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Abstract

Type 1 diabetes mellitus is the more severe form of diabetes mellitus. It results from a cellular-

mediated autoimmune destruction of the beta-cells of the pancreas, which are responsible for

the secretion of insulin that is required for a proper blood glucose regulation. Patients with type

1 diabetes need exogenous insulin injections to keep the glucose concentration in the safe range.

Artificial pancreas is an autonomous system for closed-loop blood glucose control in subjects

affected by type 1 diabetes. The core of the system is the control algorithm, which receives

blood glucose data from the sensor, computes the required insulin amount and transmits this

information to the insulin pump. Regarding the control algorithm, one of the most promising

approach revealed to be the model predictive control algorithm, which exploits a glucose-insulin

model of the patient to predict near-future blood glucose values and, consequently, computes

the optimal insulin dose. The performance of the control algorithm is highly influenced by the

quality of the model used for prediction. Moreover, the inter-patient variability characterizing

subjects with T1D increases the need of patient-tailored models. Since promising results have

been obtained in silico using the UVA/Padova simulator, the aim of this thesis is to investigate

and test the applicability of the identification techniques on free-living data collected without

ad hoc clinical protocols thanks to the availability of long term trials. The individualized

models show superior prediction performance with respect to the average model that was used

to synthetize the controller used during the trial. This result pushed towards a detailed data

analysis to improve model identification. A multiple-model predictor with different identified

models on the basis of the data analysis is proposed in this thesis. The prediction capabilities

are improved if compared to the performance of a predictor built using a single model identified

on a daily subset. These results represent a milestone in the development for a new generation

of individualized controllers for artificial pancreas. The patient-tailored models can be exploited

to predict this risk of hypoglycemia in advance and therefore to alert the patient on the risk.

In order to improve the safety of the artificial pancreas system, the identified models have

been evaluated in terms of hypoglycaemia prevention by showing that these models are able to

detect 84.53% of the hypoglycaemia events occurred during a 1-month trial on average. In this

thesis, model identification has been addressed by deep learning techniques, by showing that

the proposed architecture obtains state-of-the-art performance on both in silico and in vivo

data, considering several prediction horizons. Finally, since the post-prandial glucose regulation

remains a challenging issue for diabetes treatment, machine learning methodologies have been

applied in order to improve the postprandial glucose regulation. Two algorithms are proposed

to provide corrections to time and/or amount of the meal bolus. They have been tested on

the in silico virtual population of the UVA/Padova simulator by showing the reduction of both

hypoglycemia and hyperglycemia.
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Chapter 1

Introduction

Diabetes mellitus is a metabolic disease characterized by high blood glucose concentration,

known as hyperglycemia. The National Institute of Health (NIH) affirms that the prevalence

of diagnosed diabetes increased by 382% from 1988 to 2014. It has been measured in 2015 that

in America [1] there were 30.3 million affected people that corresponds to 9.4% of the entire

population, where 1.25 million of children and adults have the more severe form of diabetes

mellitus. Its incidence has been increasing about 1.5 million per year, so much so, 1 in 3 Amer-

ican adults will have diabetes in 2050 if current trend continues. On the other hand, in the

European Region [2], 60 million people with diabetes have been calculated, or about 10.3% of

men and 9.6% of women aged 25 years and over. Therefore, most people are unable to identify

the main signs of the disease, including weight loss, slow healing of cuts and bruises, blurred

vision, being thirsty, according to recent researches. In America, only 23.1 million of 30.3 were

diagnosed, but 7.2 million were undiagnosed, while in Europe around a quarter of these cases are

undiagnosed. The risk factors include diet, physical inactivity, overweight and obesity, which

have been estimated to account for about 65–80% of new cases. Specifically, the risk depends

strongly on the age and the duration of obesity, and weight gain during adult life. If this dis-

eas is not managed correctly, diabetes can damage the heart, blood vessels, kidneys, eyes and

nerves. Half of patients with diabetes die of cardiovascular disease, and 10-20% of people die

of kidney failure. Diabetes still remains the 7th leading cause of death in the United States in

2015 according to the statistics about diabetes provided by the American Diabetes Association

(ADA) in 2018. Worldwide, diabetes leads to death about 3.4 million people annually. Almost

80% of these deaths occur in low- and middle-income countries, and almost half are people aged

under 70 years. The numbers associated with diabetes make a strong case for devoting more

resources to finding a suitable solution.

The most common form of diabetes mellitus is the Type 2 Diabetes (T2D), which is less severe

1
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than Type 1 Diabetes (T1D) mellitus. Before developing T2D, people almost always experi-

ence the so-called prediabetes phase, which is characterized by blood glucose levels higher than

normal but not yet high enough to be diagnosed as diabetes. T1D is the more severe form of

diabetes mellitus. T1D results from a cellular-mediated autoimmune destruction of the beta-

cells of the pancreas, which have the task of secreting the insulin that is required for a proper

blood glucose regulation. Although T2D is less severe than T1D, T2D may evolve into T1D.

Since hyperglycemia can cause long-term complications including damage to blood vessels, eyes,

kidneys, and nerves, treatment of diabetes involves lowering blood glucose to minimize diabetes

complications. T1D patients need exogenous insulin injections to keep the glucose concentration

in the euglycemic range taking care to avoid hypoglycemia, a condition that could be caused by

excessive insulin administration.

T1D accounts for only 5–10% of the diabetes affected population. T1D is also known as insulin-

dependent or juvenile diabetes because it is usually diagnosed in children and young adults.

Between 2001 and 2009, an increase of 21% in the prevalence of T1D has been observed in

people under age 20 [3], and T1D is associated with an estimated loss of life-expectancy of up to

13 years. The estimated annual number of newly diagnosed cases in the United States counted

17,900 children and adolescents younger than age 20 years. The T1D diffusion explains why it

has been investigated in research for the treatment of type 1 diabetes.

Artificial Pancreas (AP) is an autonomous system for maintaining the glucose concentration

within a safe range. AP helps T1D subjects to reduce T1D related risks. This system monitors

glucose levels through a subcutaneous glucose sensor or Continuous Glucose Monitor (CGM),

and automatically provides the proper amount of insulin, which is infused through a subcuta-

neous insulin pump. The core of the system is the control algorithm, which receives glucose

data from the sensor together with optional information provided by the patient, computes

the required insulin amount and transmits this information to the insulin pump. The research

is moving towards a more wearable and portable solution for the AP, integrating the control

strategy on a reconfigured smartphone or directly on the insulin pump [4]. For example, ev-

ery sample time, the advanced algorithm running on the smartphone analyzes the data and, if

needed, adjusts the insulin doses. The development of the control algorithm has to face prob-

lems such as the noisy measurements of CGM, the physiological delays due to diffusion process

from plasma to subcutaneous tissues, and the inter- and intra-variability among T1D individ-

uals. A good regulation of blood glucose concentration, i.e. glycemia, is the main aim of the

technological improvement of AP. An improved glycemia regulation can avoid conditons such

as hyperglycemia and hypoglycemia, which may be very dangerous for the patients. Indeed, hy-

perglycemia can cause long-term complications for the subject’s health, whereas hypoglycemia

can lead to immediate and severe complications.
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The Juvenile Diabetes Research Foundation (JDRF) has established in 2006 an international

consortium for the development of an AP, where several research groups from University of

Virginia, University of California in Santa Barbara, Montpellier University Hospital in France,

and the Universities of Padova and Pavia in Italy, have been involved. Starting from 2008,

several clinical trials have been performed in a hospital setting for a subject, then the goal was

to move the AP to free-living conditions for long periods at home. In 2010, the AP@home

European project was founded involving several universities and medical centres around Europe

and the University of Pavia was kept as reference point for the control algorithm research. In

2014, an AP system has been used in the first randomized crossover outpatient clinical trial for

eight weeks where the loop was closed during evening and night periods. Finally, in 2015 the

closed-loop was continually used 24 hours per day for one month in real-life conditions. As for

both in silico tests, in vivo experiments have shown the need for an individualization of both the

control algorithms and the safety systems. Simultaneously, the availability of long term trials

allows the collection of datasets rich of information potentially useful for the individualization

purpose. The aim of this thesis is to improve the current control strategy by identifying individ-

ual models from experimental data. Moreover, the other focus of this thesis is the improvement

of post-prandial glucose regulation, which remains a challenging issue for diabetes treatment.

In fact, an incorrect administration of a meal bolus can result in dangerous complications for

the patient.

1.1 Author’s Contributions

Both in silico and in vivo experiments have shown the need for an individualization of the con-

trol algorithm, which is a Model Predictive Control (MPC) algorithm, this aim can be achieved

by identifying a specific model to be included in the MPC.

An already existing identification approach based on the impulse response [5] has been extended

in this thesis to the closed-loop in free-living conditions thanks to the availability of experimen-

tal data. This set-up is particularly challenging because the identification of reliable models on

real-data is more difficult than on simulated data. Firstly, a single patient has been considered

and the improved prediction capabilities of the patient-tailored model are presented with re-

spect to the average model, computed by averaging the model parameters of the virtual adult

population of the UVA/Padova simulator and currently used in the MPC controller during the

recent trials. Given the good results obtained on a single patient, the technique has been ex-

tended to the 7 patients studied at Amsterdam clinical centre. The aim is to show the ability of

the impulse-response technique to adapt to different subjects, showing its effectiveness in front
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of inter-subject variability.

The patient-tailored models of the 7 patients are used to create a system to detect in advance

hypoglycemia phenomena thanks to the good prediction capabilities of individualized models.

The performance of the proposed system is compared to the one achieved by the algorithm

for hypoglycemia prevention used in several clinical trials. Specifically, the individualized hy-

poglycemia predictive alarms are evaluated on 7 T1D patients with the aim of predicting in

advance the unavoidable hypoglycemia events. The performance metrics of the alarm system

are evaluated on the entire trial. This methodology has al- lowed to detect on average about

85% of the hypoglycemia events occurred during the trial in time to allow a rescue action with a

negligible number of false alarms. Although promising results have been obtained in the identi-

fication of patient-tailored mod- els from clinical data, a in-depth analysis of the data has been

required to extract hidden information from the dataset useful to improve model identification.

An ANOVA analysis has been performed on the real-life data, and it has shown that there is

a significant dependence between different day periods and the glucose profile. The results of

the ANOVA tests have been exploited to build a multi-model able to captures different post-

prandial glucose dynamics along the day using different models in each sub-period.

In this thesis, a deep learning architecture to be employed in a MPC-based system has been

developed: its main purpose is the prediction of the blood glucose associated to a list of possi-

ble future insulin actions in order to decide the optimal therapy for the patient. The solution

entails multiple models trained on the in silico adult patients of the UVA/Padova simulator.

Each model is used to predict a glucose profile for a fixed prediction horizon and the individual

predictions are then aggregated to obtain a profile of future glucose levels. In order to improve

the predictor performance, the model trained on in silico data is fine-tuned on data of the

specific patient improving the predictive performance.

Considered that the postprandial glucose control is typically one of the most problematic as-

pects of glucose regulation, this thesis is also concerned with improving the conventional therapy.

Since machine learning represents a new methodology recently explored in this type of appli-

cations, two new approach based on machine-learning methodologies have been proposed in

order to improve meal compensation during postprandial periods. The first methods exploits

the K-Nearest Neighbors classification algorithm to predict postprandial glucose profile due to

the nominal therapy and to suggest a correction to time and/or amount of the meal bolus. The

classifier is used to forecast the glucose response to carbohydrate intake. Then, the predictions

are exploited to correct the nominal bolus computed via conventional therapy, minimizing the

occurrence of hypo- and hyperglycemia. A unique classifier valid for the entire adult virtual

population of the UVA/Padova simulator has been identified. Since an average model could

ideally limit the performance, a personalized algorithm is developed. It is an individualized
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approach able to correct the meal bolus computed with the conventional therapy in order to

handle the inter-subject variability characterizing patients that may affect postprandial glucose

regulation. In this case the postprandial glucose regulation has been managed in a decisional

framework, where the decision variable is the correction of the insulin bolus by exploiting a

multiple linear regression model able to describe the relation between glucose concentration and

injected insulin. Both these approaches are compared with conventional therapy glucose profile.

This thesis is organized as follows:

• Chapter 2: a brief introduction on diabetes mellitus and an overview on diabetes diag-

nosis, management, recently developed technological devices, and the description of the

conventional therapy are given

• Chapter 3: the 2018 version of the UVA/Padova simulator with the multi-compartmental

model used in this thesis is presented

• Chapter 4: the presentation of two new approaches based on machine-learning methodolo-

gies to improve postprandial glucose regulation in subject treated via conventional therapy

are shown

• Chapter 5: a complete description of artificial pancreas system and the current control

strategy is given

• Chapter 6: the description of the impulse-response technique identification technique to

be used on free-living data is presented and the results obtained on 7 T1D patients are

shown.

• Chapter 7: the application of the in vivo identification technique for the development

of individualized hypoglycemia safety alerts is proposed and validated on a population

cohort

• Chapter 8: a detailed real-life data analysis is proposed and a data-driven identification

methodology based on real-data analysis is presented

• Chapter 9: the description of a deep learning architecture able to forecast the blood

glucose level of T1D patients is proposed

• Chapter 10: the conclusion is drawn and possible future developments are proposed.





