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Abstract

Most human activities are concentrated in urban areas, which cover a small
portion of the Earth’s surface, but cause planetary-scale issues, such as air and
water pollution, land degradation, and heat island phenomena. The increasing
availability of fine temporal and spatial resolution SAR (Synthetic Aperture
Radar) sensors on board of Earth Observation (EO) satellites provides a new
perspective in investigation and monitoring of global and regional human ac-
tivities. Thanks to the principle of radar imaging and its inherent characteris-
tics, e.g., double-bounce scattering, SAR directly enables to retrieve the urban
structure in the horizontal and vertical dimensions. Additionally, the utiliza-
tion of SAR polarimetry makes it possible to separate mixed backscattering
echoes. Finally, exploiting Interferometric SAR (InSAR) technology, more 3D
information can be extracted and considered.

In this scenario, although many approaches have been developed to detect
urban changes in single-polarization SAR data, few researches have focused
on urban change detection using multi-polarization SAR sdata. Moreover,
many of the approaches in technical literature map urban extent expansion
or intra-urban change locations, but without exploring, in the latter case, de-
tailed change characteristics in terms of their spatial and/or temporal patterns.
In this thesis, new approaches are developed to automatically map and ex-
plore intra-urban changes using fully polarimetric SAR (Quad-PolSAR), Dual-
polarimetric SAR (Dual-PolSAR), as well as temporal sequences of SAR data,
even in conjunction with multispectral data. More specifically, this thesis re-
ports about the methods listed as follows.

1. A superpixel-based multi-pattern change detection technique that uses
SAR polarimetry. Quad-PolSAR (Radarsat-2) and Dual-PolSAR (Sentinel-
1) data are used to map 2D/3D changes inside urban areas. The results
confirm the possibility of an effective 2D/3D change detection with fully
polarimetric SAR, but show poor performances using dual-polarization
data.



2. A temporal change pattern extraction approach that uses coherence in
multi-temporal Dual-PolSAR series. Sentinel-1 SAR complex data are
used to detect changes in the temporal domain. Due to the weak contri-
bution of polarimetry to change mapping, coherence temporal series are
considered to investigate temporal multi-pattern intra-urban changes.

3. An intra-urban change vector analysis exploiting SAR and multispec-
tral data. The use of SAR in conjunction with other optical sensors is
a promising yet challenging technique, because of the different spatial
resolutions and data modalities. A change vector analysis and visualiza-
tion approach is proposed to automatically extract changes and enable an
easier understanding of the intra-urban changes that are revealed.

4. A hierarchical bi-clustering algorithm for multiple-pattern change inves-
tigation. To address temporal pattern analysis in wide urban areas (e.g.,
megacities or urban clusters) a hierarchical bi-clustering method is in-
troduced to address the unpredicted number of clusters and better dis-
criminate among urban change patterns referring to new constructions,
demolitions, and renovations.

All the approaches proposed in this thesis have been applied to monitor urban-
ization in both developing and developed countries, and have been validated
by an extensive comparison with ground truth data in many different areas of
the world. Specific focus has been given to the P.R. China and South East Asia,
where urban areas are quickly evolving and intra-urban changes can be more
easily spotted and recognized.
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Chapter 1

Monitoring urban areas using
spaceborne remote sensing

This chapter gives an overview of spaceborne urban remote sensing and its applications for
change detection and monitoring using radar and multispectral sensors, especially focusing
on intra-urban change detection and urban activities monitoring. It introduces the main
motivations and objectives of this thesis and presents its structure and organization.

1.1 Why urban remote sensing?

Urbanization is one of the most concerned global change issues. It refers to planetary-scale
changes on the surface of Earth. According to the ”World Urbanization Prospects 2018”
report from the UN, until today, 55% of world population lives in urban areas, and this
percentage will increase to 68% by 2050. Projections show that another 2.5 billion people
will migrate from rural to urban areas by 2050.

It is noteworthy that nearly close to 90% of this increment is taking place in Asia and
Africa. Future increments of the world urban population are expected to be highly concen-
trated in just a few countries (India, China and Nigeria) rather than in the most urbanized
regions such as North America, with 82% of its population living in urban areas in 2018,
Latin America and the Caribbean (81%), Europe (74%) and Oceania (68%). The level of
urbanization in Asia is now approximating 50%. In contrast, Africa remains mostly rural,
with 43% of its population living in urban areas. By 2050, it is projected that India will
have added 416 million urban dwellers, China 255 million and Nigeria 189 million.

Further expansions of megacities like Tokyo, the largest city with an agglomeration of
37 million inhabitants, followed by New Delhi with 29 million, Shanghai with 26 million,
and Mexico City and Sao Paulo, each with around 22 million inhabitants, bring challenges
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in meeting the needs for housing, transportation, employment, energy systems, micro-
climate management, and other environmental issues, as well as basic services such as
education and health care.

In this context, sustainable urban policies to improve urban and surrounding rural en-
vironments are urgently needed, while strengthening the linkages between urban and rural
areas. However, reasonable policy decisions should be based on a correct and compre-
hensive knowledge of current urban environments. Spaceborne remote sensing has been
widely used in characterizing urban areas, because it can provide an objective and world-
wide homogeneous perspective about urban growth and change.

1.2 Urban monitoring using spaceborne remote sensing
imagery

In last few decades, many approaches for urban monitoring using spaceborne remote sens-
ing have been developed, in order to extract urban extents, urban land use, as well as general
parameters about the urban environment [1] [2] [3] [4] [5]. All these studies were aimed
at discovering the spatiotemporal patterns of dynamic urban change, and exploited many
different sensors, from multispectral to radar, from hyperspectral to LiDAR.

1.2.1 Urban area monitoring and change detection using multispec-
tral sensors

Multispectral information has long supported a relatively detailed classification and change
detection using post-classification comparison of land covers in urbanized areas, including
buildings, grasslands, impervious surface, water bodies and more. For instance, in [6],
multitemporal Landsat images were used to identify the spatiotemporal change patterns
of built-up, vegetation, and water bodies. Impervious surfaces, one of the important pa-
rameters to urban meteorology, water cycle, and thermal environment models are another
example of parameter that can be extracted from multispectral data [7] [8], and used as a
proxy to urban growth [9].

A special case among multispectral sensors for urban monitoring is taken by the so-
called nighttime lights. These data sets are a byproduct of the meteorologic mission called
Defense Meteorological Program Operational Linescan System (DMSP OLS), which op-
erated from 1992 until 2013, and the Visible Infrared Imaging Radiometer Suite Day/Night
Band (VIIRS/DNB), which is its follow up mission, with a finer spatial resolution and more
specific filters to collect data from artificial illumination at night (hence the name). These
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data sets depend on atmospheric conditions and seasonal changes, but, after calibration
[10] [11], they are highly correlated to anthropogenic activities and energy consumption.

The first studies using these data were concentrated on spatially mapping urban extent,
and inferring population density, greenhouse gas emissions and energy usage [12] [13] [14].
Then, regional comparison and geographical statistics about urban anthropogenic activities
extracted from these data, such as the above mentioned urban extents, population, economic
indicators, electric power consumption, and carbon emissions, showed that nighttime data
are highly correlated with Gross Domestic Product (GDP) and total carbon dioxide (CO2)
emissions [13] [15] [16] [17] [18] [19].

Finally, with the availability of long-term series nighttime data, the continuous obser-
vation of anthropogenic activities has become possible. allowing the extraction of different
temporal patterns of urban changes [20] [21] [22] [23] [24] [25] [26]. Although these data
have a rather coarse spatial resolution, the spatial change of urban structures, and their ag-
gregated behavior up to the regional and national level can be extracted. Accordingly, the
trajectory of urban centers as hotspot in nighttime light (NTL) time series have been stud-
ied in [27]. The same is true in [28] [29],[30], characterizing different temporal patterns of
anthropogenic activities, energy utilization, and impervious surface expansion, in line with
the general trend of rural-urban migration.

With the usage of temporal analysis technique, NTL time series can be decomposed
into annual and seasonal fluctuations [31]. Moreover, the declining trend of NTL values
have been observed and analyzed to explain the economic recession in Zimbabwe, and the
phenomenon of the so-called “ghost cities” in P.R. China, due to excessive urbanization
[32] [33] [34].

NTL and other multispectral sensors have also been used to study the link between
land use change and urban areas, e.g. vegetation degradation and urbanization [35], for the
estimation of impervious surfaces jointly exploiting MODIS and NTL [36], to add further
information about land covers to explain the value-added of agriculture and forestry when
measuring economic growth [37].

As for change detection using multispectral sensors, the most frequent techniques for
urban monitoring are post-classification comparison, as well as regression simulation of
time series of urban geophysical parameters. Sometimes, more specific techniques for
change detection (e.g., improved change-vector analysis [38]) have been applied to build
the feature space for classification. In [39] spatiotemporal series are regarded as spatial and
temporal continuous fields, and from them the magnitude, timing and duration of urban
growth are extracted. Similarly, variation information contained in time series can also be
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extracted by means of time series decomposition to extract trends and seasonal fluctuations
[40] [41], possibly applying Mann Kendall trend test to monitor urban dynamics [42].

However, images from multispectral sensors are 2-dimensional representations of the
Earth surface, and can provide information about 2D changes in urbanization, and highlight
its effects. The change of vertical structures, and in general the characterization of changes
involving the third dimension (here in the following referred to as “3D changes”) is a very
challenging task for spectral sensors. These changes are instead very important for urban
planning and design, urban micro-climate, urban population density and others quantitative
inversion applications requiring precise urban models [43] [44] [45]. More in general, 3D
models are driven by the growing focus on 3D smart cities. The ability to update frequently
this information is a promising research and application topic [46].

Compared to 2D change detection, 3D change detection needs to face big challenges
due to data and computational costs, as well as the accessibility of accurate 3D data.
Satellite platforms can provide high resolution optical images, and generate Digital Sur-
face Models (DSM) from stereo/multi-view images [47] [48]. Alternatively, LiDAR point
clouds, probably the more precise modeling method to reconstruct a city in 3D, may be
used, but they are expensive both economically and computationally [49]. Indeed, LIDAR
has been mostly used in monitoring natural disasters, such like landslide displacement [50],
cliff recession [51], and, in urban areas, these phenomena correspond to 3D changes. How-
ever, these are sudden changes, while for urban monitoring we would like to have long-term
monitoring of relatively slow (days, if not months) changes in the vertical direction. Only a
few works use LiDAR for wide-area urban monitoring, due to the high cost of acquisition,
whereas, most works are related to urban 3D precise modeling, as in [52] and [53].

Finally, it is important to stress that the primary issue referred to 3D change detection
is the data co-registration, especially when heterogeneous sources with different reference
systems are used, e.g., subsequent images and LiDAR data captured by mini-UAVs [54],
or LiDAR and photogrammetric data [55]. Other examples of 3D change detection based
on DSM are available in [56], [57], and [58], with a more general introduction to the topic
in [59].

1.2.2 Urban area monitoring and change detection using radar sen-
sors

This lack of an easy way to extract 2-dimensional and 3-dimensional changes in urban areas
from multispectral sensors has motivated the focus of this work on time series of radar, and
specifically Synthetic Aperture Radar (SAR) systems. The amplitude and polarization of a
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SAR image can be used to extract maps of urban land covers like using multispectral data,
and to monitor urbanization, too [60] [61] [62].

The mechanism of SAR imaging determines its application in the field of urban re-
mote sensing, and is driven by the facts that SAR is a side-looking sensor, that collects the
backscattered electromagnetic wave from a target, possibly at multiple polarizations, and
retains both the amplitude and the phase information. Specifically, studying the effect of
side-looking imaging of urban targets, and the related single and double-bounce scatter-
ing mechanisms, scholars have demonstrated that it is possible to reconstruct the building
height and even the 3D model of a single building using very high resolution SAR im-
agery [63] [64] [65]. Moreover, the induced effects of shadows, overlay and foreshorten
are closely related to building 3D structures, as shown in figure 1.1. It is therefore pos-
sible to utilize the overlay and shadow to recovery building heights and shapes [66] [67]
[68]. Finally, since the backscattered signals may be decomposed into double bounce dihe-
dral, facade, and volume scattering, these results may be used to obtain relatively accurate
building footprints [69] [70] [71].

Unfortunately, although these results are theoretically possible for single buildings in
specific imaging situations, real backscattered signals are noisy because of the limitations
of the parameters of the radar system [72]. Accordingly, extraction results depend on the
techniques applied. Examples are height inversion with a optimizing likelihood measure
between the projection and the observed image over the height hypothesis space in [73], as
well as a combination of a SAR simulator and a matching procedure to estimate the best
height of buildings in [74].
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Figure 1.1: The side-looking nature of SAR systems causes foreshorten, shadow, and
layover effects on buildings (from [68]). 1) a-c: Backscattering projection of a flat-roof
building with width w and different heights h: Ground backscattering of a double-bounce
scatterer b, backscattering of vertical wall c, backscattering from roof d, shadow e, length
of layover area in ground-projected range l, and length of shadow projected on ground
s. The gray level in the backscattering profiles indicate the corresponding intensity. (a)
h < w ∗ tan(θ). (b) h = w ∗ tan(θ). (c) h > w ∗ tan(θ). 2) d-f: Backscattering projec-
tion of a gable-roof building with roof inclination angle α at various incidence angles. The
legends is similar to the one for flat-roof buildings in Fig. 1.1. d1 is the scattering from the
side of the roof which is oriented toward the sensor, while d2 represents the scattering from
the part of the roof which faces away from the sensor. The gray values in the backscattering
profiles refer to corresponding intensity. (d) θ < α. (e) θ = α. (f) θ > α.
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A method to improve urban analysis is to exploit, whenever possible, radar polarimetry.
In radar systems, the emitted waves Es and the backscattered waves Ei may be charactered
by the so-called Jones vectors. Using a suitable transformation of these vectors, it is pos-
sible to identify the scattering characteristics of different objects by means of the so-called
scattering matrix S, where

Es =
e−jkr

r
SEi =

e−jkr

r

[
Shh Shv
Svh Svv

]
Ei (1.1)

The parameters of urban structures, such as buildings’ orientation, height and volume, di-
rectly impact polarimetric properties. The double-bounce scattering between the walls and
the ground, in fact, depends on the building height and orientation [75] [64]. Moreover,
the polarization orientation angle shift induced by the variation of the radar look direction
with respect to artificial structures has been shown in [76] and [77], and has been success-
fully applied in recognizing the spatial arrangement of built-up structure, estimating urban
density in [78] and [79].

All these effects can be summarized in the use of the polarimetric decompositions, i.e.
different ways to decompose the scattering matrix identifying different effects and the cor-
responding polarimetric contributions. For instance, backscattering can be decomposed
into surface scattering, double-bounce scattering, volume scattering and other scattering
types as in [70]. There are multiple decompositions, classified in coherent and incoherent
ones. The incoherent averaging of the coherency matrix T or covariance C matrices is
specified to measure the polarimetric properties of so-called ”distributed targets”, charac-
terizing time-varying targets or nearly equal-size targets in a resolution cell. The difference
with respect to the incoherent decomposition is that the coherent measurement with no av-
eraging is for dominant targets in a resolution cell, called point-targets [80]. In the case of
monostatic backscattering (i.e., radar systems with co-located transmitter and receiver), the
reciprocity constrains the scattering matrix to be symmetrical, that is Shv=Svh. All major
decompositions are synthesized in Table 1.1.

In this table, polarimetric parameters derived from polarimetric decomposition models
are listed: “Surf” stands for surface scattering, “Dbl” stands for double-bounce scattering,
“Vol” stands for volume scattering, and “Hlx” stands for helix scattering. Corner marks
indicate the model type. For instance, “v3” stands for the VanZyl decomposition. The
separation of the different contributions to the final mixed scattered signal is significant to
characterize urban targets, and this approach has been applied in land use classification,
object recognition and damage estimation, e.g., in [91], [92], [60], and [93].

In addition to what has been introduced in the previous paragraphs, when multiple SAR
images are available other extraction methods for 3D information can be used. For instance,
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one option is the fusion of ascending and descending imaging data sets. Indeed, while the
drawback of side-looking imaging on buildings is that only one side of the building can
be retrieved, spaceborne SAR sensors pass over the same location in both ascending and a
descending mode. The ascending mode is when the satellite circles from South to North.
On the contrary, the descending mode is when the satellite travels from the North to the
South pole. The combination of ascending and descending observation can compensate
the loss of information and reconstruct both sides of a building. This results has been
widely applied to extract 3-D building models from images taken from opposite directions,
orthogonal viewing directions, even from four-aspect SAR images, as in [94], [95], [96],
and [97].

