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Abstract

La rivoluzione digitale iniziata negli anni '50 con l'introduzione del primo computer digi-
tale ha ormai pervaso quasi ogni attività comportando in larga parte il loro cambiamento.
Una delle principali conseguenze della digitalizzazione è certamente data dalla mole di
dati a disposizione che oggigiorno è molto superiore rispetto al passato, per questo fan-
no ormai parte del gergo comune parole come Big Data. Uno degli ambiti fortemente
in�uenzati dall'aumento della disponibilità di dati è quello delle previsioni, dove le pre-
visioni data-driven, basate tipicamente su modelli di machine learning, hanno a�ancato
e, in alcuni casi, sostituito i modelli statistici precedentemente primariamente utilizzati.
Almeno per quanto riguarda il caso speci�co trattato in questa tesi, quello della previsio-
ne di serie temporali nel settore dell'energia, l'evoluzione modellistica ha fatto un passo
ulteriore: per poter aumentare l'accuratezza delle previsioni, spesso la soluzione non è
quella di basarsi su un solo modello ma sviluppare modelli aggregati che cioè combinano
le previsioni di vari modelli base. Questa duplice evoluzione modellistica, seppur volta ad
un miglioramento delle performance in termini di accuratezza delle previsioni, porta con
sé una maggiore complessità nei modelli utilizzati ed una conseguente diminuzione nella
comprensione ed interpretabilità del risultato.
Nel corso dei tre anni di dottorato ho svolto un lavoro di ricerca incentrato sull'applica-
zione delle tecniche di machine learning (ML) alla previsione di serie temporali nel settore
dell'energia, in particolare la domanda gas e la domanda elettrica in Italia. Le previsioni
sono relative al giorno successivo alla data di previsione (one-day-ahead). I dati a dispo-
sizione per le analisi sono stati la serie della domanda gas italiana, disaggregata nei tre
settori principali, civile (RGD), industriale (IGD) e termoelettrico (TGD) dal 2007 al
2018, e la serie della domanda elettrica italiana (IED) dal 2012 al 2018.
Le previsioni day-ahead sono state ottenute attraverso l'implementazione in Python di
nove modelli di ML � tre modelli lineari regolarizzati (regressione ridge, LASSO, elastic
net), un processo gaussiano (GP), una support vector machine (SVM), un k-nearest nei-
ghbors (KNN), una rete neurale feedforward (ANN), un modello dato dalla combinazione
lineare di funzioni sinusoidali su dominio toroidale (torus) ed in�ne una foresta di alberi
(random forest) � e di cinque diversi metodi di aggregazione (modelli ensemble) � (i)
media semplice, (ii) media pesata, (iii)-(iv) due modelli (Subset average (c.a.) e Subset
average (b.f.)), in cui si fa la media semplice su un sottoinsieme delle previsioni dei mo-
delli base, ottenuto attraverso due di�erenti processi di ottimizzazione, (v) una SVM con
input dati dalle previsioni dei nove modelli base. È stato altresì proposto un metodo per
l'identi�cazione di tre reti neurali ricorrenti (RNN) � una RNN semplice e due architet-
ture più complesse, Long-Short Term Memory (LSTM) e Gated Recurrent Unit (GRU)
� utilizzate per la previsione delle medesime serie temporali.
Particolare attenzione è stata posta sul valore aggiunto dato dall'aggregazione delle pre-
visioni sia nel caso di modelli ensemble, che nel caso dell'aggregazione data dalla semplice
somma o media di previsioni più di dettaglio. Esempi di questo sono: (i) la previsione
della domanda elettrica italiana, ottenuta attraverso la previsione delle singole ore per
le diverse zone di mercato, (ii) le previsioni �nali delle RNN, ottenute come media delle
diverse previsioni ottenute variando il punto iniziale nello spazio dei parametri.



Se l'apparato modellistico sviluppato può essere applicato anche a serie relative ad altri
paesi del mondo, la scelta e le modalità di utilizzo di alcuni regressori, come per esempio
la previsione della temperatura, sono cruciali per la correttezza delle previsioni ma più
tipiche dell'Italia, come conseguenza della sua posizione geogra�ca e delle sue tipicità
nell'utilizzo di gas ed elettricità. In particolare, la temperatura nella stagione fredda,
sotto i 18◦C, in�uenza fortemente la domanda gas civile portando la stessa a valori anche
quattro-cinque volte più alti rispetto a quelli estivi dove l'e�etto della temperatura è
assente. Questa forte dipendenza dalla temperatura inserisce nella domanda gas civile una
rilevante componente stocastica legata alla previsione one-day-ahead della temperatura
stessa. Data la sua importanza per la previsione della domanda gas civile, attraverso un
semplice modello, validato anche empiricamente, è stato possibile quanti�care l'impatto
dell'errore della previsione della temperatura sull'errore complessivo nella previsione della
domanda gas. Grazie a tale modello è stato anche possibile calcolare un limite inferiore
per l'errore che si può commettere nella previsione della domanda gas, ponendo a zero
tutte le altre fonti di errore. Tale limite inferiore è servito per valutare la bontà dei modelli
testati per la previsione di RGD.
Dai risultati ottenuti si è veri�cato che non esiste un modello nettamente migliore degli
altri per tutte le serie da prevedere ma che i modelli migliori, in genere, quasi si equivalgono
in termini di performance, con una leggera supremazia da parte delle reti neurali ricorrenti.
D'altra parte i risultati mostrano chiaramente che, per migliorare la loro accuratezza, è
meglio ricorrere a tecniche di aggregazione e non limitarsi ad un singolo modello. Altro
punto chiave, avvalorato dai risultati ottenuti, è dato dalla scelta dei fattori, e quindi dei
dati in input ai modelli, che hanno rappresentato la fonte principale di miglioramento delle
previsioni: esempio principe in questo ambito è dato dall'inserimento della previsione one-
day-ahead della temperatura, fattore cruciale per la previsione sia della domanda gas che
di quella elettrica, che, a seconda della serie oggetto di previsione e del modello utilizzato,
va trasformato opportunamente al �ne di massimizzare le performance.





�Prediction is very di�cult, especially if it's about the future.�

Niels Bohr





I dedicate this work to my loved ones.
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1

Introduction

Time-series forecasting is the main topic of my thesis. It consists of predicting future
values of series whose elements are ordered in time and, consequently, serially correlated.
Time-series forecasting is a wide �eld of research because, in almost any context, people,
based on the past and present, are interested in predicting the future in order to take some
appropriate action. Moreover, the di�erent extents of the forecast horizon, short, medium,
and long, contribute to enlarge this �eld of study. A major classi�cation of the methods
adopted is between the qualitative and the quantitative ones. Qualitative methods are
mostly used in case of medium- and long- range predictions, also because other consid-
erations, complementary to the past and present data, are evaluated in order to cope
with the vast possible scenarios. Instead, quantitative methods [1] are the cornerstone
of short-term forecasting, where past and present data represent the principal source of
knowledge.
In particular, this work is focused on the short-term, one-day-ahead, forecasting of energy
time series of gas demand and electricity loads.
Nothwistanding the limited perimeter of the work, the relevant literature is huge as de-
tailed in the review articles [2], [3] for gas demand and [4], [5], [6], [7], [8] for electricity
loads. For both sectors, in the past the principal forecasting methods used to be linear
regressions and time-series or Box-Jenkins models. The rise of machine learning and statis-
tical learning theory as a framework for data-based prediction, revolutionized prediction
algorithms, opening the way to the widespread adoption of neural network approaches
[9], [8].
In this thesis, the �rst problem addressed is that of one-day-ahead gas demand forecasting
through the prediction of its three main components (residential, industrial, and thermo-
electric). The analysis of the di�erent time series of gas and electricity reveals that they
present similar characteristics, so that most of the regressors, employed for the three gas
demand series, were afterwards used also for electricity load forecasting. Of particular
interest is the relationship, also non-linear, of these time series with the temperature.
In order to capture this relationship directly from the data, di�erent statistical learning
models were applied and their performances assessed by varying the time series used for
calibration and test. All the forecasters, both for gas and electricity, were developed with
reference to the Italian data: in case of gas demand, the available data covered the years
between 2007 and 2018, whereas for electricity the data ranged from 2012 to 2018.
The main contributions of the thesis can be grouped in three main areas.
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2 1 Introduction

The �rst one regards the study of the in�uence of weather forecast errors on natural gas
demand models. Despite being critical in industrial applications, previous works seldom
specify if the predictors use forecasted or observed temperature, maybe due to the belief
that temperature errors have negligible impact. In contrast, for residential gas demand,
which shows the most evident dependence on temperature, in chapter 4 the in�uence
of weather forecast errors is investigated, both theoretically and experimentally. A novel
easy-to-compute bound is derived that predicts the best achievable root mean square
error (RMSE) as a function of the temperature RMSE. This bound is then validated on
experimental data: Italian RGD forecasts are obtained using both observed and predicted
temperatures, thus allowing for a quantitative assessment of accuracy degradation.
The second main contribution is the benchmark of a number of statistical and machine
learning forecasters that were subjected to a rather unique validation, both for dura-
tion and variety, performed on several years of Italian electricity loads and gas demand
(disaggregated into its three main components). Nine prediction models were considered:
ridge regression, LASSO, elastic net, Gaussian Process, support vector regression, nearest
neighbours, Arti�cial Neural Networks, torus model, random forest. Moreover, built on
the nine base models, �ve ensemble predictors were considered: simple average, weighted
average, support vector regression aggregation and two subset average methods, where the
subset of base predictions is chosen by an appropriate optimization process. In the case of
electricity demand, also the aggregation of �ner (either spatially or temporally) forecasts
was investigated, by comparing the direct forecast of daily Italian electricity loads with
the forecast of the same quantity obtained by summing the hourly or the zonal-hourly
forecasts.
The third main issue was the implementation and testing of three Recurrent Neural Net-
works (RNN) models - Long Short Term Model (LSTM), Gated Recurrent Unit (GRU)
and simple Recurrent Neural Network (RNN0) - for the day ahead forecasting of the Ital-
ian gas and electricity demands. Special attention was given to the model identi�cation
phase, including the choice of hyperparameters and the impact of random initializations.

At the end of the thesis, a summary of the notation used is reported together with the
list of abbreviations.

1.1 Publications and reports

- Alice Guerini, Andrea Marziali and Giuseppe De Nicolao (2018). "MCMC calibration
of spot-prices models in Electricity markets." Published in Applied Stochastic Models
in Business and Industry.[10]

- Emanuele Fabbiani, Andrea Marziali and Giuseppe De Nicolao (2018). "Fast calibra-
tion of two-factor models for energy option pricing." arXiv preprint arXiv:1809.03941.

- Andrea Marziali, Emanuele Fabbiani and Giuseppe De Nicolao (2019). "Forecasting res-
idential gas demand: machine learning approaches and seasonal role of temperature
forecasts." arXiv preprint arXiv:1901.02719. Accepted for publication in International
Journal of Oil, Gas and Coal Technology.



1.1 Publications and reports 3

- Andrea Marziali, Emanuele Fabbiani and Giuseppe De Nicolao (2019). "Ensembling
methods for countrywide short term forecasting of gas demand." arXiv preprint
arXiv:1902.00097. Accepted for publication in International Journal of Oil, Gas and
Coal Technology.[11]

- Andrea Marziali and Elisa Raspanti (2019). "Italian short term load forecasting: dif-
ferent aggregation strategies." Submitted to Journal of Forecasting, now under review.

All these papers are related to my PhD studies, but only the last three cover topics
included in the present PhD thesis. The contents of these three papers are largely reported
in chapters 4 and 5.





2

Electricity and gas: demand and prices

2.1 Introduction to the energy sector

The XX century was full of events in the energy sector. It started with the di�usion of
cars and the correlated increase of oil consumption to produce gasoline and fuels used by
the same vehicle engines. This century laid also the basis for the new renewable energies
by the constructions of the �rst geothermal plant, wind turbines, photovoltaic cells, tidal
power plants and also �rst experiments regarding the production of wave energy. Finally,
nuclear energy was discovered and the �rst nuclear power plants were built.
The last part of the XX century, as well as the beginning of the XXI, brought a growing
attention to the issues of environmental impact and global warming. Therefore, nuclear
energy and, above all, renewable energies became preferred to fossil ones due to lower
pollution impact and carbon emissions. Nevertheless, fossil fuels are still the most used at
world level: oil, followed by coal and gas cover about the 80% of world energy consumption,
the other 20% being given by nuclear and renewable energies. China is the biggest producer
and consumer of energy overall, and above all of coal, followed by the USA, which is the
�rst in terms of oil and natural gas production. Regarding the electricity production, the
energy sources are fossil for about 65% (coal 39%, gas 23% and oil 3%), nuclear for a little
more than 10%, and the renewable sources represent the remaining 25%. In the last thirty
years, the coal percentage has been stable whereas the oil one, reduced of about 8%, has
been substituted by the gas one which has increased of about 9%, with the consequent
decrease of total carbon emissions. Nuclear consumption has been decreasing from the
peak of 1996, when it covered the 17% of the total production, whereas the hydroelectric
component is stable. The XXI century shows a steep rise in other renewable sources,
mainly wind, biomass, and photovoltaic, which increased from 1% to 9%.
In Italy, the breakdown by energy is similar to the world one, with 80% from fossil sources
(gas 40%, oil 34%, and coal 6%) and 20% from nuclear and renewable. The electricity
production is thermoelectric for 71%, mainly from gas and coal, increasing from the
minimum registered in the year 2014 after the decline started in 2007 when it covered
85%. The hydroelectric component is stable at 13%; the photovoltaic production began
in the 2007 and now is around the 8%, whereas the wind power started its development
at the beginning of this century and now reached about 6%. Finally, the geothermal
generation is stable at about 2%.
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6 2 Electricity and gas: demand and prices

2.2 General description of Italian Energy markets

As a consequence of the European directive about the internal energy market development
(96/92/CE), the Italian electricity market was born with the legislative decree number
79 (79/99) of 1999, on the 16th of March. The aim at developing an electricity market
is twofold: promoting the competition in power production and sale, by the creation
of a marketplace, enhancing the transparency and objectivity, and fostering the highest
e�ciency and transparency in the electricity dispatching, managed as a natural monopoly.
On 1st April 2004, the �rst negotiations on the Italian Power Exchange were made. At
the beginning the only spot market was introduced, while on 1st November 2009 the
electricity forward market was also started.
The principal roles in the Italian electricity market are played by four di�erent entities.
First of all, there is Gestore dei Mercati Energetici (GME) which manages the energy
markets, both for electricity and gas, maximizing the targets of their constitution such
as transparency, neutrality, objectivity, and competition between producers. Terna S.p.A.
manages the National Transmission Grid and the electricity �ows by the dispatching
activities, ensuring the balance between demand and o�er at the hourly level. The role of
guarantor of competition and e�ciency by adjustment and control features is played by the
Authority of electricity and gas (AEEG), whereas the Ministry of Economic Development
is the owner of the strategic actions aimed at ensuring the sustainability of the Italian
energy system.
The European directive 98/30/CE and the legislative decree number 164 of 2000, on the
23rd of May, so called "Decreto Letta", set the basis for the liberalization of the gas
market. Such decree required the functional unbundling for what concerns the activities
of transport and dispatching from all the other activities around the natural gas, later ex-
tended to the storage activities with the "Seconda direttiva gas" (2003/55/CE). Another
focal point of the decree 164 was the setting of the limits on the maximum quantities
introduced for sale in the Italian system and limits on the sales to �nal customers. Many
other legislative decrees in the years went in the direction of greater competition in the
natural gas market and ruled its change until nowadays. In this context, the platform for
the natural gas exchange market in Italy was born with the decree of May, 2010.
Analogously to the Italian electricity market, AEEG plays the role of guarantor of compe-
tition and e�ciency by adjustment and control features in the Italian natural gas market
as well. Snam Rete Gas (SRG), as the Transmission System Operator (TSO), is the
principal owner of gas transmission, dispatching and guarantor of the system balancing.
Moreover SRG supplies the di�erent market participants with intraday reports about sta-
tistical data on gas market. The exchange platform, just as the electricity one, is managed
and organized by GME that has also the role of central counterparty.

2.2.1 Electricity market

The Italian electricity market is divided into two parts: the spot market and the forward
market. The spot market is divided into several sessions grouped in Day-Ahead Market
(MGP), Intra-Day Market (MI), and �nally, Ancillary Services Market (MSD). Each of
these market sections is necessary to match at the best �nal o�er and demand in real-
time. The MGP and MI sessions are based on zonal-hourly auctions, and each of them
ends with a single system marginal price (SMP). On the other hand, in the MSD sessions,
the price is set as a pay-as-bid mechanism.



2.2 General description of Italian Energy markets 7

The spot market sessions start with the MGP in the day before the delivery date and
continue with seven sessions of price adjustment (MI) temporally divided in the day before
and on the same delivery date. In the same period, there are di�erent MSD sessions where
Terna, such as a central counterparty, requires to the operators to reduce or enhance their
production, with respect to what planned in the MGP and MI sessions, accepting their
bids.
In the forward market, opened every day, GME plays the role of central counterparty and
operators can buy or sell contracts with future deliveries on month, quarter or year pe-
riods. Alternatively, operators can exchange the same contracts over the counter (OTC).
Each forward contract is registered in the Piattaforma dei conti energia (PCE), a mecha-
nism introduced to give more �exibility to the operators separating the phase of contract
registration from the following physical programs registration. By the PCE, the exchanged
energy in the forward contracts takes part to the MGP auction to concur to the zonal-
hourly system marginal price.
A more detailed analysis of MGP, the �rst and principal spot market, can highlight the
importance of demand forecasting for the electricity players in order to maximize their
revenues. All the description of the MGP mechanism to arrive at the equilibrium price
applies, exactly in the same way, to the di�erent zones at hourly level.
The MGP market starts with o�ers by the participants, where they indicate a maxi-
mum/minimum price they can buy/sell a �xed volume of electricity. In order to not un-
balance the electricity system, operators and consumers in the real-time have to respect
their �nal program after all the sessions of the market, otherwise they incur in penalties.
This represents a guarantee also in relation to the correctness of the o�ers in MGP respect
to the real-time operations. In this context, in order to maximize their revenues, a crucial
information for the electricity sellers is the hourly consumption of the day ahead, which
is not known but could be only predicted. The MGP mechanism, to accept the o�ers,
orders all the o�ers to sell with ascending price (o�er curve) and the o�ers to buy with
descending price (demand curve), as shown in �g. 2.1. Being the two curves aggregated
in terms of quantities, the intersection between them yields the equilibrium price and the
total exchanged quantity. Important constraints to be satis�ed are the limits on �ows of
electricity between the neighbouring zones; in case these ones are respected, the equilib-
rium price is one for all the zones, while when, for a zone, the transmission capacity limits
are saturated, the equilibrium price is �xed for that zone and the auction mechanism is
repeated for the other zones to end with two or more prices among the di�erent Italian
zones. At the end of MGP auctions, GME determines the single national price (PUN) for
the exchange of electricity in Italy for the day ahead.
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€/MWh

MWhV*

Px*

Fig. 2.1: A stylized representation of the mechanism of price determination in the MGP
market. The intersection between the demand curve (red line) and the o�er curve (green
line) brings to the equilibrium price Px∗ and the total accepted demand V∗.

It is clear, from the description of the auction mechanism behind the formation of the
MGP zonal-hourly price, the fundamental role played by the consumption so that, for the
energy companies, better predictions are extremely helpful to improving their bidding
strategies in a more accurate way.

2.2.2 Gas market

Since October 2003, the operators can exchange gas in the Italian network at a virtual
point, the "Punto di Scambio Virtuale" (PSV). In this point, very useful for the system
balancing, the transactions are made over the counter by bilateral contract.
In addition to the OTC bilateral contracts there are ruled gas markets, owned by GME,
among the operators authorized to make transactions at the PSV. Similarly to the elec-
tricity ones, these markets, called MGAS, are divided into spot (MP-GAS) and forward
(MT-GAS). The two principal sessions of spot markets are the day ahead (MGP-GAS)
and intraday (MI-GAS) ones. Both are based on a pay-as-bid mechanism rather than an
auction one, typical of electricity. The transactions on MGP-GAS, the most signi�cant
GME spot gas market, start three days before the delivery date and close at hour 2:30
of the delivery date. Then, the single price of the delivery date is given by the average of
all the transaction prices weighted with the exchanged transaction quantities. This daily
price is relevant because, as a consequence of recent regulations (since October 2016),
it is also at the base of the balancing price which the operators have to pay for their
unbalanced positions, that is the di�erence between the consumption nominated the day
before and the true consumption of the delivery day. In order to obtain the balancing
price, the other two relevant quantities regard the purchase and sales bids of the TSO
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SRG, that participates to the gas market in order to assure the balance of itself. Indeed,
as a consequence of the dual mechanism, any operator, in order to balance his position,
receives

P sellunbal,G = min
(
min

(
PTSOG

)
; P̄G − SAG

)
(2.1)

in case its actual consumption is higher than nominated (long position); whereas it pays

P buyunbal,G = max
(
max

(
PTSOG

)
; P̄G + SAG

)
(2.2)

in case its actual consumption is lower than nominated (short position). In both the
equations SAG is a �xed small adjustment equal to 0.108 ¿/MWh, P̄G is exactly the
price MGAS of the considered day and PTSOG are the prices exchanged by SNAM. In
particular situations, caused by missing or excess of gas, the balancing price respectively
to pay or receive are 82.8 ¿/MWh and 0 ¿/MWh; whereas in case of scarce liquidity,
exchange titles less than 2000 MWh, the prices are given by the average of the previous
30 day.
It goes without saying that, especially in order to correctly nominate the day-ahead gas
consumption so as to limit the costs given by unbalanced positions, but also aimed at
better forecasting the gas price, the availability of accurate predictions of the day-ahead
gas demand is of great value for energy companies.

2.3 Italian Gas consumption

In this thesis, the prediction of the day-ahead Italian gas demand (GD) is addressed
passing through its disaggregation. Apart from minor components that can be neglected,
at any day t, the overall GD is given by the sum of Residential Gas Demand (RGD),
Industrial Gas Demand (IGD) and Thermoelectric Gas Demand (TGD):

GDt = RGDt + IGDt + TGDt

RGD represents the main part of the overall Italian gas consumption, accounting for
household usage for cooking, water heating and, most importantly, environment heating;
IGD includes demand by industrial plants, while TGD only accounts for the fuel required
by thermoelectric power plants.
Four one-day-ahead forecasting problems will be considered: (i) RGD, (ii) IGD, (iii) TGD
and (iv) the overall GD forecast which will be obtained by summing (i), (ii) and (iii). The
pro�les of RGD, IGD, TGD and GD from 2007 to 2018 are respectively displayed in �gs.
2.2, 2.3, 2.4 and 2.11.
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Fig. 2.2: Italian Residential Gas Demand (RGD): years 2007-2018
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Fig. 2.3: Italian Industrial Gas Demand (IGD): years 2007-2018
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Fig. 2.4: Italian Thermoelectric Gas Demand (TGD): years 2007-2018

RGD, see �g. 2.2, greatly oscillates with the season: during the cold months, from October
to March, it represents about 55% of the overall Italian demand, while it drops to about
27% during the warm months, from April to September. When the temperature climbs
above 17-18 Celsius degrees, domestic heating is typically switched o�. Thus, during the
cold period lower temperatures cause a larger RGD, while, during summer, when weather
in�uence is negligible, a seasonal pattern becomes evident, with lower RGD during week-
ends compared with working days. Due to the lack of dependence on weather conditions,
the pro�le of summer RGD is remarkably repeatable from year to year. Overall, there is
an evident yearly seasonality.
Industrial Gas Demand (IGD), �g. 2.3, does not exhibit strong trends: a signi�cant de-
crease is only recorded in 2009, following the �nancial crisis started in the previous year.
The series presents weekly and yearly seasonal patterns. In particular, as most of the
industrial facilities stop or slow down production during the weekend, IGD is lower on
Saturdays and Sundays. In August and at the end of December, regular holiday periods,
IGD drops to about half of its average value. Other holidays, such as Easter and Labour
Day, result in similar e�ects. During the year, IGD shows a decrease from January to Au-
gust and an increase from September to December, due to the use of gas for environmental
heating.
Di�erently, from RGD and IGD, TGD shows a clear trend, see �g. 2.4. From 2008 to 2014
TGD decreases, mostly due to the growing importance of renewable sources of electric
power, while, since 2014, the trend stabilizes, likely due to the decrease in subsidies to
the installation of photovoltaic systems. The yearly periodicity for TGD is less evident
than for RGD and IGD.
In order to characterize the yearly seasonality, it is convenient to introduce the notion of
similar day, widely used in this thesis. The following de�nitions hold:

� year(t) is the year to which day t belongs;
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� weekday(t) is the weekday of day t, e.g. Monday, Tuesday, etc;
� yearday(t) is the day number within year(t) starting from January 1, whose yearday

is equal to 1.

De�nition 2.1 (Similar Day). If t is not a holiday, its similar day τ∗ = sim(t) is

τ∗ = arg min
τ
|yearday(τ)− yearday(t)|

subject to

� year(τ) = year(t)− 1;
� weekday(τ) = weekday(t);
� τ is not a holiday.

If t is a holiday, its similar day τ∗ = sim(t) is the same holiday in the previous year.