Chapter 2

Diabetes Mellitus

Diabetes mellitus is a chronic metabolic disease associated with high Blood Glucose (BG) con-

centration (BG > 180 mg/dl), known as hyperglycemia. Glucose is a major source of energy for

the human body and it is essential that BG levels are maintained within a safe range [70− 180]

mg/dl. In a healthy system, in order to regulate the supply of glucose to the cells, the body

has to maintain the BG concentration, also called glycemia, within the safe range. Maintaining

internal conditions in the body is called homeostasis, which typically occurs through the use

of feedback loops that control the body’s internal conditions. The control of BG is a negative

feedback that allows the human body to self-stabilize and the hormones secreted from pancre-

atic islet cells play central roles in the whole-body glucose homeostasis. Specifically, a small

portion (about 5%) of the pancreas consists of endocrine cells, which are clustered in groups

(alpha, beta, gamma, delta, epsilon) known as pancreatic islets or, more specifically, islets of

Langerhans. However, only the alpha and beta cells are involved in the BG regulation through

hormones production.

Since glucose comes mainly from foods containing carbohydrates, a meal intake produces a glu-

cose rise. Increased BG levels stimulate beta cells in the pancreas to secrete a hormone called

insulin, which stimulates the absorption of the glucose from blood into the cells and the forma-

tion of glycogen in order to reduce BG level. Once glucose levels fall below a threshold (BG

< 70 mg/dl), known as hypoglycemia, there is no longer a stimulus for insulin release, and the

beta cells stop releasing insulin. Hypoglycemia suppresses insulin secretion from beta cells and

stimulates glucagon secretion from alpha cells of the pancreas, normalizing BG levels. Glucagon

works in the opposite way of insulin. It acts by stimulating liver and muscles cells to break down

stored glycogen into glucose and by allowing the formation of new glucose molecules to back up

to a normal glucose concentration, known as glycogenolysis and gluconeogenesis, respectively.

Since the body cells uses glucose as fuel for energy, glucose absorption is fundamental to make

7
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Figure 2.1: Scheme of glucose metabolism [6].

the organs to operate normally. In particular, the brain cells entirely depends on glucose, so

maintaining a constant BG source is crucial to ensure the normal brain functions. In healthy

subjects, insulin and glucagon are continually produced to maintain the glucose concentration

within safe levels. This process is called glucose metabolism and it is shown in Figure 2.1. A

failure of the negative feedback mechanism can result in high BG levels, which have a variety

of negative health effects including damages to blood vessels, eyes, kidneys, and nerves.

If the pancreas cannot secretes insulin, consequently body cells cannot absorb glucose from the

bloodstream. Moreover, the body interprets this situation as lack of glucose and stimulates the

pancreatic alpha cells to secrete glucagon to release glucose by performing glycogenesis. This

action leads to an increase of BG concentration, which becomes even higher in case of meal

intake. High BG levels causes polyuria, that is an increased quantity of urination. The higher

the BG, the more the amount of glucose filtered by kidneys is; so, if the filtered glucose ex-

ceeds the quantity that kidneys can reabsorb, glucose remains in the small tubes of kidneys by

causing osmotic diuresis that is an increase of the urination rate. High BG and increased urine

flow stimulate the thirst receptors of the brain by causing constant thirst, called polydipsia.

Since the cells cannot receive glucose due to the absence of insulin, the brain receptors interpret

this fact as a lack of glucose and, since glucose comes mostly from the ingested carbohydrates,

the lack of glucose produce constant hungry, also called polyphagia. Polyuria, polydipsia and



9

polyphagia are diabetes symptoms, regardless of the type of diabetes.

Since the lack of insulin implies that glucose cannot be absorbed from the bloodstream into the

body cells to be used as energy, the body starts breaking down fats for energy, which produces

ketones. When ketones build up in the blood, they make it more acidic by causing a serious

condition known as Diabetic KetoAcidosis (DKA). The most common symptoms associated

with DKA are the consistent increase in polydipsia and polyuria, but also generalized weakness,

nausea, vomiting, rapid weight loss, and altered consciousness.

2.1 Types of diabetes mellitus

There are three main types of diabetes:

• type 1 diabetes mellitus

• type 2 diabetes mellitus

• gestational diabetes.

2.1.1 Type 1 diabetes mellitus

T1D is probably caused by the destruction of the pancreas beta cells due to an autoimmune re-

action. Since beta cells are responsible for insulin secretion, this type of diabetes is characterized

by an absolute insulin deficiency and this the reason why it is also known as insulin-dependent

diabetes. T1D patients need exogenous insulin injections to keep the glucose concentration in

the euglycemic range (80-140 mg/dl). The beta-cell destruction is an autoimmune process and

it can be caused by exposure to certain viruses, genetics or more likely a combination of environ-

mental factors. When the beta cells die, the pancreas stops generating insulin, so T1D patients

are characterized by an absolute insulin deficiency. If the body no longer produces enough

insulin, the regulation of the BG levels is compromised and this can lead not only to polyuria,

polydipsia and polyphagia, but also to unexplained weight loss, tiredness or fatigue, changes in

vision, numbness or tingling in hand and feet, slow-healing wounds or sores, and abnormally

high frequency of infection. T1D must be managed with a insulin therapy, which defines the

daily exogenous insulin injections, individualized on the specific patient. If the injected insulin

is not enough according to the body needs, high levels of ketones in the blood can result by lead-

ing to the DKA development, which is a common problem in patients with insulin-dependent

diabetes. On the other hand, if there is an overestimation of needed insulin, the patient can
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experience hypoglycemia that may lead to severe short-term complications. Thus, in order to

improve the insulin management and reduce risks related with insulin dependence, the insulin

therapy needs continuous adjustments. T1D is also known as juvenile diabetes because it usually

appears during childhood or adolescence.

2.1.2 Type 2 diabetes mellitus

T2D occurs when the insulin resistance of the body becomes unexpectedly high, and the insulin

produced by the pancreas is no longer effective on maintaining a stable glycemia. Unlike T1D,

T2D is characterized by uncommon high insulin resistance, which is defined clinically as the

inability of insulin to increase glucose absorption and utilization [7]. Thus, people with insulin

resistance have cells that have trouble absorbing glucose, which causes a buildup of sugar in

the blood. Consequently, oral medications devoted to the insulin resistance reduction are usu-

ally needed in subjects affected by T2D. Without enough insulin, excess glucose builds up in

the bloodstream by causing high BG levels. T2D mellitus is also called non-insulin-dependent

diabetes and it occurs in 90% to 95% of diabetics and usually occurs in adults over the age of

40, most often between the ages of 50 and 60 [8]. This is the reason why it is also known as

adult-onset diabetes. The insulin resistance has several causes such as genetics, excess weight

and physical inactivity, and it is a condition, that can precedes the development of T2D.

If BG levels are higher than normal, but not high enough to be considered T2D, the so-called

prediabetes is diagnosed. The body reacts to insulin resistance by increasing the insulin pro-

duction. Over time, the beta cells in the pancreas fail to keep up with the increased need for

insulin and T2D becomes type 1. The degeneration from T2D into type 1 is highly frequent,

making the treatment of T1D even more interesting to be investigated.

2.1.3 Gestational diabetes

Gestational diabetes can occur during pregnancy and every year 2% to 10% of pregnancies are

affected by this disease. It is similar to T2D because it is characterized by insulin resistance, but

it usually disappears after the birth. However, there are cases in which gestational diabetes can

degenerate to type 2. Gestational diabetes is dangerous not only for the mother, but above all

for the baby. In case of gestational diabetes, the mother’s pancreas works overtime to produce

insulin, but the BG concentration remains high. Although insulin does not cross the placenta,

glucose and other nutrients do. So extra BG goes through the placenta, giving the baby high BG

levels. This causes the baby’s pancreas to make extra insulin to remove BG from bloodstream.
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Since the baby is getting more energy than it needs to grow and develop, the extra energy is

stored as fat. Babies with excess of insulin become children who are at risk for obesity and

adults who are at risk for T2D.

2.1.4 The long-term complications

A number of serious health problems can affect people with diabetes if BG concentration is not

kept under control. As a matter of fact high BG levels can lead to serious diseases affecting the

heart and blood vessels, eyes, kidneys, nerves, and teeth. Moreover, people with diabetes also

have a higher risk of developing infections.

The most common complications are related with cardiovascular diseases, which is the most

frequent cause of death in people with diabetes. They have chances of having a stroke or heart

attack 1.5 times higher than in people who don’t have diabetes [8]. A frequent complication is

a kidney disease called nephropathy: indeed high levels of blood sugar make the kidneys filter

too much blood, overburdening the filters. After many years, the kidneys could start to not

operate correctly, and useful proteins could be lost in the urine. In half of subjects affected

by diabetes, diabetic neuropathy, which is a peripheral nerves malfunction, may also occur as

a complication [8]. In this case the symptoms are tingling, pain, numbness, or weakness in

the feet and hands. The degeneration of neuropathy can lead to foot ulcers and eventual limb

amputation. Finally, long-term accumulated damage to the small blood vessels in the eye leads

to diabetic retinopathy, an important cause of blindness.

2.2 Diagnosis of Diabetes

As stated in the report of the ADA [8], the diagnosis of diabetes is generally stated through the

occurrence of chronic hyperglycemia, which is associated with serious long-term complications.

The symptoms described in the previous section can be prevented by keeping blood sugar in

the target range, also known as euglycemic range, which spans from 80 to 140 mg/dl. There

are three main methods to diagnose diabetes:

• Fasting Plasma Glucose (FPG) test

• Oral Glucose Tolerance (OGT) test

• A1C test.
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Figure 2.2: Test to diagnose diabetes mellitus.

The FPG test is a simple blood test taken after 8-10 hours of fasting and it diagnoses diabetes

if fasting BG is greater than or equal to 126 mg/dl. In fact, due to the lack of insulin, the

body is unable of absorbing the assumed carbohydrates and sugars into the skeletal muscles

and fat tissues, letting the blood sugar level to increase. The OGT test checks patient’s BG

levels before and 2 hours after drink a special sweet drink. Diabetes is diagnosed if the two-

hour BG is greater than or equal to 200 mg/dl. The A1C test, also called Hemoglobin A1c

(HbA1c) measures person’s average levels of BG over the past 3 months. This test is based on

the attachment of glucose to hemoglobin, the protein in red blood cells that carries oxygen. In

the body, red blood cells are constantly forming and dying, but typically they live for about 3

months. Diabetes is diagnosed if the average BG are higher than 140 mg/dl which is equivalent

to 6.5% of HbA1c. Some of the advantages of the A1C test with respect to the other mentioned

tests are that it captures better chronic hyperglycemia, fasting is not needed for A1C assessment,

and no acute perturbations (e.g., stress, diet, exercise) affect A1C [9]. The target ranges adopted

for the mentioned tests are shown in Figure 2.2. The National Glycohemoglobin Standardization

Program certifies that manufacturers of A1C tests provide tests that are consistent with those

used in a major diabetes study.

A1C is used as a key indicator of long-term BG control and the 2015 ADA Standards of Medical

Care in Diabetes proposes the following optimal targets, but each target must be individualized

to the needs of each patient and their disease factors [10]:

• 6.5 percent or less for people who never experiences hypoglycemia episodes

• 7 percent for many adults with diabetes

• 7.5 percent for all children with diabetes
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• 8 percent or less for people with a history of severe hypoglycemia.

Thus, people will have different A1C targets according to their diabetes history.

The A1C test helps physician adjusting treatments to reduce the risk of long-term diabetes

complications. Moreover, the observance of the recommended glycemic targets has been proved

that reduces the occurrence of diabetes complications [11].

Prediabetes condition is defined as Impaired Glucose Tolerance (IGT) or Impaired Fasting

Glucose (IFG), depending on which test it was detected. IFG is a type of prediabetes, whose

feature is the high blood sugar level during fasting; it is defined by FPG concentration from

110 mg/dl to 125 mg/dl as specified by the World Health Organization criteria.[12]. Whereas,

IGT is a pre-diabetic state of hyperglycemia related with insulin resistence and is defined by

an elevated 2-h plasma glucose concentration from 140 mg/dl to 199 mg/dl after a 75-g glucose

load on the OGT test in the presence of an FPG concentration < 126 mg/dl [12].

2.3 Insulin Therapy

The goal of diabetes treatments is to keep the BG level within euglycemic range and prevent di-

abetes complications. In order to regulate BG concentration, patients with T1D need exogenous

insulin injections since the endogenous insulin production is deficient due to dysfunction of the

beta cells [13, 14]. Since several factors can influence the choice of an insulin therpay, such as the

type of diabetes, the BG levels, how much BG fluctuates throughout the day and the lifestyle,

it is suited to the patient by the physician. In order to define an appropriate insulin treatment,

the physician has to take into account several factors related with the patient’s daily habits

and physiological characteristics, such as the glycemic response of the individual to food intake.

This insulin treatment is called Conventional Therapy (CT). It consists of the combination of

the basal insulin, which is a piecewise constant amount of insulin in charge to maintain stable

the BG levels during fasting periods, and the insulin bolus, which is an impulse-like amount

specifically administered at meal times to compensate the glucose rise due to a meal [15–17].

