem allows us to relate the imagi-
nary part of the forward Compton scattering amplitudes f(ν) and g(ν) to the
unpolarized (σ(ν)) and the helicity-difference (∆σ(ν)) cross sections of total
photo-absorption, respectively. The available experimental data of σ(ν) [106–
111] and ∆σ(ν) [85, 86, 112, 113] are shown in Figs. 7.8 and 7.9, respectively,
while the imaginary parts of the scattering amplitudes f(ν) and g(ν), defined
in Eq. (3.18), are computed from the experimental data, with the results shown
in Figs. 7.10 and 7.11.

The goal of this section is to give a first estimate of the sum rules in
Eqs. (3.28)-(3.30), i.e. the Baldin, the GDH and the GGT sum rules. We
follow the steps described in Refs. [88, 94], but with a key difference: instead of
using a parametrization for the cross section fitted to the data, we evaluate the
integrals with the experimental data as input, propagating the corresponding
statistical uncertainties.

Before performing the integration, we divide the ν domain into three re-
gions:

1. low-ν: ν ∈ [ν0, νL), where ν0 = 0.145 GeV is the single-pion production
threshold in the lab-frame, while νL is the lowest ν value of the available
experimental data;

2. data-ν: ν ∈ [νL, νH ], where νH is the highest ν value of the available
experimental data;

3. high-ν: ν ∈ (νH , νT ), where νT is the upper limit of integration.

In the low-ν region we use the MAID input [63] for the total photo-absorption
cross sections, while for the high-ν region we follow the parameterization of
Refs. [88, 94], given in terms of Regge trajectories.

The integrals of Eqs. (3.28) and (3.29) can be shortly written as

Iν ≡ C

∫ ∞
ν0

dν
E(ν)

νn
, (7.3)

where we label with E(ν) both the unpolarized and the helicity-difference
photo-absorption cross sections.

In order to perform the integrals directly from the experimental data, we
need to bin the ν axis: if we label as νk the ν value at which the kth experimental
datum was measured, we can define the upper and lower limits of each bin as

ν
(B)
k =

νk−1 + νk
2

, k = 2, . . . , N,

ν
(B)
1 =

3ν1 − ν2

2
, ν

(B)
N+1 =

3νN − νN−1

2
, (7.4)
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7. The beam asymmetry and the total photo absorption cross sections

where N is the number of experimental data. In this way, each bin is centered
on the experimental value νk and its width is symmetric for every k. Now, we
can write the discretization of the integrals in Eq. (7.3), i.e.

Idiscν = C
N∑
k=1

∫ ν
(B)
k+1

ν
(B)
k

dν
E(ν)

νn
. (7.5)

As a first attempt for the evaluation of the sum rules, we introduce an ap-
proximation: we assume that E(ν) = E(νk) in the kth bin. This is just one
of the possible approximations that can be assumed in a numerical evaluation
of integrals, but it is suitable for our purposes. Under this assumption, the
expression in Eq. (7.5) can be rewritten as

Idiscν ≈ C
N∑
k=1

E(νk)

∫ ν
(B)
k+1

ν
(B)
k

dν
1

νn
. (7.6)

The main advantage of this approximation is that we can analytically evaluate

the integrals in Eq. (7.6), i.e. Ik =
∫ ν(B)

k+1

ν
(B)
k

dν 1
νn

, thus strongly simplifying the

calculation. Finally, we can write the discretized version of the integrals in
Eq. (7.3) as

Idiscν = C
N∑
k=1

E(νk)Ik. (7.7)

If we want to propagate the experimental uncertainties of the measured values
of E(ν), we can apply the traditional error propagation, which yields to an
estimate of the 1-σ uncertainty for the Idiscν value, i.e.

σI = C

[
N∑
k=1

(E(νk)Ik)
2

]1/2

. (7.8)

We stress that, just as a first step of this evaluation, we include only the statis-
tical fluctuations of the measured values involved in the integral calculations.

