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Chapter 1

Introduction

The industrial world is going through a revolution. Indeed, worldwide, production

systems are involved in a rapid wave of innovation which is expected to improve

this field as never before. Technological advancements and continuous research

are the driving forces of this fourth industrial revolution [10], which is also called

“Industry 4.0” [11, 12]. Analyzing the industrial revolutions, it is easy to identify in

each historical moment a driving event: the adoption of steam engines in the first

revolution, the use of electricity in the second, the introduction of electronics and

information technology in the lines of production in the third, while in the fourth

the fusion of the physical world with the virtual one thanks to the cyber-physical

production systems. Therefore, the fourth industrial revolution is subsequent to

Figure 1.1: The Evolution of Industry 1.0 to 4.0 [1]

1



2 Chapter 1

the advent of the Internet and related to the intuition that any device associated

with its own identity and integrated with sensor networks can be programmed to

interact or be part of even complex systems that can be reached remotely. In this

context, factories have machines which are augmented with wireless connectivity

and sensors, connected to a system that can visualise the entire production line

and make decisions on its own.

The European scene is the main context where the fourth industrial revolution

takes place. Indeed, the concept of Industry 4.0 was born in Germany in 2011 [13].

As described in [14, 15, 16, 17, 2], Industry 4.0 consists of three main features:

horizontal integration, vertical integration and end-to-end integration, see Figure 1.2.

Horizontal integration refers to the value creation network that includes both in-

ternal and external functions of the supply chain. This aims at establishing a

collaborative network across the entire value creation network in order to create

an efficient ecosystem where material, information, energy and finance can be

exchanged quickly between several different companies [2, 16, 18, 19]. Vertical

integration aims at the perfect integration of hierarchical systems within a company

in order to obtain a flexible and reconfigurable manufacturing system [16, 2, 18, 20].

End-to-end integration describes the engineered integration across the entire prod-

uct life cycle achieved through intelligent cross-linking and digitalization on the

entire value chain: from product development to manufacturing system engineering,

production, and services [16, 2, 21, 20].

Figure 1.2: Integration aspects in Industry 4.0 [2]

Following an in-depth literature review conducted by authors in [22, 23], three key

components of Industry 4.0 are identified to achieve the horizontal, vertical and
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end-to-end integrations. These components are: the Internet of Things (IoT) [24],

Cyber Physical System (CPS) [25] and Smart Factory (SF) [26], see Figure 1.3.

CPSs are systems that integrate physical components and processes with computing

elements. These coordinate and communicate with sensors, which monitor cyber

and physical indicators, and actuators, which modify the cyber and physical environ-

ment. To gain a deeper knowledge of the environment, which ensures more precise

actions and tasks, CPSs rely on sensors to connect all distributed intelligence in the

environment [27]. Note that the Cyber Physical Production Systems (CPPSs) are

composed of several CPSs linked within digital networks [28]. The connection and

data exchange with other embedded systems or clouds are achieved by using the

IoT, while a human-machine interface is used for interacting with operators [17].

The IoT is the technology which allows the inter-connection of all types of devices

through the Internet to exchange data, optimize processes and monitor devices.

It is composed of a network of sensors, actuators, and devices, forming new sys-

tems and services [27]. Therefore, “things” and “objects” can interact with each

other and cooperate with their neighboring “smart” components, to reach common

goals [29]. The SF are factories where the CPSs interact and communicate with

its environment through the IoT in order to assist humans and machines in task

execution, and to ensure the collection, distribution and access of manufacturing

relevant information from the physical as well as the virtual world in real-time [26].

Therefore, the combination of software, hardware and / or mechanics in the SF

leads to an increase in process interoperability, allowing processes to be dynamically

changed and adapted, and consequently in a reduction of unnecessary labour and

waste of resource [26].

Thus, through the implementation of the concepts of Industry 4.0, it is possible to

improve the entire production planning and optimize the flow of goods, optimize the

quality of processes and products [18, 30]. These features are of crucial importance

especially for the manufacturing industries. Indeed, these industries work in an

intense competitive and highly sophisticated global environment, where, in order to

survive, they must offer a higher product quality at lower costs and, at the same

time, never exceed customer due date demands [31].
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Figure 1.3: Internet of Things, Cyber Physical Systems and Smart Factory [3]

Since electronic components (chips) and systems (electronic boards) are the key

drivers for Industry 4.0, one of the most involved manufacturing sectors in this

revolution is electronics. One of the largest European projects focused on “smart

production” and “cyber-physical production systems” is “Power Semiconductor and

Electronics Manufacturing 4.0” (SemI40) [32]. This project aims to establish a

smart, sustainable and integrated enterprise collaboration system manufacturing in

order to increase the competitiveness of the Semiconductor manufacturing industry

in Europe [32]. In particular, the final products of the manufacturing process of

semiconductors are the integrated circuits of all electronic devices. A semiconductor

is made in different stages using photo-lithographic and chemical techniques, and

its circuits are gradually created on wafers (i.e. thin “slices” of semiconductor

material, typically silicon, see Figure 1.4), see [33, 34] for a complete description of

the process.

The processing is done layer by layer and all the production occurs in a clean

room, so as to reduce particulate contamination and control other environmental

parameters, such as temperature, humidity and pressure [35]. The transport of

each batch of wafer can be done either by robots or by human operators. Several

processes are needed to obtain a final product, for example a medium-complexity

production involves 250-500 stages and uses from 50 to 120 different machines [36].
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Figure 1.4: Wafer [4]

Furthermore, to survive in a competitive business environment, semiconductor

manufacturing companies are required to meet Customer’s demands in terms of

time, quality and quantity. However, due to the ever growing demand for electronic

products, see e.g. [37], this job has become increasingly difficult over the years. In

order to cope with the complexity of the production process and satisfy Customer’s

demands, it is necessary to develop effective and efficient planning, scheduling

and dispatching strategies. Thus, one of the goal of SemI40 is to design control

strategies that optimize the robots behaviour in the Semiconductor Manufacturing

factory. Several approaches have been considered in literature to solve this problem,

see e.g. [37, 38, 39], for an overview. If all transport requests are known at the

beginning of the process, it is possible to solve off-line the dispatching problem

in an optimal way by using for example either the Dynamic Programming or the

Hungarian method [40].

However, due to the dynamic and uncertain nature of the fabs, i.e. arrivals of urgent

orders or unpredictable events (e.g. a machine out of order), it is impractical to

use off-line dispatching methodologies [41]. A possible solution is to use real-time

scheduling and dispatching policies, which allow to respond to unpredictable varia-

tions in system states in an efficient way. A number of real time approaches has been

proposed in literature to deal with this problem. Most of the suggested methods

rely on: dispatching rules [42], semi-Markov decision programming [43, 44, 45] and

dynamic programming [46, 47]. Although dispatching rules have been widely used
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for scheduling because they are able to provide a very quick and sufficiently good

solution, choosing the right rules is not an easy task [48, 49, 50]. Mathematical

programming represents an alternative which can provide better solutions at the

price of a higher computational complexity [51]. While such methods may provide

interesting results and applications, they suffer from the the curse of dimensionality,

which prevents their application to large scale systems, where many robots and

many tasks are involved.

Recently, there has been an increasing interest in using approaches based on tempo-

ral logics in motion planning and robot control applications [52, 53, 54]. Temporal

logics (TL) provides formal high-level languages to describe complex problems, such

as routing and scheduling problems. When explicit time constraints are involved,

e.g. when the pick up and deliver of a product need to be completed within 10

minutes or before time T=10 min, temporal logics with explicit time must be

adopted. Examples include Metric Temporal Logic (MTL) [55], Signal Temporal

Logic (STL) [56] Time Window Temporal Logic (TWTL) [52].

These properties make TLs useful for the development of dispatching strategies

able to take into account, in addition to the classic transport demands, even more

complicated transport requests, such as transport requests where the orders must

be delivered in a synchronous way by the robot. Indeed, in the semiconductor

manufacturing process, in order to maximize plant efficiency, some manufacturing

steps require the simultaneous delivery of different components to start the pro-

cessing of new goods, e.g. the diffusion furnaces [57]. The process can start only

when all materials have arrived. Since components must be processed together,

the maximum delay of a single component affects the overall process time. This

can lead to a waste of time, money and efficiency. For this reason, taking into

account any possible synchronization requests is of fundamental importance in

order to provide the right components to the right machine/s at the right time. The

authors in [54, 58] rely on Mixed Integer Linear Programming to obtain the vehicle

trajectories that satisfies transport demands. In particular, transport requests

are expressed using MTL. The problem of least-violating planning using linear

programming is considered in [59, 60]. In [61] TWTL is defined and then used for
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solving the persistent vehicle routing problem. However, all the aforementioned

papers do not take into account the possible presence of synchronization requests.

Despite the improvements made by the industrial revolutions, regarding the

standard of living and the improvement in almost all aspects of society, there have

also been important environmental problems, such as environmental pollution and

global warming. These phenomena are mainly caused by the combustion of fossil

fuels [62]. For this reason, Industry 4.0 aims both to reduce energy consumption

by increasing energy efficiency in industrial processes and to promote and improve

the use of renewable sources [63, 64, 65]. However, the increasing exploitation of

renewables [66, 67, 68] has raised the need for more sophisticated power manage-

ment systems able to cope with the intermittent and unpredictable nature of these

sources [69].

In general, Optimal Power Flow (OPF) methods deal with the management of

power networks by solving an optimization problem where constraints are used to

guarantee safe and reasonable network operations [70, 71, 72]. Note that the OPF

can be seen as an electric power dispatching problem, in which it is necessary to

optimize the dispatch of generated power. The Alternating Current OPF (AC-OPF)

formulation is non-convex and can be solved using off-the-shelf solvers for nonlinear

programs, e.g. [73, 74], or relying on convex relaxations either by keeping the AC

formulation, [75, 76, 77], or using a Direct Current (DC) approximation, [78, 79].

The authors propose in [80] two AC-based convex relaxations. The first method

relies on a Semidefinite Programming (SDP) relaxation of the primal problem, while

the second uses an SDP-type Lagragian dual of the OPF. The paper shows that

the SDP relaxation provides the global optimal OPF solution if, and only if, the

duality gap is zero. The authors also provide necessary and sufficient conditions

for guaranteeing the zero duality gap. In particular, such conditions hold for the

IEEE benchmark 14, 30, 57, 118, 300 buses. In [81, 82], the authors address the

cases in which the zero duality gap cannot be obtained. In particular, they propose

a penalized SDP relaxation, where a penalty term is introduced to obtain a low

rank solution and, consequently, a near-to-optimal OPF solution.
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However, the deterministic OPF methods have demonstrated to be successful in

networks with limited load uncertainties and low renewable penetration. Stochastic

OPF (SOPF) has been proposed as a possible solution in order to satisfy the

network constraints with a desired probability and reduce the risk of dangerous

phenomena (i.e. out of service lines and failure of the entire system). The authors in

[83] propose a SOPF based on chance constraints and nonlinear programming. The

work in [84] also relies on nonlinear programming to deal with the AC-SOPF but it

addresses the stochasticity of the problem resorting to Polynomial Chaos Expansion

and Galerkin-projection. Within the context of SOPF, convex relaxations have

been adopted in e.g. [85, 86, 87]. In [86] the authors propose a DC relaxation and

use a Scenario-based approach to deal with the stochasticities. A Scenario-based

approach is also used in [85]. In this case, an SDP relaxation of the AC problem is

considered and a Scenario with Certificates (SwCs, [88]) used to alleviate complexity.

The authors in [87] propose an AC probabilistic OPF based on an SDP relaxation

and chance constraints. In particular, the problem is solved using a combination of

a Scenario-based approach and robust optimization.

The methods considered above are suitable for interconnected grids, where the

power required by loads can always be satisfied. However, when the available power

is limited (i.e. islanded mode grid), the node power balancing may not be guar-

anteed. In this case, Demand Response policies (DR) can be considered in SOPF

formulations as a possible solution [89, 90]. In particular, DR is a class of demand

side management programs [91], in which the utilities may curtail user loads in

exchange for a bill reduction. While DR allows to respect the grid power balancing,

it leads to lower income for the utilities and to a disruption of service for the end

users. A significant improvement can be obtained using Energy Storage Systems

(ESSs) that could result in a reduction of conventional power production and load

curtailments by uncoupling the power production from the demand [92, 93, 94, 90].

ESSs have been used together with DR policies in the context of SOPF problems in

e.g. [87, 95]. The method in [87] relies on a DC approximation and a scenario-based

approach, while the work in [95] presents a SOPF based on a convex approximation

and chance constraints. ESSs provide several benefits to the management of power
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networks but they have non negligible fixed costs. Therefore, their proper use is

important to avoid rapid degradation and their subsequent replacement.

In this thesis, optimal dispatching solutions for Industry 4.0 are proposed. In

particular, two different dispatching problems are addressed. The main problem is

the optimal dispatching problem in a semiconductor production site while the minor

problem is the optimal dispatching of electric power in power networks operating

in islanded mode.

1.1 Thesis overview

The first and main problem deals with the control of the fleets of autonomous

vehicles used for semiconductor production. The production process requires wafers

to undertake several steps, and robots or human operators are responsible for the

dispatching. For this reason, this work aims to find dispatching strategies for an

optimal management of the fleet and, consequently, an improved management of

the production site. This type of problems can be seen as “pick-up and delivery

problems”, in which the orders can be seen as “passengers”. Taking advantage of

this particular vision of the problem, in this thesis appropriate algorithms based on

Dynamic Programming or Time Window Temporal Logic are developed, presented

in Chapters 2 and Chapter 3, respectively.

Besides, in order to evaluate the effectiveness of the strategies, it is necessary to

develop a testbed composed of three small scale robots in the UNIPV laboratories.

The position and orientation of the robots are detected by an infrared camera

positioned on the ceiling of the lab. The robots are equipped with a clamp to

simulate the drag and drop of the orders. The realization process, and the testbed

operation are illustrated in detail in Chapter 4.

Finally, in Chapter 5, the optimal power flow in presence of Energy Storage Systems

(ESSs) and Demand Response (DR) is studied. Given the nature of the network in

question and the presence of uncertainties arising from both the use of renewable

sources and unexpected variations in load, the problem is formulated as a Stochastic
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OPF. Therefore, it is necessary to find a control in order to satisfy the constraints

of the network with a desirable level of probability and to reduce the risks of

any dangerous phenomena (failure of the entire network and / or out of service

lines). Unlike other works in literature aimed at minimizing only production and

curtailment costs, this thesis places greater emphasis on the use of energy storage

systems, i.e. lithium ion batteries, taking into account also the functional cost of

battery ageing.

Thesis structure

Chapter 2: Dispatching Strategy In this chapter solutions to the wafer

dispatching problem based on Dynamic Programming are proposed. Due to the

problem complexity, the dispatching problem will be addressed from the simplest

case to the most complicated case.

In order to consider real scenarios, where walls or obstacles provide constraints

to the movement of the robots/humans, all the proposed approaches rely on the

Graph theory. In particular, a graph G = (Q,∆, ω) is used, which allows to abstract

the operating environment, where: the nodes/vertexes (Q) represent the pick-

up/delivery locations (the machines where the wafers are processed); the arcs/edges

(∆) indicate the existence of a connection between different locations; the weights

(ω) of these arcs represent the distances between the vertexes that the edges connect.

The first and second approach proposed aim to find the shortest route to pick up

and deliver an order/orders by using one vehicle per order.

In the third developed approach, both the order priorities and the possibility to

have a vehicle with variable transport capacity is considered by the introduction

of appropriate constraints. This approach differs from the previous one also for

the objective function, which is a weighted combination of the time to serve all

customers and of the total degree of “dissatisfaction” experienced by them while

waiting for service.

The fourth approach is the extension of the third approach to the case of multiple

vehicles. In particular, a genetic algorithm is used to cope with the increase in

complexity, while sacrificing optimality. This approach allows to find which is the
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best assignment of n-orders to m-vehicles and the relative paths of the m-vehicles.

The idea is to find the best n-assignments of the initial order list that minimizes

the objective function given by the sum of m-vehicle cost functions.

In the fifth approach, the collision avoidance, the vehicle battery management

and the possibility to assign an order to a currently busy vehicle are considered.

Moreover, this approach deals also with the case of orders that arrive at different

time instants in a scalable way. The complexity of a dynamic program approach

grows with the number of orders and agents (e.g. vehicles) to be considered. For

this reason, the dispatch of one order at a time is optimized and the graph is

updated, abstracting the possible available routes and taking into account the

dynamic presence of other vehicles on the way. Since orders come over time and

are not known all a priori, it is necessary to find the path on the graph for a new

order and its assigned vehicle without modifying the path of the existing ones.

Even though this approach may lead to a suboptimal result, it allows to scale the

optimization problem, thus providing a suitable solution for real time operation.

In order to ensure obstacle avoidance, considering that some robots are already

moving in the space, the optimization needs to operate on a dynamic graph. In

particular, nodes occupied dynamically by previously assigned robots are omitted

by the graph and the optimal dispatching is performed only on the residual graph.

A vehicle can be assigned to an order only if it is able to satisfy the request and go

back to the charging station with the available charge. This is achieved by using a

non-linear battery model to simulate the battery discharge. Furthermore, in order

to minimize the overall time of service, a task can be assigned for a future time to

a currently busy vehicle rather than to a currently available one. This can happen

when it is faster to fulfil the current order and pick-up the new one rather than

having a currently available vehicle fulfilling the new order.

The results presented in Chapter 2 are published in:

• A. Mosca, G. De Nicolao, G. Schneider, T. Niekisch and D. M. Raimondo,

“Optimal Wafer Dispatching based on Dynamic Programming”, European

Advanced Process Control and Manufacturing, Dresden, Germany, 2018.
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• A. Mosca and D. M. Raimondo, “A low complexity wafer dispatching strategy

for orders with different arrival times”, European Advanced Process Control

and Manufacturing, Villach, Austria, 2019.

Chapter 3: TWTL This chapter focuses on the problem of scheduling and

planning for a fleet of robots with motion uncertainty involved in manufactur-

ing. The uncertainty concerns the duration of motion. Robots are tasked with

transportation demands of goods that must be fulfilled according to given time

constraints and synchronization rules. The demands and synchronization rules are

specified using Time Window Temporal Logic (TWTL), which allows to express

temporal properties with explicit time constraints. In addition, TWTL admits

temporal relaxation semantics which enables a relaxation of time constraints in case

of unsatisfiable tasks. In this chapter, a general solution to the nominal motion

mode is developed, i.e., without robot motion uncertainty. Furthermore, an online

controller is proposed in order to guarantee the satisfaction of the synchronization

rules and to minimize deadlines relaxations in presence of robot motion uncertainties

during deployment. The effectiveness of the approach is tested through simulations

inspired by semiconductor manufacturing scenarios.

The results presented in Chapter 3 are published in:

• A. Mosca, C. Vasile, C. Belta and D. M. Raimondo, “Multi-robot routing

and scheduling with temporal logic and synchronization constraints”, accepted

to 2nd International Conference on Control and Robots (ICCR), December

12-14, 2019, Jeju Island, Korea.

Chapter 4: Testbed In this chapter the activity carried out at the Process

Control Laboratory of the University of Pavia is described. The objective of this

activity is the design, implementation and control of a testbed for the validation

of the proposed dispatching strategies. In particular, the goal is to simulate

the operation of a semiconductor production plant in which it is necessary to

transport semi-finished products between the various workstations by using a fleet

of automated vehicles. The vehicles used for the testbed are laboratory-built robots,

which are able to pick up and deliver the objects in the desired position. The



13 Chapter 1

position and orientation of the robots are detected by an infrared camera positioned

on the ceiling of the lab.

Chapter 5: SOPF In this chapter, an Ageing-Aware Stochastic Optimal Power

Flow in presence of Demand Response and Energy Storage Systems (ESSs) is

presented. A proper use of these ESSs is fundamental in order to obtain high

performance throughout their lifetime. For this reason, a degradation model of

the ESSs in the optimization problem is considered. In this way, it is possible

to optimize network management and to maximize their lifetime by taking into

account ageing effects of the ESSs. In order to deal with network uncertainties, a

stochastic optimization problem using a scenario approach which allows to provide

a-priori level of constraint satisfaction is solved. The effectiveness of the proposed

control strategy is tested by performing simulations on IEEE 14 bus.

The results presented in Chapter 5 are published in:

• A. Mosca, A. Pozzi and D. M. Raimondo, “Battery ageing-aware stochas-

tic management of power networks in islanded mode”, 22nd International

Conference on System Theory,Control and Computing, Sinaia, Romania ,

2018.
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2.1 Introduction

Planning, scheduling and dispatching are of critical importance in production sys-

tems. In particular, in the semiconductor manufacturing industry, the production

process requires wafers to undertake several steps. For example, a medium- com-

plexity production requires 250-500 steps and uses from 50 to 120 different machines

[36]. The wafers dispatching can be done either manually (human operators) or

automatically (by robots). In any case, designing optimal dispatching strategies is

of major importance, since it can result in energy, time and cost savings. Several

approaches have been considered in literature to solve this problem, see [37, 38, 39]

for an overview. Many heuristic schemes have been developed over the years. In

particular, dispatching rules have been widely used for real-time scheduling because

they can provide a very quick and sufficiently good solution. On the other side,

choosing the right rules is not an easy task. Mathematical programming represents

an alternative which can provide better solutions at the price of higher computa-

tional complexity.

In this chapter, the developed solutions to tackle the dispatching problem in a

semiconductor fab are shown. The presented approaches rely mainly on dynamic

programming and graph theory. Tailored solutions (based on e.g. genetic algo-

rithms and sub-optimal schemes) are also proposed to cope with the computational

complexity of optimization-based approaches. The effectiveness of the proposed

methodologies is demonstrated in simulation and on a testbed, developed at UNIPV,
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composed of robots with clamps aiming to simulate the real production site, see

Chapter 4.

2.2 Preliminaries

2.2.1 Dynamic Programming

Dynamic programming (DP) is a method for solving a complex problem by breaking

it down into a collection of simpler sub-problems where each subproblem gets solved

only once and stored off-line. DP is based on the Principle of Optimality [96]: if an

optimal trajectory exists, and a point on such trajectory is considered, then, by

re-solving the optimal problem starting from this point, the remaining trajectory is

still the same as before and it is still optimal.

2.2.2 DP Basic Problem

Considering the discrete-time dynamical system described by

xk+1 = fk(xk, uk), k = 0, 1, · · · (2.1)

where the input uk and the state xk verify the following constraints

xk ∈ X uk ∈ U(xk) ⊆ C (2.2)

and S and C are finite sets, and U(xk) is the set of admissible input.

Let π = {u0, · · · , uN−1} be an admissible finite sequence of control laws, i.e

uk ∈ U (xk) ∀xk ∈ X (2.3)

Define Jπ(x0) as the cost associated to the control policy π starting at x0

Jπ(x0) = gN(xN) +
N−1∑
k=0

gk(xk, uk) (2.4)
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where the functions gk(xk, uk)∀k = 0, · · · , N−1 and gN (xN ) are given and represent

the stage costs and the final cost, respectively.

The optimal control policy π∗ is the policy that minimizes Jπ, which is

Jπ∗(x0) = min
π∈Π

Jπ(x0) (2.5)

where Π is the set of all admissible control laws [97].

The complete procedure for solving the Basic Problem is reported in Algorithm 1

Algorithm 1: Dynamic Programming
1 Set the solution of subproblem N to JN(xN) = gN(xN).
2 For k = N − 1, · · · , 0, for each possible xk, solve the k-th “tail subproblem”.

Jk(xk) = min
uk∈U(xk)

{gk(xk, uk) + Jk+1 (fk (xk, uk))}

using the optimal cost-to-go of the k + 1 tail sub-problem. Store the optimal
cost and the optimal input

3 For a given x0 at time k = 0, the optimal cost of the overall problem can be
obtained as Jπ∗(x0) = J0(x0). The corresponding optimal input sequence
π∗ =

{
u∗0, · · · , u∗N−1

}
is obtained by concatenating the optimal input

elements of each subproblems.

2.3 Problem Formulation

Semiconductor production is the process used to make integrated circuits. The

process requires several steps during which the circuits are gradually created on

wafers of semiconductor material, typically silicon. All the production is carried

out in a clean room, so to reduce particulate contamination and control other

environmental parameters, such as temperature, humidity and pressure. The clean

room is divided into bays (process work stations) and chases (service areas). The

transport of each wafer batch can be done either by robots or by human operators.

The production site contains several machines. Given the position of each machine

and the relative position between bays, it is possible to abstract the environment

where humans/robots can circulate to a graph in which the nodes/vertexes represent

either the pick-up/delivery locations (the machines where the wafers are processed)
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or the interconnection nodes. The arcs/edges indicate the existence of a connection

between the different locations of interest. The weights of these arcs represent the

distances between the vertexes that the edges connect. Therefore, it is possible to

define a digraph G = (Q,∆, ω) where: Q are vertices, ∆ are edges and ω are the

weights of the edges.

Figure 2.1: Abstraction of the graph, plan taken from [5]

2.3.1 Scenario

In this chapter, a semiconductor production site containing a set of machines (M,

each of which equipped with a buffer in and a buffer out of respectively size binm and

boutm), a charging station (C), Transfer in (TIN ) and Transfer out (TOUT ) points are

considered. Beside the above mentioned points of interest, a set of auxiliary nodes

I is considered, which allows to discretize the routes available to the mobile robots

for dispatching operations. Nodes in set I are the result of a space discretization

performed with a fix discretization step. This is chosen in a way consistent with

the dimension of the mobile robots and fine enough to avoid collision and maximize

the exploitation of the available space by the fleet of vehicles.

Finally, the production site can be abstracted as a direct connected graph

G = (Q,∆, ω), where Q =M∪C ∪ TIN ∪ TOUT ∪ I is the set of nodes, ∆ = Q×Q

the set of edges and ω the edge weights representing the travel time between nodes.

Given G = (Q,∆, ω), the objective is to coordinate a team of robots V on the graph

so to fulfil the required dispatching in a minimum time.

Orders enter the production area from the Transfer in points TIN . From there,

they need to be transported to a set of predefined machines for elaboration. When
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the process is completed, the orders leave the site through the Transfer out points

TOUT . Let D(t) be the set of orders to be fulfilled at time t (i.e. orders present at

the Transfer in or at the buffer out of one of the machines). The i-th order (di) is

represented by a state a vector containing the following information: number of

order (dni ), pick-up position (dpi ) and delivery position (ddi ).

di = [ dni | d
p
i | ddi ] (2.6)

2.4 1 vehicle per order

2.4.1 Problem Definition

Given the graph G = (Q,∆, ω) and a transport demand di ∈ D(t), the purpose

of the following approach is to find the shortest path which allows to fulfil the

transport demand di.

Problem 2.4.1. Given an environment G, a transport demand di, i.e. the order that

that must be transported from the position dpi ∈ Q to position ddi ∈ Q, a robot v

located in qv ∈ Q finds the shortest path that starts from qv, goes through to dpi
and ends in ddi .

2.4.2 Solution

A possible solution to Problem 2.4.1 can be obtained by using DP with a finite

horizon N . The finite horizon is computed as the maximum time required to achieve

the required task, which is to reach the target node (qt). The solution applies

Algorithm 1 twice in order to find first the path from qv to dpi and then the path

from dpi to ddi . By considering the graph nodes as states (X = Q) and the graph

arcs as control action (C = ∆), it is possible to reformulate the problem within the

framework of the DP basic problem and thus to apply Algorithm 1.

Let Jk(xi) be the optimal cost to reach the target node (i.e. xt) in N − k steps.
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Then, the k-th tail sub-problem can be formulated as:

Jk(xi) = min
uk∈U(xi)

{gk(xi, uk) + Jk+1(xj)} k = N − 1, N − 2, · · · , 0 (2.7)

where: U(xi) ⊆ C is the set of the all possible control actions to apply from the

state xi (i.e. all the arcs of the graph that start from the state xi), uk ∈ U(xi) is a

possible control action which corresponds to an arc from state xi to the possible

next state xj (i.e. uk = (xi, xj)), gk(xi, uk) is the stage cost which is defined as

follows:

gk(xi, uk) =

ω(xi, xj), if (xi, xj) ∈ ∆

∞, otherwise
(2.8)

In order for the minimum path to be obtained, it is necessary to set the final cost

as follows:

gN(xi) =

0, if xi = xt

ω(xi, xt), otherwise
(2.9)

As can be seen from Equation 2.9, the final cost gN(xN) is set equal to 0 only for

the target node, otherwise it is set equal to the cost of the transition to reach the

target node.

Once the final cost is set, the optimal control policy π∗ = {u0, · · · , uN−1} can be

obtained by using Algorithm 1.

Suppose that a vehicle is in a node qv and there is an order that must be picked up

from the node dpi and must be released to the node ddi . To find the optimal path, it

is necessary to solve two problems. The first problem aims to find the shortest path

π∗1, applying DP by setting as the target node xt = dpi , starting from the starting

node x0 = qv. Then, the second shortest path π∗2 is solved by setting as the target

node xt = ddi and as the starting node x0 = dpi . Finally, the shortest path which

allows to satisfy the transport request di is given by the union of two paths found,

i.e. π∗ = π∗1 ∪ π∗2.
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2.5 n vehicles per n orders

2.5.1 Problem Definition

Given the graph G = (Q,∆, ω), and a set of transport demands D that contains

n transport requests, i.e. |D| = n, the set of vehicles V which is composed by n

vehicles, i.e. |V| = n, the approach proposed in this section aims both to find the

optimal vehicle assignment for each order and, at the same time, the optimal path

for each vehicle. This is to minimize the overall transport time, which is given by

the sum of the n transport times associated with the n vehicles. Note that in this

approach it is assumed that each vehicle can only fulfill one order.

Problem 2.5.1. Given an environment G, the set of n-transport demands D, the set

of the n-robots V, find the optimal shortest paths for the n-vehicles v ∈ V that

satisfy the n-transport demands D with the minimum overall time.

2.5.2 Solution

In order to consider the case of multiple orders and multiple vehicles, the previous

approach needs to be modified. Indeed, in case of a single vehicle, the digraph

is sufficient to find the shortest route, while in case of n vehicle, it is necessary

to consider all the possible combinations of the possible positions of the different

vehicles at any steps. In addition, to find a correct solution it is necessary to

prevent both vehicles from being in the same vertex of the graph at the same

time. Moreover, an order cannot be executed by more than a vehicle. To achieve

this, in this approach a vector product graph is adopted, in which all the nodes

(combinations) where the above mentioned anomalies occur are eliminated.

Definition 2.5.1 (Vector product Graph). Given n graph G1, . . . ,Gn, the vector prod-

uct graph is a tuple Gn =
�n

v=1 Gv = (Q̄n,∆n, ωn), where Q̄n = Qn \ {(q1, . . . , qn) |

∃qi = qj, i 6= j} is the set of joint states, ∆n ⊆ Q̄n × Q̄n is the set of joint tran-

sitions. A transition (x, x′) ∈ ∆m if qv →Gv q′v ∈ ∆, ∀v ∈ {1, . . . ,m}, where

x = (q1, . . . , qm) and x′ = (q′1, . . . , q
′
m). The joint transition weights are given by

ωn(x, x′) =
∑n

v=1 ω(qv, q
′
v).
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After having generated the vector product graph that contains all possible

positions that the vehicles can assume while respecting the constraints, Algorithm 1

is applied. Similarly to the previous case, a 0-cost is given to the combination

where all the vehicles are in the destination positions (i.e. all vehicles are in pick

up positions or all vehicles are in delivery positions)

gN(xi) =


0, if xi ∈ Xt

ωn(xi, xt), if ∃xt ∈ Xt such that (xi, xt) ∈ ∆n

∞, otherwise

where: Xt are the set of nodes in which all the vehicles are in destination positions.

Successively, the dynamic programming is applied from this position backwards.

Note that two different dynamic programming need to be solved. The first DP

allows to attain the pick-up positions starting from the current vehicles positions

optimally, i.e π∗1, in which the set Xt is composed of all the graph nodes where the

vehicles are at pick-up positions; the second allows to achieve optimally the delivery

positions starting from the pick-up position reached by π1∗ , i.e π∗2. In this case,

the set Xt is composed of a single element, which is the node where each order is

satisfied by the vehicle that picked it up. The complete procedure is summarized

in Algorithm 2.

Algorithm 2: DP n vehicles per n requests
Input : G - the environment
Input :D - the set of demands to be satisfied
Input : V - the set of vehicles
Output : the optimal path for each robot v ∈ V

1 Construct the vector product graph Gn as defined in Definition 2.5.1.
2 Compute the set Xt of all the vector product graph nodes where the vehicles
are in pick-up positions.

3 Find the shortest path π∗1 from the vehicle initial condition to the terminal
state Xt of Gn using Algorithm 1.

4 Compute the set Xt of the single vector product graph node where the
vehicles are in delivery position in accordance with π∗1.

5 Find the shortest path π∗2 from the vehicle pick-up position reached at the
previous step to the terminal state Xt of Gn using Algorithm 1.
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Figure 2.2: Graph G

2.5.3 Example

The following is an example of optimization of pick-up and delivery of 3 customers

by 3 vehicles using the described approach. In particular, at the initial time the

three vehicles are located at nodes M2, M1, C. Transport requests are from node

TIN to node M3, node M4 to node TOUT , and node M5 to node M6, as reported in

Table 2.1.

Applying Algorithm 2, the shortest paths for the three vehicles are obtained, which

D
Number of order Pickup Point Delivery Point

1-st order TIN M3

2-nd order M4 TOUT
3-rd order M5 M6

Table 2.1: Transport requests list

are summarized in the following Table 2.2 and they are shown in Figures 2.3.

Table 2.2: The shortest paths for v1, v2 and v3

π∗1 ∪ π∗2
v1 M2 M4 M4 M4 C TOUT TOUT TOUT
v2 M1 C TOUT M5 M6 M6 M6 M6

v3 C TOUT TIN TIN TOUT C M1 M3

While the described method is interesting, it still has the following issues:
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(b) Delivery paths π∗2

Figure 2.3: Paths on graph

• The complexity is still NP hard;

• It is not possible to use vehicles with a capacity greater than one, since the

approach is restricted to the case of n vehicles per n orders;

• The priority of orders is not taken into account.

2.6 m vehicles per n orders

In this section, starting from the approach proposed in [98], which deals with the

case where a single vehicle with multiple capacity is used for fulfilling multiple

demands, an extension to the case of several vehicles is presented.

2.6.1 DP with Multiple Orders and 1 Vehicle

Before introducing the extension of several vehicles, in this section the approach

proposed in [98] is summarized.

Assume that a list of orders D is given, where the i-th order (di) holds the i-th

position (First Called First Served (FCFS) list). Suppose that at time t = 0, the

position of the vehicle is known (qv). Let dpi and ddi be the pick up position and the

delivery position of i-th order, respectively. Moreover, for any pick-up and delivery

positions, the optimal path ( i.e. path) on the graph and its cost ( i.e. time) have

been precomputed (using e.g. Dijkstra). The algorithm proposed in [98] aims to

find a vehicle path starting from qv and ending in one of the delivery points that
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minimize an objective function composed of a weighted combination of the time to

serve all customers and of the total degree of their “dissatisfaction” waiting to be

served

w1 ·
2·|D|∑
j=1

pathj + w2 ·
|D|∑
i=1

[α ·WTi + (2− α) ·RTi] (2.10)

where: i) w1 and w2 are given weights, ii) α is a customer’s time preference constant

0 ≤ α ≤ 2, iii) pathj is the duration of the j-th leg of the route, iv) WTi is the

waiting time of order i from t = 0 until its time of pick-up, v) RTi is the riding time

from its time of pick-up until its time of delivery, vi)|D| is the number of orders.

The problem is subject to the following constraints:

• vehicle capacity : vehicles have a fixed given capacity vc and thus cannot

transport more than vc orders at a time;

• consistency : the optimal route has to ensure that each order is first picked-up

and then delivered;

• priority constraint: the path has to meet the priority constraint MPS (Max-

imum Position Shift). Let zindi be the position of order di in the sequence

of pickups and zoutdi
the di position in the sequence of delivery. The MPS

constraint means that, in a valid dispatching sequence, an order di can be

anticipated or delayed at most of MPS steps, i.e.

|i− zindi | ≤ MPS ∀i = 1, · · · , |D|

|i− zoutdi
| ≤ MPS ∀i = 1, · · · , |D|

(2.11)

The authors in [98] propose a solution which relies on state vectors for taking into

account both the history of the path (addressed orders, available capacity, current

position, etc.) and the constraints.

Let x be a state vector. Suppose to have |D| orders, the k-th state vector looks as

follows:

xk = [ Lk, d1-condition, · · · , d|D|-condition ]
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where:

• L is the current position of vehicle L ∈
{
dp1, · · · , d

p
|D|, d

d
1, · · · , dd|D|, qv

}
• di-condition represents the state of the order i, where the condition can be:

– In Transport

– Attending

– Delivered

The procedure for generating the feasible set of state vectors (i.e. the set X where

each element xi ∈ X respects all the constraints) can be summarized as follows:

i) Generate a list containing all the possible state vectors, i.e. Sall; ii) Verify the

satisfaction of the previously described constraints for each state vector. If at least

one constraint is not respected, the state has to be deleted; iii) If a vector state

does not have a successor which is feasible, then such state also has to be deleted.

This holds unless the vector state is a “terminal state”, which means a state where

all the orders have been executed.

Once the algorithm finds a list of vectors that respect all the constraints, i.e. X ,

they use DP on X in order to find the optimal sequence of pickups and deliveries.

Due to possible presence of multiple terminal states, in order to apply Algorithm 1,

it is necessary to first add a dummy state xdummy to the set of state, i.e. xdummy∪X ,

and then to create a dummy edge from each terminal state (i.e xNi) to xdummy with

a transition cost equal to gN(xNi).

Let J(xk) be the optimal value of all subsequent decisions from xk to the dummy

state. The problem of finding the optimal path to reach a terminal state from the

state xk can be formulated as follows:

J(xk) = min
Lk+1∈Xnext(xk)

time(Lk, Lk+1) ·M + J(xk+1) (2.12)

where:

• Xnext(xk) is the set of the next possible position which is given by the union

of the two following sets



28 Chapter 2

– Xpick(xk) = {dpi : 1 ≤ i ≤ |D| with di condition = “Attending”}

– Xdel(xk) =
{
ddi : N + 1 ≤ i ≤ 2 · |D| with di condition = “In transport”

}
• time(Lk, Lk+1) is the precomputed time for reaching the position Lk+1 starting

from the position Lk

• M is the factor of proportionality which is defined as

M = w1 + w2 {α · |Xpick(xk)|+ (2− α) · |Xdel(xk)|}

The optimal path π∗ (i.e. the sequence of pickups and deliveries), which minimizes

the cost function shown in Equation 2.10, is obtained by using Algorithm 1, where

the target node is the dummy node xt = xdummy and the terminal cost gN(xN) is

set equal to: i) 0 for the dummy state, i.e. xN = xdummy ii) finite value for the

vector states able to reach the dummy state in one step. iii)∞ for the other vectors.

The procedure is summarized in Algorithm 3.

Algorithm 3: Dynamic Programming 1 vehicle to multiple transport demand
Input :D - the set of transport demands
Input : vc - vehicle capacity
Input : qv - vehicle position
Output : π∗ - optimal path composed of the sequences of pickups and

deliveries

1 Generate the set of all possible states according to D, i.e Sall
2 Apply on Sall the constraints in order to obtain the set of feasible states, i.e.
S ⊆ Sall

3 Add the dummy node and the dummy edges
4 Find π∗ by using Algorithm 1

2.6.2 Extension to the multiple-vehicles case

While the previous approach provides the optimal solution, it is restricted to the

case of one vehicle only. In this section, the approach proposed in [98] is extended

to the case of multiple vehicles. To cope with the increase of complexity, the new

approach relies on genetic algorithm.

Problem 2.6.1. Given D (i.e. the FCFS list) consisting of |D| orders and m vehicles,

the objective is to find the optimal assignment of the |D| orders (of the FCFS list)
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among the m vehicles which minimizes the objective function given by sum of m

vehicle cost functions (fitness function)

m∑
v=1

w1 ·
2·|Dv |∑
j=1

timej + w2 ·
|Dv |∑
i=1

[α ·WTi + (2− α) ·RTi]

 (2.13)

where: Dv ⊆ D is the set of demands assigned to the vehicle v

Since finding an exact solution for this type of problem in a reasonable time

is computationally too expensive when multiple vehicles are considered, an ap-

proximate method which provides a suboptimal solution in a compatible time

with the order execution time is used for solving Problem 2.13. In particular, a

genetic algorithm is considered. This type of algorithm ensures to find a suboptimal

solution in a reasonable time. The idea is to let the genetic algorithm create possible

assignments to which the approach of the previous Section 2.6.1 is then applied as

fitness function.

