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The thesis addresses the reduction of electricity demand in existing buildings by two different

standpoints: the optimal management of multi-chiller systems and the development of thermal

comfort models usable for the optimal calibration of indoor air temperature set-points. The

former problem, involves both the identification of chiller efficiency and power consumption

models and the design of optimized management strategies that minimize consumption while

complying with operating constraints and the satisfaction of the cooling demand. In spite of

the extensive literature devoted to chiller modeling, the advent of continuous monitoring, while

opening the way to new machine learning methodologies, raises also new challenges in terms of

model robustness. The thesis compares four existing models and proposes a new Gaussian Pro-

cess approach, assessing their robustness on extensive field data collected over a 2-year period

in an HVAC systems serving a large semiconductor plant. Concerning the optimal management

of multi-chiller systems, in alternative to the variety of heuristic methods available in the lit-

erature, the thesis develops a new exact solution, that, by properly partitioning the solution

space, decomposes the Optimal Chiller Problem into elementary Quadratic Programs, each of

which is subject to only one inequality constraint. The exact solver is validated against the

field data collected in the semiconductor plant, not only demonstrating its numerical efficiency,

but also quantitatively assessing the potential energy saving achievable by its use as the core

of an Optimal Chiller Sequencing strategy. Savings on the demand side can come also from

the development of advanced thermal comfort models. In the thesis, statistical and machine

learning methods are used to obtain a neat validation of the so called adaptive theory, according

to which the outdoor temperature influences the neutral temperature regarded comfortable by

the occupants. In this context, a multilogistic regression approach is first used to rigorously

model the thermal comfort scores of the ASHRAE RP-884 dataset and a new definition of neu-

tral temperature is proposed that, differently from the current one, explicitly accounts for the

percentage of satisfied occupants.
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Chapter 1

Introduction

“Growing demand for air conditioning is one of the most critical blind spots in today’s

energy debate.”

– Fatih Birol, Executive Director IEA

The use of Heating, Ventilation and Air-Conditioning (HVAC) systems is one of main respon-

sible for the global electricity-demand growth. Such systems, being designed to fulfill civil and

industrial environmental requirements, are installed and operated in different types of build-

ings such as industrial, commercial, residential and institutional buildings. Depending on the

context, the complexity of an HVAC system can range from a small unitary system to a large

centralized air conditioning system with primary and secondary distribution loops and central

plant components.

The International Energy Agency (IEA) in its report “The Future of Cooling” explains that

the world is facing a looming “cold crunch” [1]. The use of air conditioners in home and offices

already accounts for about 20% of the total electricity used in buildings around the world and

about 10% of the global electricity consumption. Suffice it to say that about a third of global

households own an air conditioner. In countries such as the United States and Japan, more

than 90% of households have air conditioning, compared to just 8% of the 2.8 billion people

living in the hottest parts of the world. This trend is expected to grow as the world’s economic

and demographic growth unfolds also in the hotter countries.

In industrial applications - such as the clean rooms of semiconductor and pharmaceutical indus-

tries, medium/large scale shopping centers, chemical and manufacturing plants - HVAC systems

use up to half of any given industrial building’s total energy requirements [8]. In Japan about

60% to 70% of chillers are employed in industrial contexts, while the others are used for res-

idential and commercial uses. The use of energy for cooling buildings has more than tripled

between 1990 and 2016, and is foreseen to triple again by 2050.

1



2 Chapter 1. Introduction

Increased air conditioning loads entail not only an increase of the overall power demand, but also

the need for generation and distribution capacity able to meet demand at peak times, placing

further stress on the power system. In the longer term, the cooling demand could be reduced by

either improving buildings’ design or replacing existing HVAC equipments with more efficient

ones. In the immediate, however, it is more sustainable and cost effective to improve the control

algorithms so as to achieve higher operating efficiency. In a recent research it has been estimated

that between 20% and 30% of building energy consumption could be saved through optimised

operation and management without changing any component [2].

The development of advanced systems for building energy management is also one of the major

topics within Industry 4.0 innovations programs. Modern energy and utility management sys-

tems are going to increasingly rely on data science techniques to extract knowledge from large

volumes of data produced by the continuous monitoring and collection of field measurements.

Possible applications include, but are not limited to, development of key performance indicators

(KPIs), optimization strategies, fault detection, predictive maintenance and smart decisions

through real-time communication with humans, machines and sensors.

This thesis addresses the reduction of the power consumption of existing air-conditioning sys-

tems through advanced modeling, performed by means of different learning methods, including

classical statistical models, neural networks and kernel-based machine learning algorithms. The

efficient management of HVAC systems is faced from two different perspectives, the production

side and the load demand one. The former approach applies to large industrial and commercial

buildings and calls for the design of energy-effective strategies for the optimal management of

a multiple chillers system. The latter approach is applicable to any kind of building where

the occupants’ thermal comfort is the first target (homes, offices, gyms, shopping malls, etc.).

The key is the estimation of thermal comfort models, usable for finding the air temperature

set-point that optimizes the balance between thermal comfort and energy consumption. In this

respect, accepting the suggestion from the so-called adaptive theory [3–8], the experimental

relationship between thermal comfort, indoor air temperature and outdoor air temperature is

investigated. Of course, in medium-large residential and commercial buildings with centralized

HVAC systems, both approaches can be applied to boost the energy savings.

The first issue addressed in the thesis is the data-driven identification of efficiency models

for water-cooled chillers, with special focus on the opportunities and challenges of a data-rich

context. Chiller models are typically classified as either semi-empirical (grey-box), e.g. the

Gordon-Ng Universal model [9] and its variants, or empirical (black-box). So far, the predictive

capabilities of alternative models have typically been assessed and compared on data sets coming

from laboratory tests or provided by chiller manufacturers as a result of the interpolation of few

well-selected data points. The performances predicted by models identified on such ideal data

could be overly optimistic with respect to field performances. On the other side, processing large
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flows of field data by means of innovative computational intelligence methods has the potential

to yield more accurate models, but also raises novel robustness issues.

In the machine learning literature, it is known that the statistical distribution of the covariates,

i.e. the input variables of the model, plays a key role in determining its predictive capabilities. In

industrial environments, characterized by fluctuations of plant operating conditions, the training

dataset often covers just a portion of the input space, thus being only partially representative

of test data statistics. Under this covariate shift, the identification procedure is challenged to

find a model that provides satisfactory predictions also when covariates will fall in regions of

the input space that are scarcely represented in the training data. In the thesis, the robustness

properties of four literature models and a newly proposed Gaussian Process model are assessed

on extensive field data. The results show that the best performances in terms of accuracy and

robustness are provided by machine learning algorithms, i.e. the Gaussian Process model and

the MLP artificial neural network, just followed by the semi-empirical Gordon-Ng Universal

(GNU) model, that seems to take some advantage of its physical grounds.

The resilience of the GNU model against the covariate shift motivates a deeper look to the

calibration methods for its parameters, looking for possible improvements. In the literature, the

usual Ordinary Least Squares (OLS) approach has already been questioned due to the use of

regressors affected by measurement noise, and the Errors in Variables (EIV) estimator proposed

as more suited to yield unbiased estimates of the parameters. In the thesis, a third approach,

based on Nonlinear Least Squares (NLS), is proposed and compared to OLS and EIV. Moreover,

rather than on the unbiasedness of parameters, the attention is focused on the prediction of the

chiller’s coefficient of performance, a more significant target as long as energy efficiency is the

final goal. Under a statistical viewpoint, NLS would be the most correct estimator, but on the

considered case studies it turns out that the performance improvements over the simpler OLS

calibration are not worth the increase of algorithmic complexity.

A crucial point for the efficient management of HVAC plants is the algorithmic optimization

of the simultaneous operation of a multiple chillers system. The problem of determining the

load fraction that each chiller has to deliver to minimize the overall system power consumption,

subject to cooling load satisfaction, is known in the literature as Optimal Chiller Loading

(OCL) problem. The OCL is a nonlinear, constrained, often non-convex optimization problem

with both continuous and discrete variables. Its NP-completeness motivates the widespread

use of heuristic methods which, though not guaranteeing optimality, strive to obtain a fair

solution in a viable execution time. In the thesis, OCL is formulated as a Mixed Integer

Quadratic Programming (MIQP) and, deviating from the heuristics used in the literature, an

exact algorithm, named X-OCL, is worked out, based on a suitable partition of the solution

space, assuming that chillers’ power consumptions are quadratic in the part load ratio.
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With reference to a widespread benchmark, the Hsinchu plant, the exact algorithm is used to

say the final word on the relative performances of some leading heuristic methods. Moreover,

X-OCL can be used to derive a lower bound (R-OCS) on the best achievable performance of

the Optimal Chiller Sequencing (OCS) problem, where constraints on chillers’ minimal up- and

down-time constraints are added to the OCL problem. A notable feature of X-OCL is its com-

plete parallelizability in elementary quadratic programming problems with equality constraints

that admit a fast closed-form solution. It turns out that, even without fully exploiting paral-

lelizability, the computational burden of the exact solver is affordable for the typical OCL and

OCS benchmarks. Moreover, using X-OCL as the basis for a greedy solution of the OCS prob-

lem yields an algorithm, called X-OCS, whose performance is very close to the best achievable

performance. The usability of the exact solver is further validated through the retrospective

solution of the OCS problem over a 2-year period for the chiller system of a semiconductor

plant.

The second approach to energy saving, i.e. the load demand one, hinges on the identification of

occupants’ thermal comfort models and the derivation of the so-called neutral temperature curve.

In fact, HVAC energy demand is directly related to the indoor temperature setpoint, which

results from a trade-off between thermal comfort and energy saving objectives. In the 70’s the

so called adaptive theory introduced the concept of physiological adaptation (acclimatization),

suggesting that adapting the indoor temperatures setpoint to the outdoor temperature could

help saving energy without compromising thermal comfort. In this view, statistical learning

techniques have been applied to an experimental ASHRAE dataset in order to investigate and

quantify the existence of the ”adaptive effect”, i.e. the higher is the outdoor temperature the

higher is the indoor temperature that occupants consider comfortable. The results show a

convergence between different statistical and machine learning approaches. Moreover an new

definition of neutral temperature, that appears statistically sounder, is proposed and tested on

the ASHRAE RP-884 dataset.

1.1 Thesis Overview

The thesis is organized in eight chapters (included the Introduction).

Chapter 2: HVAC systems: basic notions

The chapter provides an overview on centralized water-cooled HVAC systems, paying particular

attention to chillers, which are the most energy-intensive components of such systems.

Chapter 3: Learning chillers efficiency from data

The optimal energy management of multiple chiller systems calls for the construction of math-

ematical models of chiller energy efficiency. The existing grey- or black-box models include
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parameters that have to be estimated from experimental data. So far, the predictive capabili-

ties of alternative models have been assessed and compared on data sets created by laboratory

tests or provided by chiller manufacturers. In an Industry 4.0 context, the continuous moni-

toring and collection of field data discloses new opportunities but raises also robustness issues

that are herein addressed. Herein, exploiting an extensive experimental dataset collected over

a six-month period, four literature models and a new machine learning approach are compared.

The second objective is assessing the robustness of the five models against covariate shifts,

i.e. variations in the statistical distribution of the input variables that occur across different

months. The grey-box Gordon-Ng model, though less accurate in nominal conditions than the

Bi-quadratic and Multivariate polynomial models, proves however more robust against covariate

shifts. The best performances, both in term of accuracy and robustness, are however provided

by the two machine learning methods, with the Gaussian Process model performing better than

the MLP artificial neural network.

Chapter 4: Calibration strategies for the Gordon-Ng chiller model

In this chapter, the calibration of the parameters of the Gordon-Ng Universal (GNU) chiller

model is investigated. In its standard formulation, the GNU model is written as a linear-

in-parameter model that can be calibrated by Ordinary Least Squares. It has been already

observed elsewhere that, since the regressors are subject to measurement inaccuracies, the OLS

approach is prone to yield biased estimates of the parameters. As a remedy, Andersen and

Reddy proposed the adoption of an Errors in Variable (EIV) framework, showing that bias

could be reduced or even eliminated by means of a corrected least squares algorithm. However,

some questions remained open. Given that the EIV approach achieves bias reduction at the

cost of increasing the variance, is it really preferable to OLS? If the final goal is not parameter

estimation, but the prediction of the Coefficient of Performance (COP), how does OLS compare

with EIV? And what is the most appropriate calibration method, under a statistical viewpoint?

Finally, is the added complexity of a statistically rigorous approach employing Nonlinear Least

Squares (NLS) really worth the potential improvements in COP prediction? In order to answer

these questions, three estimation methods, OLS, EIV and NLS, are tested on two benchmarks:

a public precise chiller performance dataset and an ASHRAE dataset. The results suggest, that

OLS estimation, in spite of its suboptimality, may prove largely satisfactory both for parameter

estimation and COP prediction, although it may be worth analyzing other more challenging

COP prediction problem before the final word is said.

Chapter 5: Chiller plant optimization

For a multiple chiller system, Optimal Chiller Loading (OCL) deals with the problem of finding

the configuration of partial load ratios that minimizes energy consumption while satisfying a

prescribed total cooling demand. Due to the interplay of continuous and logical constraints,
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OCL is an NP-hard problem, so that a variety of heuristic algorithms have been proposed in

the literature. Herein, we develop an algorithm, named X-OCL, for its exact solution under the

assumption that the chillers’ power consumption curves are quadratic. The proposed method

hinges on a decomposition of the solution space so that the overall OCL problem is reduced to a

set of quadratic programming problems subject to only equality constraints that can be solved

in closed form. The availability of an exact solver is exploited in order to assess and compare

the performances of several literature algorithms, highlighting also some errors in the publihed

results, due to incorrect extrapolations of the power consumption curves. Differently from the

static nature of OCL, the Optimal Chiller Sequencing problem aims at real-time minimization

of the energy consumption taking into account also minimal up- and down-time constraints that

the chillers must satisfy. The new X-OCL solver is used for two purposes. First, X-OCL is used

to compute a lower bound to the best OCS performance. Second, it used as the basis for the

design of a greedy OCS solver, called X-OCS. The performances of X-OCS are tested on two

literature benchmarks and on a Field data benchmark given by the HVAC systems of a semicon-

ductor plant. In all cases, the performances of X-OCS are remarkably close to the lower bound,

suggesting that there is no need for more sophisticated algorithms. The general applicability

of X-OCS depend on its computational burden and on the quadratic assumption on the power

consumption curve. In spite of the exponential growth of the computational burden with the

number of chillers, the average computation time per load remains affordable even for a 9-chiller

plant. Moreover, the X-OCL and X-OCS algorithms are amenable to massive parallelization, a

feature that could be exploited to further move the boundary of treatable problems. Regard-

ing the quadratic assumption, it is consistent with most of the literature benchmarks and it

proved adequate also for the data-driven identification performed on the experimental data of

the Field-data benchmark.

Chapter 7: Thermal Comfort in Air-Conditioned Buildings

An essential requirement for thermal comfort is maintaining an indoor air temperature con-

sidered satisfactory by the majority of occupants. According to the so-called adaptive theory,

such a neutral temperature may change with the outdoor air temperature, a feature that can

be exploited to achieve energy savings without reducing thermal comfort. In the literature, the

characterization of this dependence relies on a two-step procedure. First, occupants’ thermal

sensation votes are processed at building level and outdoor temperatures are averaged to obtain

a neutral and outdoor temperature pair for each building. The pairs are then used to fit the

neutral temperature model. Herein, three approaches for estimating neutral temperature mod-

els without need for a preprocessing at building level are proposed and validated on the summer

data of the ASHRAE RP-884 database: (i) regression of temperatures considered neutral by the

occupants against the outdoor temperature; (ii) direct regression of the ASHRAE votes against

indoor and outdoor temperature; (ii) estimation via logistic regression of the indoor temperature
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that maximizes the percentage of satisfied users. Overall, seven neutral temperature models are

successfully worked out. A first finding is that the the adaptive hypothesis can be ascertained

also by models formulated at raw data level. When compared to each other, the seven models

are in good agreement, especially those within the same approach, thus demonstrating the via-

bility of neutral temperature modeling based on individual raw data.

Chapter 8: Conclusions

In the final chapter, the main findings are summarized and discussed.

1.2 Collaborations and related pubblications

The material of Chapter 3 partially appears in:

- F. Acerbi, G. De Nicolao. ”Identification of the Gordon-Ng Chiller Model: Linear or

Nonlinear Least Squares?.” 2018 IEEE 23rd International Conference on Emerging Tech-

nologies and Factory Automation (ETFA). Vol. 1. IEEE, 2018.

The material of Chapter 4 and 5 was developed within the ECSEL European project “Power

Semiconductor and Electronics Manufacturing 4.0” (SemI40).

- F. Acerbi, G. De Nicolao, et al. ”Accuracy and Robustness Against Covariate Shift of

Water Chiller Models.” 2018 IEEE 14th International Conference on Automation Science

and Engineering (CASE). IEEE, 2018.

The material of Chapter 6 was partially published in:

- F. Acerbi, G. De Nicolao, M. Rampazzo. ”Thermal Comfort Control in Air-Conditioned

Buildings: new data-driven approaches to Neutral Temperature estimation.” 2019 18th

European Control Conference (ECC). IEEE, 2019.
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HVAC Systems: basic notions

Heating, Ventilation and Air-Conditioning (HVAC) systems are a combination of different equip-

ments working together to provide heating and cooling air in buildings according to the designed

requirements. Depending on the application, the complexity of an HVAC system can range from

a small unitary system to a large centralized air conditioning system with primary and secondary

distribution loops and central plant components. While an exhaustive taxonomy of HVAC sys-

tems and components is beyond the scope of this thesis, the interested reader may refer to [10].

The aim of this chapter is to provide an overview of centralized water-cooled HVAC systems

with primary-secondary architecture, which will be the reference scheme along the thesis.

2.1 Water-cooled HVAC system

The scheme of a typical water-cooled HVAC system is illustrated in Fig. 2.1. It is mainly

composed by three energy exchange loops:

- Air distribution loop Cold air is distributed by the Air Handling Unit (AHU) to maintain

a certain indoor air temperature set-point in rooms within the building. When the indoor

air temperature rises and exceeds the set-point it is returned to cooling coils where the

chilled water extracts its excess heat, reducing both its temperature and humidity content,

after which it is distributed once again to the rooms.

- Chilled water loop As the chilled water passes through the AHU’s cooling coils in counter

flow to the air loop, the heat extraction process increases the water temperature. There-

fore, the chilled water leaving the cooling coil (chilled water return) will be warmer than

the entering water (chilled water supply).