According to the Italian calendar, holidays are 1 January, 6 January, 25 April, 1 May, 2
June, 15 August, 1 November, 8, 25 and 26 December, Easter and Easter Monday.
Following the Similar Day de�nition, the superposition of the twelve years of RGD, IGD
and TGD are displayed respectively in �gs. 2.5, 2.6 and 2.7. From these �gures, the
main features of the three time series can be better appreciated, above all the strong
periodicities: yearly for both RGD and IGD, weekly for IGD all the year long and also for
RGD but only during the central period of the year, when temperatures rise over 18◦C.
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Fig. 2.5: Superposition of Italian Residential Gas Demand (RGD): years 2007-2018
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Fig. 2.6: Superposition of Italian Industrial Gas Demand (IGD): years 2007-2018

TGD shows a greater variability compared to IGD and RGD, as seen from the year-
over-year plot in �g. 2.7. TGD is indeed in�uenced by several factors, including prices of
electric power, gas, and European Emission Allowance (EUA) certi�cates, which exhibit
a large volatility [12]. These observations explain why yearly periodicity is relatively less
important in TGD than in RGD and IGD.
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Fig. 2.7: Superposition of Italian Thermoelectric Gas Demand (TGD): years 2007-2018
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Averaging the values of gas demand for similar days in the twelve years for each of the
three segments (�gs. 2.8, 2.9 and 2.10) removes the variability from the three time series.
This operation has the e�ect of bringing up the weekly periodicity that in the case of
TGD and of RGD was hidden by the intense volatility during the cold months.
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Fig. 2.8: Average pro�le of Italian Residential Gas Demand (RGD): years 2007-2018
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Fig. 2.9: Average pro�le of Italian Industrial Gas Demand (IGD): years 2007-2018
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Fig. 2.10: Average pro�le of Italian Thermoelectric Gas Demand (TGD): years 2007-2018

In �g. 2.11 the GD time series is displayed. Over the twelve years 2007-2018, the domestic
demand accounted for about 45% of the total consumption, while 35% was due to the
thermoelectric component. It has to be noted that the composition of the daily demand
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greatly di�ers between the winter season (from October 1 to March 31) and the summer
one (from April 1 to September 30). RGD represents about 55% of the total demand in
winter, but only 27% in summer. In summer the thermoelectric covers the biggest portion
with the 48% as a consequence of his dependence on power price, whereas in winter it
adds up to the 29%. The industrial component is always the lowest, 25% in summer and
16% in winter. This variability in the proportions of the three main segments depends
on the pronounced di�erence between summer and winter in the residential gas demand.
As already observed, during winter lower temperatures cause a larger RGD, so that the
RGD yearly pro�le follows the seasonal temperature pro�le, see �g. 2.5.
All these characteristics sum up in the GD curve (�gs. 2.11, 2.12, 2.13) which shows the
typical yearly shape of RGD, but larger di�erences between the levels of the working days
and those of weekends, just as for IGD and TGD. Moreover, the GD series exhibits higher
volatility than RGD, derived from the TGD component, and a pronounced reduction
during the summer and Christmas holidays, mostly following the IGD and TGD pro�les.
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Fig. 2.11: Italian Gas Demand (GD): years 2007-2018
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Fig. 2.12: Superposition of Italian Gas Demand (GD): years 2007-2018
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Fig. 2.13: Average pro�le of Italian Gas Demand (GD): years 2007-2018
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2.4 Italian electricity load

In this thesis, also the day-ahead prediction of the Italian electricity demand (IED) is
addressed both at aggregated and disaggregated level.
The IED time series during the period 2012-2018 is displayed in �g. 2.14. Its character-
istics are similar to those highlighted in the Italian gas demand series, in particular the
pronounced seasonalities and some correlation with the temperature.
IED exhibits daily and weekly seasonalities. As a matter of fact, in the period 2012-2018,
the average percent di�erences between consecutive days are characterised by a steady
growth of 28% between Sunday and Monday, low variations between the following days
until Friday and two pronounced decreases, between Friday and Saturday and between
Saturday and Sunday, respectively of 15% and 12%. The weekly periodicity is the most
evident. Another periodical signal is shown by the biannual raising of the demand level in
correspondence of winter and summer, generally in February and July. A third periodicity
comes from the reduction of the demand level during the holiday periods, generally three
times a year, around the end of April and the beginning of May, in August and during
the Christmas period.
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Fig. 2.14: The daily Italian electricity demand in the period 2012-2018.

Fig. 2.15 shows the breakdown of the total daily IED (IEDd) in its 24 hourly components
(IEDh) during 2018, the most recent sample year. The average correlation between the
daily series of the di�erent hours is high, about 0.82, with a minimum of 0.45. The
lowest correlations refer to the series of the �rst six hours of the day, with mean 0.67 and
minimum 0.45, whereas the other hours exhibit a mean of 0.94 and a minimum correlation
of 0.78. On the other hand, the correlation between the 24 series IEDh and IEDd has a
mean value of 0.9 and a minimum of 0.62. Here as well the result is highly diversi�ed in
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the two clusters of hours, the �rst six with a mean of 0.72 and a minimum of 0.62, and the
other hours with a mean of 0.97 and a minimum of 0.91. In line with the high correlation
between the di�erent IEDh and with IEDd, the behavior of IEDd is roughly replicated by
each IEDh only changing the level.
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Fig. 2.15: IEDd versus time in the year 2018 (top) and its split into 24 daily curves IEDh

(bottom). The �gure highlights the similar behavior of each IEDh with respect to IEDd.

A further split of the IED series can be made at spatial level, leading to XED which
accounts for the contribution of the six di�erent zonal electric demands (�g. 2.16): North,
Central-North, Central-South, South, Sicily, and Sardinia. XED turns into XEDd and
XEDh respectively in case of daily and hourly demand.
As seen in �g. 2.17, the main contribution to IED is given by the North zone with about
56% of the total Italian demand, which is around 300 TWh. The main factors are the
following: the North zone contains the highest number of regions: eight (all the regions
north of Tuscany); they are much more industrialized compared to the other areas of Italy;
moreover the climate has a signi�cant e�ect because of the cold winter and hot summer.
The Central-South zone, with three regions (Lazio, Campania, and Abruzzo), accounts for
15% and the Central-North (Tuscany, Umbria, and Marche) with 11% of the total IED.
The South (Molise, Basilicata, Apulia, and Calabria) follows with 9% and the remaining
part is due to the islands, with 6% and 3% respectively for Sicily and Sardinia. Another
essential element to underline is the ratio between the mean of the weekly ranges (the
di�erence between the highest and the lowest value of each week) and the average of the
weekly mean levels. This ratio should follow the degree of industrialization of the region
because it represents the relevance of the demand being higher on weekdays compared to
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weekends when the industries are closed. As expected, the most signi�cant value is found
in the North, about 40%, followed by the Central-North with 32%, Central-South with
22%, South with 16%, Sicily with 12% and Sardinia with 8%.
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Fig. 2.16: The division of Italian territory into six market zones: North, Central-North,
Central-South, South, Sicily, and Sardinia.
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Fig. 2.17: Split of IED (top) in the six zonal contributions XED (bottom) for the sample
year 2018. The North zone is by far the most important.

In �g. 2.18, six distinct plots with the 24 XEDh time series for each Italian zone are
reported. Unlike the levels of the zonal demands, already discussed for �g. 2.17, here it
is possible to observe for each zone the degree of regularity of the hourly paths. The
North shows the most regular paths as also con�rmed by the average correlation between
consecutive samples of its XEDh, around 0.84. On the other hand, Sardinia XEDh follows
the most irregular paths which involve a lower correlation of about 0.75. Nevertheless, all
the XEDh exhibit a behavior similar to IED. This will be the main justi�cation for the
decision to forecast them with the same model and features chosen for IED forecasting.
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Fig. 2.18: The plots for the 24 XEDh time series for each Italian zone.
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Machine Learning models

3.1 Forecasting models in general

The classical methods used for time series forecasting are linear Box-Jenkins models such
as SARIMA, where the forecast is based only on past values of the time series, and
SARIMAX, that accounts also for exogenous variables. A major drawback of classical
linear models is given by discontinuities due to holidays and the possible presence of
other nonlinear phenomena. In order to overcome these di�culties, herein the forecasting
is formulated as a statistical learning problem.
The subject of this chapter is the overview of the statistical learning framework with a
particular focus on models and methods of "learning from data" used in the thesis. The
statistical learning framework is well represented by a tree (�g. 1) where the di�erent
branches end to the leaves where the predictive models are placed. Next, we review the
break points of the tree, highlighting their motivation.

23
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Fig. 3.1: A representation of statistical learning with a focus on supervised learning and
the analyzed models in this thesis

Statistical learning starts with data, that represent by numbers what we want to learn,
the target, and what we can use to learn, the features. The data are the practical examples
from which we try to derive a rule able to predict the unobserved target based on the
features. The typical situation is to have a set of pairs {xi, yi} where, in a forecasting
context, i labels the time step and xi is a vector gathering the features that we use
to predict the target yi. This branch of statistical learning, called supervised learning,
is what is employed in this thesis to address short-term forecasting problems. On the
other hand, there are situations in which the values assumed by the target variable are
not known, bringing to another branch called unsupervised learning. The third area of
statistical learning is given by the reinforcement learning which is based on the choice of
the actions the machine has to take, in order to maximize a reward function.
Focusing on the supervised learning area, the �rst break point is created by the knowledge
or not of the target variable; then, depending on the uncountable or countable nature of
y, we have two further branches: regression or classi�cation. All the models developed
and tested in the thesis are regression models so, even if the following part of the tree
comply with both regression and classi�cation, we focus on the �rst one.
The simplest form of regression is based on linear models, where linear means a linear
relation between the target and the regressors that could also be a non linear map φ(x)
of the features x as long as their relation with the target is linear:

y = w · φ(x).

Within the linear framework it is possible to describe many models, based on the di�erent
structures which the feature maps can assume. We will describe some parametric mod-
els, mentioning also regularization theory and Gaussian Processes, based on a Bayesian
interpretation of the statistical learning framework.
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On the other hand, we speak of nonlinear models when there is a nonlinear relationship
between the target variable and the regressors, which, in the case of parametric models,
happens when the target is a nonlinear function of the parameters w. Among the many
possible models, in this thesis we will describe three classes: KNN, random forest and
arti�cial neural networks (ANN), the last one being the widest class.
A consequent and relevant part of the following sections will concern also the important
role played by the ensemble methods given by the aggregation of forecasts in order to
obtain better and more robust performances.

3.1.1 Importance of the predictive features, attention to over�tting

The objective of forecasting is to discover the value of the target variable y. In order to
reach this scope, many regressors, possibly highly correlated with y, are searched. Thus
the typical situation of supervised learning is to have n data samples {xi, yi}, where
xi ∈ Rm is a vexctor of m features and yi ∈ R is the corresponding target variable y.
These samples can be seen as n extractions from the unknown distribution Pr(x, y). The
goal of learning is to �nd a function f(x) that minimizes the expected risk

E(f) =

∫
X×Y

L(y, f(x))dρ(x, y) (3.1)

where L is the loss function that measures the di�erence, or error, between f(x) and y,
e.g. L(y, f(x)) = (y − f(x))2, [13],[14].
Then, we can write the target y as

y = f(x) + ε (3.2)

where ε := y − f(x) is the so called irreducible noise. Based on a �nite sample of data
{xi, yi} (training sample or in sample - IS), it is not possible to �nd f but rather f̂ , which
minimizes an empirical error. However, for a given loss function, the goal remains that of
achieving a small expected loss on a new and di�erent sample of data (test sample or out
of sample - OOS). The problem is hence di�erent from �tting, just because as OOS is
di�erent from IS. So the concept is that the predictor, based on a training sample, should
enjoy good generalization properties, meaning that good performances are obtained also

on the test sample. Assuming a L2 loss function given by L(y, f̂(x)) =
(
y − f̂(x)

)2
, its

expectation value is given by

E[(y − f̂(x))2)] = E[y2 + f̂(x)2 − 2yf̂(x)]

= E[y2] + E[f̂(x)2]− E[2yf̂(x)]

= V ar[y] + (E[y])2 + V ar[f̂(x)] + (E[f̂(x)])2 − 2f E[f̂(x)]

= V ar[y] + V ar[f̂(x)] +
(
f2 − 2f E[f̂(x)] + (E[f̂(x)])2

)
= V ar[y] + V ar[f̂(x)] +

(
f − E[f̂(x)]

)2
= σ2

ε + V ar[f̂(x)] +Bias[f̂(x)]2 (3.3)
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where we used E[ε] = 0, E[f ] = f , E[y] = f and V ar[x] = E[x2] − (E[x])2. Above f̂(x)
is an estimator that depends on the training set and is evaluated on the test input x,
while y is the vector of the test output. The expectation of the square error is taken with
respect to both the training and the test data. Equation (3.3) shows that the prediction
error is given by the sum of the noise variance, σ2

ε , the variance of the predictive function
f̂ , which is a measure of the variability of the predictions obtained by di�erent training
samples, and the squared bias, which is a measure of the error made by the mean predictor
with respect to the target function. This decomposition of the squared prediction error
highlights the so called bias-variance dilemma.

3.1.2 Model performance indicators

Many performance indicators are tipically used for the choice of the best model.
The most known is the Root Mean Square Error (RMSE)

RMSE =

√√√√ 1

N

N∑
j=1

(
yj − f̂j

)2
where y and f̂ are the actual value and its forecast. RMSE derives from the L2 loss function
in fact it is the squared root of its expected value. Consequently, RMSE is sensitive to
outliers because each error is weighted according to its squared value.
In the forecasting of energy time-series two widely used performance indicators are the
Mean Absolute Error (MAE)

MAE =
1

N

N∑
j=1

∣∣∣yj − f̂j

∣∣∣
and the Mean Absolute Percentage Error (MAPE)

MAPE =
100

N

N∑
j=1

∣∣∣yj − f̂j

∣∣∣
yj

MAE is preferred over MAPE when the time series exhibits a non-stationary behavior
or when the user is more interested to the absolute level of the error rather than its
percentage value.
On the other hand, MAPE is preferred when the series is stationary or when di�erent
models are to be compared on several time series, with possibly di�erent scales.

3.1.3 Backtesting and benchmarking

Probably, the most relevant parts in the development of a forecasting model are those
devoted to backtesting and benchmarking.
The backtesting is the evaluation of model performances making predictions as of a past
date, or based on a sample of simulated data. The dimensions of train and test sets
for backtesting are crucial to obtain correct informations. If properly performed, the
backtesting provides the error measure, by the chosen performance indicator, that could
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be expected by the developed model on future data, under the fundamental hypotesis
that future observations belong to the same distribution as the past ones.
The benchmarking, or model benchmarking, is the comparison of the performances of two
or more models. The models in the comparison could range from the trivial to the most
complex ones. This procedure highlights which is the best performer and sets the level
for next improvements. The model benchmarking does not only select the most accurate
model, but opens the way to model aggregation when two or more models, based on
alternative methodologies, yield errors that, though comparable in size are not too much
correlated.

3.1.4 Box-Jenkins models

Time series forecasting has been historically approached by Box-Jenkins models [15],
which are methods based on the assumption that the time series is a realization of a
stochastic process. These models rely on the analysis of the correlation of the time se-
ries assuming that the underlying stochastic process can be approximated by an ARMA
(Autoregressive Moving Average) model(

1−
p∑
i=1

φiL
i

)
xt = µ+

(
1 +

q∑
i=1

θiL
i

)
εt (3.4)

in case of the time series is stationary, otherwise by an ARIMA (Autoregressive Integrated
Moving Average) model(

1−
p∑
i=1

φiL
i

)
(1− L)dxt = µ+

(
1 +

q∑
i=1

θiL
i

)
εt. (3.5)

In the equations 3.4 and 3.5, xt is the time series data at time t, εt is the error term at
time t, L is the lag operator, φ are the parameters of the autoregressive part, θ are the
parameters of the moving average part, µ is the mean, p, d, q are the hyperparameters.
The SARIMA (Seasonal Autoregressive Integrated Moving Average) is one of the time
series or Box-Jenkins models. In particular, it extends ARIMA taking into account the
seasonal component of the series. In practice the analytic form of ARIMA(p,d,q) changes
in SARIMA(p,d,q)(P,D,Q)s

(
1−

∑p
i=1 φiL

i
) (

1−
∑P
j=1 ΦjL

j×s
)

(1− L)d(1− Ls)Dxt = µ+
(
1 +

∑q
i=1 θiL

i
) (

1 +
∑Q
j=1ΘjL

j×s
)
εt

where:

� Φ are the parameters of the seasonal autoregressive part
� Θ are the parameters of the seasonal moving average part
� P,D,Q, s are the hyperparameters of the seasonal part

This model could be further extended taking into account also exogenous variables, in
which case the Box-Jenkins model is called SARIMAX.
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3.2 Focus on considered models

In this section we will review the models developed and tested in the thesis.
Based on the availability of n data pairs (xi, yi), i = 1, . . . , n, known as the training data,
a prediction rule f(·) is searched for with the objective of using f(x∗) as prediction of y∗,
where (x∗, y∗) is any novel input-output pair. In this context, xi ∈ Rp, p < n, is a vector
whose entries are given by the p features associated with the target yi.
In the following, with reference to the training data, y = yi ∈ Rn will denote the vector
of the targets and X = {xij} ∈ Rn×p will denote the matrix of the training input data,
where xij is the j-th feature of the i-th training pair (xi, yi).

3.2.1 Linear regression and his regularized extension

Ridge regression [16], LASSO [17] and elastic net [18] are methods to identify the param-
eters βj of the linear-in-parameter predictor:

f(x) =

p∑
j=1

xjβj = xTβ, β ∈ Rp (3.6)

where xT =
[
x1 x2 . . . xn

]
. Accordingly, the vector of the predicted training targets is

f =
[
f(x1) f(x2) . . . f(xn)

]T
= Xβ (3.7)

To prevent over�tting and improve generalization capabilities, in all the three methods
the loss function includes a penalty on the magnitude of β:

βridge := arg min
β
‖y −Xβ‖2 + λ‖β‖2 (3.8)

βLASSO := arg min
β
‖y −Xβ‖2 + λ

p∑
i=1

|βi| (3.9)

βelastic net := arg min
β
‖y −Xβ‖2 + λ

(
α‖β‖2 + (1− α)

p∑
i=1

|βi|

)
(3.10)

The three methods share the same standard quadratic loss

‖y −Xβ‖2 =

n∑
i=1

L(yi, f(xi)), L(y, ŷ) := (y − ŷ)2

but use di�erent penalties that result in speci�c shrinking patterns.

Ridge regression

In ridge regression [19], the quadratic penalty shrinks parameters toward the origin.
This model could also be seen such as a simple linear model where the least squares loss
is complemented with a constraint on the parameters sum of squares (Fig. 3.2)
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ridge = argmin

β

∑N
i=1(yi −

∑p
j=1 xijβj)

2∑p
j=1 β

2
j ≤ t

Obviously, the hyperparameters λ and t are univocally interlinked.

 𝜷

 𝛽1

 𝛽2

t

Fig. 3.2: Two dimensional example of ridge regression: the constraint on the parameters
sum of squares is represented by the circular region. Its radius is a hyperparameter to be
tuned.

Assuming that X is full rank, the solution of (3.8) is

βridge = (XTX + λI)−1XTy (3.11)

that highlights the shrinking e�ect with respect to the standard least squares estimator
βLS = (XTX)−1XTy.
Since the parameters are obtained in closed form (3.11), the ridge regression model is com-
pletely speci�ed by the choice of λ, that can be calibrated following di�erent approaches
[19].
A normalized assessment of the amount of regularization associated with a given λ is
provided by the so-called e�ective degrees of freedom

df(λ) = tr
(
X(XTX + λI)−1XT

)
In fact, df(λ) ranges from p to 0 as λ goes from 0 to in�nity [19].

LASSO

In the LASSO the penalty on the sum of absolute values has the e�ect of zeroing the least
relevant parameters, thus enforcing some degree of sparsity.
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This can also be seen as a linear model whose parameters are subject to a constraint on
the sum of their absolute values:β

LASSO = argmin
β

∑N
i=1(yi −

∑p
j=1 xijβj)∑p

j=1|β|j ≤ t

where the hyperparameter t is directly linked to λ. Di�erently from the Ridge regression,
there is not a closed form solution for the parameters. It is worth remarking that, de-
pending on the choice of λ, the parameters may also shrink to zero as shown in Fig. 3.3.
So the LASSO can be seen such as a continuous subset selection model.

 𝜷

 𝛽1

 𝛽2

Fig. 3.3: A two dimensional representation of the LASSO. The graph shows that the
LASSO has the potential to zero the value of some parameters.

The regularization hyperparameter λ (or t) gives higher generalization capacity to the
model limiting the risk of over�tting. A common way to calibrate this hyperparameter is
by cross validation.

Elastic Net

Another linear model is the elastic net which is a compromise between LASSO and ridge.
The regularization term is given by a combination of the L2 ridge penalty and the L1

lasso penalty

λ

p∑
j=1

(
αβ2

j + (1− α)|β|j
)

(3.12)
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where the additional parameter α is needed for weighting the LASSO and ridge compo-
nents. In Fig. 3.4 is represented the elastic net threshold t in case of two features.

𝜶 = 𝟎. 𝟑

Fig. 3.4: A two factor representation of the elastic net threshold parameters. The second
hyperparameter α is put equal to 0.3.

The regularization hyperparameters λ and α can be calibrated by cross validation.

3.2.2 Support vector machine

An alternative method to estimate f is by means of support vector regression (SVR), see
e.g. [20]. In this case, in place of the quadratic loss, an ε-insensitive loss function is used:

Lε(y, ŷ) :=

{
0, |y − ŷ| < ε

|y − ŷ| − ε, otherwise
(3.13)

Moreover, the assumption is made that f ∈ H, where H is a Reproducing Kernel Hilbert
Space (RKHS) [21], whose reproducing kernel is denoted by κ(·, ·). Under this assumption,

‖f‖κ =

∞∑
j=1

∞∑
i=1

αjαiκ(xj , xi)

where αi are such that

f(x) =

∞∑
j=1

αjκ(x,xj)

The SVR estimate is de�ned as

fSVR := arg min
f∈H

n∑
i=1

Lε(yi, f(xi)) +
λ

2
‖f‖2κ (3.14)

The hyperparameters are the real-valued constants λ and ε.
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Although fSVR(x) is a nonlinear function of x, the Representer Theorem (see e.g. [22])
ensures that there exist coe�cients ci such that the predictor function can be written as
a linear combination of kernel functions centered at xi

fSVR(x) =

n∑
i=1

ciκ(xi,x)

so that also the SVR predictor, though implementing a nonlinear function of the features,
has a linear-in-parameter structure.

3.2.3 Gaussian processes

Let ȳ =
[
y∗ yT

]T
, x̄ =

[
x∗T x1

T . . . xn
T
]T

and assume that, conditional on x̄, the
vector ȳ is normally distributed as follows

ȳ|x̄ ∼ N
(
0,Σ(x̄) + σ2In

)
[Σ(x̄)]ij = κ(x̄i, x̄j)

where the kernel κ(·, ·) is a suitable function whose choice re�ects the available prior
knowledge on the characteristics of the prediction rule. It is worth noting that the previous
hypothesis is equivalent to assuming that

yi = f(xi) + εi, i = 1, . . . , n

where εi ∼ N (0, σ2) are independent errors and f(·) is the realization a zero-mean
continuous-time Gaussian Process (GP) with autocovariance κ(x̄i, x̄j)[23, 24]. The es-
timation of a new target value y∗ relies on the following property of normally distributed
random vectors.

Lemma 3.1 (Distribution of jointly Gaussian variables). Let z∗ and z be jointly
Gaussian random variables:[

z∗
z

]
∼ N

([
0
0

]
,

[
Σz∗z∗ + σ2 Σz∗z

Σzz∗ Σzz + σ2In

])
Then, the posterior distribution of z∗ conditional on z is:

z∗|z ∼ N
(
Σz∗z

(
Σzz + σ2In

)−1
z, Σz∗z∗ + σ2 −Σz∗z

(
Σzz + σ2In

)−1
Σzz∗

)
In view of the previous lemma, it is possible to use the posterior expectation as prediction
rule.

f(x∗) = E [y∗|x∗,y,x] =

n∑
i=1

ciκ(x∗, x̄i)

c =
(
Σ(x) + σ2In

)−1
y

The main distinctive feature of GP models is the learning process, which aims directly at
obtaining the predictive function rather than inferring its parameters.
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A zero-mean GP is completely de�ned by its covariance function κ(xi,xj), also called
kernel. When it is a function of the distance r = ‖xi − xj‖ between xi and xj , i.e.
κ(xi,xj) = κ(r), the kernel is said to be stationary and isotropic. Within this class, a
popular and �exible choice is the family of Matérn kernels, de�ned by:

κMatern(r) =
21−ν

Γ (ν)

(√2νr

l

)ν
Kν

(√2νr

l

)
where ν and l are hyperparameters to be tuned and Kν is a modi�ed Bessel function [25].
The parameter l de�nes the characteristic length-scale of the process, whereas ν de�nes
the speci�c covariance function in the Matérn class. If ν tends towards in�nity, the Matérn
formula reduces to the widely used squared exponential function

κse(r) = exp
(
− r2

2l2

)
while if ν = 1/2 it becomes an exponential function

κexp(r) = exp
(
−r
l

)
Di�erent approaches are possible in order to tune the hyperparameters ν, λ, and σ2.
According to an empirical Bayes, the hyperparameter vector η is chosen as the maximizer
of the marginal likelihood p(y|x,η).

3.2.4 Torus model

The torus model [26] is a linear model based on sinusoidal functions, originally developed
to predict power load. Herein, its short-term version is adapted to forecast both gas and
power demand series.
Following [26], a logarithmic transformation of the demand series D is performed in order
to mitigate the e�ect of its skewness. The long-term model is

ln D̂long(t) = L(t) + F (t) +
∑
i

Hi(t)

where the forecast is given by the sum of three elements: the trend or level L, the potential
F , which accounts for seasonality, and the e�ect of holidays

∑
iHi.

The potential F is modelled by a linear combination of sinusoidal functions:

F (t) =

(1+2Nd)(1+2Nw)∑
i=1

θihi(t), {hi(t)} = D ⊗W

where the functions hi are given by the product of the j-th element in D with the k-th
element in W, for suitable j and k, and

D = {cos(jΨt), j ∈ [0, Nd]} ∪ {sin(jΨt), j =∈ [1, Nd]}

W = {cos(kΩt), k ∈ [0, Nw]} ∪ {sin(kΩt), k ∈ [1, Nw]}
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The frequencies of the sinusoidal functions are Ψ = 2π
365.25 and Ω = 2π

7 . The number of
harmonics, respectively Nw for 7-day and Nd for 365.25-day periodicity, are hyperparam-
eters of the model.
We add to the original model of the potential F the linear dependency on temperature,
expressed in HDD(t), and its daily di�erence HDD(t) − HDD(t − 1), by including these
two features in the set of regressors. The terms related to trend and holidays are kept as
presented in [26].
Finally, to get a short-term predictor, we correct the long-term model with the consump-
tion of the previous day :

D̂(t) = D̂long(t)
D(t− 1)

D̂long(t− 1)
.

The number of harmonics Nw and Nd were tuned by minimizing the Akaike information
criterion (AIC).

3.2.5 K-nearest neighbor

K-Nearest neighbours (KNN) relies on the distance between samples in the feature space:
given a test sample x∗, the prediction of y∗ is computed by averaging K training samples
yi, i ∈ C, where C denotes the set identi�ed by the K feature vectors xi that are the
closest to x∗, according to some distance measure, e.g the Euclidean norm that was
adopted herein.
In order to specify a KNN estimator, one has to choose the distance metric, e.g. Euclidean,
Minkowsky, Manhattan, etc, and the type of weighted average, e.g. uniform or inverse
distance, and to calibrate one hyperparameter, viz the number K of neighbours. Too
small values of K lead to over�tting to the training data, while including too many
neighbours reduces the variance at the cost of jeopardizing model �exibility.