To achieve this, it is necessary to set the nZ chromosomes that compose the first pop-

ulation. A generic chromosome is encoded with |D| (number of transport demands)

genes, in which each gene can assume values between 1 and m (number of vehicles).

Then, it is possible to apply the genetic algorithm. This is an adaptive algorithm

whose goal is to solve large global search problems. These types of algorithms are

conceptually based on the principles governing the natural evolution of the species.

Algorithm 4 shows the complete procedure in order to solve Problem 2.6.1.

The first operation of Algorithm 4 is the random generation of the first population

of solutions/chromosomes Z which is composed of nZ chromosomes, where:

• Each chromosome j is encoded with |D| genes, where |D| is the number of

orders in the FCFS list (i.e. D).

• Each i-th gene can assume values between 1 and m, where m is the number

of vehicles.

chromosomej = [1st gene |2nd gene | · · · |D-th gene ]
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Then, Algorithm 4 evaluates each chromosome by applying the fitness function

( i.e. solving the m subproblem using Algorithm 3) and arranges the population

according to the decreasing values of the fitness function. After that, Algorithm 4

finds the probability associated with the individual, which will be used for selection

in cross-over processes. This is calculated as follows:

pj = PA + (PB − PA)
j − 1

nZ − 1
(2.14)

where:

• j is the position of the chromosome in the list made in the previous point

• PA is equal to 0

• PB is equal to 2
Z

Consequently, the j-th individual can then be associated with the j-th following

cumulative probability:

Pj =

j∑
l=1

pl (2.15)

This will make the chromosomes with lower fitness function value more likely to

be chosen in the crossover process. Then, depending on the probability set for

both the crossover process (pc typically close to 1) and the mutation process (pm

typically near to 0), chromosomes are chosen. The cross-over process generates new

chromosomes by using the cross-over uniform technique. Each new chromosome

inherits genes from the two chromosomes selected as “parents”. As concerns the

mutation process, genes change in a random manner. A new population Znew(t)

is first obtained from the cross-over and mutation processes and then evaluated

by using the fitness function. The last step of Algorithm 4 is to find the best nZ

chromosomes from the union of the two populations Z(t) ∪ Znew(t), which will be

used as the new population for the next iteration. The entire procedure is repeated

until the algorithm converge to a suboptimal solution.

The iteration of the steps presented allows to find an optimized solution to the
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considered problem. Since some good solutions might be lost during the course of

evolution, and the evolution evolution may fall in to local optimum, the approach is

often integrated with the techniques of “elitism” and with that of random mutations.

The elitism is obtained by selecting only the best nZ chromosomes in the list

from the union of the initial population and the chromosomes obtained from the

cross-over and mutation processes, i.e. Z(t) ∪ Znew(t). Moreover, in order to avoid

getting stuck in local solutions, it is necessary to introduce occasional random

mutations, which allow to look at other solutions.

Algorithm 4: DP and GA multiple vehicles per multiple demand
Input :D - the set of transport demands
Input : V - the set of vehicles
Output : π - sub-optimal sequences of pickups and deliveries for each vehicle

v

1 k = 0
2 Set nZ
3 Generate the first population of chromosomes composed of nZ chromosomes
according to both D and V

4 while True do
5 Evaluate each chromosome that belongs to Z(k) by using Algorithm 3
6 if stopping criteria then
7 break

8 Arrange the population Z(k) according to the decreasing values of the
fitness function

9 Calculate the probability pj associated with the j-th individual for the
cross-over process

10 Generate a new population Znew(k) by using the Cross-over and
Mutation processes

11 Evaluate each chromosome that belongs to Znew(k) by using Algorithm 3
12 Generate Z(k + 1) by selecting the best nZ chromosomes from

Znew(k) ∪ Zbest(k)
13 k= k+1

Example

Suppose that at time t, three single-capacity vehicles (m = 3) have to satisfy four

demands of transport |D| = 4 with MPS =2. The vehicles at time t are situated

at node TIN , M2 and M3. The list of demands D is shown in Table 2.3, while the

environment graph G on which the solution is calculated is shown in Figure 2.4.
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Since the genetic algorithm does not guarantee the attainment of an optimal

D
Number of order Pickup Point Delivery Point

1-st order M1 M7

2-nd order M5 M9

3-rd order M4 TOUT
4-th order M2 M3

Table 2.3: FCFS list
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Figure 2.4: The environment G

solution, only a suboptimal solution can be obtained. In this example, where three

vehicles are considered, the genetic algorithm chooses to use only two of the three

vehicles available to meet all transport requirements. In particular, the first vehicle

satisfies only the first call and the second vehicle satisfies the rest. Table 2.4 reports

the results of the approach based on the genetic algorithm.

Vehicle 1 Vehicle 2 Vehicle 3

1-st order 4-th order Not use
3-rd order
2-nd order

Table 2.4: Suboptimal sequences πv1, πv2 and πv3 obtained by using Algorithm 4
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Table 2.5: πv1 , πv2 and πv3

k 1 2 3 4 5 6 7 8

v1 M1 TIN M6 M7 0 0 0 0
v2 M3 M4 M5 TOUT M5 TOUT M10 M9

v3 0 0 0 0 0 0 0 0

2.7 DP on Dynamic Graph

In the previous Section 2.6, an approach able to solve the dispatching problem of n

orders with m vehicles is proposed. However, this is implies “wasting” some time in

order to collect the requests of transport in a chronological way. Besides, collision

avoidance cannot be guaranteed since the approach uses the pre-calculated shortest

paths between the points of interest (i.e. pick-up points and delivery points) in the

optimization for finding the optimal sequence of pickup and delivery positions.

For this purpose, in this section, the proposed approach takes into account the

paths of the moving vehicles in the vehicle assignment to ensure collision avoidance.

Moreover, as introduced in Section 2.3.1, the robot motions are captured by the

environment graph G, which is obtained through space discretization performed

with a fixed discretization step. This implies that the vehicle paths found through

the optimizations are obtained under the assumption that the vehicles always travel

at the same fixed speed v̄robot. However, this capability of the vehicles depends on

the charge stored in their batteries. Indeed, a vehicle is able to move at a given speed

up to a certain battery charge level, after which the vehicle will move at reduced

speed until it will stops because of its insufficient battery charge level. Thus, to

guarantee both collision avoidance and the correct operation of the manufacturing

site, it is of crucial importance to take into account the battery charge of the

vehicles during the paths optimization. This can be achieved by using a battery

model which allows to describe the battery behaviour.

However, the quality of the battery model adopted plays an important role. Indeed,

using a “simple” battery model it is likely to overestimate or underestimate the

charge of the battery, with dangerous consequences for the production. If the model
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overestimates the battery charge, the robot might not have enough battery to fulfill

the order moving at a constant speed. In best case scenario, this situation might

lead to slow down the robot speed, while in the worst case scenario it might result

in stopping the vehicles in the middle of the production site or in possible vehicle

collisions. In addition, a complete discharge of the battery could reduce its useful life.

Otherwise, if the battery charge is underestimated, the vehicle might be considered

having a low battery level when it does not, leading to a worse exploitation of

the vehicle fleet. For these reasons, in this section a viable dispatching strategy

is proposed, which adopts a non-linear battery model for evaluating the vehicle

assignment and ensuring the correct operation of the vehicle fleet.

2.7.1 Scenario

The scenario adopted for this approach is based on the scenario proposed in

Section 2.3.1, to which the following characteristics are added. Robots have limited

battery capacity. Besides, their energy consumption depends on the operation

status: in transit, stand-by, recharging, as shown in Section 2.7.3. When the battery

level goes below a certain threshold, robots are required to recharge at the charging

station (C).

Moreover, it is assumed that each robot can transport only one order at a time.

Vehicles can be either available (ready to fulfil an order) or not available (busy or

recharging/going to recharge). At each time instant t, each robot v comes with a

vector state containing the following information:

1. v.state is the vehicle condition, i.e. in transit, stand-by, recharging;

2. v.bat is the the battery status vector, i.e. xbat, where v.bat.soc = SOC,

v.bat.v1 = V1 and v.bat.v2 = V2;

3. v.position is the current location;

4. v.orders are the assigned orders;

5. v.path are the assigned routes.
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2.7.2 Order Priority

Orders must be fulfilled according to their priorities. Top priority is given to orders

at buffers out which need to be transported to other machines or to the Transfer

out. If several orders of this kind exist, higher priority is given according to the age

of the order. Orders at the Transit in are given a lower priority. Also in this case,

orders are served according to their age.

2.7.3 Battery Model

The battery behaviour is described by using the Double Polarization model which

is proposed in [99]. The continuous time, non-linear Equivalent Circuit Model

(ECM) used is shown in Fig 2.5. As can be noticed, the ECM is composed of i) the

internal resistance R0; ii) the polarization resistances R1 and R2; iii) the effective

capacitances C1 and C2; iv) the open circuit potential vocp.

R0
R1 R2

C2C1

VOCP

VR0 V1 V2

V

Iapp

+
−

Figure 2.5: The ECM of the DP model

The relations between voltage at the terminals of the battery pack V (t), the applied

current Iapp(t) and the state of charge SOC(t) are shown in Figure 2.5, whose
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equations are:

ẋ1(t) = u(t)
3600·Qtot

ẋ2(t) = x2(t)
R1C1

+ u(t)
C1

ẋ3(t) = x3(t)
R2C2

+ u(t)
C2

y1(t) = vocp(x1(t)) + x2(t) + x3(t) +R0u(t)

y2(t) = x1(t)

(2.16)

where:

xbat(t) =


x1(t)

x2(t)

x3(t)

 =


SOC(t)

V1(t)

V3(t)

 , y(t) =

y1(t)

y2(t)

 =

 V (t)

SOC(t)

 ,

vocp(x1(t)) is a polynomial function of the SOC that must be identified experimen-

tally, see Equation 2.17

vocp(SOC(t)) =
n∑
i=0

bi (SOC(t))i (2.17)

where bi is the i-th polynomial parameter.

The SOC is the charge indicator and is measured in percentage, where the SOC =

100% if the battery is completely charged, while SOC = 0% if the battery is

completely discharged. A problem in the online control of lithium ion batteries is

the correct estimate of the SOC, as its direct measurement is not possible. For the

different types of SOC estimates, see [13]. In this work, it is assumed that it is

always possible to detect the initial value of the SOC.

Aiming to find the power that must be supplied by the battery to the electric

vehicle motors for maintaining the speed constant, a study on the forces to which

the vehicle is subjected during its motion is conducted in the following section.
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Vehicle Model

The vehicle model adopted is inspired from [100]. The vehicles have three wheels.

Two wheels are on the rear part and one is on the front part. The driven wheels

are the rear wheels. Each wheel is powered by an electric motor. The force that

Fmov

N

CM

Ffri FfriNfNr

Tmot

Figure 2.6: Applied forces on the vehicle

the electric motors have to apply in order to move the vehicle depends on different

resistance forces, such as areo drag, weight, wheel friction etc. Therefore, in order

to move the vehicle, electric motors have to overcome the resulting sum of all forces,

see Equation 2.18

Fv = Fmov + Ffri + Fdrag + Fweight (2.18)

where: Fmov is the driving force; Ffri is the friction force; Fdrag is the drag force;

Fweight is the weight force.

For simplicity, in this work the following assumptions are made:

1. the vehicles are moving always at the same low constant speed, i.e. dv̄robot(t)
dt

=

arobot = 0;

2. the vehicle paths are in a flat indoor track and the floor is regular;

3. the mass of the order mo is negligible when compared to the vehicle mass mr,

i.e. mr >> mo.

Due to the first and the second assumptions, both drag and weight forces can be

neglected. Therefore, the resulting force is given by the sum of the moving force
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Fm and the friction force Ffri

Fv = Fm + Ff = mv ∗ arobot + f ∗N (2.19)

where mv is the vehicle mass that includes also the mass of the battery; arobot is

the acceleration ([m
s2

]); f is the friction coefficient between wheels and floor; N is

the normal force.

Once the force that the electric motors must apply to move the vehicle at a constant

speed is obtained, see Equation 2.19, the electrical power required by the electric

motors from the battery (Pb) is obtained as follows:

Pb(t) =
1

ηbηmηe
Fv(t) ∗ v̄robot(t) (2.20)

where: ηb is the efficiency of the battery; ηm is the efficiency of motor and ηe is the

overall efficiency of the electric drive.

Note that, since the vehicles travel always at the same constant speed v̄robot, both

Fv(t) and v̄robot(t), are constant and thus also the battery electric power Pb(t) will

be constant for each time instant t.

Since the total electric power load requested from the battery is constant, the

following algebraic constraint is added to System 2.16

V (t) ∗ Iapp(t) = K (2.21)

where K indicates the amount of power with which the battery is charged (K > 0)

or discharged (K < 0). Thus, in the vehicle assignment, in order to evaluate the

capability of the robot to move at a constant speed, the following battery initial
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value problem is solved:

ẋ1(t) = u(t)
3600·Qtot xbat(t0) = x0

ẋ2(t) = x2(t)
R1C1

+ u(t)
C1

ẋ3(t) = x3(t)
R2C2

+ u(t)
C2

y1 = vocp(x1(t)) + x2(t) + x3(t) +R0u(t)

y2 = x1(t)

0 = (vocp(x1(t)) + x2(t) +R0u(t)) Iapp(t)−K

(2.22)

where x0 is the initial condition at time t0.

Note that, since the system dynamics is discretized, also the continuous time

System 2.22 will be discretized, according to the fixed discretization step used to

discretize the routes. Thus, the applied input ubat will be a piece-wise constant

with sampling time equal to the fix discretization step.

Let Tch,v be the time required for a full battery charge of vehicle v from the battery

condition xbat(t) at time t. Then, Tch,v is obtained by evolving the system from

the initial condition xbat(t) until the battery state of charge reaches its maximum

allowed value. Algorithm 5 allows to compute a single step evolution (i.e. xbat(t+1))

of System 2.22 under the power algebraic constraint starting from the battery initial

condition xbat(t).

Algorithm 5: Single step evolution of the DP battery - evolutionBattery(x0,K)
Input : x0 - battery initial condition
Input :K - electric power required/absorbed by the battery
Output : xbat(t+ 1) - battery state at t+ 1

1 Evolve the System 2.22 from the initial condition x0 for one step, with K
constant.

2



ẋ1(t) = u(t)
3600·Qtot xbat(t0) = x0

ẋ2(t) = x2(t)
R1C1

+ u(t)
C1

ẋ3(t) = x3(t)
R2C2

+ u(t)
C2

y1 = vocp(x1(t)) + x2(t) + x3(t) +R0u(t)

y2 = x1(t)

0 = (vocp(x1(t)) + x2(t) +R0u(t)) Iapp(t)−K
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2.7.4 Problem Formulations

In this section, different formulations for the same dispatching problem are proposed

in order to identify which formulation allows to process the largest number of orders

at the same time.

First, a general formulation is provided where the assignment of the order to the

available vehicle is made only taking into account the total time needed by the

available vehicles to satisfy the order. This formulation is considered as the baseline

formulation that this work aims to improve in terms of number of orders elaborated

during in the same time span.

In the second formulation, in order to minimize the overall time of service, a task

can be assigned for a future time to a currently busy vehicle rather than to a

currently available one. This can happen when it is faster to fulfil the current order

and pick-up the new one, rather than having a currently available vehicle fulfilling

the new order.

The last formulation tries to improve also the exploitation of the vehicle fleet by

taking into account the time needed to recharge the vehicle battery.

Note that in all the formulations a vehicle can be assigned to an order only if able

to fulfill the request and go back to the charging station with the available charge.

Moreover, in order to find a viable solution to the scenario described above, in all

formulations only one order at a time is optimized. The order with the highest

priority still to be served will be assigned to the vehicle which minimizes its delivery

time.

Let di(t) be the order with the highest priority at time t. Define dpi (t) and ddi (t)

the pickup and delivery positions of order di(t). Let Vav(t) ⊆ V be the subset

of available vehicles at time t, i.e the vehicles that are neither in delivery nor in

charging at time t.

Case 0

For each v ∈ Vav(t), indicate with qv, the position of the vehicle v at time t. Denote

with Tv(t, qv, t, dpi (t), ddi (t)) the shortest time required by vehicle v to reach dpi (t)

and then deliver the order to ddi (t) starting from qv at time t. The overall time for
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service can be obtained as follows:

Tp,v = Tv(t, qv, t, qv, dpi (t)) (2.23)

Td,v = Tv(Tp,v, dpi (t),Tp,v, d
p
i (t), d

d
i (t)) (2.24)

Tv(t, qv, t, dpi (t), ddi (t)) = Tp,v + Td,v (2.25)

Tp,v and Td,v are obtained using dynamic programming on the graph G by taking

into account the moving vehicles. The problem can be summarized as follows.

Problem 2.7.1. At time t, considering an environment G, the order with the highest

priority di(t) and a set of available vehicles Vav(t), the suboptimal vehicle assignment

is given by finding which vehicle (v∗) guarantees the fastest delivery, i.e. the one

with the lowest Tv

v∗ = arg min
v∈Vav(t)

Tv (2.26)

Case 1

For each v ∈ V , indicate with q∗v , the position that vehicle v will have when available

for fulfilling a new order and Tav,v(t) (Tav,v(t) ≥ t) the corresponding time. Denote

with Tv(t, q∗v ,Tav,v(t), d
p
i (t), d

d
i (t)) the shortest time required by vehicle v to reach

dpi (t) and then deliver the order to ddi (t) starting from q∗v at time Tav,v(t). The

overall time for service can be obtained as follows:

Tp,v = Tv(Tav,v(t), q∗v ,Tav,v(t), q∗v , d
p
i (t)) (2.27)

Td,v = Tv(Tp,v, dpi (t),Tp,v, d
p
i (t), d

d
i (t)) (2.28)

Tv(t, q∗v ,Tav,v(t), d
p
i (t), d

d
i (t)) = (Tav,v(t)− t) + Tp,v + Td,v (2.29)

The problem can be summarized as follows.

Problem 2.7.2. At time t, considering an environment G, the order with the highest

priority di(t) and a set of vehicles V , the suboptimal assignment is given by finding
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which vehicle (v∗) guarantees the fastest delivery, i.e. the one with the lowest Tv

v∗ = arg min
v∈V

Tv (2.30)

Case 2

Denote with Tv(t, q∗v ,Tav,v(t), d
p
i (t), d

d
i (t), C) the shortest time required by vehicle

v to pick up the order in dpi (t), deliver it to ddi (t), reach the charging station C and

then fully charge its battery, starting from q∗v at time Tav,v(t). The overall time for

service can be obtained as follows:

Tp,v = Tv(Tav,v(t), q∗v ,Tav,v(t), q∗v , d
p
i (t)) (2.31)

Td,v = Tv(Tp,v, dpi (t),Tp,v, d
p
i (t), d

d
i (t)) (2.32)

Tc,v = Tv(Td,v, ddi (t),Td,v, ddi (t), C) (2.33)

Tv(t, q∗v ,Tav,v(t), d
p
i (t), d

d
i (t), C) = (Tav,v(t)− t)+

+ Tp,v + Td,v + Tc,v + Tch,v (2.34)

Tp,v, Td,v and Tc,v are obtained using dynamic programming on the graph G, while

Tch,v is obtained by solving the non linear System 2.22.

Problem 2.7.3. At time t, considering an environment G, the order with the highest

priority di(t) and a set of available vehicles V , the suboptimal assignment is given

by finding which vehicle (v∗) guarantees the fastest delivery, i.e. the one with the

lowest Tv

v∗ = arg min
v∈V

Tv (2.35)

2.7.5 Solution

The optimum for sub-tasks Tp,v, Td,v and Tc,v can be found using DP. Since orders

come over time and are not known a priori, it is necessary to find the path on the

graph G for the new order and its assigned vehicle without modifying the path
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of the existing ones. Although this approach may lead to a suboptimal result, it

allows to scale the optimization problem, thus providing a suitable solution for real

time operation. Since some robots are already moving in the space, the dynamic

programming needs to operate on a dynamic graph. In particular, nodes occupied

dynamically by the previously assigned robots will be omitted from the graph and

the optimization will be performed only on the residual graph.

Figure 2.7 and Figure 2.8 provide an example of this problem, where the path of

the green vehicle is first optimized. Then, the path for the red vehicle is obtained

by taking the green one into account. The dynamic programming algorithm on the

dynamic graph is reported in Algorithm 6, where for each time step k the available

control action set Ũk(xk) is obtained from U(xk) by removing all the control actions

in U(xk) that lead to occupied nodes at time k. This makes an occupied node at a

specific given time instant unreachable, preventing two or more vehicles from being

in the same node at the same time, see Algorithm 6 row 7.

Note that for the vehicles which are currently not available, this problem will be

addressed starting only from time Tav,r(t) and taking into account the vehicles

moving on the graph only from that time onwards. Another issue which needs to

be addressed is the future position of the vehicles after fulfilling all the assigned

orders. In order to develop a dispatching strategy that is as close as possible to

the real requests of a semiconductor production site, the following assumptions are

made: the vehicle stays in the delivery position of the last order and this location

is used by subsequent optimizations in order to account for the node occupied by

such vehicle. In case the vehicle in stand-by is needed for a new order, this will be

involved in a new optimization which will guarantee collision avoidance with other

vehicles without modifying the other pre-defined paths. In case the pick-up/delivery

point of a new order is a node occupied by a vehicle in stand-by, before assigning

the new order, this vehicle is sent back to the Transfer In point by solving another

dynamic program. Keep in mind that the state of charge of each vehicle is updated

taking into account the length of the paths to be followed and the relative power

consumption. Only if the vehicle has enough battery first to fulfill the order (the

task), and then to reach the charging station within the battery limits, the task is
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M1M2M3M4M5

TINI1I2CTOUT

M6M7M8M9M10

(a) Vehicles initial condition.

M1M2M3M4M5

TINI1I2CTOUT

M6M7M8M9M10

(b) The orange order appears. No mov-
ing vehicles are present.

M1M2M3M4M5

TINI1I2CTOUT

M6M7M8M9M10

(c) The orange order is assigned to the
green vehicle by using Algorithm 6.

M1M2M3M4M5

TINI1I2CTOUT

M6M7M8M9M10

(d) At time t, a second order appears
(purple). Thus, Algorithm 6 is applied
to the red vehicle by taking into account
the future positions of the green vehicle.

M1M2M3M4M5

TINI1I2CTOUT

M6M7M8M9M10

(e) Algorithm 6 goes backward and
finds the positions of the red vehicle
for each k ∈ {N, . . . , 0} by making the
node occupied by the green vehicle un-
reachable only for the instant in ques-
tion. For each time instant t+ k with
k ∈ {N, . . . , 4}, the node M10 is un-
reachable, where 4 is the number of
steps required by the green vehicle to
reach its goal.

M1M2M3M4M5

TINI1I2CTOUT

M6M7M8M9M10

(f) At time t+k with k = 3 the unreach-
able node is M9

Figure 2.7: Part 1: Optimization on dynamic graph
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M1M2M3M4M5

TINI1I2CTOUT

M6M7M8M9M10

(a) At time t+k with k = 2 the unreach-
able node is M8

M1M2M3M4M5

TINI1I2CTOUT

M6M7M8M9M10

(b) At time t+k with k = 1 the unreach-
able node is I2

M1M2M3M4M5

TINI1I2CTOUT

M6M7M8M9M10

(c) At time t+ k with k = 0 the unreach-
able node is I1

M1M2M3M4M5

TINI1I2CTOUT

M6M7M8M9M10

t

t + 1t + 2t + 3t + 4

t t = 1

t + 2t + 3t + 4

(d) The path for the red vehicle is found.

Figure 2.8: Part 2: Optimization on dynamic graph
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Algorithm 6: DP on dynamic graph for solving vehicle vi
Input : V - vehicles set
Input : vi - vehicle considered
Input : G = (Q,∆, ω) - the directed connected graph
Input : qstart - the start position of vehicle vi
Input : qend - the end position of vehicle vi
Input : shift - the constant to update the vehicles path
Input :N - Horizon Dynamic Programming
Output : pathvi - the collision-free path for vehicle vi

1 Set last position = 0
2 while last position 6= qend do
3 Set the solution of subproblem N to JN(xN) = gN(xN)
4 for k = N − 1, · · · , 0, do
5 O = {v.path(k + shift) | v ∈ V \ vi}
6 for xi ∈ Q \ O do
7 Ũk(xi) = {(xi, xj) ∈ ∆ | xj ∈ Q \ O}
8 J̃k(xi) = min

uk∈Ũk(xk)
{gk(xi, uk) + Jk+1 (xj)}

9 Store the optimal cost and the optimal input.

10 The optimal cost of the overall problem can be obtained as
J̃(qstart) = J0(qstart).

11 The corresponding optimal input sequence ũ = {ũ0, · · · , ũN−1} is
obtained by concatenating the optimal input elements of each subproblem.

12 Find the path on graph pathvi obtained by using ũ
13 last position = pathvi(end)
14 N = N +N
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actually assigned to the vehicle.

Algorithm 7 shows the new Dispatching Strategy (DS) which allows to solve all

cases. This is made possible by choosing which Problem to solve in Algorithm 8

using the variable case, i.e. case ∈ {Case 0, Case 1, Case 2}, .

Algorithm 7: Dispatching Strategy - DS(V , di(t), case)
Input : V - vehicles set
Input : di(t) - order to be assigned
Output : v∗ - vehicle chosen to satisfy di(t)
Output : pathv∗ - the path for fulfilling di(t)

1 [V ]=moveVehicles(V ,di(t))
2 while True do
3 [vs, pathvs ] = findVehicle(V , di(t),case)
4 if case ∈ {“case 0′′, “case 1′′} then
5 [chekBattery] = checkBattery(V , vs, pathvs)
6 else
7 chekBattery = True

8 if chekBattery then
9 Vbk = V

10 Assign di(t) to vehicle vs, i.e. vs.orders = vs.orders ∪ dni (t) and
vs.path = pathv∗

11 [move, checkAssigmnet] = assignmentVerification(V ,vs)
12 if checkAssigmnet then
13 confirm the assignment
14 break
15 else
16 V = Vbk
17 for v ∈ move do
18 Find plast, i.e. plast = pathv(end)
19 Update the routes of moving vehicles, i.e.

shift = length(pathv)
20 Find pathch,v from plast to C by using Algorithm 6
21 Set v.path = v.path ∪ pathch,v

22 else
23 V = V \ vs

24

The dispatching strategy can be summarized as follows. First, it checks through

Algorithm 14 if the new order (di(t)) has its pick-up (dpi (t)) or its delivery (ddi (t))

nodes occupied by a vehicle in stand-by or will be occupied by a vehicle in delivery.
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If so, before assigning the new order, the vehicles that are or will be in pickup or

delivery positions are sent back to the Transfer In point by solving another DP

program, see Algorithm 7.

Then, the DS finds the possible candidate vehicle (vs) to which the order could be

assigned by using Algorithm 8. Here, depending on the value of the variable case,

Algorithm 8: Vehicle Dispatching strategy - findVehicle(V , di(t), case)
Input : V - vehicles set
Input : di(t) - order to be assigned
Input : case - variable
Output : v∗ - vehicle chosen to satisfy di(t)
Output : pathv∗ - the path for fulfilling di(t)

1 if case ∈ {“Case 0′′} then
2 [vs, pathvs ] = findVehicleC0(V , di(t))
3 if case ∈ {“Case 1′′} then
4 [vs, pathvs ] = findVehicleC1(V , di(t))
5 if case ∈ {“Case 2′′} then
6 [vs, pathvs ] = findVehicleC2(V , di(t))

three different problems can be solved using three different algorithms.

Algorithm 9 aims to find the vehicle assignment for Problem 2.7.1. This algorithm

finds the shortest path for each available vehicle (i.e. v ∈ Vav(t)) to fulfill the order

di(t). Consequently, the algorithm assigns the order to the vehicle v that has the

minimum time Tv.

Algorithm 10 is used to solve Case 2, in which the possibility to assign an order

to a currently busy vehicle is added. The algorithm optimizes the route of each

vehicle taking into account both the future position of the moving vehicles and if

the vehicle v is currently in delivery or not. In particular, if vehicle v is occupied,

the algorithm identifies when Tav,v and where q∗v the vehicle becomes available for

fulfilling the order di(t). Successively, the algorithm finds the shortest path to

satisfy the order di(t) starting from q∗v by taking into account the future position

of the moving vehicles from the Tav,v onwards, i.e. t ≥ Tav,v. As it is necessary

to take into consideration the time that vehicle v may require before becoming

available, the term (Tav,v − t) is added to the necessary time of vehicle v to pickup

and to deliver the order di(t), where Tav,v ≥ t if the vehicle at time t is busy while
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Algorithm 9: Vehicle Dispatching strategy Case 0 - findVehicleC0(V , di(t))
Input : V - vehicles set
Input : di(t) - order to be assigned
Output : v∗ - vehicle chosen to satisfy di(t)
Output : pathv∗ - the path for fulfilling di(t)

1 for v ∈ V do
2 if v.state ∈ {"in stand-by"} then
3 Find qv∗ = v.position
4 Find Tp,v and pathp,v from qv to dpi (t) by using Algorithm 6
5 Update the routes of moving vehicles, i.e. shift = length(pathp,v)
6 Find Td,v and pathd,v from dpi (t) to ddi (t) by using Algorithm 6
7 Tv = (Tav,v − t) + Tp,v + Td,v
8 pathv = pathp,v ∪ pathd,v
9 else

10 Tv =∞

11 Find v∗ and pathv∗ , i.e. v∗ = arg minv∈Vav(t) Tv

is set Tav,v = t if vehicle v is available at time t.

Otherwise, if case is set as Case 2, the vehicle assignment is made by taking

into account also the time to fully recharge the vehicle battery. To achieve this,

Algorithm 11 first checks the vehicle condition and, based on this status, it finds:

the remaining time Tav,v, the remaining path pathv and the position q∗v where

the the analyzed robot becomes available to fulfill order di(t). Then, the path to

fulfill the order di(t) and reach the charging station C are computed taking into

consideration the future position of the moving vehicles by using Algorithm 6.

Once this first path is computed (i.e. pathv = pathav,v ∪ pathp,v ∪ pathd,v ∪ pathc,v),

the algorithm finds the battery state of charge of vehicle v at the end of pathv by

evolving the System 2.22 from the initial condition v.bat for the entire length of

pathv by using Algorithm 15.

If the state of charge obtained from Algorithm 15 is greater than a given threshold,

first the algorithm finds the necessary time steps to fully recharge the vehicle battery

by using Algorithm 16, then it computes the overall time Tv. Otherwise, if the

state of charge is less than the given threshold, since the battery constraint is not

respected, Algorithm 11 recomputes the path for the considered vehicle. In this

case the algorithm finds the path for vehicle v where, as soon as v becomes available

to fulfill the order, first it is sent to fully recharge its battery and successively to
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Algorithm 10: Vehicle Dispatching strategy Case 1 - findVehicleC1(V , di(t))
Input : V - vehicles set
Input : di(t) - order to be assigned
Output : v∗ - vehicle chosen to satisfy di(t)
Output : pathv∗ - the path for fulfilling di(t)

1 for v ∈ V do
2 if v.state ∈ {"in transit", "stand-by’} then
3 if v.state ∈ {"in transit"} then
4 Find q∗v = v.path(end)
5 Find pathav,v = v.path
6 Find Tav,v
7 Update the routes of moving vehicles, i.e. shift = length(v.path)

8 else
9 q∗v = v.position

10 Set Tav,v = t
11 Set pathav,v = {}
12 Find Tp,v and pathp,v from q∗v to dpi (t) by using Algorithm 6
13 Update the routes of moving vehicles, i.e.

shift = shift+ length(pathp,v)
14 Find Td,v and pathd,v from dpi (t) to ddi (t) by using Algorithm 6
15 Tv = (Tav,v − t) + Tp,v + Td,v
16 pathv = pathav,v ∪ pathp,v ∪ pathd,v
17 else
18 Tv =∞

19 Find v∗ and pathv∗ , i.e. v∗ = arg minv∈V Tv



51 Chapter 2

fulfill order di(t).

Once time Tv is computed according to the problem to be solved, the dispatching

strategy finds the best vehicle candidate vs to which to assign the order (i.e. the

vehicle with the minimum overall time), see Algorithm 7 row 10. However, in

order to ensure the proper functioning of the site, the dispatching strategy must

verify that vehicle vs respects the following constraints:

• the selected vehicle vs has to be able to first satisfy order di(t) and then reach

the charging station C with the charge level of its battery;

• the order assignment to vehicle vs must not prevent other vehicles from

reaching the charging station with enough charge in their battery.

Algorithm 7 verifies these constraints by using both Algorithm 12 and Algorithm 13.

The first algorithm evaluates if the vehicle has enough battery to satisfy the

order and then to reach the charging station with enough battery charge. This is

achieved by discharging the battery with a constant rate (K > 0) for the entire

path composed of the path to satisfy the order di(t) and the one to reach the

charging station. This is obtained by taking into account the future position of the

moving vehicles through Algorithm 6. Note that since Algorithm 11 allows to find

a path that respects the battery constraint, Algorithm 12 is used only for case 0

and case 1.

The second algorithm evaluates if the vehicle assignment obstructs some

vehicles from reaching the charging station with enough battery charge level. In

particular, the algorithm relies on Algorithm 12 in order to evaluate for each

vehicle v the battery charge that enables v to reach the charging station by taking

into account the path of the vehicle vs. Furthermore, the algorithm computes the

set move which is onlu composed of the vehicles that are not able to reach the

charging station with enough battery.

After the dispatching strategy has verified the constraints, if these are respected,

the algorithm confirms the assignment of order di(t) to vehicle vs. Otherwise,
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Algorithm 11: Vehicle assignment Case 2 - findVehicleC2(V , di(t))
Input : V - vehicles set
Input : di(t) - order to be assigned
Output : v∗ - vehicle chosen to satisfy di(t)
Output : pathv∗ - the path for fulfilling di(t)

1 for v ∈ V do
2 if v.state ∈ {"in transit", "stand-by’} then
3 if v.state ∈ {"in transit"} then
4 Find q∗v = v.path(end)
5 Find pathav,v = v.path
6 Find Tav,v
7 Update the routes of moving vehicles, i.e. shift = length(v.path)

8 else
9 q∗v = v.position

10 Set Tav,v = t
11 Set pathav,v = {}
12 Find Tp,v and pathp,v from q∗v to dpi (t) by using Algorithm 6
13 Update the routes of moving vehicles, i.e.

shift = shift+ length(pathp,v)
14 Find Td,v and pathd,v from dpi (t) to ddi (t) by using Algorithm 6
15 Update the routes of moving vehicles, i.e.

shift = shift+ length(pathd,v)
16 Find Tc,v and pathc,v from ddi (t) to C by using Algorithm 6
17 [xend] = dischargeBattery(v.xbat, pathv), see Algorithm 15
18 if xend(1) ≥ threshold then
19 [Tch,v] = chargeBattery(xend), see Algorithm 16
20 Tv = (Tav,v − t) + Tp,v + Td,v + Tc,v
21 pathv = pathav,v ∪ pathp,v ∪ pathd,v ∪ pathc,v
22 else
23 Find Tc,v and pathc,v from q∗v to C by using Algorithm 6
24 [xend] = dischargeBattery(v.xbat, v.path ∪ pathc,v), see

Algorithm 15
25 [Tch,v] = chargeBattery(xend), see Algorithm 16
26 Update the routes of moving vehicles, i.e.

shift = length(v.path ∪ pathc,v) + Tch,v
27 Find Tp,v and pathp,v from C to dpi (t) by using Algorithm 6
28 Update the routes of moving vehicles, i.e.

shift = shift+ length(pathp,v)
29 Find Td,v and pathd,v from dpi (t) to ddi (t) by using Algorithm 6
30 Tv = (Tav,v − t) + Tp,v + Td,v + Tc,v
31 pathv = pathav,v ∪ pathc,v ∪ pathp,v ∪ pathd,v
32 else
33 Tv =∞

34 Find v∗ and pathv∗ , i.e. v∗ = arg minv∈V Tv
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Algorithm 12: Check Battery - checkBattery(V , v∗, pathv∗)
Input : V - vehicles set
Input : v∗ - considered vehicle
Input : pathv∗ - path of the considered vehicle v∗
Output : check - the path for fulfilling di(t)

1 Find plast, i.e. plast = pathv∗(end)
2 Update the routes of moving vehicles, i.e. shift = length(pathv∗)
3 Find pathch,v from plast to c ∈ C by using Algorithm 6
4 for i ∈ 0, · · · , length(pathv∗ ∪ pathch,v) do
5 [xbat] = evolutionBattery(v∗.bat, K)
6 v∗.bat = xbat

7 if v∗.bat.soc ≥ threshold then
8 check = True
9 else

10 check = False

Algorithm 13: Assignment verification - assignmentVerification(V ,v∗)
Input : V - vehicles set
Input : v∗ - assigned vehicle
Output :move - the set of vehicles to be moved
Output : checkAssigmnet - check

1 move = {}
2 checkAssigmnet = True
3 for v ∈ V \ v∗ do
4 [chekBattery] = checkBattery(V , v, v.path)
5

6 if chekBattery 6= True then
7 move = move ∪ v
8 checkAssigmnet = False

Algorithm 14: Move obstruction vehicle- moveVehicles(V ,di(t))
Input : V - vehicles set
Input : di(t) - order to be fulfilled
Output : V - the set of vehicles

1 for v ∈ V do
2 if v.state ∈ {"stand-by"} ∧ v.position ∈ {dpi (t), ddi (t)} then
3 Find pathmov,v from v.position to TIN by using Algorithm 6
4 v.path = v.path ∪ pathmov,v
5 if v.state ∈ {"in transport"} ∧ v.path(end) ∈ {dpi (t), ddi (t)} then
6 Update the routes of moving vehicles, i.e. shift = length(v.path)
7 Find pathmov,v from v.path(end) to TIN by using Algorithm 6
8 v.path = v.path ∪ pathmov,v
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depending on which constraint is violated, the algorithm acts as described below.

If vehicle vs does not have enough battery, the DS finds another candidate by

reapplying the previous steps without considering vehicle vs.

On the other hand, if vehicle vs has enough battery but it prevents other vehicles

from reaching the charging station, first the DS sends all the vehicles who cannot

reach the charging station (i.e. all the vehicles that belong to the set move) back to

the charging station by solving several DP programs, then it reapplies the previous

steps.

This procedure is performed as long as the algorithm does not find a vehicle that

meets all the requirements described above. If it is not possible to find a vehicle

vs that satisfies the order di(t), this is frozen and, if a second order (di+1(t)) with

higher priority exists, it is taken into consideration. Otherwise, order di(t) remains

on hold until there is a vehicle capable to fulfill it.

Note that all the paths are collision-free as a result of the use of Algorithm 6, where

the future position of the moving vehicles is taken into account. However, since

Algorithm 6 is used for finding paths in a future time, it is necessary to consider

the future position of moving vehicles starting from the correct time instant. To

achieve this, the variable shift is used in Algorithm 7, which allows to consider the

paths of moving vehicles only from time shift onwards.

In Algorithm 12, in order to find the level of the battery, Algorithm 5 is used, which

relies on the non-linear battery model described in Section 2.7.3. Both Algorithm 15

and Algorithm 16 are used in Algorithm 11. The first algorithm is used for obtaining

the battery charge level at the end of the pathv, while the second algorithm is used

for finding the time required to fully recharge the vehicle battery from the initial

condition x0.
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Algorithm 15: Discharge non-linear battery - dischargeBattery(x0, pathv)
Input : V - vehicle
Input : pathv - path of vehicle v
Output : xend - State of charge of vehicle v at the end of the pathv

1 n = length(pathv)
2 for k ∈ {1, · · · , n} do
3 Find xbat by using Algorithm 5 starting from x0 with K < 0
4 x0 = xbat

5 xend = xbat

Algorithm 16: Charge non-linear battery - chargeBattery(x0)
Input : x0 - battery initial condition
Output :Tch - Time necessary to fully recharge the battery

1 Tch = 0
2 while x0(1) < 100% do
3 Find xbat by using Algorithm 5 starting from x0 with K > 0
4 x0 = xbat

5 Tch = Tch + 1

2.7.6 Results

In order to show the effectiveness of the proposed dispatching strategy, a simulator

in MatLab is developed. This is based on the scenario suggested by Infineon

Austria, see Figure 2.9. The scenario is composed of 20 machines, in which for each

Figure 2.9: The scenario given by Infineon Villach

equipment there is a Buffer In and Buffer Out. The buffer (In-Out) dimensions

are set equal to the processing capacity of the machines. The charge station is

positioned at the Transfer Point In and manages to charge all vehicles at the same

time. Both the Transfer Point In and the Transfer Point Out are supposed to have

an limitless capacity.