9
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The equipment in charge of removing such excess heat from the chilled water loop is the

chiller. The chiller exploits the vapor compression refrigeration cycle or the absorption re-

frigeration cycle to remove heat from the chilled water loop and reject it to the atmosphere

by means of the condenser water loop.

The return chilled water enters the chiller where it is cooled to the desired temperature

by transferring the heat to a primary refrigerant. This process is made possible by the

work spent by the compressor for cooling the primary refrigerant.

- Condenser water loop The heat removed from the chilled water loop together with

the compressor power input must be rejected to the atmosphere. This waste heat can be

rejected by water-cooling, a process that uses water to collect the heat from the refrigerant

and then reject it to the atmosphere.

Figure 2.1: Water-cooled HVAC system scheme

2.2 Vapor-compression chiller

Vapor-compression chiller are widely employed in large commercial and industrial refrigeration

systems. As shown in Fig. 2.2, the vapor-compression refrigeration system consists of four

components that perform the four steps of the refrigeration cycle:

- Evaporator The evaporator in a centrifugal water cooled chiller is usually a shell and

tube heat exchanger that removes heat from the entering chilled water, lowering its tem-

perature in the process. The heat is used to boil the refrigerant changing it from a liquid

to a gas.

- Compressor The compressor assembly is made up of a prime mover and a centrifugal

compressor. The centrifugal compressor is a dynamic device similar to a centrifugal water
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pump. It raises the pressure and temperature of the refrigerant by converting kinetic

energy into pressure.

- Condenser Like the evaporator, the condenser is usually a shell and tube heat exchanger.

It removes heat from the refrigerant gas causing it to condense to a liquid. The heat raises

the temperature of the cooling water often referred to as condenser water. The condenser

water then carries the heat to the cooling tower where the heat is rejected to atmosphere.

- Expansion device After the refrigerant condenses to a liquid, it passes through a pressure

reducing device. This can be as simple as an orifice plate or as complicated as an electronic

modulating expansion valve.

Figure 2.2: Left: basic refrigeration cycle. Right: refrigerant circuit; P-H Diagram.

Thermodynamically, the most common way of looking at the refrigeration cycle is the Pressure-

Enthalpy (P-H) diagram, see fig. 2.2.

The evaporator process is from point 1 to point 2. As the refrigerant changes from a liquid to

gas, the pressure stays constant. The heat is being absorbed as a phase change (latent energy).

The refrigeration effect is the change in enthalpy from 1 to 2. The line from 2 to 3 represents

the compression process. The work is the change in enthalpy from point 2 to point 3. Work of

compression ends up as heat in the refrigerant. Then, there is the rise in refrigerant pressure

from 2 to 3. The next process takes place in the condenser (from 3 to 4). The first section

(outside the refrigerant dome) is the desuperheating process. Once the refrigerant is saturated,

condensation occurs and the refrigerant changes from a gas to a liquid. The line from 3 to 4 is

horizontal, indicating constant pressure. The final process is the expansion device, shown as a

vertical line from 4 to 1, representative of the pressure drop that occurs as the refrigerant passes

through the expansion valve.
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2.3 Chiller efficiency

The chiller-operation efficiency is normally measured by the Coefficient of Performance (COP),

defined as the ratio of the supplied cooling capacity Qe, i.e. the heat extracted by the chiller,

over the compressor electric power consumption Pel:

COP =
Qe
Pel

(2.1)

A centrifugal chiller is designed to operate at maximum efficiency at or near the rated point.

However, as the chiller water temperature, cooling water temperature, and cooling capacity

move away from the rated point, the losses in the refrigeration cycle increase and the chiller

efficiency degrades.

Conventional design methods for chiller plants take into account both the annual cooling load

distribution of buildings and their peak cooling loads, based on typical meteorological year data.

Since the peak cooling load is reached only occasionally, this means that, most of the time, the

chillers may operate at less than their full rated load, possibly far away from their optimal

efficiency. Therefore, the characterization of chillers’ part-load efficiency at actual working

conditions is a key step in order to identify potential energy savings.

The final goal of the efficient management of a multi-chiller system is satisfying the cooling load

demand while minimizing the system power consumption. The chiller power consumption can

be easily derived by its COP. Indeed, if the chiller’s efficiency is low (e.g. due to poor main-

tenance), then more electricity will be consumed to support the cooling capacity requirement.

Alternatively, the characterization of the chillers could skip COP modeling and address directly

the estimation of their power consumption curves, that provide all the information needed for

optimization purposes. There exists an extensive literature on the identification of suitable

models to describe either chiller efficiency or chiller power consumption. We will dwell on these

topics in Chapters 3, 4 and 5.

2.4 Plant description

The experimental field data used in Chapters 3 and 5 were collected in a centralized HVAC plant

installed in a large semiconductor factory located in Austria. The served buildings are almost

totally devoted to the semiconductor production, but there are also offices and a canteen.

The HVAC plant has a primary-secondary architecture. The chilled water system is separated

into primary and secondary loops by a decoupling bypass line. In the primary loop, see fig. 2.3,

the water cooled chillers are connected in parallel. Each chiller has an associated constant

primary pump. The secondary chilled water pumps are of variable speed type, controlled to
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maintain a constant differential pressure across the building supply and return water. Two-way

control valves are used to modulate the chilled water flow through individual AHU terminals.

Variation of total building cooling load is reflected in the flow rate and temperature difference

in the secondary loop. The number of working chillers (and primary pumps) will vary in order

to follow the variations of the building cooling load, thus resulting in the on- and off-cycling of

different chillers. In the primary loop, the distribution pumps can operate only according to an

on/off behaviour. When switched on, they circulate a water flow rate whose nominal value is

464 m3/h. In the other case (pumps switched off), the water flowing through the chiller is not

cooled down and its amount depends on the pressure drop between the delivery and return.

A two-level control architecture is applied. The high-level supervisor specifies the modes of

operation and the set-points for each chiller, while local controllers are in charge of maintaining

the individual chiller’s set-point. The system is controlled by means of a non-linear relay-based

logic, that regulates the switching of chillers based on the temperature of the return water. The

set point value for the outlet temperature of each chiller is 5◦C ±1◦C.

Figure 2.3: Primary circuit layout

2.4.1 Dataset

Several variables in the primary circuit were collectes over the period Jan 2016 - Jan 2019

with a sampling time Ts = 60 min. Data were measured in closed-loop working conditions.

Before starting the identification process, the data have been preprocessed removing outliers

and infeasible records. The main parameters and variables of interest are listed in Tables 2.1

and 2.2, where t denotes the discrete time index.
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Table 2.1: List of parameters

Symbol Description Value Unit

Ts Sampling time 1 h

Tset,i Evaporator outlet water setpoint of i−th chiller 5 ◦C

mevap,i Nominal evaporator water flow of i−th chiller 464 m3/h

Qnom,i Nominal cooling capacity of i−th chiller 2700 kW

Table 2.2: List of variables

Symbol Description Unit

Qe,i(t) Evaporator cooling capacity of i−th chiller kW

Qcond,i(t) Condenser cooling capacity of i−th chiller kW

Qload(t) Cooling load demand kW

mevap,i(t) Evaporator water flow of i−th chiller m3/h

mcond,i(t) Condenser water flow of i−th chiller m3/h

Tei,i(t) Network evaporator inlet water temperature ◦C

Teo,i(t) Evaporator outlet water temperature of i−th chiller ◦C

Tci,i(t) Network condenser inlet water temperature ◦C

Tco,i(t) Condenser outlet water temperature of i−th chiller ◦C

Pel,i(t) Electric power consumption of i−th chiller kW
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Learning chillers efficiency from data

The combination of technology and scientific knowledge that is nowadays available has opened

the way to the optimized management of large Heating, Ventilation, Air-Conditioning and

Refrigeration (HVAC&R) systems, with significant environmental and financial fallouts. For

example, in semiconductor manufacturing plants these facilities account for the greatest fraction

of total electric energy consumption, amounting to approximately 25-30% of the fab total energy

requirement. Between 40% and 60% of this requirement is due to chillers, which are therefore

responsible for about 15% of the total energy use. Such energy intensiveness is a primary

motivation for investigating the optimal management of multiple chiller systems [11–14].

Propaedeutic to any optimized management of a multiple chiller system is the knowledge of a

mathematical model of their efficiency. Several models for predicting energy efficiency perfor-

mances of water chillers have been proposed over last decades. They are typically classified

as empirical (black-box) or semi-empirical (grey-box), depending on the amount of physical

knowledge embedded in the model structure. Notwithstanding the effort required by the model

building process, grey-box models maintain a certain appeal due the physical interpretability

of the parameters, a feature that may prove worthy in certain industrial applications, e.g. fault

detection [15–18]).

More than twenty years ago, Gordon and Ng [9] introduced a semi-empirical modeling approach

for reciprocating chillers that has been later extended to several chiller types [19]. On the other

hand, black-box models, in spite of their lack of physical insight, have been gaining an ever

wider acceptance due to their prediction accuracy and generalization ability. Lee and Lian [20]

compared eleven empirically-based performance models showing that, for many chillers types,

the Bi-quadratic regression model [21] and the multivariate polynomial model [22] yielded the

most accurate predictions. Swider [23] has expanded this comparison by including also neural

network models that appeared able to further improve on the generalization abilities.

15
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Despite a number of contributions, a comprehensive comparison based on extensive datasets

is still lacking for industrial applications involving medium-large sized on-field operating re-

frigerators. Furthermore, model comparisons and validations were often based on chillers data

set created by laboratory tests or provided by chiller manufacturers. According to [19, 24],

after publication of the ARI standards [25] chillers manufacturers ceased to publish extensive

datasets: most of the performance data available through the manufacturer sales representatives

result from the interpolation of few (five to six) well-selected data points. A first objective of

this chapter is to compare four models proposed in literature and a fifth new Gaussian-Process

method on an extensive six-month dataset recorded on a water-cooled chiller which is part of a

large HVAC system.

The predictive performance of models identified from data collected according to a properly

designed experiment could be overly optimistic with respect to the actual performances of

models identified from field data. In the machine learning literature, it is known that the

statistical distribution of the covariates, i.e. the input variables of the model, plays a key role

in determining the predictive capabilities of a model [26]. Indeed, a model trained on data

concentrated in a small operating region may generalize poorly in regions that are scarcely

sampled in the training dataset. In our case, the covariate distribution of field data depends on

plant operating conditions dictated by a load demand that, as it will be seen in the experimental

dataset, is subject to significant variations across different months. The second major goal of

the chapter is therefore the assessment of the robustness properties of the five considered model

in the face of covariate shifts occurring in real-world field data. For this purpose, a covariate

shift experiment is performed and analyzed: for each of the six months the models are trained

on one-month data and their predictive capability is tested on the remaining five months.

The chapter is organized as follows. In Section 3.1, four energy efficiency models are reviewed

and a fifth machine learning model, based on the Gaussian Process framework is introduced.

The covariate shift problem is concisely explained in Section 3.2, while in Section 3.3 the data

are presented and some of their features discussed. The comparison of the five models identified

from the global dataset and the results of the covariate shift experiment are presented in Section

3.4. Some concluding remarks (Section 3.5) end the chapter.

3.1 Energy performance models

In this section, five COP models for predicting the energy efficiency of water chillers are reviewed.

The first four are taken from the literature, while the fifth is a machine learning method relying

on a Gaussian Process approach.
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3.1.1 Gordon-Ng universal model

The Gordon-Ng Universal (GNU) model is a grey-box (semi-empirical) model whose structure is

based on first principles of thermodynamics and linearized heat losses. It relies on the following

formula, linking together COP , Qe, Tci, Tei:

Tei
Tci

(
1 +

1

COP

)
− 1 = β1

Tei
Qe

+ β2
Tci − Tei
TciQe

+ β3
Qe
Tci

(
1 +

1

COP

)
(3.1)

All the three model parameters βi admit a physical interpretation [19]:

- β1: the total internal entropy production rate in the chiller due to irreversibilities;

- β2: the rate of heat losses (or gains) from (or into) the chiller;

- β3: the total heat exchanger thermal resistance.

As observed in [27], many manufacturer data-catalogs use the evaporator outlet water temper-

ature Teo instead of Tei. Then, one can rewrite (4.1) with Tei replaced by Teo with the only

caution that the physical interpretation of β3 is slightly changed. The assumptions made in the

model building suggest that the application of this model is best suited to chillers with inlet

guide vanes capacity control. Since its introduction, a number of variants have been proposed

in order to extend it to other types of chillers. In particular, Gordon and Ng discussed the

possible introduction of an intercept term, at the cost of loosening the physical interpretation

of the parameters [19, 27].

Let β ∈ R3 denote the unknown parameter vector and define

X =

[
Tei

Q̇e

Tci − Tei
TciQe

Qe
Tci

(
1 +

1

COP

)]

Y =
Tei
Tci

(
1 +

1

COP

)
− 1

Then, from eq. (4.1) the following linear-in-parameter formulation is immediately derived [19,

23, 27]:

Y = Xβ (3.2)

Given experimental data COP (i), Qe(i), Tci(i), Tei(i), i = 1, . . . , n, the ordinary least square

estimate βLS is easily computed. It is worth noting that, in order to obtain a linear-in-parameter

model, the identification step uses as output the variable Y that differs from COP , whose

prediction remains however the final goal. The desired predictor is just obtained by solving
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(4.1) for COP :

ˆCOP =

Tei
Tci
− βLS3

Qe

Tci

1− Tei
Tci

+ βLS1
Tei
Qe

+ βLS2
Tci−Tei
TciQe

+ βLS3
Qe

Tci

(3.3)

The statistical implications involved by the use of an output variable different from the one to

be predicted will be discussed in depth in Chapter 3.

3.1.2 Bi-quadratic regression model

The Bi-Quadratic (BiQ) regression model is a black-box model featuring nine regressors that

are rational functions of the covariates Qe and Tci:

1

COP
=β0 + β1

1

Qe
+ β2Qe + β3

Tci
Qe

+ β4
T 2
ci

Qe
+ β5Tci + β6QeTci + β7T

2
ci + β8T

2
ci (3.4)

Similarly to the GNU model, the parameter vector β ∈ R9 can be estimated via ordinary least

squares, provided that the model output is defined as Y = 1/COP .

3.1.3 Multivariate polynomial regression model

The Multivariate Polynomial Regression (MPR) model is a black-box model that describes COP

as a second order polynomial in the three covariates Qe, Tci, Tei:

COP =β0 + β1Qe + β2Tei + β3Tci + β4Q
2
e + β5T

2
ei + β6T

2
ci + β7QeTei + β8QeTci + β9TeiTci

(3.5)

Again, the parameter vector β ∈ R10 can be estimated via ordinary least squares.

3.1.4 Multilayer perceptron model

MultiLayer Perceptrons (MLP) are Artificial Neural Networks (ANN) models composed by

elementary units, the neurons, which are linked together by weighted connections. The output

of each neuron is a nonlinear transformation function, called activation function, where the

inputs are either the m independent variables xj or the outputs of neurons located in the

previous layer. The model parameters are given by the weights. Herein, a one-hidden-layer

MLP model made of fully connected neurons with activation function tanh is considered. The

output of the network is a weighted linear combination of the outputs zi of the nh hidden-layer
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neurons:

Y = w00 +

nh∑
i=1

wi0zi (3.6)

zi = tanh

 m∑
j=1

wijxj + w0j)


Here, x ∈ Rm denotes the vector of input variables, e.g. m = 2 and x =

[
Qe Tci

]′
.

Although ANNs are widely appreciated for their prediction and generalization capabilities, their

complexity must be carefully tuned to avoid overfitting. When a fully connected structure is

assumed, overparametrization may occur even for a relatively small number of neurons. For

instance, a fully connected one-hidden layer MP with m = 2 inputs has M = 1 + nh(m+ 2) =

1 + 4nh weights. In order to prevent overfitting, a regularization penalty can be added to the

conventional squared loss [28]:

J =
1

n

n∑
i=k

e(k)2 +
γ

M

w2
00 +

nh∑
i=1

w2
i0 +

m∑
j=0

w2
ij

 (3.7)

where e(k) = Ŷ (k) − Y (k) is the prediction error, M is the total number of weights, and

γ is the so-called regularization parameter, which can be tuned by either crossvalidation or

maximization of the lilkelihood of an associated statistical model [28]. In order to maintain

a complexity comparable to that of the BiQ and MPR models, nh = 3 hidden neurons have

been used, corresponding to 13 weights to be estimated. The minimization of the regularized

loss (3.7) has been performed by means of the function trainbr of the Matlab Neural Network

Toolbox.

3.1.5 Gaussian process model

Gaussian Process (GP) regression is a nonparametric statistical learning technique, relying

on the assumption that the vector of output data
[
Y (1) Y (2) . . . Y (n)

]T
is a normally

distributed vector, obtained by sampling the following Gaussian process (a random field, for the

sake of precision, because x ∈ Rm):

y(x) = f(x) + ε (3.8)

Here, x is the covariate vector, ε is the noise term and f(·) is a zero mean Gaussian process,

characterized by the (auto)covariance function

E[f(x)f(x′))] = k(x, x′) (3.9)
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where k(x, x′) is the so-called kernel, that has to be properly chosen so as to encode all prior

knowledge about the shape and structure of the unknown function f(·). An exhaustive overview

of the many possible kernels is provided by Rasmussen [29]. Herein, we consider the combination

of two widely used kernels, namely the linear and squared exponential one:

k(x, x′) = σ2l

(
1 +

m∑
i=1

x(i)x′(i)

)
+ σ2se

(
− ‖x−x′‖2

2l2

)
(3.10)

where the signal variances σ2l , σ
2
s , and the length-scale l2 are called hyperparameters of the

Gaussian Process.

The signal variances act as scaling factors. Small values are associated with functions that stay

close to zero, while larger values allow more variation. If the signal variance is too large, the

modeled function will be free to chase outliers. The length-scale instead describes the correlation

between points and, consequently, the smoothness of the resulting function.

Hyperparameters can be tuned through the maximization of the so-called marginal loglikelihood:

logp(y|x) = −n
2
log2π − 1

2
log|K + σ2nI| (3.11)

−1

2
yT (K + σ2nI)−1y

K = [K]ij ∈ Rn×n,Kij = k(x(i), x(j))

Once the hyperparameters have been tuned, it is possible to compute the prediction f̂(x∗) in

correspondence of a new covariate vector x∗ as

f̂(x∗) =

n∑
i=1

αik(x(i), x∗) (3.12)

α = (K + σ2nI)−1y (3.13)

3.2 The Covariate Shift Problem

The aim of a prediction model is to identify a relationship that links the target output variable

Y to the observed input vector x. For a given model structure, identification is performed using

a training set made of input-output pairs {Y (i), x(i)}, i = 1, . . . , n. The final goal is the accurate

prediction of a test output Y ∗ associated to an unknown test input x∗.