3.2.6 Random forest

The Random forest method (see e.g. [24]) is based on so-called Classi�cation and Re-
gression Trees (CART) [27]. CARTs perform a recursive feature-wise partitioning of the
input space and �t local linear regressions in each region of the �nal partition. CARTs
are known to be unstable and prone to over�tting. In order to overcome these limitations,
random forest models grow multiple CARTs, resorting to so-called data and feature bag-
ging. Bagging or bootstrap aggregating is a random selection of a subset of a dataset that
is repeated multiple times (with replacement). Models are then trained on each selected
subset. By applying bagging to both data and features, each tree gets trained on di�erent
samples and feature sets. Forecasts performed by all models are then averaged to get the
�nal prediction, leading to a more stable model.

3.2.7 Arti�cial Neural Networks

Arti�cial Neural Networks (ANN) are complex non-linear models, capable of capturing
non-linear patterns and relations. A comprehensive explanation of their structure and the
most common training algorithms can be found in [28].
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There are three principal categories of ANN: the feedforward neural networks (FNN), the
convolutional neural networks (CNN) and the recurrent neural networks (RNN). Histor-
ically, FNN were the �rst type of ANN: they introduce a non-linearity in the parameters
by the application of a non-linear function, the activation function, to the typical linear
combination of the feature maps (STEP 1). Moreover, they enhance the non-linearity by
a multiple repetition of this operation followed by a second application of the activation
function on the linear combination of the obtained results (STEP 2). The depth of the
ANN grows increasing the number of repetitions of STEP 1 and STEP 2. Another char-
acteristics of FNN is that each operation has an e�ect on the �nal results. In view of this,
they are also called fully connected neural networks.
On the other hand, CNN are a type of neural networks where matrix multiplication is
substituted by the convolution operation, which aims at �nding the similarity between
signals so as to identify patterns in the analyzed data. These neural networks are typically
used for image identi�cation because of their feature, appropriate for data with known
grid-like topology. The new signi�cant concepts introduced by CNN are the sparsity in
the weights and the parameter sharing. Both these innovations help reducing the over-
parametrization and the consequent over�tting.
RNN are the third class of neural networks, specially suited to data with one-dimension
known topology, such as for example time series. RNN recover the matrix multiplication
of the FNN and have the important characteristics of parameter sharing just like CNN.
The transition function between the di�erent elements of the sequence, as well as its
parameters, is shared along all the sequence, enhancing the generalization power of the
model. The problem of the standard RNN is that they su�er from the so called vanishing
gradient: the impact on the output of each input unit decays or increases exponentially
step by step along the sequence of data, due to the multiple repetition of the gradient op-
eration in the training optimization algorithm. Many architectures have been introduced
to address this problem and, probably, one of the best solution as of today is given by
the Long Short-Term Memory (LSTM) model [29],[30],[31],[32]. Another alternative RNN
architecture, widely discussed in literature, [33], [34], is the Gated Recurrent Unit (GRU).
In this thesis, we focus on two typologies of ANN: the Multi-Layer Perceptron (MLP),
or feedforward neural network, and the RNN. For what concern the RNN, three di�erent
architectures will be explored and compared, the plain RNN, the LSTM and the GRU.

MLP

The MLP can be easily described as an extension of the linear model (eq. (3.6)) by three
passages: �rst, in eq. (3.6) substitute the vector β of parameters with a matrix W of them;
second, apply a non-linear function f , the so called activation function, to the obtained
vector; third, compute the linear combination of the obtained results by another vector
of parameters β in order to obtain the �nal scalar result. This description, reported in
eq. (3.15),

y = f
(
xTW

)
β (3.15)

regards the most simple MLP, where there is an input vector, a single layer, corresponding
to the matrix W of parameters, and a scalar output.
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The simple example of MLP with one layer is represented in �g. 3.5. In this case the vector
of inputs is composed by four elements, the single layer has �ve neurons and �nally there
is a single output.
From this description, the extension to MLP with more than one layer is direct, being
just a repetition of the steps yet described. The expression for a MLP with three layers is

y = f3
(
f2
(
f1
(
xTW1

)
W2

)
W3

)
β. (3.16)

input outputW

Fig. 3.5: A simple example of MLP with an input layer of 4 elements and one hidden layer
with 5 neurons.

The MLP with three layers, that will be used to forecast the Italian gas and power
demand, is represented in �g. 3.6. For clarity, the input vector with 22 elements is not
included in the �gure.
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Input Layer � �²� Hidden Layer � �¹² Hidden Layer � �� Output Layer � 	¹

Fig. 3.6: The MLP implemented in this thesis with 22 input features, not displayed in the
�gure, three dense layers of 24, 12 and 4 neurons and an output neuron.

The Recti�ed Linear Unit (ReLu) activation function and the Mean Squared Error (MSE)
loss function were adopted. Training was performed by means of gradient descent as
implemented in the Adaptive Moment Estimation (ADAM) algorithm [35]. The tuned
hyperparameters include the number of neurons in each layer, the parameters entering
the de�nition of the activation functions, and optimization parameters such as number of
epochs (the number of times that the learning algorithm works through the entire training
set), batch size (the number of samples used for the updating of the model parameters),
and learning rate (the step size in the gradient descent).

RNN

Di�erently from the FNN, the RNN are developed exactly for processing sequences of
data and, based on a set of inputs, predict the next value of the sequence. The typical
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RNN architecture (�g. 3.7) has an input layer, an hidden layer, composed by recurrent
units, and, �nally, an output layer. In order to fully understand this architecture, it is
frequent to display the unfolded graph of it as well (�g. 3.7), which can also highlight the
fundamental role of the parameter sharing at the base of the RNN.

input

output

W

x

hhidden U

V

U U U

W W W W

x(t) x(t+1) x(t+2) x(t+3)

o(t) o(t+1) o(t+2) o(t+3)

h(t) h(t+1) h(t+2) h(t+3)

V VV V

Fig. 3.7: The RNN architecture with its unfolded representation.

The hidden layer is represented by the state h of the system through the time t and h(t)

is given by

h(t) = f
(
h(t−1),xt;θ

)
(3.17)

where, f is the non-linear function tanh, h(t−1) is the state vector at the previous time
t− 1, xt is the vector of inputs at time t and θ is the general vector of parameters which
considers both the set of parameters W and U reported in �g. 3.7. This architecture lets
the information �ow through the time and, theoretically, gives the possibility to store it.
The two matrices of parameters have dimension respectively d × n and d × d, where n
is the number of features, whereas d is the number of units in the hidden layer h. The
number of times considered, for which the parameters are shared, is usually called time
window, or simply window. The total number of parameters involved in the simple RNN
architecture is given by d(n+ d+ 1), where it is considered also the bias term.
On top of the hidden layer there is the output layer where the output is obtained by

ŷ(t) = o(t) = g
(
Vh(t)

)
(3.18)

where, g is a generic non-linear function (e.g. sigmoid).
The plain RNN, just described, su�ers from the vanishing or exploding gradient, [36],
caused by the repeated product of real numbers (the gradients).
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LSTM was introduced exactly to overcome this problem. In this architecture the cell
state is protected by three di�erent structures, called gates, which determine the �ow of
information in the cell so as to control and prevent the vanishing or exploding gradient.
The LSTM cell, represented in �g. 3.8,

xt

ht

x +

x x

σtanh

tanh

σσ

htht-1

Ct-1 Ct

ft it ot

 Ct

Fig. 3.8: The LSTM cell.

is clearly explained by its equations:

f t = σ
(
W̃f · [ht−1, xt] + bf

)
(3.19)

it = σ
(
W̃i · [ht−1, xt] + bi

)
(3.20)

C̃t = tanh
(
W̃C · [ht−1, xt] + bC

)
(3.21)

Ct = f t � Ct−1 + it � C̃t (3.22)

ot = σ
(
W̃o · [ht−1, xt] + b0

)
(3.23)

ht = ot � tanh(Ct) (3.24)

where, the equations of the three gates are eq. (3.19) for the forget gate, eq. (3.20) for the
input gate and eq. (3.23) for the output gate. Equation (3.21) yields the component C̃t

which represents the new information ready to update the memory cell Ct. Equation (3.22)
returns exactly the updated value of the memory cell, where the value of the forget gate
f t represents the weight of the memory cell at the previous time, whereas the input gate
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it controls the new information to be added to the memory cell. The third gate, the output
gate, obtained with eq. (3.23), controls the output, multiplying the updated memory cell
Ct, once it has been transformed by tanh so that it assumes values between -1 and 1
(eq. (3.24)). In all these equations the matrices of parameters W̃x, with x = f, i, o have
dimensions d × n + d, because W̃x = [Ux,Wx], and Ux have dimension d × d, whereas
Wx have dimension d×n, with n number of features and d number of memory cells. The
vector bx, of dimension d× 1, represents the constant term of each cell.
Thanks to the parameter sharing along the time, their number is reduced with respect to
the MLP. The useful formula to determine the number of parameters of a LSTM cell is

# of parameters = 4d(n+ d+ 1).

An alternative architecture to the LSTM, in order to overcome the vanishing gradient
problem, is represented by the GRU. This architecture, introduced in 2014 ([33]), is similar
to the LSTM one but has less parameters because it doesn't have the output gate.

xt

ht

x

x

tanhσσ

ht-1 ht

rt
zt  ℎ𝑡x

-1

+

Fig. 3.9: The GRU cell.

The GRU architecture, represented in �g. 3.9, is completely described by its equations
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zt = σ
(
W̃z · [ht−1, xt] + bz

)
rt = σ

(
W̃r · [ht−1, xt] + br

)
h̃t = tanh

(
W̃h · [rt � ht−1, xt] + bh

)
ht = (1− zt)� ht−1 + zt � h̃t

where, zt is the update gate vector and rt is the reset gate vector.
For the GRU architecture, the number of parameters is given by 3d(n+ d+ 1).
In the following, chapter 6, three plain RNN architectures will be considered, a simple
RNN, a LSTM and a GRU, where all the con�gurations of each architecture are �xed
except for the number of units, or memory cells, in a single hidden layer and the window,
represented by the time steps to consider for the parameter sharing in the calibration.
Thus the units and the window will be the only hyperparameters to calibrate.

3.3 Principal component analysis (PCA)

PCA is a statistical method that is part of the unsupervised learning techniques. As for
the other unsupervised learning methods whose objective is to �nd relations among the
regressors, PCA, based on a set of p regressors, aims to reduce the dimension of the
problem by a projection on a space, with dimension k < p. Given the matrix of regressors
X ∈ Rn×p, where n is the number of samples and p the number of regressors, the �rst
step of PCA is to compute the eigenvectors V [p× p] of the regressor covariance matrix
where sum of the corresponding eigenvalues represents the amount of explained variance.
These eigenvectors are such that, once chosen the �rst k of them (columns of V), they
simultaneously maximize the variance of the projection XV [n × k] and minimize the
reconstruction error between X and Xnew, where Xnew = XVVT is the reconstruction
of the projected data in the original p-dimensional space.
In this thesis, PCA will be used in order to reduce the computational time in the hourly
demand forecasting (Italian and zonal) and evaluate its potential regularization e�ect
that is the result of its reduction of the number of parameters.
In order to maintain and be able to use the hourly/hourly-zonal temperature based re-
gressors in case of a reduced number of components, we apply the PCA transformation
identi�ed on the hourly/hourly-zonal electric demand IEDh/XEDh to the hourly/hourly-
zonal temperature.

3.4 Ensemble methods

Ensemble models can have better performance than base ones because they can take
advantage from the non-complete correlation between the forecasts obtained by the dif-
ferent base models. On the other hand sometimes, instead of the simple average of the
base model forecasts, is necessary to weight the contribution of the base models to the
ensemble one as a consequence of its own performance. Therefore four alternative aggre-
gation techniques were considered. Apart from the Simple average, the calibration of the
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other three methods requires a speci�c ensemble training dataset not used for training
the base models.

Simple average
The most trivial aggregation is the arithmetic average of the forecasts achieved by the base
models. Given a test input x∗, and M base forecasts f̂i(x∗), i = 1, ...,M , the ensemble
forecast is

f̂A(x∗) =
1

M

M∑
i=1

f̂i(x∗)

Weighted average
A second option is the weighted average of base forecasts:

f̂LS(x∗) =
∑M
i=1 wif̂i(x∗)

wi ≥ 0∑M
i=1 wi = 1

The weights wi are obtained by minimizing the sum of squared residuals between the
ensemble forecast and the target vector on the ensemble training dataset.

Subset average (brute force)
The third ensemble method computes the average of a suitable subset of predictors. The
chosen subset is obtained by a brute force search within the set of all possible subsets,
choosing the subset of predictors whose average minimises the MAE computed on the
ensemble training dataset. In our case, excluding the complete subset made of all the nine
predictors (already considered as simple average), and the nine base models, the number
of candidate subsets is

8∑
k=2

(
9

k

)
= 501

This ensemble method will be referred to as Subset average (b.f.).

Subset average (correlation analysis)
A further simple ensemble model tested is based on an intuitive algorithm to choose
the optimum subset of M̄ < M base predictors in order to obtain the �nal prediction
by simply averaging the base model forecasts. We chose M̄ = 3 as trade-o� between a
low error and a meaningful average. The algorithm is designed so as to keep the most
uncorrelated base forecasts and those with the minimum Mean Absolute Percentage Error
(MAPE) at the same time.
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Algorithm 1 A subset selection of M̄ models.

for model_a in models do

if (model_a not already excluded) and (∃ more than M̄ models left) then
for model_b in (models in descending order according to correlation(model_a, model_b))
do

if model_b not already excluded then

exclude the model (a or b) with bigger MAPE
end

end

end

end

This ensemble method will be referred to as Subset average (c.a.).

SVR aggregation
The �fth ensemble method, called SVR aggregation, trains a SVR model on the ensemble
training dataset, using base forecasts as features.
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Italian gas demand forecasting

In this chapter the problem of Italian gas demand forecasting is addressed and the fore-
casts are obtained by the use of the machine learning models and ensemble methods
described in chapter 3. The chapter is diveded in two principal sections which refer re-
spectively to as many papers produced.
The �rst section is devoted to the Italian residential gas demand (RGD) forecasting, high-
lighting the fundamental role of temperature forecast in the RGD forecasting. Here we
tested �ve machine learning models between those introduced in chapter 3. In this con-
text, a main novel contribution of this work is the development of a model describing the
propagation of temperature errors to gas forecasting errors that is successfully validated
on experimental data. Being able to predict the quantitative impact of temperature fore-
casts on gas forecasts could be useful in order to assess potential improvement margins
associated with more sophisticated weather forecasts. On the Italian data, it is shown
that temperature forecast errors account for some 18% of the mean square error of gas
demand forecasts provided by ANN.
The second section extends the �rst one in two directions: the forecasted time series and
the set of considered models. Here the Italian gas demand (GD) forecasting is obtained
such as the sum of the forecasts of each segment: RGD, industrial gas demand (IGD) and
thermoelectric gas demand (TGD). For the predictions, the performances of all the nine
machine learning models and four of the �ve ensemble techniques described in chapter 3
were analyzed.

4.1 Short-Term forecasting of Italian residential gas demand

4.1.1 Introduction and literature review

Forecasting natural gas demand is a crucial task for energy companies for several reasons.
First, it provides relevant information to reserve pipe capacity and plan stocks e�ectively.
Furthermore, regulations impose the balance of the network by charging providers with
a fee proportional to their unbalanced quantity. Finally, demand is a critical input to
forecast gas price, which is, in turn, a driver for business decisions.
Two comprehensive reviews of the literature about gas demand forecasting are [2] and
[3]. According to Sebalj et al. [2], papers can be classi�ed along four dimensions. The
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prediction horizon can range from hourly to yearly, the reference area from single nodes
of the network to a whole country; adopted models include time series, mathematical and
statistical approaches, neural networks, and others; input features can be demand history,
temperature, calendar, and other minor ones.
Several studies focused on country- or regional-level daily forecasting. Mathematical and
statistical models based on parametric non-linear functions were used in [37] to explain
the factors which a�ect the demand. A di�erent multi-factor approach was developed in
[38] and a model based on the physical relation between gas demand and the temperature
was presented in [39]. An adaptive network-based fuzzy inference system (ANFIS) was
described in [40], where the authors showed better performances of their model concerning
ANN and conventional time series methods. A statistical learning model, based on support
vector machine (SVM), was developed in [41] for UK demand, and compared to ANN and
an autoregressive moving average (ARMA) predictor. A hybrid model, exploiting many
di�erent techniques, such as wavelet transform, genetic algorithm, ANFIS, and ANN, was
used in [42]. Neural networks were applied in [43, 44, 45, 46, 47] to perform hourly and
daily forecasts on cities and regions. Moreover, [48] showed how ANNs, combined with
Principal Components Correlation Analysis (PCCA), provide robust and precise forecasts
on regional demand. Baldacci et al. [49] used nearest neighbors and local regression to
forecast the gas demand of small villages. They also presented an investigation over the
e�ects of temperature forecast errors, concluding that the in�uence on model accuracy is
negligible.
Concerning long-term forecasting, [50] discussed gas demand in Bangladesh, showing how
population growth and Gross Domestic Product (GDP) are essential drivers of the de-
mand. Similar conclusions were achieved in [51], where a breeder model was proven su-
perior to other approaches in forecasting Turkish demand.
The present work focuses on day-ahead forecasting of Residential Gas Demand (RGD) at
country level. In particular, Italian RGD is used as a case study to try and �ll two gaps
in the existing literature, revealed by our review.
First, a comparison among �ve forecasting methods of di�erent nature was carried out,
two based on linear regression and three on machine learning techniques, with the aim
of uncovering strengths and weaknesses of each one, paying particular attention to their
accurate tuning. This involves a detailed discussion on the selection of the relevant co-
variates, among which a primary role is played by the weather temperature.
The second gap has to do with the in�uence of weather forecast errors on natural gas
demand models. Despite being critical in industrial applications, previous works seldom
specify if the predictors use forecasted or observed temperature, maybe due to the be-
lief that temperature errors have negligible impact. In contrast, we assess the in�uence
of weather forecasting errors, both theoretically and experimentally. A novel easy-to-
compute bound is derived that predicts the best achievable RGD root mean square error
(RMSE) as a function of the temperature RMSE. This bound is then validated on ex-
perimental data: Italian RGD forecasts are obtained using both observed and predicted
temperatures, thus allowing for a quantitative assessment of accuracy degradation.
The work is organized as follows. In section 4.1.2, the problem is formulated and the
available data are presented. In section 4.1.3, a statistical characterization of target and
input variables are provided, discussing both preprocessing and feature selection. Sec-
tion 4.1.4 describes models, including the training process and hyperparameter tuning. In
section 4.1.5, we derive the performance limit, which is used as the ultimate benchmark
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in section 4.1.6, where the results are presented and discussed. Finally, section 4.1.7 is
devoted to some concluding remarks.

4.1.2 Problem Statement

In Italy, natural gas is the most common fuel for both power plants and domestic heating.
Moreover, several industrial facilities burn gas for either heating or powering productive
processes. According to SNAM Rete Gas [52], the Italian Transmission System Operator
(TSO), in 2017 about 70.59 billions of cubic meters of natural gas were consumed, with
an increase of 5.6% over the previous year. Overall, the increase in demand between 2015
and 2017 was 11%. Out of the total gas demand in 2017, 35.9% was due to thermoelectric
power plants, 22.4% to industrial facilities, and 41.7% to residential users.
The task addressed in this work is the one-day-ahead forecasting of daily Italian Res-
idential Gas Demand (RGD). RGD represents the main part of the overall Italian gas
consumption, accounting for household usage for cooking, water heating, and, most im-
portantly, environment heating.
The available dataset covers 11 years, from 2007 to 2017, and is made of 3 �elds: date
(t), forecasted average temperature (T̂ ) and residential gas demand (RGD). Forecasted
temperature is relative to the Northern regions of Italy. In the preliminary analysis, we
also took into consideration a weighted average of the temperatures in di�erent zones of
Italy, but a weaker correlation with RGD was noticed. This is explained by the role of
domestic heating in Northern Italy, where winters are colder than in other regions.
The pro�le of RGD from 2007 to 2018 is displayed in �g. 2.2.

4.1.3 Exploratory analysis and feature selection

4.1.3.1 Residential Gas Demand

As observed in section 2.3 RGD magnitude greatly oscillates with the season following
the changes of temperature during the year.
The characteristics of RGD explained in section 2.3 are evident in �g. 4.1: a pronounced
yearly periodicity, given by the signi�cant link between RGD and temperature, and a
strong weekly periodicity during the warm season when temperature is above 17-18 Celsius
degrees so that its e�ect on RGD is negligible.
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Fig. 4.1: Italian Residential Gas Demand (RGD): years 2007-2017. The time series are
shifted to align weekdays: weekly periodicity is particularly visible in summer. The yearly
seasonal variation is mostly explained by heating requirements. In the inset, two weeks
of July's demand are zoomed.

As expected, the autocorrelation function, estimated on the whole dataset, exhibits a
clear yearly seasonality and a much smaller weekly periodicity, see �g. 4.2.
Most of the spectral density, see �g. 4.3, is concentrated at period 365.25 days. A smaller
yet relevant spike can be found at a period of 7 days, accounting for the weekly periodicity.
In both cases, smaller peaks at lower periods are ascribable to harmonics.
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Fig. 4.2: RGD autocorrelation function estimated on 2007-2017 data. The 365-day yearly
periodicity is evident. In the inset, weekly waves witness the presence of a 7-day periodicity
of smaller amplitude.
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Fig. 4.3: RGD periodogram. Left panel: periods from 0 to 8 days; right panel: periods
from 0 to 500 days. The yearly periodicity is highlighted by peaks at 365.25 days, while
the weekly one by the smaller spike at a period of 7 days. Other notable values are caused
by harmonics.

The autocorrelation of lag 1 can be assessed through the scatter plot in �g. 4.4a, where
RGD at time t is plotted against RGD at time t−1. The correlation coe�cient computed
on the entire dataset is 0.988, and it increases to 0.995 if Saturdays and Mondays are
discarded. This is an evidence of a di�erent behavior between working days and weekends,
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visually con�rmed in the plot, where Monday's RGD (orange dots) stays in the upper
part of the cloud whereas Saturday's RGD (green dots) lies in the lower part.
As for the lag-7 autocorrelation, in �g. 4.4b the scatter plot of RGD at times t and t−7 is
displayed. The scatter plot in �g. 4.4b is narrower when the demand is low, that is during
warm months, while it gets wider in winter when the demand is high. This is due to the
variability of weather from one week to the next one.
In order to characterize the yearly seasonality, the relation between RGD at time t and
RGD in the similar day was analysed (cf. Def. 2.1).
The relationship between RGD and RGD in the similar day is shown in �g. 4.4c: again,
the correlation is higher when the demand is lower, due to the smaller in�uence of tem-
perature.
It can also be of some interest to take into account the similar day of t − 1. The scatter
plot in �g. 4.4d shows that the di�erence RGD(t− 1)−RGD(sim(t− 1)) is a good proxy
to the di�erence RGD(t)− RGD(sim(t)).
Due to these considerations, we use RGD(t−1), RGD(t−7), RGD(sim(t)), and RGD(sim(t−
1)) as inputs to forecast RGD at time t.
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Fig. 4.4: Scatter plots between RGD and potential features to be used for its prediction.

4.1.3.2 Temperature

The RGD time series shows a strong relation with temperature, especially when, during
the winter season, temperature falls below 18◦C and household heating becomes relevant.
As shown in the left panel of �g. 4.5, the relationship is piecewise linear: a line with
negative slope below 18◦C, followed by an approximately constant line above 18◦C. In
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order to transform the piecewise linear dependence into a linear one, it is useful to make
reference to the so-called Heating Day Degrees (HDD):

De�nition 4.1 (Heating Day Degrees (HDD)).

HDD(T ) = max(18◦ − T, 0) (4.1)

In the right panel of �g. 4.5, the scatter plot of RGD vs HDD highlights an approximately
linear relationship, with a positive correlation of 0.97. The correlation of HDD with RGD
is even more evident when we look at the time series of RGD and HDD during 2017, see
�g. 4.6.
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Fig. 4.5: Left panel: scatter plot of daily RGD vs average daily temperature. Right panel:
scatter plot of daily RGD vs HDD. Inset: HDD as a function of the temperature.
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Fig. 4.6: Time series of RGD and HDD in 2017. The instantaneous correlation between
the two series is apparent.

As shown in �g. 4.5, HDD are more correlated to gas demand than plain temperatures.
Thus, HDD(T̂ (t)) is considered as a feature, where T̂ (t) denotes the one-day-ahead fore-
cast of T (t). As additional features also HDD(T̂ (t− 1)),HDD(T̂ (t− 7)),HDD(T̂ (sim(t)))
are included. For completeness, also T̂ (t), T̂ (t−1), T̂ (t−7) and T̂ (sim(t)) are considered.
The choice of using the forecasting temperatures at past times instead of the real ones is
motivated by the need to replicate the relationship between tomorrow's gas demand and
temperature forecast.

4.1.3.3 Calendar features

As shown in the previous paragraphs, weekdays and holidays have a great in�uence on
RGD. To capture this phenomena, the following categorical calendar features are taken
into account.
Weekday. In view of the weekly periodicity, the seven days of the week are taken as
explanatory features. By resorting to the one-hot encoding method they are transformed
in 7 dichotomic time series.
Holiday. A binary feature which takes value 1 in correspondence of holidays.
Day after holiday. A binary feature which takes value 1 the �rst working day after a
holiday. A working day is a day di�erent from Saturday and Sunday that is not a holiday.



54 4 Italian gas demand forecasting

Bridge holiday. A binary feature which takes value 1 on isolated working days, that is
working days where both the day before and the day after are either Saturday, Sunday
or a holiday.
All the features are summarized in table 4.1.