A list of wafers entering the site is generated in accordance with the supposed
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average number of Foups per hour (λ = [F/h], a Poisson distribution is adopted).

A Foup is Front Opening Unified Pod, which is a container where wafers are stored

to be transported safely.

Order priority is assigned with the following rules. The orders that must be trans-

ported from Buffer out to Transfer Point Out have a higher priority than the orders

in Transfer Point IN. In particular, the older requests have a higher priority. The

machine to which the wafer is destined is extracted randomly (uniform distribution).

Wafers move towards their destination only when the machine Buffer In has space

available. Otherwise, they wait at the Transfer Point In.

The elaboration time of a machine is assumed deterministic and equal to 1/(machine

processing capacity) (e.g. 1/(5F/h)=12 minutes per wafers). After an order has

been processed, it goes to the machine Buffer out. If the Buffer Out is full, the

Foup stays in the machine until the Buffer out becomes available again. When a

vehicle is available, then the Foup is transferred to the Transfer Point Out. The

vehicle assignment is made by using one of the dispatching strategies proposed in

Section 2.7 through Algorithm 7.

Each vehicle has a limited battery capacity and consumes energy unless it is located

at the charging station.

Since detailed information on the mechanical (weight, coefficients of friction, etc.)

and electrical (nominal power of the engines and battery characteristics) char-

acteristics of the vehicles used are not available, the following assumptions are

made:

• each vehicle has a battery pack which is composed of three cells in series and

with a total capacity of Qtot = 10.12 Ah

• each vehicle consumes 30% of its battery capacity per hour when it is moving,

while 5% when it is in stand-by. Moreover, it is assumed that the battery

station allows to recharge all vehicles at the same time with a rate of 50%

per hour;

• robots are required to recharge when their battery level goes below 30%.

In order to identify the battery parameters, the COETA [101] program is used to
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generate the following profiles: a random profile for identifying the battery parame-

ters (R0, R1, R2, C1, C2) and a Hybrid Pulse Power Characterization (HPPC) that

allows to find the polynomial parameters bi relative to the vocp. Using both MatLab

and HPPC the vocp profile, which is approximated with a ninth degree polynomial

curve, is found. Then, the identification of the parameters for a non-linear battery

system is performed through the least square methods by using CasADi [102]. In

Table 2.6 the polynomial parameters bi and the battery parameters are reported.

Name Value Unit Name Value Unit

Qtot 10.12 Ah b1 -0.0069 -
R0 42.2 mΩ b2 -0.0264 -
R1 6.45 mΩ b3 0.0243 -
R2 6.53 mΩ b4 0.0313 -
C1 1.957 kF b5 -0.0561 -
C2 7.284 kF b6 0.1261 -
Vmax 12.448 V b7 0.0860 -
Vmin 10.0331 V b8 0.3100 -
b0 0.0063 - b9 11.4173 -

Table 2.6: The main parameters of the DP battery model

The machines buffer (In-Out) dimension is set equal to the processing capacity of

the machines. The graph is obtained in accordance with the maximum robot size

increased by 20%. A discretization step larger than the real size of the vehicle is

chosen in order to have a safety margin to avoid collisions. The resulting Graph

has 1089 (33x33) nodes and 120 edges as shown in Figure 2.10. The simulations are

Figure 2.10: The graph obtained by the fixed step discretization.

conducted using 5 vehicles and the mean time needed for resolving the dispatching

problem using our proposed methods is equal to 2.011 s, which is compatible
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with the desired sampling time adopted in a real scenario. At the following link,

https://youtu.be/kIojrm5dRfU it is possible to see a short video of a simulation.

As can be seen in the video, it is possible to divide the simulator graphics into

two images, upper and lower. The analyzed environment is reported on the upper

image, in which it is possible to notice the paths followed at each time instant by

vehicles. These are represented by rectangles. In particular, each vehicle has its

assigned color, as reported in the legend. The number above each robot, when it

is present, is the order number actually transported. Moreover, the pickup and

delivery positions of the transported order are shown below the vehicle. In case,

the order is assigned to a busy robot, the number of the assigned order is reported

on the upper right corner of the vehicle, as can be seen at 2.21 min of the video

for the 4-th vehicle. As concerns the current time and the battery level, they are

shown for each vehicle on the lower side of the upper image. The lower image

shows the states of each machine (equipment, T in and T out) in the considered

scenario. In particular, for the equipment it is possible to see the order number that

is processing on the upper right corner of the box which represents each machine.

Therefore, for each machine the conditions of both buffer-in and out are reported.

In particular, the orders that are in the buffer-in and buffer out are arranged in

order of arrival on the left and on the right column respectively for each machine.

The counter on transfer point in give us the number of orders that are waiting in the

transfer-in, while the counter in transfer out shows the fulfilled order number. Note

that an order is considered fulfilled when it is delivered at the transfer point-out.

In Table 2.7, Table 2.8 and Table 2.9 show the results of 6 simulated days of the

production site obtained by using the three different proposed strategies. As can

be noticed from the comparison of the results, the possibility to assign the order to

a busy vehicle allows to improve the performance of the site in terms of number

of fulfilled orders. From the comparison between case 1 and case 2, it is possible

to notice that, when the time required to reach the charging station and then

to fully recharge the battery is taken into account in the vehicle assignment, the

performance of the production cite worsens. This is mainly due to the fact that

the time required to recharge the battery is much longer than the time required to

https://youtu.be/kIojrm5dRfU
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Figure 2.11: The MatLab simulator

fulfill the order. This means that an order is always assigned to the vehicle that has

the highest battery charge. Furthermore, this leads to a more equitable assignment

of orders to vehicles. As a consequence, all vehicles are likely to need charging at

the same time, which may result in worsening the performance of the production

site.

Case 0

No. of order assignments to v1 3222
No. of order assignments to v2 3374
No. of order assignments to v3 3234
No. of order assignments to v4 3170
No. of order assignments to v5 3194

No. of order assignments to vehicles with insufficient battery charge 0
No. of order assignments to busy vehicles (future assignments) 0

Total number of transport requests processed 8055
Total number of transport requests 14375

Table 2.7: Case 0: the order is assigned to an available vehicle which is capable of fulfilling
the order without obstructing other vehicles to reach the charging station.
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Case 1

No. of order assignments to v1 3576
No. of order assignments to v2 3581
No. of order assignments to v3 3535
No. of order assignments to v4 3503
No. of order assignments to v5 3467

No. of order assignments to vehicles with insufficient battery charge 0
No. of order assignments to busy vehicles (future assignments) 10510

Total number of transport requests processed 8773
Total number of transport requests 14375

Table 2.8: Case 1: the order can be assigned to a currently busy vehicle which respects
the constraints. The charging time is not considered in the vehicle assignment

Case 2

No. of order assignments to v1 3464
No. of order assignments to v2 3442
No. of order assignments to v3 3472
No. of order assignments to v4 3439
No. of order assignments to v5 3444

No. of order assignments to vehicles with insufficient battery charge 149
No. of order assignments to busy vehicles (future assignments) 10121

Total number of transport requests processed 8570
Total number of transport requests 14375

Table 2.9: Case 2: Also the time to reach the charging station and to fully charge the
battery are taken into account in the vehicle assignment



61 Chapter 2

2.8 Conclusion

In this chapter several approaches are proposed in order to solve the dispatching

problem in a semiconductor manufacturing process. In particular, the dispatching

problem has been analyzed from the simplest problem, finding the shortest route to

satisfy the order for the only available vehicle, to the most complicated one, finding

the shortest route when orders appear at different times, with different priorities

and a with fleet of vehicles, taking into account also collision avoidance and the

vehicle battery constraints. As highlighted in the chapter, as the complexity of

the problem analyzed increases, in order to obtain a solution in a reasonable time

sub-optimal approaches have been proposed. Among all the wafer dispatching

strategies proposed in this chapter, only the approach described in the Algorithm 4

has been tested on a real application in Infineon Dresden.
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3.1 Introduction

The manufacturing industry has become increasingly competitive over the last

decades. In order to survive in this environment, manufactures must satisfy

customer demands exactly in time, quality and quantity. Generally, the production

of goods is a complex task which requires several steps. In a medium-complexity

semiconductor fab, processes need 250-500 steps and use from 50 to 120 different

machines [5]. Furthermore, in order to maximize plant efficiency, several goods

are usually processed/transported at the same time. In this challenging scenario,

the optimal routing and scheduling of goods are of major importance. While in

the past the dispatching was performed mainly by human operators, progress in

technology allows to move towards fully automated transportation (e.g. fleet of

robots). In this case, the routing and scheduling problem consists in finding the

optimal robot routes able to minimize transport time while respecting constraints

(i.e. deadlines, priorities, etc.). For this reason, in this chapter, a temporal logic

with explicit time is used to solve routing and scheduling problems [103, 104] in case

some demands must be delivered in a synchronous way by the robots. Moreover, an

online controller is proposed in order to guarantee the synchronization demands even

in the presence of uncertainties that can affect the motion of the robots (i.e. travel

time). Synchronization demands are justified by the fact that some manufacturing

steps require the simultaneous delivery of different components for starting the

processing of new goods. The process can start only when all materials have arrived.

Since the components must be processed together, the maximum delay of a single

component affects the overall process time. This can lead to a waste of time, money

and efficiency. Therefore, the synchronization rules are of fundamental importance

in order to provide the right components to the right machine/s at the right time.

In this chapter, the motions of the robots without uncertainties are captured by

using weighted Transition Systems (TS)[105]. The transport demands within the

production site are expressed by using TWTL. This choice is motivated by the
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TWTL capability to deal with both time constraints and possible unsatisfiable tasks.

Because of, it may unfortunately occur that some demands cannot be satisfied

due to possible strict time constraints. TWTL provides temporal relaxation, which

offers the possibility to find the minimally relaxed formulae (in terms of time

constraints) that the robots can satisfy. The TWTL formulae are translated to

finite state automata which are then composed with the TS in order to obtain

Product Automata (PA)[105]. On the resulting PA, a nominal (no uncertainties)

optimal routing and scheduling solution is found by using the Dijkstra’s algorithm

and selecting among the accepting states of PA the one that can be reached in the

shortest time, thus minimizing time constraints relaxation.

In real scenarios, robots movements may be affected by structural uncertainty,

such as the weight variation of the robots and/or dynamic uncertainties, e.g. battery

state of charge. These uncertainties can lead to significant variations in travelling

times between points of interest. In this section an online approach able to guarantee

the synchronization demands even in presence of uncertainties is presented. The

proposed method is finally validated on a case study representing a semiconductor

production site where the dispatching is assigned to a fleet of autonomous robots.

The contributions of this work can be summarized as follows: i) a routing and

scheduling problem with synchronization rules and time constraints for vehicles

in presence of structural and dynamic uncertainties is formulated; ii) a general

(baseline) solution for nominal motion models is proposed; iii) an online method for

solving the problem in the presence of uncertainties while minimizing constraints

relaxation and still guaranteeing synchronization is proposed.

3.2 Preliminaries

For a finite set Σ, denote with 2Σ and |Σ| the set of all subsets, and the cardinality

of Σ, respectively. A word σ is a finite or infinite sequence of elements from Σ. Let

|σ| indicate the length of a word σ. The repetition of symbol σ d times is denoted

by σ{d}. A language is a set of words over the alphabet Σ.

Definition 3.2.1 (Deterministic Transition System, DTS). A (weighted) Determinis-
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tic Transition System is a tuple T = (Q, q0,∆, AP , h, ω), where Q is the finite set

of states; q0 ∈ Q is the initial state; ∆ ⊆ Q×Q is the set of transitions; AP is the

set of observations (atomic propositions); h : Q→ 2AP is the labeling function and;

ω : ∆→ Z>0 is a map that assigns a positive integer weight to each transition.

A transition (q, q′) ∈ ∆ of T is also denoted by q →T q′. Define trajectory

of the system as a sequence of states q = q0, q1, . . . such that qk →T qk+1 for all

k ≥ 0. A trajectory generates an output word o = o0 · o1 · o2 . . ., where o0 = h(q0),

ok = h(qk)
{ω((qk,qk))} if qk = qk−1, and ok = ∅{ω((qk−1,qk))−1}h(qk) if qk 6= qk−1 for

all k ≥ 1. The sub-word ok corresponds to the observations generated along

the transition qk−1, qk of duration ω((qk−1, qk)). Note that, as opposed to state

trajectories, output words are defined at each discrete time k ∈ Z≥0, where the

weights of T are interpreted as transition durations. Thus, no observations (i.e.,

∅) are considered along transitions. It also denote o by h(q). Let L(T ) be the set

of all output words generated by T , i.e., its generated language. Let q1, . . . ,qm be

trajectories of T1, . . . , Tm with the same alphabet AP , and o` = h`(q`) = o`,0, o`,1 . . .

the corresponding output words for all ` ∈ {1, . . . ,m}. The joint output word

generated by all trajectories is h(×m`=1q`) = o0, o1, . . ., where ok = (
⋃m
`=1 o`,k) ∈ 2AP ,

and k ∈ {0, 1, . . .} indicates the time instants at which observations occur.

Definition 3.2.2 (Time Window Temporal Logic). A Time Window Temporal Logic

formula over a set of atomic propositions AP is defined as follows

ϕ ::= Hds |Hd¬s |ϕ1 ∧ ϕ2 |ϕ1 ∨ ϕ2 |ϕ1 · ϕ2 | [ϕ1][a,b],

where s ∈ AP∪{>} is either an atomic proposition or the "true" constant >; ¬,∧,∨

are the negation, conjunction, and disjunction Boolean operators, respectively; ·

is the concatenation operator; [ϕ1][a,b] with 0 ≤ a ≤ b is the within operator, and

Hd with d ≥ 0 is the hold operator. When d = 0, H is dropped from the notation,

e.g., s ≡ H0s. The satisfaction of an TWTL formula ϕ is defined with respect to

finite output words o over 2AP . The hold operator Hds is satisfied if s ∈ AP is

repeated for d time units. Instead, the Hd¬s requires that for d time units only

symbols from AP \ {s} appear. The fomulae ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2 or ¬ϕ are satisfied if
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o satisfies both formulae, at least one, or does not satisfy the formula, respectively.

The within operator [ϕ][a,b] is satisfied if the formula ϕ becomes true in the given

time window [a, b]. The concatenation operator ϕ1 · ϕ2 requires that formula ϕ1 is

first satisfied and then ϕ2 is satisfied immediately after.

A complete description of the semantics of TWTL can be found in [106].

The satisfaction of a TWTL formula can be decided in bounded time. Let ‖φ‖

be the maximum time needed to satisfy φ, which can be computed as follows:

‖φ‖ =



d if φ ∈ {Hds,Hd¬s}

max(‖φ1‖ , ‖φ2‖) if φ ∈ {φ1 ∧ φ2, φ1 ∨ φ2}

‖φ1‖ if φ = ¬φ1

‖φ1‖+ ‖φ2‖+ 1 if φ = φ1 · φ2

b if φ = [φ1][a,b]

(3.1)

Let φ =
[
M1 · [M2][c,d]

][a,b]

be a TWTL formula that describes, for example, a

possible transport demand from the pickup pointM1 to the delivery pointM2. Note

that every time there is a concatenation between two formulae, the time constraints

of the second formula are related to the time when the first one was satisfied. In

the previous example one has “satisfy M2 between c and d time instants after the

satisfaction of M1". The formula is satisfied if and only if all the sub-tasks (pickup

and delivery) are fulfilled within the time window expressed by the external within

operator, i.e. [a,b]. What if φ can not be fulfilled in the given time window? In

order to cope with this possible problem, in [106] the authors propose a temporal

relaxation of TWTL formulae. The temporal relaxation introduces the possibility

to relax the deadlines for the time windows, which are expressed by the within

operator. Thus, the relaxed version of φ is φ(τ ) =
[
M1 · [M2][c,d+τ2]

][a,b+τ1]

, where

τ = (τ1, τ2) ∈ Z2. Furthermore, the φ(τ ) has to preserve the feasibility of φ, i.e.

every time window of a within operator has to be greater or equal than the time

needed to satisfy the task enclosed by the within operator. Note that, in this

chapter only the relaxation of the deadlines (upper bound)is allowed because the

relaxation of the lower bound of a within operator would correspond to anticipating
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the pickup time of an order. Unfortunately, this is not possible in general since the

order may not be already available.

Definition 3.2.3 (τ -relaxation of φ). Given a TWTL formula φ with m within

operators, the feasible τ -relaxation of φ is defined as φ(τ ), where τ ∈ Zm and each

subformula of the form [φi]
[ai,bi] is replaced with [φi]

[ai,bi+τi] for all i ∈ {1, . . . ,m}.

Definition 3.2.4 (Linear Temporal Relaxation). Given φ, let φ(τ ) be the feasible

relaxation of φ. The linear temporal relaxation of φ is |τ |LTR =
∑m

i=1 τi.

Definition 3.2.5 (Deterministic Finite State Automaton). A Deterministic Finite

State Automaton (DFA) is a tuple A = (SA, s0, δA, 2
AP , FA), where SA is a finite

set of states; s0 ∈ SA is the initial state; δA : SA × 2AP → SA is the transition

function; 2AP is the input alphabet; and FA ⊆ SA is the set of (final) accepting

states.

Let s σ→A s′ be the transition from s to s′ = δA(s, σ) with input symbol σ. A

finite sequence of symbols σ = σ0, σ1, . . . , σn generates a trajectory of the DFA

s = s0, s1, . . . , sn such that s0 ∈ SA is the initial state of A, and sk
σ→A sk+1 denotes

the transition from time k to k+ 1. The word σ is accepted by the DFA if and only

if the corresponding trajectory ends in the final automaton state, i.e., σn+1 ∈ FA.

The accepted language of the DFA A is defined as L(A).

Formulae expressed in TWTL can be captured by DFAs as shown in [106].

Methods to compute DFAs accepting possible deadline relaxations, and to perform

synthesis and verification using a bottleneck temporal relaxation cost have been

proposed in [106]. Here, the automata construction methods is employed, but

considering a linear temporal relaxation cost instead.

3.3 Problem Formulation

In this section, the environment, the robot model, and the transport demands that

characterize, for example, the dispatching problem in a semiconductor manufactur-

ing fab, are defined.
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3.3.1 Environment Model

Let G = (Q,∆, ω) denote a weighted directed connected graph, where Q represents

the set of locations of interest (machines location, charging stations, interconnection

nodes) labeled with observations from AP as given by map h : Q → 2AP . The

edges ∆ ⊆ Q×Q capture feasible motions between locations with nominal travel

times given by ω = ∆ → Z≥1. Travel times are expressed in terms of a global

discrete clock with time step ∆t.

3.3.2 Robot Model

Consider a team of m robots moving in an environment G. The motion model of

each robot v ∈ {1, . . . ,m} is captured by a TS Tv = (Q, qv,0,∆, AP , h, ωv), where

qv,0 ∈ Q is the initial state of the v-th robot, and ωv is its non-deterministic travel

time function such that ωv(e) ∈ [ρ ω, ρ ω] ∩ Z>0 for all e ∈ ∆ , where ρ , ρ ∈ R>0.

In this chapter it is assumed that all robots can communicate with all other robots.

Furthermore, each robot is able to detect its position when it reaches a node of

interest q ∈ Q. In the following section, it is assumed that each robot can transport

(fulfill) at most one transport demand at a time, i.e., robots have single capacity.

3.3.3 Specification: Transportation Demands and Synchro-

nization Rules

Let D = {D1,D2, . . . ,Dn} be the set of the n transport demands that must

be satisfied. The i-th demand is defined as the tuple Di = (φi, π
start
i ), where

φi is a TWTL formula, and πstarti ∈ AP indicates the start proposition of the

formula φi, i.e., the pick-up location. For brevity, it is assumed that transportation

demand formulae include the pick-up specification, i.e., are of the form φi =

[πstarti ∧ φ′i][
0,‖φ′i‖], where φ′i is a TWTL formula.

Since some elements of D may require to be fulfilled (i.e. demands delivered) at the

same time, a set R = {R1,R2, . . .} of synchronization rules is defined. The j-th

rule is defined as tuple Rj = (ψj, Ij), where ψj is the TWTL formula of the task to

be performed in a synchronous way, and Ij ⊆ {1, . . . , n} indicates which elements of



70 Chapter 3

D are involved in ψj . Let ψ̂j =
(∧

`∈Ij [πstart` ]
[0,‖φ`‖]

)
·ψj with the meaning that the

synchronization task ψj of rule Rj must be satisfied after the start of all associated

transportation demands in Ij.

The overall specification, in which all transport demands and synchronization rules

are considered, is expressed as

ϕ = Φ ∧Ψ, (3.2)

where Φ =
∧|D|
i=1 φi, and Ψ =

∧|R|
j=1 ψ̂j.

3.3.4 Problem Definition

Given a set of demands to be satisfied and a list of synchronization rules, our goal

is to find the optimal assignment of demands and the corresponding optimal paths

for the different robots. Optimality is with respect to the total deadline deviations

over all demands and rules.

Problem 3.3.1. Given ϕ, i.e. the specification of transportation demands and

synchronization rules as in (3.2), an environment G,m robots modelled as T1, . . . , Tm,

find trajectories Traj = {q1, . . . ,qm} such that ϕ is satisfied with minimum temporal

relaxation

min
Traj

|τ |LTR

subject to ∀Di ∈ D,∃qri ∈ Traj : h(qri) |= φi(τφi)

∀Rj ∈ R : h(×`∈Ijqr`) |= ψ̂j(τψj),

where τ = [τφ1 , . . . , τφ|D| , τψ1 , . . . , τψ|R| ] is the vector of all deadline relaxation

variables for transportation demands and synchronization rules.

In the following section, first a general nominal solution is provide, where

robot motion models with nominal travel time are considered. For deployment

(i.e. the real scenario), the computed trajectories are enforced by synchronizing the

transitions of all robots at all time steps. This solution is considered as the baseline

approach that wants to improve in terms of optimal total deadline deviations.
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For this purpose, an online controller able to satisfy the TWTL formula φ(τ ) in

the presence of the uncertainties in robot travel times in a more optimal way is

proposed.

3.4 Nominal Solution

In this section, the general solution to Problem 3.3.1 for the nominal case without

motion uncertainty is introduced. First, for each robot v the deterministic motion

transition system Tv is created. In particular, this is defined to have all edges with

weight one. This is achieved by replacing the original transitions e ∈ ∆ with ω(e)

transitions. Secondly, the transportation demands and synchronization rules are

translated to DFAs. The i-th automaton obtained from φi is denoted by Aφi , while

Aψ̂j refers to the j-th automaton of Ψ obtained from ψ̂j =
(∧

`∈Ij [πstart` ]
[0,‖φ`‖]

)
·ψj .

Then, a product automaton P is constructed as defined in Definition 3.4.1 that

captures the motion of the m robots and the satisfaction of the specification ϕ

from (3.2). On the resulting product automaton, the solution in terms of optimal

assignments and shortest paths is then found using Dijkstra’s algorithm.

Definition 3.4.1 (Product Automaton). Given the product transition system T m =�m
v=1 Tv = (Qm, qm0 ,∆

m, 2AP , hm), the automata Aφi = (SAφi , s0,i, δAφi , 2
AP , FAφi ),

for all i = 1, . . . , |D|, and the automata Aψ̂j = (SA
ψ̂j
, ŝ0,j, δA

ψ̂j
, 2AP , FA

ψ̂j
), for all

j = 1, · · · , |R|, the product automaton (PA) is a tuple P = (SP , s0,P ,∆P , FP , ωP),

where

• SP = Qm ×
(
SAφi × {0, · · · ,m}

)|D|
i=1
×
(
SA

ψ̂j

)|R|
j=1

is the finite set of states;

• s0,P =
(
x−1, (s0,i, 0)|D|i=1 , (ŝ0,j)

|R|
j=1

)
is the initial state;

• ∆P⊆SP×SP is a transition relation. Let ri be the robot assigned to i-th

demand. Then
(
x, (si, ri)

|D|
i=1 , (ŝj)

|R|
j=1

)
→P

(
x′, (s′i, r

′
i)
|D|
i=1 ,

(
ŝ′j
)|R|
j=1

)
∈ ∆P iff:

– x = (q1, . . . , qm), x′ = (q′1, . . . , q
′
m), qv →Tv q′v ∈ ∆, ∀v ∈ {1, . . . ,m};

–
(
ri = 0 ∧ si = s0,i ∧ si

σi→ s′i ∧ σi = h(q′v) = πstarti ∧ r′i = v
)
∨(

ri = v ∧ si
σi→ s′i ∧ σi = h(q′v) ∧ r′i = v

)
, ∀i ∈ {1, . . . , |D|};
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– ŝj
σ̂j→ ŝ′j ∧ σ̂j = {h(q′ri) | i ∈ Ij ∧ ri > 0}, ∀j ∈ {1, · · · , |R|};

• ωP(sP , s
′
P) = |D| −

∑|D|
i=1 |{s′i} ∩ Fφi |+ c(x, x′) is the weight function, where∑|D|

i=1 |{s′i} ∩ Fφi | is the number of fulfilled demands in s′, and c(x, x′) is a cost

used to penalize the number of robots changing positions in the transition

from x to x′ so to avoid unnecessary movements;

• FP = Qm × (Fφi × {1, . . . ,m})
|D|
i=1 ×

(
Fψ̂j

)|R|
j=1

is the set of accepting states.

For simplicity, the initial state x−1 = (q1,−1, . . . , qm,−1) ∈ Qm is introduced such

that, for all v ∈ {1, . . . ,m}, the only transition available from qv,−1 is qv,−1 →Tv qv,0.

Similar to TS, a trajectory of P is a sequence p = p0, p1, . . . such that p0 = s0,P

and (pk, pk+1) ∈ ∆P for all k ≥ 0. Any satisfying (accepted) trajectory of P ends

in a state of FP . The solution to the nominal version of Problem 3.3.1 is obtained

by computing an optimal satisfying trajectory p∗ using Dijkstra’s algorithm and

selecting among the accepting states of PA the one that can be reached in the

shortest time, thus minimizing time constraints relaxation. By construction, p∗

encodes valid movements of robots in the environment G, i.e., transitions in ∆, and

satisfies all transportation demands and synchronization rules. The trajectories that

robots have to follow are obtained by projecting p∗ onto each Tv, v ∈ {1, . . . ,m},

as given by Definition 3.4.2.

Definition 3.4.2. (Projection of a trajectory of P onto Tv). Let p = p0, p1, . . . be a

trajectory of P, where pk =
(
xk, (si,k, ri,k)

|D|
i=1 , (ŝj,k)

|R|
j=1

)
and xk = (q1,k, . . . , qm,k).

The projection of p onto Tv is the trajectory qv = qv,0, qv,1, . . . for all v ∈ {1, . . . ,m}.

Algorithm 17 summarizes the nominal solution to Problem 1. Note that the

nominal solution does not guarantee the satisfaction of the specifications in presence

of uncertainties (i.e. robots travel time). In this case, it may be not possible to

complete the mission specification ϕ without violations.

Remark. For the nominal case, it is possible to impose collision avoidance by

removing unwanted states and transitions of P (Definition 3.4.1). When considering

uncertain travel times, additional synchronization is needed, which can be computed

using, again, the nominal model P . For simplicity, in this work, collision avoidance

is not considered, but left for future work.
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Algorithm 17: Nominal Solution
Input : G - the environment
Input :D - the set of demand to be satisfied
Input :R - the set of synchronization rules
Output : The optimal run qv for each robot v ∈ {1, . . . ,m}

1 Construct the TSs {T1, . . . , Tm} for all robots
2 Construct the FSAs {Aφ1 , · · · ,Aφ|D|} corresponding to D
3 Construct the FSAs {Aψ1 , · · · ,Aψ|R|} corresponding to R
4 Construct the product automaton P as defined in Definition 3.4.1
5 Find the shortest trajectories from the initial condition s0,P to the accepting
states FP of PA using Dijkstra’s algorithm and select the optimal one p∗ in
terms of time relaxations

6 Project the optimal trajectory p∗ onto T1, . . . , Tm as defined in
Definition 3.4.2

3.5 Robust Solution

In this section, the case of uncertain robots travel time is considered. The robots’

motion along a transition e is uncertain with respect to its duration ωv(e), and it is

modeled as a non-deterministic value from the set [ρω, ρω]∩Z>0 for v ∈ {1, . . . ,m},

where ρ, ρ ∈ R>0. Considering this uncertainty in the robot transition systems leads

to an explosion in the number of states [53]. Thus, the construction of a PA and the

solution of a game against the non-deterministic motion of the robots [107] becomes

intractable even for small problems with few agents, demands, and rules. To avoid

this issue, the nominal solution is taken and augmented with a synchronization

procedure that guarantees the satisfaction of the specification ϕ at deployment.

The procedure takes the form of a centralized on-line controller that produces a

small number of synchronization events. In Section 3.6 it is shown that our on-line

controller outperforms a baseline solution that enforces synchronization at each

step.

3.5.1 On-line Controller

An on-line controller that exploits the robots’ capabilities to recognize their arrival

at states, and to communicate with the other robots, is proposed. The optimal

satisfying trajectory obtained in the nominal case provides: (a) the individual robot
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trajectories, (b) for each transportation demand φi the robot it is assigned to and

the state trajectory of Aφi to satisfy it, and (c) for each synchronization rule ψ̂j the

state trajectory of Aψ̂j to enforce it. Thus, from p∗ it is possible to identify when,

where (i.e., in which state), and which robots have to synchronize in accordance

with both the demand assignments and the synchronization rules. Consequently, in

order to satisfy ϕ, it is enough that when a robot reaches a point of interest (i.e

q ∈ Q), it first communicates its position and then it awaits instructions to/from

the online controller. Instructions can be either to proceed towards the next point

of interest or to wait at the reached point. The latter occurs when either a robot

that is involved in a synchronization rule reaches its synchronization point before

the other robots involved in the same synchronization, or when a robot reaches a

pick up position before a demand is ready to be transported.

Given the nominal solution obtained by Algorithm 17, extract pickv and syncv

are extracted for each robot v. Vector pickv contains as elements the pick up

lower bound time in positions corresponding to the stages of p∗ when a demand

is supposed to be picked up, and zeros in all other positions. On the other side,

syncv is a finite sequence of sets. This contains as elements which robots v needs to

synchronize with, in positions corresponding to stages of p∗ when synchronization

involving robot v is supposed to happen. All other positions contain an empty set.

In the following, syncv,k and pickv,k denote the k-th elements of syncv and pickv,

respectively. The complete procedure for obtaining sync and pick is reported in

Algorithm 18. In particular, lines 1-10 are used to compute sync. The variable

robotsInvolved is used to store the indexes of the robots involved in the j-th

synchronization rule. Line 7 checks if the state ŝj,k belongs to accepting states

Fψ̂j . In the affirmative case, for all robots involved in Rj, syncv,k is computed as

reported in line 9. Note that, starting from the first k satisfying condition at line

7, the state ŝj,k will be an accepting state and therefore will not change. For this

reason, a break is imposed at Line 10. Lines 11-16 describe the procedure to obtain

pick. In particular, lines 13-16 look for the first k at which the i-th demand is

assigned to a robot and compute pickv,k accordingly.

In order to satisfy ϕ during deployment in presence of uncertainty, at the k-th
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stage, if syncv is not empty, the v-th robot is supposed to synchronize with robots

in the set syncv,k. In case the other robots have not arrived yet, v is required to

wait. Similarly, at the k-th stage, if pickv,k is different from zero, this implies that

the v-th robot is required to pick up a demand. In case the demand is not ready

yet, v is required to wait. In all the other cases, robot v is free to go ahead and

continue with the remaining states of q∗v. The complete procedure for computing

the solution in presence of uncertainties is reported in Algorithm 19. In particular,

the online controller waits continuously for events coming from robots which reached

a state of interest, i.e. q ∈ Q (see line 3). Whenever an event is detected, the

corresponding robot number v and event time t are obtained and counter cntv

increased (line 4). In case the corresponding syncv,cntv is empty, the pickv,cntv is

checked and a proper command sent to the robot v, see lines 5-9. If, on the other

hand, syncv,cntv is not empty, the online controller has to check the position of all

the other robots involved in the synchronization. If even just one of them is not at

the synchronization position yet, the online controller sends the command to wait at

the current position to robot v, see line 13-18. Thanks to the procedure summarized

in Algorithm 19, it is possible to guarantee synchronization and demand satisfaction

even in presence of robot travel time uncertainties.
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Algorithm 18: Synchronization and Pick up Sequences
Input : p∗ - the nominal optimal trajectory of PA
Input :R - the set of synchronization rules
Input :D - the set of transport demands
Output : The sequence syncv for each robot v ∈ {1, . . . ,m}
Output : The vector pickv for each robot v ∈ {1, . . . ,m}

1 Set syncv,k = {∅} for v ∈ {1, · · · ,m} and k = 0, · · · , |p∗|
2 for j = 1, · · · , |R| do
3 robotsInvolved = ∅
4 for i ∈ Ij do
5 robotsInvolved = robotsInvolved ∪{ri,|p∗|}
6 for k = 0, · · · , |p∗| do
7 if ŝj,k ∩ Fψ̂j 6= ∅ then
8 for v ∈robotsInvolved do
9 syncv,k = robotsInvolved \ {v}

10 break

11 Set pickv = 0 ∈ R|p∗| for v ∈ {1, · · · ,m}
12 for i = 1, · · · , |D| do
13 for k = 0, · · · , |p∗| do
14 if ri,k ∩ {1, · · · ,m} 6= ∅ then
15 pickv,k = the lower bound time of the demand Di
16 break
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Algorithm 19: On-line controller
Input : The sequence syncv for each robot v ∈ {1, . . . ,m}
Input : The vector pickv for each robot v ∈ {1, . . . ,m}

1 Set a counter cntv = 0 for each robot v ∈ {1, ...,m}
2 while True do
3 [v, t] = waitForEvent() :
4 cntv = cntv + 1
5 if syncv,cntv = ∅ then
6 if pickv,cntv ≤ t then
7 Send to v the permission to move to the next node
8 else
9 Send to v the command to wait at current node until time

pickv,cntv
10 else
11 temp = True
12 for rv ∈ syncv,cntv do
13 if cntrv < cntv then
14 Send to v the command to wait at current node
15 temp = False
16 break

17 if temp then
18 Send to v the permission to move to the next node
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3.6 Simulations and Results

The algorithms presented in this work are implemented in Python2.7 using the

PyTWTL package [106]. All simulations have been running on a MacBook Pro

equipped with i5 @2.09 GHz 64bit CPU system, 8 Gbytes of RAM and MacOS

Mojave.

In this section, the simulation results in a semiconductor manufacturing fab setting

are presented. A fab sector is shown in Figure 3.1. The end products of the

semiconductor manufacturing process are integrated circuits. Chips are composed

of several layers of chemical patterns that are imprinted on silicon wafers by

machines. To obtain a layer, it is necessary that the wafer undertakes several steps,

e.g., deposition, photolithography, and etching, performed by the machines. Since

the cost of the machines is prohibitive, the wafers must revisit the machines multiple

times to obtain the end products. Moreover, some steps must be performed at the

same time on a machine (e.g. the diffusion furnaces [57]). In this scenario, a fleet

of robots is employed to perform transportation demands between machines, and

satisfy the synchronization rules of the fabrication process. These rules aims at

avoiding time waste and thus maximizing efficiency in the fabrication process. The

challenge in the semiconductor fab is to find the optimal routing and scheduling for

meeting transport demands and the synchronization rules. Robots are responsible

for the demand transportation among the various machines in the fab. The

M1 M2 M3

M4 M5 M6

TO
U
T

TI
N

Figure 3.1: Semiconductor fab
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Figure 3.3: The environment graph (a) and the robot transition system (b)

scenario in Figure 3.3 is composed of 6 machines M1, . . . ,M6, 1 Transfer Point In

TIN , and 1 Transfer Point Out TOUT . Demands processed in the fab sector appear

at TIN and are released at TOUT , respectively. Each demand must follow its specific

recipe based on following information available at its arrival: (a) pickup position,

(b) delivery position, (c) wafer transportation time window within, and (d) any

synchronization requirements with other demands.

The fab sector environment, which is shown in Figure 3.1, is abstracted into a

weighted graph, where the nodes represent points of interest (machines and transfer

points), the edges indicate the possibility of motion between nodes, and the weights

represent the travel times associated with the edges. The motion model of each

robot is abstracted as a transition system obtained from the environment graph

by splitting each edge into a number of transitions equal to the corresponding

edge’s nominal travel time, see Figure 3.2. The set of propositions (AP ) is AP =

{M1,M2,M3,M4,M5,M6, TIN , TOUT}.

Two robots are used. These must fulfill five transportation demands subject to

two synchronization rules shown in Table 3.1. All transportation demands and

synchronization rules are captured by TWTL formulae, and translated to FSAs. In

the nominal case, where there is no uncertainty in the robots travel times, the optimal
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Table 3.1: Transport Demands (D) and Synchronization Rules (R)

D R

φ1 =
[
TIN · [M5][0,4]

][0,6]

, πstart1 = TIN ψ1 = [M5][0,6], I1 = {1, 3}

φ2 =
[
M6 · [TOUT ][0,5]

][0,7]

, πstart2 = M6 ψ2 = [TOUT ∧M3][0,7], I2 = {2, 5}

φ3 =
[
M4 · [M5][0,4]

][0,6]

, πstart3 = M4

φ4 =
[
M2 · [M4][0,2]

][0,4]

, πstart4 = M2

φ5 =
[
M5 · [M3][0,5]

][0,7]

, πstart5 = M5

trajectory p∗ of P satisfying the transportation demands and synchronization rules

is computed using Algorithm 17 and shown in Table 3.2. The minimal temporal

relaxation vector associated with p∗ is:

τ =
(
τφ1 , . . . , τφ5 , τψ̂1

, τψ̂2

)
= (1, 4, 1, 1, 4, 1, 4)

and the minimum linear temporal relaxation is |τ |LTR = 16. Table 3.2 shows that

the transportation demands φ4, φ3 and φ5 are satisfied by robot 1, while φ1 and φ2

are satisfied by robot 2.

Table 3.3 shows the runtime performance of this approach. When the travel time

of the robots is an uncertain quantity, the online controller is used to guarantee the

satisfaction of the formula ϕ. In the following section, to evaluate the effectiveness

of the robust solution to cope with travel time uncertainty, the online controller

is compared to the baseline approach. In the latter, robots apply the nominal

optimal solution and synchronize at each state during deployment. Both approaches

are tested 20 times on the same specification ϕ. Each test is characterized by

different uncertainties regarding travel time, i.e., each robot has its own travel time

uncertainty. The upper and lower deviation values for each robot are ρ = 1.2 and

ρ = 0.7, respectively.
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Table 3.2: Optimal Nominal Solution p∗

T 2 φ1 φ2 φ3 φ4 φ5 ψ̂1 ψ̂2

q1 q2 Aφ1 ri Aφ2 ri Aφ3 ri Aφ4 ri Aφ5 ri Aψ̂1
Aψ̂2

M1 TOUT s0 0 s0 0 s0 0 s0 0 s0 0 s0 s0

M1 I3 s0 0 s0 0 s0 0 s0 0 s0 0 s0 s0

M2 I2 s0 0 s0 0 s0 0 s1 1 s0 0 s0 s0

I2 I1 s0 0 s0 0 s0 0 s1 1 s0 0 s0 s0

I2 TIN s1 2 s0 0 s0 0 s1 1 s0 0 s0 s0

M4 I1 s1 2 s0 0 s0 0 sF 1 s0 0 s0 s0

M4 I2 s1 2 s0 0 s1 1 sF 1 s0 0 s0 s0

M5 M5 sF 2 s0 0 sF 1 sF 1 s0 0 sF s0

M5 M5 sF 2 s0 0 sF 1 sF 1 s1 1 sF s0

I2 M6 sF 2 s1 2 sF 1 sF 1 s1 1 sF s0

I3 I3 sF 2 s1 2 sF 1 sF 1 s1 1 sF s0

M3 TOUT sF 2 sF 2 sF 1 sF 1 sF 1 sF sF

Table 3.3: Quantitative information on scalability

Number of states Number of transitions Computational time

T 11 39 8 ms
T 2 121 1521 16 ms
Aφi 3 4 11 ms
Aψj 2 2 16 ms
P 23185 295802 58.4 s

3.6.1 Baseline

The baseline approach enforces the nominal solution by synchronizing the transitions

of all vehicles at all time steps. This implies that when a robot reaches the k-th

state of its trajectory, it will remain there until all the robots assume their k-th

trajectory position. When all the robots are on their k-th state, they can move to

their (k + 1)-th state.