Finally, the unique advantage of SAR is that differential SAR Interferometry is a very
effective technique for 3D change characterization, and has been already applied to urban
areas [98] [99] [100] thanks to techniques like the persistent scatterer interferometry (PSI)
[101], the Small BAseline Subset (SBAS) approach [102], SAR tomography (TomoSAR)
or Differential TomoSAR inversion. All of these techniques can be used for 3D reconstruc-
tion in urban areas [103] ,[104], [105], [106].

Specifically, the task of retrieving building parameters using InSAR is based on the
recognition of the different elements of a building, such as its roof and facade, exploiting
the above-mentioned phenomena of layover, shadow and dominant scattering at building
dihedral caused by the side-looking configuration of SAR systems. The combined effect
of amplitude values, due to the projection of the building facade, and phase, related to the
building height, has been proven in [107], [108], and [109]. To include 3D information,
InSAR techniques, such as the above-mentioned PSI can detect stable points in a stack of
several interferograms and retrieve their height based on their phase values [110]. InSAR
results, however, are limited by their inherent noisy nature. Even with very high-resolution
SAR and multi-aspect observations, the achieved 3D model is still not comparable to the
results from LiDAR [108].

Instead, SAR tomography, using multiple SAR images acquired from slightly different
looking angles, allows separating multiple scatterers layovered and situated in the same
resolution cell (e.g., ground and wall scatterers) [111]. This approach has been used to
retrieve the vertical structure of buildings in [105]. Eventually, point cloud fusion from
multi-aspect TomoSAR data sets may be exploited to complete the 3D-building models as
in [112].
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Generic SAR change detection techniques

As for using SAR for urban monitoring in time, in the last decades successful techniques
for change detection from SAR images, unsupervised and supervised, have been developed
and simultaneously proved to be effective. The supervised approaches can be categorized
as change detection after the classification of pre- and post-images [113] or directly from
difference images [114].

Among unsupervised approaches, the general detecting procedure for SAR images can
be implemented in three steps:

1. Co-registration and speckle filtering. Previously to any change detection, especially
in per pixel approaches involving VHR SAR images, co-registration is necessary to
ensure the consistency of pixel geolocation. Additionally, a denoising (despeckling)
filtering procedure aims at increasing the signal to noise ratio (SNR) of the pre-event
and post-event images, while preserving as many as possible textural details. Among
the filters suitable to multiplicative speckle, the refined Lee filter [115], the sigma
filter [115], and especially the non-local mean filter [116] have proved to be the most
effective.

2. Image dissimilarity computation. To compare two images, simple and very often
used per-pixel dissimilarity metrics are the difference and the ratio. Among these
measures, the ratio operation has proved to be the most suitable for high-resolution
SAR images regardless of the intensity level [117]. Alternatively, dissimilarity mea-
sures based on local statistics can be used to take into account any change in texture
information. To this aim, Probability Density Functions (pdfs) in a variable-scale
window are estimated with probabilistic inference, e.g., maximum-likelihood esti-
mators (MLE) [118], log-cumulant estimators [119], or kernel density estimators
[120]. Then, the dissimilarity between distributions for the same pixel neighborhood
in different time instant is computed by means of the Kullback-Leiber (KL) diver-
gence, the expectation of the logarithmic difference between the probabilities P and
Q [121], or the Mutual Information (MI). The KL distance performance relies on a
priori information on the local pdfs. In [118] [122] [120] and [123], pdf models like
normal , Gamma , Rayleigh , G0 , and complex Wishart distributions are considered.
Information-based similarity measures, instead, including distance to independence,
mutual information, cluster reward, Woods criterion, and correlation ratio, were com-
pared in [124] and [123]. The results show that Mutual Information is more efficient
than other measures. More recently, the mixed information has been introduced in
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[125], unifying mutual information and variational information by means of a trade-
off parameter.

The limitation of classical detectors based on the pixel-wise ratio is due to the degra-
dation of image quality induced by speckle. Although the local-homogeneity based
strategies of neighborhood-averaging [126], Markov Random Field (MRF) [127]
[128] and Conditional Random Field (CRF) [129] have been used to model the spatial
correlation among neighboring pixels and to reduce the uncertainty induced by noise,
it is still hard to determinate the appropriate scale tradeoff between smoothing and
preserving texture information. Novel techniques recently introduced to deal with
this dilemma include temporal filtering [130] and non-local similarity measurement
[131] [132] [133].

In fact, change detection with consistency operation is only effective for first-order
statistics and comparison of SAR images. The texture is assumed as a zero-mean
multiplicative contribution. Consequently, texture changes that preserve the zero-
mean go undetected with first-order indicators. In [120] [134], the ”ordered-change”
are defined and tested with first-, second- and third-order-based statistics, which con-
firmed the effectiveness of Log-cumulants and mutual information for higher-order
changes.

Noteworthily, the fact is that the increasing availability of multidimensional SAR
data leads to even greater challenges. For SAR images collected by PolSAR sensors
or at multiple radar frequencies, the complex Wishart distribution and its extension
have been widely used, provided the spatial resolution is the same [135] [136] [137]
[138]. Whenever the resolution is not the same, prevailing techniques are those fo-
cusing on a multiscale representation of either the change image or the pre- and
post-event pairs [139] [140] [141]. For instance, the undecimated discrete wavelet
transform allows decomposing a log-ratio image into a pyramid of new images at
multiple scales. Change detection is then applied to this pyramid, for instance, in a
hierarchical way, from coarser to finer scales [142] [143]. Other transform-domain
methods applied to multi-scale representation are seldom used, an example is the
contourlet transform in [144].

3. Change area extraction. Once the dissimilarity measures are computed, the most
direct method to extract the changes is to threshold these vales. Many threshold-
ing techniques have been proposed. In [145] a mixed distribution model was intro-
duced for thresholding the change image under the assumption that both changed
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and unchanged pixels follow a generalized Gaussian distribution, whose parame-
ters are estimated through an expectation-maximization (EM) algorithm. In [126]
and [146] the Kittler and Illingworth thresholding (GKIT) algorithm is applied to
neighborhood-based ratio images. It must be noted, however, that the selection of
the threshold(s) is not trivial in case of multidimensional changes. The decision on
the multidimensional difference image can be regarded as a clustering (e.g., by fuzzy
clustering [147] ) or hypothesis test (e.g., by the generalized likelihood ratio test
[148]). Likelihood ratio test (LRT) comprises no change hypothesis, the so-called
null hypothesis, and an alternative change hypothesis, and the rejection or accep-
tance of the null hypothesis depends on the desired confidence level, to avoid falsely
classifying low-SNR regions as changes [149] [150] [151] [138].

SAR change detection in urban areas

More specifically, change detection using SAR images over urban areas has been used for
multiple applications, from urbanization to urban flood mapping, from earthquake damage
extraction to building recognition. Given the multiple geographical scales of urban change,
in the following the focus will be on urban change detection and monitoring using SAR
and InSAR at the building, block, city and regional/global scale.

In very high resolution (VHR) SAR images, like SpotLight TerraSAR-X and Cosmo-
Skymed data sets the contextual information presents detailed geometric structures of sin-
gle buildings. It enables, too, the determination of the position or change of building ele-
ments, not just the change of a building itself. However, the building projection on VHR
SAR is sensitive to the radar incidence and azimuth angles. To reduce this problem, it
has been proposed to simulate the building appearance in VHR SAR images and detect
geometric projection change [152] [153]. Other methods include the use of textural infor-
mation, such as the detection of changes using an edge-preserving model in [154], or the
discrimination of individual building damage class using gray-level co-occurrence matrix
(GLCM).

SAR data sets with spatial resolution coarser than 1 meter do not allow to discriminate
individual building and its parts. Hence, this kind of SAR data is used to observe block or
city-level changes and dynamic phenomena, exploiting the SAR width-swath acquisition
and all-weather capabilities. For instance, ALOS/PALSAR and Sentinel-1 SAR were used
to detect earthquake-induced changes in the built-up area according to a change in the
scattering mechanism [155] [156] [157] [158] [159]. Natural disasters, e.g., floodwater and
anthropogenic disasters, e.g., wars and conflicts, can be detected using Sentinel-1 InSAR

12



coherence images [160] [161], as well as by using harmonic analysis with multitemporal
ENVISAT ASAR time series with a spatial resolution of 150 m [162].

Finally, investigation of the global and regional changes in the Earth system is of great
importance to systematically understand and solve planetary-scale human issues, like ur-
banization. It is undoubtedly efficient and effective to utilize remote sensing as the global
observation instrument. In order to explore the urbanization patterns, coarse resolution ac-
tive remotely sensed data have been mosaicked to map urbanized areas and their growing
change. For example, in [163] data from two spaceborne sensors, backscatter power from
NASA SeaWinds microwave scatterometer with a spatial resolution of 0.05◦, and night-
time lights with a resolution of 1 kilometer, are used to report large increases in built-up
infrastructure stock worldwide and show that cities are expanding both outward and up-
ward. The urban and suburban environments studies with scatterometers suggest that its
signatures correspond to buildings and infrastructures density, allowing the possibility of
a global survey on urban and suburban environments and their changes [164]. QuikSCAT
data were processed via Dense Sampling Method (DSM) to reveals urban growth in the
2000-2009 period with a focus on the expansion of major urban areas in the US Great
Plains in [165]. Further studies in this direction have shown complementary results for
global urban urban extent mapping using high resolution SAR data on [166] [167].

1.3 Challenges and objectives

According to this review about 2D and 3D change detection in urban areas, it is possible to
extract a few open challenges.

• First of all, it is clear that a simple and binary change/no change detection is not suffi-
cient to support research on dynamic urban phenomena. Most previous attempts fall
into change mapping rather than change pattern research. Indeed, multiple changes
and deeper mining into change characteristics (e.g., change direction and amplitude)
is scarce and urgently required. In this thesis, novel approaches are designed to
search for and visualize multiple change patterns, leading to a more comprehensive
understanding of global, regional and single-city-level urban growth and develop-
ment processes.

• The Integration of heterogeneous sensors has great potential in the investigation of
urban growing and development patterns, but it leads to additional issues with re-
spect to processing and analyzing the merged data. On the one hand, the usage of
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heterogeneous source data sets leads to challenges in fusing multi-resolution, mul-
tichannel and multimodality data, because previous probabilistic models based on
data collected by the same sensor are not suitable to this new kind of “combined”
data. On the other hand, the information collected from diverse sensors contributes
to more interesting discoveries.

• Since previous urban change studies are mainly based on spatial domain analysis,
change patterns in time-domain deserves more substantive exploration. In this work,
time series analysis by spatial pre-filtering and temporal clustering are introduced to
understand urban construction activities for both developed and developing metropo-
lis worldwide.

1.4 Dissertation organization

As mentioned above, the increasing availability of multi-polarization SAR, as well as
the possibility to access data from temporal series of heterogeneous sensors with multi-
resolution and multimodality, motivates this thesis to exploit them all and extract patterns
of urbanization activities in various test areas worldwide. Accordingly, this thesis is struc-
tured into 6 Chapters.

The current chapter has introduced the aims of the thesis and provided a short review
of previous techniques in the field of change detection in urban areas, with focus on using
SAR data.

Chapter 2 is aimed at introducing a superpixel method to detect changes from polari-
metric multitemporal SAR (PolSAR) data, with particular emphasis on the selection of the
most suitable polarization decomposition for urban area characterization, and its applica-
tion to 2D/3D urban growth mapping. The experiments introduced in this chapter assess
the performance of Quad and Dual-PolSAR data for intra-urban as well as urban extent
change detection.

Chapter 3 improves the results of the previous chapter by focusing on change analysis
using short yet dense time series. Specifically, time series of SAR intensity and coher-
ence data from Sentinel-1 (with a revisit time close to 12 days) are used to monitor urban
change patterns, and discriminate among building maintenance, construction, demolition
or reconstruction, as well as among change patterns with (very) different durations along
the timeline.

Chapter 4 introduces instead a technique based on heterogeneous source data sets to
map multi-type changes inside urban extents (e.g., intra-urban 2D/3D changes). By con-
sidering data sets at the beginning and end of a time period (in this work, one to three years),
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and comparing the original situation with the changes in the appearance of urban areas in
both radar and multispectral (nighttime) images, we prove that it is possible to recognize
different types of changes inside the human settlements, and to discriminate those that
mostly refer to urban expansion/contraction (2D changes) from those that imply a change
in the height or structure of the urban built-up elements (3D changes).

To generalize from cities to geographical regions or nations, in Chapter 5, a few metropo-
lis in different geographical locations are analyzed in both the space and the time domain.
Exploiting the previously presented approaches, improved by means of a novel hierarchical
clustering technique, urban changes are mapped in terms of multiple spatiotemporal pat-
terns, generated by vectorized change describers and exploiting the combination of SAR
and multispectral data.

Finally, Chapter 6 provides a comprehensive review of the research carried out in these
years and concludes the thesis by summarizing the novel achievements and highlighting
possible future research paths.
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Chapter 2

Superpixel-based 2D/3D change
detection using SAR polarimetry

2.1 Introduction

As mentioned in the introduction, it is possible to find scientific literature where geometric
and electromagnetic models are used to retrieve building height and shape from single very
high resolution (VHR) SAR imagery but the height information can be obtained only for
isolated buildings either from double-scattering or shadows. Unfortunately, due to the side-
looking imaging of SAR, an accurate reconstruction of 3-D features for buildings needs
multiple SAR images, and this type of acquisition is expensive. Instead, by considering
polarimetric decomposition theory, backscattered signals from buildings can be separated
into surface-scattering, double-scattering, volume-scattering, and helix-scattering compo-
nents. This decomposition suggests that it may be possible to distinguish among different
scattering phenomena from walls, roofs, and ground. By this way, even without actually
reconstructing the building 2D/3D structure, it could be possible to understand whether a
change has occurred, and which type of change as well.

Still, due to the complexity of the urban landscape, at a VHR spatial resolution, the
multiple reflections by walls, roofs, and artificial and natural surfaces impair the capability
to easily extract meaningful semantic representations. This issue may be solved by adding
neighborhood constraints, like in Markov random field models [168] . Another option,
explored in this chapter, is to exploit superpixels, i.e., groups of pixels with similar inten-
sity, texture, and contextual information[169]. This idea has been explored in the context
of change detection in [170]and [171], but in a preliminary way and without considering
polarimetric features.

Accordingly, in this chapter, an unsupervised 2-D and 3-D urban change detection
scheme is proposed exploiting Quad-PolSAR and Dual-PolSAR data. Changes are ex-
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tracted by segmenting the PolSAR image into superpixels, to enhance the balance among
change components and increase estimability of prior distributions. Positive and negative
change components for built-up areas, in both the horizontal and the vertical directions, are
properly extracted by assuming a multivariate Gaussian mixed model applied to a subset
of polarimetric parameters at the superpixel level. To examine the performance on ex-
ploring 2D/3D changes, we tested Radarsat-2 Quad-PolSAR and Sentinel-1 Dual-PolSAR
(VV/VH) images over cities in P.R.China and Latin America.1

2.2 Superpixel-wise change detection method for multi-
temporal PolSAR images

The procedure applied in this work is based on the idea to apply superpixel segmentation
to the change image, and detect changes in a subspace composed by a selection of po-
larimetric decomposition features, as opposed to the original data. The idea is to select
specific features that are more affected by changes in the 2D and 3D structure of the build-
ing distributions. Subsequently, statistical measures of the selected features are computed
for the multitemporal data sets in each superpixel, and eventually, their distribution auto-
matically segmented into positive, negative, and no-change classes. The overall structure
of the method is presented in Fig. 2.1

To keep the boundary consistence, here we operate the segmentation directly on the
change image rather than the original multi-temporal images. Then, the superpixel bound-
aries will be applied, as mentioned, to multi-temporal polarimetric features. Let’s start from
two accurately co-registered SAR images X1 = {x1(m,n) > 0|1 < m < M, 1 < n < N}
and X2 = {x2(m,n) > 0|1 < m < M, 1 < n < N}, where M and N are the rows and
columns of the SAR images. As proved in [117], ratio difference is one of the most suit-
able measure to describe change of polarimetri SAR. Therefore, the single-channel change
image CD is calculated as follows

CD(m,n) = log

(
x2(m,n)

x1(m,n)

)
(2.1)

Considering the statistical distribution of a SAR intensity image, the segmentation al-
gorithm is often applied to the log-ratio image as opposed to the difference image. Then,
the superpixel segmentation is operated on the CDs and generates the superpixel image

1This chapter is based on the work: M. Che, P. Gamba, “2- and 3-Dimensional Urban Change Detection
with Quad-PolSAR data”, IEEE Geoscience and Remote Sens. Lett., vol. 15, no.1, pp. 68-72, Jan. 2018, and
M. Che and P. Gamba, “Possibilities and Limits of Urban Change Detection Using Polarimetric SAR Data”,
Proc. of IGARSS‘18, Valencia (Spain), July 22-27, 2018, pp. 6079-6082.
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Figure 2.1: Overall workflow of the proposed technique.