Feature Reference time Type

RGD t-1 continuous
RGD t-7 continuous
RGD sim(t) continuous
RGD sim(t− 1) continuous

Forecasted temperature t continuous
Forecasted temperature t-1 continuous
Forecasted temperature t-7 continuous
Forecasted temperature sim(t) continuous
Forecasted HDD t continuous
Forecasted HDD t-1 continuous
Forecasted HDD t-7 continuous
Forecasted HDD sim(t) continuous

Weekday t categorical
Holiday t binary
Day after holiday t binary
Bridge holiday t binary

Table 4.1: List of features

4.1.4 Predictive models and implementation notes

The classical methods used for time series forecasting are linear Box-Jenkins models such
as SARIMA, where the forecast is based only on past values of the time series, and
SARIMAX, that accounts also for exogenous variables. A major drawback of classical
linear models is given by discontinuities due to holidays and the possible presence of other
nonlinear phenomena. In order to overcome these di�culties, herein RGD forecasting is
formulated as a statistical learning problem.
Based on the availability of n data pairs (xi, yi), i = 1, . . . , n, known as the training data,
a prediction rule f(·) is designed with the objective of using f(x∗) as prediction of y∗,
where (x∗, y∗) is any novel input-output pair. In this context, xi ∈ Rp, p < n, is a vector
whose entries are given by the p features associated with the target yi.
Herein, the p features are the 22 covariates discussed in the previous section and shown
in table 4.1. In the following, with reference to the training data, y = yi ∈ Rn will denote
the vector of the targets and X = {xij} ∈ Rn×p will denote the matrix of the training
input data, where xij is the j-th feature of the i-th training pair (xi, yi).
We implemented and tested the following models, described in chapter 3:

� ridge regression;
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� torus model [26];
� Gaussian Process (GP);
� k-nearest neighbour (KNN);
� arti�cial neural network (ANN). In particular we tested the MLP architecture shown

in �g. 3.6.

All the models, except the torus one, were implemented in Python, using scikit-learn and
keras; automated hyperparameters tuning exploited the GridSearchCV function of scikit-
learn. The torus model was implemented in MATLAB, as well as its hyperparameter
tuning routine.

4.1.5 E�ects of temperature forecast errors

As shown in section 4.1.3, the temperature is the most important exogenous variable.
Obviously, the actual temperature cannot be used when forecasting future RGD: only a
forecast is available, a�ected by a small yet non-negligible error, which inevitably impacts
also the performance of gas demand forecast. The scope of this section is to assess the
in�uence of the temperature error on the precision of the RGD forecast. For this purpose,
we resort to an idealized error propagation model that, despite its simplicity, provides an
accurate description of this e�ect, as con�rmed by the subsequent experimental validation.
Let RGD be a deterministic function g of the true temperature T and some other factors
x = (x1, x2, ...): RGD = g (T,x). In view of the analysis and the charts presented in
section 4.1.3, a �rst-level approximation of the relationship between RGD and T is a
linear function of HDD, while the dependence on the other factors can be represented as
an additive term ḡ(x):

RGD = g (T,x) = ḡ (x) + αHDD(T )

where α is the sensitivity of the gas demand to HDD. The formula is of general validity
and applies to both regional and national gas markets. Indeed, α depends on the size of
the considered market and can be estimated from historical data, e.g. those displayed in
�g. 4.5.
Consider now the ideal case when α and also the function ḡ are perfectly known, yet, only
a forecast

T̂ = T + ε

of the correct temperature T is available, where ε is a zero-mean error with variance σ2
ε .

The optimal forecast ˆRGD, given T̂ , is therefore:

ˆRGD = ḡ (x) + αHDD(T̂ )

In order to obtain the mean squared error of ˆRGD, the conditional variance of ˆRGD is
�rst computed:

Var
[

ˆRGD | T ≥ 18◦
]

= Var [ḡ (x) + α · 0] = 0

Var
[

ˆRGD | T < 18◦
]

= Var
[
ḡ (x) + α

(
18◦ − T̂

)]
= α2 Var [ε] = α2σ2

ε

Since E[ε] = 0, it follows that E[ ˆRGD] = RGD. Thus:



56 4 Italian gas demand forecasting

E
[(

ˆRGD− RGD
)2]

= E
[(

ˆRGD− RGD
)2
| T ≥ 18◦

]
P (T ≥ 18◦) +

+ E
[(

ˆRGD− RGD
)2
| T < 18◦

]
P (T < 18◦) =

= 0 + Var
[

ˆRGD | T < 18◦
]

=

= P (T < 18◦)α2σ2
ε (4.2)

This last equation provides an estimate of the mean squared error due to the temperature
forecasting error. Since it has been derived under an ideal setting - α and ḡ(·) perfectly
known, it provides a lower limit to the precision that can be achieved by the best possible
forecaster.
The arguments entering the bound are easily obtainable as follows:

� Estimate P (T < 18◦) by computing the ratio between the number of samples such
that T < 18◦ and the total number of available data.

� Compute α through a least square �t of RGD vs T .
� Estimate σ2

ε as the sample variance of T̂ − T .

Considering the Italian RGD data, in the 3-year period 2015-2017, P (T < 18◦) ranges
from 54% to 67%, while σ2

ε ranges from 0.05 to 0.09, and α from 9.85 to 10.96. Considering
altogether the years 2015-2017, we have P (T < 18◦) = 63%, σ2

ε = 0.063, α = 10.56,
corresponding to a best achievable Root Mean Squared Error

RMSE =

√
E
[(

ˆRGD− RGD
)2]

= 10.56×
√

0.63× 0.063 = 2.22 MSCM

Finally, we consider the more realistic case in which the forecasting mean square error is
di�erent from zero even in absence of temperature errors, that is

Var [ḡ (x)] = σ2
0 > 0

Then, under a statistical independence assumption, it is possible to obtain the forecasting
RMSE as a function of σ2

ε :

RMSE(σ2
ε ) =

√
Var

[
ˆRGD
]

=
√
σ2
0 + P (T < 18◦)α2σ2

ε (4.3)

In �g. 4.7 this relationship is displayed assuming P (T < 18◦) = 63%, σ2
ε = 0.063, σ2

0 =
13.31 (this last value is the test MSE achieved by the ANN forecaster trained with true
temperature data instead of the forecasted ones, see Results). Notably, the sensitivity of
the gas forecasting error tends to increase as the temperature forecast error grows. In
particular, if the threshold is de�ned

σ̄2
ε =

σ2
0

P (T < 18◦)α2

the in�uence of temperature errors is negligible as far as σ2
ε � σ̄2

ε , while the temperature
errors have a linear in�uence on the gas RMSE for σ2

ε � σ̄2
ε .
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Fig. 4.7: The relation between the Gas forecast RMSE and the Temperature forecast
RMSE.

4.1.6 Results

4.1.6.1 Data and performance indicators

As mentioned in section 4.1.2, available data range from 2007 to 2017. Three one-year-long
test sets were de�ned, associated with the year 2015, 2016, and 2017. The corresponding
training sets spanned from 2007 to the day before the start of the test set: 2007-2014,
2007-2015, 2007-2016. In the following, each training set is identi�ed by the year of the
corresponding test set, e.g., we will write "training set 2016" to indicate the second
training set, spanning from 2007 to 2015.
On each test set, the performance of the �ve models was measured using the Mean Ab-
solute Error (MAE).

MAE =
1

N

N∑
j=1

∣∣∣RGDj − ˆRGDj

∣∣∣
MAE is preferred over MAPE due to the highly non-stationary behavior of RGD series.
Using MAPE would attribute undue importance to errors during the summer period when
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RGD is small, see �g. 4.1. Moreover, MAE is proportional to the monetary loss sustained
by energy companies because of errors in nomination due to inaccurate forecasts.
Nevertheless, in order to allow a comparison with forecasting performances achieved in
the UK market, we will also refer to the MAPE

MAPE =
100

N

N∑
j=1

∣∣∣RGDj − ˆRGDj

∣∣∣
RGDj

The comparison between two di�erent markets calls for the use of a relative metric. To
avoid the confounding e�ect of small absolute errors that are ampli�ed by MAPE during
the Italian Summer, the comparison between Italy and UK was limited to the cold months,
when gas demand is relatively high, see Section 4.1.6.3.
Finally, as the performance limit derived in section 4.1.5 poses a lower bound to the
mean squared error, the Root Mean Square Error (RMSE) was also used as a comparison
metric.

4.1.6.2 Hyperparameters

All �ve models include hyperparameters that were tuned by cross-validation.
For ridge regression, the regularization parameter λ was tuned by 5-fold cross-validation
on an interval ranging from 10−4 to 102 in logarithmic steps. In the training set 2015,
line search selected λ = 0.236, corresponding to df(0.236) = 20.94, while in the other
two sets, 2016 and 2017, cross-validation selected the minimum λ = 10−4 with e�ective
degrees of freedom df(10−4) = 20.99 practically equal to the number of parameters. This
means that regularization plays a very marginal role.
For KNN, the number of neighbors, in the interval [1, 30], were optimized and also the
weighting strategy, choosing between uniform and inverse of the distance. Seven neighbors
were obtained for training set 2015 and 6 for the two remaining ones. In all the three cases,
the "inverse of distance" weights were selected.
As for the Gaussian Process, the maximization of the marginal likelihood yielded ν = 1.5,
l = 10, and σ2 = 10, with minimal variations among all training sets.
For the ANN models, a trial and error procedure led to architecture with an input layer
of 24 neurons, two hidden layers of 12 and 4 neurons, and an output layer of a single
neuron, as shown in �g. 3.6. By 5-fold cross-validation, a learning rate of 0.001, a number
of epochs of 1000, and a batch size of 32 were obtained.
For what concerns the Torus model, the minimization of AIC led to the choice of Nw = 3
and Nd = 1 for all the training sets.

4.1.6.3 Prediction results

A �rst assessment of the performances of the adopted methods was carried out in terms
of RMSE. In order to validate the formula that models the propagation of temperature
errors (section 4.1.5), two sessions were performed. In the �rst one, the models were trained
and tested using historical records of true temperatures, assuming that the one-day-ahead
exact temperature is available as a feature. Then we used eq. (4.3) in order to predict how
much the forecasting RMSE would increase in the more realistic scenario in which one-
day-ahead temperature forecasts are employed in place of the true temperatures. In the
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second session, the models were trained and tested using historical records of forecasted
temperatures. In this way, it was possible to validate the error propagation model against
the real errors.
The results of the �rst session are summarized in table 4.2. It can be seen that the smallest
RMSE is obtained by GP and ANN, the latter being marginally better.

Year 2015 2016 2017 2015-2017

Ridge 4.24 4.11 4.12 4.16
GP 3.81 3.68 3.64 3.71
KNN 7.29 8.49 8.38 8.07
Torus 4.21 4.23 3.70 4.05
ANN 3.89 3.60 3.44 3.65

Table 4.2: Performance on test sets: yearly RMSE (MSCM) of the �ve forecasters trained
and tested assuming that one-day-ahead true temperatures are available.

Obviously, in a real-world context, only temperature forecasts are available for the day
ahead. In order to account for the performance degradation due to the use of forecasted
temperatures, eq. (4.3) was used to predict the RMSE of the RGD forecast in corre-
spondence of a temperature forecast variance σ2

ε = 0.063, coinciding with that of our
meteorological data. The results are summarized in table 4.3. In the �rst line, the the-
oretical performance limits computed according to eq. (4.2) are reported. These values
were added to the RMSE's of table 4.2 to obtain predictions of RGD forecasting RMSE
in a real-world situation in which one-day-ahead temperature forecasts are used.

Year 2015 2016 2017 2015-2017

Performance limit 2.15 2.02 1.98 2.05
Ridge 4.75 4.58 4.57 4.63
GP 4.37 4.20 4.15 4.24
KNN 7.60 8.73 8.61 8.33
Torus 4.73 4.69 4.20 4.55
ANN 4.45 4.13 3.97 4.19

Table 4.3: Predicted performance on test sets when temperature forecasts with σ2
ε = 0.063

are used: yearly RMSE (MSCM) of the �ve forecasters.

In the second session, the predictions of table 4.3 were validated by comparing them with
the RGD forecasting RMSE achieved using temperature forecasts. As it can be seen in
table 4.4, the actual RMSE are in good agreement with their predictions. This can also
be visually appreciated in �g. 4.8, where theoretical predictions are plotted against the
actual RMSE. Again, ANN and GP are the best performers, closely followed by the Ridge
and Torus forecasters, while KNN is the worst RGD predictor.
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Year 2015 2016 2017 2015-2017

Ridge 4.68 4.28 4.28 4.42
GP 4.25 4.12 4.07 4.15
KNN 7.35 8.55 8.37 8.11
Torus 5.40 4.33 3.96 4.60
ANN 4.34 4.10 3.64 4.04

Table 4.4: Performance on test sets: yearly RMSE (MSCM) of the �ve forecasters trained
and tested using one-day-ahead forecasted temperatures.

Fig. 4.8: Validation of the model predicting e�ects on gas forecast of temperature forecast
errors. Gas forecast RMSE: theoretical prediction vs actual value.

A second assessment of the models was made in terms of their MAE. Hereafter, one-day-
ahead forecasted temperatures are employed in the features. Results on the test sets are
shown in table 4.5. Now, GP is the best performer, achieving an average MAE of 2.53
MSCM over the three test years. ANN, Torus, and Ridge Regression follow in the order.
KNN is again the worst model, with an average MAE of 5.05 MSCM.
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Year 2015 2016 2017 2015-2017

Ridge 3.39 3.10 3.01 3.17
GP 2.60 2.48 2.51 2.53
KNN 4.57 5.51 5.08 5.05
Torus 3.18 2.66 2.55 2.80
ANN 2.76 2.68 2.43 2.62

Table 4.5: Yearly MAE (MSCM) on test sets.

The di�erences between the RMSE- and MAE-based rankings are possibly explained by
the non-Gaussianity of the prediction errors. In case of zero-mean prediction errors that
are perfectly Gaussian, it should be MAE/RMSE =

√
2/π ∼ 0.798, yielding identical

rankings, irrespective of the adopted metrics. It occurs that MAE/RMSE < 0.798 for all
the models: the ratio MAE/RMSE is about 0.61 for GP and Torus, 0.62 for KNN, 0.65 for
ANN and 0.72 for Ridge. This is explained by the non-Gaussianity of the prediction errors,
possibly associated with the presence of "fat tails" in their distributions. In particular,
from �g. 4.9 it is apparent that di�erent error variances are observed in the cold and
warm seasons. This means that the overall error distribution is akin to a mixture, which
can produce fat tails when the variances in the two seasons are much di�erent. The error
distributions in 2017 are displayed in �g. 4.10.
Due to the seasonal behavior of RGD, it is of interest to disaggregate data at a monthly
level. In table 4.6, the monthly averages of MAE and MAPE are reported throughout the
2015-2017 test years. It appears that GP is the best performer during the warm period,
especially from June to October, whereas in the cold months, from December to February,
ANN is more accurate. A possible explanation is that the GP model is better at capturing
the e�ects of the weekly seasonality, that explains most of the Summer variability, while
ANN better allows for the non-linear e�ect of temperature, mostly relevant during the
cold months.
To the best of our knowledge, there are no published benchmarks for the forecasting
task addressed in this section. A somehow similar problem was studied by Zhu et al.
[41] relative to UK gas demand in 2012. Still, their results are not entirely comparable
to those of this thesis, for two main reasons: �rst, the authors considered the total UK
demand and not just the residential one; second, UK climate is colder than the Italian
one. Nonetheless, we can use relative error metrics, such as the MAPE in order to obtain a
�rst level comparison, limited to 6 cold months (from October to March). My best model
in terms of average MAPE over 2015-2017, i.e., the GP, achieves 3.11%, while Zhu's false
neighbors �ltered-support vector regression local predictor (FNF-SVRLP) achieves 3.88%
on the same six cold months of 2012. Although no de�nite conclusion can be drawn, these
numbers suggest some degree of consistency between forecasting performances at country
level.
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MAPE(%) MAE (MSCM)
Month Ridge GP KNN Torus ANN Ridge GP KNN Torus ANN

January 3.10 3.01 6.45 3.21 2.93 5.79 5.67 12.44 5.96 5.45
February 2.75 2.84 4.77 3.33 2.62 4.52 4.59 7.60 5.48 4.33
March 3.94 4.20 7.13 3.83 4.27 4.59 4.89 8.01 4.56 4.90
April 6.17 4.80 14.79 4.89 5.09 3.56 2.89 8.23 2.98 3.04
May 5.76 2.67 6.08 3.21 2.50 2.37 1.22 2.67 1.51 1.14
June 4.57 1.32 6.02 3.37 1.92 1.46 0.43 1.92 1.11 0.62
July 3.78 1.16 3.65 1.50 1.54 1.11 0.35 1.13 0.45 0.46
August 9.39 3.00 19.44 3.86 4.50 2.24 0.71 4.56 0.92 1.06
September 5.36 1.06 3.18 1.33 1.81 1.92 0.38 1.17 0.49 0.68
October 4.10 2.81 6.22 3.30 3.42 2.23 1.78 3.91 1.99 2.09
November 2.70 3.14 5.50 3.03 2.9 3.39 3.76 6.47 3.57 3.41
December 2.78 2.68 4.27 2.70 2.52 4.83 4.58 7.14 4.62 4.32

Table 4.6: Monthly MAPE and MAE (MSCM) on test sets 2015-2017: best performers in
terms of MAE are highlighted in boldface.
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Fig. 4.9: Out-of-sample model residuals in 2017
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Fig. 4.10: Distribution of out-of-sample residuals in 2017

4.1.7 Conclusions

In this work, one-day-ahead forecasting of the residential gas demand was addressed at
the country level. Five di�erent models were developed and compared: Ridge regression,
Gaussian Process, K-nearest neighbor, Arti�cial Neural Network, and the Torus model.
The choice of the relevant covariates and the most relevant aspects of the preprocessing
and feature extraction steps have been discussed, lending particular attention to the
role of one-day-ahead temperature forecasts. In particular, a simple model describing the
propagation of temperature errors to gas forecasting errors was derived.
The proposed methodology was tested on daily Italian gas demand data from 2007 to 2017.
Although a speci�c benchmark is not available, a comparison with UK data restricted to
cold months shows a substantial consistency between the performances achieved in the
two countries.
Our best model, in terms of RMSE, was the Arti�cial Neural network, closely followed
by the Gaussian Process. If the MAE is taken as an error measure, the GP became the
best model, although by a narrow margin. From the analysis of monthly performance, GP
was found to be more accurate in tracking the weekly periodicity, which is predominant
in the summer period, while the ANN accounted better for the non-linear in�uence of
temperature, whose contribution is more signi�cant during the winter period.
An interesting question is how much of the forecasting mean square error is ascribable to
temperature forecasting errors. On the Italian data, we found that the MSE for the ANN
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model passed from MSE2 = 3.652 = 13.32 (using true temperatures, see table 4.2) to
4.042 = 16.32 (using temperature forecasts, see table 4.4). This means that temperature
forecast errors account for some 18% of the RMSE of RGD forecasts. As demonstrated
in �g. 4.8, our error propagation model successfully predicted the quantitative impact of
temperature forecast errors on gas forecast errors, a capability that could prove useful in
order to assess the extent and convenience of improvement margins associated with more
sophisticated (and possibly more expensive) weather forecasts.

4.2 Short-Term forecasting of Italian gas demand

4.2.1 Introduction and literature review

Natural gas is one of the most important energy sources in Italy: it feeds domestic and in-
dustrial heating, production processes and thermoelectric power plants. Data from SNAM
Rete Gas, the Italian Transmission System Operator (TSO), show that the total Gas
Demand (GD) is made of three main components: Residential Gas Demand (RGD), In-
dustrial Gas Demand (IGD), and Thermoelectric Gas Demand (TGD). In 2018, RGD
accounted for 41.5% of the total consumption, IGD for 25.4% and TGD for the remaining
33.1% [52].
Accurate forecasts of the overall GD, as well as of its three main components, are of
primary importance to energy providers, in order to improve pipe reservation and stock
planning and also prevent �nancial penalties due to network unbalance. Moreover, GD is
closely correlated with natural gas price, which is a key input for determining the optimal
production plan of thermal power plants.
Several works addressed the forecasting of natural gas demand: comprehensive reviews are
[3] and [2]. The latter proposes a classi�cation along four dimensions: geographical area,
time horizon, method, and inputs. Herein, we are interested in country-level, one-day-
ahead predictions, based on statistical learning models that leverage past gas demand,
temperature and calendar features as input variables.
With respect to prediction horizon, gas demand forecasting is usually divided into long-
term forecasting, featuring an horizon of months or years and short-term, with an horizon
of one or few days. Focusing on country-wide predictions, a long-term model based on
temperature was proposed in [53] to forecast Turkish demand. The importance of the
relation between weather and gas demand is also highlighted in [49] and [39]. In [38] a
statistical model was applied to forecast the long-term evolution of Slovenian demand,
while di�erent kinds of so-called �grey models� were applied in [54] and [55] to forecast
Chinese demand.
In [41], short-term forecasting of UK natural gas demand was addressed using support
vector regression with false neighbours �ltered. According to the authors, the method
performed better than Auto-Regressive Moving Average (ARMA) models and neural net-
works (ANN). Azadeh et al. [40] proposed an adaptive network-based fuzzy inference
system (ANFIS) to predict Iranian gas demand, which improved on classical time se-
ries methods and ANN. A more advanced model, combining wavelet transform, genetic
algorithm, ANFIS and ANN was applied in [42] to the Greek gas distribution network.
Long-term evolution of the Italian gas demand is investigated in [56] and [57]: macroe-
conomic indicators, such as gross domestic product and gas prices and climatic factors
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are used to build scenarios of RGD and overall GD evolution up to 2030. However, to
the best of my knowledge, the daily series of Italian GD and its peculiar features have
not been studied in the literature and no result about its short-term forecasting has been
presented.
In previous section, focusing on Italian RGD, we proposed and compared �ve prediction
models: ridge regression, Gaussian Process (GP), nearest neighbours, Arti�cial Neural
Networks (ANN), and torus model, concluding that ANN and GP provided the best re-
sults. Herein, the analysis along three directions is extended: �rst, also the prediction
of IGD and TGD is addressed, thus enabling the prediction of the overall Italian GD;
second, four additional base forecasters (LASSO, elastic net, random forest, and support
vector regression) are considered; third and �nally, the use of ensemble predictors, i.e.
forecasters obtained by the suitable aggregation of base forecasts, is investigated. More
precisely, based on the nine base models, four ensemble predictors are considered (sec-
tion 3.4): simple average, weighted average, subset average, and support vector regression
aggregation.
Ensembling, also known as blending, is known to be an e�ective technique to improve
overall accuracy and stability, see e.g. [58, 59]. Recently, ensemble predictors have been
proven successful in forecasting electric load [60], whose series shows a periodic structure
similar to the one of GD.
The contribution of this section and the related paper to literature is thus threefold: �rst,
the statistical properties of Italian IGD and TGD are presented and discussed; on these
data, we develop, apply, and compare nine machine-learning models; �nally, the use of
ensemble predictors is explored, assessing the consequent improvements.
This chapter is organised as follows. In section 4.2.2 the forecasting problem and the
available data are presented, while in section 4.2.3 we describe the most relevant features
of IGD and TGD time series. After discussing feature engineering (section 4.2.4), in
section 4.2.5 the adopted models are introduced and training and hyperparameter tuning
are presented in the section. Results are reported in section 4.2.6 and some concluding
remarks (section 4.2.7) end the section.

4.2.2 Problem statement

In this chapter, the prediction of the Italian daily GD is addressed both at aggregated
and disaggregated level: for each day, the overall GD is given by the sum of RGD, IGD,
and TGD.
The datasets for RGD, IGD, and TGD are 12 year long, ranging from 2007 to 2018, and
consisting of 3 �elds: date (t), forecasted average temperature in Northern Italy (T )1, and
gas demand (RGD, IGD and TGD). Temperature in Northern Italy was considered as
this region has the most rigid climate, and is thus more sensible to heating requirements.
In �g. 4.11 the complete series of RGD, IGD, TGD and overall GD are displayed.

1Weather forecast were provided by one of the most known and specialised Italian company
for these data.
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Fig. 4.11: Top left: Italian Residential Gas Demand (RGD); top right: Italian Industrial
Gas Demand (IGD); bottom left: Italian Thermoelectic Gas Demand (TGD); bottom
right: overall Italian Gas Demand (GD = RGD + IGD + TGD).

4.2.3 Exploratory analysis

For what concerns the general considerations regarding the gas demand time series we
refer to section 2.3, where these series are widely described. Instead herein the analysis
done of RGD, shown in section 4.1.3, is extended to IGD and TGD.

4.2.3.1 Industrial gas demand

The periodogram, plotted in �g. 4.12, exhibits peaks at periods of 365.25 and 7 days,
while other relevant values are ascribable to multiple harmonics of the fundamental ones.
Notably, di�erently from what happens for RGD (�g. 4.3), the weekly seasonality prevails
on the yearly one in terms of magnitude.
Temperature is known to be a major determinant of gas demand [2, 39, 49]. In order to
take into account that the need for heating ceases when temperature raises above 18 ◦C,
it is useful to refer to the so-called Heating Degree Days (HDD), de�ned as HDD =
max(18− T, 0), where T is the temperature in degrees Celsius. The scatter plots of IGD
against temperature and IGD against HDD are reported in �g. 4.13.



4.2 Short-Term forecasting of Italian gas demand 67

Period [days] Period [days]

Fig. 4.12: IGD periodogram. Left panel: periods from 0 to 8 days; right panel: periods
from 0 to 500 days.
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Fig. 4.13: E�ect of temperature on IGD. Left panel: IGD vs temperature; right panel:
IGD vs Heating Degree Days (HDD).
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4.2.3.2 Thermoelectric gas demand

The periodogram in �g. 4.14 shows that, also for TGD, the main seasonal component is
the weekly one, which is consistent with Italian power demand [61].
The scatter plot of TGD against temperature, displayed in the left panel of �g. 4.15,
shows a peculiar U-shaped pattern: TGD increases as weather gets colder, but also when
it gets hotter. In fact, in summer more thermoelectric production is required because air
conditioning pushes the demand for electric power. This U-shaped pattern justi�es the
introduction of a suitable feature variable, herein named Heating Cooling Degree Day
(HCDD). More precisely

HCDD = |Tc − T |

We found that Tc = 16◦C maximises the linear correlation between TGD and HCDD.

Period [days] Period [days]

Fig. 4.14: TGD periodogram. Left panel: periods from 0 to 8 days; right panel: periods
from 0 to 500 days



4.2 Short-Term forecasting of Italian gas demand 69

Temperature [°C]

TG
D

 [
M

SC
M

]

HCDD [°C]

Fig. 4.15: E�ect of temperature on TGD. Left panel: TGD vs temperature; right panel:
TGD vs HCDD.