The mean value of the linear temporal relaxation is 18.2, and its variance is

6.55 using the baseline approach.
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3.6.2 Online Controller

Using the online controller we can minimize the synchronization points along the

robots paths. The control algorithm exploits the syncv sequences and pickv vectors

in order to guarantee the satisfaction of the global task. These are obtained using

Algorithm 18, and are shown in Table 3.4. Once these quantities are obtained,

Algorithm 19 is employed for deployment.

Table 3.4: syncv and pickv for each v ∈ {1, 2}

k 0 1 2 3 4 5 6 7 8 9 10 11

sync1 {} {} {} {} {} {} {} {2} {} {} {} {2}
sync2 {} {} {} {} {} {} {} {1} {} {} {} {1}

pick1 0 0 0 0 0 0 0 0 0 0 0 0
pick2 0 0 0 0 0 0 0 0 0 0 0 0

As can be seen in Table 3.4, robot 1 has to synchronize with robot 2 at k = 7

and k = 11. The mean value of the linear temporal relaxation using the online

controller is 14.9, and its variance is 4.96. Thus, the robust approach provide a

better performance than the baseline method: a 22% reduction in overall deadlines

relaxation cost.

3.7 Conclusion

The problem of planning and scheduling for a fleet of robots with travel time

uncertainty operating in manufacturing systems where some demands require to

be satisfied at the same time is studied. Inspired by model checking techniques, a

general nominal solution is proposed, where the nominal motion models are adopted.

An online controller able to ensure synchronization during deployment have been

proposed which improve on the performance of the nominal approach. The online

controller is compared with the baseline nominal controller on simulated scenarios

from the semiconductor manufacturing domain. The results show that we are able

to reduce tasks violation by 22% using the online controller during deployment.
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4.1 Introduction

In order to evaluate the effectiveness of the developed strategies, a test-bed composed

of small scale robots is developed at UNIPV laboratories. The position and

orientation of the robots is detected by an infrared camera positioned on the ceiling

of the lab. The robots are equipped with a clamp to simulate the drag and drop

of the orders and two connectors located on the bottom of the vehicle to allow

it to recharge the batteries to simulate the vehicle’s recharge. The environment

represents a graph with several pick-up and delivery locations. The work described

in this chapter is the result of my activity as a co-supervisor, under the supervision

of Prof. Raimondo, of the Bachelor and Master theses of: F. Napoli, L. Borrelli,
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I. Triggiani, G. Saccani, S. Mercanti, F. Capelli, R. Aguzzi and S. Fasolato. In

particular, my main contribution was both the design and programming of the

testbed.

4.2 Infrared Camera

Artificial Vision Systems are devices able to capture images from the real world

and to process them in order to obtain information. The main components of a

system are: a lighting device, a camera equipped with an appropriate lens and an

acquisition sensor, a computer, a software for processing and storing images, and a

display monitor.

The lighting, which aims to highlight the object characteristics so that they are

clearly seen by the camera, is an essential and often critical component of the

system. In fact, an inadequate lighting may affect the subsequent operations.

The camera lens captures the images and presents them to the sensor in the form

of light. The sensor converts the light into a digital image which is then sent to the

processor to analyse them. An analytical model of the process described above is

necessary in order to obtain information about the scene.

Once the model is defined, the calibration method will be studied. This is a method

for the estimation, as accurate as possible, of the parameters that define the camera

model. These parameters are necessary in order to correlate the points of the real

world with the points of the image captured through the camera.

4.2.1 Hardware

The camera used is a Point Grey Grasshopper, see Figure 4.1, which has the

following features: i) maximum resolution: 640 x 480 pixels; ii) frame rate up to 60

fps. The camera is equipped with an infrared filter that allows only the detection

of infrared light. For the acquisition of the images a program is developed using

Visual Studio and OpenCV libraries. The OpenCV library package (Open Source

Computer Vision Library) is the most used in the field of artificial vision to process

and recognize objects captured by visual sensors, and it is of crucial importance in
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Figure 4.1: UNIPV camera

order to derive the two-dimensional coordinates in pixels of a point in space.

4.2.2 Image Formation

In the process of image formation, the two-dimensional image of 3D objects of

the world is generated on a plane covered with photosensitive material (i.e. image

plane) by the optical system [108]. The optical system of any image acquisition

system characterizes the quality of the image generated, in terms of:

• geometric resolution: the ability to reproduce geometric details of objects;

• geometric project : the mode of propagation of light rays incident on the

optical system;

• intensity : the intensity of projected light;

• sharpness : the image sharpness.

The transition from the three-dimensional world scene to an image seen from the

camera is obtained by using the perspective transformation. This process can be

modeled in a simple and effective way through the pinhole theoretical approximation,

see Figure 4.2, which is the camera model adopted in this thesis. In the human

eye, the optical system is the crystalline and the image plane is the retina, while in

a camera the optical system is the lens and the image plane is the film or digital

sensor.
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Figure 4.2: The pinhole model [6]

Pinhole Model

Generally, a camera is modeled by using the pinhole camera model, whose principle

scheme is illustrated in Figure 4.2. The theoretical approximation of the pinhole

model consists in a camera without lenses where light passes through an infinitesimal

hole. The light rays coming from the objects in the 3D word pass through the

optical system, which modifies their optical path and generates the image of the

scene projected in the image plane, which is perpendicular to the optical axis.

The pinhole model is the simplest and ideal but, at the same time, it provides

an acceptable approximation of the image formation process. Furthermore, it is

convenient also from the mathematical and computational point of view.

Indeed, it is a simple perspective projection (or central projection) that constitutes

the geometric model suited to schematize the formation of the image in a pinhole

type camera.

4.2.3 Perspective Projection

Considering a reference system positioned in the optical center, i.e. the origin of

the world system coincides with the center of projection C and the world’s z-axis

is aligned with the camera axis (optical axis), as it is shown in Figure 4.3, the

following parameters are defined:

• M : world point of coordinates [x, y, z]T

• m: perspective projection of M with image coordinates [u, v]T

• I: image plane
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• C: optical center

• optical axis : the line through C and perpendicular to the image plane I

• c: the intersection of the optical axis with the image plane is called principal

point or image center

• f : focal length

The nonlinear equations that describe the projection of a 3D world point onto the

image plane are obtained from a simple similarity between triangles and are given

by:

u

x
=
v

y
= −f

z
=⇒

u = −fx
z

v = −fy
z

(4.1)

However, it is preferable to eliminate the inversion of the sign of the coordinates

v
u

c
C

y
xf

M(X, Y, Z)

m(u, v)
z

I

Figure 4.3: Perspective projection

which characterizes Equations 4.1. To achieve this, it is assumed that the image

plane is located in front of the center of projection C at distance f , see Figure 4.4.

Thus, Equations 4.1 can be rewritten as:

u =
fx

z
, v =

fy

z
(4.2)

Since the projection from the 3D world space to the 2D image plane is non-linear

(due to the presence of z in the denominator, see Equations 4.4), it is possible to
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y
x

z
optical axis

I

C

f

M(X, Y, Z)
m(u, v)

c

Figure 4.4: Perspective projection

express both points M and m using homogeneous coordinates, as:

M |1 =


x

y

z

1

 , m|1 =


u

v

1

 (4.3)

In this way, through Equations 4.2

z · (m|1) =


fx

fy

z

 =


f 0 0 0

0 f 0 0

0 0 1 0

 =


x

y

z

1

 = MPP ·M (4.4)

where: MPP is the perspective projection matrix.

A realistic camera model that describes the transformation from 3D coordinates to

pixel coordinates, as well as the perspective projection, must take into account the

following two processes:

• The discretization (sampling) due to the sensor (seen as a two-dimensional

array of pixels) and its position in relation to the optical axis;

• The isometric transformation between the world and the camera reference
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system.

4.2.4 Image Discretization

In order to process an image through a calculator, the continuous image must

be converted into image points on a sampling grid. Thus, a rectangular array of

equi-spaced samples called pixels is generated.

u

vC

y

x
z

ku

c
optical axis

I

mi

kv

oI

Figure 4.5: Digitization of the image

Discretization must take into account the fact that:

1. The optical center of the camera does not coincide with the physical center of

the sensor but it has coordinates (cx, cy) in pixels;

2. The coordinates of a point in the standard reference system of the camera

are measured in pixels. Therefore, a scale factor is introduced;

3. The shape of the pixels is not square. Thus, it is necessary to consider two

different scale factors along the x and y axes which are indicated respectively

with ku = 1
su

and kv = 1
sv
.

The above three points are taken into account by introducing both the translation

of the optical center and the independent scaling of the u, v axes in Equation 4.2:

u =
kufx

z
+ cx (4.5)

v =
kvfy

z
+ cy (4.6)
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where: (cx, cy) are the the coordinates of the image center c, ku and kv are the units

of the image reference system oiuv.

As it can be noticed in Figure 4.5, the coordinates of a generic point mi on the

image plane I are expressed in pixels, while those of the point that generated mi

are expressed in meters. Therefore, the MPP can be rewritten as follows:

A =


fku 0 cx 0

0 fkv cy 0

0 0 1 0

 =


fx 0 cx 0

0 fy cy 0

0 0 1 0

 (4.7)

where: fx = fku and fy = fkv are the the size of the focal distance in terms of

horizontal and vertical pixels, respectively.

4.2.5 Rigid Transformation

Generally, the world reference system does not coincide with the standard reference

system of the camera. Therefore, it is necessary to introduce a rigid transformation

that links the two reference systems, or a roto-translation. In general, three reference

systems are identified:

Y

X

Z

x

yYc

Zc

Xc

C p(x, y, z)
Pm(X, Y, Z) World 


system

Image 

system

Camera 

system

Figure 4.6: World system, Camera system and Image system

• World system: it is the reference system relative to the scene. It expresses
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the world coordinates of the points Pm = [X, Y, Z]T in space;

• Camera system: it is the reference system relative to the camera where the Xc

axis represents the horizontal axis of the image plane while, Yc represents the

vertical axis. The Zc axis coincides with the optical axis of the camera. The

Xc, Yc and Zc axes form a right-handed reference system and are arranged

so that the camera is oriented towards negative coordinates of the Zc axis.

The optical center C, located on the optical axis, represents the origin of the

camera reference system. The optical center C is the origin of the system;

• Image system: it is the reference system of the camera sensor, in which the

two-dimensional coordinates of the camera are expressed in pixel (u, v).

The world reference system is linked to the standard one by a rotation around the

optical center (which can be modeled by an orthogonal matrix R) and by a shift

(which can be modeled by a translation vector t).

4.2.6 Camera Calibration

Camera calibration is a necessary step in 3D computer vision to extract metric

information from 2D images. Approximately three calibration categories can be

considered:

• 3D reference object based calibration: the camera calibration is performed by

observing a 3D calibration object whose geometry in 3D space is known with

great precision;

• 2D plane based calibration: the techniques of this category require to observe

a planar model shown in some guidelines;

• 1D object based calibration: calibration objects are composed of a set of

collinear points.

In this work, the 2D plane based calibration is adopted.
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Calibration Parameters

The purpose of camera calibration is to determine the parameters of the transfor-

mation between an object in 3D space and the 2D image observed by the camera.

In particular, this transformation depends on both the intrinsic and the extrinsic

parameters.

Intrinsic Parameters They are parameters that characterize the single camera

and do not depend on the view scene. Therefore, once they are estimated, they can

be reused as long as the focal distance is fixed. These parameters, which are used

to pass from the image plane to the camera reference system, are identified by the

intrinsic matrix A

A =


fx 0 cx 0

0 fy cy 0

0 0 1 0

 (4.8)

Extrinsic Parameters They are parameters that define the position and ori-

entation of the camera reference system in relation to the world reference system.

Therefore, they introduce the roto-translation between the world system and the

one integral with the camera. The rotation and translation matrices R and t are

defined as follows

R =


r11 r12 r13

r21 r22 r23

r31 r32 r33

 , t =


tx

ty

tz


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where:

r11 = cos(ϕ)cos(θ)

r12 = cos(ϕ)sin(θ)sin(ψ)− sin(ϕ)cos(ψ)

r13 = cos(ϕ)sin(θ)cos(ψ) + sin(ϕ)sin(ψ)

r21 = sin(ϕ)cos(θ)

r22 = sin(ϕ)sin(θ)sin(ψ) + cos(ϕ)cos(ψ)

r23 = sin(ϕ)sin(θ)cos(ψ)− cos(ϕ)sin(ψ)

r31 = −sin(θ)

r32 = cos(θ)sin(ψ)

r33 = cos(θ)cos(ψ)

ϕ, θ, ψ are the Euler angles of rotation around the three axes

tx, ty, tz are the 3D translation parameters in the three directions from

the world system to the camera system

Although, the rotation matrix is composed of 9 elements, it has only 3 degrees

of freedom, while the translation vector t has 3 parameters. Therefore, there are

6 extrinsic parameters and 4 intrinsic parameters. Hence, the total number of

parameters to be identified are 10.

Distortion Coefficients

Camera imperfections due to individual lenses and how they are mounted produce

distortions in the acquired images.

There are two types of distortions:

• Radial Distortion

It is a symmetrical distortion by which the points of the image are distorted

along the radial directions from a point called the center of distortion. This

is caused by the imperfect shape of the lenses (“curvature” of the lenses). In

the following Section, the parameters k indicate the distortion.

The magnification produced by the peripheral parts of a lens is different from
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that produced by the central parts. The parts of an object that are seen

through the periphery of positive lenses appear more enlarged, while they

appear smaller in case of negative lenses. The overall effect is to make the

lines that are actually straight appear curved.

In particular, a square seen through a positive lens takes the form of a

“pincushion” (k1 < 0), while seen through a negative lens it takes the form of

a “barrel” (k1 > 0), see Figure 4.7.

Figure 4.7: Effects of radial distortion [6]

• Tangential Distortion

This is usually caused by an improper assembly of the lenses; the parameters

are indicated with the letter p.

Generally, the image points are distorted both in the radial and tangential direction.

It is very common that the mathematical function that models distortion is totally

dominated by radial components, especially by the first term, while secondary effects

are introduced by tangential distortions. Distortion coefficients do not depend

on the scene displayed. Therefore, they belong to the intrinsic parameters of the

camera and they remain the same regardless of the resolution of the acquired image.

4.2.7 3D-2D Transformation

A 2D point m is indicated by [u, v]. A 3D M point is indicated by [X, Y, Z].

According to the pinhole model, initially neglecting the distortion, the image of a

3D point, which is detected in the corresponding 2D point, is formed by a straight

line that passes from M through the optical center C and intersects the image
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plane. In Figure 4.8, the virtual image plane, which is mathematically equivalent

to the image plane, is considered as the image plane.

Figure 4.8: Pinhole model [7]

The relation between the 3D point M and its projection onto the image plane

m is given by:

s

m
1

 = A[R|t]

M
1

 = P

M
1

 (4.9)

s


u

v

1

 =


fx 0 cx 0

0 fy cy 0

0 0 1 0



r1,1 r1,2 r1,3 tx

r2,1 r2,2 r2,3 ty

r3,1 r3,2 r3,3 tz



X

Y

Z

1

 (4.10)

where s is an arbitrary scale factor, [R|t] is the overall matrix of extrinsic parameters,

A is the intrinsic matrix of the camera, (cx, cy) the coordinates in pixels of the

image center and (fx, fy) are the focal lengths expressed in the pixels.

The matrix P is called camera projection matrix, which mixes intrinsic and extrinsic

parameters.

By using Equation 4.4, for the case where z 6= 0, the transformation that is described
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by Equation 4.10 can be rewritten as:

u =fx · x′ + cx (4.11)

v =fy · y′ + cy (4.12)

where x′ = x
z
and y′ = y

z
.

4.2.8 Planar Calibration

Without loss of generality, it is assumed that the model plane is at the global

coordinate Z = 0. The transformations are therefore:

s


u

v

1

 =


fx 0 cx 0

0 fy cy 0

0 0 1 0



r1,1 r1,2 r1,3 tx

r2,1 r2,2 r2,3 ty

r3,1 r3,2 r3,3 tz



X

Y

0

1

 (4.13)

4.2.9 Distortion Model

Sometimes the linear projective Equation 4.12 is not enough. Especially when

low-end cameras (such as WebCams) or wide-angle cameras are used, it is necessary

to take into account the lens distortion.

These phenomena are modeled through a non-linear relationship between the points

actually observed on the image plane

x′′
y
′′

 = L(r)

x′
y′

+

dx′
dy′

 (4.14)

where: L(r) is the radial distortion function which depends on the distance (r) from

the center of distortion, i.e. r =
√

(x′ − xc)2 + (y′ − yc)2 for r > 0. This non-linear

function (L(r)) is typically approximated by using Taylor’s series development (up
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to the n-th order, depending on the desired precision):

L(r) = 1 + k1r
2 + k2r

4 + k3r
6 + · · · (4.15)

Instead, the tangential distortion vector is approximated with:dx′
dy′

 =

2p1x
′y′ + p2(r2 + 2x′2)

p1(r2 + 2ỹ′
2
) + 2p2x

′y′

 (4.16)

The coefficients for radial distortion correction (i.e. k1, k2, · · · , kn) together with

the center of radial distortion (xc, yc) and the two tangential distortion coefficients p1

and p2 widen and complete the set of intrinsic parameters of the standard model of

a camera. Typically, for simplicity, it is assumed that the center of radial distortion

coincides with the center of the image.

Optical distortion is usually modeled as a transformation that occurs after projecting

3D coordinates onto the image plane. After that, the intrinsic matrix applies an

affine transformation to the image, translating the physical coordinates on the

image plane into pixel coordinates.

4.2.10 Calibration Method

In order to reconstruct the computerized three-dimensional scene, the camera cali-

bration is of crucial importance. Solving a calibration problem means determining

all the geometric parameters of the camera such as:

• focal length;

• coordinates of the principal point;

• distortion coefficients;

• position of the camera reference system in relation to the absolute world

reference system.

The idea behind each calibration algorithm is to rewrite the equations of the

perspective projection as a linear system with the parameters as unknowns, since
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the correspondence between 2D projections and 3D points of known coordinates

is known. In particular, if OpenCV is used, in order to know a certain number

of correspondences in advance, a pattern of known form is used. In this case a

chessboard is used, on which it is easy, once the image is captured, to identify some

particular points.

Some sources of systematic error, however, cannot be eliminated, so the identification

is never exact but it consists of an estimate to be made as accurately as possible.

OpenCV

The calibration methodology used through OpenCV is the 2D type. Indeed, it is

based on the recognition of some characteristic points of a simple geometric element,

in this case a chessboard, which is captured in different positions on the worktop.

The points in question are the internal vertices (corner) of the cells of the board

itself.

Figure 4.9: Checkerboard pattern with highlighted corners

Image Acquisition

The image acquisition and corner recognition operation can be performed in two

ways. The first relies on a “live view”, which consists in using the calibration

program to detect several frames of the checkerboard. This is repositioned after

each time the corner detection is performed.

The second alternative is to take a series of photos of the checkerboard in different

positions (usually at least 10), which must be taken before the calibration program
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is run. Then, the program is run and it takes care of recognizing the corners. Since

Figure 4.10: Example of acquired image

the movement of the checkerboard should be manual and the presence of the subject

would alter some characteristics of the image, such as brightness, in this work the

second alternative is used.

Sofware

As already mentioned, to recognize the corners a C ++ language code is used,

which is available as a source code and uses the libraries provided by OpenCV .

The calibration is performed using the “calibrateCamera” function, the virtual

Figure 4.11: Corner recognition in distorted image
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Figure 4.12: Correct image

points “objectPoints” are automatically referenced to the real points “imagePoints”

in order to extract both the intrinsic parameters “cameraMatrix” and the distortion

parameters “distCoeffs”. The position (orientation and position respectively) of

the camera in relation to each checkerboard detected are contained in the vectors

“rvecs” and “tvecs”.

By entering some data such as the number of corners in the long and short side of

the board and the .xml file with the list of images to be used, the program performs

the calibration and returns a .yml file that contains:

• the intrinsic and extrinsic parameters of the camera;

• the coordinates in pixels of the corners and their calculation error.

4.2.11 Evaluation of the Calibration

Thanks to what has been described above, taking a system oriented like the

checkerboard in one of the images as a world reference system, it is possible to

obtain a 2D reconstruction of the plan. Indeed, by manually measuring the spatial

coordinates of some points on the plane, it is possible to find the pixel coordinates

by using Equation 4.2 and vice versa. Therefore, in order to evaluate the camera

calibration the following procedure can be adopted:
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• choice of the world reference system: The world reference system is chosen as

in Figure 4.13;

Figure 4.13: World reference system

• find the coordinates (u, v) of the point by software: to obtain the coordinates

(u, v) of the points a program implemented in C ++ is used, through which

the camera identifies an infrared LED located at the point of interest on the

plane, see Figure 4.14;

Figure 4.14: Recognition software

• find (X, Y, Z) through equations: as regards the setting of Equations 4.2,

different values of tz from OpenCV are obtained, the resolution field of the

camera is divided into nine parts, each of which has its own value of tz. This

is obtained by arithmetic mean of the values provided by the program only
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for frames where the chessboard is contained in the part of interest. Thus,

the adopted method for calibration is summarized as follows:

– divide the viewing space into portions: in the case in question it is

divided into nine parts as shown in Figure 4.15;

– capture the board at least twice per portion, so that it is possible to

calculate an arithmetic average of the values provided by the program

and obtain a better approximation;

– apply, in Equations 4.2, the values of tz based on the part in which the

point of interest is located.

Then, the non linear equations that allow the inverse transformation from

(u, v) to (X, Y, Z) are solved by imposing as (u, v) the values obtained in the

previous step. Note that it is possible to solve the inverse equations 4.2 since

in the considered case it is assumed that the worktop is set at Z = 0;

• manual measurement of the actual coordinates (X, Y, Z)

• analysis of the correspondences between the two sets of values found

Analysis of the Results

In this section an analysis of the accuracy of the procedure followed in Section 4.2.11

is conducted. In particular, the manual measurements and those obtained with the

program will be compared.

As can be noticed from Table 4.1, good correspondences are obtained. Moreover, it

is possible to note that the error is distributed quite randomly in the worktop area.

This means that the obtained discrepancy does not depend on the distance from

the image center. However, it is true that the points that present a major error are

located in areas where the distortion is considerable.

In general, the deviation may depend on the fact that the measure is affected by

some uncertainties:

• average error of point projection due to the calibration program;
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Figure 4.15: Subdivision of worktop with reference to the coordinates corresponding to
each zone

• error in the calculation of the coordinates (u, v) through the LED recognition

program;

• error in the measurement of the coordinates in cm of the points;

• error in the positioning of the LEDs, which may not coincide perfectly with

the point in question;

• approximation of the value tz, obtained by arithmetic mean.

The following table shows the matches obtained for some of the considered points.

The position of the points (u, v), on the worktop, whose coordinates have been

calculated (X, Y, Z) is shown in Figure 4.16. These points, indicated in pixel

coordinates, are distinguished by a color based on the precision obtained (see the

legend on the image). The yellow point is the image center of coordinates (cx, cy)

calculated with the calibration.
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(u, v) measured (X, Y, Z) obtained (X, Y, Z)

455, 410 30, 110 30, 111
156, 83 210, 280 212, 279
183, 300 90, 260 91, 260
70, 340 0, 340 0, 340
614, 66 230, 10 229, 9
406, 137 180, 140 180, 140
605, 230 130, 20 130, 22
226, 471 -10, 240 -10, 240

Table 4.1: Correspondence between coordinates measured and found analytically

Figure 4.16: Accuracy of analyzed points

4.3 Working Environment

As previously mentioned, the testbed consists in controlling the trajectory of some

robots, which have the task of picking up the objects from an initial position and

of delivering them to a final position. All the available paths can be abstracted

by using a graph G = (Q,∆, ω), where Q = {1, · · · , 15} is the set of graph nodes

that represents the location of interest (i.e. machines, interconnection nodes etc.)

while, ∆ is set of edges that captures the feasible motions between the locations of

interest with the fixed travel time ω. For each node of the graph the corresponding

world coordinates (x, y) are known. In particular, our scenario is composed of 15

nodes, organized in 3 rows of 5 nodes, as can be seen from Figure 4.17. The nodes

represent the different workstations where vehicles must pass and collect or deposit
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objects in the production plant.

Figure 4.17: The worktop graph G

The working grid is obtained on a plywood panel with dimensions 2 x 1 m. The

plywood panel is covered with black sheets so as to eliminate the possibility that

the camera incorrectly detects reflections. The graph node are 30 cm distant from

one another, both vertically and horizontally. In Figure 4.18 how the worktop

actually looks is shown.

Figure 4.18: Support surface

4.3.1 Charging Station

As stated, the purpose of this project is to simulate the activity of vehicles used for

transporting semi-finished products within the semiconductor production process

where it is necessary to use robots as efficiently as possible.

For these reasons, in order to reduce the wasting time inside the plants, it is

convenient to automate the activities, which can be carried out more efficiently.

In particular, the recharging station solves the inconvenience of manually recharging

the exhausted batteries.
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Charging Station Structure

The purpose of the charging station, as previously mentioned, is to recharge the

batteries present on the vehicles. The connection between the poles of the battery

and the special recharging device is achieved by using the sliding contacts under

the vehicles and the copper slides in the charging station, see Figure 4.19 and

Figure 4.28. The connection that is created between the stripped contacts on the

Figure 4.19: Charging station

bottom of the frame and the slides in the structure is used, when the robot enters

the station.

Essentially, the charging station is composed of two elements: two copper slides

and an external structure.

The external structure of the station is built using pieces of aluminum section,

its task is to convey the vehicle to the copper slides, so as to compensate for any

inaccuracies in the trajectory.

The station is positioned in a corner of the work area, so as not to occupy the space

that is normally used to perform the simulations, see Figure 4.18.
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Figure 4.20: Charging station with robot

4.4 Robots

The design of autonomous mobile robots capable of intelligent motion and action

without requiring a teleoperator control involves the integration of different hardware

devices and software implementation.

The mobile robots used for this project are small scale robots and they have two

motors, one per wheel. The Arduino Bluno Nano is used to control engine speed. In

this work, the Arduino programmable card is used to correlate the PWM impulses

sent to the motors and their speed.

The work described in this chapter relies on the capability to move the robot in

a controlled space. A camera, some markers and the Visual Studio integrated

development environment (IDE) are used. This make it possible to calculate the X,

Y coordinates of the markers placed on the robot in real time. The PC on which

Visual Studio is installed is connected to an infrared camera, placed on the ceiling

in order to completely frame the worktop.

In this section, the features of the mobile robot, the Visual Studio development

environment and the hardware devices that allow to recognize and track the robot

in real time will be described.
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4.4.1 Mobile Robot Description

A robot can be defined as “a mechanical device which performs automated tasks,

either according to direct human supervision, a pre-defined program, or a set of

general guidelines, using artificial intelligence techniques” [109]. In this project a

differential drive robot is used. Mobile robots are, by definition, those which have

the ability to move in terrestrial, marine or air environments. The ones used in this

case are shown in Figure 4.21.

The indoor mobile robot has two main wheels, each of them is linked to its own

Figure 4.21: One of the mobile robots used in this project

motor and two other specific wheels placed in the lower part to passively roll along

while preventing the robot from falling over. The batteries needed by the robot are

placed in a resin-coated glass battery box, located below the roof of the robot.

4.4.2 Hardware

Each robot required for the test-bed is made by using the “2WD miniQ Robot

Chassis” kit, an Arduino Bluno Nano board for logic control and a clamp for

gripping the objects, from a Makeblock kit. The robot kit and the Arduino board

are produced by DFRobot and they are purchased online. The power is supplied

by two 3.7 V lithium-ion (Li-ion) batteries and 1000 mAh each, the batteries are

connected in series in order to have a supply voltage of 7.4 V. An on / off switch is

added to turn the control board on and off. The clamp is equipped with a switch
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to get feedback when a object is taken. Copper brushes are mounted on each robot

to allow it to recharge automatically. For the detection by the camera, infrared leds

are used that emit an infrared light, fixed on the robot roof. The control of the

robot trajectories is implemented on a Raspberry, which is a single-board computer

appropriately interfaced with the other systems (camera and Arduino) in order to

ensure the correct functioning of the robots.

Kit DFRobot

The kit used for building the UNIPV robots is the DFRobot kit, which is composed

of:

• two wheels which have a 42 mm diameter and 19 mm width;

• two electric direct current motors with nominal voltage equal to 6 V. The

rotation speed of the shaft at 6 V is 13000 RPM. A speed reducer is used

with the gear ratio equal to 50:1. The speed reducer allows to decrease the

rotation speed to 260 RPM.

• The maximum torque at blocked rotor is 3.82 N·cm.

• One chassis. The main role of the chassis is to provide support and attachment

for the principal functional components of the robot. The chassis diameter is

122 mm without wheel and balls bearing.

Figure 4.22: Kit DFRobot
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Clamp

In order to simulate the drag and drop of orders inside an industrial plant, it is

necessary to equip the robots with a clamp. To this end, a clamp is mounted on

the chassis. The clamp is driven by an electric motor controlled by Arduino. A

Normally Open limit switch (NO) is inserted in one of the two clamp arms. It

acts as feedback to know when the package is collected. Indeed, when the clamp is

closing on the package the switch is in contact with the package causing it to close.

Thanks to the connection between Arduino and the limit switch, when this switch

is closed it sends Arduino an electric input in order to deactivate the clamp.

Figure 4.23: Robot clamp

Roof

The robots detection relies on infrared light. For this purpose, leds are positioned

on the top of the robots. In order to have a good camera detection, a dark color

is chosen for the roofs. These are made of fiberglass and have small differences to

distinguish the configuration of leds of different vehicles, see Figure 4.24 4.25 4.26

Figure 4.24: Roof of the robot 1



112 Chapter 4

Figure 4.25: Roof of the robot 2

Figure 4.26: Roof of the robot 3

Battery Cases

A battery case made of fiberglass is necessary in order to guarantee the safety and

correct use of the battery. Power is supplied by two lithium-ion (Li-ion) batteries

of 3.7V and 1000 mAh each, connected in series to have a supply voltage of 7.4V.

Figure 4.27: Battery cases

Sliding Contacts

The sliding contacts are made with a copper braid with a section of about 2 mm2

and they allow the physical connection of the robot with the copper strips in the

charging station, see Figure 4.28. The contacts are fixed in the lower part of the
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chassis, and are connected to the two poles of the batteries. In this way, when the

robot enters the charging station, a potential difference is applied directly to the

battery poles and then the battery starts to recharge.

Figure 4.28: Sliding contacts

Raspberry PI 3 Model B

The Raspberry PI 3 is a single-board computer, which is an electronic card that

implements an entire computer. It is equipped with:

• a microSD port where the appropriate card is inserted, on which the chosen

operating system (generally Raspbian) has previously been saved;

• an Ethernet port, as it will be seen in Section 4.4.4, is indispensable for the

purposes of this project because from this port the data coming from the

camera are received;

• four USBs 2.0 to which mouse, keyboard and a 4.0 USB Bluetooth dongle

are connected. These are used to send data to Arduino, as can be seen in

Section 4.4.4;

• a HDMI port to which a monitor is connected;

• 40 GPIOs (General Purpose Input/Output), which are a series of pins that

can be used as inputs, to read digital signals sent from other devices or from

other parts of the circuit, or as an output to control other devices
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Figure 4.29: Raspberry PI 3 Model B [8]

Arduino Bluno Nano

The Arduino Bluno Nano board is based on the Arduino Uno: more precisely, the

BT 4.0 module (BLE - Bluetooth Low Energy) is integrated in the Arduino Uno

board. This feature is very important for the purposes of this project, indeed data

can be exchanged between Raspberry and Arduino via Bluetooth, without, the

presence of annoying and cumbersome cables. Arduino Bluno Nano can be easily

programmed using an IDE (Integrated Development Environment), which uses a

programming language called Wiring, based on C ++. Arduino must be powered in

DC voltage between 6 V and 12 V through the appropriate pins (positive terminal

to the pin Vin, negative terminal to the pin GND). The other pins on the electronic

board are:

• 5 V & 3.3 V : stabilized output voltage at 5 V and 3.3 V, respectively;

• Analog(A0−A7) analog pins, they can be used to read the signal, for example,

from a sensor and convert it to a digital signal. For the purposes of this

project an analog pin is used to read the voltage value of the Arduino power

supply battery and to read the status of the limit switch installed on the

clamp;

• Digital(D1 − D13) digital pins used both as input and output. For the

purposes of this project, some of these pins are particularly important, i.e.
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the PWM (Pulse Width Modulation) pins, which are the pins through which

it is possible to vary the speed of rotation of the robot motors.

Figure 4.30: Arduino Bluno Nano [9]

Pulse Width Modulation - PWM

The term Pulse Width Modulation refers to a power regulation technique, consisting

in modulating the width, the time duration of a series of pulses. For this project

PWM signals are used to provide variable speed control for the two robot motors.

By using the classic linear adjustment systems, the speed of a motor is regulated by

acting on the supply voltage. This system has two drawbacks: the first is that, in

order to reduce the power reaching the motor, a resistance in series that causes the

necessary voltage drop, with relative waste of power and unwanted heat production.

The second is that, at very low voltages, the motor might not produce sufficient

torque and therefore it would not start.

The PWM technique acts not on tension, but on time; indeed an electric motor

works according to average value of the power that reaches it. If the motor is

powered with a series of impulses that follow one another with sufficient speed,

thanks to its mechanical inertia, it will run with a continuous motion, proportional

to the average value of these pulses [110].

Figure (4.31) shows a voltage signal comprised of pulses of duration t0 that are

repeated every tc units of time. The output of a PWM channel is either Vs volts

during the pulse or zero volts; in this case, the maximum voltage that can be

supplied to the engine battery is 7.5 V. If this signal is supplied as input to a device

that has a response time much longer than tc, the device will experience the signal
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Figure 4.31: PWM signal with its two basic time periods

as an approximately DC input with an effective voltage of:

Veff = Vs
τo
τc

(4.17)

The ratio t0/tc is called the duty cycle of the square wave pulses, where tc is the

opposite of the signal frequency (tc = 1/f).

To apply this type of control to our robot, it is sufficient to drive a H bridge input

with the duty cycle square wave, variable provided by the oscillator (see Figure

4.32). The variation of the duty cycle allows to control the speed, while by changing

the logic level applied on the other bridge input the direction of motor rotation is

controlled.

Figure 4.32: DC motor control

As shown in figure 4.33, digital control is used to create a square wave, a signal

switched between on and off. This on-off pattern can simulate voltages in between

full on (7.5 Volts) and off (0 Volts) by changing the portion of the time the signal

spends on versus the time that the signal spends off. The duration of "on time"

is called the pulse width. To get varying analog values,(i.e. effective DC voltage

supplied to the load), the pulse width is changed or modulated.

In Figure 4.33, the green lines represent a regular time period. This duration or



117 Chapter 4

period is the inverse of the PWM frequency. In other words, with Arduino’s PWM

frequency at about 500Hz, the green lines would measure 2 milliseconds each. A call

to analogWrite() is on a scale of 0 - 255, for example analogWrite(255) requests

a 100% duty cycle (always on), and analogWrite(127) is a 50% duty cycle (on half

the time).

In our case, the robot is supplied with two identical sinusoidal PWM signals, one

Figure 4.33: PWM signal

per motor.

Motor Drive L293D

In order to be able to control both wheel and clamp motor, the L293D integrated

circuit is used, which is a motor driver specifically designed for controlling the direct

current motors.

L293D consists of a double H bridge on two independent and symmetrical circuits,

so as to be able to control 2 motors simultaneously.

The L293D is a 16 pin integrated circuit, as shown in Figure 4.34, where the pins

are:

• Enable: it is connected to an Arduino digital pin. It provides a logical consent
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to the motor without which no current flows to the motor;

• Input: it is connected to an Arduino PWM digital pin, it receives the PWM

signal;

• Output: it is connected to a motor terminal;

• GND: it is connected to the Arduino GND;

• Vcc 1: it is connected to the Arduino 5 V stabilizer output, it supplies power

to the logic circuits of the chip;

• Vcc 2: it is connected to the positive pole of the battery, it allows to supply

the motors with a different voltage from the one the logic of the circuit is

supplied with.

Figure 4.34: Pinout L293D

H-bridge

The H-bridge is an electronic circuit that can operate in the four quadrants of the

load current - load voltage plane. In particular, it is used to switch the polarity

of the voltage applied to the motor and then to reverse the direction of the motor

current. As shown in Figure 4.35, this circuit is composed of four MOSFETs (used

for the high switching speed and low energy loss), each of which has its own free

wheeling diode.

The two lower MOSFETs (Q2,Q4) are called low side sink and they absorb the

current from the motor while the upper MOSFETs (Q1,Q2) are named high side
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DC 

MOTOR

Q1

Q2 Q4

Q3

L R

Vbatt

GND

Figure 4.35: H-bridge

switch and they are connected to the voltage source directly.

The H-bridge operation can be summarized as follows:

• if Q1 and Q4 are turned on, the L-node of the motor is connected to power

supply while the R-node is connected to the ground. In this way, the current

Idc starts to flow through the motor from the L-node to the R-node and the

motor shaft starts spinning in a certain direction, for simplicity the forward

direction, see Figure 4.36a;

• if Q2 and Q3 are turned on, the current IDC flows through the motor in the

reverse way and then the shaft of the motor will start spinning backwards,

see Figure 4.36b.

However, Q1 and Q2 or Q3 and Q4 must not be turned on at the same time, since

a very low resistance path between the voltage source and the ground would be

created and it would produce a short circuit.

Lock Anti-Phase Drive

The previous section shows how to control the power transferred to the motor with

the PWM technique. However, in order to manage the robot’s movements, it is

necessary to be able to reverse the rotation direction of the motors. For this purpose,

the lock anti-phase drive is used, where the 4 MOSFETs are opened and closed in
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pairs arranged diagonally. However, since the motor is mainly an inductive load, it

is not possible to change the current that flows through the motor instantaneously.

For this reason, it is necessary to guarantee that the inductor-current can continue

to flow in some way. To achieve this, it is necessary to have one switch closed on

both legs of the motor. Thus the H-bridge operates as follows

Mapping Q1 Q2 Q3 Q4

Forward direction on off off on
Backwards direction off on on on

Table 4.2: H-bridge operation

IDC

IDC IDC
DC


MOTOR

Q2

Q1

Q4

Q3

L = Vbatt R = GND

Vbatt

GND

(a) H-bridge with Q1 and Q4 on

IDC

IDCIDC
DC


MOTOR

Q2

Q1

Q4

Q3

 L = GND

Vbatt

GND

R = Vbatt

(b) H-bridge with Q2 and Q3 on

Figure 4.36: H-bridge operation

Electrical Connections

The circuit used is built on matrix boards. The power supply of the Arduino,

the motors and the two L239D chips is produced by two 3.7 V Li-ion batteries

connected in series, obtaining an input voltage of approximately 7.4 V. The L239D

requires a power supply of 5 V for the internal circuitry: this voltage is supplied

by the 5 V pin on the Arduino board. A voltage divider is designed to monitor

the value of the input voltage so as to warn when the voltage falls below a preset

threshold. The limit switch installed on an arm clamp uses an Arduino analog pin

set as an input able to read the voltage difference between a reference value, in this

case 0 V, and the input. All electrical connections are shown in Figure 4.37.
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Figure 4.37: Circuit diagram
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4.4.3 Battery Monitoring

In order to use the charging station, the batteries must never completely discharge.