Our numerical results for the sum rules given in Eqs. (3.28)-(3.30) read:

αE1 + βM1 = (13.93± 0.05)× 10−4 fm3,

IGDH = (224.15± 5.45) µb,

γ0 = (−1.03± 0.07)× 10−4 fm4. (7.9)

Our value for the Baldin sum rule is in very good agreement with the one
obtained in Ref. [94], as well as the value that we used in Ch. 5 and Ch. 6.
Furthermore, both the GDH integral and the forward spin polarizability γ0 are
consistent with the values extracted in Ref. [88]. Our value for IGDH is also
in very good agreement with the one from Refs. [85, 86, 112–114], while our
evaluation of γ0 is almost identical to the value used in Ch. 5 and Ch. 6.
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Figure 7.8: Experimental data of the unpolarized cross sections of total photo-
absorption as function of the ν variable. They are taken from Ref. [106] (red
empty squares), Ref. [107] (blue solid squares), Ref. [108] (black empty circles),
Ref. [109] (red full circles), Ref. [110] (blue solid triangles), Ref. [111] (black
solid triangle)

It is interesting to notice that the uncertainties on the sum rule values are
mostly dominated by the systematic errors of the total photo-absorption cross
section, as can be deduced from the very small errors quoted in Eq. (8.2). This
feature is particularly true for αE1 +βM1, where the contribution coming from
the statistical fluctuations of the experimental data in the determination of
the uncertainty of the sum rule evaluation is about ∼ 10 ÷ 20% of the PDG
estimate. Also for the GDH integral, the main source of uncertainty is given
by the effect of the systematic errors (∼ 12 µb [115]), thus suggesting that a
more refined analysis, which includes also the propagation of the systematic
errors of the experimental data, should be recommended. Furthermore, we
can look at the running values of the integrals in Eqs. (3.28)-(3.30), as function
of the upper limit of integration in ν. The results for αE1 + βM1 are shown in
Fig. 7.12, while the GDH and the GGT integrals are shown in Figs. 7.13 and
7.14, respectively. Due to the additional powers in ν at the denominators of the
integrands for αE1 + βM1 and γ0 with respect to IGDH , the convergence shown
in Figs. 7.12 and 7.14 is reached for relatively small values of ν: ν ' 10 GeV
and ν ' 1 GeV, respectively. For IGDH , on the other hand, the convergence
is reached at ∼ 100 GeV, thus requiring very accurate measurements also at
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Figure 7.9: Experimental data of the helicity-difference cross sections of total
photo-absorption as function of the ν variable. The data are from Refs. [85,
86, 112, 113].
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Figure 7.11: The imaginary part =g(ν) as obtained from the experimental
data shown in Fig. 7.9, thanks to Eq. (3.21), as function of the ν variable. The
labels of the data are the same as in Fig. 7.9.

high energy. We stress that the results shown in this section are not intended
to be conclusive, but they should be looked as a first approach to a possible
re-evaluation of the sum rules given in Eqs. (3.28)-(3.30), the intent of reducing
as much as possible the model dependence of a parametrization fitted to the
experimental data.
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7.2. Sum rules evaluation from the data of photo absorption
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Figure 7.12: Running value of αE1 + βM1 (in 10−4 fm3 units) from the Baldin
sum rule as function of the upper limit of integration ν.
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Figure 7.13: Running value of the GDH integral (in µb units) as function of
the upper limit of integration ν.
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7. The beam asymmetry and the total photo absorption cross sections
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Figure 7.14: Running value of γ0 from the GGT sum rule (in 10−4 fm4 units)
as function of the upper limit of integration ν.
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Chapter 8
Conclusions and outlooks

In this thesis, we have extracted the scalar dipole (static and dynamical) polar-
izabilities from the proton data of real Compton scattering (RCS) unpolarized
differential cross sections below the pion-production threshold. Our results
have been obtained within the framework of fixed-t subtracted dispersion re-
lations (DRs) [14]. With respect to existing extractions in literature, the DR
analysis has the merit to reduce the model dependence, being based on ex-
perimental inputs from other processes. For the data analysis, we used a new
bootstrap-based fitting technique, thus making a step forward with respect to
the state of the art, from both a theoretical and a phenomenological point of
view.