S = {si|i = 1, 2, 3, . . . , J}, where si is the i-th segment and J is the number of superpix-
els in the segmented image.

2.2.1 Adaptive distance measure in segmentation

The critical step of the proposed approach is the generation of the superpixels. To seg-
ment wide-area change images CDs a fast scheme is required. In this paper the algorithm
called Simple Linear Iterative Clustering (SLIC) [172] is implemented to segment CDs into
superpixel images. SLIC operates a k-means clustering on a limited window rather than
on the whole image, and thus efficiently decomposes an image into homogeneous regions.
Similar to the mean shift or quick shift, each pixel is associated with a feature vector that
contains the pixel location and pixel value. SLIC can control the number of superpixels by
means of two parameters: the nominal scale of the superpixels L, defined as the square root
of a superpixel area A (L =

√
A), which in turn decides the width of the window for local

clustering by k-means. and the strength of the spatial regularization, which influences the
compactness of each superpixel. The larger the space regularization value, the better the
compactness.

The algorithm works by first subdividing the original image into a grid, initializing the
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clustering center for each grid region. Then, k-means clustering is applied to each element
of the grid by means of the standard Loyd algorithm, alternating the assignment of pixels
to the closest center to the computation of updated cluster centers [173]. The distance
measure to local centers in SLIC comprises two components, namely the spatial distance
and the Euclidean distance in feature space. Considering co-registered multichannel SAR
images X1 = {x1(m,n, d) > 0|1 < m < M, 1 < n < N, 1 < d < D} and X2 =

{x2(m,n, d) > 0|1 < m < M, 1 < n < N, 1 < d < D}, where M and N are the number
rows and columns of the SAR images, respectively, and d is the index of the channel of
the SAR image, the multichannel distance measure can be calculated as the sum of the two
contributions:

Ds(i, j) =
√

(mi −mj)2 + (ni − nj)2 (2.2)

Df (i, j) =

√√√√ D∑
d=1

(xid − x
j
d) (2.3)

hence by means of
D(i, j) = Ds(i, j) +Df (i, j) (2.4)

where the i,j are two different pixels at different locations.
In this formulas both distances are computed as standard Euclidean distances. For

polarimetric images, however, previous researches confirmed better performances when
using the Wishart distance for the Df term:[137]

Df (i, j) = Dw(i, j) =
1

2
tr(CjC

−1
i + CiC

−1
j )− q, (2.5)

where tr(·) stands for the trace of a matrix, the −1 is the inverse symbol, Ci is coherency
matrix or covariance matrix, and q is dimension of matrices.

2.2.2 Superpixel-wise dissimilarity description to multiple changes

Once the original image has been segmented into homogeneous patches, pixel values inside
each superpixel still follow a specific statistical distribution, e.g., a Rayleigh distribution,
or aChi-square distribution (see Fig. 2.2). Accordingly,for each superpixel polarimetric
features are represented by a few statistical descriptors. Specifically, several statistical
moments (mean, variance, skewness, and kurtosis) and the covariance matrix are used.
Eventually, the set (S,V) = {(si,vi)|i = 1, 2, 3, . . . , J} is built, where Si is the i-th
superpixel, and vi its corresponding set of statistical descriptors.

Once the superpixels are obtained, and polarimetric features are represented by statis-
tical descriptors in each superpixel, a strategy to measure the dissimilarity between super-
pixels in multitemporal images is required. Apart from the Euclidean distance, we tested
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(a) A superpixel at t1 (b) A superpixel at t2

(c) Histogram of pixels in the superpixel
at t1

(d) Histogram of pixels in the super-
pixel at t2

Figure 2.2: An example of superpixel and its statistical distribution at t1, t2.
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dissimilarity measures based on the covariance of the moment-based descriptor sets, and
specifically the Bartlett distance [174] and the Wishart distance [175]. Table I lists the equa-
tions to compute these dissimilarity indexes for the i-th superpixel and build the so-called
superpixel change detection data set (SCD). In Table I EVD, BD, WD, and ECD stand for
Euclidean vector difference, Bartlett difference, Wishart difference, and Euclidean covari-
ance difference, respectively, C2i and C1i represent the covariance matrices of the moment-
based descriptor sets from two SAR images and the same i-th superpixel, |C| represents
the determinant of C, tr() is the trace, and d is the dimension of the feature vectors. It must
be noted that EVD is a vector of differences, while BD, WD and ECD are scalars.

Table 2.1: Superpixel Change Detection (SCD) via different dissimilarity measures at the
superpixel level

Method Equation

EVD SCDi = v2i − v1i

BD SCDi = ln(
|C2i + C1i|2

|C2i||C1i|
)− 2d ∗ ln 2

WD SCDi = ln
|C2i|
|C1i|

− tr(
C1i

C2i

)− d

ECD SCDi = |C2i − C1i|

2.2.3 Multiple-component change pattern detecting with GMM clus-
tering

Once the SCD has been extracted, changes can be detected in an unsupervised manner by
applying a clustering technique. In this work we consider a three-component multivariate
Gaussian mixed model (mGMM) [176] to discriminate among negative change ωneg, pos-
itive change ωpos and no-change ωnon components, automatically selecting two thresholds
(λ1 and λ2). According to the total probability theorem, the probability distribution of the
superpixel change image is given by

p(si) =
3∑
i=1

wip(si|(µi, εi)) (2.6)

where wi is proportion or prior probability of each component. The thresholds λ1 and λ2
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are decided by the observation posterior probability

p(wi z) =
wip(z|(µi, εi))∑3
i=1wip(z|(µi, εi))

i = 1, 2, 3 (2.7)

under the conditions

p(ωneg|λ1) = p(ωnon|λ1), p(ωnon|λ2) = p(ωpos|λ2). (2.8)

In order to accurately estimate the parameters (ωi, µi, εi) for each component, a stan-
dard Expectation Maximization (EM) algorithm is applied.

2.3 Experimental results

2.3.1 2D/3D change detection using Quad-PolSAR SAR

To test the approach and discuss the usefulness of different polarimetric features, in this
work two Radarsat-2 Quad-PolSAR images are used as a test set, both acquired over Nan-
jing, P.R. China, on March 27, 2008 and March 25, 2013, respectively. The pre-processing
for PolSAR images includes calibration, speckle denoising, co-registration and geocod-
ing. Most importantly, the denoising greatly impacts the outcome of superpixel segment-
ing. Therefore, here several most widely used speckle filters are introduced, such like
Refined Lee Filter (RLF), Improved Lee Sigma Filter (ILSF), Non-Local denoising for
(Pol)(In)SAR (NL-SAR) [177] [115] [116]. Apparently, in figure 2.4 the NL-SAR filter
shows the best denoising result.

To both images polarimetric transformations, using Pauli, VanZyl , Freeman-Durden,
and Yamaguchi decomposition techniques (see [80]), were applied. Ground truth areas (see
Fig.2.2) were manually selected using freely available VHR images of selected urban loca-
tions in the two selected years. Positive changes (shown in red) refer to urbanization (e.g.,
new built-up areas), but also to low-rise buildings turning into high-rise buildings. Con-
versely, negative changes (shown in blue) represent phenomena of urban area degradation
(e.g., abandoned or dismantled industrial areas), but also high-rise buildings turning into
low-rise buildings. The non-change areas are shown in white color. In order to verify our
hypothesis, this pixel-based ground truth is converted into a superpixel-based ground truth.
Specifically, when the number of pixels labeled with the same change/no change class is
more than half the total pixel number, the superpixel is assigned that label.

In this example, the superpixel average size is 621 pixels, and 27 positive change, 22
negative change, and 19 no-change superpixels are obtained by this procedure from the
areas highlighted in Fig.2.3.
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Figure 2.3: Pauli decomposition composite image on March 25, 2013, highlighting in
red/blue/white the selected positive/negative change/no change areas in the ground truth.
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(a) Non filtered composite image (b) 7× 7 Refined Lee filtered

(c) 7× 7 Improved Lee Sigma filtered (d) NL-SAR filtered

Figure 2.4: Pauli decomposition images after applying various de-speckle filters.

(a) The Pauli CDs after denoising with NL-SAR
filter

(b) The superpixel CDs after segmentation and
averaging in each surperpixel.

Figure 2.5: The pixel-wise CDs and superpixel-wise CDs
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(a) (b) (c)

Figure 2.6: Examples of negative and positive changes: (a) False color change picture
obtained using Pauli decomposition applied to a small portion of the Radarsat-2 2008 and
2013 images, with snapshots of (b) 2008 and (c) 2013 optical images of selected locations,
highlighted with different colors.

Table 2.2 lists the superpixel-based and pixel-based validation of the detected change
for a superpixel mean size of 621 pixels, as mentioned above, using single polarimetric fea-
ture, and always EVD as the difference measure applied to a 3-dimensional vector (mean,
median and second central moment). The details of these parameters are given in table
1.1. Indeed, in Fig.2.7 histograms for the tested dissimilarity measures and for all the
ground truth superpixels show large differences in the discriminative power of each of
them. Specifically, notwithstanding what is reported in [174], the covariance-based de-
scriptor BD is apparently unfit to discriminate between positive and negative changes in
our case.

From Table 2.2 it is clear that, as somehow expected, the volume-scattering components
(Freeman volume scattering Volf3 and Yamaguchi volume scattering Voly4), the double or
even-bounce scattering oriented at 0◦, Dblp3 (10 log |Shh − Svv|), and the double or even-
bounce scattering oriented at 45◦ or volume scattering, Volp3 (10 log |Shv + Svh|) are the
features most capable to catch the positive and negative changes in building height and
density.

Another factor that impacts the result is the speckle noise. Thanks to the NL-SAR
filter, better denoising on CDs enable to improve the compactness of superpixels, which
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(a) (b)

(c) (d)

Figure 2.7: Graphical comparison of the discriminative power of different dissimilarity
descriptors in case of three-component changes: histograms of (a) EVD (1st component),
(b) ECD, (c) BD, and (d) WD values for all the ground truth superpixels, colored according
to their class of change. x-axis indicates the distance calculated, y-axis means the statistical
frequences.

26



contribute less debris in change mapping (2.8b) compared to the result of Refined Lee
Filter (RLF). Simultaneously, For Quad-PolSAR images, the SNR level is higher in pri-
mary polarimetric vectors and second order statistical matrix representations, while the
parameters derived from model-based decompositions, like the Freeman-Durden and Ya-
maguchi decompositions, produce secondary noise because of the scattering diversity in a
resolution cell. Accordingly, the Freeman double-bounce scattering and the Yamaguchi
double-bounce scattering components provide a lower accuracy than the Pauli double-
bounce scattering component. This can be addressed by using a better denoising filter.
In table 2.2, the detected results of Freeman double-bounce scattering Dblf3 and VanZyl
double-bounce scattering Dblv3 have been greatly improved with NL-SAR filter. However,
the performance of the VanZyl volume scattering V olv3 and Yamaguchi volume scattering
V oly4 decreased.

Table 2.2: Change detection results using different polarimetric parameters

Refined Lee filter(RLF) Non local denoising (NL-SAR)
Superpixel Level Pixel Level Superpixel Level Pixel LevelParameters
OA/% Kappa OA/% Kappa OA/% Kappa OA/% Kappa

Dblf3 65,67 47,50 62,69 42,86 83,58 75,43 83,65 75,45
Surff3 64,18 45,55 59,45 37,94 80,60 70,41 73,95 60,56
Volf3 95,52 93,24 92,26 88,33 97,01 95,50 93,95 90,89
Surfp3 83,58 75,12 84,49 76,65 85,07 77,27 84,25 76,24
Dblp3 97,01 95,50 94,82 92,20 97,01 95,50 94,88 92,29
Volp3 95,52 93,24 92,26 88,33 98,51 97,75 94,11 91,13
Dblv3 53,73 29,35 52,86 28,25 95,52 93,23 94,19 91,24
Surfv3 80,60 70,53 80,19 70,21 65,67 46,81 69,04 53,62
Volv3 95,52 93,26 92,68 88,97 89,55 84,11 86,05 79,03
Surfy4 62,69 43,30 59,30 37,66 59,70 38,11 58,09 35,56
Dbly4 58,21 38,19 55,20 32,66 70,15 53,31 66,98 49,72
Voly4 97,01 95,49 92,49 88,69 88,06 82,06 87,28 80,84
Hixy4 71,64 58,08 69,46 54,70 83,58 74,79 80,90 71,09

Going forward, Table 2.3 lists change detection results considering multiple parame-
ters. It is apparent that the combination of more parameters increases the change detection
accuracy, as compared to the use of a single feature. The largest superpixel-based overall
accuracy (97.06%) is obtained by jointly considering the Dblp3 (10 log |Shh − Svv|), the
V olf3 (volume-scattering component of Freeman-Durden 3-component decomposition),
and the V oly4 (volume-scattering component of the Yamaguchi 4-component decomposi-
tion) parameters. The corresponding change detection results for the whole Nanjing area
are shown in Fig.2.8a.
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(a) Change mapping results using the Refined Lee despeckling filter: total change map with a couple
of magnified samples.

(b) Change mapping results using the NonLocal despeckling filter.

Figure 2.8: Positive and negative changes in Nanjing central urban area, P.R. China, from
2008 to 2013 (positive changes in red, negative changes in blue, no change in white).
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Table 2.3: Change detection results using the combination of multiple polarimetric param-
eters

Grouped Parameters
Superpixel Level Pixel Level
OA/% Kappa/% OA/% Kappa/%

Surfp3, Dblp3, V olp3 94,03 90,97 93,76 90,62
Surff3, Dblf3, V olf3 97,01 95,49 94,50 91,71
Surfv3, Dblv3, V olv3 95,52 93,23 94,18 91,24
Surfy4, Dbly4, V oly4, Hlxy4 74,63 61,92 75,42 62,93
V olf3, V oly4 88,06 81,98 89,73 84,52
Dblp3, V olf3, V oly4 97,01 95,49 95,22 92,81
V olv3, V olf3, V oly4 91,04 86,51 91,60 87,35
V olp3, V olf3 92,54 88,73 91,78 87,61
Surfp3, Dblp3, V olp3, V olf3, V oly4 95,52 93,22 93,89 90,80
Dblp3, V olf3, V olv3 95,52 93,22 94,27 91,38

In order to understand the impact of the superpixel scale L on the proposed superpixel-
based method, a series of ROC (Receiver Operating Characteristics) curves and AUC (Area
Under Curve) values have been computed by varying L, separately considering the ability
to detect negative and positive changes.

According to the curves in figure 2.9, the most suitable superpixel scale range varies
from 20 to 30. The AUC values increase until a scale value of 20. When using larger scale
values, e.g., bigger than 40, the AUC values for both positive and negative changes show
increasing uncertainties and decreasing performances. This fact confirms that the use of
superpixels allows a more accurate charcaterization of local features in SAR images than
4-pixels or 8-pixels neighbourhoods.

2.3.2 2D/3D change detection using Dual-PolSAR SAR

In order to extend the application of the proposed approach, it was tested on dual-polarization
SAR data as well. The main reason for this additional test, besides scientific curiosity, is
that dual-polarization SAR data (e.g., those by Sentinel-1) are available to the public for
free, and already widely used for more standard change analysis.

Unfortunately, not all of the polarimetric parameters that characterize a fully polarized
system are available in case of a dual-polarized one. As a result, we analyzed what the per-
formances of the same approach described in the previous paragraphs are, but considering
only possible combinations of dual-pol parameters α/entropy/anisotropy (α/H/A) [178].