Most techniques rely on the assumption that the test pair {Y ∗, x∗} will be drawn from the same

joint distribution p(x, Y ) that generated the training data. Nevertheless, it may well happen

that this hypothesis is violated, e.g. in industrial environments characterized by fluctuations

of plant operating conditions. Indeed, the training dataset often covers just a portion of the
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input space, thus being only partially representative of test data statistics. In these cases, the

identification procedure is challenged to find a model that provides satisfactory predictions also

when x∗ falls in portions of the input space that are less represented in the training data.

The circumstance where the training and test inputs follow different distributions ptrain and ptest,

but the conditional distribution p(Y |x) remains unchanged, has been studied in the machine

learning literature under the name of covariate shift problem:

ptrain(x, Y ) = p(Y |x)ptrain(x)

ptest(x, Y ) = p(Y |x)ptest(x)

ptrain(x) 6= ptest(x)

Covariate shifts have the potential of exacerbating biasedness of predictions performed on test

data. Remedies that are effective when the sample size of the training dataset tends to infinity

have been worked out [26], but in the finite sample case, the covariate shift remains a challenging

problem whose impact is largely unexplored in application contexts.

In order to illustrate the possible effects of a covariate shift on the quality of output predictions,

let us consider a toy regression example. Assume that p(Y |x) ∼ N(xe−x, 0, 01). We want to

train a predictor given by the third-order polynomial

Ŷ = β0 + β1x+ β2x
2 + β3x

3

whose parameters are estimated via ordinary least squares on a training dataset whose inputs

are 50 samples x(i) drawn from the distribution ptrain(x). Two alternative choices for ptrain are

considered, uniform and exponential:

pu(x) =

{
1
b−a a ≤ x ≤ b
0 otherwise

pe(x) =

{
e−λx x ≥ 0

0 x < 0

where λ = 0.6, a = 0.5, b = 3.

In Figure (3.1), the training dataset and the obtained predictor Ŷ (x) are plotted for the two

cases. The predictor in the left panel, trained on exponentially distributed input data, performs

well for small values of x, at the cost of worse performances for large values of x. The predictor

in the right panel, trained on uniformly distributed data, optimizes the average prediction error

for test data sampled from the uniform distribution at the cost of delivering worse predictions

for small values of x.
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Figure 3.1: Regression under covariate shift. Left: predictor trained via OLS on exponentially
distributed data. Right: predictor trained on uniformly distributed data

There is an obvious problem, however, if we need to optimize the predictor performance on

exponential test data but only uniform training data are available, because the predictor in the

right panel will inevitably lack accuracy for small values of x.

The example demonstrates that the predictive performance in some regions can be affected by

shifts of the covariate distribution of training data, especially in presence of a model mismatch,

which is rather common when complex physical processes are involved.

3.3 Field data

This study uses experimental data from a water-cooled chiller which is part of a large HVAC

system that supplies cooling water to the Air Handling Unit (AHU) heat exchangers of a semi-

conductor fab. The dataset is composed by over 4, 000 data points collected at different working

conditions from June until October 2016. The chiller is a Sulzer Unitop 22A–5106 with R134a

refrigerant and nominal cooling capacity of 2.7 MW, installed in a Constant Primary Flow

(CPF) chilled water system. It is equipped with a centrifugal compressor, whose capacity con-

trol is based on the regulation on the refrigerant gas flow by adjustable Inlet Guide Vanes (IGV).

The chiller is regulated with constant evaporator outlet temperature Tco, whose setpoint is 5

◦C.

The global dataset was randomly partitioned in two datasets: 70% for training and 30% for

testing, respectively, see Fig. (3.2), where also the covariate distribution is displayed.

In order to assess to what extent the covariate distribution of field data is subject to shifts

during the six-month period, in Fig. (3.3) the monthly datasets are displayed separately. The

visual comparison of the covariate distributions, represented as green surfaces, shows that they



23

are subject to substantial changes across the semester. The most critical month is October,

when the input data (red dots) are concentrated in a narrow region.

Figure 3.2: Overall six-month dataset. Red: training data; Blue: testing data; green: kernel
estimate of the joint distribution of the input covariates Qe(i) and Tci(i).

Figure 3.3: Monthly datasets. Red: training data; Blue: test data; green: kernel density
estimate of the training distribution of the input covariates Qe(i) and Tci(i).

Not only data are concentrated it can happen to collect data which covers only a limited portion

of the machine working space and having to extrapolate information far from these learned areas.

This phenomenon, previously introduced as covariate shift problem is well represented in Fig.

3.3. The first picture show the complete available dataset, which was divided into 70% for
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training and 30% for testing, and their joint probability distribution. In this case, since the

training set and the test set are both numerous and informative enough they have the same

density function. In contrast, the second one illustrates how the probability distribution of the

training data significantly changes depending on the considered month. The red dots are the

monthly training data while for each month the test set is the sum of the remaining five months

data.

3.4 Models comparison

This section is divided in two parts. First, the five models presented in Section 3.1 are identified

and compared on the global dataset. In the second subsection, the robustness of the models

against the covariate shift is assessed using the monthly datasets. In all cases, the root mean

squared error (RMSE) computed on the relevant test data was used as a performance indicator.

Being an energy efficiency, the output is adimensional.

3.4.1 Model comparison: global dataset

The BiQ model depends on Qe and Tci alone. The GNU model conversely may depend on either

(Qe, Tci, Tei) or (Qe, Tci, Teo). Since performances were comparable, the triplet (Qe, Tci, Teo)

was chosen, also because in the available data Teo is regulated to a constant setpoint, implying

that the efficiency model is completely captured by the surface COP (Qe, Tci). The MPR model

depends on (Qe, Tci, Tei). Actually, Tei was found to affect the predicted COP only marginally.

In view of this, when training MLP and GP models, just Qe and Tci were used as covariates.

The five models presented in Section 3.1 were identified on the complete six-month training

dataset and used to predict the complete six-month test dataset. For the parametric models,

i.e. GNU, BiQ and MPR, the Coefficient of Variation (CV) of the estimated parameters, defined

as the ratio of the standard deviation of the parameter to its absolute value, was always less

than 1%.

The training and test RMSEs are reported in Table 3.1, see also Fig. 3.9 for a graphical

illustration. Note that in the MPR model COP depends on the triplet (Qe, Tci, Tei). Given the

weak dependence of Tei, hereafter the 3-dimensional plots display the surface COP (Qe, Tci, T̄ei),

where T̄ei is the average value of Tei computed on the overall dataset.

On this rich dataset, the worst predictive performance is that of the GNU model. The other

four models guarantee comparable results, the GP being only marginally better than the oth-

ers. The inferiority of the GNU model is explained by its limited flexibility - it has just three

parameters - compared to the other models. Recall that BiQ and MPR models have nine and
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ten parameters, respectively. Since the MLP ad GP models were trained via a regularization

method, their complexity must be measured in terms of effective degrees of freedom [28], which

result to be 12.7 and 19 respectively.

Table 3.1: Six months - RMSE on test data

Train Test

GNU 0.1955 0.1995

BiQ 0.0785 0.0815

MPR 0.0915 0.0938

MLP 0.0774 0.0807

GP 0.0744 0.0781

3.4.2 Models Robustness: covariate shift experiment

The monthly data were used to run an experiment whose goal is to assess the robustness of the

considered models against covariate shifts. For a given month, e.g. May, all the five models

were trained using only the training data collected during that month. The identified models

were then used to predict the COP of all the test data collected from June to October, and the

variance of the prediction error computed. The procedure was repeated for all the subsequent

months: (i) train the models on one-month data and (ii) predict test data of the other five

months.

For the GNU and BiQ models, the maximum CV of the estimated parameters was always below

15%, while higher CVs were observed for the MPR model, especially in the September and

October datasets, the worst value being the September one (80%).

Table 3.2 reports the RMSEs both in training and test for each month. The three-dimensional

plots are reported in Figures 3.4-3.8. The BiQ (Figure 3.5) and GP models (Figure 3.8) represent

the worst and best performers, respectively.

It is interesting to note that the models behave much differently from each other. The GNU

model, for instance, is often the worst performer, but it is relatively robust in the face of covariate

shifts and its 6-fold RMSE (0.2164) is comparable to its global RMSE (0.1995).

The behavior of the BiQ (Figure 3.5) and MPR models is far less satisfactory: they perform

so badly in October that their 6-fold RMSE (0.4415 and 0.3354, respectively) is definitely

worse than GNU’s one. When, as in October, the covariate shift renders the training data

poorly informative, the increased flexibility guaranteed by the additional parameters turns into
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a drawback, because the extra degrees of freedom are spent to overfit in a small region at the

expense of generalization capabilities.

The MLP ANN proves acceptably robust: its 6-fold RMSE is 0.1347, the same order of magni-

tude of its global RMSE, equal to 0.0807. Finally, the GP model (Figure 3.8) appears rather

robust with a 6-fold RMSE (0.0981) only marginally larger that its global RMSE (0.0781).

The results are suggestive of a possible beneficial effect of regularization (used in both the MLP

and GP models) on the robustness against covariate shifts. As a matter of fact, it is known

that regularization matches model flexibility to data informativeness thus helping to prevent

overfitting [28].

Table 3.2: Covariate shift experiment - 6-fold RMSE

May June July Aug Sep Oct RMSE

Train Test Train Test Train Test Train Test Train Test Train Test 6-fold.

GNU 0.1640 0.2085 0.1760 0.2782 0.2083 0.1915 0.1851 0.2043 0.1891 0.2031 0.1432 0.2125 0.2164

BiQ 0.0800 0.0942 0.0867 0.0839 0.0720 0.0920 0.0735 0.0881 0.0664 0.0859 0.0612 2.2046 0.4415

MPR 0.0873 0.0992 0.0944 0.1096 0.0836 0.1025 0.0792 0.1237 0.0703 0.1123 0.0670 1.4651 0.3354

MLP 0.0799 0.0931 0.0818 0.0814 0.0705 0.0908 0.0722 0.0835 0.0654 0.0923 0.0599 0.3669 0.1347

GP 0.0792 0.0911 0.0818 0.0823 0.0703 0.0913 0.0720 0.0967 0.0659 0.0941 0.0621 0.1328 0.0981
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Figure 3.4: Gordon-Ng Universal model under covariate shift. Surface: prediction model;
crosses: test data.



27

4

28

5

326

6

224
22 1

4

28

5

326

6

224
22 1

4

28

5

326

6

224
22 1

4

28

5

326

6

224
22 1

4

28

5

326

6

224
22 1

-100

28

0

326

100

224
22 1

Figure 3.5: Bi-quadratic model under covariate shift. Surface: prediction model; crosses: test
data.
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Figure 3.6: Multivariate Polynomial regression model under covariate shift. Surface: predic-
tion model; crosses: test data.
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Figure 3.7: Multilayer Neural Network model under covariate shift. Surface: prediction
model; crosses: test data.
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Figure 3.8: Gaussian Processes model under covariate shift. Surface: prediction model;
crosses: test data.
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3.5 Discussion

The identification from field data of energy efficiency models for water-cooled centrifugal chiller

has been addressed. Two main issues were considered: (i) model comparison on extensive field

data of four models taken from the literature and a newly proposed technique based on the

Gaussian Process framework; (ii) covariate shift experiment: assessing the robustness of the

five models in the face of shifts of the covariate distribution that may occur when a chiller is

operated in real-world conditions. Assessments and comparisons were conducted on six-month

field data collected within the activities of the EU ECSEL Project SemI40. To the authors’

knowledge, previous works relied on far less numerous datasets.

The model comparison confirms that black-box methods ensure a better fit compared to the

semi-empirical GNU model: the price to pay for physical meaningfulness of GNU model param-

eters is an increased RMSE on test data with respect to more flexible black box techniques. In

a rich-data context, were both the training and test data share the same covariate distribution,

the BiQ, MP, MLP and GP models achieved comparable performances.

The picture changes, however, when the outcomes of the covariate shift experiment are con-

sidered, see fig. 3.9). Indeed, the availability of a six-month dataset allowed a rather unique

experiment: using one-month data to train the model and then test its performance on the

remaining five months. The results demonstrated that the covariate shift may be a critical issue

for chiller models identified from field data. In fact, substantial variations of the model quality

were observed across the months. In particular, the predictive performance of the GNU model

remained stable, while the performances of empirical models like BiQ and MPR deteriorated to

the point of becoming worse than GNU’s ones.

Figure 3.9: The average RMSE values of the five models
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The moral of the story is that caution should be used before abandoning a parsimonious and

physical-base model as the GNU one in favor of more flexible black box models, already proposed

in the literature, such as BiQ, MP and MLP models. While in ideal data-rich contexts the GNU

model is likely to be outperformed, the alternatives may lack the necessary robustness when

trained on real-world data whose coverage of all possible operating conditions is far from being

optimal. In these cases, the GNU model proved resilient, while the alternatives yielded poor

generalization properties in scarcely sampled regions.

On the other hand, machine learning approaches equipped with regularization penalties, appear

to be an appealing alternative to the GNU model. Not only they achieve smaller prediction

errors but, especially the GP model, they are also robust to covariate shifts. This suggests

that Gaussian Processes may represent an innovative and reliable approach to accurately model

chiller efficiency in an Industry 4.0 setting, where models are directly obtained and updated

from continuously monitored field data.
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Calibration strategies for the

Gordon-Ng chiller model

In the literature, chiller models are typically classified in two categories: empirical and semi-

empirical. Semi-empirical models exploit the physical knowledge of the process in order to

specify the functional structure of the mathematical relationships between the variables. It

traces back to more than twenty years ago the publication of the Gordon and Ng model [9],

a semi-empirical model for reciprocating chillers, that was later extended also to other chiller

types [19, 27]. Based on first principles of thermodynamics and heat losses linearization, a low-

order model is obtained whose unknown parameters admit a physical interpretation in terms of

internal entropy production, heat losses (or gains), and heat exchanger thermal resistance.

While the simplicity of the GNU (Gordon-Ng Universal) model limits its flexibility, the need of

calibrating only a few parameters that are physically meaningful has its advantages. First, the

model is less prone to overparametrization issues that can arise when data are scarce or suffer

from collinearity. Furthermore, in view of the physical interpretability of the parameters, the

model is well suited to be used in the development of FDD (Fault Dectection and Diagnosis

systems) [18, 30, 31]. As observed in [32], this kind of application calls for realistic estimates of

the statistical distribution of the monitored parameters, especially when fault detection has to

rely on control chart techniques. It was this observation that motivated Andersen and Reddy

[32] to investigate whether the widely used OLS (Ordinary Least Squares) method was the most

appropriate way to estimate the GNU parameters.

In fact, OLS provides unbiased parameter estimates and realistic confidence intervals only if the

model regressors are error-free, a circumstance that hardly occurs for the GNU model, whose

regressors depend on observed variables subject to measurement noise. Using a public precise

chiller performance dataset [33], Andersen and Reddy not only showed that OLS produced

31
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biased estimates but demonstrated that recasting the problem within the EIV (Errors in Vari-

ables) framework, the bias could be substantially reduced. They also observed that the bias

issue could be of minor concern if the scope was chiller efficiency prediction, but they did not

further investigate if and how the predictive performance of the model was influenced by the

choice of either EIV or OLS as estimation procedure.

The present chapter focuses on the calibration of the GNU model. In particular, it addresses

several unanswered questions. Given that the EIV approach achieves bias reduction at the cost

of increasing the variance, is it really preferable to OLS? If the final goal is not parameter

estimation, but the prediction of the Coefficient of Performance (COP), how does OLS compare

with EIV? And what is the most appropriate calibration method, under a statistical viewpoint?

Finally, is the added complexity of a statistically rigorous approach such as Nonlinear Least

Squares (NLS), really worth the potential improvements in COP prediction? In order to answer

these questions, three estimation methods, OLS, EIV and NLS, are tested on two benchmarks:

a small-sized dataset already used by Andersen and Reddy [33], and an ASHRAE dataset [34],

whose sample size is definitely greater.

The chapter is organized as follows. In Section 4.1, the Gordon-Ng Universal chiller model

is concisely reviewed. In Section 4.2, its calibration from experimental data is discussed: two

existing approaches, OLS and EIV, are reviewed and a third nonlinear least squares method

is introduced. The two case studies are illustrated in Section 4.3 and the results discussed in

Section 4.4. Some concluding remarks (Section 4.5) end the chapter.

Glossary

- Qe: evaporator cooling capacity [kW]

- Tci: condenser inlet water temperature [K]

- Tei: evaporator inlet water temperature [K]

- P : electrical consumption [kW]

- COP = Qe/P : Coefficient of Performance

4.1 The GNU model of chiller perfomance

The Gordon-Ng Universal (GNU) model is a semi-empirical model whose structure is based on

first principles of thermodynamics and linearized heat losses. It is summarized by the following



33

relationship, linking together COP , Qe, Tci, Tei:

Tei
Tci

(
1 +

1

COP

)
− 1 =β1

Tei
Qe

+ β2
Tci − Tei
TciQe

+ β3
Qe
Tci

(
1 +

1

COP

)
(4.1)

All the three model parameters βi admit a physical interpretation [19]:

- β1: the total internal entropy production rate in the chiller due to irreversibilities;

- β2: the rate of heat losses (or gains) from (or into) the chiller;

- β3: the total heat exchanger thermal resistance.

4.2 Calibrating the GNU model

4.2.1 OLS estimation

Consider the GNU model (4.1). Let β =
[
β1 β2 β3

]T
denote the vector of unknown pa-

rameters and define

x =
[

Tei
Q̇e

Tci−Tei
TciQe

Qe

Tci

(
1 + 1

COP

) ]
∈ R1×3 (4.2)

y =
Tei
Tci

(
1 +

1

COP

)
− 1 (4.3)

With this notation, eq. (4.1) admits the following linear-in-parameter formulation [19, 23, 27]:

y = xβ (4.4)

Given n experimental samples COP (i), Qe(i), Tci(i), Tei(i), i = 1, . . . , n, we can form the

vectors

Y =


y(1)

y(2)
...

y(n)



X =


x(1)

x(2)
...

x(n)

 =


x1(1) x2(1) x3(1)

x1(2) x2(2) x3(2)

. . . . . . . . .

x1(n) x2(n) x3(n)


so that

Y = Xβ
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The ordinary least square estimate βOLS is just given by

βOLS =
(
XTX

)−1
XTY

In view of its simplicity, this represents the standard approach for calibrating the GNU model.