We thoroughly analyzed the application of the parametric bootstrap in the
fitting procedure. Within this framework, we showed how the systematic er-
rors can be included in the data analysis with no modification in the shape of
the χ2-like minimization function, but just assuming that each experimental
measurement is a convolution of a Gaussian variable (completely determined
by the data points and their pure statistical fluctuations) and a random shift
caused by the systematic biases. Moreover, we discussed how to propagate on
the fit results the uncertainties of those fixed parameters that serve as input for
the theoretical model, without resorting to the standard, linear (and approx-
imated) propagation. The more important result is the determination of the
goodness-of-fit distribution also for those cases where the experimental points
are neither independent, nor Gaussian distributed. This is, indeed, a common
situation, mainly caused by systematic uncertainties and/or correlated errors.
In our framework, no a priori assumptions are made on the probability distri-
bution of the fit parameters, but all the conclusions derive directly from the
bootstrap sampling. In this way, our method is very robust and flexible: the
convolution with systematic errors can be easily modified (if there are some ex-
perimental motivations) or even suppressed in the case we would like to study
only the pure statistical fluctuations.

Using this Monte-Carlo fitting technique, we gave our best estimate of both
the electric and magnetic static polarizabilities, αE1 and βM1, including in the
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8. Conclusions and outlooks

fit all the sources of systematic uncertainties and the statistical fluctuations
of those static polarizabilities that enter the DR calculation of the differential
cross section, but are not fitted. Furthermore, we performed several tests about
the statistical significance of the proton RCS data base in the energy range
below the pion-production threshold, giving our contribution in the debate
about the data-set definition [20, 59, 72, 74]. Our evaluation of the electric
and magnetic polarizabilities reads

αE1 = (12.03+0.48
−0.54)× 10−4fm3, βM1 = (1.77+0.52

−0.54)× 10−4fm3,

χ̂2 = 1.25, p-value = 12%, (8.1)

where the statistical significance has been obtained from the bootstrap method.
We analyzed also the scalar dipole dynamical polarizabilities (DDPs) and

we studied possible different strategies to fit them to the available data on the
unpolarized RCS cross section. We extracted for the first time the scalar DDPs
from the unpolarized RCS cross section below pion production threshold [59],
including in our analysis the systematic errors of the experimental points, as
well as the uncertainty of the Baldin sum rule [3] evaluation (which involves the
sum of the electric and magnetic polarizabilities). Our results pointed out that
the poor statistics of the data, combined with the strong correlations among the
fitting parameters, makes a precise extraction of the DDPs quite challenging.
Nevertheless, our work [59] represents a baseline for future extraction of the
DDPs from data of RCS observables.

Moreover, we performed some preliminary analysis on the beam asymme-
try (Σ3) data, showing that this observable does not appreciably contribute
in a more precise evaluation of βM1. However, the new expected data on the
unpolarized differential cross section from MAMI [48, 49] hold the promise of
a much better accuracy in the experimental measurements, being thus able to
reduce the uncertainty on βM1 up to a factor 2. Moreover, we performed a first
re-evaluation of the Baldin sum rule, the Gerasimov [4], Drell and Hearn [5]
(GDH) sum rule (involving the nucleon anomalous magnetic moment) and
the Gell-Mann, Goldberger and Thirring [2, 41] (GGT) sum rule (for the for-
ward spin polarizability γ0), using a model independent approach to calculate
the propagation of the statistical uncertainties of the experimental data. Our
results, even if very preliminary, are quite encouraging and in very good agree-
ment with the existing literature [21, 85, 86, 88, 94, 112–115], i.e.

αE1 + βM1 = (13.93± 0.05)× 10−4 fm3,

IGDH = (224.15± 5.45) µb,

γ0 = (−1.03± 0.07)× 10−4 fm4. (8.2)

********************************************************
We list some possible outlooks for the future, concerning both the evalua-

tion of the sum rules and the analysis of proton RCS data.