4.2.4 Feature extraction

Based also on the exploratory analysis, the features used in the prediction algorithms
include: autoregressive terms, calendar features, temperature and its derived variables
HDD and HCDD. Table 4.7 reports the complete list of features.
To predict yt, y ∈ {RGD, IGD,TGD}, we included, as autoregressive features, yt−1, yt−7,
ysim(t) and ysim(t−1).
As calendar features, binary dummy variables were introduced to account for weekdays
and holidays. Dummy variables were also added to identify: (i) extended holidays, i.e.
working days preceded and followed by either Saturdays, Sundays or holidays, and (ii)
days after holidays, i.e. working days which immediately follow a holiday and are not
extended holidays.
As temperature features we selected also forecasted temperatures Tt, Tt−1, Tt−7 and
Tsim(t). In view of what shown in sections 4.1.3, 4.2.3, for both RGD and IGD, also HDD
values at the same times were introduced, while, for TGD, HCDD replaced HDD.

4.2.5 Predictive models and implementation notes

We tested all the nine base models described in section 3.2, which can be grouped into
three categories:

1. linear models: ridge regression, lasso, Torus model [61], support vector regression, and
elastic net

2. non-linear models: random forest, neural networks
3. non-parametric models: Gaussian Process, nearest neighbour
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Feature Reference time Type Series

Gas demand series t-1 continuous RGD, IGD, TGD
Gas demand series t-7 continuous RGD, IGD, TGD
Gas demand series sim(t) continuous RGD, IGD, TGD
Gas demand series sim(t− 1) continuous RGD, IGD, TGD

Forecasted temperature t continuous RGD, IGD, TGD
Forecasted temperature t-1 continuous RGD, IGD, TGD
Forecasted temperature t-7 continuous RGD, IGD, TGD
Forecasted temperature sim(t) continuous RGD, IGD, TGD
Forecasted HDD t continuous RGD, IGD
Forecasted HDD t-1 continuous RGD, IGD
Forecasted HDD t-7 continuous RGD, IGD
Forecasted HDD sim(t) continuous RGD, IGD
Forecasted HCDD t continuous TGD
Forecasted HCDD t-1 continuous TGD
Forecasted HCDD t-7 continuous TGD
Forecasted HCDD sim(t) continuous TGD

Weekday t categorical RGD, IGD, TGD
Holiday t dummy RGD, IGD, TGD
Day after holiday t dummy RGD, IGD, TGD
Bridge holiday t dummy RGD, IGD, TGD

Table 4.7: List of features

Four of them, namely ridge regression, Gaussian Process (GP), Torus model, nearest
neighbours and neural networks, were already applied to RGD in section 4.1.
Moreover, we tested four ensemble models, described in section 3.4, which aggregate
forecasts issued by the basic models: (i) Simple average, (ii) Weighted average, (iii) Subset
average (b.f.), and (iv) SVR aggregation.
The available data range from 2007 to 2018. Four one-year long test sets, ranging from
2015 to 2018, were used to obtain a comparative assessment of the 13 models, including 9
base models and 4 ensemble ones. Each test set was associated to a set of training data,
that were organised di�erently depending on the nature of the considered model, either
base or ensemble.
Training of base models. The training set, called base training set Tbase(Y), is made of all
data previous to the test year Y. For instance, if Y = {2017} is taken as test set, the 9
base models were trained on the base training set Tbase({2017}) = {2007, . . . , 2016}.
Training of ensemble models. In this case two training sets were considered. The year
before the test set Y was used as ensemble training set Tens(Y), while the remaining
data were used to train the 9 base models that enter the aggregation. For instance, if
Y = {2017} is taken as test set, the 9 base models were trained on Tbase({2016}) =
{2007, . . . , 2015}, while the ensemble models were trained on Tens({2017}) = {2016}.
Hyperparameters of the Torus model were tuned by maximising AIC, those of the Gaus-
sian Process by maximising the marginal likelihood, while for all the other base models
�ve-fold cross validation was used.
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Test of base models. For the test set Y, base predictions were computed using the base
models trained on Tbase(Y).
Test of ensemble models. Given the forecasts provided by the base models trained on
Tbase(Y), the ensemble forecasts were obtained using ensemble models trained on Tens(Y).
Out-of-sample performances were evaluated in terms of Mean Absolute Error (MAE):

MAE =
1

n

n∑
t=1

|yt − ŷt|

where yt and ŷt, y ∈ {RGD, IGD,TGD,GD}, are the actual value and its forecast, while
n is the number of samples in the considered test set. MAE was preferred over percent
or relative error metrics due to the large range of values assumed by the target variable,
which would give undue importance to poor performances during low-demand periods.

4.2.6 Results

Mean absolute errors for RGD, IGD, TGD, and total GD are reported, respectively, in
Tables 4.8, 4.9, 4.10, and 4.11.
For what concerns base models, GP, ANN and SVR achieved the best average MAE
across all the gas demands, with di�erences between each other smaller than 0.10 MSCM.
Notably, results achieved by such models were also stable across di�erent test sets. On
the other hand, KNN was consistently the worst performer, due to its poor capability of
modelling in�uence of temperature and holidays.
Ensemble models consistently outperformed base ones: in particular, subset average
achieved the best average MAE on all four types of gas demand: the three disaggre-
gated demands and the total one. A possible explanation is that di�erent models are
better at capturing speci�c behaviours: in section 4.1, for instance, it was shown that the
ANN model achieved the best results in winter, while GP in summer, suggesting that the
former is better at modelling the impact of weather, while the latter can better follow
seasonal patterns. Aggregation can indeed mitigate errors committed by single models,
thus increasing overall accuracy and robustness.
The improvement due to aggregation was particularly evident for RGD (table 4.8), where
the best base model (GP) was outperformed by the best ensemble model (subset average)
by 0.36 MSCM. The gap between base and ensemble models was smaller for the other two
gas demands: GP and SVR are worse than subset average by 0.07 MSCM, for IGD (ta-
ble 4.9); SVR is worse than subset average by 0.09 MSCM, for TGD (table 4.10). Finally
SVR is worse than subset average by 0.29 MSCM, for the global Italian GD (table 4.11).
The 2018 forecasts and the corresponding residuals provided by the best ensemble pre-
dictor, namely subset average, are displayed in �g. 4.16 and �g. 4.17, respectively.
To the best of our knowledge, the only term of comparison available for the task addressed
in this section is given by the forecasts of the global Italian GD issued by SNAM Rete Gas,
the Italian Transmission System Operator (TSO) [62]. In 2017 and 2018, the improvement
is neat: the out-of-sample MAE of SNAM predictions was 9.62 MSCM in 2017 and 8.30
MSCM in 2018, while our best model (subset average) scored 5.16 MSCM in 2017 and
5.46 MSCM in 2018, see table 4.11.
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Model 2015 2016 2017 2018 Average

Ridge 3.30 3.06 2.95 3.55 3.21
Lasso 3.30 3.06 2.95 3.56 3.22
Elastic net 3.30 3.06 2.95 3.56 3.22
SVR 2.84 2.62 2.38 2.93 2.69
GP 2.66 2.59 2.57 2.83 2.66
KNN 4.68 5.47 5.05 5.65 5.21
Random forest 3.04 3.36 3.50 3.48 3.35
Torus 3.18 2.66 2.54 3.28 2.91
ANN 2.76 2.68 2.43 3.10 2.74

Simple average 2.66 2.57 2.45 2.91 2.65
Subset average (b.f.) 2.41 2.17 2.06 2.56 2.30

Weighted average 2.59 2.33 2.06 2.64 2.40
SVR aggregation 2.58 2.30 2.19 2.67 2.44

Table 4.8: Forecasted Residential Gas Demand: out-of-sample MAEs. Each year's best
performers are in boldface.

Model 2015 2016 2017 2018 Average

Ridge 0.75 0.75 0.74 0.77 0.75
Lasso 0.75 0.75 0.74 0.77 0.75
Elastic Net 0.75 0.75 0.74 0.77 0.75
SVR 0.57 0.58 0.7 0.75 0.65
GP 0.61 0.61 0.68 0.70 0.65
KNN 1.46 1.25 1.95 1.23 1.47
Random Forest 0.78 0.86 0.95 0.83 0.86
Torus 0.96 0.97 1.05 1.10 1.02
ANN 0.66 0.80 0.57 0.74 0.69

Simple average 0.60 0.62 0.69 0.66 0.64
Subset average (b.f.) 0.56 0.56 0.58 0.61 0.58

Weighted average 0.55 0.55 0.65 0.70 0.61
SVR aggregation 0.57 0.79 0.57 0.81 0.68

Table 4.9: Forecasted Industrial Gas Demand: out-of-sample MAEs. Each year's best
performers are in boldface.
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Model 2015 2016 2017 2018 Average

Ridge 3.73 4.15 4.26 4.48 4.15
Lasso 3.73 4.15 4.26 4.49 4.16
Elastic Net 3.73 4.15 4.26 4.49 4.16
SVR 3.41 3.64 4.33 4.33 3.93
GP 3.49 3.70 4.39 4.34 3.98
KNN 6.13 5.22 5.83 5.54 5.68
Random Forest 4.66 4.43 4.87 4.84 4.70
Torus 3.98 4.48 4.96 4.94 4.59
ANN 3.40 3.97 4.32 4.41 4.03

Simple average 3.50 3.75 4.21 4.36 3.96
Subset average (b.f.) 3.26 3.65 4.17 4.26 3.84

Weighted average 3.35 3.71 4.31 4.31 3.92
SVR aggregation 3.38 3.62 4.28 4.37 3.91

Table 4.10: Forecasted Thermoelectric Gas Demand: out-of-sample MAEs. Each year's
best performers are in boldface.

Model 2015 2016 2017 2018 Average

Ridge 6.32 6.34 5.80 6.57 6.26
Lasso 6.32 6.34 5.81 6.57 6.26
Elastic Net 6.32 6.35 5.81 6.57 6.26
SVR 5.23 5.05 5.55 5.85 5.42
GP 5.33 5.23 5.88 5.82 5.57
KNN 9.04 9.31 9.97 9.83 9.54
Random Forest 6.58 6.45 7.15 7.11 6.82
Torus 6.56 6.47 6.40 7.00 6.61
ANN 5.43 5.50 5.47 6.08 5.62

Simple average 5.53 5.40 5.56 5.98 5.61
Subset average (b.f.) 5.02 4.80 5.23 5.46 5.13

Weighted average 5.27 5.01 5.34 5.55 5.29
SVR aggregation 5.19 4.91 5.29 5.79 5.30

SNAM forecast n.a. n.a. 9.62 8.30 n.a.

Table 4.11: Forecasted Italian Gas Demand: out-of-sample MAEs. Each year's best per-
formers are in boldface.
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Fig. 4.16: Subset average (b.f.): predicted gas demands in 2018. From top to bottom: Res-
idential Gas Demand (RGD), Industrial Gas Demand (IGD), Thermoelectic Gas Demand
(TGD), overall Gas Demand (GD).
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Fig. 4.17: Subset average (b.f.): one-day-ahead prediction residuals in 2018. From top to
bottom: Residential Gas Demand (RGD), Industrial Gas Demand (IGD), Thermoelectic
Gas Demand (TGD), overall Gas Demand (GD).
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4.2.7 Conclusions

The industrial and thermoelectric components of Italian daily gas demand were analyzed,
completing a previous study concerning residential demand. Industrial and thermoelectric
demand were found to show di�erent relationships with temperature and crafted features
to properly take them into account.
Several forecasting models were investigated and compared: nine base models plus four
ensemble models. Aggregated models were found to be consistently more e�ective than
base ones. In particular, in 2017 and 2018 the best ensemble model, i.e. subset average,
outperformed forecasts provided by the Italian TSO.
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Italian power demand forecasting

5.1 Introduction and literature review

Electricity demand is a relevant quantity for the utilities in the energy sector, above all
for the electricity producer companies that need to determine their electricity production
one day ahead in order to better meet their client demand. On its side, electricity demand
represents a fundamental regressor in the electricity price formation as well as a driving
element in the power plant bidding strategy. As a consequence, both long-term and short-
term load forecasting (LTLF and STLF) are necessary activities, and their results have a
direct impact on the companies' performance.
In this chapter we focus on day-ahead Italian electricity demand (IED) forecasting, which
is part of STLF.
There is a large set of literature on STLF, starting at least since 1918, as reported by three
works [4],[5],[6] that compile a bibliography before the 1980. Works published between the
1980 and 2010 are well summarized in [7] and a more comprehensive and recent literature
review is given by [8]. The principal elements where the papers di�er are the modelling
techniques adopted, the regressors considered and the electricity demand time series used
for the STLF.
Regarding the models, historically time-series and state-space methods have been used
[63] and preferred to the similar-day approach, where STLF is directly assigned as the
same load of the most similar day in the past [64]. Multiple linear regression has also
been extensively adopted [63],[65],[66],[67],[68] taking into account of the weather vari-
ables and their relation, linear and also non-linear, with the electricity demand, calendar
variables and holiday modelling. Some papers have compared many methods such as
stochastic time series, multiple linear regression, exponential smoothing and state space
[69], double seasonal ARMA, an extension of Holt-Winters exponential smoothing for dou-
ble seasonality, arti�cial neural networks (ANN), and PCA-based regression [70], ARIMA,
periodic AR, double seasonal Holt-Winters exponential smoothing, an alternative expo-
nential smoothing formulation and a PCA-based method [71]. The authors of [70] and
[71] have highlighted how the double seasonal Holt-Winters exponential smoothing out-
performs the other models on many di�erent time series such as the electricity demand
in Rio de Janeiro, England and Wales [70] and the electricity demand data from ten
European countries [71].

77
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Much literature is also devoted to the application of ANN to STLF, a comprehensive
review being given by [72], where the authors have analysed the reasons behind the
scepticism around these methods, mostly in virtue of their overparameterization with
the risk of over�tting and the lack of appropriate analysis of test errors. The authors
of [65] have also implemented an ANN technique comparing the results with multiple
linear regression, showing that better performances are achieved by non-linear methods
[73]. Further advances of ANN techniques for STLF have been carried out by a group of
authors since 1995 to 2002 [74],[75],[76],[77],[78]. More recently, a multi-stage ANN has
been introduced in order to improve the performance when weather forecast errors are
larger [79].
Other approaches have been recently applied to STLF, such as support vector machines
(SVM) [80],[81] and kernel based methods [82].
In view of the correlation between electric load and the weather conditions, among the
potential regressors there are weather variables such as dry bulb temperature (the stan-
dard measure of temperature), wet bulb temperature, level of humidity, wind speed, dew
point temperature, etc. The most commonly used, obviously, is the temperature at dif-
ferent past times as well as its forecast. Furthermore temperature can enter in the model
as a naked variable or through a transformation - piecewise linear, quadratic, cubic, etc.
- describing its non-linear relationship with the electricity demand [65],[83],[81].
As a consequence of the characteristic seasonal patterns, the calendar variables represent
another set of typical regressors: month of year, season, weekday, holiday and day close
to holidays.
Although the practical applications and the scienti�c literature on STLF cover a number
of countries all over the world, the di�erent peculiarities of each country, such as the geo-
graphical position and the use of electricity-powered air conditioners, imply that a single
model cannot be suitable for each situation. Herein we focus on the Italian consumption,
comparing our results with other recent works on this country [84],[85].
In this chapter, we describe how IED forecasts were obtained through the application of
the machine learning models introduced in chapter 3 and already used for the forecast of
the Italian gas demand (GD) in chapter 4. In particular, we consider nine di�erent learning
models - ridge, LASSO, elastic net, Torus, SVM, GP, KNN, random forest and ANN -
and four ensemble techniques that aggregate the base forecasts - simple average, weighted
average, a simple average based on optimized regressors and SVM. An aggregation model
was also added, Subset average (c.a.), described in chapter 3.
The same regressors considered for the GD forecasting were used, while a di�erent function
describing the relation between IED and temperature is tested. Furthermore, a SARIMA
model on the errors of each base prediction was applied in order to remove their residual
autocorrelation and improve the forecast results. This correction was not necessary in any
case of gas demand forecasting, presented in chapter 4, because those forecasts did not
show residual autocorrelation.
This framework was applied to the daily electricity demand time series using the daily
temperature forecast as covariate. The hourly forecast of IED was approached in much
the same way: in a �rst step, following the hourly multiple model approach of [83], the
model procedure applied to the daily IED is repeated 24 times, one for each hours, with
the use of 24-hour ahead temperature forecasts. Then, the modeling was also repeated
for each of the 6 zones and each of the 24 hours, thus iterating the procedure 144 times.
Finally, dimensionality reduction via principal component analysis (PCA) was performed



5.3 Italian power demand analysis 79

in order to reach better performances in terms of computation time and possibly reduce
over�tting. In each of these experiments we are interested in analyzing the bene�t of
aggregation �nalized to obtain the prediction of daily or hourly IED.
This chapter is organized as follows: in section 5.2 the main objective is described, in
section 5.3 all the analysis on IED and the chosen regressors are detailed, section 5.4 is
devoted to the models and methods adopted. In section 5.5 our application of the models
to IED is explored; in section 5.6 the �nal results are reported and discussed. Lastly, in
section 5.7 some conclusion are drawn and future developments are discussed.

5.2 Problem Statement

The scope of this section is the extension of the machine learning model architecture,
used in in chapter 4 for the forecast of the Italian gas demand (GD), and its application
to day-ahead Italian electricity demand forecasting with the consequent analysis of its
forecasting results.
IED time series, reported in �g. 2.14 during the period 2012-2018, shows characteristics
similar to those highlighted by the Italian gas demand series Figs. 2.2, 2.3 and 2.4, such as
pronounced periodicities and high correlation with temperature. This observation opens
the opportunity to test the same models as those developed for GD.
The forecast errors resulting from the model application are analyzed and corrected by
the application of a time-series model - SARIMA - so as to withen the residuals.
This forecasting procedure is followed for both the hourly and daily data in order to
obtain the hourly and aggregated daily forecasts. Our �rst scope is to pass through the
hourly forecasting and then obtain the daily forecasts by aggregating the hourly results,
assessing the value added achieved by this solution. Second, PCA was applied to reduce
the number of hourly components to forecast and, after that, we resort to the 24 hour
IED and its aggregation to daily IED. These two passages, namely disaggregation and
dimensionality reduction via PCA, are applied also to the time series of the di�erent
Italian zones. Finally, the results with and without PCA are compared.

5.3 Italian power demand analysis

In this section we follow the data analysis shown in chapter 3 in relation to the daily IED.
We start by exploring all the characteristics of IED, the target time series. Its relation
with the principal exogenous predictive regressor, the temperature, is studied and the list
of chosen regressors is described. Then the analysis is extended by also considering the
single 24 hour IEDs with daily frequency and their relation with the daily IED and hourly
temperature. Finally we introduce the spatial disaggregation of IED in the 6 zonal Italian
Electricity Demands, XED, where a generic X stands for each zone.

5.3.1 IED time series analysis

As highlighted in �g. 5.1, IED is strongly autocorrelated, above all with a 7-day time
lag, with correlation around 0.78, larger than the one-day lag correlation which is about
0.6. This behaviour is also seen looking at �g. 2.14 where the weekly shape repeates



80 5 Italian power demand forecasting

over time while the one-day di�erences strongly depend on the day of the week under
question. As a matter of fact, in the period 2012-2018, the average percent di�erences
between consecutive days are characterised by a strong growth of 28% between Sunday
and Monday, low variations between the following days until Friday and two pronounced
decreases, between Friday and Saturday and between Saturday and Sunday, respectively
of 15% and 12%.
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Fig. 5.1: IED autocorrelation function computed on 2012-2018 data. The seven day lag
correlation is evident.

The analysis of the spectral density, reported in �g. 5.2, clearly shows that the weekly
periodicity is the most evident. There is a yearly periodic signal, with the demand level
rising in correspondence of the coldest and hottest periods, respectively, of winter and
summer, generally in February and July. All the other spikes in the spectral density are
ascribable to multiple harmonics of the fundamental ones.
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Fig. 5.2: IED spectral density function computed on 2012-2018 data. The spectral density
is moreover concentrated on the point with frequency 52/year corresponding to the weekly
periodicity.

As a consequence of the seasonalities, IED also shows a non-negligible correlation with
its value one year before, about 0.55. This correlation rises to 0.88 if similar days are
considered, as de�ned in [86] which can be summarized as the closest day, in terms of
daynumber 1-365, that in the previous year shares the same weekday. In case of a holiday,
the similar day is just the same holiday in the previous year.
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Fig. 5.3: IED of year 2018 (blue) versus similar day IED of year 2017 (orange)

5.3.2 IED vs Temperature

An exogenous regressor is given by the temperature, for which value we use the Italian
aggregation supplied by one of the best-known providers of weather and weather-related
data in the energy sector.
The relation between IED and temperature is well represented in �g. 5.4 where the U-
shape function may be justi�ed by cooling and heating needs respectively in case of high
and low temperatures. This behaviour, well known in the literature [87],[65], partially
depends on the country under consideration and its level of air conditioner usage as well
as electric rather than gas heating. Figure 5.4 shows a critical temperature (Tc), point
of inversion of correlation between IED and temperature, around 15◦C. Furthermore the
U-shape relation is notably asymmetric with a steeper slope for temperatures higher than
Tc compared with the other branch of the curve, possibly indicating a greater usage of
air conditioning than electric heating. Finally, in �g. 5.4 the di�erent levels of electric
demand between weekdays, Saturday and Sunday are shown with a similar level from
Monday to Friday, a lower demand on Saturday and the lowest on Sunday. Under the
Sunday level there are points with di�erent colours that represent holidays.
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Fig. 5.4: IED versus temperature: an asymmetric U-shape behavior at di�erent levels
depending on the days of week.

The non-linear relation between IED and temperature can be captured via the HCDD
(Heating and Cooling Day Degrees) given by

HCDD = |Tc − T | . (5.1)

This function can be used to transform the weather temperature regressors, as done
for Thermoelectric Gas Demand forecasting in [11]. Tc is the critical temperature and
corresponds to the point of the inversion of the slope.
The correlation between IED and HCDD is about 0.3 during the weekdays and grows
to 0.4 for Saturdays and 0.5 for Sundays. The real correlation could also be higher but
turns out to be lowered by the e�ect of holidays and business closure periods especially
in August and during the Christmas vacation.
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Fig. 5.5: IED versus HCDD: a linear relation at di�erent levels depending on the day of
week.

Another possible solution that takes account of the asymmetry of the U-shape relation
between IED and temperature is to consider two distinct day degree regressors: Heating
Degree Day (HDD)

HDD = max(Tc − T, 0) (5.2)

and Cooling Degree Day (CDD)

CDD = max(T − Tc, 0) (5.3)

where Tc is the same in both de�nitions. In this way the models are allowed more �exibility
in order to learn the patterns driven by temperature.
The temperature transformation should take into account the day-ahead change of tem-
perature, since the most important e�ect, given by the level of temperature, is already
embedded in the power demand of the day before. This is shown in �g. 5.6, where the
right-hand panel displays the relation between IED(t-1) and temperature(t), very simi-
lar to the one between IED(t) and temperature(t), while the left scatter plot of IED(t)
against IED(t-1) highlights their strong linear relation.
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Fig. 5.6: A 3d representation of IED(t) respect IED(t-1) and Temperature(t).

5.3.3 Hourly IED

IED can be disaggregated at time and spatial-time levels, respectively IEDh and XEDh.
In view of the high correlations between the di�erent IEDh and with IEDd, described
in chapter 2, the behavior of IEDd is roughly replicated by each IEDh, just changing
the level. This pronounced similarity suggested the possibility to treat IEDh with same
models and regressors as IEDd, just replacing the daily temperature forecast with the
hourly one.
As highlighted in chapter 2, similar considerations apply to each XEDh as well to the
North series, more regular and correlated to IEDh, also because it covers about 56% of
the total Italian demand. As a consequence the same models and features chosen for IED
forecasting could be applied to the XEDh forecasting.
The relationship between IEDh and temperature at the corresponding hour can be divided
into two di�erent periods of the day: from 6 a.m. to 11 p.m., when the U-shape is similar
to the daily one, and in the remaining hours when the left branch of the curve is much
lower, probably as a consequence of the scarce use of electricity during the night. This
evidence would suggest preferring the use of HDD and CDD with respect to HCDD.

5.3.4 List of features

In table 5.1 the features used for the forecasting of the three sets of time series IEDd,
IEDh and XEDh are reported, where IEDd is composed of a single series, IEDh by 24
and XEDh by 144. The case where the couple HDD and CDD substitutes HCDD is also
tested.
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Feature Reference time Type

Electric demand series t-1 continuous
Electric demand series t-7 continuous
Electric demand series sim(t) continuous
Electric demand series sim(t− 1) continuous

Forecasted temperature t continuous
Forecasted temperature t-1 continuous
Forecasted temperature t-7 continuous
Forecasted temperature sim(t) continuous
Forecasted HCDD t continuous
Forecasted HCDD t-1 continuous
Forecasted HCDD t-7 continuous
Forecasted HCDD sim(t) continuous

Weekday t categorical
Holiday t dummy
Day after holiday t dummy
Bridge holiday t dummy

Table 5.1: List of features

5.4 Methodological framework

The same machine learning models, thoroughly described in chapter 3 and tested for the
case of GD forecasting in chapter 4, were applied to IED forecasting (IEDd, IEDh and
XEDh). These models were structured as follows: nine single models - ridge, LASSO,
elastic net, Torus, SVM, GP, KNN, random forest and ANN - followed by �ve ensemble
methods, described in chapter 3, to aggregate the base forecasts - simple average, weighted
average, Subset Average (b.f.), Subset Average (c.a.) and SVR aggregation.
Based on a sample of data given by pairs (xi, yi), i = 1, . . . , n, where xi ∈ Rp is the vector
of p chosen regressors and yi is the target variable, in our case respectively IEDd, IEDh

and XEDh, each implemented model aims at obtaining a function y = f(x) that forecasts
the target variable y∗ = y∗(t∗) at a future time t∗, based on the p-dimensional regressor
vector x∗ = x∗(t∗) at that time.
For each model the same hyperparameters and parameters were calibrated as described in
chapter 4. In particular, the hyperparameters were chosen through a maximization of the
marginal likelihood for the GP, a trial and error procedure followed by a cross validation
for the ANN, the AIC minimization for the Torus model and a cross validated grid search
for all the other models.
In order to correct the base model predictions, a time series model - SARIMA - was
introduced, as described in section 3.1.4, applied to the forecast errors so as to obtain
adjusted base forecasts

y∗(t∗) = fi(x∗) + εai (5.4)

= fi(x∗) + gi(x∗) + εbi i = 1, ..., 9 (5.5)
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where x∗ = x∗(t∗), fi(x∗) is the initial non-adjusted base model prediction with error εai ,
gi(x∗) is the error forecast obtained by SARIMA and εbi is the i-th base model residual
error after SARIMA correction.
Based on the de�nition of SARIMA model given in section 3.1.4, in this step the time
series xt is given by the base model error εai (eq. (5.4)); the forecast rule gi(x∗) of eq. (5.4)
is completely de�ned once the SARIMA hyperparameters and parameters are identi�ed.
Following an analysis of autocorrelation of the base model error time series, we highlighted
a periodicity with a lag of 7 days in the εai and also some signi�cant 1- and 2-day lag
correlation, so that we selected the SARIMA seasonal hyperparameters as (P,D,Q, s) =
(1, 0, 0, 7). In particular, as the model errors displayed a cyclostationary behavior, the
integral hyperparameter d was �xed equal to zero, while the autoregressive and moving
average hyperparameters (p, q) were estimated by minimising the Bayesian information
criterion (BIC).
The application of the same model framework - base models, SARIMA correction and
aggregation models - was repeated for each of the three target variables.
In case of IEDh and XEDh, the computation times became very long, at least for those
of IEDd where the single identi�cation process had to be multiplied 24 and 144 times
respectively. In order to reduce the computational burden, the dimensions of the forecast
problem were reduced by resorting to PCA, as described in section 3.3.