4.2.2 EIV estimation

In [32], it was observed that the choice of the estimation approach should depend on the prospec-

tive use of the model. In particular, Andersen and Reddy observed that in some contexts the

accuracy of model parameters is particularly important and that this is most likely to happen

when they have to be interpreted physically, a notable example being that of fault detection

and diagnosis (FDD).

The OLS estimate βOLS is a biased estimator of the true β, if the regressor matrix X is subject

to statistical errors. This is exactly what happens for the GNU model, since the regressor vector

x(i) is a function of the measured COP (i), Qe(i), Tci(i), Tei(i), that are obviously affected by

measurement errors. Regression models that account for measurement errors in the independent

variables go under the name of Errors in Variables (EIV) models [35–37]. For the GNU model,

Andersen and Reddy suggested the use of the following corrected least squares estimator

βEIV =
(
XTX − S2

xx

)−1 (
XTY − S2

xy

)
where S2

xx ∈ R3×3 is the covariance of the measurements error and S2
xy ∈ R3×1 is the covariance

between the regression variables and the dependent variable. Three methods to estimate S2
xx and

S2
xy are presented in [32]: propagation of errors, stochastic calculus, and stochastic simulation.

In the present chapter, the third approach is adopted.

By injecting pseudorandom noise of variable amplitude into precise chiller data published by Ng

et al. [33], Andersen and Reddy demonstrated that: (i) GNU parameters estimated via OLS

are biased; (ii) the bias increases with larger measurement errors; (iii) EIV estimation yields

unbiased estimates, suitable for FDD applications.

An important point is that the improvement on OLS estimates achieved by using EIV estimation

is specific to the goal of estimating the physically interpretable parameters βi. As recognized by

Andersen and Reddy, “If the purpose of the model is purely predictive, then a model determined

by OLS is probably as good as the EIV model for the mean predictive value”. As far as one is

interested in predicting COP values, the EIV approach may not be the most appropriate one.

Next, we are going to show that neither OLS is a statistically correct solution when the purpose

is “purely predictive’.
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4.2.3 NLS estimation

Consider a target variable y and a vector of independent variables ξ ∈ Rm. In order to predict

y given ξ, we consider the model

ŷ = g(ξ, β) (4.5)

where β ∈ Rq is a vector of model parameters. The predictive value of the model can be

measured by the so called risk, for instance the expectation of a quadratic loss function:

R(β) = E[L(β)], L(β) = (y − g(ξ, β))2

where the pair (ξ, y) is randomly drawn from an unknown joint distribution p(ξ, y). When n

training pairs (ξ(i), y(i)), i = 1, . . . , n, are available (we assume that (ξ(i), y(i)) are i.i.d. samples

drawn from the joint distribution p(ξ, y)) the risk can be approximated by the empirical risk

Remp(β) =
1

n

n∑
i=1

(y(i)− g(ξ(i), β))2

Let

β∗ = arg min
β
Remp(β) (4.6)

denote the parameter vector that minimizes the empirical risk. Note that β∗ coincides with the

maximum likelihood estimator under the statistical model

y(i) = g(ξ(i), β) + e(i), e(i) ∼ N (0, σ2)

where the noises e(i) are assumed indepedent of each other.

Coming back to the GNU model, observe that the OLS approach does not use COP as target

variable, but y defined in (4.3). However, if the final goal is predicting the coefficient of perfor-

mance, it is COP that should be used as target variable. Therefore, the first step is solving the

GNU model (4.1) for COP :

COP =

Tei
Tci
− β3 Qe

Tci

1− Tei
Tci

+ β1
Tei
Qe

+ β2
Tci−Tei
TciQe

+ β3
Qe

Tci

(4.7)

In order to reformulate in terms of eq. (4.5), define yCOP = COP , ξ1 = Tei, ξ2 = Tci, ξ3 = Qe.

Then, we obtain:

ŷCOP = g(ξ, β) =

ξ1
ξ2
− β3 ξ3ξ2

1− ξ1
ξ2

+ β1
ξ1
ξ3

+ β2
ξ2−ξ1
ξ2ξ3

+ β3
ξ3
ξ2

(4.8)

Therefore, if the purpose is prediction, the correct statistical procedure is finding the solution

βNLS = β∗ of the nonlinear least squares problem (4.6). Of course, compared to the OLS
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method, the NLS approach is less straightforward, so that the question arises of whether the

game is worth the candle.

4.3 Data and methods

In order to assess if and how much the choice of the parameter estimation method affects

the predictive properties of the GNU model, two independent sets of experimental data were

considered.

4.3.1 Case Study 1

The first data set, taken from [33], consists of 30 measurements from a reciprocating chiller,

belonging to an experimental refrigerant circuit designed for laboratory tests. The chiller is

water-cooled with R12 as refrigerant and nominal cooling capacity of 10.5 kW. Table 1 in

[33] reports the experimental measurements of Qe, Tei, Tci, P and their accuracies. Letting

COP = Qe/P , it is possible to plot the triplets (Tci(i), Qe(i), COP (i)), i = 1, . . . , 30 as points

in a three-dimensional space, see Fig. (4.1).
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Figure 4.1: Data set #1: three-dimensional representation of the COP as a function of
measured chiller data.

It is apparent that this high-precision dataset collected under a design-of-experiment protocol,

is far from real-world field measurements which are typically affected by higher uncertainties.

These data were used as starting point to simulate a range of more realistic scenarios in which

the original (almost) ”noise-free” measurements are blurred by normally distributed random
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numbers with different standard deviations. Following [32], standard deviations were obtained

as σa(k) = w(k)ma where w(k) = 0.1k, k = 0, . . . , 20, and ma, a ∈ {Qe, Tei, Tci, P} denotes the

uncertainty magnitude specific to each variable, see Table 1 of [32]. Hence, w(k) = 0 would

imply that no noise has been added to the observations, while w(k) = 1.5 would imply that for

each of the four variables the noise σa is 1.5 times larger than the respective uncertainty ma.

The noise was added only to the four independent variables, while the blurred COP was just

computed as y = COP = Qe/P , where Qe and P stand for the blurred values.

For each of the 21 error weights w(k), the assessment was carried out on 1000 synthetic datasets,

according to the following procedure:

1. For i = 1, ..., 1000 :

(a) Creation of a new synthetic dataset : a noisy dataset is created by blurring the original

data with Gaussian noise such that σa(k) = w(k)ma.

(b) Random Data splitting : the dataset is randomly partitioned in two sets: 21 data for

training and 9 for testing.

(c) Parameters estimation: βOLS(i), βEIV (i), βNLS(i) are estimated from the training

set. The NLS estimation has been performed by means of the function nlinfit of the

Matlab Statistics and Machine Learning Toolbox.

(d) COP prediction: on the test set, three alternative predictions ŷCOP (i), i = 1, . . . , 21

are computed by plugging βOLS(i), βEIV (i), βNLS(i) into (7).

(e) RMSE Testing : predictive performance is measured by the Root Mean Squared error

computed on the test set:

RMSEα =

√∑9
i=1(y(i)− ŷCOP (i))2

N

where α ∈ {OLS,EIV,NLS}, depending on the set of estimated parameters used to

compute ŷCOP .

2. Median and variability limits: Based on the 1, 000 simulations, compute the median

and also the 2.5th and the 97.5th percentiles of the parameters βαi and RMSEα, α ∈
{OLS,EIV,NLS}.

This benchmark replicates the one used in [32] in order to compare the biasedness of the OLS

and EIV estimators. The only difference is the splitting of the synthetic datasets into training

and test sets, a choice dictated by the need of evaluating COP predictions, while Andersen and

Reddy were concerned only with the accuracy of parameters estimates.
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4.3.2 Case Study 2

The second data set comes from the ASHRAE research project 1043-RP [34] whose purpose

was to study faults in chillers and generate data for Fault Detection and Diagnostic (FDD)

applications. A centrifugal chiller with cooling capacity of 316 kW was tested at 27 different

operating states under both normal and faulty conditions. Since we are not concerned with

FDD, only the 432 measurements in steady-state condition with no faults in the system were

used in our study. In Fig. 4.2 a three-dimensional plot of the data is displayed.
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Figure 4.2: Data set #2: three-dimensional representation of the COP as a function of
measured chiller data. Blue dots: training data; Red dots: test data.

Differently from the Data set #1, where only 30 samples were available, the data rich con-

text dispenses from the need of injecting simulated noise in order to create several benchmark

datasets. Rather, the distribution of the RMSE is assessed by a bootstrap procedure [38, 39],

according to the following steps

1. Random Data splitting : the whole dataset is randomly split in a training and test set

consisting of 302 and 130 samples, respectively.

2. Bootstrap: For i = 1 to 1000

(a) Bootstrap extraction: a bootstrapped set is created by randomly extracting 302 sam-

ples with replacement from the 302 samples of the training set.

(b) Parameters estimation: βOLS(i) and βNLS(i) are estimated from the training set.

(c) COP prediction: on the test set, two alternative predictions ŷCOP (i), i = 1, . . . , 21

are computed by plugging βOLS(i) or βNLS(i) into (7).
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(d) Testing : predictive performance is measured by RMSEOLS and RMSENLS com-

puted on both the training and test set.

3. Distribution of RMSE: kernel density estimation is used to obtain the probability density

functions of RMSEOLS and RMSENLS in training and validation.

The key point of the bootstrap procedure is that random sampling with replacement from 302

training samples is an effective surrogate of random sampling from the true joint distribution

of the chiller data, that is obviously unknown.

An advantage with respect to Case Study #1 is that the assessment of the variability relies on

the available data alone, without assuming detailed knowledge of the measurement uncertainty

affecting each independent variable. Accordingly, we drop the EIV estimator whose imple-

mentation requires knowledge of the covariance matrices Sxx and Sxy that critically depend on

measurement error statistics.

4.4 Results

4.4.1 Case Study 1

In order to assess the effect of the different estimators on the estimated parameters βi, the

median values and 2.5-th and 97.5-th percentiles are displayed as a function of the magnitude

of the injected error, see Figs. (4.3), (4.4), (4.5).

For what concerns OLS and EIV estimation, the plots replicate rather faithfully Figs. (3)-(5)

in [32]. The (small) differences are explained by our use of just 21 samples instead of 30. The

stability of the results in spite of the sample size reduction confirms the limited complexity

of the dataset. In accordance with [32], it is found that EIV estimation greatly reduce the

bias. This is not without a cost, however, because, especially for large error magnitudes, the

variance of βEIVi is substantially larger than that of the OLS and NLS estimates for all the

three parameters. Conversely, no appreciable difference is observed between the distribution of

βOLSi and βNLSi , i = 1, . . . , 3.

In order, to ascertain whether the increased complexity of EIV regression is worth the candle,

in Fig. (4.6) the percent RMSE for the three parameters and the three estimators is displayed

as a function of the error magnitude. Although, the EIV estimate performs best, there is not

a substantial improvement with respect to the OLS estimate that represents a very reasonable

alternative, especially because it can do without the additional information needed to compute

the covariance matrices Sxx and Sxy.
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Figure 4.3: Comparison of OLS, EIV and NLS estimates of β1 varying the noise magnitude
of the measurements
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Figure 4.4: Comparison of OLS, EIV and NLS estimates of β2 varying the noise magnitude
of the measurements
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Figure 4.5: Comparison of OLS, EIV and NLS estimates of β3 varying the noise magnitude
of the measurements

In Fig. (4.7) the predictive performance of the three methods is compared in terms of median

RMSE. The superiority of OLS and NLS over EIV is apparent. Again, no appreciable difference

is observed between OLS and NLS. The percentiles of the distributions, are displayed in Fig.

(4.8): it appears that EIV is worse not only in terms of median performance but suffers also

from a larger variability, especially for large error magnitudes.
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Figure 4.6: RMSE% of the GNU model parameters estimated by OLS, EIV and NLS methods.
From top to bottom: β1, β2, β3.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

magnitude of error

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

R
M

S
E

 T
es

t

EIV
OLS
NLS

Figure 4.7: Comparison of the medians of RMSEOLS , RMSEEIV and RMSENLS on test
data



44 Chapter 4. Calibration strategies for the Gordon-Ng chiller model

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

OLS - magnitude of error

0

0.1

0.2

0.3
R

M
S

E
 T

es
t mean

95% limits

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

EIV - magnitude of error

0

0.1

0.2

0.3

R
M

S
E

 T
es

t mean
95% limits

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

NLS - magnitude of error

0

0.1

0.2

0.3

R
M

S
E

 T
es

t mean
95% limits

Figure 4.8: RMSEOLS , RMSEEIV and RMSENLS on test data. Solid line: median; Dash-
dot line: variability limits

4.4.2 Case Study 2

The estimated densities of the training and test RMSEs are displayed in Fig. (4.9) for both the

OLS and NLS estimators. A further visual comparison of the predictive performance on the

test data is provided in Fig. (4.10) in terms of boxplots.
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Figure 4.10: Box plots of RMSEOLS and RMSENLS on test data

It appears that NLS yields smaller RMSEs both on training and test data. From Fig. (4.10) it

is seen that the third quartile of RMSENLS is below the first quartile of RMSEOLS . Although



46 Chapter 4. Calibration strategies for the Gordon-Ng chiller model

this might suggest that the difference is neat, its practical significance should not be overstated.

Indeed, it suffices to compare the magnitude of the RMSEs with that of the observed COPs,

displayed in Fig. (4.2), to draw the conclusion that the superiority of NLS estimation can hardly

be of any practical significance as far as the goal is predicting the performance of the ASHRAE

benchmark.

4.5 Concluding remarks

Although OLS represents the standard way to calibrate the Gordon-Ng Universal chiller model,

it is known that it yields biased estimates of the parameters because it neglects the measurement

noise affecting the independent variables. This deficiency had motivated the investigation of

Errors-in-Variable (EIV) regression as an alternative to OLS when unbiased estimates of phys-

ically meaningful parameters are needed. Some questions, however, had remained unanswered:

Even if EIV regression is less biased than the OLS one, is it really preferable, given its larger

variance? How does EIV regression compares to OLS regression in terms of COP prediction?

What is the statistically rigorous approach to COP prediction? Is the achievable improvement

worth the cost of adopting a rigorous approach? This issues have been addressed with the help

of two benchmark data sets: a high-precision dataset taken from [33] and the ASHRAE project

1043-RP dataset [34].

The analysis of the first case study has confirmed that the EIV approach reduces the bias of

parameter estimates. At the same time, EIV seems to offer only a marginal improvement on

OLS, also considering the need of estimating some covariance matrices whose calculation requires

detailed information on the sensor noises that may not be routinely available. A second finding is

that, as far as COP prediction is concerned, EIV regression is indeed inferior to OLS regression.

Furthermore, it has been shown that a statistically rigorous approach to COP prediction can

be formulated as a Nonlinear Least Squares problem. The predictive performance of the NLS

approach was found to be indistinguishable from that of OLS in the first case study. In the

second benchmark there is a statistically significant improvement that, however, does not appear

to be of practical significance.

Although the present study suggests that a rigorous NLS approach may be of little use in

practice, one should be aware of the limitations inherent to the two benchmarks. In fact, as

seen from the three-dimensional plots, see Fig. (4.1) and (4.2), the COP data appear to be

easily predictable by means of a low-complexity model. Hence, before a final word can be said,

it may be worth probing the estimators on further benchmarks where COP prediction is more

challenging.
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Chiller Plant Optimization

The efficiency of HVAC systems is closely related to the efficiency of the chillers unit. Since a

multiple chiller system typically consists of chillers having different capacities and performances,

there are usually several chillers’ part loads combinations able to satisfy the load demand. The

problem of determining the load fraction that each chiller has to deliver in order to minimize the

system power consumption and meanwhile satisfy the cooling load demand, is known as Optimal

Chiller Loading (OCL) problem. In the last decade, several methods have been proposed to

solve the OCL problem [40–56]. Chang et al. [40] assume that the chillers’ efficiency is a

quadratic function of the partialization and maximize the sum of the chillers efficiencies (i.e.

the Coefficient of Performance) using the Lagrangian method. Of course, this is not equivalent

to the “canonical” OCL problem, where system power consumption is instead minimized. In a

second paper Chang [41] has addressed the canonical OCL problem again by the Langrangian

multipliers methods, assuming that all the chiller power consumption curves are convex and

cubic in the part load ratio. The poor convergence properties of the lambda iteration at low

cooling load demand were obviated by a suitable Gradient method.

Nevertheless, it is well-known that chillers’ power consumption could be a concave function,

which makes OCL an NP-hard mixed-integer problem and poses a further challenge to the search

of the optimal solution as global convergence of iterative methods cannot be guaranteed. This

has motivated the development of several heuristic methods which do not guarantee optimality,

but are effective to obtain a fair solution in a viable execution time.

Assuming quadratic models of power consumption, Geem [42] resorts to the Generalized Re-

duced Gradient (GRG) method. Salari et al. [43] show that the mixed integer problem can be

solved using the general algebraic modeling system (GAMS). In parallel, many nature-inspired

heuristic algorithms have been proposed, namely, genetic algorithm (GA) [44, 45], simulated an-

nealing (SA) [46, 47], particle swarm optimization (PSO) [48, 49], evolution strategy (ES)[50],

differential evolution (DE) [51], cuckoo search algorithm using differential operator (DCSA)

47
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[52], differential search (DS) [53], improved firefly algorithm (IFA) [54], teaching-learning-based

optimization (TLBO) [55] and improved invasive weed optimization (EIWO) [56].

Many of the these algorithms have been tested on the Hsinchu benchmark, a widely used

case study consisting of a six-chiller system installed in a semiconductor factory located in the

Hsinchu Scientic Garden (Taiwan). Hence, the performances achieved on the Hsinchu bench-

mark can be used to compare and rank alternative solution methods. A selection of the five best

algorithms is reported in Table 5.1. In order of publication, they are IFA (2013), DCSA (2014),

GAMS (2015), TLBO (2017) and EIWO (2018). It is seen that for the three highest cooling

load demands (Qload = 6858, 6477 and 6096 [kW]) all the algorithms achieve the same power

consumption. In the remaining two cases (Qload = 5717 and 5334 [kW]) the most promising

algorithms would seem to be IFA and DCSA, which obtain the same results. Nevertheless, since

an exact solver of the Hsinchu benchmark is not available, the final word on the optimality of

solutions found by heuristic algorithms is still to be said.

In the practical management of a real chiller system, solving the OCL is not sufficient because

there exist further dynamic constraints, namely minimum uptime and downtime requirements

on chillers’ operation. When these constraints are accounted for, the power consumption min-

imization problem goes under the name of Optimal Chiller Sequencing (OCS). Again, this is

a problem that is hardly tractable without resorting to some heuristics. In particular, the

knowledge of all future cooling loads is required, which raises the problem of forecasting it with

reasonable accuracy, a task that can be successfully addressed only on a finite prediction hori-

zon. In the literature, OCS solvers resulting from the combination of heuristic OCL algorithms

with dynamic programming schemes have been proposed [14, 45, 57, 58].