Defining an insulin therapy means to choose the type and amount of insulin and the insulin de-

livery options. Insulin can be categorized in four main types that are defined on the basis of the

onset time, the peak time, and duration. The first is the time needed to reach the bloodstream

after the injection or infusion, the peak time is the time needed to reach its maximum effect,

whereas duration represents the total time in which the insulin continues to have an effect. The

four categories are:

• Rapid-acting insulin
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Type Onset Peaktime Duration

Rapid-acting insulin 15 minutes 30-90 minutes 3-5 hours
Short-acting insulin 30-60 minutes 2-4 hour 5-8 hours

Intermidiate-acting insulin 1-4 hours 4-12 hours 12-16 hours
Long-acting insulin 1-4 hours no peak up to 24 hours

Table 2.1: Types of insulin.

• Short-acting insulin

• Intermidiate-acting insulin

• Long-acting insulin.

Rapid-acting insulin usually reaches the bloodstream in about 15 minutes, reaches its peak be-

tween 30 to 90 minutes after the administration, and can last 3 to 5 hours. Rapid-acting insulin

is taken just before or after meals, to compensate the rise of BG. Short-acting insulin can reach

the bloodstream in about 30 minutes to one hour, and peaks after two to four hours. Its effects

tend to last about five to eight hours. This type of insulin is also known as regular-acting in-

sulin. Intermediate-acting insulin reaches the bloodstream in about one to four hours, and has a

peak time between four and 12 hours, depending on the brand, and controls BG levels for about

12 hours or longer. Long-acting insulin has an onset within one to four hours, tends to lower

glucose levels fairly evenly over a 24-hour period and it has minimal peak. Long-acting insulin

covers insulin needs for about one full day and it is often combined, when needed, with rapid-

or short-acting insulin to compensate meals, which highly affected BG concentration within

few minutes. Table 2.1 summarizes the parameter values for every type of insulin. Diabetes

treatment has to deal with the insulin daily intake. Approximately 40-50% of the total daily

exogenous injected insulin has to replace insulin overnight, during fasting and between meals.

This is called basal insulin replacement, whose amount is usually constant from day to day. The

other 50-60% is for carbohydrate coverage during mealtime and high blood sugar correction.

This is called the bolus insulin replacement. At mealtime, in order to compute the amount of

insulin to be injected, the patient has to estimate the carbohydrates contained in the meal. The

computation of the amount of insulin bolus involves some clinical parameter identified by the

physician. If the insulin bolus results to be underestimated, the patient can inject an additional

insulin bolus, called correction bolus. Rapid-acting insulin is used for insulin boluses because of

the need of a fast meal compensation, whereas long-acting insulin is used to replace the basal

insulin through few daily injections. Rapid-acting insulin can also used for the replacement of

the basal insulin: in this case it has to be continuously infused through insulin pumps in the

form of micro-boluses.
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The Post-Prandial (PP) glucose regulation remains a critical issue for diabetes treatment. An

incorrect administration of a meal bolus can result in dangerous complications for the patient.

In fact, hyperglycemia may occur due to an underestimated bolus, while an overestimated bo-

lus could lead to hypoglycemia. The induced hypoglycemia due to insulin overestimation is a

dangerous condition for T1D subjects. Normally, a person will feel warning symptoms when the

blood sugar goes low, but people with long-standing T1D may be in condition of hypoglycemia

in absence of symptoms, a physical state known as hypoglycemic unawareness. Hypoglycemia

unawareness is not rare, occurring in 17% of those with T1D. In such cases, hypoglycemia is

typically diagnosed through a blood sugar test. The risk of hypoglycemia unawareness is far

lower in people with T2D because hypoglycemia occurs less frequently. In case of diabetic hypo-

glycemia, the BG level can be increased through exogenous injections or infusions of glucagon,

injections of glucose, or through oral administration of fast-acting glucose. Treatment of hy-

poglycemia is also called hypotreatment. Usually, a hypotreatment should be able to recover

the patient from hypoglycemia within 5 to 10 minutes, and the symptoms should completely

disappear in approximately 10 to 20 minutes.

2.3.1 The Conventional Therapy

In order to treat T1D, the patients can rely on the CT, which is adapted by the physician to

the patient. The CT consists of the combination of the basal insulin ib, defined as a stepwise

constant function and responsible for maintaining stable the blood glucose (BG) levels during

fasting periods, and the insulin bolus iB, defined as an impulse-like function and specifically

administered at meal times to compensate the glucose rise due to a meal. Then, the CT is

defined as follows:

i(k) = ib(k) + iB(k) (2.1)

where iB is the insulin bolus in correspondence to the meal taken at time k, and ib [U/h] is

the basal insulin, which is defined as a piece-wise constant function with respect to k, and iB

[U/h] is the insulin bolus associated with the meal taken at time k. Its calculation is generally

performed by considering the Carbohydrate-to-insulin Ratio (CR) and the Correction Factor

(CF), which are clinical parameters identified by the physician from patient history/habits. CR

relates how many carbohydrate grams are disposed of by one unit of insulin and it is then

determined as the ratio between the amount of ingested carbohydrates and the optimal insulin

bolus as follows:

CR =
ingested CHO

optimal insulin bolus
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where the optimal insulin bolus is determined according to the following criteria [18]:

• BG concentration, measured 3 hours after the meal, is between 85% and 110% of the basal

glucose

• the minimum glucose concentration is above 90 mg/dl

• the maximum glucose concentration is between 40 and 80 mg/dl above the basal level.

CF or insulin sensitivity factor is the BG drop in mg/dl caused by one unit of insulin and is

computed with the so-called 1700 rule [19]:

CF =
1700

TDI

where TDI is the total daily insulin. Using the CR and CF, the dose of insulin bolus is computed

as follows:

iB(k) =
̂CHO(k)

CR(k)
+
BG(k)− yCF

CF (k)
; k = km (2.2)

where ĈHO [g] is the estimated amount of ingested carbohydrates, CR(k) [g/U] and CF (k)

[mg/dl/U] are the patient time variant CR and CF, respectively, km is the meal time, BG

[mg/dl] is the BG concentration measured just before the meal (through a glucometer), and

yCF [mg/dl] is a glucose target. A more complex but complete method used to calculate the

insulin bolus considers also the patient Insulin On Board (IOB), as follows:

iB(k) =
̂CHO(k)

CR(k)
+
BG(k)− yCF

CF (k)
− IOB(k); k = km (2.3)

where IOB(k) represents the still estimated active insulin remaining at time k from previous

infusions [19].

2.4 Devices for Diabetes Management

In order to control the glycemia, T1D patients are able to perform a Self-Monitoring of BG

(SMBG) using a glucometer, also called fingerstick. This device has a little needle used to sting

a fingertip to obtain drops of blood for testing. The result of the test is shown in a digital

display. The ADA does not establish strict recommendations for the minimum daily frequency

of SMBG tests, but it is generally accepted that at least three SMBG checks per day is the

minimum standard in case of T1D [20]. Over the years, the use of glucose meters has become
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easier and faster by reducing also the needed amount of blood samples [21]. For its simplicity,

glucose meters are now spreadly used, even though they cannot be used to gather information

about the daily glucose trend and about the development of the glucose evolution after meals.

2.4.1 Subcutaneous insulin pumps

In order to automate the insulin injections, insulin pumps have been developed. It is a small

automatic device that mimics a healthy pancreas. The insulin pump therapy includes the con-

tinuous basal insulin and the insulin boluses as described in Section 2.3.1, but the patient still

needs to continuously check his/her glycemia. An external infusion pump delivers a continu-

ous infusion of rapid- or short-acting insulin through a catheter inserted into the subcutaneous

tissue of the abdominal wall. The pump is preprogrammed by the patient to deliver insulin

continuously at a specified rate that is designed to meet the individual’s basal insulin demands.

For meal coverage, patients use the pump to deliver a specified bolus of insulin before eating.

Moreover, current insulin pumps allow the patient to vary the rate of basal insulin replacement

at different times of the day depending on requirements. For instance, the pump can be pre-

programmed to increase the basal rate of insulin infusion in the early morning hours to hanlde

the “dawn phenomenon”, i.e. patients experience a physiologic early morning rise in BG levels.

In addition, many insulin pumps have programming capabilities that facilitate dose selection

for carbohydrate counting and insulin-correction boluses [22]. Although the use of an insulin

pump can avoid individual insulin injections, it can also have some disadvantages as the risk

for infection at the insertion site of the catheter. These infections usually are readily treatable

with antibiotics and a change of insertion site. Occasionally, there may be subcutaneous abscess

requiring further drainage. The interruption of basal insulin delivery due to pump malfunction

or catheter disruption may occur and can rapidly lead to hyperglycemia or even the possibility

of causing DKA or weight gain. However, most pump users agree the advantages outweigh the

disadvantages. This is the reason why several companies invested in the production of insulin

pumps, and, in particular, continuous subcutaneous insulin pumps. A subcutaneous insulin

pump is battery powered and it is composed of three main parts: a processing module to co-

ordinate the components of the device and to program insulin delivery; an infusion set,which

includes a thin tube inserted with a needle in the subcutaneous tissues, and finally, a reservoir

of insulin. A characteristic of subcutaneous insulin pumps is the quantization, which indicates

the minimum amount of insulin that can be infused. Among the most popular subcutaneous

pumps it is worth to mention the Accu-Check R© Combo system (Figure 2.3). This pump is of

particular interest because it has been used as a component of the AP described in Chapter 5

during the execution of the clinical trials described in Sections 6.2.1.
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Figure 2.3: Example of subcutaneous insulin pump: the Accu-Check R© Combo system. Pro-
cessing module on the left and infusion set on the right.

2.4.2 Continuous Glucose Monitor

Following the subcutaneous insulin pumps, subcutaneous glucose sensors (or Continuous Glu-

cose Monitor, CGM) have been developed. These devices are less invasive because they measure

glucose in the interstitial tissues (i.e. subcutaneous tissues) rather than blood stream glucose.

Unlike glucometers, which measure the current glucose level at a single point in time, CGM pro-

vides maximal information presenting a constant stream of data (measured every 1-5 minutes),

not only indicating the current interstitial glucose level, but also trends in glucose direction

and velocity of glucose change [23]. Since a CGM system provides glucose direction and rate of

change, CGM can provide valuable information during the day improving the optimal treatment

decisions for the diabetic patient. CGM systems help to minimize the guesswork that comes

with making treatment decisions based solely on a limited number of a BG meter readings. If the

sensor is inaccurate, i.e. there is a gap between CGM readings and finger stick measurements, an

easy calibration procedure can be performed by providing a fingerstick BG measurement using

a BG meter within 5 minutes. An example of CGM is Dexcom G4 R© Platinum CGM system

with Share, shown in Figure 2.4: it has been used for performing the clinical trials presented in

this thesis. Dexcom G4 R© Platinum CGM is composed of a sensor that measures glucose levels

just underneath the skin, a trasmitter used to send glucose information wirelessly measured by

the sensor, and of a receiver where the BG level is plotted on a display with the trend of the

measured data with respect to adopted target range. This device allows to set a customized

BG target range and provides an alarm system to alert if BG concentration falls outside that

range. Moreover, the Dexcom G4 R© PLATINUM has a fixed hypo alert at 3.1mmol/l (∼ 55.8

mg/dl) to guarantee the safety of the patient even when he/she is sleeping.
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Figure 2.4: Dexcom G4 R© Platinum CGM system with Share.

A substantial disadvantage of subcutaneous sensors is that data are strongly affected by mea-

surement noise. Indeed, CGM measurements are less accurate with respect to measurements

provided by glucometers. Glucometers measure the glucose directly from the bloodstream,

whereas CGM measures glucose in the interstitial tissues. Thus, considering that there is a

physiological time lag due to the diffusion process of glucose from the bloodstream to the sub-

cutaneous tissues, CGM measuremnts are affected by a delay. When glucose levels are rapidly

changing, CGM measurements result wrong with respect to the correct current BG value by

leading to erroneous and potentially dangerous patient response [23], e.g. hypoglycemia alarms

may be delayed. CGM may be affected also by drift error, which can be compensated by

performing few daily re-calibration using fingerstick measurements. Despite CGM provides

delayed and noisy BG measurements, its main advantage resides on the high frequency of mea-

sures, which can lead to define glucose trends both during fasting and postprandial periods.

The latest technological developments have substantially increased the CGM reliability, and the

remaining inaccuracies can be compensated through few daily re-calibrations.





Chapter 3

The simulator

Simulation software are a helpful support for scientists and researchers. These tools provide

several advantages like reducing testing time and guaranteeing repeatability and versatility.

Indeed, virtual design can eliminate the need of many costly experiments and can speed up

the development process. Moreover, simulations provide highly flexible techniques applicable

for many research fields, i.e. it allows to run scenarios that cannot be easily achieved in real

situations.