5.4.1 Hyperparameters

With the exception of the hyperparameters of GP, obtained by marginal likelihood max-
imization, those of Torus, found by the AIC minimization, and those of ANN, reached
by a manual search, all the other model hyperparameters were obtained by a grid search
whose grids are reported in table 5.2.

Model Hyperparameters Grid

Ridge alpha [0.0001, 50], step=50, log scale
LASSO alpha [0.0001, 50], step=50, log scale
Elastic Net alpha [0.001, 5], step=10, log scale

l1 ratio [0.001, 1], step=10
SVM C [1000, 10000], step=5

ε [0.001, 0.01], step=5
γ [0.0001, 0.01, 0.1]

KNN neighbors [1, 20], step=1
Random Forest max features [2, 22], step=5

max depth [1, 20], step=1

Table 5.2: Hyperparameters

The KNN was tested both with uniform weights and weights dependent on distance,
whereas the kernel of SVM was linear in case of IEDd and squared exponential in case of
IEDh and XEDh.



88 5 Italian power demand forecasting

After some trials, the hyperparameters grid was chosen so as to satisfy two conditions: a
su�ciently large range for the candidate hyperparameters and a reasonable computation
time.

5.5 Experimental framework

As mentioned in section 5.2, the available data range from 2012 to 2018.
The number of test sets were de�ned on the basis of the di�erent experiments, but all
of them spanned over an entire year, from the 1 January to the 31 December. Just as
described in chapter 4 for GD forecasting, two training sets were associated to each test
sample in order to complete a two-step calibration for the base and ensemble models.
First, the base models' parameters were calibrated, from 2012 to the end of the second
year before the test set. In this step the base predictors of the last year before the test set
were computed as well. Second, the parameters of the ensemble models were calibrated in
the last year before the test set. In this step, the base models' parameters were calibrated
a second time using the complete training set from 2012 to the last day before the test
set. For testing, only models calibrated in the second step were used.
The hyperparameter calibration was automatically executed before each forecasting test.
The performance of each of the nine models and �ve aggregations was measured on each
test set using the MAPE:

MAPEi =
100

N

N∑
j=1

∣∣∣IEDj − ˆIEDj

∣∣∣
IEDj

where i ∈ (daily, hourly) and N is 365 (or 366) in case of daily MAPE and 8760 (or 8784)
in case of hourly MAPE.
MAPE was chosen rather than MAE due to the almost stationary behavior of IED series.
Further, as it is the most frequently used measure of performance in STLF literature we
could also compare our results with those published by other authors.
In conclusion, di�erent forecasting experiments were performed, all of them aimed at
improving IED forecasting.
Experiment 1. The set of 9 base and 5 ensemble machine learning models was applied, with
the error correction a�orded by SARIMA to IEDd, obtaining the baseline IED forecasts
and MAPEs for the test set years 2015, 2016, 2017, 2018. In this �rst experiment we
used HCDD given by eq. (5.1) where Tc = 15◦C was chosen for maximizing the linear
correlation between IED and HCDD.
Experiment 2. As a consequence of the di�erent slopes of the two branches of the U-shape
curve representing the relation between IED and temperature, the single HCDD function
was replaced with two distinct functions of temperature HDD and CDD. For comparison,
the results with this con�guration on the same four most recent test years were computed.
Then other experiments were performed using a subset of the 9 machine learning models
that did not include the Torus and ANN. This choice was made for the sake of simplicity.
Experiment 3. The subset of 7 machine learning models and 5 ensemble ones were applied
to the IEDd forecasting and, based on the similar behavior of each IEDh with IEDd, to
each of the 24 time series of IEDh, using each hour's own hourly temperature forecast as
regressor instead of the daily average. After that we could add up the hourly forecasts in
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order to obtain the prediction of IEDd. This experiment was de�ned in order to appreciate
the bene�t of obtaining daily estimates aggregating a more detailed hourly forecasting.
Experiment 4. The third experiment, where a possible time exploration of the IEDd curve
was analysed, was also extended to the spatial dimension. In fact IED is composed by
6 di�erent zones so that it is possible predict each single zone for each of the 24 hours
(XEDh). Thus the same machine learning models were applied to each of the 144 XEDh

daily curve forecasting problems. In this case as well, the weather temperature regressors
were detailed for each zone and hour.
Experiment 5. The 24 and, above all, the 144 times model applications produced better
results, at the cost of an increase of the computation time. Therefore, PCA was used to re-
duce the computation time, another possible bene�t being the implicit regularization due
to parameter reduction. The results were compared with those of the other experiments
in terms of daily and hourly IED MAPEs.

5.6 Results

The results corresponding to the �rst two experiments are reported in table 5.3 and
table 5.4. Both tables show the daily MAPEs of all the tested models pre- and post-
correction by SARIMA for the test years from 2015 to 2018, with one di�erence: in
table 5.3 HCDD was used among the regressors, whereas in table 5.4 HDD and CDD
were considered.
Some preliminary considerations could be made observing the results in these two tables.
The best performing base models are SVM and ANN. On average, SVM is better than
ANN probably due to the bad result of ANN in the �rst test set, caused by the small size
of the available train set. In fact the average results for the other three years highlight a
better performance by ANN. The same considerations hold before and after the SARIMA
correction.
For what concerns the e�ect of the SARIMA correction, the results are di�erent in terms
of level but similar in terms of information content, whether we take into account all
the four test years or do not consider year 2015. Indeed, in both cases the most a�ected
models are Random Forest, SVM and KNN, and the average e�ect of correction on the
base models is double with respect to that on aggregated models. On the other hand, in
terms of level, if we consider all the four test samples, both for base models and aggregated
ones, we measure a value of correction about double with respect to considering only the
most recent three years. This result probably is due to the short training set for the test
year 2015. All these considerations are shared by results in the two tables 5.3 and 5.4.
The new ensemble model developed for IED forecasting, Subset Average (c.a.), shows, as
expected, results similar to Subset Average (b.f.) precisely because both are obtained by a
simple average on a optimized subset of predictors which is often the same in both cases.
A further consideration to be made regarding the results in tables 5.3 and 5.4 comes from
their comparison and concerns the impact of the temperature-related features. We can
conclude that, at daily level, there is no clear evidence about including HCDD rather
than the pair HDD and CDD.
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Pre correction Post correction

Model 2015 2016 2017 2018 2015 2016 2017 2018

Ridge 2.39 2.17 2.03 2.06 2.17 2.00 1.88 1.93
LASSO 2.37 2.17 2.03 2.06 2.19 2.00 1.88 1.93
Elastic Net 2.40 2.17 2.03 2.06 2.17 2.00 1.88 1.93
SVM 2.11 2.09 1.85 1.96 1.99 1.96 1.77 1.86
GP 4.04 2.49 3.15 2.49 3.49 2.44 2.66 2.37
Torus 2.92 2.86 2.48 2.58 2.74 2.66 2.28 2.50
KNN 2.84 2.76 2.48 2.58 2.49 2.39 2.33 2.49
Random Forest 3.05 2.67 2.4 2.41 2.54 2.51 2.20 2.02
ANN 2.52 2.19 1.68 1.66 2.63 1.97 1.64 1.64

Simple Average 2.30 1.90 1.80 1.77 2.03 1.76 1.61 1.72
Subset Average (c.a.) 2.51 1.79 1.95 1.67 2.3 1.66 1.75 1.65
Weighted Average 2.30 1.94 1.71 1.59 2.03 1.86 1.59 1.59

SVM aggregation 2.07 1.91 1.87 1.62 2.02 1.88 1.68 1.72
Subset Average (b.f.) 2.33 1.89 1.91 1.60 2.25 1.79 1.71 1.63

Table 5.3: Daily MAPE on test sets 2015-2018 pre- and post-correction by SARIMA model
for IED daily forecasting. Case with HCDD among regressors.

Pre correction Post correction

Model 2015 2016 2017 2018 2015 2016 2017 2018

Ridge 2.50 2.16 2.08 2.07 2.22 1.98 1.90 1.93
LASSO 2.36 2.16 2.08 2.07 2.17 1.98 1.90 1.93
Elastic Net 2.54 2.16 2.08 2.07 2.24 1.98 1.90 1.93
SVM 2.10 2.06 1.87 1.97 1.97 1.93 1.79 1.86
GP 4.19 2.56 3.11 2.65 3.54 2.58 2.63 2.49
Torus 2.92 2.86 2.48 2.58 2.74 2.66 2.28 2.50
KNN 2.84 2.76 2.48 2.58 2.49 2.39 2.33 2.49
Random Forest 3.13 2.60 2.31 2.33 2.59 2.57 2.01 2.14
ANN 2.48 2.02 1.95 1.77 2.84 1.95 1.88 1.73

Simple Average 2.35 1.86 1.80 1.81 2.04 1.74 1.64 1.76
Subset Average (c.a.) 2.44 1.73 1.94 1.80 2.38 1.66 1.78 1.74
Weighted Average 2.35 1.84 1.75 1.72 2.04 1.77 1.66 1.74
SVM aggregation 2.15 1.98 1.77 1.57 2.00 1.89 1.64 1.67

Subset Average (b.f.) 2.30 1.79 1.92 1.85 2.23 1.76 1.77 1.86

Table 5.4: Daily MAPE on test sets 2015-2018 pre- and post-correction by SARIMA model
for IED daily forecasting. Case with HDD and CDD among regressors.
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The results relative to experiments 3 and 4 are reported in tables 5.5, 5.6, 5.7 and 5.8.
All the results are aggregated and spatially netted at Italian level, in the �rst two tables
temporarily netted at daily level to obtain values of daily MAPEs, whereas in the third
and fourth tables the hourly results are not temporarily netted so as to �nish with hourly
MAPEs.
Regarding the temperature-related features, we reach the same conclusions as before,
when HCDD is considered instead of the pair HDD and CDD. This result is clear both
when analysing the daily and hourly MAPEs (comparison between table 5.5 and table 5.6
in the case of daily MAPEs and between table 5.7 and table 5.8 for hourly MAPEs).
On the other hand, the results in table 5.5, con�rmed by those in table 5.6, highlight the
value added given by the hourly simulations with respect to the initial daily ones.

2017 2018

Model IEDd IEDh XEDh IEDd IEDh XEDh

Ridge 1.88 1.86 1.83 1.93 1.87 1.86
LASSO 1.88 1.87 1.85 1.93 1.85 1.85
Elastic Net 1.88 1.87 1.85 1.93 1.87 1.87
SVM 1.77 1.53 1.51 1.86 1.49 1.44

GP 2.66 2.51 2.51 2.37 2.19 2.18
KNN 2.33 1.91 2.05 2.49 2.03 2.02
Random Forest 2.2 1.64 1.73 2.02 1.71 1.76

Simple Average 1.68 1.56 1.6 1.76 1.6 1.59
Subset Average (c.a.) 1.87 1.65 1.66 1.84 1.58 1.55
Weighted Average 1.78 1.49 1.49 1.84 1.49 1.44
SVM aggregation 1.69 1.5 1.54 1.99 1.54 1.42

Subset Average (b.f.) 1.74 1.54 1.53 1.89 1.54 1.52

Table 5.5: Daily MAPE on test sets 2017-2018 for IED forecasting respectively by daily
IED series (IEDd), hourly IED series (IEDh) and 6 hourly XED series (XEDh). Case with
HCDD among regressors.
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2017 2018

Model IEDd IEDh XEDh IEDd IEDh XEDh

Ridge 1.9 1.87 1.83 1.93 1.83 1.87
LASSO 1.9 1.87 1.83 1.93 1.82 1.88
Elastic Net 1.9 1.88 1.84 1.93 1.84 1.89
SVM 1.79 1.51 1.53 1.86 1.45 1.44

GP 2.63 2.53 2.59 2.49 2.28 2.38
KNN 2.33 1.91 2.05 2.49 2.02 2.02
Random Forest 2.01 1.65 1.72 2.14 1.7 1.77

Simple Average 1.71 1.57 1.61 1.77 1.56 1.6
Subset Average (c.a.) 1.91 1.66 1.68 1.87 1.56 1.59
Weighted Average 1.8 1.48 1.52 1.87 1.45 1.45
SVM aggregation 1.75 1.5 1.58 1.95 1.49 1.43

Subset Average (b.f.) 1.91 1.52 1.55 1.89 1.55 1.54

Table 5.6: Daily MAPE on test sets 2017-2018 for IED forecasting respectively by daily
IED series (IEDd), hourly IED series (IEDh) and 6 hourly XED series (XEDh). Case with
HDD and CDD among regressors.

In these tables, the results show only a negligible advantage given by the more detailed
hourly-zonal simulations. Instead, the tables 5.7 and 5.8 do justice to the most detailed
simulations. In fact the lowest hourly MAPEs are de�nitely those associated with XEDh.
The disagreement between tables 5.5 and 5.6 is due to the aggregation made from hourly
to daily results, which improves the hourly results more or less at the same level of the
XEDh results, where a further aggregation of the 6 zones is performed. In order to shed
some light on this fact it was necessary to move to a lower level, i.e. hourly MAPE, so
that the further zonal aggregation bene�t could be appreciated.
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YEAR 2017 YEAR 2018

Model IEDh XEDh IEDh XEDh

Ridge 2.29 2.21 2.40 2.35
LASSO 2.31 2.23 2.40 2.34
Elastic Net 2.30 2.24 2.39 2.35
SVM 1.88 1.80 1.92 1.84

GP 3.29 3.09 2.88 2.81
KNN 2.64 2.58 2.78 2.62
Random Forest 2.28 2.14 2.40 2.29

Simple Average 1.97 1.93 2.06 2.01
Subset Average (c.a.) 2.07 1.98 2.08 1.99
Weighted Average 1.85 1.78 1.92 1.83

SVM aggregation 1.92 1.82 2.01 1.87
Subset Average (b.f.) 1.95 1.87 2.03 1.93

Table 5.7: Hourly MAPE on test sets 2017-2018 for IED forecasting respectively by hourly
IED series (IEDh) and 6 hourly XED series (XEDh). Case with HCDD among regressors.

YEAR 2017 YEAR 2018

Model IEDh XEDh IEDh XEDh

Ridge 2.31 2.21 2.38 2.35
LASSO 2.3 2.21 2.38 2.35
Elastic Net 2.32 2.23 2.39 2.36
SVM 1.88 1.82 1.93 1.86

GP 3.28 3.23 3.08 3.06
KNN 2.64 2.58 2.79 2.63
Random Forest 2.3 2.14 2.39 2.29

Simple Average 1.98 1.95 2.05 2.02
Subset Average (c.a.) 2.09 2.01 2.11 2.05
Weighted Average 1.86 1.81 1.92 1.86

SVM aggregation 1.92 1.87 1.99 1.87
Subset Average (b.f.) 1.94 1.89 2.03 1.96

Table 5.8: Hourly MAPE on test sets 2017-2018 for IED forecasting respectively by hourly
IED series (IEDh) and 6 hourly XED series (XEDh). Case with HDD and CDD among
regressors.

It is di�cult to compare our best results with those reported in [84] and [85] because of
some di�erences: �rst of all the tested years, but also the di�erent error measure adopted.
In fact they use a MAPE based on quarterly-hour data whereas we use a MAPE based
on hourly data. Lastly, we do not take much care of holidays' e�ects, that are not a focal
point of our work. Taking them into account could further improve our results, which,
nevertheless, seem comparable with those reported in [84],[85].
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The last part of this chapter regards the results of Experiment 5 where the application of
PCA was applied to IED forecasting. The PCA was used in order to reduce the dimensions
and hence the computation time of the problem for both IEDh and XEDh, that are
replaced by IEDPCA

h and XEDPCA
h . The analysis was executed on 2017 and 2018 data,

as test sets, so that it was possible to compare the results with those computed without
PCA: IEDd, IEDh and XEDh.
Reducing the number of components entails a new type of error, the reconstruction error,
which is given by the approximation of the problem. As the number of components grows,
the reconstruction error is reduced but computation times increase as well as the risk of
over�tting.
In Tables 5.9, 5.10, 5.11, 5.12 the results using PCA are reported and compared to the
previous results without PCA. The �rst two tables refer to 2017 year as test set, whereas
the other two refer to 2018; for each year the �rst table contains the daily MAPEs and
the second one the hourly MAPEs. As reported in these tables, the behaviour of the
tested models, as the number of components changes, was di�erent as a consequence of
the peculiarities of each model, possibly also because we intentionally did not change the
hyperparameter grid between the di�erent experiments. In fact, it was not feasible to
explore the hyperparameter grid for each of the 24 or 144 IED forecasting problems.
On the other hand, focusing on the aggregated model results, as the number of components
change, the Simple Average often yields the lowest MAPE for IEDPCA

h and XEDPCA
h . As

expected, increasing the number of components reduces the MAPEs for both IEDPCA
h and

XEDPCA
h . Moreover, when the same number of dimensions are chosen, XEDPCA

h achieves
larger MAPE than IEDPCA

h because of its larger reconstruction error due to a larger
number of dimensions, i.e. 144 compared to 24.

IEDh(PCA) XEDh(PCA)

Model n=1n=3n=5n=10n=15n=20 n=1n=3n=5n=10n=15n=20 IEDd IEDh XEDh

Ridge 2.07 1.96 1.91 1.91 1.91 1.91 2.9 1.94 1.91 1.86 1.87 1.88 1.88 1.86 1.83
LASSO 2 1.89 1.83 1.83 1.83 1.83 2.84 1.89 1.86 1.77 1.8 1.82 1.88 1.87 1.85
Elastic Net 2.15 1.88 1.85 1.84 1.84 1.84 2.89 1.83 1.73 1.78 1.83 1.72 1.88 1.87 1.85
SVM 2.32 2.25 2.22 2.21 2.21 2.21 3.35 2.43 2.37 2.28 2.34 2.35 1.77 1.53 1.51
GP 2.31 2.2 2.17 2.17 2.17 2.17 2.97 2.5 2.42 2.41 2.4 2.4 2.66 2.51 2.51
KNN 2.07 1.96 1.91 1.91 1.91 1.91 2.88 1.93 1.9 1.85 1.86 1.87 2.33 1.91 2.05
Random Forest 2.07 1.97 1.92 1.91 1.91 1.91 2.97 1.93 1.9 1.85 1.86 1.87 2.2 1.64 1.73

Simple Average 1.81 1.68 1.63 1.63 1.63 1.63 2.97 1.74 1.67 1.64 1.66 1.64 1.68 1.56 1.6
Simple Average (c.a.) 1.86 1.72 1.66 1.66 1.66 1.66 2.82 1.72 1.65 1.73 1.74 1.62 1.87 1.65 1.66
Weighted Average 1.85 1.74 1.7 1.7 1.7 1.7 2.84 1.77 1.68 1.61 1.64 1.64 1.78 1.49 1.49
SVM aggregation 1.95 1.82 1.76 1.76 1.76 1.76 3.37 1.82 1.77 1.72 1.71 1.71 1.69 1.5 1.54
Simple Average (b.f.) 1.85 1.74 1.69 1.69 1.69 1.69 2.85 1.72 1.65 1.62 1.65 1.62 1.74 1.54 1.53

Table 5.9: 2017 year as test set: daily MAPEs of IEDh and XEDh, using PCA, as the
number of components change. In the table also the comparison with MAPEs of IEDd,
IEDh and XEDh, without PCA, are represented. All the model results are reported.
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IEDh(PCA) XEDh(PCA)

Model n=1n=3n=5n=10n=15n=20 n=1n=3n=5n=10n=15n=20 IEDh XEDh

Ridge 4.4 2.86 2.46 2.33 2.31 2.3 4.71 2.97 2.63 2.36 2.33 2.33 2.29 2.21
LASSO 4.37 2.82 2.39 2.24 2.22 2.22 4.7 2.92 2.58 2.28 2.26 2.26 2.31 2.23
Elastic Net 4.46 2.92 2.48 2.35 2.33 2.33 4.77 2.89 2.54 2.38 2.38 2.28 2.3 2.24
SVM 4.5 3.18 2.81 2.71 2.69 2.69 5.14 3.39 3.1 2.82 2.86 2.87 1.88 1.8
GP 4.65 3.19 2.75 2.63 2.62 2.62 4.87 3.44 3.11 2.91 2.87 2.86 3.29 3.09
KNN 4.4 2.87 2.46 2.33 2.31 2.3 4.79 3 2.66 2.39 2.36 2.35 2.64 2.58
Random Forest 4.4 2.87 2.46 2.33 2.31 2.31 4.87 2.96 2.63 2.35 2.32 2.32 2.28 2.14

Simple Average 4.22 2.66 2.21 2.05 2.03 2.03 4.87 2.79 2.43 2.15 2.12 2.1 1.97 1.93
Simple Average (c.a.) 4.26 2.67 2.23 2.08 2.05 2.05 4.71 2.76 2.4 2.22 2.19 2.06 2.07 1.98
Weighted Average 4.25 2.68 2.23 2.08 2.06 2.05 4.74 2.8 2.44 2.13 2.11 2.11 1.85 1.78
SVM aggregation 4.27 2.7 2.26 2.13 2.11 2.11 5.04 2.79 2.46 2.2 2.14 2.15 1.92 1.82
Simple Average (b.f.) 4.25 2.67 2.23 2.08 2.06 2.05 4.7 2.78 2.44 2.17 2.15 2.12 1.95 1.87

Table 5.10: 2017 year as test set: hourly MAPEs of IEDh and XEDh, using PCA, as the
number of components change. In the table also the comparison with MAPEs of IEDh

and XEDh, without PCA, are represented. All the model results are reported.

IEDh(PCA) XEDh(PCA)

Model n=1n=3n=5n=10n=15n=20 n=1n=3n=5n=10n=15n=20 IEDd IEDh XEDh

Ridge 2.07 2 1.98 1.98 1.98 1.98 2.65 2.04 2.04 1.97 1.97 1.97 1.93 1.87 1.86
LASSO 2.07 1.95 1.92 1.92 1.92 1.92 2.63 1.99 2.01 1.94 1.94 1.94 1.93 1.85 1.85
Elastic Net 2.16 2.13 2.1 2.09 2.09 2.04 2.63 2.11 2.17 2.05 2.04 2.05 1.93 1.87 1.87
SVM 2.52 2.34 2.3 2.3 2.3 2.31 2.91 2.4 2.36 2.27 2.26 2.26 1.86 1.49 1.44
GP 2.45 2.32 2.28 2.27 2.27 2.28 3.1 2.51 2.5 2.42 2.41 2.42 2.37 2.19 2.18
KNN 2.07 2 1.97 1.97 1.97 1.97 2.65 2.05 2.09 1.99 1.99 1.99 2.49 2.03 2.02
Random Forest 2.07 2 1.97 1.97 1.97 1.97 2.65 2.03 2.04 1.97 1.97 1.97 2.02 1.71 1.76

Simple Average 1.9 1.79 1.75 1.75 1.75 1.77 2.52 1.89 1.89 1.77 1.77 1.77 1.76 1.6 1.59
Simple Average (c.a.) 1.99 1.88 1.84 1.84 1.84 1.84 2.52 1.99 2 1.82 1.82 1.82 1.84 1.58 1.55
Weighted Average 1.91 1.79 1.75 1.74 1.74 1.79 2.53 1.89 1.9 1.78 1.78 1.78 1.84 1.49 1.44
SVM aggregation 2.09 1.97 1.91 1.91 1.91 1.97 2.62 1.89 1.92 1.92 1.91 1.91 1.99 1.54 1.42
Simple Average (b.f.) 1.9 1.8 1.75 1.75 1.75 1.77 2.55 1.92 1.94 1.81 1.81 1.8 1.89 1.54 1.52

Table 5.11: 2018 year as test set: daily MAPEs of IEDh and XEDh, using PCA, as the
number of components change. In the table also the comparison with MAPEs of IEDd,
IEDh and XEDh, without PCA, are represented. All the model results are reported.
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IEDh(PCA) XEDh(PCA)

Model n=1n=3n=5n=10n=15n=20 n=1n=3n=5n=10n=15n=20 IEDh XEDh

Ridge 4.39 2.88 2.54 2.4 2.38 2.38 4.61 2.95 2.71 2.48 2.43 2.41 2.4 2.35
LASSO 4.4 2.88 2.5 2.35 2.33 2.32 4.61 2.94 2.7 2.46 2.41 2.39 2.4 2.34
Elastic Net 4.37 2.98 2.65 2.53 2.52 2.46 4.59 2.98 2.78 2.58 2.56 2.55 2.39 2.35
SVM 4.56 3.19 2.87 2.75 2.74 2.73 4.76 3.23 2.99 2.78 2.76 2.75 1.92 1.84
GP 4.56 3.13 2.81 2.7 2.68 2.68 4.86 3.29 3.08 2.89 2.85 2.83 2.88 2.81
KNN 4.39 2.88 2.53 2.38 2.37 2.36 4.61 3.01 2.79 2.5 2.45 2.43 2.78 2.62
Random Forest 4.39 2.89 2.53 2.38 2.37 2.36 4.61 2.95 2.71 2.48 2.43 2.41 2.4 2.29

Simple Average 4.25 2.69 2.31 2.16 2.14 2.15 4.51 2.79 2.53 2.28 2.23 2.21 2.06 2.01
Simple Average (c.a.) 4.31 2.76 2.38 2.23 2.22 2.21 4.52 2.84 2.6 2.32 2.28 2.26 2.08 1.99
Weighted Average 4.27 2.71 2.33 2.17 2.15 2.18 4.52 2.81 2.56 2.3 2.24 2.23 1.92 1.83
SVM aggregation 4.31 2.76 2.42 2.28 2.26 2.31 4.53 2.85 2.62 2.41 2.34 2.33 2.01 1.87
Simple Average (b.f.) 4.25 2.71 2.32 2.17 2.16 2.17 4.53 2.81 2.56 2.3 2.25 2.24 2.03 1.93

Table 5.12: 2018 year as test set: hourly MAPEs of IEDh and XEDh, using PCA, as the
number of components change. In the table also the comparison with MAPEs of IEDh

and XEDh, without PCA, are represented. All the model results are reported.