The present chapter addresses both the OCL and OCS problems. Concerning the former one,

two main issues are investigated. First of all, we derive an exact algorithm when the chillers’

power consumption is a quadratic function of the Partial Load Ratio (PLR), as it happens for the

Hsinchu benchmark. Our X-OCL algorithm allows to say the final word on the existing heuristic

methods, highlighting also some erroneous results reported in the literature. The second issue

has to do with the practical applicability of X-OCL to real-world plants. In particular, the

execution time is compared with a state-of-art mixed integer solver and the adequacy of the

quadratic power consumption model is discussed.

Concerning the OCS problem, we exploit the X-OCL algorithm to derive a lower bound on the

minimum power consumption achievable by any OCS solver. Second, a greedy OCS algorithm

leveraging on X-OCL is proposed and compared with [57]. Finally, the lower bound is used to

quantitatively assess the degree of suboptimality ensuing from the lack of preview implicit in

the greedy approach.
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Literature benchmarks, i.e. the Hsinchu one and two OCS benchmarks are used for test and

comparison. Moreover, an extensive dataset collected during two years in a semiconductor fab

is used to build and demonstrate a comprehensive solution of both OCL and OCS, including the

data-based estimation of the chillers’ power consumption models. In particular, the potential

energy saving with respect with the current HVAC energy management is assessed.

For sake of semplicity, in this chapter Qe,i and Pel,i we will be denotes by as Qi and Pi, respec-

tively.

5.1 The Optimal Chiller Loading problem

Assuming n chillers operated in parallel, let Qi, i = 1, . . . , n denote the cooling power delivered

by the i-th chiller and Pi = Pi(Qi), i = 1, . . . , n the associated power consumption. For a

prescribed overall cooling load demand Qload, the goal of the OCL problem is finding the cooling

powers Qi, i = 1, . . . , n that the n chillers have to deliver in order to minimize the system total

energy consumption:

min
Q1,...,Qn

n∑
i=1

Pi, s.t. Qload =
n∑
i=1

Qi

For each chiller, PLR (Part Load Ratio) denotes the cooling load fraction, given by

PLRi =
Qi

Q100%,i

where Q100%,i is the maximum power supplied under full capacity operation. The vector of all

PLR’s is denoted by

PLR = [PLR1, . . . , PLRn]T

When the i-th chiller is turned on, it should not operate under a minimum PLR, denoted by

PLRmin. For the subsequent derivations it is convenient to introduce a binary variable δi that

indicates the status of the i−th chiller and a real-valued variable xi such that:

PLRi = δi · xi, δi ∈ {0, 1}, xi ∈ [PLRmin,i, 1]

The power consumption Pi of the i-th chiller is assumed to depend mainly on PLRi and the

condenser inlet water temperature Ti, that is Pi = Pi(PLRi, Ti). The consumption surface

Pi(PLRi, Ti) is either obtained from laboratory experiments or field data collected during op-

eration.
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Note that the problem of finding the optimal part load ratios PLR∗ can be formulated as a

mixed-integer nonlinear program (MINLP):

PLR∗ := argmin
PLR

n∑
i=1

Pi(PLRi) (5.1a)

subject to
n∑
i=1

PLRi ·Q100%,i = Qload (5.1b)

PLRi = δi · xi (5.1c)

PLRmin ≤ xi ≤ 1 (5.1d)

δi ∈ {0, 1} (5.1e)

In the above problem, two types of constraints are present: the cooling demand constraint (5.1b)

and a set of operational constraints eqs. (5.1c) to (5.1e) regarding the admissible operating

regions of the chillers.

In the following it is implicitly assumed that the cooling demand constraint is such that the

admissible solution set is nonempty. Then, given that the constraints define a closed set of

admissible solution, the cost function admits a minimum.

5.1.1 Quadratic power consumption model

With exception of particular structures, mixed-integer programming problems are classified as

NP-hard, which means that in the worst case, the solution time grows at least exponentially

with the problem size. Although its combinatorial nature might suggest the use of heuristics, we

will show that a significant subclass of industrial OCL problems, characterized by a quadratic

power consumption model, may still be successfully attacked by a carefully designed exact

method.

Assumption 5.1. The power consumption Pi of the i-th chiller obeys the following model:

Pi(PLRi, Ti) =

β0,i + β1,iPLRi + β2,iPLR
2
i + β3,iTi, if PLRmin ≤ PLRi ≤ 1

0, otherwise
(5.2)

where βp,i are the model parameters. Moreover, it is assumed that β2,i 6= 0

When the OCL problem is solved in a given time slot, the condenser inlet water temperature

can be assumed to be known. Then, for a given condenser inlet water temperature Ti, in the

interval [PLRmin, 1] the consumption surface is a quadratic function of PLRi alone:
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Pi(PLRi, Ti) =

ai + ciPLRi + qiPLR
2
i , if PLRmin ≤ PLRi ≤ 1

0, otherwise
(5.3)

with ai = β0,i + β3,iTi, ci = β1,i, and qi = β2,i.

In view of the quadratic nature of the cost function, the system total energy consumption can

be expressed in matrix form as follows:

Ptot =

n∑
i=1

Pi =
1

2
xTQx + cTx + a (5.4)

where
x = {PLRi}, x ∈ Rn×1

a = {ai}, a ∈ Rn×1

c = {ci}, c ∈ Rn×1

Q = diag{2qi}, Q ∈ Rn×n

(5.5)

Moreover, the equality constraint (5.1b) can be rewritten as

Ex = d

where
E = {Q100%,i}, E ∈ R1×n

d = Qload, d ∈ R
(5.6)

5.1.2 Partition of the solution space

In view of (5.1), the admissible set F for PLRi is

PLRi ∈ F , F =

3⋃
s=0

Fσ (5.7)

F0 = {0}, F1 = {PLRmin}, (5.8)

F2 = {1}, F3 = (PLRmin, 1) (5.9)

where each subset Fσ is associated with one of the following operating conditions: switched

off (σ = 0), minimum part load (σ = 1), maximum part load (σ = 2), intermediate part load

(σ = 3). In the sequel, σi ∈ {0, 1, 2, 3} will denote the state of the i−th chiller.

In order to satisfy the operational constraints of a multiple chiller system, the solution of the

OCL problem must be searched within the cartesian product of the chillers’ admissible sets, i.e.
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PLR ∈ S, S = Fn

Since the admissible set F of a single chiller can be partitioned in four subsets, the overall

admissible set S can be partitioned in 4n subsets Sj , j = 1, . . . , 4n, each of which is in a

one-to-one correspondence with the n−digit multichiller code

sj =
[
sj1 . . . sjn

]
, sji ∈ {0, 1, 2, 3}

formed by the state codes σi, i = 1, . . . , n of the n chillers.

To make an example, consider the case of n = 3 chillers. Then, the possible 4n = 64 subsets Sj
are associated to the multi-chiller codes as follows:

S1 = F0 ×F0 ×F0 ↔ s1 = [0, 0, 0]

S2 = F0 ×F0 ×F1 ↔ s2 = [0, 0, 1]

S3 = F0 ×F0 ×F2 ↔ s3 = [0, 0, 2]

S4 = F0 ×F0 ×F3 ↔ s4 = [0, 0, 3]

S5 = F0 ×F1 ×F0 ↔ s5 = [0, 1, 0]

S6 = F0 ×F1 ×F1 ↔ s6 = [0, 1, 1]

S7 = F0 ×F1 ×F2 ↔ s7 = [0, 1, 2]

S8 = F0 ×F1 ×F3 ↔ s8 = [0, 1, 3]

S9 = F0 ×F2 ×F0 ↔ s9 = [0, 2, 0]

. . . = . . .

S64 = F3 ×F3 ×F3 ↔ s64 = [3, 3, 3]

The n elements of the set Sj are in a one-to-one correspondence with the chiller number i, 1 ≤
i ≤ n. Given the chiller number i, the notation Sj [i] will denote the operating condition, either

a point or a range, of the i-th chiller. For instance, within S8, the three chillers i = 1, 2, 3 will

operate at the following conditions:

S8[1] = 0

S8[2] = PLRmin

S8[3] = (PLRmin, 1)

5.1.3 Divide and conquer strategy

For j = 1, . . . , 4n, let QP(j) indicate the OCL problem (5.1) restricted to the subset Sj .
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Problem 1. QP(j)

min
PLR∈Sj

n∑
i=1

Pi(PLRi) (5.10a)

subject to
n∑
i=1

PLRi ·Q100%,i = Qload (5.10b)

The 4n problems QP(j) can be partitioned in two subsets C and C̄:

• C = {j | sji 6= 3,∀i}: all the partial load ratios are fixed so that Sj has cardinality one;

• C̄, when there is at least one chiller operating at intermediate part load (∃i : sji = 3).

Consider for example S7, whose multi-chiller code is s7 = [0, 1, 2]: chiller #1 is switched off,

chiller #2 is operating at minimum part load, and chiller #3 is operating at maximum part

load. Within this subset, no optimization is actually needed because all the chillers’ PLR’s are

fixed and

S7 =
[

0 PLRmin 1
]T

has cardinality one. Therefore only a feasibility check is required: if constraint (5.10b) is

satisfied, then PLR∗(7) = S7. Otherwise, QP(7) does not admit a solution. It is easy to see

that the number of elements of the subset C is 3n.

As a second example, consider S8 whose multichiller code is s8 = [0, 1, 3]: here the chiller #3 is

operating at intermediate part load, i.e.

S8 =

{
PLR | PLR =

[
0 PLRmin x3

]T }
with x3 ∈ F3. In this case, QP(8) is a constrained quadratic programming problem in the

unknown x3.

As it will be shown later, for j ∈ C̄, the QP(j) problems enjoy a remarkable property: their

optimal solution, if exists, is a critical point and no more than one critical point exists. In the

following, PLR∗(j) will denote:

1. the optimal solution of QP(j), if j ∈ C;

2. the unique feasible critical point of QP(j), if j ∈ C̄.

Let A denote the set of integers j s.t. PLR∗(j) exists. The associated value of the cost function

will be denoted by

P ∗tot(j) :=
n∑
i=1

Pi(PLR
∗
i (j)) (5.11)
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Then, the key idea is to exploit the partition of the solution space by a two-step procedure:

1. Solve QP(j), obtaining PLR∗(j) and P ∗tot(j) for j = 1, . . . , 4n;

2. Letting

j∗ = arg min
j∈A

P ∗tot(j)

obtain the globally optimal part load vector as PLR∗ = PLR∗(j∗).

In the next subsection, it is shown how to reduce the inequality-constrained problems associated

with j ∈ C̄ to Equality-constrained Quadratic Problems (EQP) for which a closed form solution

is available.

5.1.4 Reduction to equality-constrained problems

For a given j ∈ C̄ we denote by Vj = {i ∈ {1, 2, . . . , n} | sji = 3} the set of chillers operating at

intermediate part loads, i.e. between PLRmin and 1. We also let κ(j) denote the cardinality of

Vj . It is then possible to rewrite QP(j) as a reduced-order quadratic problem in the κ(j) ≤ n

unknowns PLRi, i ∈ Vj .

min
PLRi,i∈Vj

∑
i∈Vj

Pi(PLRi) (5.12a)

subject to
∑
i∈Vj

PLRi ·Q100%,i = Q̃load (5.12b)

PLRmin < PLRi < 1, ∀i ∈ Vj (5.12c)

where

Q̃Load = QLoad −
∑
i∈Vj

PLRi ·Q100%,i (5.13)

is the cooling load that must be supplied by the chillers operating at intermediate part loads.

Now, we associate to each QP(j) the corresponding Equality-constrained Quadratic Problem

EQP(j), that is obtained by removing the inequality constraints (5.12c).

Problem 2. EQP(j)

min
PLRi,i∈Vj

∑
i∈Vj

Pi(PLRi) (5.14a)

subject to
∑
i∈Vj

PLRi ·Q100%,i = Q̃load (5.14b)
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It is convenient to rewrite EQP(j) in matrix form. For this purpose, we introduce a selection

matrix M(Vj) ∈ Rκ(j)×n that selects κ(j) elements out of n.

Note that, being integers, the elements of Vj admit an obvious ordering. Then,

M(Vj) = [M ]k,i =

1 if i = k-th element of Vj

0 otherwise

By short, M(Vj) will be denoted by Mj . The reduced matrices are thus given by:

Q̃ = MjQMT
j , Q̃ ∈ Rκ×κ

Ẽ = EMT
j , Ẽ ∈ R1×κ

c̃ = Mjc, c̃ ∈ Rκ×1

d̃ = Q̃Load

(5.15)

Then, the EQP(j) can be restated as:

x̃∗(j) := arg min
x̃

1

2
x̃T Q̃x̃ + c̃T x̃, x̃ ∈ Rκ×1 (5.16a)

s.t. Ẽx̃ = d̃ (5.16b)

By applying the first-order Karush-Kuhn-Tucker (KKT) necessary condition to the EQP(j)

problem, the following linear system is obtained:[
Q̃ ẼT

Ẽ 0

][
x̃∗

λ∗

]
=

[
−c̃

d̃

]
(5.17)

where x̃∗ identifies a critical point, either maximum, minimum or saddle, and λ∗ ∈ R is the

associated Lagrange multiplier. In order to guarantee the existence of the solution, a technical

assumption is introduced.

Assumption 5.2. ẼQ̃−1ẼT 6= 0.

Note that Assumption 5.2 is immediately satisfied if qi > 0,∀i, that is when the quadratic power

consumption curves (5.3) are all convex, although this is not necessary.

Theorem 5.3. Under Assumption 5.1, EQP(j) admits a unique critical point x∗, given by

λ∗ = − d̃+ ẼQ̃
−1

c̃

ẼQ̃
−1

Ẽ
T

(5.18)

x̃∗ = −Q̃−1(c̃ + Ẽ
T
λ∗) (5.19)
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Proof. In view of Assumption 5.1, det(Q) 6= 0, because qi 6= 0,∀i. Moreover, Assumption 5.2

guarantees that ẼQ̃
−1

Ẽ
T 6= 0. Then, it is immediate to see that the KKT condition (5.17)

admits (5.18)-(5.19) as unique solution.

Given the critical point x̃∗, it is easy to obtain a critical point for QP(j), as well. For this

purpose, it is convenient to introduce an auxiliary vector x̄ ∈ Rn×1, such that:

x̄ =

Sj [i], if i ∈ V̄j

0, otherwise

The candidate critical point for QP(j) is thus given by:

P̂LR
∗
(j) = x̄ + MT

j x̃∗ (5.20)

The keystone of the solution procedure is the connection between the critical points of QP(j)

and EQP(j), as stated in the following theorem.

Theorem 5.4. The critical point PLR∗(j) exists iff P̂LR
∗
(j) ∈ Sj. In such a case, PLR∗(j) =

P̂LR
∗
(j).

Proof. Sufficiency. Assume that the critical point P̂LR
∗

for EQP(j) belongs to Sj . Observe

that EQP(j) has less contraints that QP(j). Therefore, if a critical point for EQP(j) is feasible

for QP(j) it is ipso facto a critical point for QP(j), as well.

Necessity. Assume that QP(j) admits a critical point, say PLR∗(j). Given that EQP(j) and

QP(j) differ only for strict inequality constraints, any critical point for QP(j) is critical also for

EQP(j). Since EQP(j) admits at most one critical point, necessity is proven.

5.1.5 Summary of the X-OCL Algorithm

We are now in a position to summarize the steps of the proposed algorithm, hereafter named

X-OCL, for the exact solution of the OCL problem.

The partition of the solution set in the 4n subsets Sj , j = 1, . . . 4n allows to divide the MINLP

problem in 4n sub-problems QP(j) (5.10). For each subset Sj two situations can occur:

1. all the chillers part load ratios are fixed;

2. there is at least one chiller working at intermediate part load.
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In the former case, only a feasibility check is required to decide whether the PLR configuration

is to be kept as a candidate solution. In the latter case, the solution of the QP(j) problem

is reduced to the solution of an EQP(j) problem that admits a unique critical point, easily

computable in closed form. As stated in Theorem 5.4, if the optimal solution of EQP(j) exists

and belongs to Sj , then it coincides with the solution of QP(j). Otherwise, QP(j) does not

admit a solution.

Once all the QP(j) have been solved, the corresponding set of solutions {PLR∗(j), j =

1, . . . , 4n} include the optimal solution of the overall OCL problem, which can be found just

by comparing the associated system power consumptions P ∗tot(j). A pseudo-code summary is

reported in Algorithm 1.

5.2 Test on Hsinchu benchmark model

5.2.1 Hsinchu cooling plant model

The Hsinchu chiller system, originally described in [44], has become a widely used benchmark

for the testing and comparison of OCL algorithms [43, 52, 54–56]. The case study involves six

chillers installed in a semiconductor factory located in Hsinchu Scientific Garden (Taiwan) with

a 7,620 kW total cooling capacity. Quadratic models of the chillers’ energy consumption were

obtained and validated from data collected every 5 min over a 5 month period [44]. The bench-

mark problem assumes that the condenser inlet water temperature is 24.5◦C. For convenience,

the coefficients of the six chillers’ energy consumption models (5.3) are reported in Table 5.2

and the corresponding P-PLR curves are displayed in Fig. 5.1. It is asked to solve the OCL

problem for five different cooling loads, ranging from 70% to 90% of the system total cooling

capacity. It is also required that the partial load ratio of each chiller never goes below 0.3.

According to our notation, the following parameter settings are used:

• ai, ci, and qi from Table 5.2

• QLoad = 90%, 85%, 80%, 75%, and 70% of the chillers’ maximum capacity (
∑n

i=1Qnom).