Several diabetes simulation tools have been developed to model glucose-insulin dynamics of T1D

patients. These simulators were based on comprehensive mathematical population models, so

their prediction capabilities were generally limited to describe population averages observed in

the context of a clinical trial. However, an average-model approach is not sufficient for realistic

in silico experimentation with control scenarios, where facing with inter-subject variability is

particularly challenging. Moreover, the evolution of the AP would be greatly accelerated by em-

ploying mathematical modeling. In this prospective the UVA/Padova simulator was developed

in 2008 [24]. A system capable of simulating the glucose-insulin dynamics of a particular person

was required to develop an AP. The Universities of Virginia and Padova have developed the

UVA/Padova simulator to design and test treatments for T1D. Indeed, the UVA/Padova simula-

tor provides realistic computer simulation of clinical trials, together with invaluable information

about the safety and the limitations of the control algorithms, guiding clinical experiments, and

out-ruling ineffective control scenarios in a cost-effective manner [24]. Although computer simu-

lation are realistic, simulation cannot be considered a complete replacement of clinical trials [25]

but, they can demonstrate safety and efficacy of the therapy under real-life conditions before

testing it in T1D subjects.

The UVA/Padova simulator has been equipped with a cohort of in silico subjects to cope with

a wide prospective of the intra- and inter-subject variability of T1D subjects. In order to cover

21
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all ages, the cohort includes 100 virtual adults, 100 virtual adolescents, and 100 virtual chil-

dren. Virtual subjects were created by fitting a metabolic model to data of individuals collected

during clinical trials. The Food and Drug Administration (FDA) approved the UVA/Padova

simulator as equivalent substitute of pre-clinical animal experiments for T1D treatment [26].

This acceptance allowed the in silico synthesis of control algorithms directly testable on real

patients. The utilization of a simulator for the development of an effective T1D treatment re-

duces the need of long and expensive pre-clinical experiments usually performed on animals.

The UVA/Padova simulator includes a large nonlinear compartmental model able to simulate

the glucose-insulin dynamics of the diabetic population [27]. In the most recent version of the

simulator, the circadian variability of insulin sensitivity and meal absorption parameters have

been added [25, 28, 29] to simulate the inter-subject variability of this population. In order to

simulate the glycemia of a specific patient, individualized model identification techniques have

been developed. In this context, several metabolic models were developed through realistic

closed-loop clinical protocols simulated via the UVA/Padova simulator [24, 27], as described in

[30–33].

In addition to the cohort of in silico subjects, the simulation environment includes also a virtual

sensor and a virtual pump that can reflect the characteristics of several commercial devices, also

known as virtual hardware. Time lags and random noise of subcutaneous CGM devices have

been also included in the simulator. In the following, the patient model used in the UVA/Padova

simulator, and the sensor and pump models wills be presented in details.

3.1 UVA/Padova Metabolic Model

The UVA/Padova simulator is a large-scale maximal model. Specifically, it includes a compart-

mental model that describes the glucose-insulin dynamics of a generic T1D patient including 13

differential equations and 36 subject-specific parameters. The model representation is shown in

Figure 3.1. In particular, carbohydrate intake and insulin injections are the model inputs, while

the model output is the glucose concentration. The structure of the metabolic model included

in the simulator is based on the physiological characteristics of a generic subject. The first

version of the UVA/Padova simulator was released in 2006 and it has been continually refined

over the years. In 2013 an updated version of the UVA/Padova T1D simulator was released, and

approved by FDA, including an improved model of hypoglycemia and a new model of glucagon

dynamic [27]. In 2017 the inter-subject variability of the virtual population was included by

modelling through different sets of metabolic parameters of this model [29, 34]. This fact al-

lows to extend the use of the UVA/Padova T1D simulator from a single meal to multiple days.
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Figure 3.1: The representation of the metabolic model included in the UVA/Padova simulator.

This new feature guarantees more realistic testing scenarios because it allows to simulate that

the glucose response to a certain perturbation should be strictly dependent from the time at

which the perturbation happens. The last version of the UVA/Padova simulator is presented

in this work. Given that the exogenous glucagon delivery is not used in this thesis, the entire

UVA/Padova model will be presented in the following except the glucagon subsystem.

Glucose rate of appearence

The gastro-intestinal tract has been modeled to reproduce the effects of a meal on the glycemia.

Three compartments, two for the stomach and one for the gut, respectively, simulate the di-

gestion process [35]. The rate of appearance represents the rise of glycemia due to the injested

carbohydrates, as follows:

Qsto(t) = Qsto1(t) +Qsto2(t) Qsto(0) = 0

Q̇sto1(t) = −kmax ·Qsto1(t) +Dose · δ(t) Qsto1(0) = 0

Q̇sto2(t) = −kemp · (Qsto(t)) ·Qsto2(t) + kmaxQsto1(t) Qsto2(0) = 0

Q̇gut(t) = −kabs ·Qgut(t) + kemp(Qsto(t)) ·Qsto2(t) Qgut(0) = 0

Rameal(t) =
fc · kabs ·Qgut(t)

BW
Rameal(0) = 0

(3.1)
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Figure 3.2: Gastric emptying coefficient kemp(Qsto(t)) [min−1] as function of the amount of
carbohydrates in the stomach Qsto(t) [mg].

where Qsto [mg] is the total amount of carbohydrates into the stomach, Qgut [mg] are the

carbohydrates into the gut, kmax [min−1] and kabs [min−1] are model parameters, Dose [mg] is

the amount of carbohydrates eaten at time t, fc is the fraction of carbohydrates transferred into

the glucose system and affects the glucose rate of appearance Rameal [mg/kg/min], and BW

[Kg] is the patient body weight. kemp [min−1] is the time-varying nonlinear function representing

the gastric emptying coefficient and is defined as follows:

kemp(Qsto(t)) = kmin +

(
kmax − kmin

2

)
· {tanh [α (Qsto(t)− kb ·Dose(ti))]−

− tanh [β(Qsto(t)− kc ·Dose(ti))] + 2}
(3.2)

where kmin and kmax are the minimum and the maximum values of the gastric emptying

coefficient, respectively, and where:

α =

(
5

2D(ti)(1− kb)

)
, β =

(
5

2D(ti)kc

)
, Dose(ti) =

∫ tf

ti

d(τ) dτ +Qsto(ti) (3.3)

with ti < t and tf representing the beginning and ending times of the ith eaten meal, respectively.

kb and kc are percentage values associated to the portion of non-digested meal when:

kmean =

(
kmax + kmin

2

)
= kempt · (kb ·Dose(ti)) = kempt(kc ·Dose(ti)) (3.4)
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As shown in Figure 3.2, the gastric emptying coefficient reaches its maximum value at the

beginning of a meal, then decreases until it reaches its minimum values at about half digestion

time, returning to its maximum value when the stomach is almost empty. The identification of

the gastrointestinal tract parameters is described in [35, 36].

Glucose system

After digestion, the meal appears in the glucose system, producing the increase of glucose level in

blood stream. The glucose subsystem consists of a two-compartment model of glucose kinetics.


Ġp(t) = EGP (t) +Rameal(t)− Uii(t)− E(t)− k1 ·Gp(t) + k2 ·Gt(t) Gp(0) = Gpb

Ġt(t) = −Uid(t) + k1 ·Gp(t)− k2 ·Gt(t) Gt(0) = Gtb

G(t) =
Gp(t)

VG
G(0) = Gb

(3.5)

where Gpb and Gtb [mg/kg] are the plasma and the tissue glucose masses, respectively, G [mg/dl]

is the plasma glucose concentration, suffix b denotes basal state, EGP [mg/kg/min] is the

endogenous glucose production, E [mg/kg/min] is the renal excretion, Uii and Uid [mg/kg/min]

are the insulin-independent and -dependent glucose utilizations, respectively, VG [dl/kg] is the

distribution volume of glucose, and k1 and k2 [min−1] are rate parameters [36]. EGP is defined

by the following equation [27, 37]:

EPG(t) = kp1 − kp2 ·Gp(t)− kp3 ·XL(t) + ξ ·XH(t) (3.6)

with 
ẊL(t) = −ki ·

[
XL(t)− I ′(t)

]
XL(0) = Ib

İ ′(t) = −ki ·
[
I ′(t)− I(t)

]
I ′(0) = Ib

ẊH(t) = −kHXH(t) + kH ·max [(H(t)−Hb, 0] XH(0) = 0

(3.7)

where XL [pmol/L] is the delayed insulin action in the liver, XH [ng/dl] is the delayed glucagon

action on EGP , ξ is the liver responsiveness to glucagon and it is also constrained to be non-

negative, H [ng/dl] is the plasma glucagon concentration, 1
kH

[min] is the delay between glucagon

concentration and action, I [pmol/L] is the plasma insulin concentration, I ′ [pmol/L] represents

a delay compartment for insulin action on glucose production, and ki, Kp1, Kp2, Kp3 are rate

parameters [36]. EGP is also constrained to be non-negative.

The insulin-independent glucose utilization Uii of Eq. 3.5 represents the insulin mainly used

by the brain and takes place in the first compartment of the glucose system. This quantity is

assumed to be constant. The insulin-dependent glucose utilization Uid takes place in the remote
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compartment and depends on the glucose in the tissues by the following Michaelis-Menten

relationship:  Uid(t) =
[Vm0 + Vmx ·X(t) · (1 + r1 · risk)] ·G(t)

Km0 +Gt(t)

Ẋ(t) = −p2U ·X(t) + p2U · [I(t)− ib] X(0) = 0

(3.8)

with X [pmol/L] the insulin action on glucose utilization and Vm0, Vmx, Km0, p2U rate parame-

ters [36]. The risk function has been introduced to model the increase of the insulin-dependent

glucose utilization Uid when glucose decreases below a certain threshold [27]:

risk =


0 if G(t) ≥ Gb
10 · [f(G(t))]2 if Gth ≤ G(t) < Gb

10 · [f(Gth)]2 if G(t) < Gth

with Gb the basal glucose, Gth the hypoglycemic threshold (set equal to 60 mg/dl),

f(G(t)) = ln

(
G(t)

Gb

)r2
and r1, r2 model parameters. The risk function is a measure of the risk associated with a

certain glucose level [38].It represents a real body behavior, that increases the insulin-dependent

glucose utilization under the conditions of hypoglycemia, thus further increasing the risk of

severe hypoglycemia. Glucose excretion in T1D patients increased in a proportional manner

with increasing blood glucose. The renal excretion E of Eq. 3.5 is described by the following

relationships:

E(t) =

 ke1 · [Gp(t)− ke2] if Gp(t) > ke2

0 if Gp(t) ≤ ke2

where ke1 [min-1] represents the glomerular filtration and ke2 [mg/kg] represents the renal thresh-

old for glucose.

Subcutaneous glucose kinetics

A first order system has been introduced to simulate the subcutaneous glucose of the patient,

that is also the model output:Ġs(t) = −ksc ·Gs(t) + ksc ·G(t) Gs(0) = Gb

y(t) = Gs(t)
(3.9)
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where ksc [min−1] is the transfer coefficient from plasma to subcutaneous glucose. The delay

1
ksc

models the physiological time lag due to the glucose transition from plasma to subcutaneous

tissues.

Time-Varying Model of T1D Subject

The most important feature of last version concerns the model of T1D subject, which includes

intra- and inter-day variability of insulin sensitivity, dawn phenomenon effect, and different

distributions of Carbohydrate-to-insulin Ratio (CR) at different day time [29, 34]. Thus, the

last version of the simulator allows the description of intra-subject diurnal glucose variability.

Since the same treatment applied to the same patient can obtain significantly different results

day by day, The UVA/Padova simulator domain of validity is extended from a single-meal to a

single-day scenario.

The incorporation into the simulator is related to the result of a clinical study conducted on T1D

subjects, which has revealed the existence of diurnal patterns of insulin sensitivity, i.e. different

insulin sensitivity at breakfast, lunch and dinner [39]. Then, the results of this experiment have

allowed to perform their estimation [18, 28]. The intra-day variability of insulin sensitivity was

incorporated into the simulator by associating a certain intra-day variability pattern of model

parameters Vmx 3.8 and kp3 3.6, representing insulin action on glucose utilization by tissues and

on glucose production by the liver, respectively [29, 34].

Dawn phenomenon effect consists in an increase in BG in the early morning and occurs when

hormones (including cortisol, glucagon, epinephrine) are released by the body, causing an in-

creased Endogenous Glucose Production (EGP). These hormones give rise to a brief period of

insulin resistance, an increased insulin requirements have to be fulfilled from 3:00 to 7:00. The

EGP variation is described as a linear increase of basal EGP (EGPb), while, the increased insulin

requirement is modelled as a decrease in insulin-dependent glucose utilization (Uid) [29, 34].

The CR defined in Section 2.3.1 is modelled in the last version of the UVA/Padova simulator as

a time-varying parameter along the day: each in silico subject has been equipped with diurnal

pattern of CR [18, 28]:

CRj =
ingested CHOj

optimal insulin bolusj
with j=B,L,D.

where CHO stands for the estimated amount of carbohydrates.
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3.2 Virtual population

Simulators based on an average-model approach have limitations on capabilities to prediction.

These simulators allow only prediction of population averages that would be observed during

clinical trials, so they are not realistic for in silico experimentation. In order to simulate the

glucose insulin dynamics of a specific individual, the UVA/Padova simulator is equipped with

a collection of virtual patients, which spans sufficiently well the variability present in a general

population of people with T1D. In order to have a complete description of the multiple system

fluxes shown in Figure 3.1, in 2006, 204 nondiabetic individuals received a triple tracer meal

protocol in order to estimate the virtually model-independent fluxes of the system, like the rate

of appearance in plasma of ingested glucose, glucose production, glucose utilization, and insulin

secretion [40]. Instantaneous values of blood glucose and insulin concentration are not sufficient

to identify the involved metabolic processes. On the other hand, flux information minimizes

structural uncertainties in modeling the various subsystems.