To this aim, a test case made by a sequence of 4 Sentinel-1 images over the town of
Hefei (Anhui province, P.R. China), two of which recorded in 2015, and two in 2017, was
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(a) ROC curve for the detection of negative
changes

(b) ROC curve for the detection of positive
changes

(c) AUC values for the detection of negative
changes

(d) AUC values for the detection of positive
changes

Figure 2.9: ROC curves and AUC values as a function of superpixel scale L.
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considered. The adjacent image-pair is used to generate coherence γ data sets, assuming
that buildings have not changed in a short time interval. A false-color composition of the
VV, VH and VV/VH bands of one of the SAR images, as well as the manually extracted
positive/negative/no change ground truth polygons, are shown in Fig. 2.10.

(a) Heifei Sentinel-1 composite SAR image in
2015

(b) Ground truth (Red:positive change,
White:no change, Blue:negative change

Figure 2.10: A Sentinel-1 Dual-PolSAR composite image and manually collected ground
truth for the city of Hefei (P.R. China).

Because of the reduced polarization information to support polarimetric decomposi-
tion, the result is definitely worse than those obtained using a Quad-PolSAR images. The
overall accuracy and kappa values obtained by applying the proposed approach to different
combinations of polarimetric parameters are shown in Table 2.4, where numbers for results
obtained considering a method to mask out non-urban areas are also presented. Specifi-
cally, since we found out in the fully polarized case that it makes sense to limit our focus
area to human settlements and their surrounding before looking for changes, the second set
of results is obtained by masking non-urban areas detected by means of the interferometric
coherence computed using the two pairs of images (one in 2015 and one in 2017), and
computing a logical OR of the urban area extents extracted from the coherence data for the
two dates (Fig. 2.11).

Table 2.4 shows the unsatisfying performance of dual-polarization parameters in de-
tecting 2D/3D building changes even with the use of the “urban mask.”, i.e. by limiting the
change detection to the urban area extents in Fig.2.11.
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Figure 2.11: Urban extent of Hefei, P.R.China, extracted from S-1 data (in red) superim-
posed to an S-2 image of the same area.

Table 2.4: Change detection results with and without the use of the urban mask for Hefei

No urban mask With urban mask
Parameter OA/% Kappa/% OA/% Kappa/%
α 62.61 24.07 72.17 41.26
A 58.26 14.95 70.43 43.13
H 65.65 31.53 72.83 44.76
α,A,H 50.10 23.93 51.20 24.25
Ivh 70.87 43.94 78.26 58.78
Ivv 59.13 32.4 75.87 57.44
Ivv − Ivh 74.57 46.63 74.57 46.63
Ivv ∗ Ivh 38.48 1.52 57.61 27.15
Ivv + Ivh 58.26 31.19 75 56.06
Ivv/Ivh 63.7 22.59 70.22 47.25
γvh 91.54 83.51 91.54 83.46
γvv 91.79 84.04 92.31 84.94
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(a) (b)

Figure 2.12: Hefei (P.R. China): change maps obtained using the dual-polarimetry α pa-
rameter without (a) or with (b) the use of a urban mask.

The numbers in Tables 2.3 and 2.4 show the dramatic difference between dual and fully
polarized images. As a matter of fact, since no parameter directly related to double-bounce
scattering mechanisms is available in dual-polarized data, the overall accuracy values are
significantly lower for the Hefei test case than for the Radarsat-2 results for Nanjing in
[179]. Moreover, it is worth noting that the results in Fig.2.9a, considering only the α
parameters, are not able to highlight correctly negative changes. It is also important to
stress that the combination of multiple polarimetric parameters (see Table 2.4) does not
significantly improve the results. In fact, the overall accuracy values are lower than using
a single parameter. Instead, In Table 2.4 and 2.13 the best results are obtained considering
temporal coherence γvh and γvv, i.e. totally neglecting any feedback from polarimetry.

2.4 Conclusions

In this chapter, an effective and general 2D and 3D urban change detection scheme based on
superpixel representation and multivariate GMM is proposed. The proposed method shows
the effectiveness of full-polarization features at the superpixel level to describe changes to
building density and heights. Therefore, positive and negative changes are easily obtained
using a superpixel-wise clustering of selected polarimetric features extracted via polarimet-
ric decomposition. The use of superpixels successfully solves the problematic imbalance
between change and no-change components and limits the impact of speckle when measur-
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(a)

(b)

(c)

(d)

Figure 2.13: ROC curves and AUC values using polarimetric parameters or temporal co-
herence: the first row refers to negative changes, the second row to positive changes.
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ing the distance between superpixel at different time point. The selection of the superpixel
scale is important in ensuring the stability of the segmentation and a more accurate aggre-
gation of locally homogeneous pixels into superpixels.

Unfortunately, the very good results obtained by using double scattering polarimetric
parameters are not possible when using dual-polarized data, especially in case of the com-
bination of one cross-polarization channel and one co-polarization channel, because in this
case we cannot extract the above mentioned best-performing parameters for urban struc-
tural change detection. For dual-polarized images, our preliminary results show that there
is no advantage in using polarimetric features as opposed to considering only changes using
intensity values of the different polarizations.

In spite of these worse performances using polarimetric features, we found that the
joint use of interferometric parameters (i.e., the temporal coherence) and polarimetric or
intensity values improves the results. Although at this point we used coherence to limit
the change monitoring procedure to the urban extents, these results suggest that the miss-
ing features in dual-polarized SAR systems may be substituted by considering temporal
information by interferometric processing to detect 2D and 3D changes in urban areas.
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Chapter 3

Urban change patterns using SAR
time-series

After change pattern exploration in spatial domain using SAR polarimetry proposed in the
previous chapter, this chapter turns into time-domain investigations using time-series min-
ing techniques and Dual-PolSAR. It aims at improving the relatively poor results obtained
with DualPol data using short yet dense time series. Specifically, time series of SAR inten-
sity and coherence data from Sentinel-1 (with a revisit time close to 12 days) are used to
monitor urban change patterns, and discriminate among building maintenance, construc-
tion, demolition or reconstruction, as well as among change patterns with (very) different
durations along the timeline1.

3.1 Introduction

Urban areas are constantly changing, and monitoring this change is one of the most im-
portant tasks to understand the interaction between humans and the environment. In this
sense, change detection and change tracking using temporal sequences of remotely sensed
images is becoming essential to keep pace with this task. Indeed, remote sensing allows
monitoring urban areas in any place of the world with an unprecedented revisit frequency
and spatial resolution, thanks to new satellite platform that provide open and free data sets,
such as the Sentinel constellation by the European Space Agency (ESA).

To understand and explain activities affecting urban areas, however, it is necessary to
design data analysis techniques capable to recognize a large number of possible transforma-
tions, corresponding to different temporal patterns with respect to the spectral and spatial

1This chapter is based on the work: M. Che, P. Gamba, “Multidimensional Urban Change Detection using
Sentinel-1 Temporal Series”, submitted to Geoinfomatica, accepted.
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characteristics of human settlements. For instance, for exposure and risk mapping involv-
ing human population, it is increasingly important to map urban growth and changes to the
urban-rural fringe [165]. However, to understand urban density and discriminate among
different land uses, it is also interesting to detect block refurbishments in urban cores [180],
as well as urban densification in residential areas [181]. As a matter of fact, there is a recent
trend in urban remote sensing to try and detect not only two-dimensional changes, but also
three-dimensional ones, because megacities are developing not only by expanding, but also
by substituting low-rise buildings with high-rise ones inside urban extent.

With respect to urban monitoring on urban dynamic expansion and urbanization activ-
ities, the use of multi-temporal Earth Observation data (e.g., multi-temporal DMSP/OLS
[182], Landsat satellite series [183] [184] [185] ) makes it possible to have an objective
and physically-based approach to recognize urban growth stages and patterns. However,
SAR time-series is mostly used to monitor 2D/3D deformation, crustal deformation, subsi-
dence by using techniques of persistent scatterer interferometry (PSI), Small Baseline Sub-
set (SBAS), SAR tomography (TomoSAR) or D-TomoSAR inversion [98] [99] [100] [103]
[104]. Together with optical images, SAR amplitude and polarization have been exploited
to improve the accuracy of urban landcover classification, and further understand land cover
change due to urbanization [60] [61] [62]. However, few researches have been conducted
to investigate the trend or change pattern of urban structures using SAR time-series. Up to
now, most works are dedicated only to estimate changes caused by sudden-onset disasters.

Accordingly, here we design a novel technique to automatically and contemporarily
detect in S-1 repeat-pass data series both the changes to the urban extents, and those inside
the urban core due to construction, demolition or completion of built-up structures. This
technique provides a complete analysis of the evolution of different portions of urban areas,
a basic input to modeling tools for urban meteorology, hydrology, micro-climatology, and
citizen health.

3.2 Change pattern recognition from coherence and in-
tensity series

To cope with the objectives described above, the procedure proposed in this chapter com-
prises two different parts, each one realized by a specific processing chain and more ac-
curately described in the following subsections. Indeed, a procedure trying and solving
the overall problem of urban change detection, and able to discriminate among different
change patterns, should be on the one side able to track changes to the urban extents, and
on the other side to understand changes due to upgrades of the built-up/recreational areas
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Figure 3.1: A graphical representation of the overall workflow of the procedure described
in this work, highlighting the two main parts of the approach, i.e. the mapping of urban
extents using SAR amplitude, as well as the detection of change patterns at the urban fringe
and inside the urban core using both SAR amplitude σo and InSAR coherence γ.
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(e.g., because of roof reconstruction for old buildings), as well as the enlargement or up-
grade of specific built-up elements. Examples are the change in the number of floors for a
single building, or the change of a residential area block from traditional to more modern
buildings. The approach presented in [186] has been specifically developed to map urban
area extents from S-1 data, with encouraging results. It can be thus used to map, image
by image and time frame by time frame, the urban area extents, as well as to compute the
changes from one date to the following one.

To discriminate among different change patterns, a mask consisting of the areas consis-
tently mapped as “urban” is obtained by a logical AND among the urban extents extracted
from the temporal series of SAR amplitude data ΣP = {σP1 , σP2 , σP3 , ..., σPn }, while the rest
of these urban masks is aggregated into a map of locations that, at some point during the
analyzed period, have transitioned from a “non-urban” to the “urban” class. While the for-
mer map identifies areas consistently within the urban core, the latter one allows a temporal
reconstruction of the outbound dynamics and growth of the whole urban area.

The second part of the procedure aims at a better understanding of the dynamics of
the urban core, recognizing that, as mentioned in the introduction, there are a number of
changes that do not result into a change in the urban extents, but rather in a difference in
the backscattered electromagnetic field. It is reasonable to guess that this change can be de-
tected looking at the temporal series of amplitude values, but a different, and possibly more
sensitive, measure of the same effect may be achieved by using a temporal series of the
interferometric coherence between two temporally adjacent images. The interferometric
coherence value is stable in areas with artificial structures that do not change [187], while
it undergoes strong variations in case of a change in built-up structures [188]. The standard
deviation σc of the sequence of coherence values along time for each pixel is an indicator of
its temporal stability or change at the corresponding location in the scene. Accordingly, σc
may be used to discriminate between urban blocks that did not change and those that were
subject to constructions, demolitions or renovations. The latter group can subsequently be
better characterized by looking at the temporal patterns of the average coherence values
in each block. These patterns are clustered in three classes, expecting to catch the above-
mentioned three types of changes, e.g. an increase in coherence due to constructions, a
decrease due to demolitions, and a more variable pattern in case of renovations or transfor-
mations.

A graphic representation of the overall procedure is provided in Fig. 3.1, where the
area with a large standard deviation in the temporal coherence is labeled as “change mask”,
while its intersection with the area that is consistently mapped as “urban” using the ampli-
tude image is labelled as “image change map’.
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3.2.1 Urban extent series extraction and analysis

As mentioned above, once the Single Look Complex (SLC) SAR series Z = {zi|i =

t1, t2, ..., tn} has been collected, the method reported in [167] is used to extract urban
extents, labeledUi, i = 1, . . . , N , whereN is the number of intensity of the stack, generated
from Z. The approach is based on the backscattering effect of built-up structures, the so
called “double bounce effect”, which makes the amount of power backscattered from built-
up areas particularly large. More specifically, and referring the interested reader to [167]
for all the details, the main processing is structured in three steps after speckle denoising
with a Lee filter.

1. Seed extraction: starting from the averaged backscattering coefficient in the SAR
sequence, a limited number of points with very high backscattered power are se-
lected, assuming that they correspond to very strong backscatterers due to artificial
structures. This step is performed using a threshold that depends on the number of
SAR images in the stack.

2. Pixel aggregation: other strong scatterers that are spatially close (in all directions)
to the seeds are iteratively aggregated to the clusters, growing them into a more and
more refined approximation of the urban extents. This step is performed considering
a second lower threshold, that depends on the average backscattering value in a large
area around the seeds.

3. Post-processing: the extracted extents are refined considering a digital terrain model
(e.g., the SRTM DTM). Specifically, seeds and urban extents in areas with steep
slopes are discarded.

Although this approach has already proved to be accurate enough for most applications,
has been refined to be used for S-1 [186], and works irrespectively of the geographical
location of the urban area under analysis, it is still subject to errors due to the noise, as well
as in the changes in the viewing angle of the sensor. To reduce these negative effects, and
taking into consideration the fact that there is a sequence that can be exploited, two types of
temporal filters are applied to the urban extent masks. The first filter is based on majority
principle, and validates an urban or non-urban pixel by looking at its value in the current
urban extent mask and the two temporally adjacent masks. The second filter assumes that
urbanization is irreversible along the timeline and validates the “urban” label only if it is
confirmed by previously assigned urban labels in the same location.

After extraction and post-processing, the urban area extents Ui, i = 1, . . . , N are aggre-
gated into two different maps. The first one, obtained by means of a logical AND among all
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maps in the temporal series, identifies the “urban core”, i.e. the area that, in the considered
period, is always classified as urban. The second one includes the complementary infor-
mation, i.e. areas that have been gradually added to the urban core along time. This map
depicts, with different colors according to the date, the changes in the urban-rural fringe,
providing a quantitative and visual description of the urban growth and its direction(s). An
example of these two maps for the city of Changsha, P.R. China, is presented in Fig. 3.4.

3.2.2 Interferometric coherence time-series

As mentioned above, although an analysis based on amplitude values and their spatial
patterns is able to detect urban area extents, the use of temporal SAR series allows consid-
ering interferometric processing, too. As a result, and following what has been considered
in technical literature since quite a few years [187], interferometric coherence maps are
computed and eventually utilized to include additional information for change detection.
In this chapter, once all the images of the temporal series are co-registered with one master
image like for the usual interferometric processing, only adjacent co-registered interfero-
metric pairs are processed to generate a series of coherence values. Specifically, coherence
γc between t1 and t2 is computed in a m× n window according to the following formula:

γc(x, y) =

∣∣∣∑m
i=1

∑n
j=1 Zt1(xi, yj)Z

∗
t2

(xi, yj)
∣∣∣√∑m

i=1

∑n
j=1

∣∣Zt1(xi, yj)2∣∣∑m
i=1

∑n
j=1

∣∣Zt2(xi, yj)2∣∣ (3.1)

where Zt1(xi, yj) and Zt2(xi, yj) are the master and slave Single Look Complex (SLC) val-
ues recorded at time t1 and t2, respectively. The series of coherence values for each polar-
ization is given by ΓP = {γP1 , γP1 , γP1 , ..., γPn }, where P is the polarization (P = {vv, vh}).
As proved in [189], any source of decorrelation decreases the coherence between an image
pair. More specifically, decorrelation may be due to the time difference (e.g., changes in
the spatial distribution of scatterers or their electrical characteristics along time), the dif-
ference in the geometry acquisitions (e.g., changes in the viewing angle), a change in the
surface (e.g., because of deformations), or the difference in atmospheric contents. By com-
puting the coherence only between two temporally adjacent repeat-pass images, the intent
is to constrain the effect of temporal and geometry decorrelation to single out as much as
possible the component caused by human activities.

To this aim, the average value µc and standard deviation σc of the sequence of coherence
values along time are computed. Then, a stack composed of the ratio σc/µc and the µc value
is used to discriminate, using the Otsu threshold method on either band and a logical AND,
between areas with small and areas with large variations of the coherence in time with
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respect to its average value. The pixels belonging to the latter class most likely correspond
to areas that underwent a significant change during the period of interest. If they are located
inside the“urban core” a, they presumably identify changes in the built-up. The remaining
part of the urban core map, instead, is labeled the “urban unchanged map”, and contains
locations that are stable both in terms of the SAR amplitude (because they belong to the
urban area for all the dates there were analyzed) and of coherence.