As reported in �g. 5.7, the daily MAPE analysis of the Simple Average in years 2017 and
2018 highlights that, depending on the year, IEDPCA

h and XEDPCA
h reach the level of the

daily MAPE of IEDd thanks to their higher �exibility, whereas they do not seem to reach
the lower levels of IEDh and XEDh, at least for the chosen numbers of components.
Regarding the hourly MAPE, �g. 5.8 displays a similar behavior where IEDPCA

h and
XEDPCA

h approach asymptotically the lower levels of IEDh and XEDh, highlighting the
capacity of aggregated models to limit over�tting and increase the robustness of the
results.
As previously mentioned, better results in terms of computation time and MAPE could
further be obtained by improving the hyperparameter grid of each base model of each
component, an option that would be feasible as long as the computational burden does
not get too large.
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YEAR 2017 YEAR 2018

Fig. 5.7: Daily MAPEs of IEDh and XEDh, using PCA, as the number of components
change. In the plot also the comparison with MAPEs of IEDd, IEDh and XEDh, without
PCA, are represented. Only simple average results are reported.

YEAR 2017 YEAR 2018

Fig. 5.8: Hourly MAPEs of IEDh and XEDh, using PCA, as the number of components
change. In the plot also the comparison with MAPEs of IEDh and XEDh, without PCA,
are represented. Only simple average results are reported.
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5.7 Conclusion

In this chapter some machine learning techniques for day ahead Italian Electricity Demand
forecasting were tested, with prediction errors adjusted by a SARIMA model. We analyzed
in depth the e�ect of di�erent aggregation strategies at model, time and spatial-time level.
The model aggregation was obtained by testing 5 di�erent aggregation models tested
in di�erent experiments with distinct time (daily and hourly) and spatial-time (Italian
and zonal, both at hourly level) aggregation. The results showed lower errors for the
aggregation models compared to the base models. Furthermore, the time and spatial-time
aggregation strategies highlighted their value leading to proper and better results. We also
developed a PCA approach for hourly and zonal-hourly disaggregated series, respectively,
in order to cope with the long computation time and the risk of over�tting. Indeed some
base models obtain better results with a low number of components, a possible symptom
of overparametrization. On the other hand, the aggregation models show a decreasing
MAPE as the number of components increases, without reaching the best levels of the
models without PCA, at least for the chosen numbers of components. Better forecasts of
the Italian electricity demand in terms of MAPE might be achieved by taking account the
holidays e�ect and tuning the hyperparameter grid of each base model of each component,
an option that would be feasible as long as the computational burden does not get too
large.
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Recurrent Neural Networks for Italian gas and power

demand forecasting

6.1 Introduction and literature review

This chapter is devoted to the application of Recurrent Neural Networks (RNN) to the
forecasting of energy time series of gas and electricity demand, so far predicted in chapter 4
and chapter 5 mostly with shallow methods except for the deep MLP (cf. �g. 3.6).
The �rst RNN architectures were based on the 1986 work [88], where the authors intro-
duced the concept of learning by propagating backward the errors, thereafter widely used
in the training methods of di�erent ANN architectures. In that work, the technique was
applied to both multi-layer neural networks and recurrent neural networks. The LSTM
was introduced in 1997 [29] in order to address the problem of vanishing gradient de-
scent su�ered by the plain RNN architecture, whereas the GRU (Gated Recurrent Unit)
was proposed in 2014 [33] as a less parametrized alternative to LSTM. All RNN are well
suited to process sequences of data, thanks to their memory storing information from the
previous elements of the sequence. For this reason, plain RNN, LSTM and GRU have
been widely used for handwriting recognition as well as in the �eld of Natural Language
Processing (NLP) for speech recognition, natural language understanding, and natural
language generation. In the NLP �eld, after the �rst relevant work of Bengio et al. [89],
where the authors developed the �rst neural language model based on feed-forward neu-
ral networks, over time the RNN architectures have become the most used [90] with a
predominance of the LSTM one [91]. An updated state of the art of the neural language
models is given by [92], where the authors compare several modern architectures coming
to the conclusion that, often, the plain LSTM architecture outperforms the other more
recent models.
Because of their nature, these ANN architectures have been employed for time series
forecasting as well. In the energy sector, they have been used more for electricity than
for gas. In the most recent literature, plain LSTM architectures have been proposed in
[93],[94],[95] in the context of electricity demand forecasting. A plain GRU [96] was used
for electricity price forecasting, while alternative architectures which combine CNN with
LSTM [97],[98] or some LSTMmodels on di�erent time scales [99] were also proposed. Two
examples of RNN applications to gas demand forecasting are given by LSTM in [48] and
GRU in [100]. In their papers, the authors mostly present their network topology and show
the results with few details regarding their choice about the di�erent hyperparameters or
con�gurations, except for [95] where the authors compare plain RNN, LSTM, and GRU

99
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architectures with di�erent topologies (layers and units) in order to predict the electric
loads and assess the impact of the di�erent con�gurations.
To the author's knowledge, the procedure to choose the topology and the hyperparameters
is seldom explained in detail and also the impact of random initializations is not explored
deeply. In this chapter, in order to �ll this gap, three plain RNN architectures, a simple
RNN (RNN0), an LSTM and a GRU will be studied in connection with the day-ahead
predictions of four time series: three Italian gas demands (residential - RGD, industrial -
IGD, and thermoelectric - TGD) and the Italian electricity demand (IED). For all these
cases, the model identi�cation and the free hyperparameters are obtained by analyzing
the MSE loss function in two validation years, after each model has been calibrated in the
years before by varying all the combinations of hyperparameters in a grid obtained after
some preliminary trials. Then, for some series, a further adjustment is also implemented
working out an alternative calibration, in order to face an instability issue highlighted in
the �rst stage of analysis. Particular attention is paid also to the impact of the random
initializations in the di�erent cases for all the analyzed models.
This chapter is organized as follows: a description of the experiments carried out in sec-
tion 6.2, some technical details regarding the Python libraries used in section 6.3, an
analysis of the results in section 6.4 and some concluding remarks in section 6.5.

6.2 Experiments

Three RNN architectures, an RNN0, an LSTM, and a GRU, all of them described in
chapter 3, were implemented and their forecasting performances compared on the three
gas demands and the electricity demand.
The experiments performed are divided into two sections. In the �rst one, the identi�cation
phase, di�erent con�gurations were studied, tuning the hyperparameters until the best
con�guration for each of the three models (LSTM, GRU, RNN0) was found. In this phase,
the seeds of random number generators were �xed, in order to be able to analyze the e�ects
of model without mixing them with the e�ect of di�erent random initializations. In the
second section, the test phase, the chosen topologies of LSTM, GRU, and RNN0 were
applied to the forecasting of Italian gas and electricity demands for the test years 2017-
2018; in this phase the seed �xing was relaxed, in order to evaluate the impact of the seed
on the �nal performances and minimize its e�ect.
We start analyzing the LSTM, which is known as one of the best RNN solution for time
series forecasting. Fixing the seed of all the random numbers in a Python session was not
a simple problem, because of the di�erent libraries. Below is a piece of code useful to this
job



6.2 Experiments 101

Fig. 6.1: Function written for �xing the seeds of all the possible random generators. The
call to this function ensures the user to obtain the same results after each run of the
implemented neural networks models.

Possible LSTM architectures were explored making some trial predictions of the gas de-
mand in a single year, changing some hyperparameters and noting the impact of them on
the results, in order to answer two questions: which of them are most relevant and how
to build the grid of hyperparameters for their calibration.
After the trials, all the three models and all the series were given: the same batch size (32),
the learning rate (0.01), the topology with a single layer, the activation function (Recti�ed
Linear Units - ReLU), the Adam optimizer (with amsgrad=True), the loss function (mean
standard error); �nally, the hyperparameters' 3× 3 grid was given by possible number of
units (4, 8, 16) and window length (3, 4, 21).
It was also found that including the HDD features in addition to the raw temperatures was
useless because the RNN could directly capture the non-linear relation with the temper-
ature. Given that the model without the HDD features (HCDD in case of IED) achieved
equal or better results, the following analyses and tests were performed considering all the
features described in chapter 4 except for the four HDD (HCDD in case of IED) related
ones.

Model identi�cation

Search of the best topologies for LSTM, GRU, and RNN0.
In order to choose, for each of the three RNN models, the con�guration best suited to
forecasting RGD, IGD, TGD and IED in the test years 2017 and 2018, we used the years
2015 and 2016 as validation sets. For each of the two validation sets, the nine di�erent
con�gurations were �tted based on previous years. The same procedure was repeated for
every one of the three models and the four time-series. The calibration process was run
with a considerable number of epochs, 2000, chosen to ensure a high level of �tting and
possibly reach the over�tting. The choice of the best con�guration for each of the three
models and four time-series was obtained analyzing the behavior of the loss measure
(MSE) in the two validation sets. The preference was given to those topologies, which
showed a behavior with low �uctuations and low level of error. On the other hand, the
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number of epochs to use were chosen in order to avoid the growth of the validation loss,
caused by the over�tting.

Model testing

Analysis of the forecasts in the test sets.
Once the best con�gurations had been chosen, the parameters of each model (LSTM,
GRU, RNN0) were calibrated for each time series (RGD, IGD, TGD, IED), with all the
data preceding the test sets. The results can be appreciated by comparing the levels of
MAE for the gas demand forecasts and MAPE for the electricity demand forecasts with
those obtained in chapter 4 and chapter 5 by the other machine learning models.

Analysis of alternative forecasting solutions.
In some cases, because of the noisy behavior of the validation loss in the model iden-
ti�cation phase, or the unsatisfactory performance registered in the testing section, the
adoption of a dynamic learning rate was tried. In particular the Keras callback ReduceL-
RonPlateau [101] was used, which reduces the learning rate of the model when a plateau
is reached in the trend of the training loss and, consequently, the model has stopped
improving. This Keras callback requires some hyperparameters. Based on the available
evidence, we �xed the factor by which the learning rate was to be reduced (factor=0.5),
the number of epochs with no improvement after which the learning rate had to be re-
duced (patience=50), and the lower bound on the learning rate (min_lr=10−5). For all
the other requested hyperparameters, the default values were kept. The Keras callback
was added in the model identi�cation stage modifying this process in order to optimize
the results: indeed, using ReduceLRonPlateau, practically stops the learning process be-
fore the end of the process, so that it is possible to �x the number of epochs. The number
of epochs was �xed at 500, after some tests which ensured the convergence. The free hy-
perparameters (units and window) were optimized by cross-validation using all the data
before the test set, using years 2017 and 2018 for the �nal test of the forecasts.

6.3 Technical notes

All the RNN architectures described in this chapter and also the ANN of chapter 4 were
implemented in Python 3.6, installed on the operating system Windows 7 by the Ana-
conda package. Below are the principal libraries used:

Keras==2.1.5
numpy==1.14.2
pandas==0.23.4
pandas-datareader==0.5.0
pandasql==0.7.3
scikit-learn==0.19.0
scipy==1.2.0
SQLAlchemy==1.2.1
statsmodels==0.8.0
tensor�ow==1.5.0
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tensor�ow-tensorboard==1.5.1

Keras was used with the TensorFlow backend, whereas the other machine learning models
were implemented by scikit-learn.

6.4 Results

The models were calibrated, by varying the hyperparameters in the grid, table 6.1, using
2015 and 2016 as validation sets.
The validation loss, given by the MSE is displayed as a function of the number of epochs
in �g. 6.2 for RGD, �g. 6.4 for IGD, �g. 6.6 for TGD, and �g. 6.8 for IED. All these
�gures report two rows of three panels; the �rst raw refers to the validation year 2015
and the second one to 2016, while the three panels refer to LSTM, GRU, and RNN0.
The typical pro�le of the validation MSE exhibit an initial high level due to the under-
�tting, followed by a decrease caused by the learning process, and �nally an increase
of the MSE attributable to over-�tting. Ideally, one would choose the hyperparameters
corresponding to the lowest validation MSE. On the other hand, in real experiments, one
should pay due attention to the stability of the behavior of the validation MSE rather
than sticking to its exact minimization, which, moreover, could strongly depend by the
validation year and the initial point of the optimization process.
Following these criteria, the best con�guration was chosen looking at both the MSE curves
of the two considered validation years so as to obtain a choice that could prove satisfactory
for both the validation sets. The chosen con�gurations are reported in table 6.2 and the
curves of their validation MSE, as a function of the number of epochs, are reported in
�g. 6.3 for RGD, �g. 6.5 for IGD, �g. 6.7 for TGD, and �g. 6.9 for IED.

con�guration (window, units)

c1 (3, 4)
c2 (14, 4)
c3 (21, 4)
c4 (3, 8)
c5 (14, 8)
c6 (21, 8)
c7 (3, 16)
c8 (14, 16)
c9 (21, 16)

Table 6.1: Every con�gurations tested in the model identi�cation phase where the number
of epochs is �xed to 2000. Each con�guration is de�ned by the indicated pair (window,
units).

The plots of the validation loss for RGD, reported in �g. 6.2, not only show some �uc-
tuations but also, sometimes, an exploding MSE, especially in the case of GRU. On the
other hand, as the di�erent curves did not disclose an over�tting behavior, it was possible
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to choose a high number of epochs. Summing up, (21, 16, 1800) and (14, 16, 2000) were
chosen as the best sets of hyperparameters (window, units, epochs), for LSTM and RNN,
respectively. These con�gurations displayed a stable pro�le in both the validation years,
whereas the one chosen for GRU, (21, 8, 1000), had a volatile behavior in 2016, leading
to worse results in the testing phase as reported in table 6.3.

LSTM GRU RNN0

epochs

M
SE

M
SE

epochs epochs

Fig. 6.2: RGD: plot of the validation loss (MSE), as a function of the number of epochs,
during the process of model identi�cation for each of the three RNN models and the
two validation years 2015 (above) and 2016 (below). In each plot, the nine di�erent
con�gurations of the RNN models are represented, by varying units and window.



6.4 Results 105

LSTM GRU RNN0
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Fig. 6.3: RGD: plot of the validation loss (MSE), as a function of the number of epochs,
related to the chosen con�gurations for each of the three RNN models. The two lines for
each box represent the validation loss in the 2015 (blue) and 2016 (black).

The validation loss for IGD series, �g. 6.4, is less noisy but in some cases exhibits clear
signs of over�tting, indeed, with the increase of the number of epochs also the MSE grows.
However, it was possible to choose steady con�gurations, as shown in �g. 6.5, and also
the maximum number of epochs, 2000, in the cases of LSTM and RNN. The three sets,
(window, units, epochs), chosen for the three architectures are reported in table 6.2.
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LSTM GRU RNN0

epochs

M
SE

M
SE

epochs epochs

Fig. 6.4: IGD: plot of the validation loss (MSE), as a function of the number of epochs,
during the process of model identi�cation for each of the three RNN models and the
two validation years 2015 (above) and 2016 (below). In each plot, the nine di�erent
con�gurations of the RNN models are represented, by varying units and window.

epochs epochsepochs

LSTM GRU RNN0

M
SE

Fig. 6.5: IGD: plot of the validation loss (MSE), as a function of the number of epochs,
related to the chosen con�gurations for each of the three RNN models. The two lines for
each box represent the validation loss in the 2015 (blue) and 2016 (black).
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In the case of TGD, �g. 6.6, there are many shreds of evidence of over�tting, and this
led to choose a smaller number of epochs, 600 for each model. Although some validation
losses are noisy, it was possible to choose three con�gurations, table 6.2, with not very
volatile MSE curves, especially close to the chosen epochs (�g. 6.7).

LSTM GRU RNN0
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Fig. 6.6: TGD: plot of the validation loss (MSE), as a function of the number of epochs,
during the process of model identi�cation for each of the three RNN models and the
two validation years 2015 (above) and 2016 (below). In each plot, the nine di�erent
con�gurations of the RNN models are represented, by varying units and window.



108 6 Recurrent Neural Networks for Italian gas and power demand forecasting

LSTM GRU RNN0
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Fig. 6.7: TGD: plot of the validation loss (MSE), as a function of the number of epochs,
related to the chosen con�gurations for each of the three RNN models. The two lines for
each box represent the validation loss in the 2015 (blue) and 2016 (black).

In case of IED series, the validation MSE curves exhibit pronounced �uctuations and, in
some cases, clear e�ects due to over�tting which, as for TGD, led to choose a smaller num-
bers of epochs, 1000 for LSTM and 600 for GRU and RNN0. For the electricity demand,
the chosen con�guration was the same for the three RNN architectures with window equal
to 3 and 8 units. Di�erently from the other series, in this case, the validation MSE curves
for the chosen con�gurations are noisy, above all for the LSTM. This is a warning regard-
ing the stability of the chosen con�gurations. This problem will be addressed later with
the introduction of the Keras callback ReduceLRonPlateau in the models and a di�erent
model identi�cation phase with a di�erent calibration of the hyperparameters.
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Fig. 6.8: IED: plot of the validation loss (MSE), as a function of the number of epochs,
during the process of model identi�cation for each of the three RNN models and the
two validation years 2015 (above) and 2016 (below). In each plot, the nine di�erent
con�gurations of the RNN models are represented, by varying units and window.
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Fig. 6.9: IED: plot of the validation loss (MSE), as a function of the number of epochs,
related to the chosen con�gurations for each of the three RNN models. The two lines for
each box represent the validation loss in the 2015 (blue) and 2016 (black).
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LSTM GRU RNN0

RGD (21, 16, 1800) (21, 8, 1000) (14, 16, 2000)
IGD (14, 4, 2000) (3, 16, 500) (3, 16, 2000)
TGD (3, 8, 600) (21, 4, 600) (14, 16, 600)
IED (3, 8, 1000) (3, 8, 600) (3, 8, 600)

Table 6.2: The chosen complete con�gurations (window, units, epochs) for each time-series
- model. The complete con�gurations include also the chosen epochs to use for calibration.

In order to evaluate the forecasting performances of the chosen model con�gurations
taking into account the variability of the forecasts, we computed the forecasts in the
test years 2017 and 2018, by changing the initial condition of the optimization process.
In these experiments, the seed of the random number generators was not �xed and the
operation was replicated ten times so as to obtain ten forecasts for each target variable,
model, and test year. The mean values of the 10 forecasts computed for each group (target
variable, model, test year), reported in table 6.3, can be compared with the results of RGD
(table 4.8), IGD (table 4.9), TGD (table 4.10) and IED (table 5.5) at the same test years.
In order to simplify the comparison, the performance indicators (MAE for gas demands
and MAPE for electricity demand) of the best base model and the best ensemble model,
for the test years 2017 and 2018, are reported in table 6.4. The comparison indicated that
the tested RNN models, LSTM, GRU, and RNN0, globally reach similar or better results
compared to those previously discussed and shown in table 6.4.
In particular, for the RGD forecasting, the performances of LSTM and RNN0 are both
better than those of the best single models, the ANN (MLP) in the 2017 and the GP in
the 2018, whereas the GRU reports slightly worse results, probably due to the volatile
behavior of its validation loss in the model identi�cation phase.
For the IGD forecasting, all the three RNN architectures show quite similar results be-
tween them and better than those of the best single models, for each of the two test
sets.
The TGD forecasts obtained by the LSTM are stably better than all the other single
model's ones except for that of RNN0 for 2017. On the other hand, the RNN0 forecast in
2018 is worse than that of GRU which shows the worst performances of the three RNN
models in 2017.
For what concerns IED forecasting, LSTM, and GRU in the 2017 and GRU in 2018
give the best single model forecasts, also without resorting to any error correction which
instead was made, by the SARIMA model, in case of the models presented in chapter 5.
Although the discussed results highlight the good performances achieved by the tested
RNN architectures, it is also to point out that it was necessary to compute several fore-
casts, ten simulations, in order to reduce the variability deriving from the initialization of
the optimization process. Indeed, analyzing the results of the single simulations in terms
of MAE/MAPE for gas/electricity demand, fairly large values of the mean range (range =
maximum-minimum) were observed between the two test years for almost each one of the
RNN models and each target variable: 0.71, 0.44, 0.18, 0.49 for the LSTM respectively for
RGD, IGD, TGD and IED, 1.11, 0.14, 0.49, 0.64 for the GRU and 0.40, 0.18, 0.41, 0.35
for the RNN0. This result suggests the need of computing an aggregated measure, such
as the simple average, in order to obtain more stable results rather than �x the random
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seed and compute a single forecast. The best way would be to make many simulations
also in the model identi�cation phase, in order to take account of the instability due to
the random initialization point also in this initial phase and, consequently, try to reduce
it in the choice of the optimal con�guration.

2017 2018

LSTM GRU RNN0 LSTM GRU RNN0

RGD 2.22 2.52 2.12 2.76 3.19 2.80
IGD 0.55 0.57 0.53 0.67 0.69 0.66
TGD 4.17 4.36 4.07 4.32 4.48 4.54
IED 1.48 1.56 1.71 1.71 1.61 1.73

Table 6.3: Performance measures for the three RNN models identi�ed with validation
years 2015 and 2016, where also the number of epochs is chosen. Test years 2017 and
2018: daily MAE for the gas demand series and daily MAPE for the electricity demand.

2017 2018

base model ensemble model base model ensemble model

RGD 2.38 2.06 2.83 2.53
IGD 0.57 0.57 0.70 0.61
TGD 4.26 4.17 4.33 4.26
IED 1.77 1.68 1.86 1.76

Table 6.4: Performance measures for the best base model and the best ensemble model in
the test years 2017 and 2018: daily MAE for the gas demand series and daily MAPE for
the electricity demand.

To stabilize the forecasts of TGD and IED, eventually overcoming the problem observed
in the IED hyperparameters calibration, given by the pronounced �uctuations of the
validation MSE, �rst the three models were tested in 2018, adding in the code the Keras
callback ReduceLRonPlateau. Then, in view of the unsatisfactory results, the calibration
was changed in order to take into account the impact of the coded callback also in the
hyperparameters calibration phase. For this purpose, the number of epochs was set to 500,
after having veri�ed the achievement of convergence, and the other two hyperparameters
were chosen by 5-fold cross-validation based on all the data before the chosen test year.
The best con�gurations (window, units, epochs), for each RNN architecture and each test
year, both for TGD and IED, are reported in table 6.5 and their performances, in terms
of MAE/MAPE, in the test set 2017 and 2018, are provided in table 6.6.
In the case of TGD, the new method, with the use of the ReduceLRonPlateau callback,
renders more comparable the results across the three RNN architectures, improving the
GRU's ones and stabilizing those of LSTM and RNN0, but does not improve the re-
sults of the best performers. On the other hand, the new method is mostly bene�cial
to the IED forecasting. In this case, the instability, visible in the calibration phase, was
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corrected by the application of the ReduceLRonPlateau callback, with the appropriate
hyperparameters calibration and the consequent con�guration choice.

Year LSTM GRU RNN0

TGD 2017 (3, 16, 500) (3, 8, 500) (21, 16, 500)
IED 2017 (14, 8, 500) (3, 8, 500) (3, 16, 500)

TGD 2018 (3, 4, 500) (3, 8, 500) (21, 16, 500)
IED 2018 (3, 8, 500) (3, 8, 500) (14, 16, 500)

Table 6.5: Optimal con�gurations selected by the alternative model identi�cation tested.

2017 2018

LSTM GRU RNN LSTM GRU RNN

TGD 4.23 4.24 4.15 4.35 4.35 4.41
IED 1.48 1.51 1.54 1.62 1.61 1.68

Table 6.6: Performance measures for the three RNN models identi�ed by cross validation
and using the callback ReduceLRonPlateau. Test years 2017 and 2018: daily MAE for the
gas demand series and daily MAPE for the electricity demand.