For each of the 204 subjects, the key metabolic parameters were identified and were included

in a database. The adopted identification strategy is described in detail in [36]. Then, model

parameters and their joint probability distribution were computed by exploiting this data col-

lection. Since the parameter distributions were mostly log-normal, the average vector and the

covariance matrix of the log-transformed parameters vector uniquely define this probability dis-

tribution. Then, in silico individuals to be included in the UVA/Padova simulator have been

generated by using joint probability distribution. 100 virtual in silico subjects have been gener-

ated by randomly extracting different realizations of the model parameters from the identified

joint parameter distributions. In order to represent T1D in silico subjects, the identified model

parameters of the 100 nondiabetic in silico subjects were modified. In case of T1D patient,

there is no endogenous insulin production, but the insulin is introduced by subcutaneous exoge-

nous insulin infusions. Thus, the insulin secretion subsystem has substituted with an exogenous

insulin delivery subsystem, where the insulin rate of appearance in the bloodstream has been

introduced.

Since glycemia is monitored by using a CGM sensor, it is introduced the subcutaneous glucose

kinetics, described in Eq. 3.9, to simulate the interstitial glucose measurements.

Since even single-tracer studies in type 1 diabetes are scarce, the description of the inter-subject

variability was difficult. In order to obtain parameter joint distributions in T1D from those in

the healthy state, the inter-subject variability was assumed the same of healthy subjects, that is

having same covariance matrix. This assumption is based on the hypotesis that each subject is

assumed in good control. Furthermore, the average vector of the distribution has been modified

to reflect the clinically relevant differences with respect to the non-diabetic individuals, i.e. the
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average basal glucose was set equal to 120 mg/dl [27].

Thus, since the description of the joint probability distribution reproduces the inter-subject

variability, the simulator allows the possibility of defining and testing an individualized insulin

treatment for T1D patients.

An additional in silico subject, known as the “average” patient, has been obtained averaging

the parameters associated to the 100 in silico subjects. Thus, the average patient represents a

patient with the average dynamics of the population.

3.3 The simulation environment

In order to create a comprehensive environment for algorithm testing, the metabolic model is

included in a software environment developed in Matlab R©. This software allows to perform

simulations of T1D virtual patients and test several subcutaneous insulin treatments. The

software allows for

• defining a testing scenario, i.e., a schedule of meals with corresponding CHO amounts,

sessions of physical activity and times of simulated sensor re-calibrations

• selecting subjects

• selecting virtual hardware, i.e. CGM sensor and insulin pump

• selecting a set of outcome metrics to evaluate the performance of the insulin therapy.

The insulin therapy can be either the CT or it can be driven by a controller, which defines and

adjusts periodically the current insulin treatment by exploiting the measurements coming from

the virtual CGM sensor and additional information provided by the patient. The schema in

Figure 3.4 shows how the UVA/Padova metabolic model is related with the virtual hardware

and the virtual controller. The model allows to simulate the subcutaneous glucose measure-

ments in response to an insulin therapy. The reading of subcutaneous glucose measurements is

performed by a simulated glucose sensor and the insulin injections are infused by a simulated

insulin pump. The simulated controller closes the loop: it can command the virtual pump on

the basis of the measurements coming from the virtual sensor and other information from the

patient.

The performance of the insulin therapy is evaluated on the basis of the output of the simulator,

which is the subcutaneous glucose resulting from a specific insulin treatment of a virtual patient

simulated in a specific scenario. The UVA/Padova simulator allows the so-called meal announce-

ment, i.e. the patient can announce a meal intake in advance specifying the estimated quantity
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Figure 3.3: Schema of the UVA/Padova metabolic simulator.

of carbohydrates (CHO) included in the meal itself. The announced amount of carbohydrates

can be used to compute the optimal nominal insulin bolus according to CT to compensate the

induced glucose rise. The meal announcement allows to include the possibility of errors in the

announcement such as a limited events of unannounced meals or meals announced with a wrong

estimation of the amount in order to define a real-life scenario.

3.4 Virtual hardware

The simulation environment includes an implementation of the physical devices that are involved

in the diabetes treatment: the CGM sensor and the insulin pump. In order to perform realistic

simulations, the physical limitations of the devices have been implemented in the simulation

software.

In silico insulin pump is used to simulate subcutaneous insulin delivery. The parameters of

virtual pumps are the discrete insulin infusion corresponding to step-wise basal pump rate and

insulin boluses and the minimum/maximum amount of insulin that could be injected. Moreover,

the simulator allows to simulate various type of insulin pumps.

The virtual CGM sensor simulates the measurement of the subcutaneous glucose concentration

in the interstitial tissues. In silico sensor is developed on the basis of analysis of sensor errors,

and this sensor simulation model has been thought to provide worst-case scenario sensor errors

[24]. Virtual sensor has been implemented as a block defined as follows:

CGM(t) = IG(t) + ε(t) (3.10)

where IG is the subcutaneous glucose concentration in the interstitial tissues and ε is a mea-

surement noise. The error is then expressed in terms of in estimated glucose concentration in
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the interstitial tissues ( ˆIG) by taking into account the glucose diffusion process from blood to

interstitial fluid. The relation between the interstitial glucose concentration and BG is described

through a first-order system with time constant τ in the Laplace domain:

ˆIG(s)

BG(s)
=

1

τs+ 1
(3.11)

where τ is representative of the lag between the blood and subcutaneous glucose concentrations.

A block schema representation of error is shown in Figure 3.4. The identification of sensor error

model is described in [41]. The sensor error model is defined as follows:

εPV (k) = a1εPV (k − 1) + a2εPV (k − 2) + v(k) (3.12)

where the error v is a gaussian white noise with mean µv and variance σ2v , the parameters a1

and a2 are coefficients of the AR model, k is the discrete sampling time and the distribution of

the process initial states is characterized by mean µis and covariance matrix σ2is. The identified

values associated to the error model [41] εPV are:

• a1=1.5458

• a2=-0.5708

• µv=0.0017 mmol/L

• σ2v=0.0283 (mmol/L)2

• µis=[-0.1766 -0.1566] mmol/L

• σ2is =

0.7759 0.7895

0.7895 0.8603

 (mmol/L)2

In vivo data coming from AP@home “CAT” clinical trial performed in 2012 have been used

to identify the parameters of the model. In the following years, since the error model εPV

has resulted to overestimate with respect to the real errors, the current error model variance

has been reduced by a factor of 6 to reflect the improvement of the last generation of CGM

readings. Moreover, the virtual sensor has to cover additional hardware limitations, i.e. the

possible measurements of interstitial glucose concentrations are limited between 30 mg/dl and

600 mg/dl.
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Figure 3.4: Block schema representation of the error ê.

3.5 Performance metrics

The UVA/Padova simulator allows to test and validate several open- and closed-loop therapies.

The efficacy of an insulin therapy can be quantified through performance metrics commonly

used during clinical trials. The consensus statement for artificial pancreas trials described in

[42] identified a short set of basic, easily interpreted outcome measures to be reported in AP

studies. Firstly, metrics based on average glycemia and deviations from target are considered.

By taking into account the physiological glucose range of variation for patients affected by T1D,

the following glycemic regions can be defined [11]:

• safe or target range (from 70 mg/dl to 180 mg/dl)

• euglycemic or tight target range (from 80 mg/dl to 140 mg/dl)

• hyperglycemia range (above 180 mg/dl)

• severe hyperglycemia range (above 250 mg/dl)

• hypoglycemia range (below 70 mg/dl)

• severe hypoglycemia range (below 60 mg/dl).

In order to evaluate the effectiveness of an insulin therapy, the calculation of percentage times

spent in each of the presented ranges is computed using the generated measurements coming

from virtual CGM. So, the metrics of interest include:

• average (A) and standard deviation (SD) of glucose [mg/dl]

• time in target or percentage of time spent in safe range, i.e. from 70 mg/dl to 180 mg/dl

(Tr)

• tight target range or percentage of time spent in euglycemic range, i.e. 80-140 mg/dl (Ttr)

• severe hypoglycemia range or percentage of time spent in hyperglycemia (TahyperThreshold)
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• time above target or percentage of time spent above 180 mg/dl (Ta)

• time below target or percentage of time spent below 70 mg/dl (Tb)

• severe hypoglycemia range or percentage of time spent in hypoglycemia (TbhypoThreshold) .

Additinal metrics can include the Root Mean Square Error (RMSE) respect a glucose reference

of 120 [mg/dl], and the Total Daily Insulin (TDI) delivered to the patient, and variability and

risk assessment. The Low Blood Glucose Index (LBGI) measures the frequency and the risk of

low BG measurements, whereas the High Blood Glucose Index (HBGI) measures the frequency

and the risk of high BG readings. The LBGI has been demostrated to be a good predictor of

severe conditions of hypoglycemia [43, 44], while the HBGI is a relevant index for hyperglycemia

condition [43]. Metrics that evaluate events and other clinically relevant characteristics are also

considered.

These metrics are computed overall (O), during night (N, 0:00 - 6:00), and as an average of all

the PP periods (4h after meal). Median [25th; 75th] percentiles for non-Gaussian distributed

data and mean (± standard deviation) otherwise are reported for the various indices. Confidence

intervals on the mean or median are reported as well. The gaussianity and homoscedasticity of

the data distributions are assessed by the Lilliefors test and two-sample F-test, respectively.

3.5.1 Statistical Comparison of Performance Metrics

Statistical methods have to be introduced to evaluate the significance of a comparison among

different insulin therapies. In order to evaluate the significant differences, the more appropri-

ated statistical test is selected based on the characteristics of the data distributions. If at least

one distribution is non-Gaussian, the Wilcoxon rank sum test is used; if both distributions are

Gaussian and homoscedastic, a two-sample t-test is performed; otherwise, if the homoscedas-

ticity is not satisfied, the two-sample t-test with Satterthwaites approximation is used. The

methods used to evaluate the statistical significance of a difference between metrics are gener-

ally based on the p-value (also denoted as p). In statistical hypothesis testing, p-value method

evaluates how well the measured samples support a statistical hypothesis, also called null hy-

pothesis. The null hypothesis states that there is no difference between metrics. If the p-value

is lower than the significance level associated to the test, it suggests that the measured samples

are inconsistent with the null hypothesis, so the null hypothesis can be rejected. If the null

hypothesis is rejected, a result is said to be statistically significant. In case of evaluating two

insulin therapies over a population, if the null hypothesis is rejected, this means the measured

difference between the metrics depends on different effectiveness of the applied insulin therapies
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and not on a sampling error. Sampling error can occur when the statistical characteristics of a

population, like mean and standard deviation, are estimated from a subset, or sample, of that

population.

Additional statistical methods like ANalysis Of VAriance (ANOVA) will be considered later for

a deep analysis of clinical data.

3.5.2 ANalysis Of VAriance (ANOVA)

ANOVA provides a statistical test which is able to prove if a statistical correlation exists among

the so-called indicators (quantitative variable) and the independent variables (explanatory vari-

able), usually categorical. Each value of the explanatory variable is called group and the values

of the indicators are gathered with respect to each group.

The ANOVA is used to calculate the difference between the means of the indicator of the groups,

its aim is to find if the mean between groups is statistically significantly different from the mean

within groups and variance is used to infer about means. For this reason the test is called

analysis of the variance.

The means of the groups are significantly different if the variability between groups is larger

than the variability within groups [45].

The ANOVA aims to prove which of the two following hypothesis is corrected:

• H0: the means of all groups are equal

• Ha: the means of the groups are not all equal, that is different from: ”all are unequal”.

To make the results of calculation completely trustworthy, the ANOVA has some underlying

assumptions:

1. Subjects are chosen via a random sample

2. The response variable is normally distributed within each group

3. The population standard deviation is the same for all group

The test of ANOVA is robust, in fact the 2nd and 3rd point can be relaxed in the following way:

• the data point, visualized in a normal quantile plot, fall close to a line

• after computing the standard deviation of each group, the ratio between the largest and

the smallest one must be maximum two.
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The ANOVA uses the F -statistics, that computes the ratio of the variability between groups and

the variability within groups. If F is large, there is the rejection of the null hypothesis of equal

means, it means that the specific quantitative variable is related to the interested explanatory

variable. If F is small, the hypothesis of equal means is not rejected, so any type of correlation

can not be drawn. Specifically, the one-way ANOVA is the ANOVA test used when there is

just one explanatory variable.

The notation used in this section is the following one:

dim = number of groups of the explanatory variable

ni = sample size of group i

xij = the jth value of the indicator in the group i

x̄i = mean of the indicator of the i-th group = 1
ni

∑ni
j=1 xij

si = sample standard deviation from the i-th group = 1
ni−1

∑ni
j=1(xij − x̄i)2

n = the total sample
∑dim

i=1 ni

x̄ = the mean of all values of the indicator = 1
n

∑
ij xij .