• PLRmin,i = 0.3 ∀i
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Algorithm 1 X-OCL

Input: a, c,q ∈ Rn×1, s ∈ R4n×n, Qload ∈ R
Output: PLR∗, P ∗tot

1: for j = 1, . . . , 4n do Vj = {i ∈ {1, 2, . . . , n} : sji = 3}, κ = | Vj |
2: if Vj = ∅ then . Feasibility check
3: all the chillers part load ratios are fixed
4: x← Sj
5: if

∑n
i=1 xi ·Q100%,i = Qload then

6: PLR∗(j) = x
7: P ∗tot(j) =

∑n
i=1 Pi(PLR

∗
i (j))

8: else
9: PLR∗(j) = ∅

10: P ∗tot(j) = ∅
11: end if
12: else . solve the EQP(j) associated to QP(j)
13: Vj ⇒ Q̃, Ẽ, c̃, d̃

14: λ∗ = − d̃+ẼQ̃
−1

c̃

ẼQ̃
−1

Ẽ
T , λ

∗ ∈ R

15: x̃∗ = −Q̃
−1

(c̃ + Ẽ
T
λ∗)

16: x̄ =

{
Sj [i], if i ∈ V̄j

0, otherwise

17: P̂LR
∗
(j) = x̄ + MT

j x̃∗

18: if P̂LR
∗
(j) ∈ Sj then

19: PLR∗(j) = P̂LR(j)
20: P ∗tot(j) =

∑n
i=1 Pi(PLR

∗
i (j)),

21: else
22: PLR∗(j) = ∅
23: P ∗tot(j) = ∅
24: end if
25: end if
26: end for

27: j∗ = minj Ptot(j)
28: PLR∗ = PLR∗(j∗)
29: P ∗tot = Ptot(j

∗)

5.2.2 OCL benchmark: results

The OCL solutions provided by the five literature methods and X-OCL are reported in Table

5.3. For the three highest cooling load demands (QLoad = 6858, 6477 and 6096 [kW]) the X-

OCL optimal solution coincided with the common solution provided by the five algorithms, thus

confirming that they had reached the optimum. In the remaining two cases (QLoad = 5717 and

5334 [kW]), the solution computed by X-OCL coincided with those of GAMS adn EIWO, which,

however, are apparently outperformed by IFA and DCSA. This outcome seems to contradict

the exact nature of X-OCL. As a matter of fact, a closer look at the solution provided by IFA
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Table 5.2: Hsinchu benchmark: P-PLR curves coefficients

Chiller ai ci qi Qnom [RT]

1 399.345 -122.12 770.46 1280
2 287.116 80.04 700.48 1280
3 -120.505 1525.99 -502.14 1280
4 -19.121 898.76 -98.15 1280
5 -95.029 1202.39 -352.16 1250
6 191.750 224.86 524.04 1250

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-200

0

200

400

600

800

1000

1200

Figure 5.1: Hsinchu benchmark: P-PLR curves at T = 24.5◦C

and DCSA reveals that four wrong values of power consumption (identified by asterisks in Table

5.1) were published in [52] and [54].

• Ptot,IFA at load 75% and 70%;

• Ptot,DCSA at load 75% and 70%.

For example, Table 5.1 reports Ptot,IFA = Ptot,DCSA ≈ 3507.3 [kW] at 70% cooling load, which

is inconsistent with the PLRi reported in the same table. Such inconsistency is easily verified by

plugging the PLRi’s into the chillers’ power consumption equations (5.3) in order to obtain the

individual chiller power consumptions reported in the Pi[kW ] column (incidentally, the papers

[52, 54] describing algorithms IFA and DCSA were the only ones not reporting these individual

consumptions). The source of the error is the mechanical use of the chiller’s quadratic power

consumption model out of its operational range, that is in correspondence of null partial load

ratio. Obviously, the associated power consumption is null as well, but if the quadratic model

has a negative constant term, as is the case for chillers 3-5, the formula will return a negative

power consumption as if a turned-off chiller could generate free power.
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Table 5.4: Published chillers’ power consumptions and the xorresponding corrected values.

Qload[kW ] i IFA DCSA

PLRi[−] Pp,i[kW ] Pc,i[kW ] PLRi[−] Pp,i[kW ] Pc,i[kW ]

5717 (75%) 1 0.842218 843.0026 843.0026 0.843697 844.7431 844.7431
2 0.781365 777.3214 777.3214 0.783794 780.1789 780.1789
3 0.000002 -120.5019 0.0000 0.000001 -120.5035 0.0000
4 0.999995 781.4855 781.4855 1.000000 781.4890 781.4890
5 1.000000 755.2010 755.2010 1.000000 755.2010 755.2010
6 0.887053 803.5604 803.5604 0.883049 798.9460 798.9460∑

3840.0690 3960.5709 3840.0545 3960.5580

5334 (70%) 1 0.759350 750.8680 750.8680 0.749969 741.1047 741.1047
2 0.691121 677.0164 677.0164 0.682477 668.0074 668.0074
3 0.000021 -120.4730 0.0000 0.000012 -120.4867 0.0000
4 1.000000 781.4890 781.4890 1.000000 781.4890 781.4890
5 1.000000 755.2010 755.2010 1.000000 755.2010 755.2010
6 0.757897 663.1834 663.1834 0.776363 682.1826 682.1826∑

3507.2848 3627.7578 3507.4980 3627.9847

In Table 5.4 the published chillers’ power consumption Pp,i and the corresponding corrected

values Pc,i are reported for both IFA and DCSA. Once the errors have been corrected, IFA and

DCSA are no more optimal at 75% and 70% loads. At load 75% Ptot,IFA rises from 3840.0690

to 3960.5709 [kW] (+3.14%), while at 70% it rises from 3507.2848 to 3627.7578 [kW] (+3.43%).

Analogously, for DCSA Ptot,DCSA goes from 3840.0545 to 3960.5580 [kW] (+3.14%) at 75% and

from 3507.2848 to 3627.7578 [kW] (+3.43%) at 70%.

In conclusion, on the Hsinchu benchmark, GAMS and EIWO prove to be the best heuristic algo-

rithms as their solutions coincide with the optimal ones computed by X-OCL, for all considered

loads.
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5.3 The Optimal Chiller Sequencing problem

The cooling load demand of a building can be subject to significant variations during the day.

Consequently, solving the OCL problem in each time step t (for example, 20 min), just ignoring

minimum up/down time constraints on the chillers, could lead to frequent switchings (chiller

startups and shutdowns). In order to preserve chillers from excessive mechanical stress and

increase their operating life, each machine should not be switched off before a minimal up-

time is reached. Analogously, it should not be switched on too quickly. To comply with these

requirements, minimum up/down-time constraints must be enforced in the formulation of the so-

called Optimal Chiller Sequencing (OCS) problem. In its full formulation, OCS is a dynamical

problem, because, in order to minimize the cumulative power consumption, the current decision

should take into account also future constraints. As a consequence, the solution approaches

proposed in the literature range from dynamic programming to heuristic methods designed to

alleviate the complexity of the problem.

5.4 A lower bound to the OCS problem

Any solution to the OCS problem must face some level of approximation. Even when dynamic

programming is used, there is the necessity of forecasting future loads, which introduces a

suboptimality margin with respect to the ideal solution based on perfect knowledge of the

future load profile. It is therefore of interest the availability of an easy-to-compute limit of

performance against which the results of heuristic methods can be benchmarked. In order to

derive such a limit, one can consider the relaxed OCS problem (R-OCS), that is an OCS problem

without up- and down-time constraints. The relaxed OCS problem boils down to a sequence

of independent OCL problems to be solved at each step in correspondence of the associated

load. The availability of an exact OCL solver, such as X-OCS, makes it possible to compute

the exact solution of the relaxed OCS as well. Notably, in view of the independence of the OCL

problems, what matters is not the load sequence but the load distribution, so that the R-OCS

bound could be easily derived based on statistical distributions reflecting different production

and weather scenarios.

Such a bound can be used to quantitatively assess the existing margin of improvement for a given

heuristic OCS solver. In fact, if the achieved power consumption is close enough to the bound,

there is no scope for the search of further improvements. Along this direction, in the following

section, the X-OCL solver is used to derive a greedy OCS algorithm, whose performance is then

assessed against the R-OCS bound.
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5.5 X-OCS, a greedy approach to OCS

X-OCS is a greedy algorithm that reduces OCS to a sequence of OCL problems, solvable through

X-OCL. The approach is greedy because at each time step, future constraints are ignored, and

the optimal OCL solution compatible with the current minimum up/down time constraint is

searched for. In mathematical form, the greedy OCS problem can be written as a mixed-integer

quadratic problem with linear constraints:

Problem 3. greedy OCS

PLR∗(t) := arg min
PLR

n∑
i=1

Pi(PLRi(t), Ti(t)) (5.21a)

subject to

n∑
i=1

PLRi(t) ·Q100%,i = Qload(t) (5.21b)

PLRi(t) = δi(t) · xi(t) (5.21c)

PLRmin ≤ xi(t) ≤ 1 (5.21d)

(TONi (t− 1)−MUTi)(δi(t)− δi(t− 1)) ≤ 0 (5.21e)

(TOFFi (t− 1)−MDTi)(δi(t)− δi(t− 1)) ≥ 0 (5.21f)

δi ∈ {0, 1} (5.21g)

where MUTi and MDTi are the i−th chiller’s minimum up-time and minimum down-time

limits, expressed in number of time steps. The time counters TONi (t) and TOFFi (t), for which a

chiller has been continuously on/off until the time t, are expressed as:

TONi (t) = (1 + TONi (t− 1))δi(t) (5.22)

TOFFi (t) = (1 + TOFFi (t− 1))(1− δi(t)) (5.23)

It is easy to observe that the greedy OCS problem is an OCL problem with the two additional

constraints (5.21e - 5.21f) which force some chillers to be online/offline depending on their

previous states δ(τ), τ = t− 1, t− 2, . . .. At each time step t, two situations can occur:

• all the chillers’ states δi(t) are free, i.e. all the chillers have been online/offline for more

time steps than those prescribed by MUT/MDT

• there is at least one chiller, say the i-th one, whose state δi(t) is constrained to be online

or offline (δi(t) = 1 or δi(t) = 0) by the the MUT or MDT.

Concerning the first case, the minimum up/down-time constraints are not active, therefore the

step of the greedy OCS boils down to an OCL problem and its optimal solution can be found
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by the X-OCL algorithm. In the second case, instead, at each time t, the optimal solution is

found by applying the X-OCL algorithm over a suitable subset of the OCL solution space S.

At each time step t, the solution space of the greedy OCS is therefore given by:

P(t) = {j ∈ {1, . . . , 4n} | sj,i 6= 0, ∀i ∈ BON (t), sj,i = 0, ∀i ∈ BOFF (t)}

where

BON (t) = {i ∈ {1, . . . , n} | (TONi (t− 1)−MUTi) < 0}

BOFF (t) = {i ∈ {1, . . . , n} | (TOFFi (t− 1)−MDTi) < 0}

are the set of chillers which must be turned on and off, respectively.

The idea is to exploit the partitions of the solution space Pj by the typical two-step procedure

of X-OCL:

1. Solve QP(j), obtaining PLR∗(j) and P ∗tot(j) for j ∈ A(t) ∩ P(t);

2. Letting

j∗ = arg min
j∈A(t)∩P(t)

P ∗tot(j)

obtain the globally optimal part load vector as PLR∗ = PLR∗(j∗).

Herein, A(t) which denotes the set of integers j s.t. PLR∗(j) exists, is a function of t because

the load changes with time.

5.5.1 OCS Simulated example

In this section, the performance of the X-OCS method is assessed on two case studies taken

from the literature [57]. Case study 1 involves a hotel in Taipei with two 450 refrigeration tons

(RT) chillers and two 1000 RT chillers, while Case study 2, again from the Hsinchu Science

Industrial District, features nine 1250 RT chillers. In both cases, chillers are described by their

COP-PLR curves, expressed by a second-order polynomial model:

COPi = αi + βiPLRi + γiPLR
2
i (5.24)

where αi, βi and γi are the chiller’s coefficients, reported in Table A.1.

The first step was the identification of quadratic power consumption models (5.3) using data

sampled from the COP-PLR curves. Further details regarding the identification procedure are

reported in Appendix A. The coefficients of the quadratic P-PLR curves in Fig. 5.2 are reported

in Table A.2.
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Systems Chiller ai ci qi Qnom

Case 1

1 243.58 -398.01 504.00 450

2 130.81 -103.53 309.65 450

3 417.51 -444.57 771.99 1000

4 383.79 -347.84 611.64 1000

Case 2

1 95.54 321.92 103.60 1250

2 170.68 41.43 235.46 1250

3 371.09 -307.99 693.76 1250

4 477.85 -217.09 733.35 1250

5 433.17 -186-20 810.89 1250

6 104.21 358.47 205.50 1250

7 272.33 116.22 457.96 1250

8 218.68 -20-94 333.72 1250

9 191.69 276.56 429.51 1250

Table 5.5: Estimated parameters of chillers’ P-PLR curves
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Figure 5.2: Estimated chillers’ P-PLR curves on case study 1 (left) and case study 2 (right).

The aim of both benchmarks is to compute the sequence of chillers’ partializations over one day,

assuming 20-min stages, so as to minimize the cumulative power consumption, while satisfying

the cooling demand constraint at each stage. The load demand profiles are represented in Figure

5.2.

The parameters settings were as follows:

• PLRmin = 0.5

• MUTi = 3 ∀i
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• MDTi = 1 ∀i

Recall that MUTi = 3 means that the i−th chiller must be on at least 3 steps before being

turned off. Likewise, MDTi = 1 indicates that the i−th chiller, once turned off, must remain

off at least 1 step.
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Figure 5.3: Cooling load demand profile for case study 1 (left) and case study 2 (right).

The results obtained via X-OCS were compared with those obtained by Dynamic Programming,

as reported in [57]. Dynamic Programming was used under the ideal condition that all future

loads are known in advance.

For sake of comparability with DP, the chillers power consumption associated with X-OCS was

evaluated by plugging the PLRs computed by X-OCS into the original benchmark’s COP model

[57] and not in the approximate quadratic power consumption curves used by X-OCS.

5.5.2 OCS benchmark: results

The results are shown in Tables 5.6 and 5.7. In the case study 1 the power consumption obtained

by the X-OCS method was, at each stage, lower or equal than that obtained by the DP method.

From stage 1 to stage 29 the DP and X-OCS methods selected the same chillers. The MUT and

MDT constraints were not active, so the solutions coincided with the OCL ones. At stage 30,

the OCL solution had chillers 4 and 3 switched on. However, the MUT constraint forced the

DP and X-OCS to leave chillers 1 and 2 switched on. The same goes for stage 31. At stage 32,

44 and 59 the X-OCS method performed better than the DP one. Although the chillers were

not constrained by minimum up/down time limits, apparently the DP method, as implemented

in [57], could not find the global minimum.
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Stage Load X-OCL DP X-OCS

kW chiller kW chiller kW chiller [PLR1, PLR2, PLR3, PLR4]

1 700 441.13 4 441.15 4 441.13 4 [0.00, 0.00, 0.00, 0.70]
...

...
...

...
...

...
...

...
...

20 890 556.53 4 556.55 4 556.53 4 [0.00, 0.00, 0.00, 0.89]
21 1100 695.32 4 2 695.56 4 2 695.32 4 2 [0.00, 0.63, 0.00, 0.82]
22 1250 801.66 4 2 801.78 4 2 801.66 4 2 [0.00, 0.73, 0.00, 0.92]
23 1100 695.32 4 2 695.56 4 2 695.32 4 2 [0.00, 0.63, 0,00, 0.82]
24 1000 634.42 4 2 636.73 4 2 634.42 4 2 [0.00, 0.50, 0,00, 0.77]
...

...
...

...
...

...
...

...
...

28 920 579.96 4 579.98 4 579.96 4 [0.00, 0.00, 0.00, 0.92]
29 1610 1048.59 4 2 1 1048.43 4 2 1 1048.59 4 2 1 [0.75, 0.75, 0.00, 0.94]
30 1650 1081.63 4 3 1082.07 4 2 1 1082.07 4 2 1 [0.76, 0.77, 0.00, 0.96]
31 1670 1096.43 4 3 1099.69 4 2 1 1099.43 4 2 1 [0.77, 0.78, 0.00, 0.97]
32 1700 1118.96 4 3 1122.12 4 2 3 1118.96 4 3 [0.00, 0.00, 0.78, 0.91]
...

...
...

...
...

...
...

...
...

36 1900 1246.74 4 3 2 1247.61 4 2 3 1246.74 4 3 2 [0.00, 0.67, 0.74, 0.86]
...

...
...

...
...

...
...

...
...

43 1750 1150.68 4 3 2 1151.60 4 2 3 1150.68 4 2 3 [0.00, 0.61, 0.69, 0.79]
44 1575 1020.82 4 2 1 1030.56 4 3 1020.82 4 2 1 [0.74, 0.73, 0.00, 0.92]
45 1900 1246.81 4 3 2 1250.32 4 3 1 1249.42 4 3 1 [0.70, 0.00, 0.73, 0.85]
46 1790 1175.08 4 3 2 1180.75 4 3 1 1179.56 4 3 1 [0.67, 0.00, 0.69, 0.79]
47 1725 1135.32 4 3 2 1142.76 4 3 1 1135.32 4 3 2 [0.00, 0.50, 0.70, 0.80]
48 1775 1165.89 4 3 2 1166.78 4 3 2 1165.89 4 3 2 [0.00, 0.62, 0.69, 0.80]
...

...
...

...
...

...
...

...
...

57 1900 1246.75 4 3 2 1247.61 4 3 2 1246.75 4 3 2 [0.00, 0.67, 0.74, 0.86]
58 2100 1385.03 4 3 2 1 1386.08 4 3 2 1 1385.03 4 3 2 1 [0.68, 0.63, 0.70, 0.81]
59 2000 1319.66 4 3 1 1326.20 4 3 2 1 1319.66 4 3 1 [0.73, 0.00, 0.77, 0.90]
60 2100 1385.03 4 3 2 1 1386.08 4 3 2 1 1385.03 4 3 2 1 [0.68, 0.63, 0.70, 0.81]
61 1900 1246.75 4 3 2 1247.61 4 3 2 1246.75 4 3 2 [0.00, 0.67, 0.74, 0.86]
...

...
...

...
...

...
...

...
...

67 1750 1150.68 4 3 2 1151.60 4 3 2 1150.68 4 3 2 [0.00, 0.61, 0.69, 0.79]
68 1475 948.04 4 2 1 948.08 4 2 1 948.04 4 2 1 [0.71, 0.67, 0.00, 0.85]
69 1200 763.59 4 2 765.20 4 1 765.45 4 1 [0.72, 0.00, 0.00, 0.88]
70 1050 664.47 4 2 671.50 4 1 670.46 4 1 [0.65, 0.00, 0.00, 0.76]
71 1100 695.32 4 2 700.10 4 1 695.32 4 2 [0.00, 0.63, 0.00, 0.82]
72 800 495.80 4 495.82 4 539.23 4 2 [0.00, 0.50, 0.00, 0.57]

Pday 64432.56 kW 64883.84∗kW 64495.91 kW

Table 5.6: Case study 1

In the second case study, the cooling load demand varies slowly over time, so that the MUT and

MDT constraints were never active. Therefore, the X-OCS, notwithstanding its greedy nature,

attains the best achievable performance bound R-OCS. For the majority of the cooling loads,

DP and X-OCS gave the same results, the only exceptions being at stages 22, 48-62, 68-72

where X-OCS performed slightly better. For both the case studies, the cumulative daily power

consumptions obtained by DP (marked by asterisks) had been reported incorrectly in [57]:

• Case study 1: Pday = 645220.08 [kW ] instead of 64883.84 [kW ]

• Case study 2: Pday = 298425.69 [kW ] instead of 289525.25 [kW ]
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As a matter of fact, the daily power consumption values reported in the paper did not match

with the sums of the power consumptions at each step, which we used for the correction.