6.5 Conclusion

This chapter was devoted to the application of three RNN architectures, LSTM, GRU,
and RNN0, to the daily forecasting of the same energy time series, RGD, IGD, TGD, and
IED, predicted in the previous chapters by other techniques. In particular, all the results
are compared on two annual test sets relative to the most recent years 2017 and 2018,
whereas all the previous years were used for model identi�cation, i.e. the tuning of the
hyperparameters, and parameter calibration. In addition to the comparison of the RNN
model performances with the previous results, the principal focus of this chapter was
the methodology followed to choose the best con�guration for each RNN architectures,
where the sets of free hyperparameters (window, units, epochs) were chosen analyzing the
behavior of the MSE loss function related to the epochs in two validation years 2015 and
2016. This analysis highlighted the need for TGD and, above all, for IED, of modifying
the models in order to cope with the problem of instability, evidenced by the behavior
of MSE in the validation years. The Keras callback ReduceLRonPlateau was used in
order to reduce the instability, applying a cross-validated grid search for the optimization
of the free hyperparameters (window, units), once the epochs were �xed to 500. The
forecasts in the two test years were obtained without �xing the random seed, the initial
condition of the optimization process at the base of the RNNs calibration, and repeating
the computation ten times so as to assess their variance. We compared the simple average
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of the ten forecasts, for each target variable, model, and test year, with the previous
results.
The results show that RNN models, LSTM, GRU, and RNN0, globally reach similar
or better results compared to those discussed in the previous chapters. For the RGD
forecasting, LSTM and RNN0 are the best performers, whereas the GRU reports slightly
worse results; in the case of IGD forecasting, all the three RNN architectures show quite
similar results between them and better than those of the best single models, for each of
the two test sets.
In the cases of TGD and IED, the best performer, in each test set, was one of the RNN
architectures. Nevertheless, in order to reduce the variability of the performances of the
models in the test years, for both series two di�erent calibration procedures had to be
used. In these cases, the real value-added, provided by the use of the ReduceLRonPlateau
callback and the chosen calibration procedure, was represented by the reduction of the
variability of the results of the three models, thus easing the choice of the model to use
for the prediction.
In spite of the performances obtained by the three RNN architectures, they su�er from a
marked instability, due to the dependence on the initialization of the optimization process,
however, this randomness was greatly reduced by averaging on ten simulations. A possible
improvement could be the use of many simulations, performed without �xing the seed,
also in order to identify the optimal model architecture, which would help reducing also
this source of variability.
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Conclusion

In this thesis the day-ahead forecasting of Italian gas demand and Italian electricity
loads has been studied through the implementation and testing of nine base models -
ridge regression, LASSO, elastic net, Gaussian Process, support vector regression, nearest
neighbours, Arti�cial Neural Networks, torus model, random forest - and �ve aggregation
strategies - simple average, weighted average, support vector regression aggregation and
two subset average methods. Moreover, three Recurrent Neural Networks models - LSTM,
GRU and simple RNN - were analyzed and tested. All of these methodologies relied on
the same set of regressors, properly chosen by means of an exploratory analysis of the
time series.
The work provides three main contributions.
First of all, the role of temperature and the propagation of its forecast errors has been put
under scrutiny and dissected, especially for gas demand. In fact, the analysis of the time
series, and above all of residential gas demand, shows a strong correlation between the
demand and the temperature during the cold season which falls to zero during the May-
September period, when the temperature is typically higher than 18◦C. In order to take
advantage of this correlation, it is convenient to include the day-ahead temperature fore-
cast among the regressors. It is then rather natural to ask what is the e�ect of temperature
forecast errors on the �nal forecast. A �rst contribution of the thesis was the development
of a simple yet accurate formula that quantitatively assess the propagation of temper-
ature forecast errors on the demand prediction. On the Italian data, it was found that
the forecast mean square error for the ANN model passes from RMSE2 = 3.642 = 13.27
(using true temperatures, see table 4.2) to 4.032 = 16.24 (using temperature forecasts,
see table 4.4). This thing means that temperature forecast errors account for some 18%
of the mean square error of gas demand forecasts. As demonstrated on real data, see
�g. 4.8, the new error propagation model can successfully predict the quantitative impact
of temperature errors on gas forecasts. This could be useful in order to assess the extent
and convenience of more sophisticated (and possibly more expensive) weather forecasts.
Second, the performance test of the base predictors, on Italian gas and electricity demand,
shows that the best results are achieved by the RNN architectures, LSTM being, on
average, the most accurate. Among the other models the best results are achieved by
ANN MLP, GP, and SVM in the case of gas series and ANN MLP and SVM in the case
of electricity demand. On the other hand, a further improvement is obtained by resorting
to so-called ensemble models, which always outperform the base predictors. Other types of
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aggregation were tested on the Italian electricity data disaggregated at time and spatial-
time levels. As evident in table 5.5, the aggregation of hourly forecasts helps reducing the
MAPE with respect to the sole use of daily level data. Analogous considerations apply to
the case of table 5.7, where the MAPEs obtained by aggregating forecasts at the zonal
level are lower than those associated to national forecasts. Another relevant result is that
ensemble models contribute to avoid over�tting, as shown in chapter 5 where the results
obtained with the use of PCA are compared with the results without PCA.
A third contribution is the explanation of a possible and practical methodology to identify
the optimal con�guration of RNN architectures. More precisely, some free hyperparame-
ters (window and units) and the epochs are chosen on the base of the behavior of MSE in
two validation years. In some cases, in order to �nd a remedy to the the instability of the
MSE in the validation sets, an alternative method was proposed, based on the dynamical
reduction of the learning rate, in order to reduce the volatile behavior. I tested this identi-
�cation strategy on an LSTM, a GRU and a simple RNN, applied to the forecasting of the
four Italian gas and electricity demand series, in the years 2017 and 2018. The accuracy
of their performances con�rms the viability of the proposed identi�cation methodology.







Notation

Throughout the thesis, boldface is used for vectors and capital boldface for matrices: to
provide some examples, the vector of RGD, one of the target variables, is denoted by y,
the matrix of the inputs is X and its i-th column is xi.
The main symbols and the notation adopted in the thesis are summarised below.

List of Abbreviations
ADAM Adaptive Moment Estimation
AEEG Authority of electricity and gas
AIC Akaike information criterion
ANN Arti�cial Neural Networks
ARMA Autoregressive Moving Average
BIC Bayesian information criterion
CART Classi�cation and Regression Trees
CNN Convolutional neural networks
EUA European Emission Allowance certi�cates
FNN Feedforward neural networks
GD Italian Gas Demand
GME Gestore dei Mercati Energetici
GP Gaussian Process
GRU Gated Recurrent Unit
IEDd Total daily IED
IEDh 24-hour components of IED
IED Italian Electricity Demand
IGD Industrial Gas Demand
KNN K-Nearest neighbours
LSTM Long Short-Term Memory
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
MGAS Gas regulated markets
MGPGAS Day-ahead gas market
MGP Day-ahead electricity market
MI Intra-day electricity market
MI-GAS Intra-day gas market
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MLP Multi-Layer Perceptron
MP-GAS Spot gas regulated markets
MSD Ancillary services market
MSE Mean Squared Error
MT-GAS Forward gas regulated markets
OTC Over the counter
PCA Principal component analysis
PCE Piattaforma dei conti energia
PSV Punto di Scambio Virtuale
PUN Single national price
ReLu Recti�ed Linear Unit
RGD Residential Gas Demand
RKHS Reproducing Kernel Hilbert Space
RMSE Root Mean Square Error
RNN0 The simple Recurrent neural network
RNN Recurrent neural networks
SARIMA Seasonal Autoregressive Integrated Moving Average
SMP System marginal price
SRG Snam Rete Gas
SVM Support vector machine
TGD Thermoelectric Gas Demand
TSO Transmission System Operator
XEDd Total daily XED
XEDh 24-hour components of XED
XED Zonal Electricity Demand, for each of the six Italian zones.
CDD Cooling Degree Day, also indicated as CDD(T) with reference to the

temperature T
HCDD Heating Cooling Degree Day, also indicated as HCDD(T) with reference

to the temperature T
HDD Heating Degree Day, also indicated as HDD(T) with reference to the

temperature T
MSCM Million of Standard Cubic Meter
Mathematical notation
E[·] Expected value
Γ (·) Gamma function
κ(·, ·) Reproducing kernel
‖f‖κ Squared norm of the function f in the RKHS with reproducing kernel

κ
D ⊗W Tensor product of two sets D and W
H Reproducing Kernel Hilbert Space (RKHS)
N (µ,Σ) Multivariate normal distribution with mean µ and covariance Σ
� Element-wise product (Hadamard product)
Var [· | ·] Conditional variance
Var [·] Variance
Kν(z) Modi�ed Bessel function of the second type with non-negative parame-

ter ν
p(x | y) Conditional probability density of x given y
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p(x) Probability density function
General forecasting notation
(x∗, y∗) Any novel input-output pair
(xi, yi) Training data
β Vector of model parameters
T̂ (t) One day-ahead forecasted temperature in degrees Celsius at date t
X Matrix of input features
y Vector of target observable y
E(f) Expected risk
f̂(x) A di�erent way to indicate the one-day-ahead forecast of observable y
ŷ(t) One-day-ahead forecast of observable y at date t
X(t) Generic observable X at date t
σ(z) Sigmoid function
tanh(z) Hyperbolic tangent function
Li Lag operator at lag i
T (t) Temperature in degrees Celsius at date t





References

[1] Jan G De Gooijer and Rob J Hyndman. 25 years of time series forecasting. Inter-
national journal of forecasting, 22(3):443�473, 2006.

[2] Dario �ebalj, Josip Mesari¢, and Davor Dujak. Predicting natural gas consumption�
a literature review. In 28th International Conference" Central European Conference
on Information and Intelligent Systems", 2017.

[3] Boºidar Soldo. Forecasting natural gas consumption. Applied Energy, 92:26�37,
2012.

[4] MS Sachdev, R Billinton, and CA Peterson. Representative bibliography on load
forecasting. IEEE Transactions on Power Apparatus and Systems, 96(2):697�700,
1977.

[5] Power Systems Engineering Committee Load Forecasting Working Group, A.A.
Mahmoud, R.B. Comerford, J Adams, and E Dawson. Load forecast bibliography
phase i. IEEE Transactions on Power Apparatus and Systems, PAS-99:53�58, 01
1980.

[6] Aly A Mahmoud, Thomas H Ortmeyer, and Robert E Reardon. Load forecast-
ing bibliography phase ii. IEEE Transactions on Power Apparatus and Systems,
(7):3217�3220, 1981.

[7] Tao Hong et al. Short term electric load forecasting. 2010.
[8] Tao Hong and Shu Fan. Probabilistic electric load forecasting: A tutorial review.

International Journal of Forecasting, 32(3):914�938, 2016.
[9] Nesreen K Ahmed, Amir F Atiya, Neamat El Gayar, and Hisham El-Shishiny. An

empirical comparison of machine learning models for time series forecasting. Econo-
metric Reviews, 29(5-6):594�621, 2010.

[10] Alice Guerini, Andrea Marziali, and Giuseppe De Nicolao. Mcmc calibration of
spot-prices models in electricity markets. Applied Stochastic Models in Business
and Industry, 2019.

[11] Emanuele Fabbiani, Andrea Marziali, and Giuseppe De Nicolao. Short-term fore-
casting of italian gas demand. arXiv preprint arXiv:1902.00097, 2019.

[12] Rafal Weron. Modeling and Forecasting Electricity Loads and Prices: A Statistical
Approach. Number hsbook0601 in HSC Books. Hugo Steinhaus Center, Wroclaw
University of Technology, 2006.

[13] Vladimir N. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag,
Berlin, Heidelberg, 1995.

123



124 References

[14] Vladimir N. Vapnik. Statistical Learning Theory. Wiley-Interscience, 1998.
[15] George EP Box, Gwilym M Jenkins, Gregory C Reinsel, and Greta M Ljung. Time

series analysis: forecasting and control. John Wiley & Sons, 2015.
[16] Arthur E Hoerl and Robert W Kennard. Ridge regression: Biased estimation for

nonorthogonal problems. Technometrics, 12(1):55�67, 1970.
[17] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the

Royal Statistical Society: Series B (Methodological), 58(1):267�288, 1996.
[18] Hui Zou and Trevor Hastie. Regularization and variable selection via the elastic net.

Journal of the royal statistical society: series B (statistical methodology), 67(2):301�
320, 2005.

[19] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning:
Data Mining, Inference, and Prediction, Second Edition. Springer Series in Statis-
tics. Springer New York, 2009.

[20] Alex J. Smola and Bernhard Schölkopf. A tutorial on support vector regression.
Statistics and Computing, 14(3):199�222, August 2004.

[21] Theodoros Evgeniou, Massimiliano Pontil, and Tomaso Poggio. Regularization
networks and support vector machines. Advances in computational mathematics,
13(1):1, 2000.

[22] Bernhard Schölkopf, Ralf Herbrich, and Alex J. Smola. A generalized representer
theorem. In David Helmbold and Bob Williamson, editors, Computational Learning
Theory, pages 416�426, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

[23] C.E. Rasmussen and C.K.I. Williams. Gaussian Processes for Machine Learning.
Adaptative computation and machine learning series. University Press Group Lim-
ited, 2006.

[24] K.P. Murphy and F. Bach. Machine Learning: A Probabilistic Perspective. Adaptive
Computation and Machi. MIT Press, 2012.

[25] Milton Abramowitz and Irene A Stegun. Handbook of mathematical functions: with
formulas, graphs, and mathematical tables, volume 55. Courier Corporation, 1965.

[26] Alice Guerini. Long and short term forecasting of daily and quarter-hourly electrical
load and price data: a torus-based approach. 2016.

[27] Leo Breiman. Classi�cation and regression trees. Routledge, 2017.
[28] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,

2016. http://www.deeplearningbook.org.
[29] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural com-

putation, 9(8):1735�1780, 1997.
[30] Alex Graves. Supervised sequence labelling. In Supervised sequence labelling with

recurrent neural networks, pages 5�13. Springer, 2012.
[31] Felix A Gers, Jürgen Schmidhuber, and Fred Cummins. Learning to forget: Con-

tinual prediction with lstm. 1999.
[32] Klaus Gre�, Rupesh K Srivastava, Jan Koutník, Bas R Steunebrink, and Jürgen

Schmidhuber. Lstm: A search space odyssey. IEEE transactions on neural networks
and learning systems, 28(10):2222�2232, 2016.

[33] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representa-
tions using rnn encoder-decoder for statistical machine translation. arXiv preprint
arXiv:1406.1078, 2014.



References 125

[34] Rafal Jozefowicz, Wojciech Zaremba, and Ilya Sutskever. An empirical exploration
of recurrent network architectures. In International Conference on Machine Learn-
ing, pages 2342�2350, 2015.

[35] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[36] Yoshua Bengio, Patrice Simard, Paolo Frasconi, et al. Learning long-term depen-
dencies with gradient descent is di�cult. IEEE transactions on neural networks,
5(2):157�166, 1994.

[37] Marek Brabec, Ond°ej Konár, Emil Pelikán, and Marek Mal�y. A nonlinear mixed
e�ects model for the prediction of natural gas consumption by individual customers.
International Journal of Forecasting, 24(4):659�678, 2008.

[38] Primoº Poto£nik, Marko Thaler, Edvard Govekar, Igor Grabec, and Alojz Poredo².
Forecasting risks of natural gas consumption in slovenia. Energy policy, 35(8):4271�
4282, 2007.

[39] Salvador Gil and J Deferrari. Generalized model of prediction of natural gas con-
sumption. Journal of energy resources technology, 126(2):90�98, 2004.

[40] A Azadeh, SM Asadzadeh, and A Ghanbari. An adaptive network-based fuzzy infer-
ence system for short-term natural gas demand estimation: uncertain and complex
environments. Energy Policy, 38(3):1529�1536, 2010.

[41] Lixing Zhu, MS Li, QH Wu, and L Jiang. Short-term natural gas demand prediction
based on support vector regression with false neighbours �ltered. Energy, 80:428�
436, 2015.

[42] Ioannis P Panapakidis and Athanasios S Dagoumas. Day-ahead natural gas de-
mand forecasting based on the combination of wavelet transform and an�s/genetic
algorithm/neural network model. Energy, 118:231�245, 2017.

[43] Fatih Ta³p�nar, Numan Celebi, and Nedim Tutkun. Forecasting of daily natural
gas consumption on regional basis in turkey using various computational methods.
Energy and Buildings, 56:23�31, 2013.

[44] Ömer Fahrettin Demirel, Selim Zaim, Ahmet Çali³kan, and Pinar Özuyar. Fore-
casting natural gas consumption in istanbul using neural networks and multivariate
time series methods. Turkish Journal of Electrical Engineering & Computer Sci-
ences, 20(5):695�711, 2012.

[45] Jolanta Szoplik. Forecasting of natural gas consumption with arti�cial neural net-
works. Energy, 85:208�220, 2015.

[46] Boºidar Soldo, Primoº Poto£nik, Goran �imunovi¢, Tomislav �ari¢, and Edvard
Govekar. Improving the residential natural gas consumption forecasting models by
using solar radiation. Energy and buildings, 69:498�506, 2014.

[47] Zlatko Tonkovi¢, Marijana Zeki¢-Su²ac, and Marija Somolanji. Predicting natural
gas consumption by neural networks. Tehni£ki vjesnik, 16(3):51�61, 2009.

[48] Nan Wei, Changjun Li, Jiehao Duan, Jinyuan Liu, and Fanhua Zeng. Daily natural
gas load forecasting based on a hybrid deep learning model. Energies, 12(2):218,
2019.

[49] Lorenzo Baldacci, Matteo Golfarelli, Davide Lombardi, and Franco Sami. Natural
gas consumption forecasting for anomaly detection. Expert Systems with Applica-
tions, 62:190 � 201, 2016.



126 References

[50] Zia Wadud, Himadri S. Dey, Md. Ashfanoor Kabir, and Shahidul I. Khan. Modeling
and forecasting natural gas demand in bangladesh. Energy Policy, 39(11):7372 �
7380, 2011. Asian Energy Security.

[51] Yusuf Karadede, Gultekin Ozdemir, and Erdal Aydemir. Breeder hybrid algorithm
approach for natural gas demand forecasting model. Energy, 141:1269 � 1284, 2017.

[52] Italian natural gas demand report. http://pianodecennale.snamretegas.it/it/domanda-
o�erta-di-gas-in-italia/domanda-di-gas-naturale.html. Accessed: 2019-01-31.

[53] H Sarak and A Satman. The degree-day method to estimate the residential heating
natural gas consumption in turkey: a case study. Energy, 28(9):929�939, 2003.

[54] Lifeng Wu, Sifeng Liu, Haijun Chen, and Na Zhang. Using a novel grey system
model to forecast natural gas consumption in China. Mathematical Problems in
Engineering, 2015, 2015.

[55] Bo Zeng and Chuan Li. Forecasting the natural gas demand in China using a
self-adapting intelligent grey model. Energy, 112:810�825, 2016.

[56] Vincenzo Bianco, Federico Scarpa, and Luca A. Taglia�co. Analysis and future out-
look of natural gas consumption in the Italian residential sector. Energy Conversion
and Management, 87:754�764, nov 2014.

[57] Vincenzo Bianco, Federico Scarpa, and Luca A. Taglia�co. Scenario analysis of
nonresidential natural gas consumption in Italy. Applied Energy, 113:392�403, jan
2014.

[58] Jon Scott Armstrong. Principles of forecasting: a handbook for researchers and
practitioners, volume 30. Springer Science & Business Media, 2001.

[59] Rob J Hyndman and George Athanasopoulos. Forecasting: principles and practice.
OTexts, 2018.

[60] Jakub Nowotarski, Bidong Liu, Rafaª Weron, and Tao Hong. Improving short term
load forecast accuracy via combining sister forecasts. 2016.

[61] Alice Guerini and Giuseppe De Nicolao. Long-term electric load forecasting: A
torus-based approach. In Control Conference (ECC), 2015 European, pages 2768�
2773. IEEE, 2015.

[62] Snam daily gas consumption forecast. http://www.snam.it/it/trasporto/

dati-operativi-business/8_dati_operativi_bilanciamento_sistema. Ac-
cessed: 2019-01-31.

[63] Mohamed A Abu-El-Magd and Naresh K Sinha. Short-term load demand modeling
and forecasting: a review. IEEE transactions on systems, man, and cybernetics,
12(3):370�382, 1982.

[64] George Gross and Francisco D Galiana. Short-term load forecasting. Proceedings
of the IEEE, 75(12):1558�1573, 1987.

[65] Alex D Papalexopoulos and Timothy C Hesterberg. A regression-based approach
to short-term system load forecasting. IEEE Transactions on Power Systems,
5(4):1535�1547, 1990.

[66] Takeshi Haida and Shoichi Muto. Regression based peak load forecasting using a
transformation technique. IEEE Transactions on Power Systems, 9(4):1788�1794,
1994.

[67] O Hyde and PF Hodnett. An adaptable automated procedure for short-term elec-
tricity load forecasting. IEEE Transactions on Power Systems, 12(1):84�94, 1997.

http://www.snam.it/it/trasporto/dati-operativi-business/8_dati_operativi_bilanciamento_sistema
http://www.snam.it/it/trasporto/dati-operativi-business/8_dati_operativi_bilanciamento_sistema


References 127

[68] Slobodan Ruzic, Aca Vuckovic, and Nikola Nikolic. Weather sensitive method for
short term load forecasting in electric power utility of serbia. IEEE Transactions
on Power Systems, 18(4):1581�1586, 2003.

[69] Ibrahim Moghram and Saifur Rahman. Analysis and evaluation of �ve short-term
load forecasting techniques. IEEE Transactions on power systems, 4(4):1484�1491,
1989.

[70] James W Taylor, Lilian M De Menezes, and Patrick E McSharry. A comparison of
univariate methods for forecasting electricity demand up to a day ahead. Interna-
tional Journal of Forecasting, 22(1):1�16, 2006.

[71] James W Taylor and Patrick E McSharry. Short-term load forecasting methods:
An evaluation based on european data. IEEE Transactions on Power Systems,
22(4):2213�2219, 2007.

[72] Henrique Steinherz Hippert, Carlos Eduardo Pedreira, and Reinaldo Castro Souza.
Neural networks for short-term load forecasting: A review and evaluation. IEEE
Transactions on power systems, 16(1):44�55, 2001.

[73] Alex D Papalexopoulos, Shangyou Hao, and Tie-Mao Peng. An implementation of
a neural network based load forecasting model for the ems. IEEE transactions on
Power Systems, 9(4):1956�1962, 1994.

[74] Alireza Khotanzad, Rey-Chue Hwang, Alireza Abaye, and Dominic Maratukulam.
An adaptive modular arti�cial neural network hourly load forecaster and its imple-
mentation at electric utilities. IEEE Transactions on Power Systems, 10(3):1716�
1722, 1995.

[75] Alireza Khotanzad, Malcon H Davis, Alireza Abaye, and D JAMDJ Maratukulam.
An arti�cial neural network hourly temperature forecaster with applications in load
forecasting. IEEE Transactions on Power Systems, 11(2):870�876, 1996.

[76] Alireza Khotanzad, Reza Afkhami-Rohani, Tsun-Liang Lu, Alireza Abaye, Malcolm
Davis, and Dominic J Maratukulam. Annstlf-a neural-network-based electric load
forecasting system. IEEE Transactions on Neural networks, 8(4):835�846, 1997.

[77] Alireza Khotanzad, Reza Afkhami-Rohani, and Dominic Maratukulam. Annstlf-
arti�cial neural network short-term load forecaster-generation three. IEEE Trans-
actions on Power Systems, 13(4):1413�1422, 1998.

[78] Alireza Khotanzad, Enwang Zhou, and Hassan Elragal. A neuro-fuzzy approach to
short-term load forecasting in a price-sensitive environment. IEEE Transactions on
Power Systems, 17(4):1273�1282, 2002.

[79] Kittipong Methaprayoon, Wei-Jen Lee, Sothaya Rasmiddatta, James R Liao, and
Richard J Ross. Multistage arti�cial neural network short-term load forecasting en-
gine with front-end weather forecast. IEEE Transactions on Industry Applications,
43(6):1410�1416, 2007.

[80] Nicholas I Sapankevych and Ravi Sankar. Time series prediction using support
vector machines: a survey. IEEE Computational Intelligence Magazine, 4(2):24�38,
2009.

[81] Shu Fan, Kittipong Methaprayoon, and Wei-Jen Lee. Multiregion load forecasting
for system with large geographical area. IEEE Transactions on Industry Applica-
tions, 45(4):1452�1459, 2009.

[82] M Espinoza, JAK Suykens, R Belmans, and B De Moor. Using kernel-based mod-
eling for nonlinear system identi�cation. IEEE Control Systems Magazine, pages
43�57, 2007.



128 References

[83] Ramu Ramanathan, Robert Engle, Clive WJ Granger, Farshid Vahid-Araghi, and
Casey Brace. Short-run forecasts of electricity loads and peaks. International jour-
nal of forecasting, 13(2):161�174, 1997.

[84] G De Nicolao, M Pozzi, E Soda, and M Stori. Short-term load forecasting: A power-
regression approach. In 2014 International Conference on Probabilistic Methods
Applied to Power Systems (PMAPS), pages 1�6. IEEE, 2014.

[85] Alice Guerini and Giuseppe De Nicolao. Long-and short-term electric load forecast-
ing on quarter-hour data: A 3-torus approach. In 2016 IEEE 16th International
Conference on Environment and Electrical Engineering (EEEIC), pages 1�4. IEEE,
2016.

[86] Andrea Marziali, Emanuele Fabbiani, and Giuseppe De Nicolao. Short-term fore-
casting of Italian residential gas demand. arXiv e-prints, page arXiv:1901.02719,
January 2019.

[87] Tao Hong et al. Energy forecasting: Past, present, and future. Foresight: The
International Journal of Applied Forecasting, (32):43�48, 2014.

[88] David E Rumelhart, Geo�rey E Hinton, Ronald J Williams, et al. Learning repre-
sentations by back-propagating errors. Cognitive modeling, 5(3):1, 1988.

[89] Yoshua Bengio, Réjean Ducharme, and Pascal Vincent. A neural probabilistic lan-
guage model. NIPS, 2001.

[90] Tomá² Mikolov, Martin Kara�át, Luká² Burget, Jan �ernock�y, and Sanjeev Khu-
danpur. Recurrent neural network based language model. In Eleventh annual con-
ference of the international speech communication association, 2010.

[91] Alex Graves. Generating sequences with recurrent neural networks. arXiv preprint
arXiv:1308.0850, 2013.

[92] Gábor Melis, Chris Dyer, and Phil Blunsom. On the state of the art of evaluation
in neural language models. arXiv preprint arXiv:1707.05589, 2017.

[93] Apurva Narayan and Keith W Hipel. Long short term memory networks for short-
term electric load forecasting. In 2017 IEEE International Conference on Systems,
Man, and Cybernetics (SMC), pages 2573�2578. IEEE, 2017.

[94] Weicong Kong, Zhao Yang Dong, Youwei Jia, David J Hill, Yan Xu, and Yuan
Zhang. Short-term residential load forecasting based on lstm recurrent neural net-
work. IEEE Transactions on Smart Grid, 2017.

[95] Sumit Kumar, Lasani Hussain, Sekhar Banarjee, and Motahar Reza. Energy load
forecasting using deep learning approach-lstm and gru in spark cluster. In 2018
Fifth International Conference on Emerging Applications of Information Technology
(EAIT), pages 1�4. IEEE, 2018.

[96] Umut Ugurlu, Ilkay Oksuz, and Oktay Tas. Electricity price forecasting using re-
current neural networks. Energies, 11(5):1255, 2018.

[97] Wan He. Load forecasting via deep neural networks. Procedia Computer Science,
122:308�314, 2017.

[98] Chujie Tian, Jian Ma, Chunhong Zhang, and Panpan Zhan. A deep neural network
model for short-term load forecast based on long short-term memory network and
convolutional neural network. Energies, 11(12):3493, 2018.

[99] Runhai Jiao, Tianming Zhang, Yizhi Jiang, and Hui He. Short-term non-residential
load forecasting based on multiple sequences lstm recurrent neural network. IEEE
Access, 6:59438�59448, 2018.



[100] Primoº Poto£nik, Jurij �ilc, Gregor Papa, et al. A comparison of models for fore-
casting the residential natural gas demand of an urban area. Energy, 167:511�522,
2019.

[101] François Chollet et al. Keras. https://keras.io, 2015.

https://keras.io