In order to calculate the F statistic, the ANOVA uses the following metrics:

Sum of Squares Total (SST ) =
dim∑
i=1

ni∑
j=1

(xij − x̄)2

This variability has two sources:

1. variability between group means (variation around the overall mean x̄)

SSG :=

dim∑
i=1

ni(x̄i − x̄)2

2. variability within group means (variation of the observation about their group mean x̄i)

SSE :=

dim∑
i=1

ni∑
j=1

(xij − x̄i)2 =

dim∑
i=1

(ni − 1)s2i

So, SST is the sum of the two contributes:

SST = SSG+ SSE

and finally F is equalled to:

F =
MSG

MSE
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where MSG and MSE are equalled to:

MSG =
SSG

dim− 1

MSE =
SSE

n− dim

The computation of these indices is done in this thesis through Matlab R©, that produces the

Source SS df MS F

Model/Group SSG dim− 1 MSG = SSG
dim−1

MSG
MSE

Residual/Error SSE n− dim MSE = SSE
n−dim

Total SST n− 1

Table 3.1: ANOVA result table.

Table 3.1.

The columns of this table are the following one:

• SS (Sum of Square)

It lists:

SSG: measured variation of the group means around the overall mean x̄

SSE: measured the variation of each observation around its group mean x̄i

SST: measured variation of the data around the overall mean x̄

• df (degrees of freedom)

where

dim− 1 is for SSG

n− dim is for SSE

n− 1 is for SST

• MS (Mean Square)

The MS is defined as: MS = SS
df

This is like standard deviation and lists MSG and MSE defined before.

Another formula for MSE is:

MSE =
(n1 − 1)s21 + (n2 − 1)s22 + · · ·+ (ndim − 1)s2dim

(n1 − 1) + (n2 − 1) + · · ·+ (ndim − 1)
(3.13)

MSE is also called s2p

• F (F statistic)

The F statistic is defined as: F = MSG
MSE
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If the null hypothesis is true, the F statistics has an F distribution with dim− 1 and n− dim

degrees of freedom in the numerator/denominator. If the alternate hypothesis is true, the F

tends to be large.

The hypothesis H0 is rejected in favor of Ha if F is sufficient large.

As in other test statistics the determination of the width of F is given by the p-value. In order

to read it, it is necessary to know the degrees of freedom associated to the numerator (MSG) and

the denominator (MSE). Given the ANOVA results, additional information can be extracted by

them using the multiple comparison, a method able to fully understand the difference between

the groups. [46]

In particular when P (Fdim−1,n−dim > Fcomputed) < α, where α is the level of significance, the

means of at least 2 groups are different, but no information about what groups and how many

groups are involved is provided.

It is important to know which groups are different, so it is necessary to execute a significant

F -statistic with pairwise comparison of the means and it is computed with the t-test between

each pair of means:

tij =
x̄i − x̄j

sp
√

1/ni + 1/nj

where ti,j is the t-test between the mean of the group i and group j, ni and nj are the number

of elements of the group i and the number of elements of group j respectively. The statistic

significant of the t-test is related to the t-test table using n − dim degree of freedom (the df

associated with sp).

The main advantage of this approach is that it is very easy, as well as very widely applicable.

The main disadvantage is that it often is unnecessarily conservative (weak): α is smaller than

it needs to be.

The procedure for performing multiple comparisons involves the Tukey’s Method that test all

possible pairwise differences of means to determine if at least one difference is significantly

different from 0.
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Smart Conventional Therapy

The main purpose of a control algorithm is to achieve an insulin therapy to keep BG concen-

tration within a predefined range by acting on insulin delivery. There are two classes of control

schemes: open- and closed-loop. The Open-Loop (OL) control strategy corresponds to the ap-

plication of the CT. The control of BG levels in PP period is a challenging task and represents

a critical problem due to the glycemic PP peaks. PP glucose regulation is typically based both

on the knowledge of an estimation of the ingested carbohydrates and the measurement of the

current glucose level, in addiotion with reliable information about the patient according to the

CT, which is suited to the patient by the physician. CT administers a basal insulin throughout

the day to maintain stable BG levels during fasting periods and insulin boluses at mealtimes

to compensate the induced glucose rise in the PP periods [15–17]. Specifically, CT is typically

based on the knowledge of an estimation of the ingested carbohydrates, of the CR, of the CF,

of the IOB and of a measure of the glycemia just before the meal. Despite the use of this infor-

mation meal compensation is yet a key unsolved issue. The application of the CT corresponds

to apply OL control strategy to control BG levels. In fact, the OL methods design an insulin

therapy based only on the knowledge of consumed meals, without considering continuous BG

measurements. The OL therapy is designed as a feed-forward action, which exploits the knowl-

edge of external disturbances, namely the meals, to compensate in advance for their effects

adapting the insulin bolus doses. Thus, the control of BG levels in PP period become the most

critical problem when an OL therapy is adopted because an OL system has no knowledge of

the output condition. An incorrect administration of a meal bolus can result in dangerous com-

plications for the patient. In fact, hyperglycemia may occur due to an under-estimated bolus,

while an over-estimated bolus could lead to hypoglycemia. Machine learning represents a new

methodology recently explored in this type of applications; e.g., in [47], a K-Nearest Neighbors

(KNN) methodology has been used to distinguish aerobic and anaerobic exercise metabolism to

39
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improve the control of glucose concentration, or in [48] binary classifiers are trained to recognize

the postprandial pattern for meal detection.

Two new approach based on machine-learning methodologies have been proposed in order to

improve meal compensation during PP periods. The first methods exploits the KNN classi-

fication algorithm to predict PP glucose profile due to the nominal therapy and to suggest a

correction to time and/or amount of the meal bolus. The second method uses an individualized

regression model able to correct the meal bolus computed with the CT by exploiting measurable

variables known at mealtime.

The KNN approach is used to forecast the glucose response to carbohydrate intake. Then,

the predictions are exploited to correct the nominal bolus computed via CT, minimizing the

occurrence of hypo- and hyperglycemia. A unique classifier valid for the entire adult virtual

population of the UVA/Padova simulator has been identified and satisfactory results have been

obtained. Of course, an average model could ideally limit the performance since it describes the

average dynamics of the population. Therefore, even if it is not individualized to the patient,

since it has been identified on the 100 adults of the UVA/Padova simulator, which is able to

simulate inter-subject variability, the identified model is supposed to face the inter-subject vari-

ability. However, since we are aware that a model that describes the glucose-insulin dynamics of

a specific patient can substantially improve the safety and the effectiveness of the glucose con-

trol, a personalized algorithm is developed. It is an individualized approach able to correct the

meal bolus computed with the CT in order to handle the inter-subject variability characterizing

T1D patients that may affect PP glucose regulation. In this case the PP glucose regulation

has been managed in a decisional framework, where he decision variable is the correction of

the insulin bolus by exploiting a multiple linear regression model able to describe the relation

between glucose concentration and injected insulin. Both these approaches are compared with

CT glucose profile in realistic scenarios in order to demonstrate that these data-based modeling

methodologies are suitable to improve the problem of PP glucose regulation in CT.

4.1 Augmented CT via Meal Classification

A KNN classification algorithm [49, 50] able to predict the PP glucose profile due to the nominal

CT, defined in Section 2.3.1, is presented in this section. This approach is exploited to adapt

the meal bolus accordingly to the glucose prediction. So, if the classifier predicts a rise in

glycemia exceeding the high safe threshold, the insulin bolus amount has to be increased to

avoid hyperglycemia, while if the classifier predicts a fall in glucose concentration below the low

safe threshold, the bolus amount has to be decreased to avoid hypoglycemia. Since the BG trend
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in the PP period is characterized by two features, the amplitude of the excursions and the shape

of the profile, a Multiple Classifier System (MCS) is implemented with a parallel architecture,

where each of the two base classifiers is devoted to predict one PP feature. The outputs of

the two classifiers are combined by an integration strategy to obtain a complete prediction.

The description of the MCS architecture and of the base classifiers is given in the following

paragraph, together with the training procedure and results in terms of classifier predictions.

Then, the proposed augmented therapy based on KNN classifiers is formulated, and the testing

scenario with the final results are reported in comparison with the CT.

4.1.1 Multiple Classifier Scheme

The effect of a meal on the glucose response can be characterized by two main PP variables,

the amplitude of the maximum excursions and the shapes of glucose profile. The first is a

measure of the glucose variability in the PP period and it is strictly related to the minimum

and maximum values reached in the PP period; while the second is an information related to

the times in which these values are reached. If these PP variables are predictable, the future

trend of the glucose response to the meal ca be depicted and the PP glucose response can be

regulated by properly modifying the insulin bolus iB. Note that the description given by these

variables is not exhaustive, but it is sufficient to define the proper bolus changes. The first aim

is to identify a relation between measurable quantities, called input features, given at mealtime

and the two PP variables characterizing the future meal response. An example of glucose trend

after a meal is presented in Figure 4.1, where the parameters characterizing the curve are:

• Gmin and Gmax, the minimum and maximum values of glucose, respectively

• tmin and tmax, the time instants when Gmin and Gmax values are reached, respectively

• Gm, the glucose at mealtime tm.

Since Gmin and Gmax define completely the excursion, while the shape is more related to tmin

and tmax, the two PP variables can be considered separately by identifying two independent

base classifiers, Ce and Cs, respectively. The PP variables result mutually complementary, so

a MCS is proposed where each predictable variable has its own classifier algorithm. Given a

single set of input features known at tm, each base classifier will select its own subset for the

classification.

The outputs of two base classifiers are combined following a parallel MCS architecture. The

goal of this scheme is the improvement of the accuracy of the final prediction by exploiting



42 Chapter 4. Augmented Conventional Therapy

Meal

Figure 4.1: An example of glucose trend where Gm, Gmin, Gmax are the glucose value at
mealtime, the minimum value of glucose, and the maximum value of glucose, respectively and
tm,tmin, tmax are mealtime, the time instants when Gmin and Gmax values are reached, respec-

tively.

the classifier diversity. Indeed, since the classifiers make different misclassification errors on

different test samples, diversity improves the classification accuracy. Of course, the drawback

is the need to train multiple classifiers. The combination strategy of the two base classifiers is

performed by integration, namely both the classifiers contribute to the final output [51].

4.1.2 Excursion Classifier (Ce) and Shape Classifier (Cs)

In order to define the first classifier, the combinations of Gmax and Gmin have to be associated

to a finite set of classes. Hence, five classes are defined on the basis of proper glucose thresholds:

• C−2e : glucose trend characterized by hypoglycemia

• C−1e : glucose trend associated with hypoglycemia risk

• C0
e : glucose trend in the desired target

• C+1
e : glucose trend associated with hyperglycemia risk

• C+2
e : glucose trend characterized by hyperglycemia.
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Ce Description

C−2e Gmax < Ghigh and Gmin < Ghypo

C−1e Gmax < Ghyper and Ghypo < Gmin < Glow

C0
e Gmax < Ghigh and Gmin < Glow

C+1
e Gmax > Ghigh and Glow < Gmin < Ghigh

C+2
e Gmax > Ghyper and Gmin > Ghigh

Table 4.1: Excursion classification.

Cs Description

C−2s tu < to and to, tu > 0

C−1s to n.d. and tu > 0

C0
s tu, to n.d.

C+1
s tun.d. and to > 0

C+2
s to < tu and to, tu > 0

Table 4.2: Shape classification.

Denoting with Ghigh, Glow the upper and lower bounds of the desired glucose range, and with

Ghyper, Ghypo the glucose limits that defines hyperglycemia and hypoglycemia events, the ex-

cursion classification is described in Figure 4.2(a) and summarized in Table 4.1.

The second classifier aims to distinguish the meal responses on the base of glucose shape and

in particular on the presence of significant undershoot and/or overshoot. Denoting a significant

undershoot as

Gmin < Gm −∆Gth (4.1)

and a significant overshoot as

Gmax > Gm + ∆Gth (4.2)

with ∆Gth a glucose threshold to be tuned, the shape classifier maps the input features to five

categories of possible PP glucose shapes defined as follows:

• C−2s : meal response characterized by a significant undershoot at time tu followed by a

significant overshoot at time to

• C−1s : meal response characterized by a significant overshoot at time to

• C0
s : meal response without significant undershoot and overshoot

• C+1
s : meal response characterized by a significant undershoot at time tu

• C+2
s : meal response characterized by a significant overshoot at time to followed by a

significant undershoot at time tu.

If undershoot (overshoot) are not present, tu (to) are not defined (n.d.). The shape classes are

described in Figure 4.2(b) and summarized in Table 4.2. In order to make the classifiers more

conservative in detecting events of hyper- and hypoglycemia, the threshold ∆Gth can be defined
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(a)

(b)

Figure 4.2: (a) The five classes of the Excursion Classifier Ce. The red stars represent Gmax,
and the blue diamonds represent Gmin. (b)The five classes of the Shape Classifier Cs. The
red stars represent to, and the blue diamonds represent tu. The red lines represent a significant

overshoot, and the blue lines represents a significant undershoot.

in a different way for overshoot and undershoot.
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(a)

(b)

Figure 4.3: (a) Boxplots associated to ANOVA test of Ce. (b) Boxplots associated to ANOVA
test of Cs. The green dashed lines represent the p-value theshold set to 0.05.

4.1.3 KNN Classifier

The two developed classifiers use a KNN algorithm to perform the classification. KNN algo-

rithms are supervised non-parametric learning algorithms that learn the relationship between

input and output observations and whose strenght is making very mild structural assumptions.