* In order to perform a more accurate evaluation of the sum rules, also
the systematic errors of the experimental data should be included in the
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computation of the uncertainty, being responsible for most of the error
bands on the integral evaluations;

* Also the analysis of the expected RCS data from MAMI [48, 49] should
be accurately performed; we encourage a wide use of the bootstrap-based
fitting technique which is able, as already stressed, to correctly deal with
the systematic errors and to assign the correct statistical significance to
the fit results. Furthermore, one expects that the combined analysis of
the beam asymmetry and the unpolarized differential cross section will
help to reduce the uncertainty in the determination of αE1 and, especially,
βM1;

* We could perform a combined analysis of all available unpolarized and
polarized RCS data for a simultaneous extraction of all six leading-order
static polarizabilities. Sofar, the double polarization measurements from
MAMI have been analyzed [36, 116] to extract the spin polarizabilities,
using as input the values of αE1 and βM1 extracted separately from the
unpolarized and beam asymmetry RCS data;

* For the future, the estimate of the uncertainties related to the available
phenomenological analysis for the pion photoproduction channel would
be desirable in order to be able to quantify the corresponding theoretical
uncertainties in the dispersion calculation of RCS;

* As pointed out in Ref. [117], the formalism of fixed-t subtracted DRs
adopted in this thesis could be profitably extended to analyze the nucleon
virtual Compton scattering at low energies, in order to directly fit the
six leading-order generalized polarizabilities from the data.
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Appendix A
Relations between the Ai and Ri
amplitudes

In this appendix, we give the relation between the Ri amplitudes (defined in
the c.m. reference frame) and the invariant amplitudes Ai, whose low-energy
expansion has been explicitly formulated in the lab reference frame, as shown
in Ch. 2. According to Ref. [12], the Ri amplitudes can be related to the Ai as

R1 = C

[
c1

(
−A1 −

W 2

M2
N

A3

)
− ν

MN

c2A5 −
W

MN

c3A6

]
,

R2 = C

[
c1

(
A1 −

W 2

M2
N

A3

)
+

ν

MN

c2A5 −
W

MN

c3A6

]
,

R3 = C

[
(W −m)2

(
(x− 1)A1 + (1 + x)

W 2

M2
N

A3

)
− ν

MN

c3A5 −
W

MN

c2A6

]
,

R4 = C

[
(W −m)2

(
(1− x)A1 + (1 + x)

W 2

M2
N

A3

)
+

ν

MN

c3A5 −
W

MN

c2A6

]
,

R5 = C

[
(W −m)2

(
−A1 −

W 2

M2
N

A3

)
+ (W 2 −M2

N)

(
A2 +

W 3

M3
N

A4

)
+ 2(W −m)

(
−νA5 +

W 2

MN

A6

)]
,

R6 = C

[
(W −m)2

(
A1 −

W 2

M2
N

A3

)
+ (W 2 −M2

N)

(
−A2 +

W 3

M3
N

A4

)
+ 2(W −m)

(
νA5 +

W 2

MN

A6

)]
, (A.1)

where x = cos θc.m. and

C =
(s−M2

N)2

64πs2
, c1 = 4mW + (W −m)2(1− x),

c2 = 4W (W −m)− (W −m)2(1− x),

c3 = 4W 2 − (W −m)2(1− x). (A.2)
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A. Relations between the Ai and Ri amplitudes

The Ri amplitudes can be expanded in multipole amplitudes, and from them
one can define the dynamical polarizabilities. If we look at αEl and βMl, we
would like to be able to associate to them all the nucleon-structure effects in
the Tfi amplitude that are even function in the photon energy or momentum
and that do not depend on the nucleon spin. However, as noticed in Ref. [12],
both the spin and the energy depend on the reference frame. As soon as we
change the frame, the energy is Lorentz transformed and the Pauli spinors are
Wigner rotated. Thus, if the contribution of Tfi related to αEl and βMl is
chosen to be spin-independent, for instance, in the c.m. frame, it would be
spin-dependent in other frames. Moreover, the electric and magnetic fields are
not invariant under Lorentz transformations, thus making the splitting into
effects due to αEl or βMl frame-dependent.