This means that the supply voltage must never fall below a minimum threshold so

that the robots can reach the structure autonomously. To monitor the state of the

batteries an Arduino analog pin is used, which allows to receive an analog signal

between 0 V and 5 V, to convert it into 10-bit digital and to send the digital signal

to Raspberry. Since two 3.7 V batteries are connected in series, in order to avoid

that the voltage applied to the Arduino pin is higher than 5 V, a simple voltage

divider is realized. The configuration of the divider is shown in Figure 4.38, with

these resistance values the voltage applied to the Arduino pins will vary between

0 V and 3.5 V depending on the state of charge of the batteries.

Figure 4.38: Voltage divider

4.4.4 Connections

For the purposes of this project it is essential to put in communication the different

systems which are in the block diagram shown in Figure 4.39. To do this, the

technical features of Raspberry are exploited:

• the connection between Computer and Raspberry is made using the Ethernet

port provided by the electronic card;

• the connection between Raspberry and Arduino is made using the USB 2.0

ports, where the Bluetooth USB dongle is installed, allowing the Bluetooth

connection between the two electronic boards.
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Raspberry ArduinoComputer Ethernet Bluetooth

Figure 4.39: Simplified block diagram

Connection between Computer and Raspberry

The connection between Computer and Raspberry is made using an Ethernet cable.

For the purposes of the project it is of crucial importance that this connection

happens correctly, otherwise the robots will malfunction. The camera video tracking

software, see Section 4.5.2, detects the presence of infrared LEDs, hence the robot

position, and compiles an array that contains:

• X coordinate of the detected LED;

• Y coordinate of the detected LED;

• area A of the detected LED.

Then, this data are written in three special arrays and sent via UDP packets

(User Datagram Protocol) to the port where the Raspberry is connected. This is

responsible for the “unpacking” of what it receives in order to proceed with the

subsequent parts of the implemented algorithm.

Connection between Raspberry and Arduino

The connection between Raspberry and Arduino is made using Bluetooth technology.

Bluetooth is a standard wireless technology for exchanging data between fixed and

mobile devices over short distances through short-wavelength UHF radio waves,

usually up to 20-30 m [111]. Radio waves that operate around the 2.45 GHz

band are used; to reduce interference, the Bluetooth protocol divides the band

into channels and switches between the various channels 1600 times per second

(frequency hopping). For the purposes of this project, the Bluetooth USB dongles

are used to connect Raspberry and Arduino via Bluetooth. In particular, the
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USBBLE-LINK is used, which is able to transmit at a distance of about 20 m using

the Bluetooth 4.0 technology.

Figure 4.40: USBBLE-LINK USB Bluetooth dongle

4.5 Software

4.5.1 Introduction

The block diagram shown in Figure 4.41 shows how the various components of the

test-bed communicate. Essentially, the work cycle is the following:

• Paths and positions where the robots must drag and drop orders are assigned

by using one of the dispatch strategies implemented in Matlab, see Section 2

and Section 3. These information is then saved in a text file;

• The camera detects the infrared LEDs installed on the roofs of the robots;

• The program written in Visual Studio, in C ++, assigns to each LED,

previously detected, the coordinates (X, Y ) and the area A. Then, these data

are written in arrays that will be sent to Raspberry

• Raspberry performs the following operations:

– initializing the connection via serial port with Arduino

– reading the text file in which both the trajectories that the robots must

follow and the relative actions that the vehicles must execute are written;

– unpacking arrays containing LED data;

– recognizing the robots in the work area;

– finding the PWM values to be sent to Arduino by using either the Pure

Pursuite controller or the MPC controller. This data is written in an

array that is sent to Arduino.
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• Arduino reads the array sent to it by Raspberry and commands the three

electric motors.

Figure 4.41: Test-bed communications block diagram

4.5.2 Visual Studio

In this section, the operation of the camera will be briefly explained, since all that

concerns the operating principle, the calibration and the modeling of the various

parameters are explained in Section 4.2.

Video Tracking

The program used for the robot tracking is written using Visual Studio. For graphic

image processing the libraries of OpenCV (Open Source Computer Vision Library)

are used, while FlyCapture SDK for image acquisition is used and conversion

into variables compatible with OpenCV itself. The program performs image

manipulation to obtain the coordinates (X, Y ) and area A of the infrared LEDs,

using the following functions:

• cvtColor(): converts the image to grayscale;

• threshold(): performs a binary screening;

• findContours(): given a binary image, it returns the position of the outer

contours of white pixels;



126 Chapter 4

• findDrawMarkers(): for each contour found by the findContours function,

it finds the moments and the position of the center of mass in pixel coordinates.

The moment of order 0 represents the area enclosed by the outline of the

LEDs placed above each individual robot. The pixel coordinates are then

transformed into coordinates (X, Y, Z) by means of conversion matrices.

Figure 4.42: Screens generated by Visual Studio

Figure 4.42 shows:

• at the bottom right, the screen of the Original image, or what is generated

by the cvtColor() function;

• at bottom left, the screen of the Thresholds Image, or what is generated by

the threshold() function;

• at the top right, the Drawing image, which is an image where it is possible

to read both the coordinates (X, Y ) and the area of each identified LED. In

particular, the presence of five LEDs that emit infrared rays can be noticed.



127 Chapter 4

These infrared rays are first identified by the camera and then processed by

the software so as to be assimilated to “dots” having different areas. This is

fundamental, as will be seen in Section 4.5.4, in order to correctly recognize

the different robots present on the worktop.

4.5.3 Matlab

Once the selected dispatching strategy has found the paths, which consist of a

sequence of the graph nodes, and the assignments for each robot, a text file is saved

where all the useful information for the Raspberry is stored. An example of text

file is shown in Figure 4.43. The series of numbers shown in Figure 4.43 has the

Figure 4.43: Text file generated by MatLab

following meaning:

• the first number represents the number of the robot to which the path written

later is assigned;

• the second number represents the length of the path in terms of graph nodes

(ηp), i.e. the number of nodes the path is formed of;

• the successive ηp-numbers are the graph nodes that form the path

• the next two numbers indicate where to pickup and where to deliver the

object, respectively.

The sequence is repeated a number of times equal to the number of robots that

must work simultaneously. Thus, in Figure 4.43 the path of robot 1 is composed of

5 points (11,6,7,2,3), it has to pick up the object at node 6 and deliver it at node

3. Instead, robot 2 has a path composed of 7 points (15,14,13,8,9) and it has to

transport an order from point 8 to point 5.
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However, if the MPC is used as the lower controller, instead of the Pure Pursuit,

one more step is needed. In this case, each edge that makes up the path which the

robot must follow, is first defined in a parametric way. Then, in accordance with

the sampling time adopted by the MPC, each edge is discretized. In this way, the

resulting path result composed of a finite number of discrete points, for example

the trajectory of robot 1, with a sampling time equalt to 0.1, will be:

x =[0.670,0.671, . . . ,0.679,0.680,0.711,0.742, . . . ,0.959,0.990, . . .]

y =[0.610,0.640, . . . ,0.880,0.910,0.908,0.906, . . . ,0.892,0.890, . . .]

4.5.4 Raspberry

As can be seen in Figure 4.41, Raspberry is the block to which a greater number of

operations to be performed belongs. The algorithm implemented on the electronic

card is written in C. When the program is started, the algorithm implemented in

Raspberry must first carry out the initialization of the connection with Arduino.

Then, it has to read the text file generated from MatLab and for each robot convert

the graph nodes that constitute the trajectory into (X, Y ) coordinates. Finally, the

algorithm has to initialize the connection with Visual Studio. After completing these

startup operations, the algorithm must perform the following functions cyclically:

• acquiring the data sent to it by the camera program and “unpacking” the

data contained in the received array;

• recognizing the robot;

• finding the PWM values to be sent to Arduino by using either the Pure

Pursuit controller or MPC controller;

• sending the new PWM values to Arduino
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Initialization of the connection with Arduino

Reading the text file and recognizing the paths

Initialization of the connection with visual 
studio 

LED data acquisition

Robot recognition

Pure pursuit / MPC

Send the data to Arduino

Figure 4.44: Algorithm scheme implemented on Raspberry

Trajectory Reading and Conversion in (X, Y) Coordinates

This operation is not performed by Raspberry cyclically, but only when the program

is started via compiler. As explained in Section 4.5.3, the text file generated by

Matlab contains all the information necessary to ensure that the robots work

according to a precise scheme. This text file must be read by the algorithm

implemented on Raspberry. The algorithm is responsible for writing a special array

that contains both the coordinates (X, Y ) of the robot trajectory and the actions

that the robot must execute once it has reached every graph node. To achieve this,

it is necessary to know the coordinate values of all fifteen graph nodes. In our case,

this values are stored in two vectors, see Listing 4.1.

Listing 4.1: Coordinates (X,Y ) of graph nodes Q
float XWP[15] = {0.69, 1.00, 1.30, 1.59, 1.87, 0.68, 0.99, 1.29, 1.59, 1.87, 0.67, 0.98, 1.28, 1.58, 1.86};

float YWP[15] = {1.21, 1.19, 1.17, 1.14, 1.12, 0.91, 0.89, 0.88, 0.85, 0.83, 0.61, 0.58, 0.58, 0.57, 0.55};

Once the robot path is known, an algorithm is implemented to create three

arrays for each robot involved. The first two arrays are the x-coordinate array and

the y-coordinate array. As suggested by their name, they contain the coordinates

of the graph nodes that the robot must follow. Instead, the third arrays, which is
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called actions, contains a sequence of numbers that indicates the action that the

robot must execute in a specific graph node. This number is equal to: +1 where

the robot must pickup the object, -1 where the robot must deliver the object, 0

if no actions are required. As shown in Figure 4.43, the algorithm produces the

following arrays:

robot 1: X − coordinate = [0.67, 0.68, 0.99, 1.00, 1.30]

Y − coordinate = [0.61, 0.91, 0.89, 1.19, 1.17]

actions = [0, 1, 0, 0,−1]

robot 2: X − coordinate = [1.86, 1.58, 1.28, 1.29, 1.59, 1.87, 1.87]

Y − coordinate = [0.55, 0.57, 0.58, 0.88, 0.85, 0.83, 1.12]

actions = [0, 0, 0, 1, 0, 0,−1]

Reading a UDP packet

This operation is performed cyclically by Raspberry. From Visual Studio a 216

byte array of doubles is sent. This value is obtained by taking into account that: i)

a double is bytes, ii) at most there can be nine LEDs in the working area. Thus:

array size sent to Raspberry = 8 · 9 · 3 = 216 byte

The reason why nine LEDs can be detected at most is that, as better explained in

Section 4.5.4, robot 1 has two LEDs, robot 2 has three LEDs and robot 3 has four.

Listing fig:udp-read shows the rows of the algorithm by which the

"unpacking" of the incoming array from Visual Studio is performed.

In the X[], Y [] and A[] double arrays, the values of the coordi-

nates and the area of each LED detected by the camera are saved.
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Listing 4.2: Reading UDP packets

for (i=0; i<9; i++){

for (j=0; j<8; j++){

aus[j] = message[j+i∗8];

}

X[i] = (∗(double∗)aus);

}

for (i=9; i<18; i++){

for (j=0; j<8; j++){

aus[j] = message[j+i∗8];

}

Y[i−9] = (∗(double∗)aus);

}

for (i=18; i<27; i++){

for (j=0; j<8; j++){

aus[j] = message[j+i∗8];

}

A[i−18] = (∗(double∗)aus);

}

Robot Detection

One of the fundamental steps of the algorithm consists of the part of the code

dedicated to the recognition of the different robots on the worktop and to the

compilation of the different parameters of the struct robots. As can be noticed

from Listing 4.3, the values that characterize these struct are:

• (X, Y ) coordinates of the head

• (X, Y ) coordinates of the tail, i.e. the center of gravity of the vehicle

• the angle of inclination expressed in degrees of the robot in relation to the

general reference system X, Y,, see Figure 4.45

Listing 4.3: struct robot

typedef struct robot{

double X_Head;

double Y_Head;

double X_Tail;

double Y_Tail;

double Angle;

}Robot;
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A different number of infrared LEDs are positioned on the robot roofs. The LEDs

Figure 4.45: Possible values of the inclination angle of the robots

have two types of configuration:

• area greater than 15 cm2 (large)

• area less than 10 cm2 (small)

Each robot is equipped with a different number of LEDs as shown in Figure 4.46.

For each robot the led placed at the center is the one with the largest area while

Figure 4.46: UNIPV robots

all the others are smaller. The "small" LEDs, are placed at different distances in

relation to the "big" LED placed at the center of each robot, in particular:

• 0.055 m if it represents a control led

• 0.007 m if it represents a "head" led
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In particular, the following configuration is used

• 1 small led for the first robot (robot head)

• 2 small LEDs for the second robot (a "head" LED and a control LED)

• 3 small LEDs for the third robot (a "head" LED and two control LEDs)

The operating principle of the robot recognition algorithm can be summarized as

follows: first in the array the algorithm finds A = [], which is obtained by the

"unpacking" of the UDP data, a LED that represents the robot center of gravity,

i.e. (A[i] > BIGAREA). Then, the algorithm looks for LEDs whose area is

both small (A[i] < BIGAREA) and its distance from the tail is less than 8 cm

(dist < BIGRADIUS). At the same time, the number of LEDs with a small area

is counted. Moreover, if the LED with a small area has a distance from the center

of gravity that is lower than BIGRADIUS, but, at the same time, greater than

SMALLRADIUS, the head of the robot is found. Finally, knowing the number

of LEDs with a small area found, the struct robots can be initialized (robot 1 has

only one small are LED, robot 2 has two, while robot 3 has three). In Listing 4.4

the atan2 function is used in order to obtain the robot angle of inclination. This

function always returns a result which is included between −π and π, as reported

in Equation 4.18.

atan2(X, Y ) =



tan−1( Y
X

) if X > 0

tan−1( Y
X

) if X > 0 and Y ≥ 0

tan−1( Y
X

) if X ≤ 0 and Y < 0

π
2

if X = 0 and Y > 0

−π
2

if X = 0 and Y < 0

(4.18)
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Listing 4.4: Robot detection Algorithm

for (i−0;i<9;i++){

nSmall−0;

if(A[i]> BIGAREA){

for(j+0; j<9; j++){

if(A[j]< BIGAREA){

dist = sqrt((X[i]−X[j])∗(X[i]−X[j])+(Y[i]−Y[j])∗(Y[i]−Y[j]));

if(dist < BIGRADIUS){

nSmall ++;

if(dist>SMALLRADIUS){

AusHeadX = X[j];

AusHeadY = Y[j];

}

}

}

}

if(nSamll == 1){

robot1.X_Head = AusHeadX; robot1.Y_Head = AusHeadY; robot1.X_Tail = X[i]; robot1.Y_Tail = Y[i];

AusAngle = atan2((robot1.Y_Tail − robot1.Y_Head), (robot1.X_Tail − robot1.X_Head));

robot1.Angle = AusAngle∗180/pi;

}else if(nSmall == 2){

robot2.X_Head = AusHeadX; robot2.Y_Head = AusHeadY; robot2.X_Tail = X[i]; robot2.Y_Tail = Y[i];

AusAngle = atan2((robot2.Y_Tail − robot2.Y_Head), (robot2.X_Tail − robot2.X_Head));

robot2.Angle = AusAngle∗180/pi;

}else if(nSmall == 3){

robot3.X_Head = AusHeadX; robot3.Y_Head = AusHeadY; robot3.X_Tail = X[i]; robot3.Y_Tail = Y[i];

AusAngle = atan2((robot3.Y_Tail − robot3.Y_Head), (robot3.X_Tail − robot3.X_Head));

robot3.Angle = AusAngle∗180/pi;

}

}

}

Sending data to Arduino

Once the control action is found, as will be explained in Section4.6, the control

action must be sent to Arduino. The connection between Raspberry and Arduino

is achieved by using the USB Dongle Bluetooth, see Section 4.4.4. These dongles

are seen as a normal serial port by Raspberry. Thus, by using the special library

(< wiringSerial.h >), it is possible to write or read some data. In particular,

it is possible to send Arduino the previously obtained PWM values through the

serialPutchar() command, while the serialGetchar() allows to read the values sent

by Arduino ( the state (ON / OFF) of the limit switch installed on the clamp and
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the percentage of the batteries). Listing 4.5 shows the code used for sending the data

through the USB Dongle Bluetooth. Moreover, it is possible to note that the sent

data has a fixed sequence. In particular, the first datum is the PWM value for the

right motor wheel, the second is the PWM value for the left motor wheel. The third

datum corresponds to the PWM value which controls the motor of the clamp, while

the fourth datum corresponds to a control number that will be used by Arduino

to verify the integrity of the received data packet: this data is always equal to 60.

Listing 4.5: Syntax to send the data to the serial port

for(i=0: i<3; i++)

serialPutchar(fd1, sendPWM1[i]);

serialPutchar(fd1,60);

StatusPliers1 = serialGetchar(fd1);

StatusBattery1 = serialGetchar(fd1);

for(i=0: i<3; i++)

serialPutchar(fd2, sendPWM2[i]);

serialPutchar(fd2,60);

StatusPliers2 = serialGetchar(fd2);

StatusBattery2 = serialGetchar(fd2);

Arduino

Arduino is responsible both for commanding the robot motors (right and left motors

and clamp motor) and for sending Raspberry the states of the limit switch and of

the battery. The Arduino program consists of three main parts: the definition of

the variables, a cycle performed only when the program starts (voidsetup()) and a

cycle performed cyclically (voidloop())"

• variable declaration: in this part of the program all the variables used

in the void loop() are initialized. As shown in Listing 4.6, it is possi-

ble to see that these variables can be assigned a number corresponding

to the Arduino pin to which the input or output is connected (for ex-

ample, the pin for enabling the left wheel, which is represented by the

Enable_Motor_SX variable, is connected to the pin with the number 2);
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Listing 4.6: Arduino software: variable declaration

#define Enable_Motor_SX 2

#define Enable_Motor_DX 4

#define Enable_Motor_Pliers 12

#define Pin1_Motor_SX 3

#define Pin2_Motor_SX 9

#define Pin1_Motor_DX 10

#define Pin2_Motor_SX 11

#define Pin1_Motor_Pliers 5

#define Pin2_Motor_Pliers 6

#define Status_Pliers 17

#define ZERO 127

char incomingByte[] = [0,0,0,0];

int n = 0;

int PinBatt = A0;

int ValPinBatt;

float Vpin_perc;

float Vbat;

float calc_res;

float R1 = 109000;

float R2 = 150000;

byte val_perc;

• void setup(): in this phase of the program, the state (input / output) of

the previously initialized variables are set. Furthermore, since data are

transmitted via serial port, in the void setup(), it is necessary to set the data

transmission speed;

• void loop(): it contains the main body of the program which is repeated

cyclically. Initially, the values received from Raspberry are read and stored in

the incomingByte vector: the program receives four values, the first three are

PWMs for the engines while the fourth corresponds to the control byte (set

as a constant number equal to 60). When Arduino receives four data, and the

last has the value of 60, the algorithm assigns the received PWMs. Thus, the

program writes the PWMs to the corresponding outputs, adding and subtract-

ing to ZERO (127, the PWM value corresponding to the stationing) the data

received, so as to carry out the anti-phase drive lock. This procedure is per-

formed for all three motors (wheel left, right wheel, clamp). Finally, using the
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analogWrite function, the values of the limit switch on the clamp and of the

battery state are read, which are sent to Raspberry via serial communication.

Listing 4.7: Arduino software: void loop()

void loop(){

while(Serial.available()>0){

digitalWrite(Enable_Motor_SX, HIGH);

digitalWrite(Enable_Motor_DX, HIGH);

digitalWrite(Enable_Motor_Pliers, HIGH);

incomingByte[n] = Serial.read();

n++;

if(n==4){

analogWrite(Pin1_Motor_SX, ZERO + incomingByte[0]);

analogWrite(Pin2_Motor_SX, ZERO + incomingByte[0]);

analogWrite(Pin1_Motor_DX, ZERO + incomingByte[1]);

analogWrite(Pin2_Motor_DX, ZERO + incomingByte[1]);

analogWrite(Pin1_Motor_Pliers, ZERO + incomingByte[2]);

analogWrite(Pin2_Motor_Pliers, ZERO + incomingByte[2]);

int Status_Read = analogRead(Status_Pliers);

if(Status_Read >950){

Serial.write(0)

}else{

Serial.write(1)

}

delay(10);

ValPinBatt = analogRead(PinBatt);

Vpin_perc = map(ValPinBatt,0,1023,0,500);

Vbatt = Vpin_perc ∗ calc_res/100;

Vbat −= 7

val_perc = 100 ∗ Vbatt/1.4;

Serial.write(val_perc);

delay(10)

n = 0;

}

}

}

4.6 Low Level Controllers

In this section, the controllers of the robots are described in order to ensure that

they follow a given trajectory and perform actions initially set. In particular,
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the controllers are organized in a hierarchical way. At the higher level, there is

the optimal dispatching, which is written in Matlab and relies on the algorithms

mentioned in Section 3 and Section 2. At the lower level, a control algorithm

is employed to guarantee the robots movement on the graph. At this level two

different controllers are developed: a pure pursuit approach and model predictive

control.

4.6.1 Pure Pursuit Approach

In order to apply the Pure Pursuit control, it is necessary to find the relationship

between the applied PWM and robot dynamic. First, in this section the relationship

between the PWM and the radius of curvature is introduced. Then, the section

describes how it is possible to find the correct input (PWM) in order to follow

the given trajectory. Finally, the pure pursuit algorithm and its characteristic

operations are analyzed.

Robot Dynamic

The robot movement, as seen in the previous chapter, is ensured by two motors

controlled by PWM technique. Thus, modifying these values, the robot can follow

different trajectories, which can be of two types:

• Rectilinear trajectory: in order to follow a straight line, in theory, it would

be sufficient to assign the same PWM value to the wheel motors, but this

is practically impossible due to inevitable inaccuracies in the assembly and

transmission frictions;

• Curvilinear trajectory: by assigning different PWM values to the two motors,

the robot will follow a curvilinear trajectory, characterized by a radius of

curvature.

It is therefore necessary to find a correspondence between the PWM values sent

to the wheel motors and the radius of curvature of the trajectory that the robot

follows.



139 Chapter 4

Radius of Curvature and PWM Values

A fixed PWM value is assigned to one of the two wheel motors and, by varying

the PWM sent to the other motor, the robot follows a circumference. On this

circumference, 3 points (p1, p2 and p2) of known coordinates are identified. A

generic circumference that pass through the three points can be derived by solving

the following system of equations:
x2
p1

+ y2
p1

+ axp1 + byp1 + c = 0

x2
p2

+ y2
p2

+ axp2 + byp2 + c = 0

x2
p3

+ y2
p3

+ axp3 + byp3 + c = 0

(4.19)

Once the circumference parameters a, b and c are obtained, it is possible to find

the radius as

Radius =

√(
−a
2

+
−b
2

)2

Therefore, by fixing the PWM of a motor equal to 18 and using the Table 4.3,

it is possible to determine the PWM value to send the other motor in order to

have a given radius of curvature. However, there are situations where the robot

Radius 0.4668 0.3701 0.3114 0.2687 0.2304 0.2212 0.2066 0.1837 0.1764 0.1642 0.1468

PWM 22 24 26 28 30 32 34 36 38 40 42

Table 4.3: Radius of curvature and PWM values

does not have to follow a predetermined trajectory, but it only needs to change its

orientation. To achieve this, the best way is to rotate the robot around its vertical

axis. This is done by assigning the motors two equal PWM values in the module

but opposite in sign, so that the motors rotate in the opposite direction.

Geometric Relationships

In Figure 4.47 the geometric relationship of the Pure Pursuit approach is shown.

Let G(x, y) be the goal point. Define l as the look ahead distance. Considering
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rneed

l

G(x, y)

x

Y

Xd
O

y

Figure 4.47: Geometric relationship of the algorithm

the right triangle GOB

x2 + y2 = l2 (4.20)

and the sum of the segments on the x axis goal point

x+ d = rneed (4.21)

from which

d = rneed − x (4.22)

From the right-angled triangle of sides y, x, x+ d::

(r − x)2 + y2 = r2
need (4.23)

where it is possible to find the radius of curvature needed to reach the goal point as:

2 · rneed · x =l2

rneed =
l2

2 · x

The geometric relationships described above are obtained in the robot reference
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system. However, the goal point is expressed in the world reference system. Thus,

in order to obtain the goal point coordinates expressed in the robot reference system

(i.e. Xv, Yv), it is necessary to convert them as follows:

Xv =(Xg −Xr)cos(θ) + (Yg − Yr)sin(θ)

Yv =− (Xg −Xr)sin(θ) + (Yg − Yr)cos(θ)

where: θ is the orientation angle of the robot, (Xg − Yg) and (Xr − Yr) are the goal

coordinate and the robot coordinate in the world reference system, respectively.

Pure Pursuit

Pure pursuit is an algorithm developed for the control of autonomous driving

vehicles. It is based on the calculation of the radius of curvature of the trajectory

that the vehicle must follow to move from the position in which it is to another

point, called goal point. Given the position of the robot and the trajectory to follow,

the closet point to the vehicle and the goal point are identified. The goal is a future

point on the trajectory whose distance from the current position of the vehicle

depends on the so called “look ahead distance window”. Once such point has been

identified, the curvature necessary to attain it is computed and the corresponding

inputs applied. The algorithm is applied simultaneously to each individual robot,

Figure 4.48: Pure Pursuit approach with different look ahead distances

but it is tailored to each of them. Indeed, the robots can have different starting

positions and trajectories. The pure pursuit program is divided into 3 main modes,

each of which has a different function:

• Cruise: it deals with moving the robot between two different points on the

graph, using the Pure Pursuit algorithm;
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• Action: it takes care of the actions to be performed once the robot has arrived

at the points of the graph, for example taking an object, leaving an object or

simply passing through the point without taking any actions;

• Reorientation: it deals with correcting the orientation of the robot.

The operations is schematized in the flow chart reported in Figure 4.49.

Start

Cruise

Action

End

Leave object No actionTake object

Reorientation

Figure 4.49: Pure Pursuit flow chart

Cruise mode

The “Cruise” mode allows the robot to move from one point to another of the graph,

following a trajectory optimized by a Pure Pursuit algorithm. The first operations

of the algorithm are to find the graph node to be reached and to calculate the

distance between the robot and the selected graph node. Successively, the approach

finds the radius of curvature for reaching the node and it compares this value with

the values of radius curvatures reported in Table 4.3. From this comparison, the

radius of curvature that results as close as possible to the theoretical one is chosen.

Finally, the approach checks if the distance between the robot’s center of gravity

and the graph node to be reached is less than 0.075 m. If so, it means that the

robot has reached its target graph node. Therefore, the algorithm will exit from

the cruise mode and will enter the action mode, according to Figure 4.49.
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Otherwise, the robot has not reached its target node. Thus, it will remain in cruise

mode and it will repeat all the previous operation until it reaches its target node.

Action Mode

The “Action” mode allows the robot to perform an action every time it reaches a

graph node in its trajectory. As soon as the program enters this cycle, in order to

prevent the robot from moving away from the target node it assigns null PWM

values to both motors. In this mode, three possible actions can be performed

alternatively:

• Take object: the robot picks up the object. In particular, the program checks

the clamp status. If no object is detected, the clamp is closed and thus the

object is taken.

• No action: this is the simple passage through the node graph.

• Leave object: the robot delivers the object, which means the clamp will be

opened.

Once one of the aforementioned actions has been completed, if the vehicle has not

yet completed its trajectory, the algorithm exits from the “Action” mode and enters

the “Reorientation” mode, otherwise it exits “Action” mode and stops.

Reorientation Mode

Once a point on the route has been reached and the necessary action has been

completed, this mode allows the robot to orient itself towards the next graph node

to be reached. Therefore, PWM values are found to be sent to the robot motors so

that the vehicle is aligned with the next target. Note that a tolerance is provided

to prevent the robot from remaining in Rotation mode for a long time.

The pure pursuit algorithm is extremely simple but it may be not very accurate

nor does it allow to consider important features such as collision avoidance. For

this reason, the Model Predictive Control is investigated as an alternative. MPC

is an advanced control based on the solution of an optimization at each time step.
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The method relies on a model which is employed to predict the future behavior

of the vehicles. In particular, such prediction allows to improve the performance.

By looking ahead, it is, for example, possible to slow down the vehicle so as to

perform a curve staying within lane (something that traditional controllers find

quite difficult). By relying on optimization, MPC allows to include explicitly the

presence of states and input constraints. Although it appears to be computationally

heavier than the pure pursuit, MPC is able to guarantee a better performance.

4.6.2 Model Predictive Control

In order to apply a control on the mobile robot, it is necessary to model the dynamic

process under exam. First, a mathematical model that describes the robot dynamic

is introduced. Then, the continuous time equations of the angular speeds of the

motors are defined, and, by considering the coordinates of the points that describe

the trajectory, the section shows how to calculate the speed values needed by

the vehicle to follow the default route. However, the inputs of the system under

consideration are not the speeds, but the PWM signals. Therefore, it is necessary

to establish a relationship between these two variables: PWM speeds and signals,

as well as motor inputs and outputs. Once this relationship is found, the MPC is

first introduced and then applied in order to follow the trajectory generated by the

high level control explained in Chapter 2 and Chapter 3.

Robot Model

In order to create a good controller, it is necessary to determine a model that

describes the kinematics of the robot. Kinematics is the branch of classical mechanics

which describes the motion of a point without considering the mass of the objects

or the forces that may have caused the motion. The kinematic equations are used

to transform the motion from polar coordinates (r, θ) to a rectangle coordinate

system (x, y) system.

The robot system, see Figure 4.50a, can be described by the non-linear continuous-
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time model characterized by the following equations of state:
ẋ1 = vrobot cos(x3)

ẋ2 = vrobot sin(x3)

ẋ3 = w

(4.24)

where the model inputs are the linear velocity vrobot of the robot and the angular

velocity w while, the state variables are x1, x2, x3, the world coordinate (x1 =

x, x2 = y) and the angle (x3 = θ) that is formed with the X axis, respectively, as

shown in Fig 4.50a.

(a) Robot model (b) Differential-drive model

Figure 4.50: Robot differential-drive model

To allow the robot to reach every point of the plane it is necessary that it can make

the curves of the trajectory even though it is not equipped with a steering. For

this reason, a differential-drive model is used. This technique consists in providing

each wheel of the vehicle with a speed that is independent of the other, so as to

allow the robot to follow any radius of curvature.

Figure 4.50b shows the differential drive robot layout, where wR is the velocity of

the right wheel, wL is the velocity of the left wheel, d is the distance between the

center of the wheels and r is the radius of the wheel. A differential drive robot is a

mobile robot with two driving wheels in which the overall velocity is split between

left and right wheels, in wL and wR.
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To construct a simple model of the constraints that arise from the differential drive,

only the distance d between the two wheels and the wheel radius r, are necessary.

If wR = wL > 0, then the robot moves forward in the direction that the wheels are

pointing, if wL = −wR 6= 0, then the robot rotates clockwise because the wheels

are turning in opposite directions, see Figure 4.51. In general, if wL = wR, then

the distance covered over a duration t of time is r · t · wR/L, because t · wR/L is the

total angular displacement of the wheels, for more information see [112]. Using this

(a) (b)

Figure 4.51: 4.51a Pure translation occurs when both wheels move at the same angular
velocity; 4.51b pure rotation occurs when the wheels move at opposite velocities

model based on the difference in angular velocity of the two wheels, it is appropriate

to take the angular velocities as new inputs of System 4.24 the angular velocities

wR e wL.

To make the change of variable possible and pass from the linear speed vrobot and

angular w of the robot to the angular velocities of each wheel, the following matrix

is used:wR

wL

 =

 r
2

r
2

r
d −

r
d

−1 vrobot
w

 (4.25)
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In this way, it is possible to rewrite the linear velocity vrobot and the angular w in

terms of wR and wL as follows:vrobot = r
2
wR + r

2
wL

w = r
d
wR − r

d
wL

Replacing these values in the System 4.24, the equations that describe the vehicle

kinematics become:
ẋ1 = r

2
(wR + wL) cos(x3)

ẋ2 = r
2
(wR + wL) sin(x3)

ẋ3 = r
d
(wR − wL)

(4.26)

As can be noticed from System 4.26, the translation speed depends on the average

of the angular wheel velocities, while the robot’s rotation rate grows linearly with

the wheel radius but it decreases linearly in relation to the distance between the

wheels.

Moreover, from the third equation of System 4.26, it is possible to note that the

robot can follow curves depending on the speed difference between the two wheels.

Thus, the angular velocities wL and wR are seen directly as system inputs. However,

the speed cannot be set directly, but through the PWM signals.

Motor Model

In this section, the problem of motor modeling is analyzed, as to define a

relationship between the angular velocities, the inputs of the robot model, and the

voltage signals (PWM) which are the signals actually supplied to the motor.

The best solution to this problem would be to directly apply encoders on the axis

of each motor, so as to have the two speeds available in real time. Unfortunately,

this solution is not viable due to the reduced dimensions of the motors of the

vehicles, which do not allow the coupling of an encoder to its own axis. Thus, it is
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decided to try to obtain them analytically.

In particular, in this thesis, this work tries to use a parametric ARX (AutoRegres-

sive with eXogeneous input) model for describing the dynamics between the inputs

(i.e. PWM) and outputs (i.e angular speed) of the motors.

Modelling Method System modelling plays an important role in the application

of the control on the robot and therefore on the achievement of the objective of this

thesis. However, it is also one of the more complicated tasks, as it is more closely

connected with reality.

In control applications is not necessary to have a deep mathematical knowledge

of the system under study, but it is sufficient to predict the system evolution and

obtain sufficient robustness to parameter uncertainty. Therefore the study uses

a black-box model. This model is used when either the internal structure of the

system is unknown or there are no first principles available, the only chance is to

collect data and use them to guess the links between inputs and outputs [113].

In a SISO model, as shown in Figure 4.52 where: input (u) is the PWM signal sent

to the motor and output (y) is the relative angular speed. In this study, the method

(a) (b)

Figure 4.52: Control System represented by SISO model, for right (a) and left (b) motor

adopted in order to model the process is based on a parametric identification of an

ARX model.

The evolution of the estimated output allows to follow the dynamic evolution of

the process and to detect the presence of fault from the variation of the estimated

parameters of the identified model. An interesting insight into system identification

using ARX model is reported in articles [114] [115].

When attempting to identify a model from extracted data it is common practice to

follow four basic steps:



149 Chapter 4

• the acquisition of dataset;

• a set of candidate models and the determination the best model in the set;

• parameters estimation;

• validation model;

Data acquisition is made possible by using a code written on Arduino, the infrared

camera and Visual Studio (an integrated development environment). The other

three steps are performed by using System Identification toolbox on Matlab. Before

proceeding with the analysis of the model identification, a detailed description of

the ARX model is given below.

ARX Model Structure The ARX structure describes the input effects uarx(t)

on the process output yarx(t); in this case, the effects that the two PWM signals

sent to Arduino have on the angular velocities wL and wR. By using this model,

motor dynamic is defined as a discrete-time system.

The ARX model can be described as follows:

yarx(t) =− a1y
arx(t− 1)− · · · − anayarx(t− na) + b1u

arx(t− nk) + . . .

· · ·+ bnbu
arx(t− nb − nk + 1) + earx(t)

(4.27)

where earx(t) refers to the noise supposed to be Gaussian, ana and bnb are the model

parameters, na indicates the polynomial degree of the output (system order) and

nb is the polynomial degree of the input, nk is the time delay between yarx(t) and

uarx(t).

This construction, of a discrete-time linear system is suitable for a punctual analysis

o the process behavior (i.e. to evaluate the output value for each single instant of

time).

The representation of the ARX model, given by the corresponding differential equa-

tion, is now defined in a simple way to allow its manipulation and implementation

on a processor. For this purpose, it is possible to use the polynomial representation:
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Aarx(z)yarx(t) = Barx(z)uarx(t− nk) + earx(t) (4.28)

where Aarx(z) and Barx(z) are given by:

Aarx(z) = 1 + a1z
−1 + · · ·+ anaz

−na (4.29)

Barx(z) = b1z
−1−nk + · · ·+ bnbz

−nb−nk (4.30)

and z−1 is the delay operator such as yarx(t) = z−1uarx(t).

Aarx(z) and Barx(z) are estimated through the SystemIdentification toolbox on

Matlab.

Data Collection As mentioned in the previous paragraph, the first step to

identify the model is to collect the data. Inputs of this model are the Pulse Width

Modulation (PWM) signals of both motors (left and right); while outputs are the

relative angular velocities (wL and wR).

The purpose of this step is to collect a set of data that describe how the system

behaves over its entire range of operation. The idea is to vary the inputs and

observe the impact on the outputs.

By using a code written on Arduino, the robot is supplied with two sinusoidal

PWM signals, (same signal for both motors). These sinusoidal signals (with time

period of t = 0.250 s) are sampled in order to collect 80 PWM values. Thanks to

the infrared camera and a code written in Visual Studio, many values of the X and

Y world coordinates, related to the positions assumed by the robot in the world

reference system, are collected.

PWM Input Signals In our case, the robot is supplied with two identical

sinusoidal PWM signals, one for each motor. As written above, the maximum value

of the PWM signal is 255 and the minimum value is 0. However, a code is used

where the signals sent to Arduino could assume a maximum value of +127 and a

minimum of -127. Thus, PWM values are included in the interval [-127, + 127].



151 Chapter 4

Since the inputs of the ARX model are voltage PWM signals, before proceeding

with the identification of the model it is necessary to make the following proportion:

PWMVolt : 7.5 = PWMArduino : 127 (4.31)

The PWM signals sent to Arduino can assume, as already mentioned, negative

values since they vary in the range [-127, +127], therefore also the voltage values

can assume negative values, in particular the minimum allowed value is -7.5 volts.

Velocity Output Signals Once the PWM signals have been sent to Arduino,

the robot moves on the plane and it is possible to visualize the x and y coordinates

(expressed in meters) on Visual Studio. However, the outputs to be considered in

the ARX model under consideration are, as already mentioned, the angular speeds

of both motors, i.e. wR and wL.

First of all, the distance between each sampling point is calculated as:

d(P1, P2) =
√

(x1(t+ 1)− x1(t))2 + (x2(t+ 1)− x2(t))2 (4.32)

Then, the linear velocity vrobot can be obtained as vrobot = d(P1, P2)/t while the

angular speed w as w = vrobot/r.

It should be remarked that the kinematics of the mobile robot is specified by

differential drive model equations. Therefore, the relation between linear velocity

v and the angular velocities can be expressed through the equations (previously

submitted):

vrobot = r
2
wR + r

2
wL

w = r
d
wR − r

d
wL
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So, it is possible to obtain the angular speeds of both motors by changing the

variables, using the matrix:

wR

wL

 =

 r
2

r
2

r
d −

r
d

−1 vrobot
w


where d represents the distance between the wheels.

Therefore, once a sufficient number of experimental data is collected, see Figure 4.53,

Figure 4.53: Sampled data plot

obtained by considering as inputs the PWM signals (voltage) and as outputs the

angular velocities wL and wR (rad/sec), it is possible to use a toolbox on Matlab in

order to identify the parameters of the ARX model.

System Identification It is possible to talk about parametric identification

when the class of models can be represented by a structure that allows to describe

the dynamics of input-output of the system with a finite number of numerical

values, called parameters.

The identified model falls into the class of time-invariant linear models and it can

be rewritten as:

yarx(t) = G(z, ϑ)uarx(t) (4.33)
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where the term G(z, ϑ) represents the deterministic component of the model and

describes the relation between the input uarx(t) and the output yarx(t), ϑ is the

vector of the coefficients of the polynomials at the numerator and at the denominator

of the rational function G(z).

The transfer function of the LTI (4.33) model can be written as:

G(z, ϑ) =
Barx(z)

Aarx(z)
(4.34)

where A(z) and B(z) are the polynomials explained above (equations (4.29) and

(4.30) ), while ϑ is the vector of the parameters:

ϑ =
[
a1 + · · ·+ ana + b1 + · · ·+ bnb

]′
Considering Equation 4.27 of the ARX model, since the error earx(t) is filtered by

a transfer function that has the same transfer function denominator of G(z), i.e the

deterministic channel, it is neglected in Equation 4.33.

In order to estimate the value of the parameters and validate the model in question,

Matlab SystemIdentification toolbox is used.