A new input instance x∗ is classified by assigning the output class of the K most similar neigh-

bors, where similarity is defined according to a distance metric [49]. Specifically, given a set

of measurements (xi, yi), i = 1, · · · , N , known as the training data, the KNN fit is defined as
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follows:

Ŷ (x∗) =
1

Nn

∑
xi∈NNn (x)

yi (4.3)

where NNn(x) is the neighborhood of x defined by the Nn closest points xi in the training sample.

In other words, the algorithm find the k observations with xi closest to x in input space, and

average their responses (yi). KNN fits have a single parameter, the number of neighbors k: this

parameter specifies how many closest points the algorithm has to use to classify the output of

a new point. KNN algorithm is highly efficient for pattern recognition [50, 52] and well fits

the purpose of glucose patterns classification. In order to train the classifiers, a single space

set of possible input features has been defined for both the classifiers. These inputs features

are selected from a set of parameters known at tm consisting of BG, carbohydrate content

(CHO), CR, IOB, ib, iB, amount of carbohydrate intake calculated in the interval [tm − 6h, tm]

(preCHO), Day Time (DT) with respect to midnight and the Day Period Classification (DPC).

The DPC is a categorical variable defined as: morning [5:00 - 12:00], afternoon [12:00 - 19:00]

and evening [19:00 - 5:00]. For each classifier, the selection of the input features is performed via

an ANOVA test to determine the parameters subset statistically correlated with the considered

classifier, where a statistical correlation is considered significant at the level 0.05. Other factors,

like stress, physical activity, etc., not usually available at mealtime have been excluded from

the analysis. Interaction effects of the input features in the ANOVA have not been considered:

combined effects of inputs may loss the physical meaning in the considered application. The

results of the two ANOVA tests are shown in Figure 4.3(a) and 4.3(b). Figure 4.3(a) shows

the boxplots related to Ce: the input features statistically correlated with the classes of Ce are

BG and iB. The boxplot associated to BG is entirely below the adopted significance threshold

(p-value ¡ 0.05); iB presents a few outliers exceeding the threshold, but the performance are

significantly better than the other parameters. Figure 4.3(b) shows the boxplots related to Cs:

BG, DCP, and DT are chosen for Cs because the boxplots are entirely below the threshold, set

equal to 0.05.

In addition to the input features, two other elements characterize the classifier: the dataset

used in the training procedure, called training set, and the number of neighbors, Nn. Since

the drawback of the KNN method is the need for storing the whole training set, which may be

large, the Condensed Nearest Neighbor (CNN) rule [53] is used in this work to optimize the

training set by selecting a subset of the samples contained in the original set. CNN is an iterative

procedure which allows to reduce the training set by minimizing data redundancy. However, the

training data can be affected by a sample error which can cause a decrease in performance; also

Nn affects the prediction performance of the classifier. So, the training procedure is repeated

an exhaustive number of times Nr with different training sets and different Nn. The selection
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of the classifier aims to maximize the probability of correctly predicting hypoglycemia. Then,

each classifier prediction is associated to a posteriori probability of success, called score, and

the standard KNN algorithm selects the one with the maximum score. Considering that a

misclassification of the classes C−2x , C+2
x , x ∈ {e, s} represents a risk of hyper or hypoglycemia,

respectively, in this work the classifier Cx is made more conservative by exploiting this score.

Let’s consider the critical case of a C−2e prediction, the classifier Ce maintains this prediction

only if the difference between the score of C−2e and C−1e is above a safety threshold ε, otherwise

the Ce prediction is changed to C−1e in order to apply a more conservative action. The same

approach is used with C+2
e , C−2s , C+2

s prediction, while the other predictions remain unchanged.

In addition to the training set, a validation set is needed to assess the classifier performance.

In order to avoid the overfitting problem, training and validation sets are constrained to be

independent, but with the same probability distribution.

4.1.4 MCS training

The training and validation sets are generated by using the 100 in silico adult patients of the

UVA/Padova simulator with a 4-day scenario. These classifiers are trained on a large number

of meals belonging to different patients, so a unique KNN-model is proposed for all the T1D

population. This scenario includes 18 meals: 4 breakfasts (between 7:00 and 8:30), 6 snacks (2

in the morning, 3 in the afternoon and 1 in the evening), 4 lunches (between 12:30 and 14:00)

and 4 dinners (between 20:00 and 20:30). The total amount of 1800 meal data over the 100

patients are split in two parts: half pertaining to the training set and half to the validation set.

In order to avoid overfitting or sample error, the number of repetition of the procedure Nr is

set to 200.

The algorithm parameters are set to ∆G = 30 mg/dl, Ghigh = 150 mg/dl, Glow = 100 mg/dl,

Ghyper = 200 mg/dl, Ghypo = 70 mg/dl, ε = 0.20.

4.1.5 MCS validation

The validation of the classifiers has been performed in term of area under the curve that describe

the relation between false positive and true positive classification outputs. Denoting with Cnx a

generic class of a generic classifier Cx, some preliminary definitions need to be introduced below:

• True Positive (TP ): sample belonging to class Cnx classified correctly

• True Negative (TN): sample not belonging to class Cnx classified correctly
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• False Positive (FP ): sample not belonging to class Cnx but classified as belonged to Cnx

• False Negative (FN): sample belonging to class Cnx but classified as not belonged to Cnx

• True Positive Rate (TPR) or sensitivity and False Positive Rate (FPR) or specificity

measure the proportion of positives that are correctly classified and positives that are

wrongly classified, respectively and they are defined as follows:

TPR =
TP

TP + FN
, FPR =

FP

TN + FP
.

Defining the Receiver Operator Characteristic (ROC) as the curve describing the relation be-

tween TPR and FPR, the perfomance of the classifiers are evaluated through the Area Under

the curve of ROC (AUROC) described in [54]. In other words, the ROC curve is a commonly

used summary for assessing the trade off between sensitivity and 1− specificity of the trained

classifiers. The classifier allows both the minimization of FPR and the maximization of TPR

by increasing the sensitivity and specificity, respectively. Classifiers have a good performance

with AUROC value more than 0.5, while AUROC equal to 0.5 means that the classifier behaves

exactly as a random variable.

The AUROC values of the selected Ce and Cs are reported in Figures 4.4(a) and 4.4(b), re-

spectively. This index presents satisfactory performance with values between 0.60 and 0.90 for

all the classes of both classifiers apart for C−2s . The critical AUROC value associated to this

class can be explained by the poor representation of C−2s . This limitation is acceptable, con-

sidering that the event occurs occasionally during clinical trials and that the simulated dataset

distribution has been choosen to be homogeneous with the real data.

4.1.6 Classifier augmented Open-Loop

The availability of a classifier able to predict the PP glucose dynamics at the mealtime allows

to modify in advance the OL therapy in order to avoid both hypoglycemia and hyperglycemia.

In general, the purpose of the MCS is to classify the PP glucose dynamic: this classification

allows to distinguish if the meal is be well compensated or under/over-insulinized. Thus, the

CT can be improved by exploiting the prediction of MCS at mealtime km. Given an estimation

of postprandial glucose profile at mealtime, a condition of hyperglycemia can be reduced by

increasing the meal bolus, while a condition of hypoglycemia can be prevented, or at least

mitigated, by decreasing it. If both conditions occur sequentially, the insulin bolus has to be

properly adapted on the basis of the time and the severity of each condition. If one single

phenomenon is predominant, the bolus is modified only in terms of insulin amount, otherwise
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(a)

(b)

Figure 4.4: (a) Boxplots associated to AUROC test of Ce. (b) Boxplots associated to AUROC
test of Cs. The green dashed lines represent the boundaries between 0.6 and 0.9.

both the time and the amount of the bolus have to be adapted. Following these criteria,

a Classifier-Augmented (CA) OL therapy is proposed that exploits the information of both

classifiers, trained offline, to modify the meal bolus, iB. In particular, the classifier Cs defines

the variation of the time, while Ce defines the range of the insulin variations. Then, the final

adaptation of the bolus is the result of the integration of Cs and Ce.

Defining Csm and Cem the classifier prediction of Cs and Ce at mealtime tm, respectively, the
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H
HHH

HHCe

Cs
C−2s C−1s C0

s C+1
s C+2

s

C−2e
α=0.2,
β=0.3

α=0.2,
β=0,

α=0.4,
β=0,

α=0.8,
β=0,

α=0.3,
β=0.2

C−1e
α=0.5,
β=0.5

α=0.6,
β=0,

α=0.8,
β=0,

α=0.7,
β=0,

α=0.5,
β=0.5

C0
e

α=0.8,
β=0

α=0.8,
β=0,

α=1,
β=0,

α=1.2,
β=0,

α=1.2,
β=0

C+1
e

α=0.5,
β=0.8

α=1,
β=0,

α=1.2,
β=0,

α=1.4,
β=0,

α=1.2,
β=0.2

C+2
e

α=0.7,
β=1

α=1.4,
β=0,

α=1.4,
β=0,

α=1.7,
β=0,

α=1.4,
β=0.6

Table 4.3: α and β values for patients of Category A.

insulin bolus adapted by the CA strategy, iCAB , can be defined as follows:

iB
CA(tm) = α iB(tm) + β iB(tm − τ) (4.4)

where the values of α, β used for each bolus depend on Csm and Cem. In particular, a first set

of values for each possible combination of these classifiers has been defined as reported in Table

4.3 (Category A). A second more conservative category (Category B) has been defined in order

to manage patients very sensitive to drastic change of their therapy, see Table 4.4. Finally, a

third category (Category C) has been defined by setting α = 1 and β = 0, in order to manage

critical situations. The values of α and β have been tuned on a subset of meals taken from

different patients able to represent the 25 possible combinations of classes reported in tables

4.3 and 4.4. The assignment of each patient to one category is performed by a trial and error

procedure. In particular, each patient undergoes to a 16-day scenario composed of 4 periods of

4 days: the first in OL, the second with Category A and the fourth with Category B, divided by

a washout period in OL. The introduction of hypotreatments in the protocol guarantees patient

safety. Patients are assigned to Category C if both Categories A and B increase significantly

the number of hypotreatments or no improvements of Ta (time above 180 mg/dl) and Tb (time

below 70 mg/dl) are achieved. The assignment to Category A and B is performed minimizing

both Ta and Tb or alternatively only one of them, giving priority to Tb. If the improvements

between the two categories are similar, the category A is preferred. The parameter τ = 20

minutes is set constant for all the patients. Since the classifier training is performed offline, the

computational time required for the online implementation of the algorithm is negligible.
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H
HHH

HHCe

Cs
C−2s C−1s C0

s C+1
s C+2

s

C−2e
α=0.3,
β=0.2

α=0.3,
β=0,

α=0.5,
β=0,

α=0.8,
β=0,

α=0.4,
β=0.1

C−1e
α=0.6,
β=0.4

α=0.8,
β=0,

α=1,
β=0,

α=0.9,
β=0,

α=0.8,
β=0.2

C0
e

α=0.8,
β=0

α=0.9,
β=0,

α=1,
β=0,

α=1.1,
β=0,

α=1.2,
β=0

C+1
e

α=0.8,
β=0.4

α=1,
β=0,

α=1,
β=0,

α=1.2,
β=0,

α=1.1,
β=0.2

C+2
e

α=0.9,
β=0.8

α=1.2,
β=0,

α=1.2,
β=0,

α=1.4,
β=0,

α=1.2,
β=0.2

Table 4.4: α and β values for patients of Category B.

4.1.7 Simulation settings

The proposed CA algorithm is tested on the 100 in silico adult patients of the UVA/Padova

simulator with a 4-day scenario. The testing scenario starts at 0:00 am and involves 16 meals:

4 breakfasts (between 7:00 and 8:00), 4 snacks (1 in the morning, 2 in the afternoon and 1 in

the evening), 4 lunches (between 12:30 and 13:00) and 4 dinners (between 19:00 and 20:30).

Hypotreatments (ht) of 15g are administrated to the patient in case of hypoglycemia (BG <

65 mg/dl). In order to evaluate the effectiveness of an insulin therapy, the performance metrics

introduced in Section 3.5 have been evaluated. These metrics follow the consensus statement

for artificial pancreas trials described in [42].

4.1.8 Results

The performance metrics obtained with the OL and CA strategies evaluated on the entire

population on the testing scenario are reported in Table 4.5. Interesting improvements are

obtained by the new technique for all the 100 patients in the PP period, period mainly affected

by the meal bolus changes. The CA is able to improve the time in target by 2.1% and in tight

target by 11.6%, to lower the average glucose by 5.4% and to reduce the time spent above

the target by 36.7% with respect the OL therapy. The increase of the times spent below the

target remains limited: Tb initially 2.9% reaches 3.2% while Tb60 from 1.5% increases to 1.8%.

The RMSE is decreased by 5.4% with and increment of the TDI of 2.9 U. All these results are

statistically significant. The same observations can be drawn overall, where the CA is able to

improve the times in target (5% and 10.3% for the tight target), to lower the average glucose by
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3.8% and to reduce the time spent above the target by 20.9%. The increase of the time spent

below the target remains limited. The RMSE is decrease by 5.3% with an increment of TDI of

3.9 U. All these results are statistically significant and have been published in [55].

4.2 Individualized CT

In order to improve PP glucose regulation, the insulin bolus computed by CT can required a

variation due to the amount. Unlike the approach presented in Section 4.1, where the correction

of the insulin bolus is based on the prediction of the PP glucose levels, in this section the goal is

to identify the parameters that can directly predict the effect of the insulin bolus on glycemia.