The final processing step is a clustering analysis within the changed portion of the urban
core, performed by a simple combination of the PCA and K-means algorithms applied to
the coherence and amplitude sequences together. Specifically, the two series of coherence
values for the VH and VV polarizations, as well as the two series backscattering coefficient
σ0 for both the same polarizations, are reduced into one univariate series by PCA, which is
dedicated to solve the curse of dimensionality [190], and whose outputs are set as inputs to
the clustering procedure performed by K-means. The idea is to cluster urban locations with
respect to the temporal patterns of both coherence and amplitude. The final identification
step, that assigns these clusters to peculiar changes that affected the urban core, is per-
formed manually, by visually analyzing these patterns in locations that have been assigned
to each cluster.

3.3 Experimental results

The above- mentioned approach has been tested using S-1 data sets over the two cities
of Changsha and Hangzhou in P.R. China and one metropolis, Lombardy Region in Italy.
The main reason for the selecting of two cities is in the fast growing status of these two
cities, which produces both a wide expansion of the urban extents, and a renovation of
several portions of the inner core of both urban areas. We expected these two cities to
provide enough examples of different behaviors with respect to changes in amplitude and
coherence to allow understanding the advantages and describing the shortcomings of the
proposed technique. And the selection of Lombardy is aiming to validate our approach in
most developed areas of very low, even stagnant urbanization.

3.3.1 Case 1: Changsha, P.R.China

The city of Changsha is located in the Hunan Province of the P.R. China. Being the core
area of Changsha-Zhuzhou-Xiangtan urban agglomeration, Changsha is a typical inland
city experiencing a rapid urbanization. Specifically, the urbanization level has reached
64% at the end of 2015 [191]. To study this area, 30 IW Interferometric Wide Swath
mode (IW) single look complex (SLC) SAR images, from May 2016 to October 2018,
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were considered. Coherence and backscattering coefficient series for both the VH and VV
polarization were extracted. No digital terrain model was used to improve the urban extent
extraction because the test site is in a flat area. A false color S-1 image for Changsha is
shown in Fig. 3.2, together with an optical image at a close date.

(a) (b)

Figure 3.2: Changsha test site: (a) S-1 June 2016 SAR false color image using VV, VH,
VV/VH; (b) Optical image in the same period.

The interferometric processing for the whole SAR data series was performed consider-
ing the image in Sept. 2017 as the master, and the temporal and perpendicular baselines
[192] are reported in Fig. 3.3. Note that the master image selection is selected in order to
minimize the effect of geometry decorrelation.

As mentioned above, the first part of the procedure is meant to extract the urban extents
from each of the 30 images in the S-1 sequence, which are subsequently edited using the
two temporal filters mentioned in the previous section. Eventually, the series of urban
extents are merged into a map of the human settlement which has been always mapped as
such in all images, and a map of the temporal changes along the considered timeline, both
reported in Fig. 3.4.

Following the proposed algorithm, inside the area identified as the urban core by the
amplitude analysis, an additional binary discrimination is performed using the coherence
time series (29 coherence images) to detect portions that underwent a large coherence varia-
tion, hence suggesting that some kind of changes has been experienced. The results, for the
portion of Changsha highlighted by a white rectangle in Fig. 3.4, are reported in Fig. 3.5(b),
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Figure 3.3: Temporal baselines (in days) and perpendicular baselines (in meters) for the
S-1 sequence over Changsha, considering the image in Sept. 2017 as a refernce.

(a) (b)

Figure 3.4: Changhsa test site: (a) urban core map; (b) areas that have become urban along
the same timeline (the blue to red legend marks less to more recent changes). The area
identified by a white rectangle is the one considered for further, more detailed analyses in
the next figures.
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while Fig. 3.5(a) shows the input data to this binarization, i.e. the ratio between the stan-
dard deviation and the average of the coherence in time for each location. To validate the
changes inside this area, the change map is transformed into object patches and checked
versus a visually extracted ground truth (see Table 3.1). The reported overall accuracy is
80.85%, with a κ̂ of 0.617.

(a) (b)

(c)

Figure 3.5: The portion of the Changsha test site identified by a white rectangle in Fig. 3.4:
(a) ratio of standard deviation to the average value of the coherence stack; (b) areas iden-
tified as changed areas inside the urban core; (c) results of the temporal clustering. The
resulting three clusters are identified by the blue, yellow and green colors.

Eventually, temporal clustering is implemented on the coherence time series for this
area. The results of this clustering analysis, performed considering three classes, are pro-
vided in Fig.3.5(c), where three patches, two of them selected to represent changed areas,
and one an area that did not change, are identified by differently colored squares and by the
letters A, B and C, respectively.
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Table 3.1: The confusion matrix for the object-based validation of urban changes inside
urban core of Changsha

Ground truth
Changed Unchanged Producer accuracy (%)

Classifier
results

Changed 80 13 86.0
Unchanged 23 72 75.8

User accuracy (%) 77.7 84.7

Table 3.2: The object-based validation on changes of growth over Changsha

Ground truth
Changed Unchanged Producer accuracy (%)

Classifier results Changed 26 4 86.67

To understand the semantic meaning of the clusters, the temporal behaviors of the co-
herence and amplitude average values for the selected patches are reported in Fig. 3.6 and
3.7. Patch A identifies an area where partially completed constructions were initially lo-
cated, but these buildings were completed during the selected time frame. Patch B presents
a similar construction project, while patch C is an unchanged building. As visible in the
graphs reported in Fig. 3.6, for the first patch a significant change of the coherence series
is clear, because of the building under construction and unfinished, while this is absolutely
unapparent while observing the backscattering amplitude series. The same comment is
valid for the second patch, where changes can be detected by looking at the coherence but
not to the amplitude series. Finally, the third patch proves that, in case of an unchanged
building, both the coherence and amplitude values remain stable and large. For validation
purposes, three multispectral images, at the beginning, the end and in the middle of the time
period, respectively, are provided for each of the test sites in Fig. 3.6(c,f) and Fig. 3.7(c).

As a comment, in the Changsha case study it is found that the coherence is more sen-
sitive than the backscattering coefficient to changes to the 3D structure of urban elements.
The amplitude sequences, instead, do not allow to understand the changes, and present
a significant difference in the scattering level between the VV and the VH polarization.
This result stresses the fact that combining coherence and amplitude information unearth
more change patterns, because coherence reflects deformations, (re)constructions, and 3D
changes, while the amplitude depends on the spatial (i.e. 2D) configuration of the dihedral
structures.
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(a) Patch A: Coherence Series (b) Patch A: Amplitude Series

(c) The temporal evolution of patch A

(d) Patch B: Coherence Series (e) Patch B: Amplitude Series

(f) The temporal evolution of patch B

Figure 3.6: The trend of the average coherence and backscattering amplitude coefficients
for the patches A and B identified in Fig.3.5, to be checked against optical images for
validation purposes. The two curves in red and blue refer to the two polarizations of S-1
data.
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(a) Patch C: Coherence Series (b) Patch C: Amplitude Series

(c) The temporal evolution of patch C

Figure 3.7: The trend of the average coherence and backscattering amplitude coefficients
for patch C identified in Fig.3.5, to be checked against optical images for validation pur-
poses. The two curves in red and blue refer to the two polarizations of S-1 data.

3.3.2 Case 2: Hangzhou, P.R.China

The second test site is the city of Hangzhou. Located in the eastern coastal region of
P.R. China, Hangzhou is the capital of the Zhejiang Province, and expanded by 5 times
from 1986 to 2001 [193]. 74 IW SLC SAR images from November 2015 to October 2018
were selected and considered for this test area. The first one in the sequence of S-1 images
used in this work is depicted in Fig. 3.8, together with an optical image for the same period.
Like for the previous test case, no digital terrain model was used to improve the urban extent
extraction because the test site is in a flat area.

Table 3.3: The confusion matrix for the object-based validation of urban changes in
Hangzhou.

Ground truth
Changed Unchanged Producer accuracy (%

Classifier
results

Changed 131 11 92.3
Unchanged 28 85 75.2

User accuracy (%) 82.4 88.5

The Hangzhou urban core area, with highlighted the results of the clustering procedure
after using the temporal series, is depicted in Fig. 3.9, where three patches, like for the pre-
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(a) (b)

Figure 3.8: Hangzhou test site: (a) S-1 June 2016 SAR false color image using VV, VH,
VV/VH; (b) Optical data image for the same period.

Table 3.4: The object-based validation on changes of growth over Hangzhou.

Ground truth
Changed Unchanged Producer accuracy (%)

Classifier results Changed 27 3 90.0

vious test site, have been extracted. The corresponding coherence and amplitude time series
are reported in Fig. 3.10, showing that the first (blue) patch is an area subject to demolition
of old buildings, as visible from the decrease in the temporal series of the coherence and the
amplitude values, the second (green) patch is a construction site with buildings that were
originally partially built and the third (yellow) one is a totally new construction site. The
difference between the last two patches is clear looking at the amplitude series, that does
not present any significant trend in the first case, while it shows an increasing trend in the
second one.

Like for Changsha, a validation was performed. The results are shown in Table 3.4 with
an overall accuracy of 84.71% and a ˆkappa of 0.685. Erroneous identifications correspond
to areas where the coherence temporal pattern is not significantly different from the “no
change” case. This problem may be reduced by using more clusters than just three as
in our tests. These misclassifications are also dependent on the extension of the changed
area, as the analysis is performed on the average coherence and amplitude patterns in an
identified patch.
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Figure 3.9: Hangzhou test site: the urban core area (on the left), a smaller area where
clustering results are reported (on the right), inside which three patches (in blue, green and
yellow) are identified.

(a) Blue patch: Coherence Series (b) Blue patch: Amplitude Series

(c) Green patch: Coherence Series (d) Green patch: Amplitude Series

(e) Yellow patch: Coherence Series (f) Yellow patch: Amplitude Series

Figure 3.10: The trend of the average coherence and backscattering amplitude coefficients
for the three patches identified in Fig. 3.9 for the Hangzhou test site (the two curves in red
and blue refer to the two polarizations of S-1 data).
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(a) (b)

Figure 3.11: Lombardy region: (a) Sentinel-1 composite image; (b) Greater Milan urban
area extent.

3.3.3 Case 3: Lombardy Region, Italy

Lombardy is most developed area in Italy, with a population of about 10 million and ur-
banization of above 70.4% in 2018. This area is selected to know if the approach is valid
to highly urbanized areas. Therefore, 47 IW Interferometric Wide Swath mode (IW)single
look complex (SLC) SAR images, from May 2017 to November 2018, were collected.
Coherence γc and backscattering coefficient σ0 series for both the VH and VV polariza-
tionswere extracted.

Eventhough few changes can hardly be mapped in this highly-urbanized areas, certain
locations of commercial and corporate building blocks still are detected as shown in 3.12
and 3.13. Both patches present a complete process of buildings being under construction
with the same time series trends: increasing backscattering coefficient and low coherence
(below 0.5).

3.4 Conclusions

This chapter describes a technique to exploit temporal sequences of S-1 data, and extract in-
formation about changes around and inside urban area. Specifically, the proposed approach
is able to catch the urban growth by mapping accurately the changes to urban extents. It

51



(a)

(b)

Figure 3.12: Time-series analyses of selected patch 1: (a) time-series analyses of backscat-
tering σ0, difference ∆σ0,coherence γc; (b) validation with Google Earth images at time-
lines marked in black.
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(a)

(b)

Figure 3.13: Time-series analyses of selected patch 2: (a) time-series analyses of backscat-
tering σ0, difference ∆σ0,coherence γc; (b) validation with Google Earth images at time-
lines marked in black.
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is also capable of detecting changes due to constructions, renovations and demolitions ex-
ploiting the temporal series of interferometric coherence values, eventually resulting in a
more accurate understanding of the changing urban landscape.

With respect to the change or trend recognition, the results in all test sites confirm that
there are differences between the coherence and the backscattering coefficient patterns,
but minor distinction between VV and VH polarization. The coherence series provides
a far better temporal characterization than the amplitude series, but the high correlation
between coherence values for VV and VH polarizations makes them somehow redundant.
Accordingly, as far as this research, the benefit from the use of multiple polarization is
limited.

The approach has been validated considering two fast growing cities in P.R. China, that
are experiencing many different urban change patterns, captured by the short revisit time
rand the fine spatial resolution of S-1 data and the much more stable area of Lombardy,
northern Italy. Our tests have proved that:

• the proposed approach allows characterizing purely two-dimensional effects, such as
the growth of urban extents and mixed two- and three-dimensional changes insider
the inner part of human settlements;

• by jointly exploiting amplitude and coherence data from high temporal and spatial
resolution S-1 data sets it is possible to recognize and discriminate among more types
of changes in the inner core of urban areas.

A possible future line of research could be the (semi)automatic selection of seman-
tic labels for the change patterns that are obtained as output of this approach, as well as
the combination of this approach with other 2D/3D change detection technique based on
scatterometer and nighttime data.
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Chapter 4

Multi-pattern change exploration using
data from heterogeneous sources

The second part of this thesis is devoted to detect and visualize intraurban changes by
jointly exploiting Sentinel-1 (S-1) SAR data and nighttime light data, in the form of change
vector analysis. By extracting urban extents and urban density maps from SAR data,
changes in nighttime lights intensity can be used to detect changes related to the level
of activity in a specific portion of each urban areas. At the same time, changes in radar
backscattering are prone to reveal changes in the two- and three-dimensional structures of
the built-up. The combination of these multimodal datasets has already proved to be useful
to discriminate urban change patterns at the city level. In this chapter, further and differ-
ent intra-urban changes are extracted. Experimental results focus on fast-growing (mega)
cities in East Asia, allowing us to understand in a more detailed way how they are chang-
ing and evolving in all three dimensions. Examples for Nanjing, Shanghai, and Guangzhou
(China), Saigon (Vietnam), and Vientiane (Laos) are discussed to prove this statement1.

4.1 Introduction

The urgent need to monitor urbanization at the global level, but especially in South and
East Asia, is the main driver for the recent advances in urban extent mapping from earth
observation, initially performed at a single point in time, and more recently at multiple
dates. This need is the main reason, for instance, for the multi-temporal global human
settlement layer [194], [195], as well as the recent additions to the global urban footprint
dataset [196], both focusing on the extraction of urban extents by means of multispectral

1This chapter is based on the work: M. Che, P. Gamba, “Intra-urban change analysis using Sentinel-1 and
nighttime light data”, IEEE J. of Selected Topics in Applied Earth Observation and Remote Sensing, vol. 12,
no. 4, pp. 1134-1142, April 2019.
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sensors for past years, and multispectral and/or radar sensors for the more recent ones. In
this sense, the future looks bright, thanks to the availability for free of multispectral and
radar datasets by the Sentinel constellation, already considered in many papers applied to
urban remote-sensing applications

In this chapter, the stress is on the possibility to further exploit the Sentinel datasets,
in conjunction with other data that have been traditionally used for urban remote sensing,
i.e., the nighttime lights [197]. Urban extent layers and sophisticated approaches for urban
extent extraction using SAR Sentinel-1 (S-1) [186] or multispectral Sentinel-2 (S-2) [198]
data are already available. This paper aims at making a step further, and understand which
changes would be possible to detect and recognize inside these urban extents, i.e., at the
intra-urban level. Accordingly, “intra-urban changes” correspond to changes to the urban
structure that happen in locations that are classified as “urban” for the whole analyzed time
period.

Indeed, although in the last years there have been papers devoted to urban extent moni-
toring, only recently more attention has been dedicated to detecting the changes in the two-
and three-dimensional structure occurring inside urban areas around the world. The works
in [199] and [200], for instance, describe the patterns due to the change of the power of
return by microwave scatterometers in urban (and suburban) areas, extracting hints about
the spatial patterns and structural features of different urban environments. A similar ap-
proach has been applied in [201], adding to the power of return changes the nighttime light
intensity changes, to recognize temporal patterns in 100 cities around the world. However,
since scatterometer data allow to analyze trends in volumetric changes, but do not have
enough spatial resolution to map the expansion of human settlement, fusion of information
from other sensors is still required to map urban areas “up and out.” For instance, this issue
is solved in [202] by using multispectral data, in addition to scatterometer and nighttime
light measures.