Parameter Estimation Sampled data are imported into the System Identi-

fication app. The offsets are removed from the data by subtracting the mean values

of the input and the output. The mean values are subtracted from each signal

because linear models that describe the responses to deviations from a physical

equilibrium are built. With steady-state data, it is reasonable to assume that the

mean levels of the signals correspond to such an equilibrium.

Removing means, adds a new data set to the System Identification app, which is

used for estimating models. These data are split into two parts, the first part for

model estimation and the second part for model validation.

Then it is possible to specify the model orders na, nb, and nk to estimate ARX

models.

At first the orders are not specified, but a range of [1:10] is set for each order. In this

way simple polynomial models are estimated for a range of orders and delays. By
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comparing the obtained models, the best model that fits the data is chosen. Then,

the System Identification Toolbox estimate the parameters a1 . . . an and b1 . . . bn

from the data.

The parameters obtained are the same for both models (i.e. right and left motor

models).

In particular, as shown in Figure 4.54, nine alpha parameters (the first one, always

equal to one, is not considered because a unitary coefficient of yarx(t)) and only

one beta parameter are obtained.

Figure 4.54: System Identification Toolbox: parameters estimation

So, considering the values of the estimated parameters and that na = 9, nb = 1 and

nk = 4, it is possible to write ARX model as:

yarx(t) =0.2544 · yarx(t− 1)− 0.1953 · yarx(t− 2)− 0.001153 · yarx(t− 3)+

− 0.007638 · yarx(t− 4)− 0.02795 · yarx(t− 5)− 0.05348 · yarx(t− 6)+

− 0.03943 · yarx(t− 7)− 0.8312 · yarx(t− 8)− 0.2018 · yarx(t− 9)+

+ 12.88 · uarx(t− 4)

(4.35)

Model Validation The last step to be taken, during this identification study,

is the analysis of the results, checking the accuracy of the proposed model.

Figure 4.55 shows the model response to the input in validation data. The fit values

for each model are summarized in the Best fit area of the Model Output window.

The models in the Best Fits list are ordered from the best at the top to worst at the
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bottom. The fit between the two curves is computed so that 100 means a perfect

fit, and 0 indicates a poor fit.

In this case, the output of the model matches the validation data output, therefore

the model seems to capture the main system dynamics and thus it highlights that

the use of linear modeling is more than enough.

Figure 4.55: Model-output plot

As can be noticed from Figure 4.55 a satisfactory agreement between identified and

experimental data is found. The ARX 914 predicts the evolution of motor angular

velocity in a successfully way.

Robot and Motor Model

Once a model that describes the motor dynamic is obtained, it is possible to

include it in the robot model, which is explained in Section 4.6.2, in order to get a

more complete robot model.

In this way, the new state variables are the outputs of the ARX model, the x1 = x

x2 = y coordinates and the angle x3 = θ that describe the position and orientation

of the vehicle in the two-dimensional space.

Furthermore, in order to apply the predictive control, a discretization of the

continuous-time model that describes the dynamics of the robot ( Equation 4.26) is

necessary.
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
x1(t)−x1(t−1)

ts
= r

2
(wR(t) + wL(t)) cos(x3(t))

x2(t)−x2(t−1)
ts

= r
2

(wR(t) + wL(t)) sin(x3(t))

x3(t)−x3(t−1)
ts

= r
d
(wR(t)− wL(t))


x1(t) = x1(t− 1) + ts

r
2
(wR(t) + wL(t)) cos(x3(t))

x2(t) = x2(t− 1) + ts
r
2
(wR(t) + wL(t)) sin(x3(t))

x3(t) = x3(t− 1) + ts
r
d
(wR(t)− wL(t))

(4.36)

where ts is the sampling time. The same sampling time is considered to identify

both the points within optimal trajectory and model.

Integrating Equations 4.36 with those related to the ARX 914 model (i.e. Equa-

tion 4.27), the robot discrete-time system used in this work can be defined as

follows:



yR(t) = −α1yR(t− 1)− α2yR(t− 2)− α3yR(t− 3) · · · − α9yR(t− 9) + β4uR(t− 4)

yR(t− 1) = yR(t− 1)

...

yL(t) = −α1yL(t− 1)− α2yL(t− 2)− α3yL(t− 3) · · · − α9yL(t− 9) + β4uL(t− 4)

yL(t− 1) = yL(t− 1)

...

x1(t) = x(t− 1) + ts
r
2
(yR(t) + yL(t))cos(x3(t))

x2(t) = x2(t− 1) + ts
r
2
(yR(t) + yL(t))sin(x3(t))

x3(t) = x3(t− 1) + ts
r
d
(yR(t)− yL(t))

(4.37)

The number of state variables depends on α and β parameters estimated with the

model identification. Note that the yL,R and uL,R are the outputs and the inputs of

the ARX models. However, for simplicity in the following sections the apex arx is
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not used.

Predictive Control

Fundamental to the successful autonomous operation of the mobile robot is the

motion control algorithm. The goal of the controller is to let the vehicle stay as

close as possible to the reference route.

Although in literature there are different approaches to trajectory control of a

mobile robot, in this work a Model Predictive Control (MPC) is used. In the

vehicle control field, this technique is already used with success to achieve various

objectives.

MPC control is the result of iterative application of the Optimal Control Problem

(OCP). Predictive control uses a system model to predict the process output over

some future horizon (Prediction Horizon) of length N . By applying the MPC

algorithm, a series of manipulated inputs (Uo = [u0, u1 . . . uN−1]) is computed so

that the predicted future output is as precise as possible. Only the input related to

the first period (u0) of the open loop solution is applied to the system.

Once the OPC has been solved and new measurements become available, the

estimation and regulation windows are shifted and the estimation and optimization

procedures are repeated. Since MPC solves a new optimization problem at each

time step, it requires a high computational effort.

In the following sections, the MPC features will be introduced with reference

to [116].

MPC Technique

The Model Predictive Control (MPC) is a particular control architecture widespread

in the industrial field, to which in recent years, numerous studies have been dedicated

in order to determining conditions that guarantee stability properties and robustness

to uncertainties.

The basic idea of this technique is to transform the classic control problem into a

problem of mathematical optimization, so as to be able to easily insert constraints

and limitations of the real system.
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In particular, the model of the entire system is used to predict, on a finite horizon,

the evolution of the state variables, starting from the values that they assume at

the current instant and according to the sequence of future control inputs. In this

way, since this sequence of inputs is a degree of freedom in the considered problem,

the prediction can be used as a figure of merit to ensure that the state properly

follows a given objective, producing in output exactly the optimum input values

that allow to achieve the desired performances.

In accordance with the Receding Horizon (RH) technique, only the first inputs

calculated by the optimizer are applied to the system and the procedure is repeated

again based on the updated measurement of the current state. This approach allows

to formulate the control problem by taking into account constraints on the control,

states and outputs variables throughout the predictive horizon, in a simple way.

All the operations carried out by the MPC controller are schematized in Figure 4.56.

Therefore, the main ingredients of an MPC algorithm are:

Figure 4.56: MPC algorithm operations

• a process model, usually in discrete-time;

• a cost function J defined, at any time instant k, over a finite horizon [k, k+N ];

• an optimization algorithm computing the future optimal control sequence;

• input, output and state constraints;
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• the so called RH principle.

Receding Horizion Principle

An aspect of the MPC control that deserves special attention is the receding horizon

approach, figure 4.57.

Obtain U* Finite horizon optimal

state xt|t

control problem

System
output yt|tapply ut|t

Figure 4.57: Receding horizon approach

At any time instant t, based on the available process information, the controller

solves the optimization problem in relation to the future control sequence

[u(t), . . . , u(t+N − 1)] and applies only its first element uo(t). Then, at the next

time instant t+ 1, a new optimization problem is solved, based on the process infor-

mation available at time t+ 1, along the prediction horizon [t+ 1, . . . , t+N ] [116].

This technique is also defined “mobile horizon”, see Figure 4.58, since the prediction

horizon is always of the same duration but it is moved one step forward at each

iteration.

t

t

t

do

do

do

T = 0

T = 1

T = 2

Figure 4.58: Receding horizon control
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The new control sequence is generally different from the previous one, therefore,

since the predictive horizon is moved forward and new measures of the state of the

system x(t+ 1) are used, a good robustness is obtained against possible modeling

errors and disturbances.

This technique can be compared to a chess game, in which each player elaborates

a strategy according to the current scenario and the possible choices of the opponent;

however if the opponent responds to an unexpected move it is necessary to re-

evaluate your position by rescheduling the choices to be made.

Obviously, good players are able to foresee the evolution of the game thinking about

different advanced scenarios over time (long prediction horizons). It is clear that

the longer the chosen horizon is, the more precise the obtained control results will

be; however, the overall computational burden becomes heavier.

By extending the prediction horizon, all the operations performed by the controller

become more time-consuming.

The horizon must be chosen coherently with the available computing resources since

it is obvious that greater iterations imply greater computational costs.

MPC with Transfer Function Models

The system that describes the dynamic process of the robot motors can be rewritten

by the transfer function:

G(z) =
Barx(z)

Aarx(z)
=

bn−1z
n−1 + bn−2z

n−2 + · · ·+ b0

zn + an−1zn−1 + an−2zn−2 + · · ·+ a0

(4.38)

Therefore, to implement the motor dynamics in the predictive control algorithm in

a simple way, it is possible to consider the single motor system in the following non

minimal state-space form:

xarx(t+ 1) = Aarx · xarx(t) +Barx · uarx(t)
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where

xarx(t+ 1) =



yarx(t+ 1)

yarx(t)
...

yarx(t− n+ 2)

uarx(t)

uarx(t− 1)
...

uarx(t− n+ 2)



Aarx =



−an−1 −an−2 . . . −a0 bn−2 bn−3 . . . b0

1 0 . . . 0 0 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . .

0 0 . . . 0 0 0 0 0

0 0 . . . 0 0 0 . . . 0

0 0 . . . 0 1 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . .

0 0 . . . 0 0 0 0 0



, Barx =



bn−1

0
...

0

1

0
...

0



LTV Approximation of the Robot Non-Linear System

In this study a linear MPC is used, in order to have a quadratic cost function,

which is easily minimizable as it has to be simply set to zero, and consequently it

streamlines the optimization calculations.

A problem immediately arises regarding the compatibility and applicability of this

type of MPC to the non-linear model to be used. Since a model-based control is

used there are two possibilities: changing the MPC and making it non-linear, or

linearizing the model. The second option is more in line with the set objectives,

namely the reduction of calculation times in an attempt to make a real-time
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implementation feasible.

Then, the system is linearized around the predefined trajectory (X̂, Û) obtaining

matrices Â(t) and B̂, where only Â(t) is time-variant.

Simple linearization around the initial state is not sufficient because the position

and orientation of the robot vary significantly when following a given trajectory. It

is therefore necessary to linearize around the trajectory to obtain references both

to the states and to the inputs.

For example, the system model, based on ARX 914 and linearized around a given

optimal trajectory (X̂, Û), in this case a Lemniscata, can be written as follows:

δx(t+ 1) = Â(t)δx(t) + B̂δu(t) (4.39)

where:

δx(t) = x(t)− x̂(t) x̂(t) ∈ X̂

δu(t) = u(t)− û(t) =

uR(t)− ûR(t)

uL(t)− ûL(t)

 û(t) ∈ Û

B̂ =

0 0 . . . 1 0 0 0 0 . . . 0 0 0 0 0 0

0 0 . . . 0 0 0 0 0 . . . 1 0 0 0 0 0

T
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δx(t+ 1) =



yR(t+ 1)− ŷR(t+ 1)

yR(t)− ŷR(t)
...

uR(t)− ûR(t)

uR(t− 1)− ûR(t− 1)

uR(t− 2)− ûR(t− 2)

yL(t+ 1)− ŷL(t+ 1)

yL(t)− ŷL(t)
...

uL(t)− ûL(t)

uL(t− 1)− ûL(t− 1)

uL(t− 2)− ûL(t− 2)

x1(t+ 1)− x̂1(t+ 1)

x2(t+ 1)− x̂2(t+ 1)

x3(t+ 1)− x̂3(t+ 1)



, δx(t) =



yR(t)− ŷR(t)

yR(t− 1)− ŷR(t− 1)
...

uR(t− 1)− ûR(t− 1)

uR(t− 2)− ûR(t− 2)

uR(t− 3)− ûR(t− 3)

yL(t)− ŷL(t)

yL(t− 1)− ŷL(t− 1)
...

uL(t− 1)− ûL(t− 1)

uL(t− 2)− ûL(t− 2)

uL(t− 3)− ûL(t− 3)

x1(t)− x̂1(t)

x2(t)− x̂2(t)

x3(t)− x̂3(t)


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C
hapter

4

Â(t) =



−a1 . . . −a9 0 0 b4 0 . . . 0 0 0 0 0 0 0

1 . . . 0 0 0 0 0 . . . 0 0 0 0 0 0 0
... . . . ...

...
...

...
... . . . ...

...
...

... 0 0 0

0 . . . 0 0 0 0 0 . . . 0 0 0 0 0 0 0

0 . . . 0 1 0 0 0 . . . 0 0 0 0 0 0 0

0 . . . 0 0 1 0 0 . . . 0 0 0 0 0 0 0

0 . . . 0 0 0 0 −a1 . . . −a9 0 0 b4 0 0 0

0 . . . 0 0 0 0 1 . . . 0 0 0 0 0 0 0
... . . . ...

...
...

...
... . . . ...

...
...

... 0 0 0

0 . . . 0 0 0 0 0 . . . 0 0 0 0 0 0 0

0 . . . 0 0 0 0 0 . . . 0 1 0 0 0 0 0

0 . . . 0 0 0 0 0 . . . 0 0 1 0 0 0 0

ts
r
2

cos(x̂3(t)) . . . 0 0 0 0 ts
r
2

cos(x̂3(t)) . . . 0 0 0 0 1 0 −ts r2(ŵL(t) + ŵR(t)) sin(x̂3(t))

ts
r
2

sin(x̂3(t)) . . . 0 0 0 0 ts
r
2

cos(x̂3(t)) . . . 0 0 0 0 0 1 ts
r
2
(ŵL(t) + ŵR(t)) cos(x̂3(t))

ts
r
d

. . . 0 0 0 0 −ts rd . . . 0 0 0 0 0 0 1



(4.40)
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Model Predictive Control Application

This section describes the procedures and the choices made to implement the MPC

control, in order to compute the path tracking.

As already mentioned, in this work the trajectory to be followed is given by the

dispatching strategy described in Chapter 2 and Chapter 3.

In the optimization problem, the controller makes a prediction of the output

variables of the system. Considering these variables, it defines the values of the

control variables so that a cost function is minimized. This is typically represented

by the error in relation to a given reference.

The result is therefore a sequence of optimal control PWM signals. The length of the

sequence depends on the value of the prediction horizon (N). For the instant when

the optimization is performed only the first element is actually applied to the system.

Nominal Input Sequence

To control the mobile robot, once the trajectory has been established (X̂), it is

necessary to calculate a correct sequence of impulses to be sent to the two motors

(Û).

Given the kinematics equations and the points belonging to the trajectory, to

calculate the actual angular velocities ŵR(t) and ŵL(t), it is necessary to impose

the trajectory coordinates (x̂1(t), x̂2(t), x̂3(t)) as equilibrium points for the robot

model 4.26. Since the trajectory is a finite sequence of points, it is possible to find

the relative input sequence that ensures to reach the reference trajectory.

However, in practice, it is not sufficient to know the value of the angular speeds

since the motor inputs are the PWM voltage signals.

Based on the linear dynamic relationship created between the two variables (i.e.

input and output of the motor), it is possible to trace two different sequences of

PWM values (one for each motor) necessary for the vehicle to follow the optimal

trajectory.

It is assumed that the robot starts from stationary condition, with angular speeds

equal to zero. At the next time instant, when the first speed is different from zero,
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the relative voltage signal is obtained according to the inverse formula:

û(t− nk) =
ŷ(t)

b1

(t = 1) (4.41)

note that nk is the delay between input and output signals previously identified.

At the time t=2 the input signal is given by:

û(t− nk) =
ŷ(t) + a1ŷ(t− 1)

b1

(t = 2) (4.42)

and so on until as many PWM values as the points describing the trajectory are

obtained:

û(t− nk) =
ŷ(t) + a1ŷ(t− 1) + · · ·+ ana ŷ(t− na)

b1

(t > 0) (4.43)

In particular, the inputs just calculated are considered piecewise constants, therefore:

û(t) = û(k) with kts ≤ t < (k + 1)ts

where ts is the sampling time.

When the optimization is performed, it is possible to consider a sequence of nominal

input and states variables, respectively:

Û(t) = [û(t), · · · , û(t+N − 1)]T (4.44)

and

X̂(t) = [x̂(t), · · · , x̂(t+N − 1)]T (4.45)

both vectors have a size equal to N (i.e. the prediction horizon).

QP Formulation

The MPC linear control configures an optimal control problem with a quadratic

cost function. In this section, the formulation of constructing the matrices in order
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to solve the quadratic programming (QP) problem is described. The QP matrices,

of appropriate size, depend directly on the matrices Â and B̂ and must take into

account the constraints imposed in the design phase, which will be discussed in

more detail in the following paragraph.

For the MPC application, an alternative quadratic problem formulation is used,

based on which both δX and δU are optimized simultaneously.

The prediction model is determined by the following equation:

δX(t) = Â(t)δX(t) + B̂δU(t) +Hδxt|t (4.46)

This linear discrete time approximation is called Linear Time Variant (LTV) model,

over a period of time t ∈ [k0ts . . . (k0 +N)ts].

In particular:

δX(t) = X(t)− X̂(t) = [δxTt|t, δx
T
t+1|t, · · · , δxTt+N−1|t]

T

δU(t) = U(t)− Û(t) = [δuTt|t, δu
T
t+1|t, · · · , δuTt+N−1|t]

T

where: δut+k|t =

uR(t+ k|t)− ûR(t+ k|t)

uL(t+ k|t)− ûL(t+ k|t)

 ∀k ∈ {0, · · · , N − 1}

Â(t) =



0 0 0 . . . 0

Â(t) 0 0 . . . 0

0 Â(t+ 1) 0 . . . 0
... . . . . . . . . . ...

0 . . . 0 Â(t+N − 1) 0


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B̂ =



0 0 0 . . . 0

B̂ 0 0 . . . 0

0 B̂ 0 . . . 0
... . . . . . . . . . ...

0 . . . 0 B̂ 0


, H =



I

0

0
...

0


The final optimization problem is:

minimize
Z(t)

ZT (t)Q̄Z(t)

subject to εzZ(t) ≤ Fz(t)

[I − Â(t), −B̂]Z(t) = Hδxt|t

(4.47)

where

Q̄ =

Q 0

0 R

 , εz =

εx 0

0 εu

 , Fz(t) =

Fx(t)
Fu(t)



Z(t) =

δX(t)

δU(t)

 =

X(t)− X̂(t)

δU(t)− Û(t)


and Û(t) and X̂(t) are vectors composed of inputs and states related to the reference

trajectory, defined respectively in (4.44) and (4.45).

The matrices Q and R are positive-defined symmetric matrices and represent the

weights on states and on inputs, respectively.

At this point, it is possible to use the quadprog function in order to solve the opti-

mization problem. Note that if Q̄ is not symmetrical, it must be made symmetrical

by using the following simple formula: Q̄+Q̄T
2

.

In conclusion, at each time step t, the optimization problem 4.47 is solved and

the optimal value of the decision variable Z is found, i.e Zo(t) = [δXo(t), δU o(t)]T .
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Hence, only uo(t) =

uoR(t)

uoL(t)

 = δuot|t + û(t) is then applied to the robot.

State and Control constraints

All processes are subject to constraints, necessary for constructive reasons, in-

dustrial and environmental safety or simply purely economic considerations. In

the considered case, both the control variable and the states related to the x1, x2

coordinates and angle x3 are constrained, because of the physical characteristics of

the wheel motors and the workplace, respectively.

In particular, the control variables are limited both in amplitude and variation (i.e.

slew rate). The first is due to the maximum capacity of the available robot motor

battery (7.5 V), while the latter allows to achieve a better performance.

The x1 and x2 coordinates can assume a maximum value, as the mobile robot is

forced to move in a limited space.

It is important to note that the MPC is able to manage rigid constraints on the

system in a non-conservative way, so the Fz(t) matrix, necessary for entering the

constraints, is recalculated at every moment.

Since all constraints are linear inequalities, it is possible to write:

U ∈ UN = {U : εuδU(t) ≤ Fu(t)}

X ∈ XN = {X : εxδX(t) ≤ Fx(t)}

where:

εu =



ε̄u 0 0 0

0 ε̄u 0 0

0 0
. . . 0

0 0 0 ε̄u

ε̄u 0 0 0

−ε̄u ε̄u 0 0

0
. . . . . . 0

0 0 −ε̄u ε̄u



Fu(t) =



F̄u(t)
...

F̄u(t+N − 1)

Fslew(t)
...

Fslew(t+N − 1)


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εx =


ε̄x 0 0

0
. . . 0

0 0 ε̄x

 Fx(t) =


F̄x(t)

...

F̄x(t+N − 1)



In particular the matrices ε̄x, ε̄x are defined as follows:

ε̄x =



0 0 . . . 1 0 0

0 0 . . . −1 0 0

0 0 . . . 0 1 0

0 0 . . . 0 −1 0

0 0 . . . 0 0 1

0 0 . . . 0 0 −1


ε̄u =


1 0

−1 0

0 1

0 −1

 ,

Note that from the construction of the ε̄x matrix, the state constraints are applied

only to the x1, x2 coordinates and to the angle x3.

With regard to vectors Fx(t) and Fu(t):

F̄x(t+k) =



xmax1 − x̂1(t+ k)

xmax1 + x̂1(t+ k)

xmax2 − x̂2(t+ k)

xmax2 + x̂2(t+ k)

xmax3 − x̂3(t+ k)

xmax3 + x̂3(t+ k)


F̄u(t+k) =


umax − ûR(t+ k)

umax + ûR(t+ k)

umax − ûL(t+ k)

umax + ûL(t+ k)

 ∀k ∈ {0, · · · , N−1}

Fslew(t+ k) =


∆u− ûR(t+ k) + uoR(t− 1)

∆u+ ûR(t+ k)− uoR(t− 1)

∆u− ûL(t+ k) + uoL(t− 1)

∆u+ ûL(t+ k)− uoL(t− 1)

 k = 0
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Fslew(t+ k) =


∆u− ûR(t+ k) + ûR(t+ k − 1)

∆u+ ûR(t+ k)− ûR(t+ k − 1)

∆u− ûL(t+ k) + ûL(t+ k − 1)

∆u+ ûR(t+ k)− ûR(t+ k − 1)

 ∀k ∈ {1, · · · , N − 1}

where: x1
max, x

2
max, x

3
max and umax are the values that, added to or subtracted from

the variables, determine the allowed range of variability; ∆u is the maximum slew

rate value (i.e. the maximum difference between the PWM signal at the step k and

the one at the previous step k − 1); uoR(t− 1) and uoL(t− 1) are the optimal values

applied to the robot motors at the previous time instant, i.e. t− 1.

Since it is supposed that the robot at time t = 0 has zero velocity, both values of

uoR(t− 1) and uoL(t− 1) are set equal to zero for t = 0.

Note that MPC aims to control the robot motors in order to follow the predefined

trajectory. To achieve this, the MPC uses the time variant matrix (i.e. Â(t))

obtained by linearizing the system around the predefined trajectory, i.e. X̂ and

Û . These matrices describe the dynamic of the robot with a good approximation

only around the point of the trajectory used as an equilibrium point. Since the

robot might not start on the trajectory, it is of crucial importance to select and

use the correct matrices, which are the matrices that best approximate the robot

dynamic, during the optimizations. Otherwise, the risk of obtaining wrong control

actions would be greater. Thus, in order to try to improve the performance of the

control, at each instant, the point (pnearest) of the reference trajectory closest to

the position of the robot is found by computing the norm of the distance between

the current position of the robot and the points of the reference trajectory. Hence,

each optimization considers the matrices starting from pstart = pnearest. However, if

the robot is exactly on the trajectory, the MPC finds a zero control action, which

implies that the robot remains at the equilibrium point. For this reason, when the

difference between the vehicle position and the closest reference point is less than

0.1%, the closest point is moved to the next equilibrium point, i.e pstar = pnearest +1.

However, the robot may not be able to exactly reproduce the ideal trajectory, so it

is the optimization itself that generates, in addition to the actual control actions, a
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reference trajectory that is obviously as similar as possible to the desired one, but

which, at the same time, is regular if the predefined trajectory is not. This reduces

the risk of infeasibility due to the constraints imposed, and the new trajectory

calculated by the optimization will consequently become the real reference that the

vehicle must follow.

So, in order to improve the performance of the MPC in this work the robot model

around the MPC open loop solution is linearized after each optimization. Thus,

after each optimization, in accordance with the RH approach, only the first optimal

control action uo(t) =

δuoR(t|t) + ûR(t|t)

δuoL(t|t) + ûL(t|t)

 is applied to the robot.

Then, in order to obtain the trajectory that the vehicle will follow in the next

horizon (i.e. X̃(t)), it is necessary to virtually apply the inputs Ũ(t) to the robot

model, where Ũ(t) is obtained as follows:

Ũ(t) =


δuot+1|t

...

δuot+N−1|t

δuot+N−1|t

 =


ûot+1|t
...

ûot+N−1|t

ûot+N−1|t


Successively, the model is linearized, at each step, around X̃(t) and Ũ(t) and

no longer around the reference trajectory X̂(t) and Û(t), obtaining Ã(t) and B̃.

Note that to enforce the robot to follow the reference trajectory (X̂, Û) the new

optimization is rewritten as follows:

minimize
δX̃(t),δŨ(t)

Jx

(
δX̃(t) + X̃(t)− X̂(t)

)
+ Ju

(
δŨ(t) + Ũ(t)− Û(t)

)

subject to εz

δX̃(t)

δŨ(t)

 ≤ F̃z(t)
[I − Ã(t), −B̃]

δX̃(t)

δŨ(t)

 = Hδx̃t|t
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where:

Jx

(
δX̃(t) + X̃(t)− X̂(t)

)
=
(
δX̃(t) + X̃(t)− X̂(t)

)T
Q
(
δX̃(t) + X̃(t)− X̂(t)

)
Ju

(
δŨ(t) + Ũ(t)− Û(t)

)
=
(
δŨ(t) + Ũ(t)− Û(t)

)T
R
(
δŨ(t) + Ũ(t)− Û(t)

)
δX̃(t) = X(t)− X̃(t), δŨ(t) = U(t)− Ũ(t)

and F̃Z(t) is obtained as a FZ(t) with the only difference that Ũ is used instead of

Û .

MPC Application on Raspberry

After verifying the correct functioning of the MPC control in a simulation environ-

ment, a Real Time Model Predictive Control (RT-MPC) strategy is developed. For

this purpose, the MPC algorithm is implemented on the Raspberry PI 3, through

a code written in C ++.The optimization problem is converted into a quadratic

programming problem (QP) and it is solved by the quadprog function. As can

be seen from Figure 4.60 and Figure 4.59, the results obtained from the offline

predictive control are satisfactory.

During these simulations the Real Time applicability is studied through a careful

analysis of the calculation times of the quadratic programming problem. It should

Figure 4.59: Simulation on Raspberry

be remembered that one of the disadvantages of predictive control is having to
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Figure 4.60: Simulation on Raspberry

work with a model that adequately describes the process but at the same time is

sufficiently simple to allow real time control.

Despite the accuracy of the simulated trajectory, the results obtained from the

application of the MPC control on the Raspberry are not the desirable ones.

The problem found is that using the ARX model 914 (i.e with na = 9 nb = 1 and

nk = 4) the computational cost of the MPC algorithm is very high. In this way,

the control loop cannot operate in real time (i.e. in a time less than the sampling

time ts = 0.03).

Thus, a new model of the system is identified with the same sampling time as

before. During the identification process, the model orders are now set to na = 4

nb = 1 and nk = 1 in order to work with smaller matrices and then try to reduce

the calculation times.

As appears from the validation process, the ARX 411 model accurately represents

the collected data (see Figure 4.61).

Using this model now, the timing of the QP problem is reduced significantly.

However, the shortest time obtained is equal to tquadprog execution = 0, 08 s which

corresponds to N = 5. This calculation time is still too long compared to the

sampling time.
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Figure 4.61: ARX model validation

Horizon ARX model 914 ARX model 411

length quadprog execution (sec)

15 9 2

10 3 0, 45

5 0, 5 0, 08

With these execution times of the MPC, the real coordinate values of the robot

cannot be acquired and processed in time.

For this reason, in the next section the motor model and therefore the overall robot

model are simplified in order to obtain a MPC suitable for the real time control of

the mobile robot.

MPC Real-Time

In order to make the MPC real-time implementation possible, only the part of the

robot model that concerns the kinematics is used in the MPC. However, in this

way the MPC considers the two motor angular speeds (wR, wL) as inputs to the

system. Note that the angular speed cannot be set directly, but only through the

PWMs sent to the motors. Therefore, a relationship that links the PWM signals

to the motor angular velocity must be found. For this purpose, a piecewise linear

relationship is estimated between input and output of the motor robot. To achieve

this, tests are carried out which consist in supplying both motors with the same
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and constant PWM signal, so as to measure how long the robot takes to cover a

trajectory of known length and to estimate both the average linear speed of the

vehicle vrobot and the angular velocity of each wheel.

wR = vrobot/r wL = vrobot/r (4.48)

In Figure 4.62 the identified relationship between the PWM signal and the robot

angular speed is shown, which is used for the real time MPC. With this simplification,

Figure 4.62: Piecewise linear motor model

a very fast MPC is obtained, which is suitable for the real time use. Indeed,

Raspberry solves the MPC with N = 10 in only 0.01 s. However, this solution

penalizes the quality of the control, as can be seen from Figure 4.63 where the red

line is the reference trajectory, while the blue line is followed by the robot during

the simulation performed in the testbed. The blu line is obtained by using the data

collected by the infrared camera.
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Figure 4.63: Comparison between the reference trajectory (red) and the one really followed
by the robot (blue)

4.7 Results

In this section will be shown different operations performed by our testbed.

4.7.1 Path Following

Given a robot and a reference trajectory, in this case the Leminiscate, the problem

to make the robot follow the trajectory.

The motion control problem is the path following, which is concerned with the

design of control laws that force a vehicle to reach and follow a time parametrized

reference. The desired trajectory does not need to be of a particular type and can

be any sufficiently smooth bounded curve parameterized by time.

After the choice of the path, to complete the trajectory tracking it is necessary

to define a motion law based on tasks to perform and optimal criteria to satisfy.

In this case the mobile robot is required to proceed along the path at a constant

angular speed w.

To deal with the path following first of all the path is defined in a continuous way
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as follows:
x̂1(t) = 2 · a · cos(w · t)

x̂2(t) = a · sin(2 · w · t)

x̂3(t) = tan−1
( x̂2(t)

x̂1(t)

)
where x̂ and ŷ are the dependent variables and which indicate the coordinates

(expressed in meters) of the robot on the reference system; t is the time indipendent

variable (expressed in seconds); w is the angular velocity which is set constant

along the entire path. Variable a is the distance between the central point and one

of two focuses of the trajectory.

Once the parametric representation is defined, it’s possible to calculate points

describing the Lemniscata.

To this end, reference states are defined as:


˙̂x1(t) =

dx̂1(t)

dt

˙̂x2(t) =
dx̂2(t)

dt

Regarding the derivative of x̂3 = θ̂ angle, formed with X axis, because of tangent

function discontinuity a particular approach is necessary.

According to the literature, it is possible to calculate the derivative over the time,

using partial derivatives with respect to ˙̂x and ˙̂y:

dx̂3(t)

d ˙̂x1(t)
= −

˙̂x2(t)

( ˙̂x2
1(t) + ˙̂x2

2(t))

dx̂3t)

d ˙̂x2(t)
=

˙̂x1(t)

( ˙̂x2
1(t) + ˙̂x2

2(t))

Based on these partial derivatives it is possible to calculate the derivative of θ̂ in

relation to time as follows:

˙̂x3(t) =
dx̂3(t)

dt
=
d(tan−1( ˙̂x2(t)/ ˙̂x1(t)))

dt
=
dx̂3(t)

d ˙̂x1(t)

d ˙̂x1(t)

dt
+
dx̂3(t)

d ˙̂x2(t)

d ˙̂x2(t)

dt
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In order to obtain the optimal trajectory, a Matlab code is implemented.

In this code, parameters related to sampling time, duration of the simulation and

those specific to the system (i.e radius r of the wheels and the distance d between

them) are evaluated.

Once the reference trajectory is defined, Equation 4.26 is solved as a function of wL

and wR and the following inverse equations are obtained:
wR(t) =

˙̂x1(t)

r · cos(x̂3(t))
+

d

2 · r
· ˙̂x3(t)

wL(t) = wr(t)− d
r
· ˙̂x3(t)

(4.49)

The states, related to the points belonging to the Lemniscata, are replaced in these

equations. Thus, the sequences of inputs necessary to follow the predefined path

are obtained.

Then, the MPC Real Time controller is used in order to guarantee that the

robot follows the reference trajectory. At the following link: https://youtu.be/

4I12eG2_WgM it is possible to see the robot in action while following the Lemniscata.

In particular, it is possible to note that the robot starts with a different angle

than that of the reference trajectory. Therefore, after completing the operations of

alignment with the reference trajectory, the robot follows it without any problems.

4.7.2 Path Following on Graph

Given a list of order to be transported, which are collected in a chronological way

(FCFS list), see Table 4.4, and a graph G that abstracts all the available routes (see

Figure 4.64), the robot has to satisfy transportation requests in order to minimize

its travel path.

D
Number of order Pickup Point Delivery Point

1-st order M4 TOUT
2-nd order M1 M7

Table 4.4: FCFS list

https://youtu.be/4I12eG2_WgM
https://youtu.be/4I12eG2_WgM


180 Chapter 4

1

1

1

1

1

1

1

1

M1M2M3M4M5

1

1

TINI1I2CTOUT

1

1

1

1

1

1

1

1

M6M7M8M9M10

1111

11 11 11

11

Figure 4.64: The environment G

At the initial time, the robot is located at node 6. The transportation orders are

listed chronologically : the first request is from node M4 to TOUT , while the second

request is from node M1 to M7. By using Algorithm 3, it is possible to find the path

that minimizes both waiting and transport time. According to Algorithm 3 the

robot first satisfies the second call of D and then the first one. At the following link,

https://www.youtube.com/watch?v=6vqtz5xiQ8c it is possible to see one of our

robots in action. In particular, in this case the Pure Pursuit approach, previously

explained, is used.

4.7.3 Normal Operation

As is previously described, in order to make the testbed more realistic, both the

charging station and the pickup/delivery stations are created.

The first link shows https://youtu.be/K5o2AonO_ZI that first the robot follows

the reference trajectory and subsequently reaches the charging station.

Instead, the link https://youtu.be/OY-UUDoJXms shows a classical robot opera-

tion, where the robot must pick an order from a machine (which is represented

by a metal structure) and then it has to deliver the order in buffer out (wooden

structure). In both video the MPC are used as lower controller in order to control

the robot.

https://www.youtube.com/watch?v=6vqtz5xiQ8c
https://youtu.be/K5o2AonO_ZI
https://youtu.be/OY-UUDoJXms
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4.7.4 Multiple Robots

As explained before, in the UNIPV testbed it is possible to use use up to three

mobile robots simultaneously.

Given list of orders D, see Table 4.5, and a graph G as shown in Figure 4.65,

the goal is to find a path for each available robot in order to satisfy with the

shortest time all the requests of transport of D. In the considered case, two robots

(v1, v2) are available and their initial position are M1 and M9. At the following link

https://youtu.be/DBmJCIEWNVk it is possible to see how two robots works at the

same time. In particular, by using Algorithm 4 the suboptimal assignments can

D
Number of order Pickup Point Delivery Point

1-st order TIN C
2-nd order I2 M2

Table 4.5: FCFS list

1

1

1

1

1

1

1

1

M1M2M3M4M5

1

1

TINI1I2CTOUT

1

1

1

1

1

1

1

1

M6M7M8M9M10

1111

11 11 11

11

1

11 11

11

1

1

1

1

1

1

Figure 4.65: The environment G

be found. Once for each robot both the MPS and the transport capacity C have

been set, in our case MPS = 1 and C = 1, the suboptimal assignments are found

as follows: robot v1 satisfies the first request of transport while robot v2 the second

one.

https://youtu.be/DBmJCIEWNVk
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4.8 Conclusion

In this chapter, the UNIPV test-bed realized under my co-supervision activity is

described in detail. Furthermore, several different operations performed by the

UNIPV test-bed are shown.

4.8.1 Future Development

As described in this chapter, in order to achieve a real-time MPC, the robot model

is simplified by removing the ARXs, which describe the relationship between PWM

signal and motor angular speed. For this reason, the results achieved by using the

real-time MPC are not satisfactory in terms of path following, see Figure 4.63. This

is mainly due to the use of a weak correlation between the PWM signal and the

motor speed in the real-time MPC, see Figure 4.62. Indeed, it is more correct to

describe this relation by using a dynamic model, such as ARX. Hence, possible

future works are related to improve the real-time performance by using in the MPC

the ARXs for describing the relationship between PWM and motor angular velocity.

Note that the real-time trajectory control is a very high frequency problem, where

calculations (i.e. solve the QP problem) are required to be performed in a time

shorter than the sampling time. Therefore, in order to model the robot motors

in the MPC via ARXs, a Raspberry with a computing power greater than the

one available during this project (PI 3 model) is required. Alternatively, in order

to reduce the computational time, an alternative QP formulation can be applied,

where only δU(t) is optimized instead of both δX(t) and δU(t).

Alternative QP Formulation

In this alternative quadratic problem formulation the prediction model is described

by the following equation:

δX(t) = Â(t)δxt|t + B̂δU(t) (4.50)
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where

Â(t) =



I

Â(t)

Â(t+ 1)Â(t)
...

Â(t+N − 2)..Â(t)



B̂(t) =



0 0 . . . 0 0

B̂ 0 . . . 0 0

Â(t)B̂ B̂ . . . 0 0

. . . . . . . . . . . . . . .

Â(t+N − 3)..Â(t)B̂ Â(t+N − 4)..Â(t)B̂ . . . B̂ 0


The final optimization problem can be rewritten as:

minimize
δU(t)

δXT (t)QδX(t) + δUT (t)RδU(t)

subject to εuδU(t) ≤ Fu(t)

εxδX(t) ≤ Fx(t)

(4.51)

Considering the definition of δX(t) it is possible to rewrite the problem as:

minimize
δU(t)

δUT (B̂(t)TQB̂(t) +R)δU + 2δUT B̂(t)TQÂ(t)δxt|t

subject to εuδU(t) ≤ Fu(t)

εxB̂(t) ≤ Fx(t)− εxÂ(t)δxt|t

(4.52)

where the QP solver (i.e. quadprog) finds the optimum value of only the δU(t).

Thus, the computational times can be reduced.
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5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

In this work a battery ageing-aware SOPF approach suitable for networks

in islanded mode is presented where DR policies and ESSs are considered. In

particular, the ESSs are assumed to be lithium-ion batteries. Differently from

standard approaches, where the objective is to minimize power production costs

and curtailments, in this chapter an ESS ageing model is considered [117] and

the optimization problem is modified so as to take into account also batteries

degradation.

SOPFs rely on the solution of constrained optimizations. By adopting a multiperiod

SOPF, i.e. an optimization over a prediction horizon rather than over a single

step, it is possible to well exploit the ESSs taking into account loads and renewable

forecasts. On the other side, the use of a too long horizon makes the problem

computationally too expensive and, due to the stochastic nature of the forecasts,

not that meaningful. For this reason, a receding horizon approach is here adopted

where at each time step a new optimization problem is solved given the newly

available measurements and forecasts. Still, it should be noticed that the time

required for solving a finite horizon optimization is not negligible. Therefore the

assumption of a controller at time k which depends on measurements up to time k

included is not reasonable. This is a problem which is often underestimated. To

deal with this issue an approach is proposed where the controller at time k depends

on measurements up to time k−1 and predictions from k−1 to k using a previously

computed controller.

The contributions of this work can be summarized as follows:

• the use of a degradation model of the ESSs;

• the use of a closed-loop multiperiod SOPF which takes into account the

computational burden of the underlying optimizations.