Furthermore, neither the center of mass, nor the lab reference frame have
the same symmetry properties of the scattering amplitude Tfi, while in the
Breit reference frame, where the nucleon is at rest on average, both time re-
versal and crossing symmetry are fulfilled. For instance, the terms in Tfi that
are related to the dipole scalar polarizabilities αE1 and βM1 can be correctly
defined only in the Breit frame, where one has

T
(αE1,βM1)
fi,B ≡ 4πω2

Bū
′u [ε′∗B · εBαE1 + s′∗B · sBβM1] , (A.3)

and where both the polarization vectors and the energy are in the Breit frame.
By comparing the spin-independent part of Eq. (2.26) written in the Breit
frame and the expression defined in Eq. (A.3), we obtain the following relations:

A
(αE1,βM1)
1 = −2π(αE1 − βM1), A

(αE1,βM1)
3 = −2π(αE1 + βM1)

1− t/4M2
N

(A.4)

If we now plug-in these results into the spin-independent part of Tfi given in
Eq. (2.26), we obtain an equation that corresponds to Eq. (A.3), this time
expressed in the lab reference frame, i.e.

TαE1,βM1

fi,lab =
8πMNEγE

′
γ

N(t)
ū′u
[
ε′∗ · εαE1 + s′∗ · sβM1

− t

4M2
N

(ε′∗ · ε− s′∗ · s)(αE1 − βM1)
]
, (A.5)

where the recoil terms∼ t/4M2
N are effects of the non-recoil ansatz of Eq. (A.3).

These terms contribute at higher order than O(ωω′) in the LEX of the spin-
independent part of Tfi and therefore generate relativistic recoil corrections in
the definition of the higher-order scalar polarizabilities.
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Appendix B
Low energy expansion of the
real Compton scattering
observables

In this appendix, we give the explicit expressions of the higher-order terms en-
tering the LEX of the W00 and W03 functions that parametrize the unpolarized
differential cross section and the beam asymmetry. At order O(EγE

′
γ)

2, the

U
(4)
00 and U

(4)
03 terms in Eq. (2.49) read [12]:

1

(8πMN)2
U

(4)
00 =

1

2
(1 + z2)(α2

E1 + β2
M1) + 2zαE1βM1 +

r0

4M2
N

(1− z)×[
(1 + z)(κ2

N + 2qκN)(αE1 + zβM1) + 2q2(2zαE1 + (1 + z2)βM1)
]

− r0q
2
[
(1 + z2)αE1,ν + 2zβM1,ν +

z3

6
αE2 +

3z2 − 1

12
βM2

]
+

r0

2MN

P (z),

1

(8πMN)2
U

(4)
03 = (1− z2)

{
− 1

2
(α2

E1 − β2
M1)

− r0

4M2
N

(κ2
N + 2qκN)(αE1 + zβM1)

+ r0q
2
[
αE1,ν +

z

6
αE2 −

1

12
βM2

]
+

r0

2MN

R
}
. (B.1)

Here r0 = e2/4πMN and P (z) and R are polynomials in z of the third and
zero order, respectively, which are determined by the spin polarizabilities as
follows:

P (z) =
[
q2(1 + 2z − 3z2)− 2qκN(1− z)2 + 2κ2

Nz
]
γE1E1

+
[
(q2 + 2qκN)(3− 2z − z2) + κ2

N(3− z2)
]
γM1M1
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B. Low energy expansion of the real Compton scattering observables

+
[
− q2(1− 3z2 + 2z3)− 2qκN(1 + z − 3z2 + z3)

+ κ2
N(3z2 − 1)

]
γM1E2

+
[
− q2(1− z)2 + 4qκN(z − z2) + 2κ2

Nz
]
γE1M2, (B.2)

and
R = q2(γE1E1 − γE1M2)− (κN + q)2(γM1M1 − γM1E2). (B.3)
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