In this chapter, we focus on an integrated approach to map changes in urban areas
exploiting dual-polarization S-1 radar data, extending the limited results of our previous
research [203]. S-1 data are used here to achieve a temporally and spatially fine analysis
of the changes occurring in fast-growing megacities located in East Asia. We show that
the approach using S-1 instead of scatterometer data does not degrade the ability to dis-
criminate among temporal growth patterns. On the contrary, it provides finer spatial and
temporal details and allows to focus on the built-up area automatically, as opposed to man-
ually preselecting a few points close to a predefined geographical position, as in [201],
or to averaging data using administrative boundaries, as in [202]. Therefore this research
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shows that, by the use of S-1 data, it is possible to further differentiate the spatial and tem-
poral change patterns of urban areas that, as a whole, experience the same reflectivity and
nighttime light change pattern. As a matter of fact, this is possible thanks to the better
delineation of urban contours and internal block subdivisions obtainable with S-1 data.

This chapter is organized as follows. Section 4.2 introduces the proposed methodology,
considering the city of Nanjing as an example. Section 4.3 reports and discusses the analy-
sis results for the Greater Saigon and Shanghai, showing peculiar change patterns for these
two megalopoleis. Finally, results for Guangzhou and Vientiane are provided to prove the
robustness of the proposed approach with respect to cities of very different geographical
extension. Eventually, Section 4.4 summarizes the main findings and proposes some ideas
about future research steps.

4.2 Multi-pattern change exploration using heterogeneous
data

Figure 4.1: A graphical representation of the processing chain used to analyze the changes
at the intra-urban level by combining nighttime lights and Sentinel-1 SAR data.

The core of the approach is based on the idea, first presented in [201], that changes in
urban areas may be captured by both the change in the backscattered power by an active
microwave sensor and the change in emitted lights at night, as captured by a passive opti-
cal sensor. Since active microwave sensors are more sensitive to spatial patterns, whereas
nighttime data are more sensitive to population and economic activity density, the combi-
nation of the two factors highlights different changes affecting urban areas. As a matter of
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fact, the work in [201] proves the existence of a so-called global fingerprint of macro-scale
changes. It well outlines what is possible to obtain from the point of view of urban studies,
but it cannot be implemented in a semi-automatic processing chain, because it does not
allow us to automatically focus the analysis on the urban area. The coarse spatial reso-
lution of scatterometer data limits the analysis to the detection and categorization of the
overall macro-scale changes of each urban area as a whole, if no geospatial ancillary data
are available about urban extents and/or built-up density.

The free distribution of S-1 data and the previous studies about the possibility to exploit
them for urban extent extraction and urban density analysis [204] highlight the possibility
to move the original approach to the next level, by implementing a processing chain able to
be applied to any specific urban area, and to improve the ability of the original technique
to detect intra-urban temporal change patterns, as opposed to one single temporal patter
per city. In a way, the new procedure allows to refine the temporal analysis at the second
level of nomenclature, by further discriminating spatio-temporal patterns at the nominal
resolution of the coarser data set, i.e.nighttime lights. The overall block structure of the
processing chain is presented in Fig.4.1, and described in more detail in the next section.
As an example, we used Sentinel-1 and nighttime light data recorded in 2015 and 2018
about the city of Nanjing (P.R. China).

4.2.1 The overall processing chain

The blocks in Fig. 4.1 graphically represent the processing chain by highlighting its steps.

1. Urban extent extraction: It has already proved in [204] that single or, better, multi-
ple Sentinel-1 images on the same test site can be combined and processed to obtain
a map of built-up areas, and eventually urban area extents. For the Nanjing test case,
three Sentinel-1 images in July 2015 and three in March 2018 have been separately
combined, the urban extent for these two years has been extracted and combined
through a logical boolean OR operation, and the final urban extent map is shown in
Fig. 4.2(a), superimposed to a 2018 Sentinel-2 multispectral image.

2. Sentinel-1 data upscaling and change analysis: To combine Sentinel-1 Ground
Range detected data and nighttime light data, the original SAR data is first converted
into the backscatter coefficient σ0, and then spatially filtered by means of a Gaussian
low-pass filter and down-sampled or resampled to the spatial resolution of the night-
time data (nearly 500 m for the Visible Infrared Imaging Radiometer Suite -VIIRS-
data set. In this thesis, the monthly temporal averaging product of Version 1 VIIRS
Day/Night Band Nighttime Lights is used). The upsampled S-1 data for 2015 and

58



2018 are then combined to obtain the ∆σ0, i.e. the change in backscattering charac-
teristics of the urban area at the nighttime coarse spatial scale.

3. Change pattern computation: After computing the nighttime light change values
∆NT , ∆NT and ∆σ0 are combined to obtain the change vector analysis in this two-
dimensional (2-D) space, whose results are graphically shown for Nanjing in Fig.
4.2(d) with a color legend referring to the built-up area density, a sub-product of the
built-up area extraction in step 1 from SAR data at 10-m posting, which allows us
to obtain the density information at the coarse spatial resolution of the change vector
analysis without the need to refer to an external data set [see Fig. 4.2(b)]. This sub-
product is obtained by computing the percentage of built-up area pixels extracted
at 10 m inside the coarser spatial resolution (500 m) used for the following joint
SAR-nighttime data clustering.

4. Clustering of the temporal change patterns: Eventually, the upsampled S-1 σ0 ,
the nighttime data at the starting date and the change vector are clustered to discrimi-
nate among different temporal change patterns and initial conditions. Considering an
arbitrary number of four clusters, the final clustering result for Nanjing is presented
in Fig. 4.2(c). In this chapter, the Mixed Gaussian Model is used to classify multi-
change-pattern. More flexible unsupervised classifier will be considered in Chapter
5.

4.2.2 Change vector analysis: the Nanjing test case

Change vectors enable to jointly represent the initial state and the corresponding varia-
tion of any change. This combination further deepens the understanding of change. The
length and orientation of a change vector indicate change magnitude and change direction
(increase or decrease). According to the characteristics of change vectors, multi-pattern
changes can be explored through clustering. In comparison to change analysis after super-
vised classification, this data-driven scheme completely relies on the data and their under-
lying models.

Thanks to the accuracy of urban extent extraction from SAR data, the results in Fig.
4.2 basically highlights a main cluster within Nanjing. This cluster, depicted in orange,
corresponds to areas with very little change. Indeed, the orange cluster groups change vec-
tors with small modules. The real changes are concentrated in a few areas that belong to
the blue and purple clusters, the latter one being composed by only locations experienc-
ing a dramatic increase in nighttime level starting from an initial situation in July of 2015
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Figure 4.2: Intermediate and final results for the proposed processing chain applied to the
city of Nanjing and considering the time interval between July 2015 and March 2018: (a)
the urban extent combined from those extracted from S-1 data in 2015 and 2018 at about
20 m spatial resolution(10 pixel spacing); (b) the urban density map at nighttime spatial
resolution (nearly 500 m); (c) the clustering analysis considering ∆NT and ∆σ0, as well
as nighttime and radar data in 2015; (d) the change vector analysis using ∆NT and ∆σ0.
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already showing large nighttime and backscatter values (monthly averaging on a collec-
tion of Level-1 Ground Range Detected (GRD) Sentinel-1 SAR and directly the monthly
product of Version 1 VIIRS Day/Night Band Nighttime Lights are used). The blue clus-
ter, instead, corresponds to areas that experience a significant but not so strong change. A
check using freely available optical very high resolution imagery shows that the areas in
the blue cluster are residential blocks where more and more buildings were added to the
landscape, whereas the areas in the purple cluster correspond to more dense neighborhoods
where there has been a significant change, such as the addition of new buildings/shopping
malls, as in the example shown in Fig.4.3.

Figure 4.3: A visual check of the changes/no changes in one selected location in Nanjing
using very high-resolution images in 2015 and 2018 available in Google Earth Historical
Imagery.

4.2.2.1 Validating the Changes

The results of the proposed analysis are twofold. On one side, the extraction of the ur-
ban extents from S-1 data at fine spatial resolution allows detecting urban extent changes,
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Table 4.1: Confusion matrix for the validation of the results in the subregion identified by
a rectangle in Fig.4.2(c) with respect to Fig. 4.6(b)

Class
Ground truth

Blue Purple White

Predicted
Blue 26 37 7
Purple 2 105 75
White 0 0 38

mostly at the urban-rural fringe. On the other side, the clustering analysis applied to the
change vectors discriminates between areas inside the urban extents that did not change
and areas that experienced a change, with the possibility to further recognize which was
that peculiar change. In order to validate these results, therefore, two different checks have
been realized.

First of all, the urban extent changes have been validated, by selecting randomly 30
locations that the approach labels as changed, and checking whether that was a real change.
The rationale for this check is that , thanks to previous experience [186], we expect a larger
commission error, as opposed to omission error, due to the small mistakes in the urban
area recognition approach. As a matter of fact, 28 of these areas include a recognizable
change, accounting for an estimated commission error slightly lower than 7%. The second
level of validation has been obtained by discriminating between areas inside the city extent
that belong to clusters with very small change vector modules [represented in Fig.4.6a) in
white], and those with larger ones [i.e., the purple and blue clusters in Fig.4.2 (d)], again
in a binary way. By looking at the numbers in Table 4.1, the overall accuracy is 75.8%,
and is reduced to 64.4% if the purple and blue clusters are considered separately. All in
all, the approach provides a reasonable accuracy level, and opens the door to future routine
monitoring tasks looking for different types of changes within urban areas.

4.2.2.2 Comparing the approach with previous techniques

Finally, to prove that the technique offers change patterns consistent with the original idea
of using scatterometer (as opposed to SAR) data, in Fig.4.4(a) the same clustering results
as in Fig.4.2(c) are provided, using the same processing chain except that upsampled Ad-
vanced Scatterometer (ASCAT) data (freely accessible at EUMETSAT [205] ) are used in-
stead of upsampled S-1 data. The meaning of the different clusters is accessible by looking
at Fig. 4.4(b), where change vectors are colored according to the clusters. A comparison
between Fig.4.4(b) and 4.2(d) shows that the orange cluster of the analysis using S-1 is
split into the orange and green ones using scatterometer data, and the local changes that are
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available using S-1 are only very partially recognized (due to the coarse spatial resolution)
using ASCAT.

Figure 4.4: Results for the city of Nanjing, still considering the interval between July 2015
and March 2018, but using ASCAT data instead of S-1 data: (a) the change vector analysis
using ∆ NT and ∆σ0; (b) the clustering analysis considering ∆ NT and ∆σ0, as well as
nighttime and ASCAT data in 2015.

By comparing the spatial locations of the clusters and their position in the change vector
space, it is possible to state that the overall temporal patterns recognized using either S-
1 or ASCAT data are very similar. The spatial distribution of the clusters reveals some
differences, as expected, because the level of detail provided by S-1 is orders of magnitude
finer than the one by ASCAT. It must be stressed, however, that the results shown in Fig.
4.4 make use of S-1 data to focus the clustering and change vector analysis only to the area
with urban density higher than 18%. This value corresponds to the minimum density of
built-up in an ”urban” pixel at the spatial resolution of the nighttime lights computed by
considering the much finer map extracted from S-1 imagery.
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Accordingly, on one side these results show that, on a relatively long temporal interval
(three years, from 2015 to 2018), the main changes in urban features can be tracked effi-
ciently using scatterometer data, provided some sort of focusing on the urban area extent
is exploited. On the other side, they also reveal that using S-1 data, it is possible to ob-
tain more details in space. To further stress the improved performances of the proposed

Figure 4.5: Temporal analysis with a time step of one year for the Nanjing urban area using
S-1 and nighttime light for volumetric analysis (left) and S-1 alone (at about 20 m spatial
resolution) for urban extent growth (center row, changed areas appear in red). The top and
bottom row display VHR images (from Google Earth) of two locations selected using the
joint nighttime/S-1 clustering and whose different temporal change pattern is captured by
the S-1 change maps.

approach, it has been eventually applied to the same test area with a temporal span of
one year only, i.e., considering 2015/2016, 2016/2017, and 2017/2018. The urban extent
changes obtained by comparing the urban extents extracted by S-1 at the original 10-m
spatial resolution are shown in Fig. 4.5, where red (small) areas correspond to changes in
the overall 2-D structure of the city, shown in white. Two examples of changes detected by
the clustering results are also reported, enlarging the corresponding portion of the change
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map. The idea is to show that the use of S-1 data, with its fine spatial resolution, allows
us to classify these patterns, allowing us to recognize that the top one happens gradually
in time, whereas the bottom one is a more abrupt change, between 2016 and 2017. The
sequence of optical VHR images reported in the figure visually validate the findings.

(a)

(b)

Figure 4.6: Ground truths for the subregion identified by a rectangle in Fig. 4.2(c): (a)
changes at 10-m pixel spacing used to validate urban extent changes extracted from S-1
data (in red); (b) volumetric and expansion changes used to validate the blue and purple
clusters, as well as no changes in white, all obtained by manual inspection.
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4.3 Experimental results : Change detection using Sentinel-
1 SAR and nighttime lights

The proposed approach has been tested on many different locations, and here we start
by reporting its results for the Greater Saigon area, in Vietnam. The results graphically
reported in Fig. 4.7, are consistent with those in the recent work of Balk et al. [202]. The
joint clustering of S-1 and nighttime data shows an increase of activity in the city center,
mostly related in the three years from 2015 to 2018 to an increase in nighttime lights, and
only moderately due to an increase in backscatter. Therefore, it is confirmed that the area
currently experiencing changes due to higher economic activity (as found by the study in
[202]) is the city center. The change analysis using S-1 data at about 20-m resolution in Fig.
4.6b, similarly, shows that the urban expansion is still happening in the areas to the North
and East of the major urban core. Specifically, the circle and the rectangle in Fig. 4.7(a)
and (b) identify two locations that belong to the purple and green clusters, i.e., areas with
a significant change in the nighttime lights. Still, only the area inside the red rectangle in
Fig. 4.7(b) actually corresponds to a change of urban extent because of new constructions.

More clearly, the temporal evolution in these two areas is shown in Fig. 4.8, and visually
confirms the results of the previous analysis. It can be seen that the change in the area
highlighted by the circle corresponds to the construction of taller buildings in place of
existing ones, hence no change in the urban extent has occurred. Instead, the area within
the rectangle is an actual enlargement of the built-up area in 2015 due to new constructions.
Finally, in Fig. 4.9(a), the 2-D changes at 10-m spatial resolution for the Greater Saigon
area between 2016 and 2018 (in red) are superimposed to the 500-m spatial resolution
changes obtained by clustering nighttime lights and the SAR backscattering coefficient (in
purple and green, see Fig. 4.7). Apart for the obvious consideration that the 10-m spatial
data provide finer details, it is interesting to note that green pixels are usually associated
with red ones, showing that the pixels belonging to the green cluster correspond to changes
due to an increase/decrease of the built-up. Instead, pixels in purple very seldom occur
in area with red dots, supporting the idea that this cluster corresponds to changes due to
volumetric/activity changes without relevant increase/decrease of the built-up.

Like for Nanjing, these results have been validated in two ways. First, by comparison
with a map of locations manually selected and corresponding to areas that experienced
no change, volumetric change, or urban extension change, respectively, reported in Fig.
4.9(b). Second, by manually checking 30 locations that are marked as red dots [reported in
Fig. 4.9(c)] to understand whether they correspond to real changes of the urban extents or
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Figure 4.7: Experimental results for the Greater Saigon test area: (a) clustering maps using
S-1 and nighttime data; (b) two-dimensional change detection for urban extents at 10 m
spatial resolution using S-1 urban extent maps in 2015 and 2018; (c) graphical representa-
tion of these clusters in the ∆ NT,∆σ0 domain.
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Figure 4.8: Visual analysis of the temporal evolution of the areas highlighted in Fig.4.7
for the Greater Saigon urban area, and corresponding to (top row) a volumetric change as
opposed to (bottom row) a built-up area extension.