5.6 Validation on field data

So far, the performances of alternative methods have been compared on OCL and OCS bench-

mark problems whose quadratic consumption models were taken from the literature. Moreover,

a limited number of loads were considered.

In this section, the feasibility of HVAC efficient management based on the exact solution of the

OCL problem is validated against a 2-year long real-world scenario that includes the estimation

of the chillers’ consumption models from the field data introduced in Chapter 2. Quarter-

hourly data were available at different working conditions over a period of almost 2 years, from

February 2017 to January 2019. Collected data included: temperatures PLR cooling capacities

power consumption

The time series of the cooling load demand that the five-chillers system had to satisfy is shown

in Fig. 5.4
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Figure 5.4: Cooling load demand time series

The chillers were subject to the following operating constraints:

• PLRmin = 0.2

• MUTi = 4 ∀i
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• MDTi = 2 ∀i

5.6.1 Chiller energy consumption models

The chillers power consumption models were estimated using the evaporator cooling capacity

Qevap [kW] and the condenser inlet water temperature T [◦C], as covariates, and the compressor

power consumption data P [kW], as target.

For each chiller, the dataset was randomly partitioned in two datasets: 70% for training and

30% for testing, respectively. The parameters βp,i of the model (5.2) were estimated via least

squares fitting of the training data, discarding data with PLR < PLRmin = 0.2. The values of

the estimated parameters βp,i are reported in Table 5.8 together with their percent coefficient

of variation, defined as CV% = 100× SE(βp,i)/|βp,i|.

Table 5.8: Estimated parameters of the quadratic power consumption model (5.2) and corre-
sponding CV%

Chiller
β0,i β1,i β2,i β3,i Qnom [kW]

(CV%) (CV%) (CV%) (CV%)

1
49.6367 124.7681 269.5769 3.1950 2700

(5.24) (2.50) (0.82) (3.21)

2
56.2047 154.9900 278.0211 2.2997 2700

(11.97) (7.98) (2.95) (8.32)

3
-10.9883 520.3125 -45.1983 -0.3309 2700

(22.49) (0.85) (6.98) (24.57)

4
-159.0637 112.2988 15.7524 14.1461 2700

(6.15) (19.80) (8.21) (0.74)

5
46.7748 461.7221 -8.3474 -1.1835 2700

(27.74) (1.84) (79.87) (47.23)

In Figure 5.5 the surfaces P (PLR, T ) are displayed against the validation data for each of the

five chillers. It is seen that the the quadratic model, in spite of its simplicity, predicts well

the consumptions at different operating conditions, as also confirmed by the Goodness-of-Fit

(GOF) plots in Figure (5.6).
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Figure 5.5: Three-dimensional representation of power consumption models.
Red dots represent the experimental data.
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Figure 5.6: Goodness-of-Fit (GOF) plots of the quadratic power consumption models. Blue
dots are the validation data.

Concerning the role of the condenser inlet water temperature T , the 3-D histogram of the

covariates (Qevap, T ) in Fig. 5.7 shows that T is mainly concentrated in a narrow range centered
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around the setpoint, which is 21.5 ◦C. Following what usually done in the literature benchmarks,

one could neglect temperature variations around the set point and solve the OCL and OCS

problems using the chillers consumption models at 21.5 ◦C, reported in Figure 5.9. However,

the inspection of Fig. 5.5 shows that for some chillers the power consumption is significantly

affected by the temperature, especially in summer. Therefore, differently from other literature

studies, OCL and OCS solutions were computed based on the complete model P (PLR, T ).
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Figure 5.7: 3-D histogram of the pairs (Qload, T )

recorded from February 2017 to January 2019.
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Figure 5.8: Condenser inlet water temperature time series
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Figure 5.9: P-PLR curves of Field data benchmark at T = 21.5 ◦C.

5.6.2 Real HVAC system: assessment of potential savings

The field data were used to perform a retrospective analysis of the efficiency of the HVAC

system management. More precisely, starting from the historical decisions and the associated

cumulative power consumption, two comparisons were performed for the 2-year OCS problem.

First of all, the lower bound R-OCS on the best achievable consumption was computed in order

to quantitatively assess the potential improvement margin. Being a lower bound, R-OCS may

be overly optimistic, so that it is important to evaluate the performance that can be obtained

in practice. This was done by running the X-OCS solver, whose energy consumption could then

be compared with the (ideal) R-OCS bound and the historically recorded power consumption.

The cumulative consumption recorded during the 2-year monitoring was 1.758× 106[kW ]. This

figure can be compared with the R-OCS lower bound, equal to 1.600 × 106[kW ]. This means

that the potential margin of improvement is not larger than 8.97%.

When the X-OCS algorithm was applied, the cumulative power consumption was 1.601 ×
106[kW ]. As a matter of fact, for this HVAC system, the loss of performance due to the

suboptimality of the greedy algorithm is definitely negligible (it is less than 0.1%). In Figures

5.10 and 5.11, it is seen that, on a weekly basis, the difference between the consumption achieved

by X-OCS and the lower bound is always less than 15[kWh].
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Figure 5.10: Weekly power consumption time serie: comparison bewteen actual recorded data
(red), the lower bound R-OCL (black) and the consumption associated with X-OCS (blue).
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Figure 5.11: Difference between the actual recorded power consumption and the one associ-
ated with X-OCS (hourly data)
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5.7 Execution time

The X-OCL and X-OCS algorithms, coded in Matlab R©, were executed on a standard laptop

(Intel(R) i7-7500U dual-core with hyperthreading, RAM 16GB, 2.7 GHz). While no explicit

parallelization of the algorithm was implemented, the solution of the 4n QP problems was

formulated as a unique algebraic computation using sparse matrices. This means that the

algorithm may have benefited from some optimization automatically enforced by the Matlab R©

compiler. For the sake of comparison, the Hsinchu benchmark was also solved using the CPLEX

solver for costrained mixed integer problems as implemented in the GAMS environment, used

by [43].

Concerning the Hsinchu OCL benchmark, the computational cost of X-OCL was negligible

(0.11s) and, more importantly definitely lower than the time (1.99s) spent by GAMS.

Coming now to the OCS benchmarks, the larger number of loads makes it possible to asses the

average computation time per load. Not surprisingly, the computation time for X-OCS is larger

than that for R-OCS, because the greedy algorithm performs the additional task of looking for

solutions that satisfy the up/down-time constraints.

For a small number of chillers, the average computation time per load of X-OCS is remarkably

small: 0.29/72 = 4× 10−3s for OCS benchmark 1 (4 chillers) and 497.13/68110 = 7× 10−3s for

the OCS on field data (5 chillers). In the latter case, X-OCS took less than 6 min to solve the

OCS problem over 2-year data with quarter-hour sampling.

As expected, in view of the exponential growth of the number of QP problems, the maximal

average computation time per load is found in correspondence of OCS benchmark 2, where 9

chillers are present. Nevertheless, the average time per load amounts to 1.96s, which is totally

affordable. In Fig. 5.12 the average computation time per load is displayed as a function of

the number of chillers. The exponential growth is apparent but even for a large HVAC system

made of 9 chillers the computational cost is all but prohibitive.

Table 5.9: Execution times for OCL and OSC benchmarks

N◦ chillers N◦ loads X-OCL [s] R-OCS [s] X-OCS [s] GAMS [s]

Hsinchu benchmark 6 5 0.722 - - 1.991

OCS benchmark 1 4 72 - 0.302 0.368 -

OCS benchmark 2 9 72 - 226.77 228.29 -

Field data 5 68110 - 354.03 573.96 -
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Figure 5.12: Average computation time per load

5.8 Discussion

The main purpose of the chapter was the derivation of an exact algorithm for the solution of the

OCL problem. This goal was successfully completed by a decomposition approach that exploits

a suitable partition of the solution space.

The availability of an exact method has been immediately exploited along two directions. First,

it became possible to give a definitive assessment on the performances of different literature

methods that had been applied to some consolidated benchmark problems. By the way, the

comparison with the exact solution revealed that some unrealistic performances had been de-

clared in the literature, due to erroneous extrapolations of the power consumption curve that

became negative at low part loads ratios. The exact method has been exploited also in rela-

tion with the optimal chiller sequencing problem. For a given cooling demand profile, if the

dynamic up/down-time constraints are neglected, a sequence of OCL problems can be exactly

solved to yield a lower bound limit, called R-OCS, to the optimal performance achievable by any

method complying with the dynamic constraints. For a given OCS algorithm, the comparison

of its performance with the bound provides an assessment of the potential margins for further

improvement.

An outcome of this study is the remarkable numerical efficiency of the proposed exact algorithm.

This raises the question of its practical applicability in place of heuristic approaches discussed



79

in the literature. Two major objections may be posed to a generalized adoption of the exact

solution: (i) the explosion of the computational cost with the number of chillers, (ii) the need

to make overly restrictive assumptions on the shape of the power consumption curves.

On the first side, it is true that the OCL problem as formulated in 5.1 is NP-hard, which implies

an exponential growth of the computations needed for its solution. This is confirmed also by Fig.

5.12, where the experimental growth of computation time as a function of the number n of chillers

is exponential (it is linear in the semilog scale). At the same time, the figure shows that even for

a medium/large-sized chiller system, e.g. 6-9 chillers, the computational cost for a single load is

less than 2 s. This suggests that even for chiller systems used in large semiconductor factories,

the cost of the exact solution is not prohibitive. The numerical efficiency is a direct consequence

of the tiny number of computations required to solve the elementary EQP problems, see 5.14.

Moreover, the partition strategy underlying X-OCL, implies that it is totally parallelizable into

4n threads, a feature that has not been explicitly exploited and that could further speed up the

solution.

The second objection to the general applicability of the exact solution has to do with the

quadratic assumption made on the power consumption curve. Even if the majority of bench-

marks share this assumption, there is no stringent reason to rule out other functional descrip-

tions. Nevertheless, when confronted with real data, see the Field data benchmark, we found

that a quadratic power consumption fitted well the recorded data, see Figure 5.5. Even when a

single quadratic function were not adequate, it would still be possible to switch to a piecewise

quadratic description. In that case, it would be rather immediate to generalize the exact algo-

rithm by just increasing the number of partitions Sj , in such a way the problems still boils out

to a set of easy-to-solve EQP problems.

In view of its numerical efficiency, also the application of X-OCS to the solution of the OCS

problem appears very promising. Indeed, in the OCS benchmarks taken from the literature and

in the Field data OCS benchmark, the performance of X-OCS is very close to the lower bound,

implying that there is no scope for the use of more sophisticated algorithms.
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Thermal Comfort in

Air-Conditioned Buildings

The Heating, Ventilation and Air-Conditioning (HVAC) systems are responsabile for about 30%

of Greenhouse Gas Emissions (GHG) [59]. Progress towards sustainable buildings is advancing,

see e.g. the concept of Nearly Zero Energy Buildings NZEB [60], but improvements are still not

keeping up with a rising demand for energy services. The energy intensity per square meter of

the global buildings sector needs to improve on average by 30% by 2030 (compared to 2015)

to be on track to meet global climate goals set forth in the Paris Agreement [61]. In this

context, the human factor also plays a key role in terms of occupants’ behavior and needs. As

a matter of fact, the main challenge for the HVAC control is the trade-off between building

energy consumption and occupants’ thermal comfort.

Two major types of control strategies have been proposed for heating and cooling systems. The

first one is based on different thermostat adjustments such as simply setting a higher summer set

point temperature (SST) or implementing a wide range of indoor design temperatures in corre-

spondence of different day hours and outdoor conditions. The second strategy is to dynamically

adjust the set point temperature based on adaptive comfort models.

In the 70s, the so-called adaptive theory introduced the concept of physiological adaptation

(in terms of acclimatization). This means that people’s thermal comfort sensation changes

with a number of context variables, such as the indoor and outdoor air temperatures. This

dependence can be exploited to save energy and costs and nevertheless maintain the building

thermal comfort. For example, raising indoor temperatures in summertime not only would

reduce the cooling requirements, but would also lead to widespread energy savings, in that such

intervention can be applied to both new and existing buildings [62]. For these reasons, the

availability of effective comfort models able to predict the thermal sensations of the occupants

may give a valuable contribution to the efficient management of HVAC systems.

81
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6.1 Neutral Temperature definition and estimation

Thermal comfort is defined as ”the state of mind, which expresses satisfaction with the thermal

environment’ ; a definition easily understandable, but hard to capture in terms of physical

parameters. An essential requirement for its fulfillment is providing an indoor air temperature

regarded as satisfactory by the majority of occupants. In the indoor thermal comfort literature,

such a temperature goes under the name of neutral temperature. Notably, its semantics has

undergone several changes over the years due to the debate between conventional and “adaptive”

schools of thought. The conventional or ”static” model views occupants as passive recipients

of thermal stimuli driven by the physics of the thermal balance between the body and the

environment.

Experimental measures of thermal comfort are usually expressed according to the ASHRAE

thermal sensation scale: -3 cold, -2 cool, -1 slightly cool, 0 neutral, +1 slightly warm, +2

warm, +3 hot. For the development of thermal control strategies it is essential to have a

thermal comfort model capable of predicting the occupants’ comfort as a function of context

variables such as air temperature, mean radiant temperature, air speed, humidity, metabolic

rate and clothing insulation. Given the model, the neutral temperature can be searched for in

correspondence of the other context variables, providing the set point for the HVAC system.

The most popular model of thermal comfort is Fanger’s Predicted Mean Vote (PMV) [63], a

nonlinear model that predicts the expected comfort vote on the ASHRAE thermal sensation

scale in dependence of a number of context variables. The model parameters were calibrated

by Fanger based on the thermal sensation votes of subjects who were subject to standardized

clothing and activities, not necessarily reflecting the variable conditions of everyday life.

In fact, as observed by Nicol and Humphreys [7], the predictions of the PMV model proved no

better than those obtained with a much simpler model that used the indoor air temperature as

the only independent variable. A possible explanation was formulated in terms of the so-called

adaptive theory, according to which people are able to adapt to the environment climate where

they stay [64, 65].

Subsequent work by Humphreys [66] found that the thermal comfort depended not only on

the indoor temperature, but, to some extent, also on the outdoor climate. In order to validate

these findings a number of meta-analysis were conducted using field surveys coming from a

wide range of environments [66–69]. In this framework, de Dear [69] proposed the following

method for predicting the neutral indoor air temperature which has been thereafter widely

adopted. Starting from ASHRAE scores collected in different buildings the procedure derives

a neutral temperature characteristic of each specific building. The following steps refer to a

generic building:
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1. The indoor air temperature is divided into bins of half-degree and the average value

ASH(k) of individual subjects’ thermal votes is computed for the k-th bin.

2. A weighted linear regression model is fitted linking the mean sensation vote to the indoor

air temperature:

ASH(k) = f(Tin(k)) = α+ βTin(k)

3. The neutral temperature TN is derived by solving the regression line for a mean vote of

zero.

TN = −α/β

4. The outdoor temperature Tout is computed as the average of recorded outdoor tempera-

tures.

The procedure yields pairs of outdoor and neutral temperatures (Tout(i), TN (i)), i = 1, . . . , Nb,

where Nb is the number of buildings. These pairs can then be used to identify a model that,

according to the adaptive hypothesis, links the neutral temperature to the outdoor one, i.e

TN = g(Tout). The simplest model is linear with positive slope which is consistent with the idea

that if the outdoor climate is hot, the indoor thermal comfort is achieved in correspondence of

a higher indoor temperature.

From the statistical point of view, the above procedure presents several shortcomings. In par-

ticular, is it a good practice to average the data over the bins? If the final goal is prediction

of the neutral temperature as a function of the indoor and outdoor air temperature, is it really

necessary to go through two distinct steps (regression of ASH on Tin and then regression of TN

on Tout)? Does the adaptive effect, which explains the occupants’ neutral sensation as a function

of the outdoor air temperature, actually exist or is it an artifact of the indirect procedure?

In order to answer these questions, in the present chapter a direct modeling approach is pro-

posed to establish the possible dependence of the neutral temperature on the outdoor one. In

particular, binning is avoided and the building by building approach is replaced by the direct

use of individual ASH scores and outdoor temperatures avoiding averaging at building level.

6.2 Thermal comfort survey data

The present study uses experimental data drawn from the ASHRAE RP-884 project database,

which consists of about 21,000 sets of thermal comfort data pooled from a number of surveys

conducted by several research groups around the world [70]. The surveys included basic iden-

tifiers (i.e. building code, subject information and date), thermal questionnaire responses (i.e.

thermal sensation, acceptability, metabolic rate and clothing insulation), calculated indices (i.e.
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operative temperature, new effective temperature and predicted mean vote) and indoor and

outdoor climate observations (i.e. air temperature, speed and humidity). The surveys involve

Naturally Ventilated (NV), Air-Conditioned (HVAC), and Mixed Mode (MM) buildings, the

majority of which contain offices (136 building out of 160).

In the present chapter, only surveys carried out in summer for HVAC buildings are considered.

The detection of contradictory responses was used to identify and remove misleading question-

naires. An example of a contradictory response is when a participant declares that the thermal

environment is not acceptable but, in the preference question, does not desire any change. The

selected datasets (Jakarta (06), Montreal (09), Brisbane (11), Melbourne (15), San Francisco

(32), Singapore (41) and San Ramon(44)), were put together.

A preliminary analysis showed that the occupants’ thermal sensation vote ASH is correlated

with the indoor and the outdoor air temperature, while it is only marginally correlated with

the other independent variables (i.e. air speed, air humidity, clothing insulation, etc.), which

confirms the adaptive hypothesis recalled in Section II. Accordingly, our subsequent analysis is

focused on the triplets (Tin, Tout, ASH). The ASH scores exhibit high variability, see Figure 6.1.

For instance, for almost any indoor temperature a wide range of votes is found as a consequence

of the subjectivity of thermal sensations.