• the use of a stochastic approach where the uncertainty of loads and renewables

is managed through stochastic controllers. In particular, differently from e.g.

[85], these determine all together the redistribution of conventional power,

ESSs usage and curtailments to optimally satisfy the power requirements.
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Note that the management of networks in islanded mode requires accurate volt-

age/frequency control. In this work, it is assumed that the control is structured in

two levels where our SOPF operates at the highest level while a voltage/frequency

control at the lowest. The voltage/frequency control is out of the scope of this work

and the interested reader can refer to e.g. [118, 119]. The chapter is organized as

follows. In Section 5.1 the main network elements and equations together with

the battery degradation model are described. A deterministic SDP-based OPF

approach is recalled in Section 5.2 while the Stochastic OPF adopted in this work

is presented in Section 5.3. Section 5.4 introduces the closed-loop approach which

takes into account the computational burden of the optimizations. In Section 5.5

the proposed control strategy is applied to the IEEE 14 buses. Section 5.6 provides

the conclusions.

5.1 Notation and Network Description

Consider a power network defined by a graph G = {N , E}, with N = {1, 2, · · · , nb}

the set of network buses and E ⊆ N × N the set of electrical lines. Denote

with G ⊆ N the set of buses where generators are present and indicate with ng

its cardinality. The network has conventional and renewable generators. C ⊆ G

indicates the set of nc buses where the conventional generators are installed while

R ⊆ G the set of nr buses where renewable sources are present. The set of network

loads is denoted with D ⊆ N and has cardinality nd. The network includes also

ns Energy Storage Systems (ESSs). The set of buses with ESSs is denoted with

S ⊆ N . The admittance matrix of the network is indicated with Y ∈ Cnb×nb . Its

elements are defined as

Yn,m =

 yn,n +
∑

r 6=n yn,r n = m

−yn,m n 6= m


where yn,n is the admittance-to-ground and yn,m represents the line admittance of

connected buses n and m. Index r is used to indicate all buses directly connected
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to bus n. For each bus n ∈ N , the power balance equation is

Sn(k) = Vn(k)[In(k)]∗

where [·]∗ is the complex conjugate operator, Vn(k) the complex voltage at the n-th

node and In(k) the complex current injection at bus n. For each (n,m) ∈ E , the

real power flowing from bus n to bus m is defined as

Pn,m(k) = Re[Vn(k)[Vn(k)− Vm(k)]∗Y ∗n,m]

where Re[·] returns the real part of a complex number.

5.1.1 Conventional Generators

For each bus n ∈ C, and each discrete time instant k, with k ≥ 0, it is possible to

define the complex power produced by conventional generators as

Scn(k) = P c
n(k) + jQc

n(k)

with P c
n(k) and Qc

n(k) the active and reactive generated power respectively. For

nodes in N \ C, P c
n = Qc

n = 0.

5.1.2 Renewable Generators

For each bus n ∈ R, and each discrete time instant k ≥ 0

Srn(k) = P r
n(k)

indicates the power injected into the network by renewable generators. Note that

the reactive power production by renewables is assumed null. Since transmission or

operational constraints may be violated when excessive wind and solar penetration

levels occur, renewable energy curtailment is considered. In the following, P r
n(k)

indicates the curtailed active renewable power, while P̄ r
n(k) the one which could
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have been delivered. For each bus n ∈ R, at each time instant k, it holds that

P r
n(k) ≤ P̄ r

n(k) (5.1)

This work assumes that the injected power can be chosen to be any fraction of the

deliverable one

P r
n(k) = βrP̄

r
n(k), 0 ≤ βr ≤ 1.

For nodes in N \R, P r
n = 0.

5.1.3 Loads

During periods of high loads (as for example during hot summers), power cuts and

blackouts may occur. The discomfort of such events can be mitigated through load

curtailment (or demand response) programs. These provide reduced electrical rates

in exchange for an agreement to curtail energy use at the request of the utility.

This is of particular interest for customers who have the ability to reduce loads by

turning off equipment or using alternative sources of energy (e.g. commercial and

industrial buildings). In the following it is assumed that a subset Dc ⊂ D of the

loads can be curtailed. For each bus n ∈ D and each time instant k ≥ 0, let

Sdn(k) = P d
n(k) + jQd

n(k)

denote the effective complex power delivered to customers (with P d
n(k), Qd

n(k) the

effective active and reactive delivered power respectively). For nodes in N \ D,

P d
n = Qd

n = 0. Denoting with P̄ d
n(k), Q̄d

n(k) the originally required powers, it holds

that

P d
n(k) ≤ P̄ d

n(k) ∀n ∈ Dc
Qd
n(k) ≤ Q̄d

n(k) ∀n ∈ Dc
P d
n(k) = P̄ d

n(k) ∀n ∈ D \ Dc
Qd
n(k) = Q̄d

n(k) ∀n ∈ D \ Dc

(5.2)
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For the buses where curtailment can be applied, the delivered power can be any

fraction of the required one

P d
n(k) = βdP̄

d
n(k), Qd

n(k) = βdQ̄
d
n(k), 0 ≤ βd ≤ 1.

As discussed in the next sections, curtailment has a cost for the provider which is

assumed to be a function of the curtailed amount of power.

5.1.4 Energy Storage Systems

Each node n ∈ S is equipped with an ESS whose dynamics can be described as

follows

cn(k + 1) = cn(k) + ρc · rcn(k)− rdn(k)
ρd

(5.3)

where cn indicates the energy storage level, rcn(k) the charging rate (i.e. the active

power injected in the network), rdn(k) the discharging rate (i.e. the active power

absorbed), ρc and ρd the charging and discharging efficiency, respectively. In the

following, the reactive power involved in the charging and discharging of ESSs is

considered negligible. For nodes in N \ S, cn = rcn = rdn = 0. In order to obtain

a detailed representation of ESSs, some degradation effects have to be considered.

Among them, the loss of capacity during charging and discharging cycles is the

most important. In this work, the bucket model is considered for the ageing effects,

as described in [117]. In particular, the loss of capacity due to ageing is given by

cln(k + 1) =cln(k) + θ1 max
i=0, ··· k

(
rcn(i), rdn(i)

)
+ θ2

(
rcn(k) + rdn(k)

)
(5.4)

where cln(k) is the total loss capacity at a time k, while the initial condition is

given by cln(0) = 0. The parameters θ1 = 2.15 · 10−4 and θ2 = 1.25 · 10−5 are taken

from [117]. The dynamics in (5.4) presents a nonlinearity due to the maximization

operator. To deal with a convex optimization problem, the model is reformulated

as follows

cln(k) =cln(k − 1) + θ1µn(k) + θ2

(
rcn(k − 1) + rdn(k − 1)

)
(5.5)
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where the variables µn(k) has to be penalized in the objective function of the

optimization problem (see next section) in order to be as close as possible to the

maximum values of rdn and rcn. In order to achieve this goal, the following inequalities

are considered

µn(k) ≥ rcn(j), µn(k) ≥ rdn(j), j = 0, · · · , k

Note that for nodes in N \ S, µn(k) = 0.

5.1.5 Costs

The network management has to take into account several operating costs:

• the cost of production through conventional generators, which is modeled as

Cc
n(k) = σcnP

c
n(k), ∀n ∈ C

where σcnh ≥ 0 indicates the unitary production cost, which varies depending

on the power generation type. The cost of power production from renewables

is assumed negligible;

• the cost related to the use of storage devices, given by

Cs
n(k) = σchn r

c
n(k) + σdnr

d
n(k) + cln(k), ∀n ∈ S

with σchn , σ
d
n ≥ 0, while cln is the cost related to battery ageing. Note that

the use of σchn and σdn allows, without introducing binary variables, to avoid

situations where ESSs are charged and discharged simultaneously;

• the cost due to loads curtailment, which is proportional to the power cut

Cd,curt
n (k) = σd,curtn (P̄ d

n(k)− P d
n(k)), ∀n ∈ Dc

with σd,curtn ≥ 0. In order to encourage the use of green energy sources and

to exploit the presence of ESSs, also the curtailment of the renewables is
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penalized

Cr,curt
n (k) = σr,curtn (P̄ r

n(k)− P r
n(k)), ∀n ∈ R

with σr,curtn ≥ 0.

5.1.6 Network Constraints

The proper functioning of a power network depends on several constraints. Consider

W (k) = V (k)V (k)∗. First of all, the following balance equations need to hold for

each bus n ∈ N

P c
n(k) + P r

n(k)− P d
n(k)− rcn(k) + rdn(k)

=
∑
m∈NEn

Re[(Wn,n(k)−Wn,m(k))Y ∗n,m]
(5.6)

Qc
n(k) +Qr

n(k)−Qd
n(k) =

∑
m∈NEn

Im[(Wn,n(k)−Wn,m(k))Y ∗n,m]

where N En = {m : (n,m) ∈ E} indicates the set of buses that are directly reachable

from bus n. Furthermore, the network is subject to a set of inequality constraints,

such as:

• the power production constraints on conventional generators, given by

P c,min
n ≤ P c

n(k) ≤ P c,max
n

Qc,min
n ≤ Qc

n(k) ≤ Qc,max
n

(5.7)

for each n ∈ C and each time k ≥ 0

• the ramping rate constraints on conventional generators, which bind the power

variation to a time instant

−∆P low
n ≤ P c

n(k + 1)− P c
n(k) ≤ ∆P up

n , ∀n ∈ C (5.8)

with ∆P low
n ,∆P up

n ≥ 0.
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• the voltage constraints, which require that

(V min
n )2 ≤ Wn,n(k) ≤ (V max

n )2 ∀n ∈ N

Wn,n(k) +Wm,m(k)−Wn,m(k)−Wm,n(k) ≤ (∆V max
n,m )2 (5.9)

∀(n,m) ∈ E

• the ESSs constraints due to the maximum capacity (which decreases with

ageing) and the maximum ramping rates, which limit the speed of charging

and discharging

0 ≤ cn(k) + cln(k) ≤ cmaxn

0 ≤ rcn(k) ≤ ∆rc,maxn

0 ≤ rdn(k) ≤ ∆rd,maxn

(5.10)

• the constraints which ensure the complete equivalence between the standard

formulation in V (k) and the one here adopted in W (k)

W (k) � 0 (5.11)

rank(W (k)) = 1 (5.12)

Note that, the formulation above is non-convex due to (5.12). A semidefinite

relaxation can be obtained by dropping the rank constraint. By doing so, there is

no guarantee that the solution of the relaxed problem will be feasible and optimal

for the original one. As discussed in [81], in case of weakly-cyclic networks with

cycles of size 3, a rank 1 near-optimal solution can be obtained by adding to the

cost function a penalization term γ related to the reactive power of the generators.
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5.2 Deterministic Optimization

The traditional OPF problem consists in an optimal choice of power produc-

tion and voltage of generators. In this work, the choice of curtailment level

of renewables and loads is addressed, as well as the exploitation of ESSs. In

particular, the choice of the above variables is considered optimal since they

minimize the summation of the costs listed in Section 5.1.5 over a predic-

tion horizon Nh, while fulfilling the network constraints in Section 5.1.6. The

conventional active power production at all nodes at time k is denoted with

P c(k) =
[
P c

1 (k), · · · , P c
nb

(k)
]
. Similarly,it is possible to define P r(k), P d(k),

Qc(k), Qr(k), Qd(k), c(k), rc(k), rd(k). With Pc = [P c(k0), · · · , P c(k0 +Nh)]

the overall active power production over the horizon Nh is indicated, with k0

the initial time instant. Similarly, one has Pr, Pd, Qc, Qr, Qd, c. Fur-

thermore, rc = [rc(k0), · · · , rc(k0 +Nh − 1)], rd =
[
rd(k0), · · · , rd(k0 +Nh − 1)

]
,

closs =
[
cl(k0), · · · , cl(k0 +Nh − 1)

]
, µ = [µ(k0), · · · , µ(k0 +Nh − 1)] are con-

sidered. Moreover, Wu = [W u(k0), · · · ,W u(k0 +Nh)], where each W u(k), k =

k0, · · · , k0 +Nh is a diagonal matrix with diagonal elements W u
n,n(k) = |Vn|2 ∀n ∈ G

and W u
n,n(k) = 0 ∀n ∈ N \G. Finally, Wx = [W x(k0), · · · ,W x(k0 +Nh)] is defined,

with W x(k) = W (k)−W u(k). As discussed in [120], the variables of an optimal

power flow problem are divided into control (u) and state (x) variables. The former

are variables which can be chosen by the network operator while the latter depend

on the control variables and network constraints. According to this formulation,

u =
[
Pc,Pr,Pd, rc, rd,Wu

]
x =

[
Qc,Qr,Qd,Wx, c, cl, µ

] (5.13)

The distinction between Wx and Wu (and their use instead of W) is necessary

since only the voltage at the generating nodes is controllable. In order for u and

x to be vectors, Wu and Wx in (5.13) are reshaped into vectors. Finally, the
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optimization problem can be formulated as follows:

min
u,x

∑Nh
k=1

∑nb
n=1C

c
n(k) + Cs

n(k) + Cd,curt
n (k) + Cr,curt

n (k)

+γ(Qc
n(k) +Qr

n(k))

subj. to ESSs and balance equations (5.3), (5.5), (5.6)

Constraints (5.1), (5.2), (5.7), (5.8), (5.9), (5.10), (5.11)

The optimization above allows to solve a deterministic optimal power flow, in

which the load demands and production of renewables need to be known precisely.

Unfortunately, especially for networks in islanded mode, considering the increasing

penetration of renewables and the inaccurate predictability of renewables and loads,

a deterministic OPF may lead to lines overloading and the exceeding of operational

limits.

5.3 Stochastic Optimization

Before introducing the proposed stochastic OPF, the scenario optimization with

certificates [88] problem is recalled.

5.3.1 Scenario Optimization with Certificates

Consider an optimization problem where the variables can be distinguished in

design variables u and certificate variables x and where δ represents the problem

uncertainty. Let the constraints be represented by the function f(u,x, δ) which

is assumed jointly convex in u and x, for any given δ ∈ ∆. Consider the robust

optimization problem with certificates

min
u

cTu (5.14)

subj. to ∀δ ∈∆, ∃x = x(δ) s.t. f(u,x, δ) ≥ 0
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The problem above is very hard to solve since, as the uncertainty varies in its

admissible domain, a possibly infinite number of constraints can be generated. An

approximation of (5.14) can be obtained by solving a scenario optimization with

certificates

min
u,x1,··· ,xN∆

cTu (5.15)

subj. to f(u,xi, δi) ≥ 0,

i = 1, · · · , N∆

which is based on the extraction of a number N∆ of i.i.d. (independent and

identically distributed) random samples of the uncertainty δ1, · · · , δN∆
and the

creation of a certificate variable xi for each i ∈ {1, · · ·N∆}. The following theorem

can now be recalled [88].

Theorem 5.3.1. Assume that, for any uncertainty sample extraction, problem (5.15)

is feasible and has a unique optimal solution uSwC . Then, given an accuracy level

ε ∈ (0, 1) and a confidence level β ∈ (0, 1), if N∆ is chosen as

N∆ ≥
e

ε(e− 1)

[
ln

(
1

β

)
+ nu − 1

]
(5.16)

with nu the dimension of u and e the Euler number, then, with probability at least

1-β

Pr {∃δ ∈∆ | @x s.t.f (uSwC ,x, δ) ≥ 0} ≤ ε (5.17)

i.e., if N∆ is chosen according to (5.16), the probability of uSwC violating the

constraints of the robust problem in (5.14) is less than a predefined level ε (with

confidence level (1-β)). Note that, as discussed in [121] a less conservative bound

on the number of samples to be extracted can be obtained by finding the minimum

N∆ satisfying

nu−1∑
i=0

(
N∆

i

)
εi(1− ε)N∆−i ≤ β (5.18)
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5.3.2 Stochastic OPF Formulation

In the following, a scenario-based stochastic OPF is formulated. The described

approach extends what proposed in [85] in case of multiple time instants, the

presence of ESSs, and the possibility of curtailment of loads and renewables. Let

δd,[i](k) =
[
δ
d,[i]
1 (k), · · · , δd,[i]nb

(k)
]
∈ ∆d

N

δr,[i](k) =
[
δ
r,[i]
1 (k), · · · , δr,[i]nb

(k)
]
∈ ∆r

N

indicate respectively the vector of complex load and renewable uncertainties at time k

for any extracted sample i. Note that δd,[i]n (k) = 0,∀n /∈ D and δr,[i]n (k) = 0,∀n /∈ R.

At each time step, for each n ∈ N , the corresponding uncertain load power

demand and the uncertain renewable power production before the application of

any curtailment are

P̄ d
n(δd,[i]n , k) = P̄ d

n(k) +Re
{
δd,[i]n (k)

}
,

Q̄d
n(δd,[i]n , k) = Q̄d

n(k) + Im
{
δd,[i]n (k)

}
,

P̄ r
n(δr,[i]n , k) = P̄ r

n(k) +Re
{
δr,[i]n (k)

}
,

Q̄r
n(δr,[i]n , k) = Q̄r

n(k) + Im
{
δr,[i]n (k)

}
,

where P̄ d
n (k), P̄ r

n(k) and Q̄d
n(k), Q̄r

n(k) here indicate the nominal (forecasted) active

and reactive powers. In order for the network constraints to be satisfied for

the possible uncertainties, especially for networks in islanded mode, uncertainty

dependent curtailments are necessary. The same is required for the power produced

by conventional generators and for the ESSs usage. To this end, a solution similar

to the one proposed in [69], [85] is adopted. Introducing the vectors

δ[i](k) =
[
δd,[i](k) δr,[i](k)

]
,

s = [1nb − 1nb ] , αc =
[
αc1, · · · , αcnb

]
,

αd =
[
αd1, · · · , αdnb

]
, αr =

[
αr1, · · · , αrnb

]
,

αESS,c =
[
αESS,c1 , · · · , αESS,cns

]
, αESS,d =

[
αESS,d1 , · · · , αESS,dns

]
,
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with 1nb denoting an 1-by-nb vector of ones, αcn = 0, ∀n ∈ N \ C, αdn = 1, ∀n ∈ Dc,

αdn = 0, ∀n ∈ N \ D, αrn = 0, ∀n ∈ N \ R and αESS,cn = αESS,dn = 0, ∀n ∈ N \ S.

Define

P c
n(k, δ[i]) = P c

n(k) + αcnRe
{
δ[i](k)

}
sT , (5.19)

P d
n(k, δ[i]) = P d

n(k) + αdnRe{δ[i](k)}sT , (5.20)

P r
n(k, δ[i]) = P r

n(k) + αrnRe
{
δ[i](k)

}
sT , (5.21)

rcn(k, δ[i]) = rcn(k) + αESS,cn Re
{
δ[i](k)

}
sT , (5.22)

rdn(k, δ[i]) = rdn(k) + αESS,dn Re
{
δ[i](k)

}
sT , (5.23)

the uncertainty dependent generation of conventional power, curtailed loads, cur-

tailed renewables, charging and discharging rates. The role of the different alphas

is to cope with the uncertainties by i) increasing the production of conventional

generators, ii) absorbing or releasing more power from ESSs, iii) suitably curtailing

loads and renewables. It is worth to mention that, while in [85] the deployment

vector α is used only to redistribute the net difference between the uncertainty in

the loads and the uncertainty in the renewables among the several conventional

generators, the approach here presented is more complex. Indeed, due to the

possible curtailments of loads and renewables, only a part of such net difference

should be taken into account. Moreover, the presence of storage devices allows the

redistribution not only on conventional generators but also on ESSs.

Remarks 5.3.2. Note that different alphas could be used for each k = k0, · · · , k0+Nh.

However, in this chapter, the same vector is used over the entire horizon, so to

reduce the overall computational burden.

Due to the uncertainties, it is necessary to re-write the balance equations ∀n ∈ N
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P c
n(k, δ[i])− P d

n(k, δ[i]) + rcn(k, δ[i])− rdn(k, δ[i]) + P r
n(k, δ[i]) =∑

m∈NEn
Re
[
(Wn,n(k, δ[i])−Wn,m(k, δ[i])) · Y ∗n,m

]

Qc
n(k, δ[i]) +Qr

n(k, δ[i]) +Qd
n(k, δ[i]) =∑

m∈NEn
Im
[
(Wn,n(k, δ[i])−Wn,m(k, δ[i])) · Y ∗n,m

]
(5.24)

and the power constraints ∀n ∈ N

P c
nmin
≤ P c

n(k, δ[i]) ≤ P c
nmax

Qc
nmin
≤ Qc

n(k, δ[i]) ≤ Qc
nmax

−∆P low
n ≤ P c

n(k + 1, δ[i])− P c
n(k, δ[i]) ≤ ∆P up

n

(5.25)

Moreover, the ESSs dynamics is updated as follows

cln(k, δ[i]) =cln(k − 1, δ[i]) + θ1µn(k, δ[i])+

+ θ2

(
rcn(k − 1, δ[i]) + rdn(k − 1, δ[i])

) (5.26)

while the variables µn(k, δ[i]) are subject to

µn(k, δ[i]) ≥ rcn(j, δ[i]), µn(k, δ[i]) ≥ rdn(j, δ[i])

j = 0, · · · , k

and their constraints become

0 ≤ cn(k, δ[i]) + cln(k, δ[i]) ≤ cmaxn

0 ≤ rcn(k, δ[i]) ≤ ∆rc,maxn

0 ≤ rdn(k, δ[i]) ≤ ∆rd,maxn

(5.27)
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The following constraints are also required

0 ≤ P d
n(k, δ[i]) ≤ P̄ d

n(k, δ[i]) ∀n ∈ Dc
Qd
n(k, δ[i]) ≤ Q̄d

n(k, δ[i]) ∀n ∈ Dc
0 ≤ P d

n(k, δ[i]) = P̄ d
n(k, δ[i]) ∀n ∈ D \ Dc

Qd
n(k, δ[i]) = Q̄d

n(k, δ[i]) ∀n ∈ D \ Dc
0 ≤ P r

n(k, δ[i]) ≤ P̄ r
n(k, δ[i]) ∀n ∈ R

Qr
n(k, δ[i]) ≤ Q̄r

n(k, δ[i]) ∀n ∈ R

(5.28)

Note that these are required to guarantee that the uncertainty dependent curtailed

loads and renewables do not get negative and do not exceed the uncertain loads

and renewables respectively.

Also the formal division between control and state variables needs to be updated

as follows

u =
[
Pc,Pr,Pd, rc, rd,Wu,αc,αr,αd,αESS,c,αESS,d

]
x(δ[i]) =

[
Qc(δ[i]),Qr(δ[i]),Qd(δ[i]),Wx(δ[i]), c(δ[i]), cl(δ[i]), µ(δ[i])

] (5.29)

where Wx = W(δ[i]) −Wu. Note that the uncertain dependent generation of

conventional power Pc(δ[i]) can be obtained from Pc and αc by applying (5.19) (the

same holds for (5.20)-(5.23)). It is possible now formulate the stochastic optimal

power flow problem using a scenario optimization with certificates where u is kept

fixed while a different x(δ[i]) is used for each different uncertain sample δ[i]

min
u,x(δ[1]),···x(δ[N∆])

φ (5.30)

that is subject to

∑Nh
k=1(

∑nb
n=1C

c
n(k, δ[i]) + Cd,curt

n (k, δ[i]) + Cr,curt
n (k, δ[i])+

+Cs
n(k, δ[i]) + γ(Qc

n(k, δ[i]) +Qr
n(k, δ[i])) ≤ φ

ESSs and balance equations (5.24), (5.26), (5.27)

Constraints (5.19), (5.20), (5.21), (5.22), (5.23), (5.25), (5.28)

W (k, δ[i]) � 0 i = 1, ..., N∆

(5.31)
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The terms γ(Qc
n(k)+Qr

n(k))+γl
∑

(l,m)∈Lprob Llm(k, δ[i]) are necessary for recovering

a rank 1 near optimal solution when an SDP relaxation is used. Note that, in the

problem above, the objective function is the maximum among the costs obtained

for the different δ[i], i = 1, · · · , N∆.

5.4 Closed Loop Solution

The solution of the stochastic OPF problem provides values for the control variables

u over the horizon k · · · , k + Nh. However, rather than using the full sequence,

according to the receding horizon paradigm, only the first input is applied. Then,

at time k + 1, measurements are collected and, if possible, the forecasts of power

demands and renewables production updated, thus allowing to cope with possible

unexpected variations or better weather predictions. Note that the complexity

of a scenario-based optimization depends on the number of control variables and

grows significantly with the length of the prediction horizon. In presence of storage

devices and curtailments, the use of a long Nh results in better performance (reduced

curtailment of loads and renewables, wiser use of ESSs, reduced use of conventional

generators). On the other side, the time required by the optimization needs to be

compatible with the sampling time used for controlling the grid. In any case, it is

unrealistic to assume that the time required to solve the optimization is negligible.

For this reason, at time k, an optimization where u(k) is fixed (given by the previous

optimization) is solved and only the variables on the window k + 1, · · · , k +Nh are

optimized. In practice the procedure can be summarized as follows:

1. at time k, the uncertainty δ(k) is measured. The uncertainty dependent gen-

eration of conventional power, curtailed loads, curtailed renewables, charging

and discharging rates is computed according to δ(k) and the u(k) which was

previously computed at time k − 1.

2. In case u(k) satisfies all the OPF constraints at time k, proceed with the next

step. Otherwise, further actions may be required;

3. At time k, predict the states of the grid (i.e. the SOC of the ESSs) for time k+1,
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using u(k) and solve the stochastic OPF over the window k + 1, · · · , k +Nh;

4. Increase counter k = k + 1;

5. Go back to 1) .

5.5 Case Study

In this section, the proposed approach is applied on a modified version of IEEE 14

bus which is considered in islanded mode. In particular, conventional generators

are considered at buses 2 and 6, both the renewable resource and the ESS at bus 8.

The curtailable loads are placed at buses 3 and 9, while the not curtailable ones are

situated at buses 4, 5 and 10. The production costs for the conventional generators

Figure 5.1: IEEE 14 bus
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are chosen as in [122]:

σc2 = 2710 $
p.u 1

4
h

σc6 = 1677 $
p.u 1

4
h

(5.32)

The cost of load curtailments is chosen in accordance with [91] and is equal to

0.15$ per kWh detached, which, transformed in p.u., becomes σcurtn = 15000 $
p.u

.

Since this work aims to maximize the use of renewable sources, the curtailment

of renewables is weighted with σrn = 10 $
p.u

. On the other side, the charging and

discharging of the batteries are penalized with σchn = σdn = 1. The upper and lower

limits for the power production of the conventional generators are:

P c,min
2 = 0.1p.u. P c,min

6 = 0.1 p.u.

P c,max
2 = 1p.u. P c,max

6 = 2.3 p.u.
(5.33)

while the ramping rate constraints are:

∆P low
2 = 0.8 p.u. ∆P low

6 = 1 p.u.

∆P up
2 = 0.15p.u. ∆P up

6 = 0.75 p.u.
(5.34)

The time varying profile of a real renewable source is taken from [123], while the

load profiles are obtained from real data of active power demand. All the profiles

have length of 24 hours and are sampled every 15 minutes. The capacity of the

battery is set equal to cmaxn (k) = 2.6 p.u. and the ∆rc,maxn = ∆rd,maxn = 0.1 p.u.

(these values are the same as in [122]). As far as the parameters of the SwC, a

prediction horizon Nh = 5 is chosen where each step has the duration of 15 minutes

are concerned. Moreover, the values of confidence and accuracy level are chosen

respectively as βSwC = 1e−6 and ε = 0.1. The values of renewable and loads

uncertainty are extracted from a leptokurtic distribution in accordance with [124].

In particular, the Pearson system is adopted in which the values of the parameters

are chosen as σ = 0.2 · (predicted values), γ= 0, and k = 3.5. This particular

distribution helps to take into account large forecast errors better than the Gaussian

one. The number of control variables results equal to u = 103. By applying (5.18),

the minimum number of samples needed to guarantee the desired probabilities is
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N∆ = 1558. The resulting stochastic SDP problem is solved using MATLAB. In

particular, YALMILP [125] and the commercial solver MOSEK are used. The PC

used for simulations is equipped with an i7 @3.5 Ghz 64bit CPU sytem, 16 Gbytes

of RAM and O.S Windows 10.

5.5.1 Simulation Results
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Figure 5.2: Profiles with ESSs
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Figure 5.3: Profiles without ESSs
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Figure 5.4: Detail of demand profiles with ESSs
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In this section, the optimization results are analyzed. Fig. 5.2 reports the

profiles of the production from a conventional generator and renewable source, the

power demand and the battery SoC. As can be noticed, the total power generation

(blue) is always greater than the total power demand (red) and the renewable

source is exploited almost to its full capacity. The values of SoC increases when

the total generated power exceeds the demand and the energy stored in the battery

is then used in order to keep the optimization cost as low as possible, allowing

only a 0.04 % load curtailment (Fig. 5.4). Note that the load curtailment value is

almost negligible. In order to show the battery importance, the same optimization

is conducted without the ESS. Fig. 5.3 shows that the conventional production

is increased by 2.08 %, while the renewable source is not completely exploited.

Moreover, the total load curtailment is 0.30 % (Fig.5.5), which, although still

negligible, becomes 7.5 times worse than the previous case.

5.6 Conclusion

In this chapter a closed loop battery ageing-aware stochastic OPF for networks in

islanded mode is proposed. In particular, in this work, the possibility to use DR

and ESSs is considered to better cope with uncertainties and a degradation battery

model is used to account for the ageing of the ESSs and their cost of replacement.

Simulation test performed on IEEE 14 bus benchmark, in which the profile of

renewable production and power demands and costs are taken from real data, show

the effectiveness of the proposed approach.
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Conclusion and future work

In this thesis, novel and interesting solutions for optimal dispatching in the context

of Industry 4.0 are proposed. In particular, two different dispatching problems

are addressed. The main problem is the dispatching problem in a semiconductor

production site while the minor problem is the optimal dispatching of electric

power in power networks operating in islanded mode.

Chapter 2 and Chapter 3 deal with the optimal dispatching in a semiconductor

production site, which is a very complex problem, at least NP-hard. In particular,

in Chapter 2 several approaches are proposed in order to solve the dispatching

problem in a semiconductor manufacturing process. However, as highlighted in

the chapter, even if the problem is NP-hard, it is possible to obtain suboptimal

solutions that can be both practical and effective. Indeed, our approach proposed

in Algorithm 4 has been tested on a real application in Infineon Dresden.

Chapter 3 addresses the problem of planning and scheduling for a fleet of robots

with travel time uncertainty operating in manufacturing systems where some

demands require to be satisfied at the same time. Inspired by model checking

techniques, a general nominal solution is proposed, where the motions of the robots

are considered without uncertainty. Successively, with the aim to guarantee the

synchronization demands even in the presence of travel time uncertainty, an online

controller is proposed.

207
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In Chapter 4, all the details about the hardware and the experimental setting

used to validate the approaches proposed in the Chapter 2 and Chapter 3 are

provided. Furthermore, several different operations performed by the UNIPV

test-bed are shown, see the following YouTube links:

• Path Following - Leminiscate: https://youtu.be/4I12eG2_WgM

• Path Following on Graph : https://youtu.be/K5o2AonO_ZI, https://

youtu.be/OY-UUDoJXms

• Multiple robots: https://youtu.be/DBmJCIEWNVk

In Chapter 5 a closed loop battery ageing-aware stochastic OPF for networks

operating in islanded mode is proposed. In particular, in this chapter, the

possibility to use DR and ESSs is considered to better cope with uncertainties.

Moreover, a degradation battery model is used to account for the ageing of the

ESSs and their cost of replacement.

In the next future, diverse extensions and applications can be studied.

First, the approach proposed in Section 2.7 can be extended to a more generic

class of vehicles in order to have an approach as close as possible to the needs

of the production site. Indeed, it will be useful to take into account during the

https://youtu.be/4I12eG2_WgM
https://youtu.be/K5o2AonO_ZI
https://youtu.be/OY-UUDoJXms
https://youtu.be/OY-UUDoJXms
https://youtu.be/DBmJCIEWNVk
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optimization the possibility to have vehicles with different transport capacities.

Secondly, the approach proposed in Chapter 3 could be modified in order to

develop an approach in which the uncertainties are considered directly on the

Product Automata (PA). In this way, it would be possible to find directly on the

PA the robot trajectories that allow to ensure the synchronization requests without

using the on-line controller.

Thirdly, as for Chapter 4, possible future works can deal with improving the

real-time performance by using the ARXs in the MPC for describing the relationship

between PWM and motor angular velocity. Thus, in order to model the robot

motors in the MPC via ARXs, a Raspberry with a computing power greater than

the one available for this project (PI 3 model) will be required. Alternatively, in

order to reduce the computational time, an alternative QP formulation can be

applied.

Lastly, as concerns Chapter 5, there are a few possible future works. Chance

constraints optimization could be used in order to reduce the computational burden.

Besides, it will be interesting to include different programs of demand response,

such as load-shifting demand response.

From an application point of view, since the topics of Chapter 2 and Chapter 3

are related to different methods for coordinating a set of robots that must perform

a dynamically changing set of tasks, it will be interesting to apply our methods also

to similar challenges arising in other areas, e.g., the coordination of autonomous

robots in logistics.





Bibliography

[1] seekmomentum. (2019) The evolution of industry 1.0 to 4.0. [On-

line]. Available: https://www.seekmomentum.com/blog/manufacturing/

the-evolution-of-industry-from-1-to-4

[2] S. Wang, J. Wan, D. Li, and C. Zhang, “Implementing smart factory of indus-

trie 4.0: an outlook,” International Journal of Distributed Sensor Networks,

vol. 12, no. 1, p. 3159805, 2016.

[3] V. Alcácer and V. Cruz-Machado, “Scanning the industry 4.0: a literature

review on technologies for manufacturing systems,” Engineering Science and

Technology, an International Journal, 2019.

[4] Samsung SDI CO.,LTD, “Wafer,” https://www.samsungsdi.com/column/

technology/detail/55446.html?listType=gallery, 2019, [Online; accessed 5-

September-2019].

[5] F. Thiesse and E. Fleisch, “On the value of location information to lot

scheduling in complex manufacturing processes,” International Journal of

Production Economics, vol. 112, no. 2, pp. 532–547, 2008.

[6] MathWorks, “Pinhole camera model,” 2019, [Online; accessed September

01, 2019]. [Online]. Available: https://it.mathworks.com/help/vision/ug/

camera-calibration.html

[7] Kornia, “Pinhole camer,” https://torchgeometry.readthedocs.io/en/latest/

pinhole.html, 2019, [Online; accessed 5-September-2019].

211

https://www.seekmomentum.com/blog/manufacturing/the-evolution-of-industry-from-1-to-4
https://www.seekmomentum.com/blog/manufacturing/the-evolution-of-industry-from-1-to-4
https://www.samsungsdi.com/column/technology/detail/55446.html?listType=gallery
https://www.samsungsdi.com/column/technology/detail/55446.html?listType=gallery
https://it.mathworks.com/help/vision/ug/camera-calibration.html
https://it.mathworks.com/help/vision/ug/camera-calibration.html
https://torchgeometry.readthedocs.io/en/latest/pinhole.html
https://torchgeometry.readthedocs.io/en/latest/pinhole.html


212 Chapter 6

[8] T. R. P. Foundation, “Raspberry pi 3 model b,” 2019, [Online: accessed

September 01, 2019]. [Online]. Available: https://www.raspberrypi.org/

products/raspberry-pi-3-model-b/

[9] Dfrobot, “Arduino bluno nano,” 2019, [Online: accessed September 01, 2019].

[Online]. Available: https://www.dfrobot.com/product-1122.html

[10] K. Schwab, The fourth industrial revolution. Currency, 2017.

[11] Elisa Convertini, Osservatorio Industria 4.0 , “Le smart technologies alla

base della quarta rivoluzione industriale,” https://blog.osservatori.net/it_

it/smart-technologies-quarta-rivoluzione-industriale, 2018, [Online; accessed

5-September-2019].

[12] Boston Consulting Group, “Embracing industry 4.0 and rediscovering growth,”

https://www.bcg.com/capabilities/operations/embracing-industry-4.

0-rediscovering-growth.aspx, [Online; accessed 5-September-2019].

[13] Y. Lu, “Industry 4.0: A survey on technologies, applications and open research

issues,” Journal of Industrial Information Integration, vol. 6, pp. 1–10, 2017.

[14] H. Kagermann, W. Wahlster, and J. Helbig, “Securing the future of german

manufacturing industry,” Recommendations for implementing the strategic

initiative INDUSTRIE, vol. 4, no. 199, p. 14, 2013.

[15] T. Bauernhansl, B. Diegner, J. Diemer, M. Dümmler, C. Eckert, W. Herfs,

H. Heyn, C. Hilger, M. Ten Hompel, J. Kalhoff et al., “Industrie 4.0-

whitepaper fue-themen,” Berlin: Bundesministerium für Wirtschaft und

Energie-Plattform Industrie, vol. 4, 2014.

[16] V. Bitkom, “Zvei.(2015). umsetzungsstrategie industrie 4.0 ergebnisbericht

der plattform industrie 4.0,” Acatech. Munich.

[17] T. Stock and G. Seliger, “Opportunities of sustainable manufacturing in

industry 4.0,” Procedia Cirp, vol. 40, pp. 536–541, 2016.

https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://www.dfrobot.com/product-1122.html
https://blog.osservatori.net/it_it/smart-technologies-quarta-rivoluzione-industriale
https://blog.osservatori.net/it_it/smart-technologies-quarta-rivoluzione-industriale
https://www.bcg.com/capabilities/operations/embracing-industry-4.0-rediscovering-growth.aspx
https://www.bcg.com/capabilities/operations/embracing-industry-4.0-rediscovering-growth.aspx


213 Chapter 6

[18] H. Foidl and M. Felderer, “Research challenges of industry 4.0 for quality

management,” in International Conference on Enterprise Resource Planning

Systems. Springer, 2015, pp. 121–137.

[19] M. Brettel, N. Friederichsen, M. Keller, and M. Rosenberg, “How virtualization,

decentralization and network building change the manufacturing landscape:

An industry 4.0 perspective,” International journal of mechanical, industrial

science and engineering, vol. 8, no. 1, pp. 37–44, 2014.

[20] S. Immediato. (2018) Industry 4.0 e digital twin: grado di conoscenza e

analisi di applicabilita alle pmi. [Online]. Available: https://webthesis.biblio.

polito.it/8815/

[21] K. Zhou, T. Liu, and L. Zhou, “Industry 4.0: Towards future industrial

opportunities and challenges,” in 2015 12th International conference on fuzzy

systems and knowledge discovery (FSKD). IEEE, 2015, pp. 2147–2152.

[22] H. Kagermann, J. Helbig, A. Hellinger, and W. Wahlster, Recommendations

for implementing the strategic initiative INDUSTRIE 4.0: Securing the future

of German manufacturing industry; final report of the Industrie 4.0 Working

Group. Forschungsunion, 2013.

[23] M. Hermann, T. Pentek, and B. Otto, “Design principles for industrie 4.0

scenarios: A literature review,” 01 2015.

[24] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,”

Computer networks, vol. 54, no. 15, pp. 2787–2805, 2010.

[25] E. A. Lee, “Cyber physical systems: Design challenges,” in 2008 11th IEEE

International Symposium on Object and Component-Oriented Real-Time Dis-

tributed Computing (ISORC). IEEE, 2008, pp. 363–369.

[26] J. W. Strandhagen, E. Alfnes, J. O. Strandhagen, and L. R. Vallandingham,

“The fit of industry 4.0 applications in manufacturing logistics: a multiple

case study,” Advances in Manufacturing, vol. 5, no. 4, pp. 344–358, 2017.

https://webthesis.biblio.polito.it/8815/
https://webthesis.biblio.polito.it/8815/


214 Chapter 6

[27] N. Boulila, “Cyber-physical systems and industry 4.0: Properties, structure,

communication, and behavior,” 04 2019.

[28] S. Keil, “Design of a cyber-physical production system for semiconductor

manufacturing,” in Proceedings of the Hamburg International Conference of

Logistics (HICL). epubli, 2017, pp. 319–340.

[29] D. Giusto, A. Iera, G. Morabito, and L. Atzori, The internet of things: 20th

Tyrrhenian workshop on digital communications. Springer Science & Business

Media, 2010.