Figure 4.9: (a) Different changed pixels identified for the Greater Saigon urban area (see
Fig. 4.7): in red changes at 10-m pixel spacing, recognized by comparing urban extents
extracted from S-1 data, in green and purple changes at 500-m spatial resolution obtained
by clustering the changes in nighttime lights and SAR backscatter coefficients and corre-
sponding to volumetric and area extension changes, respectively (see Fig. 4.8), and finally
in white pixels recognized as ”unchanged.” (b) Ground truth for the white, purple, and
green classes, obtained by manually digitizing areas that experienced no change, volu-
metric changes, and urban extension changes, respectively. (c) Selection of 30 locations
marked with red dots in (a) and checked for urban extent changes.
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Figure 4.10: Clustering results for Shanghai, and visual assessment for the area highlighted
by the yellow circle, an area that is picked as changed with respect to backscattering co-
efficient and nighttime light, but that in reality experienced a limited change in both the
built-up extents and their volume.
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Table 4.2: Confusion matrix for the validation of Fig. 4.9(a) with respect to Fig. 4.9(b)

Class
Ground truth

Green Purple White

Predicted
Green 27 11 27
Purple 18 26 7
White 0 1 38

not. The results of the first analysis are reported in Table 4.2, which shows that although
the overall accuracy considering three classes is low (59%), such as in the Nanjing test
site, the same value for change versus no change increases to 77%, whereas the ability
to discriminate between volumetric and extension changes is quantified by a 65% overall
accuracy. The results for the second analysis, instead, validate the changes at finer spatial
resolution, because a visual check revealed that 23 of the 30 randomly selected locations
indeed identify a change in the urban extents.

Another test area analyzed by means of the proposed procedure is the city of Shanghai,
whose results are shown in Fig. 4.10. Even in this test case, the changed portions are
depicted in purple after the clustering step is applied. The area that is highlighted and
whose change is visually assessed by considering VHR optical data is an area with a large
difference in the amount of activity (hence nighttime lights) in 2015 and 2018, but where
2-D and 3-D changes were very limited (although not null).

Finally, we report the results for Guangzhou, one of the fastest-growing cities in China,
and Vientiane, in Laos. The clustering results for change detection are reported in Fig.
4.11 with a few examples of the changes occurring in the selected locations. The results for
these two cities are provided to show that the approach works irrespectively of the size of
the urban area under analysis because the urban extents extracted from S-1 data constrain
the clustering procedure within the area relevant to the research.

It is important to note that all the 2-D changes detected in Shanghai, Guangzhou, and
Vientiane are in line with what is reported in [206], although on a smaller scale, since the
temporal interval that is considered here is only three years, from 2015 to 2018. Changes
due to an increase/decrease of the built-up volumes and/or of the socio-economic activity
level are invisible to a research based on impervious surface mapping, such as the one
mentioned before. Instead, the joint analysis of the change patterns obtained via S-1 and
nighttime clustering and the urban extent change maps from S-1 provides more information
and allows detecting different types of changes.
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Figure 4.11: Clustering results for Guangzhou (China) and Vientiane (Laos), with a few
examples of temporal patterns that have been extracted and can be recognized.
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4.4 Conclusions

In this chapter, an automatic procedure to extract urban extent changes and volumetric
pattern changes in urban areas has been proposed. The input data to the procedure are S-1
images and nighttime data. Exploiting the spatial resolution of S-1 data to focus the change
vector analysis to the built-up area and the correlation between the radar backscatter and
the structural variations in two and three dimensions within the human’s settlement, it is
possible to automatically look for intra-urban patterns of change and recognize different
temporal behaviors, to be subsequently identified by visual analysis of VHR images. The
main contribution of this chapter is, therefore, the design of a novel procedure to detect and
characterize 2-D and 3-D changes inside urban areas by combining S-1 and nighttime data
in an automatic way. Experimental results in five different urban areas allow validating the
proposed framework by showing that the detected patterns actually correspond to peculiar
changes in the 2-D/3-D structure of urban blocks.

By using this approach, thanks to the increasing amount of data from S-1 sensors, it will
be possible to analyze yearly changes at the intra-urban level even for small human settle-
ments, providing more and more information to monitor the growth in all three dimensions
of human settlements over time.

Future research steps will be devoted to an automatic approach for the recognition of
the different temporal patterns that are grouped into the same cluster, and to the automatic
selection of the number of clusters. In fact, at the moment, the recognition of the temporal
pattern is not performed, but, as shown in the previous examples, the approach provides
the information that is needed to discriminate volumetric and 2-D changes. Still, more
sophisticated recognition procedures need to be designed to single out different types of
change, for instance, related to socio-economic activities in the urban area and not to any
change in its structure.
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Chapter 5

Change pattern exploration at the
megacity/urban cluster level

In this chapter, to generalize from cities to megacities, megalopolis, urban clusters or large
urban aggregations, a few areas in different geographical locations are analyzed in both the
space and the time domain. Exploiting the approaches presented in the previous chapter,
improved by means of a novel hierarchical clustering technique, urban changes are mapped
in terms of multiple spatiotemporal patterns, generated by vectorized change descriptors
exploiting the combination of SAR and multispectral data.

5.1 Introduction

In the last ten years, the harmonization of rapid urbanization and increased economic ac-
tivity in and around urban areas with air quality and urban land use has been the most
important concern for the urban development policy in many different countries, e.g., in
P.R. China [207] [208]. Accordingly, an urgent and challenging task is to improve the
knowledge and understanding of change patterns in human settlements, especially for fast-
urbanized urban aggregations in Africa, South America, as well as South and East Asia.
Thanks to the availability of time-series of heterogeneous remote sensing data, it is now
possible to explore these changes decoupling those due to urban expansion and those due to
increasing economic activities [163]. To this aim, in this work we combine multi-temporal
Sentinel-1 Synthetic Aperture Radar (SAR) C-band sensor and Visible Infrared Imaging
Radiometer Suite (VIIRS) nighttime sensor (also called the Day/Night Band, or DNB)
to explore urban change patterns at the geographical scale of a so-called “megacities” or
“megalopolis”. The joint use of heterogeneous sensors allows discovering more spatial-
temporal features and deeper relationships between urban constructions and nighttime-
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Table 5.1: the remotely sensed measurements (also called features) considered in this work

Features Description

Base VV σ0
Backscattering coefficient σ0 for the VV polarization of the
SAR image at the starting date of the considered time period

Base VH σ0
Backscattering coefficient σ0 for the VH polarization of the
SAR image at the starting date of the considered time period

Base NL τ
Nighttime light data at the starting date of the considered
time period

Difference VV
∆σ0

Change of the backscattering coefficient σ0 (VV polariza-
tion) in the considered time period

Difference VH
∆σ0

Change of the backscattering coefficient σ0 (VH polariza-
tion) in the considered time period

Difference NL
∆τ

Change of the backscattering coefficient σ0 (VH polariza-
tion) in the considered time period

based changes, which indirectly reflect the connections between urbanization and economic
development.

5.2 Change pattern exploration with hierarchical cluster-
ing

The procedure used in this work relies on the processing chain described in [209]. First of
all, Sentinel-1 SAR is used to extract urban extents. This step ensures that the focus of the
analysis is in built-up areas at the finest spatial resolution for freely available data sets. To
handle big-size data over each megalopolis, that includes a cluster of geographically adja-
cent metropolitan areas which may be somewhat separated or may merge into a continuous
urban region, the critical preprocessing steps and computations are performed in Google
Earth Engine (GEE) [210]. Then, data-driven unsupervised classification is used to explore
change patterns according to a feature space joining the base and the change images. In
this way, both the initial state and the temporal change pattern are considered.

To extract the urban change patterns for these areas, we exploit the same data sets con-
sidered in [209], i.e., SAR and Nighttime lights data. In this chapter, the monthly temporal
averaging product of Version 1 VIIRS Day/Night Band Nighttime Lights is used with a res-
olution of about 500 m, and the Sentinel-1 SAR of Level-1 Ground Range Detected (GRD)
is selected as SAR input. Specifically, the initial and difference data by SAR and night-
time light sensors, listed in Table 5.1, are considered. They are combined and analyzed
according to the procedure described in the next Section.
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The peculiar step introduced in this work is a more effective unsupervised clustering
as opposed to [209], which include the joint exploitation of four different algorithms: K-
means, GMM (Gaussian mixed model with EM algorithm) [211], and ByGMM (Varia-
tional Bayesian Gaussian Mixture) [212]. These four techniques are adaptively applied
to the same feature space. Following this step, the procedure in [209] is resumed, and a
2-dimensional change vector analysis is applied to interpret the clustering results. Con-
sidering the resolution difference between the Nighttime light sensor and Sentinel-1 SAR,
upscaling is applied to the SAR images to match VIIRS images at 500-meter resolution.
However, in this paper, due to the wide geographical area of analysis, and the fact that it
contains several metropolitan regions that are spatially disconnected, this vector analysis
is performed at the object level. The object extraction is based on each class image gen-
erated by clustering via connected component analysis. While more details about most of
these steps are available in [209], the heterogeneous clustering procedure is the novel part
proposed in this paper, and will be described in detail in the following subsection.

Figure 5.1: Workflow of the urban change pattern exploration procedure used in this chap-
ter.

5.2.1 Hierarchical clustering

The performance of unsupervised classifiers depends on the data geometrical distribution in
the feature space, as well as on the clustering principle they exploit. Accordingly, clustering
applied to (very) heterogeneous data from different sources poses challenging issues with
respect to the recognition of reliable clusters. Specifically, it may happen that a few obser-
vations often receive ambiguous class or cluster labels when multiple classifiers are applied
to the same feature space. This is especially true for outliers or noisy measurements. In
turn, this issue may mask patterns of urban changes interesting for our research. In this
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paper, a hierarchical 2-component clustering approach is applied to more reliably extract
change patterns in urban built-up areas. The clustering begins from what we call the root
clustering result, obtained by applying binary clustering by means of multiple algorithms
(the above-mentioned k-means, GMM, ByGMM), retaining only “reliable” clustering re-
sults and excluding “ambiguous” ones. By the term “reliable” here we consider (see Fig.
5.2a) results that are consistently labeled as belonging to the same cluster, identified by its
mean representative point. Next step is a further refinement of the binary clustering re-
stricted to the reliable clustering results, once again looking for stability in the assignment
to clusters by multiple algorithms. The procedure, schematically represented in Fig. 5.2b,
eventually ends after a few iterations (three, in this paper), providing reliable and unreli-
able clusters of data points. Further analysis is therefore focused on reliable clusters only,
reducing possible issues and misinterpretations.

(a)

(b)

Figure 5.2: Graphical representation of the hierarchical multi-scale unsupervised cluster-
ing.

5.3 Experimental results

More formally, and following [213], a “megalopolis” is a cluster of multiple urban areas
where usually the government policy aims at knitting the area together more tightly and
promoting development through transportation and communication links . In this paper,
we focus first on two megalopolis in China, namely the Jingjinji (JJJ) and the Yangtze
River Delta (YRD), which correspond to the currently most developed and the most densely
populated portions in P.R.China. These cities have boomed in population and economics
for decades and are in the path to become the largest megalopolises in the world.
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Figure 5.3: Geolocation of the studied areas.

In addition to these areas, we also select other two comparative study areas: the urban
cluster of the Lombardy region in Italy, and the urban clusters of the coastal cities along
the Gulf of Guinea. The rationale for this selection is that the former is one of the most
developed urban area in Europe and the latter one is one of the fastest and most populous
developing urban area in Africa. More specifically, in the Lombardy region the Milan
metropolitan area, known as Greater Milan, is the largest metropolitan areas in Italy. It
includes the provinces of Milan, Bergamo, Como, Lecco, Lodi, Monza and Brianza, Pavia,
Varese and the Piedmontese Province of Novara, while some scholars also include the
Province of Cremona and Brescia in Lombardy and the Emilian Province of Piacenza [214].
The overall population under the narrowest definition is about 8.2 million over an area of
about 13,000 km2 [214].

As for the above mentioned African cluster of coastal cities, Nigeria is the most popu-
lous country and the largest economy of 2018 in Africa [215]. In this work, we focus on
Lagos, Ibadan, Port Harcourt to understand its urbanization trend and its relationship with
economic activities.
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5.3.1 Case 1: Megalopolis in P.R.China

The first layer of the hierarchical clustering procedure generates two clusters, and the scat-
terplots for every possible feature pair of features for the Jingjinji megalopolis are shown
in Fig.5.4a and the corresponding geographic area geographical is visualized in Fig. 5.4b.
Specifically, Fig. 5.4a represents the projection of the retrieved two (red and blue) clusters
in every possible 2-dimensional sub-spaces of the base data. It is clear that the red and
blue clusters correspond to different urban temporal patterns, and this is consistent with the
spatial structure of these clusters for Beijing in Fig. 5.4b. The area in the red cluster has
high building density at the starting date (base VV σ0 and base VH σ0 ) and a small change
in any difference feature space (difference VV ∆σ0, difference VH ∆σ0, and difference NL
∆τ ). Therefore, the red cluster may be interpreted as the core urban area, that (in average)
does not change much during the considered time period. Instead, the blue cluster expands
corresponds to low building density undergoing big changes, and may be interpreted as the
urban fringe subject to fast urban expansion.

(a) (b)

Figure 5.4: Beijing: (a) bi-dimensional scatterplots of the clusters extracted in the first
layer of the hierarchical clustering procedure; (b) corresponding spatial extents of these
two clusters.

In the second layer of the hierarchical clustering system, new clusters are obtained
by separating the “parent clusters” and more detailed change patterns are revealed (see
Fig. 5.5). The red and green clusters obtained from the red cluster in the upper layer
represent a further subdivision of the core area into its more stable part and the transition
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areas towards the fast developing urban fringe, and are consistent with the well-known
urban circle structure of Beijing, and its pattern of urban outward expansion.

Figure 5.5: Jingjinji: bi-dimensional scatterplots of the clusters extracted in the second
layer of the hierarchical clustering procedure.

Within a relative short time-interval (in this work we are considering the interval from
2015 to 2018), however, the expansion is limited. More obvious changes occur in villages
and towns surrounding the main built-up area, which correspond to the yellow and blue
clusters in Fig. 5.5 and 5.6, obtained from further clustering applied to the blue cluster in
Fig. 5.4.

The 4-component clusters allow recognizing more urban expansion patterns. Indeed,
the blue and yellow clusters are discriminated thanks to different change directions for the
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backscattering coefficient (i.e., the change in built-up structures). As shown in Fig. 5.7,
the new constructions recognized as elements of the blue cluster commonly and frequently
occur beyond the suburban area, and often accompany demolitions (recognized as elements
of the yellow cluster).

Looking in more detail to the urban change patterns extracted by this technique, it
is possible to appreciate that they are different depending on the urban size. For instance,
among the three considered Chinese megalopolises, the expansion of cities with population
over 8 million people, like Beijing, Tianjin, Shanghai, Nanjing, Guangzhou and Shenzhen,
is spatially discontinuous and starts from towns away from main built-up area. Cities like
Xingtai, Wuhu and Qingyuan, which are smaller, spread randomly in all directions and
more continuously in space.

Patterns are even more complex and rich of information when considering 8-components
clustering. The above-mentioned core urban areas (the red cluster in 4 components) are fur-
ther separated into purple and red clusters. Both clusters correspond to almost no changes
for the Jingjinji and Yangtze River Delta megalopolis, because of the highly developed in-
frastructure supporting a variety of entertainment and commercial activities. The suburban
areas (subdivided into green and olive clusters), corresponds to areas with lower building
density and more low-rise buildings, with lighting facilities utilized to support the public
transportation rather than entertainment and commercial activities.

As for the external and fast-changing areas, the 8-components clustering helps to single
out different changes in terms of feature magnitude and direction (increase or decrease).
For instance, the blue cluster in Fig.5.5 shows a 10-20% increase in VV σ0 but no change
in NL τ and VH σ0, which means no change in volume scattering and no spatial overflow
and saturation of light, and this can be explained with construction activities of low density
and low-rise building away from urban area. More detailed investigation can be found in
table 5.2 and 5.3 for Yangtze River Delta and Jingjinji megalopolis.

Comparing the spatial location of these changes (Fig. 5.9), it becomes apparent that
most construction activities has occurred far away from core urban areas, in airports, fac-
tories, ports and villa districts.

5.3.2 Case 2: Lombardy Region, Italy

Applying now the same procedure to the Lombardy urban cluster, it is possible to appreciate
(see Fig. 5.12) that built-up zones in the Milan metropolitan area are spatially compact
and homogeneous. There is no clear distinction between Varese, Como, Milan, Bergamo
and Brescia. This suggests that the urbanization of Great Milan is mature, with a high
urbanization level, above 70%. The very low growth rate results in few changes in both
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(a)

(b)

(c)

(d)

Figure 5.6: Vector analysis for 4-component clusters applied to the Jingjinji and Yangtze
River Delta megalopolis: (a, c) plotting a subset of points; (b, d) plotting only cluster
centers.