Table 6.1: Sources of raw data for the RP-884 databaset

Researcher
Experiment

location
Sample

size
Nb

Tri Karyono (Sheffield, UK) Jakarta, Indonesia 458 5

de Dear (PhD data) Brisbane, Australia 564 5

Donnini ASHRAE RP-821 Montreal, Canada 443 12

de Dear (PhD data) Melbourne, Australia 512 4

Brager ASHRAE RP462 Bay Area, California 673 7

de Dear, Foo and Leow Singapore 333 1

Benton + Brager (ACT2) San Ramon, CA 96 1

6.3 Exploratory analysis of thermal comfort data

In this section a simple approach for exploring the possible link between the outdoor temperature

and the indoor comfort temperature is illustrated. In order to verify whether the adaptive

hypothesis holds true, we consider a subset of the original data, selecting only the occupants

whose thermal sensation vote is equal to zero (ASH = 0). For this subset, the scatter plot

of the indoor temperature against the outdoor one is displayed in Fig. 6.3. Note that these
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Figure 6.1: Overall summer dataset. Coloured dots: occupants’ thermal sensation votes on
the ASHRAE scale [-3; +3] as a function of Tin and Tout.

indoor temperatures are regarded as comfortable by the occupants. Therefore, if the outdoor

temperature affects the occupants’ sensibility, some dependence between the indoor and outdoor

temperatures should be observed.

Figure 6.2: Left: blue dots represent the selected data corresponding to ASH = 0 while the
red ones the remaining. Right: the blue dots, displayed in the three dimensional space in the

left panel, are here shown in the plane Outdoor-Indoor air temperature.

In spite of the fact that only indoor temperatures associated with null ASH score are being

considered, the data is still remarkably noisy. For a given outdoor temperature, there is a wide

range of indoor temperature that are regarded as neutral. It seems therefore reasonable to

use regression models of low complexity to predict the neutral temperature as as a function
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of the indoor one. Herein, three methods are used: linear regression, Lowess regression, and

MLP Artificial Neural Network (ANN) with McKay regularization. The first two methods have

already been used in the context of neutral temperature modeling [71].

A Lowess regression of linear type with 0.25 span (i.e proportion of data points used) was

employed. As for the MLP ANN, a one-hidden-layer network of fully connected neurons with

activation function tanh and linear output was considered. When a fully connected structure

is assumed, overparametrization may occur even for a small number of neurons. Following [28],

in order to prevent overfitting, a quadratic regularization penalty on the weights is added to

the conventional squared loss. The regularization parameter was tuned according to McKay’s

criterion and the number of neurons decided through crossvalidation with 70− 30 split ratio.

The three regression curves, displayed in Figure 6.3, exhibit a good agreement. Some differences

are observed for low (12) and high (32) temperatures, where linear regression predicts a higher

comfort temperature. The main finding is the presence of a positive slope which is in keeping

with the adaptive theory according to which people adapt, to some extent, their thermal comfort

to the outdoor air temperature. Indeed, when outdoor temperature increases, the indoor comfort

temperature increases as well: while for Tout = 20◦C the predicted neutral temperature is about

23◦C, when Tout = 30◦C, the predicted neutral temperature becomes 23.5◦C. This could be

explained either with adaptation to the climate or with adaptation of clothing to the seasons.

In terms of HVAC energy consumption, this result could be exploited to set a higher value of

the indoor temperature set point when, for instance, Tout = 30◦C, thus achieving some energy

saving.
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Figure 6.3: Blue dots: data points (Tout, Tin) corresponding to ASH = 0; Black line: simple
linear regression model; Blue line:Lowess regression; Red line: MLP Neural Network model.
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In view of this exploratory analysis, there is scope for a more systematic identification of the

dependence of the neutral temperature on the outdoor one. Differently from what done in this

section, hereafter we will take into account the complete dataset, instead of just the occupants

whose vote is neutral.

6.4 Direct Modeling of Thermal Comfort

A main shortcoming of the standard approach to neutral temperature modeling reviewed in

Section 6.1 is the need of two steps: for each building, neutral and outdoor temperatures are

obtained by gathering and processing data at building level which are then used to establish

the link between outdoor ad neutral temperature. In this section, a new approach is proposed

that is rooted in the very definition of neutral temperature and uses directly all the occupants

data, avoiding preprocessing at building level. Recall that, according to the ANSI/ASHRAE

Standard 55-2010, the neutral temperature is the indoor air temperature corresponding to a zero

mean vote (E(ASH) = 0) on the thermal sensation scale by a sample of building occupants.

Let y = E(ASH|Tin, Tout) = f(Tin, Tout) denote the expected vote conditional on Tin and Tout.

Then, according to its definition, the neutral temperature TN = TN (Tout) is just the indoor

temperature that, for a given Tout yields y = 0, that is the solution of the equation

0 = f(TN , Tout) (6.1)

This observation is the basis of the direct approach that consists in estimating the function

f(·, ·) from the triplets (Tin, Tout, ASH). Below, two approaches are considered.

6.4.1 Polynomial regression model

A first approach to estimating f(·, ·) amounts to finding a surface that best fits the data ac-

cording to the least squares criterion.

In particular, a polynomial model was used to predict the occupants’ thermal sensation votes

(ASH) as a function of Tin and Tout. The model’s regressors were automatically selected by

a stepwise regression algorithm which chose the following quadratic model without interaction

terms:

y = f̂(Tout, Tin) = β0 + β1Tout + β2Tin + β3T
2
out + β4T

2
in

The estimated surface f(Tout, Tin) is displayed in Fig. 6.4. As expected y depends strongly on

Tin but, to a less extent, also on Tout, thus confirming the adaptive theory. The points associated
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with zero expected vote, which are highlighted in red, identify the solution of equation (6.1),

which, in turn, provides the neutral temperature model T̂N = g(Tout).

Figure 6.4: Polynomial model: Left, occupants’ expected mean vote E(ASH | Tout, Tin). Red
curve: intersection of the surface with E(ASH) = 0. When projected onto the plane (Tout, Tin),
the red curve provides the neutral temperature model T̂N = g(Tout). Right, the estimated

neutral temperature curve in the plane outdoor air temperature - indoor air temperature

6.4.2 Multinomial logistic model

A model for the expected vote can also be obtained as a byproduct of a complete model of

the occupants’ votes. Given the discrete 7-levels scale of thermal sensation votes, this is a

multinomial model that, for any pair (Tin, Tout), returns the seven probabilities

Pv(Tin, Tout) = Pr(ASH = v), v ∈ A (6.2)

where A = {−3,−2,−1, 0, 1, 2, 3}. From the multinomial model, the function f(Tout, Tin) is

immediately obtained as

y = f(Tout, Tin) =
∑
v∈A

vPv(Tin, Tout)

As far as the estimation procedure is concerned, in the literature this kind of model has been

calibrated through the repeated estimation of binary probit models [72]. However, the ordinal

nature of the ASHRAE’ votes scale suggests the use of a generalized ordered logit (gologit)

model [73] that processes all the data simultaneously. Starting from a second order polynomial
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model, a backward stepwise regression yielded the following model:

Pr(ASH > v | Tout, Tin) =
exp (αv +XTβv)

1 + [exp (αv +XTβv)]
, v ∈ A

Xi =
[
Tout Tin TinTout T 2

out

]T
The maximum likelihood estimate was obtained by the mnrfit function of the Matlab Statistics

and Machine Learning Toolbox.
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Figure 6.5: Left: Overall summer dataset. Right: Logistic cumulative distribution functions

The estimated multinomial model is visualized in Fig 6.5, where the cumulative probabilities

Pr(ASH ≤ v | Tout, Tin) are plotted as functions of Tout and Tin. This multinomial model

provides the most complete probabilistic description of thermal comfort sensations as it can

predict, for any pair (Tin, Tout), the percent of occupants expressing any of the seven votes. In

particular, it can be used to obtain important indicators such as the predicted percentage of

dissatisfaction (PPD).

Eq. (6.2) can be used to obtain y = E(ASH|Tin, Tout) from the multinomial model. The result-

ing surface is plotted in Fig. (6.6). The overall surface is in fairly good agreement with that

in Fig. (6.4). Again, the points solving equation (6.1) are highlighted in red and show an even

better agreement with the red curve produced by the polynomial regression model, see Fig. (6.4).

6.5 Alternative definition of Neutral Temperature

The standard definition of neutral temperature relies on the mean vote of occupants. An

advantage of such a definition is that it is rather straightforward to obtain a model for the mean
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vote just by fitting a surface to the experimental votes, see Section 6.4.1. However, one may be

interested in achieving the temperature that maximizes the percentage of satisfied occupants.

This calls for the estimation of a probabilistic model of the occupants’ thermal sensation votes,

a task that has already been successfully performed in Section 6.4.2. Accordingly, we introduce

an alternative definition of neutral temperature aimed at maximizing the occupants’ consensus.

Definition (probabilistic neutral temperature): For a given Tout the probabilistic neutral

temperature T ∗N = T ∗N (Tout) is defined as the indoor air temperature which maximizes the

probability of a zero thermal sensation vote:

T ∗N (Tout) = arg max
Tin

Pr(ASH = 0 | Tout, Tin)

It goes without saying that the function T ∗N (Tout) can be easily derived from the ordered logit

model presented in Section 6.4.2. In Fig. 6.7, where Pr(ASH = 0 | Tout, Tin) is plotted against

Tout and Tin, the red curve highlights the maximum of Pr(ASH = 0) for different values of Tout.

Then, T̂ ∗N = g(Tout) is just the projection of the red line on the plane (Tout, Tin).

Given the complexity of identifying the whole multinomial model, one could resort to a simpler

Binomial logistic model, which can be seen as a particular case of the multinomial logistic one

when just two categories are considered, namely ASH = 0 (thermal satisfaction) and ASH 6= 0

(thermal dissatisfaction). Of course, it is not difficult to consider a less stringent definition

of satisfaction by letting the probabilistic neutral temperature T ∗N be the one that maximizes
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Figure 6.7: Ordinal logit model. Surface: Pr(ASH = 0 | Tout, Tin); The projection of the red
curve onto the plane (Tout, Tin) represents the neutral temperature model T̂ ∗

N = g(Tout).

the probability Pr(|ASH| ≤ 1), in which case the categories of the binomial model would be

|ASH| ≤ 1 (thermal satisfaction) and |ASH| > 1 (thermal dissatisfaction).

Considering polynomials up to the third order, the following model was obtained via step-

wise regression using the stepwiseglm function of the Matlab Statistics and Machine Learning

Toolbox:

Pr(ASH = 0 | Tout, Tin) =
exp (αv +XTβv)

1 + [exp (αv +XTβv)]

Xi =
[
Tout Tin TinTout T 2

out T 2
in

]T
The function Pr(ASH = 0 | Tout, Tin) is displayed as a 3D surface in Fig. 6.8. Again, the

projection of the red curve onto the plane (Tout, Tin) represents the neutral temperature model

T̂ ∗N = g(Tout).

6.6 Comparison and discussion

The main objective of the chapter was the derivation of models of the neutral temperature

that improve on the standard literature approach that relies on a preprocessing step at building

level. Three approaches have been considered. The exploratory one is based on the regression

of temperatures regarded neutral by the occupants against the outdoor temperature. Three

regressions methods were tested: linear, Lowess and MLP ANN.



92 Chapter 6. Thermal Comfort Models in Air-Conditioned Buildings

Figure 6.8: Binomial logit model. Surface: Pr(ASH = 0 | Tout, Tin); The projection of the
red curve onto the plane (Tout, Tin) represents the neutral temperature model T̂ ∗

N = g(Tout).

The second approach, the so-called direct one, is rooted in the very definition of neutral tem-

perature, seen as the temperature in correspondence of which the mean occupants’ vote is zero.

Two direct approaches have been proposed: a polynomial regression of the ASH score against

(Tout, Tin) and a multinomial logistic regression that provides all the seven probabilities of the

ASH scores as functions of (Tout and Tin). In both cases the obtained model implicitly defines

the function TN (Tout).

The third approach relies on an alternative definition of the neutral temperature which, rather

than being based on the mean vote, maximizes the percentage of satisfied occupants. Two meth-

ods have been proposed to obtain this probabilistic neutral temperature: the same multinomial

logistic regression already used for the direct approach and a simpler binomial logistic model.

A first finding of our work is the confirmation of the adaptive effect of the outdoor temperature.

This is somewhat remarkable because the curves were obtained from the individual raw data,

avoiding the intermediate steps at building level that are typically used to separate the useful

information from the background noise. The adaptive effect is of particular interest for feedback

control and efficient energy management, because higher indoor temperatures might be used as

set points without increasing discomfort but with significant energy savings.

Concerning the differences between the neutral temperature models, they are almost always

less than 1 and often much smaller. In particular, the models of the exploratory analysis

(black, blue and red) are in very good agreement between each other. A similar consistence is

observed between the two direct models (dash dot black and magenta). It is of interest that
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Figure 6.9: Comparison of neutral temperature models.

the introduction of a new probabilistic definition of neutral temperature (dashed magenta and

dotted blue) leads to smaller predicted values for outdoor temperatures below 25◦C.

As far as the possible developments are concerned, three research directions can be envisioned.

More flexible modeling approaches such as nonparametric and machine learning ones could

be used to further validate the models presented herein. A second development regards the

estimation of adaptive models also on winter data. Third, while the whole ASHRAE RP-884

dataset was included in the analysis, it would be of great interest to perform separate analyses

for datasets coming from different countries and or climates in order to establish the possible

existence of country or climate effects that should be accounted for.
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Conclusions

Heating Ventilation and Air Conditioning is a field that is both critical in view of environmental

priorities and extremely promising for what regards the potential improvements associated with

the Industry 4.0 paradigm. In this thesis, the issue of energy efficient management of HVAC

problem has been investigated along two main directions. On the production side, the continuous

collection of monitoring data enables the identification of accurate and robust chiller models

that can be used for the on line optimization of chillers’ operation. On the demand side, the

appropriate modelling of users’ surveys can yield advanced thermal comfort models, usable to

minimize energy consumption while guaranteeing the desired comfort.

Concerning chiller efficiency models, the availability of extensive monitoring data opens the way

to new modeling approaches, e.g machine learning ones, but also poses new challenges as the

distribution of operating conditions may be very disuniform, which may adversely impact on the

generalization capabilities of the models. The main finding is that some traditional models are

outperformed by machine learning ones, i.e. Artificial Neural Networks and Gaussian Processes,

but also that the classical Gordon-Ng semi-empirical model can prove still useful, in terms of

robustness and interpretability of the parameters.

Efficiency and power consumption models find application in the design of optimized manage-

ment strategies for multiple chiller systems, a problem that due to its NP-hardness is typically

solved via heuristic methods. In the thesis, assuming a quadratic power consumption model, a

new exact solver, X-OCL, is proposed that, hinging on a partition of the solution space, reduces

the problem to the closed form solution of elementary equality-constrained quadratic problems.

In the typical industrial applications, the new exact approach appears viable under both the

computational aspects and the adequacy of the quadratic assumption. The applicability of X-

OCL was demonstrated on both literature benchmarks and an experimental benchmark based

95
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on a extensive 2-year dataset collected in a semiconductor plant. The comparison with histor-

ical energy consumption data shows that the optimized management would achieve about 9%

in savings.

On the demand size, the main issue was the validation of the so-called adaptive model and the

derivation of advanced thermal comfort models. Concerning the former issue, different model

have been trained and validated, confirming that the occupants’ neutral temperature is indeed

affected not only by the indoor temperature, but also from the outdoor one. Moreover, a new

and more rigorous definition of neutral temperature has been proposed, based not on the average

of the ASHRAE scores, but on the percentage of occupants that express a prescribed degree of

satisfaction. The new definition relies on a novel statistical characterization of comfort scores

based on multilogistic regression.

In conclusion, the thesis offers an overview of some relevant opportunities that arise from the

introduction of innovative learning and optimization approaches in the field of HVAC systems,

suggesting that both the production and demand side could strategically exploit the associated

benefits.



Appendix A

Derivation of power consumption

models from the COP ones

Assuming that the available COP-PLR curves represent the true model of chillers’ efficiency,

quadratic approximated power consumption models can be easily derived as follows:

1. Sample N data points from the COP-PLR curve of the i−th chiller, uniformly in the range

[PLRmin,i,1] obtaining the pairs {PLRi(k), COPi(k)}, k = 1, . . . N ;

2. Compute the chiller’s power consumptions as

Pi(k) =
PLRi(k) ·Q100%,i

COPi(k)
, k = 1, . . . N ;

3. Using the training set made of input-output paired samples {PLRi(k), Pi(k)}, k = 1, . . . N

estimate the parameters of the quadratic model [] via Ordinary Least Squares (OLS).

The above procedure was applied to the case studies presented in Section 5.5.1. For both the

case studies, 50 data points were sampled from the COP-PLR curves reported in Tables A.1 to

obtain the training datasets represented in the left panels of Figs. A.1 and A.2 as red dots. The

estimated P-kW curves are shown in the right panels of Figs. A.1 and A.2 and their parameters

are reported in Table A.2.
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Systems Chiller αi βi γi Qnom

Case 1

1 0.1561 3.9023 -2.5909 450
2 0.9000 1.8432 -1.4188 450
3 0.2932 3.0419 -2.0054 1000
4 0.1415 3.6376 -2.2469 1000

Case 2

1 1.5652 1.8094 -0.9803 1250
2 1.0519 4.1471 -2.4173 1250
3 0.5703 3.1602 -2.0912 1250
4 0.3257 2.3513 -1.4265 1250
5 0.5438 1.8668 -1.2361 1250
6 1.5271 1.0634 -0.7238 1250
7 0.7865 1.8473 -1.1633 1250
8 0.8499 3.7768 -2.2859 1250
9 1.1191 1.0228 -0.7542 1250

Table A.1: Coefficients of chillers’ COP-PLR curves

Systems Chiller ai ci qi Qnom

Case 1

1 243.58 -398.01 504.00 450

2 130.81 -103.53 309.65 450

3 417.51 -444.57 771.99 1000

4 383.79 -347.84 611.64 1000

Case 2

1 95.54 321.92 103.60 1250

2 170.68 41.43 235.46 1250

3 371.09 -307.99 693.76 1250

4 477.85 -217.09 733.35 1250

5 433.17 -186-20 810.89 1250

6 104.21 358.47 205.50 1250

7 272.33 116.22 457.96 1250

8 218.68 -20-94 333.72 1250

9 191.69 276.56 429.51 1250

Table A.2: Estimated parameters of chillers’ P-PLR curves
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Figure A.1: Left: COP-PLR curves of chillers in case study n◦ 1. Red dots are the 50
samples used to identify the quadratic approximate power consumption model. Right: Identified
quadratic P-PLR curves of chillers in case study n◦ 1. Red dots are the energy consumption

data used for the training.
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Figure A.2: Left: COP-PLR curves of chillers in case study n◦ 2. Red dots are the efficiency
sampled data. Right: P-PLR curves of chillers in case study n◦ 2. Red dots are the energy

consumption data used for the training.
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