[30] V. Mittelstädt, P. Brauner, M. Blum, and M. Ziefle, “On the visual design

of erp systems the–role of information complexity, presentation and human

factors,” Procedia Manufacturing, vol. 3, pp. 448–455, 2015.

[31] M. Singh, I. Khan, and S. Grover, “Tools and techniques for quality man-

agement in manufacturing industries (pp. 853–859),” in Faridabad, Haryana:

Proceedings of the National Conference on Trends and Advances in Mechanical

Engineering, YMCA University of Science & Technology, 2012.

[32] SemI40 Consortium, “Power semiconductor and electronics manufacturing

4.0,” http://www.semi40.eu/, 2018, [Online; accessed 5-September-2019].

[33] T. Chao, Introduction to semiconductor manufacturing technology. SPIE

PRESS, 2001.

[34] Y. Nishi and R. Doering, Handbook of semiconductor manufacturing technol-

ogy. CRC Press, 2007.

[35] M. Quirk and J. Serda, Semiconductor manufacturing technology. Prentice

Hall Upper Saddle River, NJ, 2001, vol. 1.

[36] F. Thiesse and E. Fleisch, “On the value of location information to lot

scheduling in complex manufacturing processes,” International Journal of

Production Economics, vol. 112, no. 2, pp. 532–547, 2008.

http://www.semi40.eu/


215 Chapter 6

[37] S. C. Sarin, A. Varadarajan, and L. Wang, “A survey of dispatching rules for

operational control in wafer fabrication,” Production Planning and Control,

vol. 22, no. 1, pp. 4–24, 2011.

[38] I. F. Vis, “Survey of research in the design and control of automated guided

vehicle systems,” European Journal of Operational Research, vol. 170, no. 3,

pp. 677–709, 2006.

[39] T. Ganesharajah, N. G. Hall, and C. Sriskandarajah, “Design and operational

issues in agv-served manufacturing systems,” Annals of Operations Research,

vol. 76, pp. 109–154, 1998.

[40] H. W. Kuhn, “The hungarian method for the assignment problem,” Naval

research logistics quarterly, vol. 2, no. 1-2, pp. 83–97, 1955.

[41] P.-H. Koo, J. Jang, and J. Suh, “Vehicle dispatching for highly loaded semi-

conductor production considering bottleneck machines first,” International

Journal of Flexible Manufacturing Systems, vol. 17, no. 1, pp. 23–38, 2005.

[42] O. Z. Maimon and S. B. Gershwin, “Dynamic scheduling and routing for

flexible manufacturing systems that have unreliable machines,” Operations

Research, vol. 36, no. 2, pp. 279–292, 1988.

[43] A. Seidmann, “On-line scheduling of a robotic manufacturing cell with stochas-

tic sequence-dependent processing rates,” International journal of production

research, vol. 25, no. 6, pp. 907–924, 1987.

[44] A. Tenenbaum and A. Seidmann, “Dynamic load control policies for a flexible

manufacturing system with stochastic processing rates,” International Journal

of Flexible Manufacturing Systems, vol. 2, no. 2, pp. 93–120, 1989.

[45] Y. Yih and A. Thesen, “Semi-markov decision models for real-time scheduling,”

The International Journal of Production Research, vol. 29, no. 11, pp. 2331–

2346, 1991.



216 Chapter 6

[46] J. Kimemia and S. B. Gershwin, “An algorithm for the computer control

of a flexible manufacturing system,” AIIE Transactions, vol. 15, no. 4, pp.

353–362, 1983.

[47] O. Z. Maimon, “Real-time operational control of flexible manufacturing sys-

tems,” Journal of Manufacturing Systems, vol. 6, no. 2, pp. 125–136, 1987.

[48] L. M. Wein, “Scheduling semiconductor wafer fabrication,” IEEE Transactions

on semiconductor manufacturing, vol. 1, no. 3, pp. 115–130, 1988.

[49] S. X. Lou and P. W. Kager, “A robust production control policy for vlsi wafer

fabrication,” IEEE Transactions on semiconductor manufacturing, vol. 2,

no. 4, pp. 159–164, 1989.

[50] Y.-F. Hung and I.-R. Chen, “A simulation study of dispatch rules for reducing

flow times in semiconductor wafer fabrication,” Production Planning & Control,

vol. 9, no. 7, pp. 714–722, 1998.

[51] R. Uzsoy, L. A. Martin-Vega, C.-Y. Lee, and P. A. Leonard, “Production

scheduling algorithms for a semiconductor test facility,” IEEE Transactions

on Semiconductor Manufacturing, vol. 4, no. 4, pp. 270–280, 1991.

[52] C. I. Vasile and C. Belta, “An automata-theoretic approach to the vehicle

routing problem.” in Robotics: Science and Systems, 2014.

[53] A. Ulusoy, S. L. Smith, X. C. Ding, C. Belta, and D. Rus, “Optimality and

robustness in multi-robot path planning with temporal logic constraints,” The

International Journal of Robotics Research, vol. 32, no. 8, pp. 889–911, 2013.

[54] S. Karaman and E. Frazzoli, “Vehicle routing problem with metric temporal

logic specifications,” in 2008 47th IEEE Conference on Decision and Control.

IEEE, 2008, pp. 3953–3958.

[55] R. Koymans, “Specifying real-time properties with metric temporal logic,”

Real-time systems, vol. 2, no. 4, pp. 255–299, 1990.



217 Chapter 6

[56] O. Maler and D. Nickovic, “Monitoring temporal properties of continuous

signals,” in Formal Techniques, Modelling and Analysis of Timed and Fault-

Tolerant Systems. Springer, 2004, pp. 152–166.

[57] L. Mönch, J. W. Fowler, S. Dauzère-Pérès, S. J. Mason, and O. Rose, “A

survey of problems, solution techniques, and future challenges in scheduling

semiconductor manufacturing operations,” Journal of scheduling, vol. 14,

no. 6, 2011.

[58] S. Karaman and E. Frazzoli, “Linear temporal logic vehicle routing with

applications to multi-uav mission planning,” International Journal of Robust

and Nonlinear Control, vol. 21, no. 12, pp. 1372–1395, 2011.

[59] J. Tumova, G. C. Hall, S. Karaman, E. Frazzoli, and D. Rus, “Least-violating

control strategy synthesis with safety rules,” in International Conference on

Hybrid systems: computation and control. ACM, 2013, pp. 1–10.

[60] J. Tumova, S. Karaman, C. Belta, and D. Rus, “Least-violating planning

in road networks from temporal logic specifications,” in Procs. of the 7th

International Conference on Cyber-Physical Systems. IEEE, 2016, p. 17.

[61] D. Aksaray, C.-I. Vasile, and C. Belta, “Dynamic routing of energy-aware

vehicles with Temporal Logic Constraints,” in IEEE International Conference

on Robotics and Automation (ICRA), 2016, pp. 3141–3146.

[62] Y. Meng, Y. Yang, H. Chung, P.-H. Lee, and C. Shao, “Enhancing sustainabil-

ity and energy efficiency in smart factories: A review,” Sustainability, vol. 10,

no. 12, p. 4779, 2018.

[63] A. Rojko, “Industry 4.0 concept: background and overview,” International

Journal of Interactive Mobile Technologies (iJIM), vol. 11, no. 5, pp. 77–90,

2017.

[64] F. Shrouf, J. Ordieres, and G. Miragliotta, “Smart factories in industry 4.0:

A review of the concept and of energy management approached in produc-

tion based on the internet of things paradigm,” in 2014 IEEE international



218 Chapter 6

conference on industrial engineering and engineering management. IEEE,

2014, pp. 697–701.

[65] M. Lom, O. Pribyl, and M. Svitek, “Industry 4.0 as a part of smart cities,” in

2016 Smart Cities Symposium Prague (SCSP). IEEE, 2016, pp. 1–6.

[66] E. Commission, “Strategic energy technology plan (set-plan,” European Com-

mission, Tech. Rep., 2016.

[67] E. E. D. of Energy (DOE) and R. Energy, “20Increasing wind energy’s

contribution to u.s. electricity supply,” Energy Efficiency Department of

Energy (DOE) and Renewable Energy, Tech. Rep., 2008.

[68] E. position paper., “2050: Facilitating 50transmission infrastructure, system

operation and electricity market integration.” EWEA European Wind Energy

Association, Tech. Rep., 2009.

[69] D. Bienstock, M. Chertkov, and S. Harnett, “Chance-constrained optimal

power flow: Risk-aware network control under uncertainty,” SIAM Review,

vol. 56, no. 3, pp. 461–495, 2014.

[70] J. Carpentier, “Contribution a l’étude du dispatching économique,” Bulletin

de la Société Française des Électriciens, vol. vol. III, pp. 431–437, 1962.

[71] R. P. O. M. B. Cain and A. Castillo, “History of optimal power flow and

formulations (opf paper 1),” US Federal Energy Resource Commission (FERC),

Tech. Rep., 2012.

[72] E. Dall’Anese and A. Simonetto, “Optimal power flow pursuit,” IEEE Trans-

actions on Smart Grid, vol. 9, no. 2, pp. 942–952, March 2018.

[73] S. Paudyal, C. A. Canizares, and K. Bhattacharya, “Optimal operation

of distribution feeders in smart grids,” IEEE Transactions on Industrial

Electronics, vol. 58, no. 10, pp. 4495–4503, Oct 2011.

[74] H. M. Khodr, M. A. Matos, and J. Pereira, “Distribution optimal power flow,”

in 2007 IEEE Lausanne Power Tech, July 2007, pp. 1441–1446.



219 Chapter 6

[75] R. Tonkoski, L. A. C. Lopes, and T. H. M. El-Fouly, “Coordinated active

power curtailment of grid connected pv inverters for overvoltage prevention,”

IEEE Transactions on Sustainable Energy, vol. 2, no. 2, pp. 139–147, April

2011.

[76] J. von Appen, T. Stetz, M. Braun, and A. Schmiegel, “Local voltage control

strategies for pv storage systems in distribution grids,” IEEE Transactions

on Smart Grid, vol. 5, no. 2, pp. 1002–1009, March 2014.

[77] X. Bai, H. Wei, K. Fujisawa, and Y. Wang, “Semidefinite programming for

optimal power flow problems,” International Journal of Electrical Power &

Energy Systems, vol. 30, no. 6, pp. 383 – 392, 2008.

[78] O. Alsac, J. Bright, M. Prais, and B. Stott, “Further developments in lp-based

optimal power flow,” IEEE Transactions on Power Systems, vol. 5, no. 3, pp.

697–711, 1990.

[79] B. Stott, J. Jardim, and O. Alsac, “Dc power flow revisited,” IEEE Transac-

tions on Power Systems, vol. 24, no. 3, pp. 1290–1300, 2009.

[80] J. Lavaei and S. H. Low, “Zero duality gap in optimal power flow problem,”

IEEE Transactions on Power Systems, vol. 27, no. 1, pp. 92–107, 2012.

[81] R. Madani, S. Sojoudi, and J. Lavaei, “Convex relaxation for optimal power

flow problem: Mesh networks,” IEEE Transactions on Power Systems, vol. 30,

no. 1, pp. 199–211, 2015.

[82] R. Madani, M. Ashraphijuo, and J. Lavaei, “Promises of conic relaxation for

contingency-constrained optimal power flow problem,” IEEE Transactions on

Power Systems, vol. 31, no. 2, pp. 1297–1307, 2016.

[83] H. Zhang and P. Li, “Probabilistic analysis for optimal power flow under

uncertainty,” IET Generation, Transmission & Distribution, vol. 4, no. 5, pp.

553–561, 2010.



220 Chapter 6

[84] T. Mühlpfordt, T. Faulwasser, and V. Hagenmeyer, “Solving stochastic ac

power flow via polynomial chaos expansion,” in Control Applications (CCA),

2016 IEEE Conference on. IEEE, 2016, pp. 70–76.

[85] M. Chamanbaz, F. Dabbene, and C. Lagoa, “Ac optimal power flow in

the presence of renewable sources and uncertain loads,” arXiv preprint

arXiv:1702.02967, 2017.

[86] M. Vrakopoulou, M. Katsampani, K. Margellos, J. Lygeros, and G. Andersson,

“Probabilistic security-constrained ac optimal power flow,” in PowerTech, 2013

IEEE Grenoble. IEEE, 2013, pp. 1–6.

[87] M. Vrakopoulou, J. L. Mathieu, and G. Andersson, “Stochastic optimal power

flow with uncertain reserves from demand response,” in System Sciences

(HICSS), 2014 47th Hawaii International Conference on. IEEE, 2014, pp.

2353–2362.

[88] S. Formentin, F. Dabbene, R. Tempo, L. Zaccarian, and S. M. Savaresi, “Sce-

nario optimization with certificates and applications to anti-windup design,”

in 53rd IEEE Conference on Decision and Control, Dec 2014, pp. 2810–2815.

[89] A. Papavasiliou and S. S. Oren, “A stochastic unit commitment model for

integrating renewable supply and demand response,” in Power and Energy

Society General Meeting, 2012 IEEE. IEEE, 2012, pp. 1–6.

[90] W. A. Bukhsh, C. Zhang, and P. Pinson, “An integrated multiperiod opf

model with demand response and renewable generation uncertainty,” IEEE

Transactions on Smart Grid, vol. 7, no. 3, pp. 1495–1503, 2016.

[91] R. M. Institute, “Demand response: an introduction-overview of lessons,

technologies, and lesson learned,” Rocky Mountain Institute, Tech. Rep.,

2006.

[92] G. Coppez, S. Chowdhury, and S. P. Chowdhury, “The importance of energy

storage in renewable power generation: A review,” in 45th International

Universities Power Engineering Conference UPEC2010, 2010, pp. 1–5.



221 Chapter 6

[93] X. Luo, J. Wang, M. Dooner, and J. Clarke, “Overview of current development

in electrical energy storage technologies and the application potential in power

system operation,” Applied Energy, vol. 137, no. Supplement C, pp. 511 – 536,

2015.

[94] H. Chen, T. N. Cong, W. Yang, C. Tan, Y. Li, and Y. Ding, “Progress

in electrical energy storage system: A critical review,” Progress in Natural

Science, vol. 19, no. 3, pp. 291 – 312, 2009.

[95] T. Summers, J. Warrington, M. Morari, and J. Lygeros, “Stochastic optimal

power flow based on conditional value at risk and distributional robustness,”

International Journal of Electrical Power & Energy Systems, vol. 72, pp.

116–125, 2015.

[96] R. Bellman, “s dynamic programming ‚Äûprinceton university press,” 1957.

[97] D. P. Bertsekas, D. P. Bertsekas, D. P. Bertsekas, and D. P. Bertsekas,

Dynamic programming and optimal control. Athena scientific Belmont, MA,

1995, vol. 1, no. 2.

[98] H. N. Psaraftis, “A dynamic programming solution to the single vehicle many-

to-many immediate request dial-a-ride problem,” Transportation Science,

vol. 14, no. 2, pp. 130–154, 1980.

[99] H. He, R. Xiong, and J. Fan, “Evaluation of lithium-ion battery equivalent

circuit models for state of charge estimation by an experimental approach,”

energies, vol. 4, no. 4, pp. 582–598, 2011.

[100] P. Cicconi, L. Postacchini, E. Pallotta, A. Monteriù, M. Prist, M. Bevilacqua,

and M. Germani, “A life cycle costing of compacted lithium titanium oxide

batteries for industrial applications,” Journal of Power Sources, vol. 436, p.

226837, 2019.

[101] A. Pozzi, M. Zambelli, A. Ferrara, and D. M. Raimondo, “Balancing-aware

charging strategy for series-connected lithium-ion cells: A nonlinear model

predictive control approach,” arXiv preprint arXiv:1902.02122, 2019.



222 Chapter 6

[102] J. A. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl, “Casadi: a

software framework for nonlinear optimization and optimal control,” Mathe-

matical Programming Computation, vol. 11, no. 1, pp. 1–36, 2019.

[103] F. Bullo, E. Frazzoli, M. Pavone, K. Savla, and S. L. Smith, “Dynamic vehicle

routing for robotic systems,” Procs. of the IEEE, vol. 99, no. 9, pp. 1482–1504,

2011.

[104] P. Toth and D. Vigo, The Vehicle Routing Problem. Philadelphia, PA, USA:

Society for Industrial and Applied Mathematics, 2001.

[105] C. Baier and J.-P. Katoen, Principles of model checking. MIT press, 2008.

[106] C.-I. Vasile, D. Aksaray, and C. Belta, “Time window temporal logic,” Theo-

retical Computer Science, vol. 691, pp. 27–54, 2017.

[107] C. Belta, B. Yordanov, and E. A. Gol, Formal methods for discrete-time

dynamical systems. Springer, 2017, vol. 89.

[108] D. A. Forsyth and J. Ponce, Computer vision: a modern approach. Prentice

Hall Professional Technical Reference, 2002.

[109] P.Kool, Robotica.

[110] R. Ilardo. Elettronica e altro. [Online]. Available: http://www.raffaeleilardo.

it/pwmsp1.htm

[111] Wikipedia contributors, “Bluetooth — Wikipedia, the free ency-

clopedia,” https://en.wikipedia.org/w/index.php?title=Bluetooth&oldid=

913570834, 2019, [Online; accessed 5-September-2019].

[112] S. M. LaValle, Planning Algorithms. Cambridge University Press, 2006.

[113] B. Huyck, J. Van Impe, and B. De Moor, Identification and Modeling of

Dynamical System, 2008.

[114] S. Rachad, B. Bensassi, and B. Nsiri, “System identification of inventory

system using arx and armax models,” International journal of Control and

Automation, 2015.

http://www.raffaeleilardo.it/pwmsp1.htm
http://www.raffaeleilardo.it/pwmsp1.htm
https://en.wikipedia.org/w/index.php?title=Bluetooth&oldid=913570834
https://en.wikipedia.org/w/index.php?title=Bluetooth&oldid=913570834


223 Chapter 6

[115] Y.Chetouani, Using ARX approach for modelling and prediction of the dy-

namics of a reactor-exchanger.

[116] L. Magni and R. Scattolini, Advanced and multivariable control. Pitagora,

2019.

[117] J. M. Reniers, G. Mulder, S. Ober-Blobaum, and D. A. Howey, “Improving

optimal control of grid-connected lithium-ion batteries through more accurate

battery and degradation modelling,” arXiv preprint arXiv:1710.04552, 2017.

[118] D. V. Kumar, “Intelligent controllers for automatic generation control,” in

TENCON’98. 1998 IEEE Region 10 International Conference on Global

Connectivity in Energy, Computer, Communication and Control, vol. 2. IEEE,

1998, pp. 557–574.

[119] A. Soundarrajan, S. Sumathi, and G. Sivamurugan, “Voltage and frequency

control in power generating system using hybrid evolutionary algorithms,”

Journal of Vibration and Control, vol. 18, no. 2, pp. 214–227, 2012.

[120] J. Carpentier, “Optimal power flows,” International Journal of Electrical

Power & Energy Systems, vol. 1, no. 1, pp. 3–15, 1979.

[121] M. Campi and S. Garatti, “The eaxct feasibility of randomized solutions

of robust convex programs,” SIAM Journal on Control and Oprimization,

vol. 19, no. 3, pp. 1211–1230, 2007.

[122] M. Torchio, L. Magni, and D. M. Raimondo, “A mixed integer sdp approach

for the optimal placement of energy storage devices in power grids with

renewable penetration,” in 2015 American Control Conference (ACC), July

2015, pp. 3892–3897.

[123] [Online]. Available: http://www.transparency.eex.com/

[124] B.-M. Hodge, D. Lew, M. Milligan, H. Holttinen, S. Sillanpää, E. Gómez-

Lázaro, R. Scharff, L. Söder, X. G. Larsén, G. Giebel et al., “Wind power

forecasting error distributions: An international comparison,” in 11th Annual

http://www.transparency.eex.com/


224 Chapter 6

International Workshop on Large-Scale Integration of Wind Power into Power

Systems as well as on Transmission Networks for Offshore Wind Power Plants

Conference, 2012.

[125] J. Lofberg, “Yalmip : a toolbox for modeling and optimization in matlab,”

in 2004 IEEE International Conference on Robotics and Automation (IEEE

Cat. No.04CH37508), Sept 2004, pp. 284–289.

[126] D. Phan and S. Ghosh, “Two-stage stochastic optimization for optimal power

flow under renewable generation uncertainty,” ACM Transactions on Modeling

and Computer Simulation (TOMACS), vol. 24, no. 1, p. 2, 2014.

[127] S. Gill, I. Kockar, and G. W. Ault, “Dynamic optimal power flow for active

distribution networks,” IEEE Transactions on Power Systems, vol. 29, no. 1,

pp. 121–131, 2014.

[128] A. Giannitrapani, S. Paoletti, A. Vicino, and D. Zarrilli, “Optimal allocation

of energy storage systems for voltage control in lv distribution networks,”

IEEE Transactions on Smart Grid, vol. 8, no. 6, pp. 2859–2870, 2017.

[129] D. Gayme and U. Topcu, “Optimal power flow with distributed energy storage

dynamics,” in Proceedings of the 2011 American Control Conference, June

2011, pp. 1536–1542.

[130] Y. M. Atwa and E. F. El-Saadany, “Optimal allocation of ess in distribution

systems with a high penetration of wind energy,” IEEE Transactions on

Power Systems, vol. 25, no. 4, pp. 1815–1822, Nov 2010.

[131] X. Bai, H. Wei, K. Fujisawa, and Y. Wang, “Semidefinite programming for

optimal power flow problems,” International Journal of Electrical Power &

Energy Systems, vol. 30, no. 6, pp. 383 – 392, 2008. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0142061507001378

[132] M. Farivar and S. H. Low, “Branch flow model: Relaxations and

convexification—part i,” IEEE Transactions on Power Systems, vol. 28, no. 3,

pp. 2554–2564, 2013.

http://www.sciencedirect.com/science/article/pii/S0142061507001378


225 Chapter 6

[133] Z. Hu, X. Wang, and G. Taylor, “Stochastic optimal reactive power dispatch:

Formulation and solution method,” International Journal of Electrical Power

& Energy Systems, vol. 32, no. 6, pp. 615 – 621, 2010.

[134] H. Zhang and P. Li, “Chance constrained programming for optimal power

flow under uncertainty,” IEEE Transactions on Power Systems, vol. 26, no. 4,

pp. 2417–2424, Nov 2011.

[135] M. El-Hawary and G. Mbamalu, “Stochastic optimal load flow using a com-

bined quasi-newton and conjugate gradient technique,” International Journal

of Electrical Power & Energy Systems, vol. 11, no. 2, pp. 85 – 93, 1989.

[136] A. Ben-Tal, A. Goryashko, E. Guslitzer, and A. Nemirovski, “Adjustable

robust solutions of uncertain linear programs,” Mathematical Programming,

vol. 99, no. 2, pp. 351–376, 2004.

[137] M. Madrigal, K. Ponnambalam, and V. H. Quintana, “Probabilistic optimal

power flow,” in Conference Proceedings. IEEE Canadian Conference on Elec-

trical and Computer Engineering (Cat. No.98TH8341), vol. 1, May 1998, pp.

385–388 vol.1.

[138] U. D. of Energy, “Benefit of demand response in electricity market and

recommendations for achieving them,” United States Congress Pursuant to

Section 1252 of the Energy Policy Act of 2005, Tech. Rep., Feb. 2006.

[139] M. Negnevitsky, T. D. Nguyen, and M. de Groot, “Novel business models for

demand response exchange,” in IEEE PES General Meeting, July 2010, pp.

1–7.

[140] X. Bai and H. Wei, “A semidefinite programming method with graph parti-

tioning technique for optimal power flow problems,” International Journal of

Electrical Power & Energy Systems, vol. 33, no. 7, pp. 1309 – 1314, 2011.

[141] M. Farivar and S. H. Low, “Branch flow model: Relaxations and convexi-

fication;part ii,” IEEE Transactions on Power Systems, vol. 28, no. 3, pp.

2565–2572, 2013.



226 Chapter 6

[142] S. H. Low, “Convex relaxation of optimal power flow;part ii: Exactness,”

IEEE Transactions on Control of Network Systems, vol. 1, no. 2, pp. 177–189,

2014.

[143] ——, “Convex relaxation of optimal power flow;part i: Formulations and

equivalence,” IEEE Transactions on Control of Network Systems, vol. 1, no. 1,

pp. 15–27, 2014.

[144] C. Coffrin and P. V. Hentenryck, “A linear-programming approximation of ac

power flows,” INFORMS Journal on Computing, vol. 26, no. 4, pp. 718–734,

2014. [Online]. Available: https://doi.org/10.1287/ijoc.2014.0594

[145] B. Stott, J. Jardim, and O. Alsac, “Dc power flow revisited,” IEEE Transac-

tions on Power Systems, vol. 24, no. 3, pp. 1290–1300, 2009.

[146] M. Abido, “Optimal power flow using particle swarm optimization,”

International Journal of Electrical Power and Energy Systems, vol. 24, no. 7,

pp. 563 – 571, 2002. [Online]. Available: http://www.sciencedirect.com/

science/article/pii/S0142061501000679

[147] L. Lai, J. Ma, R. Yokoyama, and M. Zhao, “Improved genetic

algorithms for optimal power flow under both normal and contingent

operation states,” International Journal of Electrical Power and Energy

Systems, vol. 19, no. 5, pp. 287 – 292, 1997. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0142061596000518

[148] X. Yan and V. H. Quintana, “Improving an interior-point-based opf by

dynamic adjustments of step sizes and tolerances,” IEEE Transactions on

Power Systems, vol. 14, no. 2, pp. 709–717, May 1999.

[149] J. A. Momoh and J. Z. Zhu, “Improved interior point method for opf problems,”

IEEE Transactions on Power Systems, vol. 14, no. 3, pp. 1114–1120, Aug

1999.

https://doi.org/10.1287/ijoc.2014.0594
http://www.sciencedirect.com/science/article/pii/S0142061501000679
http://www.sciencedirect.com/science/article/pii/S0142061501000679
http://www.sciencedirect.com/science/article/pii/S0142061596000518


227 Chapter 6

[150] H. W. Dommel and W. F. Tinney, “Optimal power flow solutions,” IEEE

Transactions on Power Apparatus and Systems, vol. PAS-87, no. 10, pp.

1866–1876, Oct 1968.

[151] ——, “Optimal power flow solutions,” IEEE Transactions on Power Apparatus

and Systems, vol. PAS-87, no. 10, pp. 1866–1876, Oct 1968.

[152] M. Huneault and F. D. Galiana, “A survey of the optimal power flow literature,”

IEEE Transactions on Power Systems, vol. 6, no. 2, pp. 762–770, 1991.

[153] J. Lavaei, “Zero duality gap for classical opf problem convexifies fundamental

nonlinear power problems,” in Proceedings of the 2011 American Control

Conference, 2011, pp. 4566–4573.

[154] J. Tumova and D. V. Dimarogonas, “Multi-agent planning under local ltl

specifications and event-based synchronization,” Automatica, vol. 70, pp.

239–248, 2016.

[155] D. Aksaray, K. Leahy, and C. Belta, “Distributed multi-agent persistent

surveillance under temporal logic constraints,” IFAC-PapersOnLine, vol. 48,

no. 22, pp. 174–179, 2015.

[156] J. M. Smith and A. B. Jones, Book Title, 7th ed. Publisher, 2012.

[157] R. Uzsoy, L. A. Martin-Vega, C.-Y. Lee, and P. A. Leonard, “Production

scheduling algorithms for a semiconductor test facility,” IEEE Transactions

on Semiconductor Manufacturing, vol. 4, no. 4, pp. 270–280, 1991.

[158] S. C. Sarin, A. Varadarajan, and L. Wang, “A survey of dispatching rules for

operational control in wafer fabrication,” Production Planning and Control,

vol. 22, no. 1, pp. 4–24, 2011.

[159] A. B. Jones and J. M. Smith, “Article Title,” Journal Title, vol. 13, no. 52,

pp. 123–456, March 2013.

[160] S. Karaman and E. Frazzoli, “Complex mission optimization for multiple-uavs

using linear temporal logic,” in 2008 american control conference. IEEE,

2008, pp. 2003–2009.



228 Chapter 6

[161] C.-I. Vasile, J. Tumova, S. Karaman, C. Belta, and D. Rus, “Minimum-

violation scltl motion planning for mobility-on-demand,” in Robotics and

Automation (ICRA), 2017 IEEE International Conference on. IEEE, 2017,

pp. 1481–1488.

[162] S. Karaman and E. Frazzoli, “Linear temporal logic vehicle routing with

applications to multi-uav mission planning,” International Journal of Robust

and Nonlinear Control, vol. 21, no. 12, pp. 1372–1395, 2011.

[163] M. Pavone, S. L. Smith, E. Frazzoli, and D. Rus, “Robotic load balancing for

mobility-on-demand systems,” The International Journal of Robotics Research,

vol. 31, no. 7, pp. 839–854, 2012.

[164] M. Faied, A. Mostafa, and A. Girard, “Dynamic optimal control of multiple

depot vehicle routing problem with metric temporal logic,” in American

Control Conference, 2009. ACC’09. IEEE, 2009, pp. 3268–3273.

[165] M. R. Maly, M. Lahijanian, L. E. Kavraki, H. Kress-Gazit, and M. Y. Vardi,

“Iterative temporal motion planning for hybrid systems in partially unknown

environments,” in Proceedings of the 16th international conference on Hybrid

systems: computation and control. ACM, 2013, pp. 353–362.

[166] L. Mönch and I. Habenicht, “Factory scheduling and dispatching: simulation-

based assessment of batching heuristics in semiconductor manufacturing,” in

Proceedings of the 35th conference on Winter simulation: driving innovation.

Winter Simulation Conference, 2003, pp. 1338–1345.

[167] L. F. Atherton and R. W. Atherton, Wafer fabrication: Factory performance

and analysis. Springer Science & Business Media, 1995, vol. 339.

[168] S. M. Sze, Semiconductor devices: physics and technology. John Wiley &

Sons, 2008.

[169] R. Uzsoy, C.-Y. Lee, and L. A. Martin-Vega, “A review of production planning

and scheduling models in the semiconductor industry part i: system charac-



229 Chapter 6

teristics, performance evaluation and production planning,” IIE transactions,

vol. 24, no. 4, pp. 47–60, 1992.

[170] K. Kim and G. E. Fainekos, “Approximate solutions for the minimal revi-

sion problem of specification automata,” in 2012 IEEE/RSJ International

Conference on Intelligent Robots and Systems. IEEE, 2012, pp. 265–271.

[171] M. M. Srinivasan, Y. A. Bozer, and M. Cho, “Trip-based material handling

systems: throughput capacity analysis,” IIE transactions, vol. 26, no. 1, pp.

70–89, 1994.

[172] C. G. Co and J. M. A. Tanchoco, “A review of research on agvs vehicle

management,” Engineering Costs and Production Economics, vol. 21, no. 1,

pp. 35–42, 1991.

[173] I. Sabuncuoglu, “A study of scheduling rules of flexible manufacturing systems:

a simulation approach,” International Journal of Production Research, vol. 36,

no. 2, pp. 527–546, 1998.

[174] T. Le-Anh, Intelligent control of vehicle-based internal transport systems,

2005, no. 51.

[175] T. Le-Anh and M. De Koster, “A review of design and control of automated

guided vehicle systems,” European Journal of Operational Research, vol. 171,

no. 1, pp. 1–23, 2006.

[176] R. de Koster and J. R. van der Meer, “Centralized versus decentralized control

of internal transport, a case study,” in Advances in distribution logistics.

Springer, 1998, pp. 403–420.

[177] J. J. Bartholdi I and L. K. Platzman, “Decentralized control of automated

guided vehicles on a simple loop,” IIE transactions, vol. 21, no. 1, pp. 76–81,

1989.

[178] C. Klei and J. Kim, “Agv dispatching,” International Journal of Production

Research, vol. 34, no. 1, pp. 95–110, 1996.



230 Chapter 6

[179] P. J. Egbelu and J. M. Tanchoco, “Characterization of automatic guided

vehicle dispatching rules,” The International Journal of Production Research,

vol. 22, no. 3, pp. 359–374, 1984.

[180] T. J. Hodgson, R. E. King, S. K. Monteith, and S. R. Schultz, “Developing

control rules for an agv using markov decision processes,” in 1985 24th IEEE

Conference on Decision and Control. IEEE, 1985, pp. 1817–1821.

[181] J. T. Lin, F.-K. Wang, and P.-Y. Yen, “Simulation analysis of dispatching

rules for an automated interbay material handling system in wafer fab,”

International Journal of Production Research, vol. 39, no. 6, pp. 1221–1238,

2001.

[182] Z. Bian, Y. Yang, W. Mi, and C. Mi, “Dispatching electric agvs in automated

container terminals with long travelling distance,” Journal of coastal research,

vol. 73, no. sp1, pp. 75–82, 2015.

[183] T. Kawakami and S. Takata, “Battery life cycle management for automatic

guided vehicle systems,” in Design for Innovative Value Towards a Sustainable

Society. Springer, 2012, pp. 403–408.

[184] X. Zhan, L. Xu, J. Zhang, and A. Li, “Study on agvs battery charging strategy

for improving utilization,” Procedia CIRP, vol. 81, pp. 558–563, 2019.

[185] Q. S. Kabir and Y. Suzuki, “Increasing manufacturing flexibility through

battery management of automated guided vehicles,” Computers & Industrial

Engineering, vol. 117, pp. 225–236, 2018.

[186] R. McHaney, “Modelling battery constraints in discrete event automated

guided vehicle simulations,” International journal of production research,

vol. 33, no. 11, pp. 3023–3040, 1995.

[187] M. Ebben, Logistic control in automated transportation networks. Twente

University Press Enschede, The Netherlands, 2001.

[188] I. Sabuncuoglu and D. L. Hommertzheim, “Dynamic dispatching algorithm for

scheduling machines and automated guided vehicles in a flexible manufacturing



231 Chapter 6

system,” The International Journal of Production Research, vol. 30, no. 5, pp.

1059–1079, 1992.

[189] C. Kim, J. Tanchoco, and P.-H. Koo, “Agv dispatching based on workload

balancing,” International Journal of Production Research, vol. 37, no. 17, pp.

4053–4066, 1999.

[190] B. H. Jeong and S. U. Randhawa, “A multi-attribute dispatching rule for

automated guided vehicle systems,” International Journal of Production

Research, vol. 39, no. 13, pp. 2817–2832, 2001.

[191] A. Pozzi, M. Torchio, and D. M. Raimondo, “Assessing the performance of

model-based energy saving charging strategies in li-ion cells,” in 2018 IEEE

Conference on Control Technology and Applications (CCTA). IEEE, 2018,

pp. 806–811.

[192] R. Bellman, “The theory of dynamic programming,” Bull. Amer.

Math. Soc., vol. 60, no. 6, pp. 503–515, 11 1954. [Online]. Available:

https://projecteuclid.org:443/euclid.bams/1183519147

[193] A. Fusiello, “Visione computazionale,” Appunti delle lezioni. Pubblicato a cura

dell‚Äôautore, 2008.

[194] O. Faugeras, Q.-T. Luong, and T. Papadopoulo, The geometry of multiple

images: the laws that govern the formation of multiple images of a scene and

some of their applications. MIT press, 2001.

[195] Q. Zhang and R. Pless, “Extrinsic calibration of a camera and laser range finder

(improves camera calibration),” in 2004 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS)(IEEE Cat. No. 04CH37566), vol. 3.

IEEE, 2004, pp. 2301–2306.

[196] OpenCv, “Pinhole camera model,” 2019, [Online: accessed September 01,

2019]. [Online]. Available: https://docs.opencv.org/2.4/modules/calib3d/doc/

camera_calibration_and_3d_reconstruction.html

https://projecteuclid.org:443/euclid.bams/1183519147
https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html
https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html


232 Chapter 6

[197] Y. Ma, S. Sastry, and S. Soatto, An Invitation to 3-D Vision. Springer-Verlag

New York, 2004.

[198] P. Aguiar and J. P. Hespanha, Trajectory-Tracking and Path-Following of

Underactuated Autonomous Vehicles with Parametric Modeling Uncertainty,

2007.

[199] T. Tashiro, “Vehicle steering control with mpc for target trajectory track-

ing of autonomous reverse parking,” International Conference on Control

Applications (CCA), 2013.

[200] J. K. Huusom, N. K. Poulsen, and S. B. Jorgensen, “Arx-model based model

predictive control with offset-free tracking,” Computer Aided Chemical Engi-

neering, 2010.

[201] D. M. Raimondo. (2009) Nonlinear model predictive control stability,

robustness and applications. [Online]. Available: http://sisdin.unipv.it/

labsisdin/raimondo/vienna.php

[202] H. Lasi, P. Fettke, H.-G. Kemper, T. Feld, and M. Hoffmann, “Industry 4.0,”

Business & information systems engineering, vol. 6, no. 4, pp. 239–242, 2014.

[203] L. Research, “Building smarter manufacturing with the internet of things

(iot),” 2014.

[204] C. Bartodziej, The Concept Industry 4.0, 01 2017.

[205] J. H. Ang, C. Goh, A. A. F. Saldivar, and Y. Li, “Energy-efficient through-

life smart design, manufacturing and operation of ships in an industry 4.0

environment,” Energies, vol. 10, no. 5, p. 610, 2017.

[206] L. Monostori, B. Kádár, T. Bauernhansl, S. Kondoh, S. Kumara, G. Reinhart,

O. Sauer, G. Schuh, W. Sihn, and K. Ueda, “Cyber-physical systems in

manufacturing,” Cirp Annals, vol. 65, no. 2, pp. 621–641, 2016.

[207] A. Pereira and F. Romero, “A review of the meanings and the implications of

the industry 4.0 concept,” Procedia Manufacturing, vol. 13, pp. 1206–1214,

2017.

http://sisdin.unipv.it/labsisdin/raimondo/vienna.php
http://sisdin.unipv.it/labsisdin/raimondo/vienna.php


233 Chapter 6

[208] N. Jazdi, “Cyber physical systems in the context of industry 4.0,” in 2014

IEEE International Conference on Automation, Quality and Testing, Robotics,

May 2014, pp. 1–4.

[209] K. Suri, A. Cuccuru, J. Cadavid, S. Gerard, W. Gaaloul, and S. Tata, “Model-

based development of modular complex systems for accomplishing system

integration for industry 4.0,” 02 2017, pp. 487–495.




	Introduction
	Thesis overview

	Dispatching Problem
	Introduction
	Preliminaries
	Dynamic Programming
	DP Basic Problem

	Problem Formulation
	Scenario

	1 vehicle per order
	Problem Definition
	Solution

	n vehicles per n orders
	Problem Definition
	Solution
	Example

	m vehicles per n orders
	DP with Multiple Orders and 1 Vehicle
	Extension to the multiple-vehicles case

	DP on Dynamic Graph
	Scenario
	Order Priority
	Battery Model
	Problem Formulations
	Solution
	Results

	Conclusion

	Multi-robot Routing and Scheduling with Temporal Logic and Synchronization Constraints
	Introduction
	Preliminaries
	Problem Formulation
	Environment Model
	Robot Model
	Specification: Transportation Demands and Synchronization Rules
	Problem Definition

	Nominal Solution
	Robust Solution
	On-line Controller

	Simulations and Results
	Baseline
	Online Controller

	Conclusion

	UNIPV Test-bed
	Introduction
	Infrared Camera
	Hardware
	Image Formation
	Perspective Projection
	Image Discretization
	Rigid Transformation
	Camera Calibration
	3D-2D Transformation
	Planar Calibration
	Distortion Model
	Calibration Method
	Evaluation of the Calibration

	Working Environment
	Charging Station

	Robots
	Mobile Robot Description
	Hardware
	Battery Monitoring
	Connections

	Software
	Introduction
	Visual Studio
	Matlab
	Raspberry

	Low Level Controllers
	Pure Pursuit Approach
	Model Predictive Control

	Results
	Path Following
	Path Following on Graph
	Normal Operation
	Multiple Robots

	Conclusion
	Future Development


	Battery Ageing-Aware Stochastic Management of Power Networks in Islanded Mode
	Notation and Network Description
	Conventional Generators
	Renewable Generators
	Loads
	Energy Storage Systems
	Costs
	Network Constraints

	Deterministic Optimization
	Stochastic Optimization
	Scenario Optimization with Certificates
	Stochastic OPF Formulation

	Closed Loop Solution
	Case Study
	Simulation Results

	Conclusion

	Conclusion and future work
	Bibliography