81



(a) Beijing (b) Tianjin (c) Xingtai

(d) Shanghai (e) Nanjing (f) Wuhu

Figure 5.7: 4-component clusters for multiple cities in the Jingjinji megalopolis.
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(a)

(b)

(c)

(d)

Figure 5.8: Vector analysis for 8-component clusters for the Jingjinji and Yangtze River
Delta megalopolis: (a, c) using a subset of points; (b, d) using only cluster centers.
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(a) (b)

(c) (d)

Figure 5.9: The spatial location of changes inside and outside urban areas: (a) the 8-
component clustering map of (a) the main urban area of Shanghai; (b) small settlements far
from it in the island in Yangtze River Delta; (c) the main urban area of Beijing; (d) small
settlements far it (the black patch inside the red rectangle is the construction site of Beijing
Daxing International Airport).
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(a)

(b)

Figure 5.10: Validating changes with Google Earth History Images:(a) Gogle Earth History
Images of Beijing Daxing International Airport in Fig. 5.9d; (b) Google Earth History
Images of the island in the Yangtze River Delta in Fig. 5.9b.

Figure 5.11: The 8-components change pattern of the urban cluster in the Lombardy region
of Italy
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Table 5.2: Interpretation of change patterns in the Yangtze River Delta

Cluster Initial state Change description Spatial description Interpretation

Blue
High value in NL
τ , low in backscat-
tering power σ0

10-20% increase in
VV σ0 Almost no
change in NL τ and
VH σ0

Far away from
urban area/river
side/container
terminal

Near complete con-
struction of build-
ing blocks

Black
Median value in
NL τ and backscat-
tering powerσ0

About 10-20% in-
crease in VV σ0
and VH σ0 ,and 5-
10% increase in NL
τ

Sea side Seaside
villas/ container
terminal/ urban-
rural fringe area

Construction of
multi-storey and
medium height
houses

Orange

Medium or larger
value in NL
τ ,medium or
larger value in
backscattering
powerσ0

About 1-5% in-
crease NLτ , and
almost no change
in VV σ0and VH
σ0

Rural areas

Relative high den-
sity of low-rise
residential building
blocks

Yellow

Medium value
in NL τ and or
medium value in
backscattering
powerσ0

About 1-5% in-
crease NL τ , and
almost no change
in VVσ0 and VH
σ0

Rural areas

Relative low den-
sity of low-rise
residential building
blocks

the SAR backscattering σ0 and the nighttime light intensity (Fig. 5.13). Nevertheless, the
black clustering still shows some minor changes caused by single building construction and
maintenance (see Fig. 5.15).

5.3.3 Case 3: Nigeria and its coastal cities

As for Nigeria, the 8-clustering results in this area show peculiar building density and spa-
tial configurations of these changes, different, as expected, from those for Chinese mega-
lopolis.

In this geographical area, the backscattered coefficient in core urban areas, represented
by purple and red clusters, is below a relative value of 0.7, much smaller than the corre-
sponding values for the cities in Chinese megalopolis. These low values possibly indicate
difference in building density. For instance, in China more high-rise buildings are built
than in other parts of the world, and this leads to larger backscattering coefficients.

The change vectors of the black cluster, increasing in VV and VH backscattering power
in figure 5.13 and 5.15, indicate frequent urban construction activities. However, the wide-
range value of the scattering intensity and relatively high in value of NL at the starting date
suggests that the changes may have possibly happened inside urban core built-up areas
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Table 5.3: Interpretation of change patterns in the Jingjinji megalopolis

Cluster Initial state Change description Spatial description Interpretation

Blue

Medium value
in NL τ ,low in
backscattering
power σ0

About 10-15% in-
crease in VVσ0 and
VH σ0 ,and 1-5%
decrease in NL τ
and VH σ0

urban-rural fringe
area or away from
urban areas

Change from
low-rise to high
rise/residential
extensions

Black

Medium or
larger value in
NLτ ,medium or
larger value in
backscattering
powerσ0

About 10-20% in-
crease in VVσ0 and
more in VH σ0 ,and
1-5% increase in
NLτ

Sea side and away
from urban areas

New construction,
such as factories
and the new Bei-
jing Daxing inter-
national airport

Orange

Medium value
in NLτ and in
backscattering
powerσ0

About 1-5% de-
crease in VVσ0
and increase in
VH σ0 ,and 10%
increase in NLτ

Rural residents in
countryside

Towns without ob-
vious construction
activities

Yellow

Medium or
lower value in
NLτ ,medium value
in backscattering
powerσ0

About 5-10% de-
crease in VVσ0 and
more in VH σ0, and
almost no change
in NLτ

Away from urban
areas

Construction of air-
field runways/new
towns

(a)

(b)

Figure 5.12: Vector analysis for 8-component clusters for Milan metropolitan area: (a)
using a subset of points; (b) using only cluster centers.
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(a) Owerri (b) Port Harcourt (c) Onitsha

(d) Ibadan (e) Lagos (f) Warri

Figure 5.13: The 8-components change patterns for coastal cities in Nigeria.

and suburban built-up areas (as confirmed in Fig. 5.14b) rather than outside the urban
fringes as urban expansion, as typical in China. There are oil wells and refinery facilities,
recognizable as black points far away from cities, with burning gas, singled out because of
their very intense lights. The clustered pattern of blue and yellow vectors is recognized as
rural areas and small towns (5.14c) with great numerical fluctuation in NL. Although these
large rural areas are continuous spatially and can be easily recognized as urban area, but
lighting infrastructure is very backward.

Aiming at validating the extraction of urban extents implemented on Google Earth En-
gine (GEE), a few urban polygons, referring to buildings and streets, and some non-urban
polygons, referring to forests, farmlands etc., were collected, exploiting the open source
map collection in OpenStreetMap. The mapping accuracy values for the extracted mega-
lopolis extents with respect to these ground truth are shown in table 5.4. Additionally,
30 change polygons referring to building constructions or demolitions were also collected
in the different test sites, and compared with the areas belonging to clusters recognized as
changes. To verify each of these ground truth patches, a visual interpretation was performed
by means of Google Earth historical images. Finally, to validate the changes detected by the
proposed approach, the ratio of correctly detected areas to the total number of samples (30)
was computed. The results show that the proposed unsupervised approach is reasonably
effective. However, the final detection accuracy may greatly depend on the urban extents
extracted in the initial processing step.
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(a)

(b)

(c)

Figure 5.14: Google Earth images of selected patches in Nigeria: (a) location of selected
patches; (b) The density change of buildings visualized by Google Earth Images. (c)
Google Earth Images of patches B and C.
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(a)

(b)

Figure 5.15: Vector analysis for 8-component clusters for cities in Nigeria: (a) using a
subset of points; (b) using only cluster centers.

Table 5.4: Quantitative validation indexes for the urban extents and the detected change
clusters.

Urban extents Change detection
Megalopolis OA(/100%) Kappa Cluster Detected Rate (/100%)
YRD 98.61 0.9289 3/4 86.67
J J J 96.51 0.8645 1/2/4 83.33
Nigeria 88.06 0.7632 1 76.67
Lombardy 95.51 0.9078 - -
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5.4 Conclusions

In this work, the object-oriented vector analysis according to the extracted clusters by hi-
erarchical bi-clustering shows that the clusters generated by the proposed approach are
interpretable as meaningful temporal and spatial patterns. We tested the approach over
fast-developing, like cities in China and Nigeria, and developed cities, Lombardy Region
in Italy, using multi-polarization SAR and Nighttime light data. The results show the effec-
tiveness of proposed method in mapping multi-pattern change using remote sensing data of
heterogeneous sources, even without determining the number of clusters.

1. The implemented hierarchical bi-clustering producer leads to more reliable clusters
and highlights interesting urban change patterns referring to both construction/demolition
of built-up structures and changes in the economic activity, indicated by the nighttime
lights.

2. Due to the consideration of the initial states of the temporal change, detected pat-
terns are clearly differentiated among core urban and suburban areas, as well as with
respect to the areas beyond urban outskirts. Specifically, very new development city
zones are singled out and clearly recognized.

3. There exists a high correlation between VV and VH polarization when downscaling
Sentinel-1 SAR data to the nighttime light spatial resolution, suggesting that polar-
ization is critical for analyses at the finest resolution, but not at the megacity scale.

4. Building density and infrastructure constructions are the main differences between
highly-urbanized areas (e.g., Milan), median-urbanized areas (e.g., Nanjing and inner
cities in china), and less-urbanized areas (e.g., Onitsha and coastal cities in Nigeria).
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Chapter 6

Conclusion

This chapter provides a comprehensive review of the research carried out in these years
and concludes the thesis by summarizing the novel achievements and highlighting possible
future research paths.

6.1 Contributions and discussions

This thesis introduced novel approaches for the representation and analysis of intra-urban
multi-pattern changes by focusing on multi-temporal fully or dual polarized SAR images,
as well as their combination with nighttime light data. SAR images inherently represent
precious information about urban structures, both in the horizontal and vertical dimensions,
since the SAR side-looking imaging mode produces surface-scattering double-scattering,
and volume-scattering phenomena. Therefore, multi-temporal SAR images are used in
this thesis to detect various structural changes of buildings and artificial targets. Simulta-
neously, the proposed approaches are employed to map and further investigate temporal
patterns of those changes, discriminating among building constructions, reconstructions,
demolitions and more. Apart from the traditional comparison of the amplitude of SAR
images, temporal correlation of complex values is also used to explore more sensitive
changes, like building renovations. Additionally, but still In the perspective of mapping
and understanding the complex phenomena related to urbanization, heterogeneous data are
combined to discover spatial and temporal change patters in urban areas as a result of phys-
ical changes, but also of socio-economic activities.

From the methodological point of view, the contributions of this thesis can be listed as
follows and pertain to the domain of SAR intra-urban change detection and monitoring,

• A more efficient wide-area (intra-)urban change mapping. Speckle noise always
challenges wide-area application of SAR images, especially when considering long-
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term series of data. Traditional spatial-based and temporal domain denoising and
pixel-wise operation consume an enormous amount of time and computing resources.
The superpixel-based change method proposed in this work significantly improves
the efficiency of change mapping by clustering similar pixels as a single basic object.
The analysis of change images at the superpixel level is promising in mapping large-
scale dynamic changes, e.g., global and regional intr-urban changes.

• Extraction of multi-temporal patterns in urban change mapping. Unlike pre-
vious binary-change detection and/or 2D urban change mapping studies in the last
decades, in this thesis multi-temporal change patterns are extracted using multi-
temporal SAR images series. These changes indicate various phenomena, such as
new building constructions, reconstructions, demolitions and more. It is challenging
to detect and visualize these multiple changes in an unsupervised way. This thesis
achieves this goal with three strategies. 1) SAR polarimetry: full-polarization chan-
nels enable to apply polarimetric decomposition to separate double-bounce scattering
and volume-scattering from scattering matrix. As a result, meaningful positive and
negative changes are mapped. 2) Change patterns in the time domain: a series of
temporal coherence/correlation data between subsequent SAR images is classified
into several clusters, which are interpreted by analyzing time trend and fluctuation
of both coherence and amplitude data. 3) Fusion of SAR and nighttime light data:
changes in multi-temporal SAR images represent the physical or geometrical change
of an urban entity due to urban construction and update of real estates. Changes
in nighttime lights indicate socioeconomic activities. The fusion of these two sen-
sors allows the combination of two kinds of changes and detects patterns that reflect
dynamic differences inside urban areas in both the time and space domains.

• Change-pattern mining with hierarchical bi-clustering and visualization The
challenges of fusing heterogeneous source data on wide geographical areas are a) to
determine the number of change patterns explicitly and b) to visualize and illustrate
the characteristics of the detected changes. In this thesis, a hierarchical bi-clustering
approach is selected, implemented and validated to detect multiple changes. The
approach is effective in mining multiple change patterns, and proved to be scalable
to fuse data of heterogeneous sensors. A change vector visualization following the
clustering explicitly illustrates multi-pattern changes, so that they can be more easily
interpreted.

From the point of view of the applications, the proposed approaches have been effec-
tively applied to monitoring urbanization for test sites in Asia, Africa, and Europe. Urban
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areas with different urbanization levels, climate environment, size and history have been
selected and compared. The results show highly-speed urban expanding rates in devel-
oping Asian counties, like China, Vietnam, and Laos, as well as in African developing
countries, like Nigeria. The also show that, simultaneously to urban expansion, intra-urban
reconstruction activities occur. More specifically, results show that China’s real estate de-
velopment is accompanied by a large number of demolition activities. These change pat-
terns are different according to the urban spatial structure in urban cores, suburban areas,
and urban-rural fringes. As for highly-urbanized cities in Europe, instead, almost no full
building blocks and mostly single-building constructions happen and are detected.

From the point of view of the performances, the superpixel-based change detection
and time-series change analysis were implemented on a computing platform with four-core
Intel Processor i7-6700HQ at 2.6GHz, and 32Gb RAM. The use of superpixels greatly
improves the training velocity, and makes it possible to apply the proposed approach to
wide geographical areas, even with HR data. The time-series change analysis is based on
computing adjacent coherence maps, and this step is more demanding, but it consumes
less resources than performing a full SAR Interferometry analysis. Finally, the combined
utilization of S-1 and NL data has implemented on the Google Earth Engine cloud platform,
which allows on-line analyses of huge amounts of data, at the expense of a less performing
computational velocity.

6.2 Future developments

First of all, apart from the urban applications mentioned in this thesis, the proposed ap-
proaches can also be transferred in mapping change of other land class.

Moreover, and according to results in this thesis, there still exist challenges in prac-
ticality and applicability of the proposed methods. For instance, in this thesis only two
adjacent PolSAR images are used to produce a superpixel change image, but approaches
with temporal series at the superpixel level could also be considered. Additionally, more
urban areas and different environments (e.g., areas with complicated topography, mountain
or country towns) should be considered to check the applicability of these methods.

Another important point when evaluating the use of SAR and nighttime lights is that
the current single scale fusion of heterogeneous data causes partial degradation of the im-
age information as a result of upscaling to the coarser spatial resolution of nighttime light
data. Multi-scale representation and fusion approaches should be developed in the future
to maintain the full information available in the original data.

94



From the point of view of the classification, unsupervised or semi-automatic change
detection is a promising approach. However, its validation so far depends on visual inter-
pretation, hence from the availability of reference VHR optical imagery and user’s prior
knowledge. Therefore, to objectively evaluate the performance of the method, simulated
data and more reference data should be looked for.
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Appendix A

SAR polarimetry

For Quad-PolSAR images, the polarimetric scattering target vectors k3 and Ω3 are con-
structed from the classical 2x2 coherent Sinclair matrix S

S =

[
Shh Shv
Svh Svv

]
(A.1)

Ω3 =
1√
2

[
Shh

√
2Shv Svv

]T
(A.2)

k3 =
1√
2

[
Shh + Svv Shh − Svv 2Shv

]T (A.3)

The coherency matrix T3 and covariance C3 are caculated as,

T3 = k3 ∗ k∗T3

=
1

2

 〈| Shh + Svv |2〉 〈(Shh + Svv)(Shh + Svv)
∗〉 2〈(Shh + Svv)S

∗
hv〉

〈(Shh − Svv)(Shh + Svv)
∗〉 〈| Shh − Svv |2〉 2〈(Shh − Svv)S∗hv〉

2〈Shv(Shh + Svv)
∗〉 2〈Shv(Shh − Svv)∗〉 4〈| Shv |2〉


(A.4)

C3 = Ω3 ∗ Ω∗T3 =

 〈| Shh |2〉
√

2〈ShhS∗hv〉 〈ShhS∗vv〉√
2〈ShvS∗hh〉 2〈| Shv |2〉

√
2〈ShvS∗vv〉

〈SvvS∗hh〉
√

2〈SvvS∗hv〉 〈| Svv |2〉

 (A.5)

The denosing is based on coherency or covariance matrix.
For Dual-PolSAR images(Sentinel-1 SAR), the the polarimetric scattering target vec-

tors k2 and Ω2 are

Ω2 =
[
Svv Shv

]T (A.6)

k2 =
[
Svv + Svh Svv − Svh

]T (A.7)
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and corresponding coherency T2 or covariance matrix C2 are,

T2 = k2 ∗ k∗T2
=

[
〈| Svv + Svh |2〉 〈(Svv + Svh)(Svv − Svh)∗〉

〈(Svv − Svh)(Svv + Svh)∗〉 〈| Svv − Svh |2〉

]
(A.8)

C2 = Ω2 ∗ Ω∗T2 =

[
〈| Svv |2〉 〈SvvS∗vh〉
〈S∗vvSvh〉 〈| Svh |2〉

]
(A.9)
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