In this section a data-driven modeling approach able to predict the optimal percentage to be

applied to the insulin bolus is proposed. In silico data are used for model identification with the

UVA/Padova simulator [34]. Since this version of the UVA/Padova simulator includes intra- and

inter-day variability of insulin sensitivity, dawn phenomenon effect, and different distributions of

CR at different day time [18], the proposed approach aims to identify specific models for different

day periods on the basis of the intra-day variability of insulin sensitivity. The regression model

capabilities are evaluated on three robustness testing scenarios: a nominal scenario and two

perturbed scenarios. The first perturbed scenario includes random variations of meal amounts

to demonstrate the robustness of the individualized model against under- or over-estimation

errors of carbohydrate intakes. The second more challenging scenario is designed by adding

to the first scenario a random ±15% variation of the nominal insulin sensitivity to test the

proposed approach against disturbances, such as physical activity or stress which both affect

insulin sensitivity.

4.2.1 Modified Conventional Therapy

This approach proposes an individualized correction of the nominal insulin bolus, which is

adapted as follows:

iαB = iB · α (4.5)

where α is the insulin percent variation at mealtime and it is the output of a Multiple Linear

Regression (MLR) model [56] in the following form:

α = f(XR, km) = θI(km) + θII(km)XR + θIII(km)X2
R

s.t. α ∈ Iα =
[
αMIN , αMAX

] (4.6)
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Figure 4.5: PP glucose profiles of two patients belonging to the adult virtual popula-
tion of the UVA/Padova simulator. The profiles are obtained by correcting iB with α =
{0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0} in order to compensate a 40 g meal taken at 8.00.

where XR, X2
R ∈ RN represent the vector of the regressors and their values squared, respectively,

θI , θII , θIII ∈ RN are the model parameters at mealtime km, Iα is the set of admissible values

for α, and αMIN , αMAX are the lower and upper bounds of Iα, respectively. The constraint on

the feasible values of insulin percent variation is imposed for safety reasons. Hence, the modified

insulin bolus is bounded within the interval IαB =
[
iα
MIN

B , iα
MAX

B

]
, where iα

MIN

B , iα
MAX

B are the

lower and upper bounds of iαB at mealtime, respectively.

The aim of MLR model is to capture the interaction between glucose and insulin for a given

meal amount. Thus, the regressors are glucose-related variables and the structure of the model

has to approximate the interaction between glucose and insulin. As shown in [57], a linear

approximation of glucose-insulin relation does not capture the relationship between the pre-

prandial glucose profile and optimal insulin bolus. Hence, a quadratic (squared) term X2
R is

included in the model to add flexibility to the relationship between the regressors and the

dependent variable. Thus, the goal here is to choose a set of suitable regressors XR and define

a procedure to identify the parameters θI , θII , θIII .

4.2.2 Model Customization

To improve PP glucose control, the development of an individualized model which fits the

individual characteristics of each subject is necessary. Given the same initial conditions, the

corrections of the bolus dose may affect differently PP glucose profile of different patients, as

shown in Figure 4.5. Thus, the parameters of the model defined in Eq. 4.6 are patient-dependent

and we utilize the model below to predict the proper dose percent variation for a specific Patient

i:

αi = fi(XR, km) = θIi (km) + θIIi (km)XR + θIIIi (km)X2
R. (4.7)
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Since PP glucose excusions have different patterns at breakfast, lunch and dinner, the param-

eters θI , θII , and θIII are defined as a piecewise function with respect to day period. The

definition of the day periods is based on CR is a time variant and is influenced by insulin

sensitivity. Each patient of the virtual population of the UVA/Padova simulator is equipped

with its own CR daily pattern optimized on the basis of its own time-varying insulin sensitivity

[18]. Thus, the definition of the day period is provided by the time intervals where CR remains

constant and this information is already individualized. Hence, the model is of the following

structure:

αi = fi(XR, Tt) = θIi (Tt) + θIIi (Tt)XR + θIIIi (Tt)X
2
R, t = 1, ..., T (4.8)

where Tt is the tth interval and T is the number of day periods related to Patient i. For instance,

if the CR has three different day periods (usually one for breakfast, one for lunch, and one for

dinner), three models will be identified with three different set of parameters θI , θII , and θIII ,

one set for each period.

4.3 Model Identification

The aim is to identify an individualized model, which is able to predict the optimal percent

variation of iB at mealtime km to improve PP glucose profile by exploiting measurable variables

known at km. The main idea is to compute the optimal value of α for different values of these

measurable variables in order to span all the possible space of combinations. Then, the model

will be identified in order to better fit the space of optimal α values. So, the identification of

the model of Eq. 4.8, is performed in two steps.

The first step is to estimate the optimal percent variation αO of the nominal bolus in different

conditions. Since the computation of iB(km) is mainly affected by the contribution of ĈHO(km),

BG(km), and IOB(km), as described in Eq. 2.3, we investigated how these variables may affect

αO. In other words, different initialization of ĈHO, BG, IOB, and km are considered to define

a set of optimal insulin variations (IOα ).

In the second step, once several αO are collected for different conditions, the parameters of the

model predictors are identified by least squares.

These two steps are performed for each day period Tt and different models for different day

periods are identified. Since the data significantly affect the model performance, an experimental

design is set up to collect data to identify MLR [58]. The experiments are designed to produce a

sufficient excitation on the overall system and are defined by analyzing real data of T1D patients

collected during clinical trials [59]. Each experiment is characterized by a tuple whose elements
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are the following measurements: ĈHO, BG, IOB, km, Initial Interstitial Glucose (IIG), and

Initial Interstitial Glucose Slope (IIGS). IIG and IIGS are the glucose measurement at km,

and the pre-prandial glucose variation in the time interval [km − TGS , km], where TGS [min]

represents the length of the pre-prandial time interval, respectively. Denoting with NIα the

number of experiments, a matrix X of NIα lines is created:

X =
[
ĈHO0 BG0 IOB0 Km0 IIG0 IIGS0

]
(4.9)

where ĈHO0, BG0, IOB0, Km0, IIG0, IIGS0 ∈ RNIα are the vectors of the collected mea-

surements for all the experiments. So, each line of X, x0, is obtained by performing a single

experiment which captures the system response at different operating conditions.

4.3.1 Step 1: Definition of Optimal Insulin Variation

Since different models are identified for each day period Tt, the model identification procedure

is presented for a generic time interval Tt and it will be expanded in the following sections to

all the intervals. The aim of step 1 is to compute the values of αO for every line of X. Since

only a subset of information is used for this scope, Xα is introduced as follows:

Xα =
[
ĈHO0 BG0 IOB0

]
(4.10)

and let xα denote a generic line of Xα:

xα =
[
ĈHO0 bg0 iob0

]
(4.11)

where ĈHO0, bg0, iob0 ∈ R indicate the measurements collected in a single experiment per-

formed in the considered interval. Given a specific experiment, consider the following metrics of

glucose variability: T ppTh (xα, α) denotes the percentage of PP time spent below the threshold Th

[mg/dl] and App (xα, α) [mg/dl] represents PP glucose average, respectively. Thus, the optimal

bolus variation is the solution of the following optimization problem:

αO(xα) = argmin
α∈Iα

J(α(·), xα) (4.12)

where the cost function is defined as follows:

J(α(·), xα) = ε1T
pp
Th (xα, α) + ε2

App (xα, α)−App(xα, 1)

100
+ ε3 (4.13)
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Figure 4.6: The black
stars represent IαB with α =
{0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0},
ĈHO0 = [10, 100], bg0 = 160 mg/dl,
iob0 = 0, and km0 = 6.00. The red lines
show the evolution of each IαB by varying

ĈHO0 of Patient A of the adult virtual
population of the UVA/Padova simu-
lator. The thick red lines highlight for
α = αMIN set equal to 0.2, α = αMAX

set equal to 2, and α = 1.0, i.e., the CT.

Figure 4.7: The black lines are
PP glucose profiles of Patient A of
the adult virtual population of the
UVA/Padova simulator. The profiles
are obtained by correcting iB with α =
{0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0}
in the experiment characterized by

ĈHO0 = 30 g, bg0 = 160 mg/dl,
iob0 = 0 and km0 = 6.00. The thick
black line represents the optimal
variation and corresponds to α = 2.0.
The red line is the threshold Th = 90

mg/dl.

where the weights ε1 and ε2 balance the trade-off between avoiding PP hypoglycemia events

and decreasing the averaged PP glucose concentration. The parameter ε3 represents a safety

threshold to guarantee a more conservative bolus correction. This parameter can have different

values on different intervals and is determined on the basis of the daily pattern of insulin

sensitivity, which is lower in the morning than afternoon and evening [18]. This procedure is

repeated for all entries of Xα and a set of optimal insulin variation IOα is obtained. Figure

4.6 shows a subset of iαB by considering α values belonging to Iα for a group of experiments

characterized by different ĈHO0 with fixed bg0 = 160 mg/dl, and iob0 = 0. Figure 4.7 shows

PP glucose profile of a single experiment obtained by correcting the nominal bolus with different

α.

4.3.2 Step 2: Identification of Model Parameters

The first step provides a set of optimal insulin variations with respect to several different con-

ditons. IOα is split in two subsets: half is used for identification purpose, i.e., the identification

subset, and half is used to perform the model validation, i.e., the testing subset. In order to

identify the model of Eq. 4.6, the selection of regressors is addressed. The predictor variables

have to fulfill the following requirements: they have to be measurable at km and glucose-related.

The proposed regressors consist of IIG and IIGS. The choice of the number of regressors is

based on the principle of parsimony, while their selection is based on physical considerations.
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Specifically, the regressor IIG is the measurement of glucose concentration at mealtime and

represents the actual information of the current level of glucose concentration. The regres-

sor IIGS represents the change of glucose concentration in the TGS minutes before the meal.

The combination of these measurements depicts the glucose trend with respect to a value at a

mealtime. Hence, XR and X2
R are defined as follows:

XR =
[
IIG IIGS

]
X2
R =

[
IIG2 IIGS2

]
(4.14)

and the values of the regressors for the collected experiments are the lines of last two columns

of X that belong to the identification subset and are collected in the following matrix XR0:

XR0 =
[
IIG0 IIGS0

]
. (4.15)

Thus, the optimal θI , θII , θIII are identified by LS as follows:

θIO , θIIO , θIIIO = arg min
θI ,θII ,θIII

JLS(θI , θII , θIII , IOα , XR0). (4.16)

where the cost function is defined as follows:

JLS(θI , θII , θIII , IOα , XR0) =

NIα/2∑
j=1

(||αOj − f(XR0j )||2) =

NIα/2∑
j=1

||αOj −
(
θI + θIIXR0j + θIIIX2

R0j

)
||2 =

NIα/2∑
j=1

||αOj −
(
θI + θII1IIG0j + θII2IIGS0j + θIII1IIG2

0j + θIII2IIGS2
0j

)
||2

(4.17)

where

θII =

θII1
θII2

 θIII =

θIII1
θIII2

 (4.18)

and XR0j is the line of XR and IIG0j and IIGS0j ∈ R are its elements.

4.3.3 Model Summary

In order to improve PP glucose control, a MLR model able to individualize CT is proposed.

MLR model represents the relation between the pre-prandial glucose measurements and the

optimal meal bolus variation of a specific patient and is used to predict the correction of the

nominal meal bolus. The correction of the nominal meal bolus can be formulated with the
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following piecewise model:

iα̂
O

B = iB · α̂O s.t. α̂O = θIO(Tt) + θIIO(Tt)XR0 + θIIIO(Tt)X
2
R0 t = 1, ..., T

where α̂O is the estimated optimal bolus variation at mealtime, iα̂
O

B is the estimated optimal

insulin bolus corrected by α̂O at mealtime, and XR0 is the matrix of model predictors. In order

to individualize the CT, the MLR model parameters θIO , θIIO , θIIIO are patient-tailored and

are identified by performing the following least square estimation for each day period:

θIO , θIIO , θIIIO = arg min
θI ,θII ,θIII

JLS(θI , θII , θIII , I0α, XR0).

In order to identify and test proposed approach, the real optimal correction αO have to be

defined. In order to collect a set of optimal αO for each possible condition set present in

X, identification experiments are conducted. For a given test x0, an optimization problem is

formulated and each sample of IOα is achieved by optimizing the following cost function:

αO(xα) = argmin
α∈Iα

J(α(·), xα)

where xα ∈ R is the line of Xα.

4.3.4 Simulation Settings

The results of a case study on patient (Patient A) of the adult virtual population of the UVA/-

Padova simulator [18] are presented. The goal is to demonstrate that PP glucose regulation

can be significantly improved by the proposed approach, which is suitable for individualization.

The testing scenario lasts 4 days and its meal schedule is reported in Table 4.6. It is designed to

reproduce the critical situations observed during clinical trials [59]. Three testing scenarios are

defined to evaluate the performance of the identified model: Scenario I, the nominal scenario,

i.e., without uncertainties; Scenario II, a perturbed scenario where a random ±25% variation

of meal amounts is considered; Scenario III, a perturbed scenario with both a random ±25%

variation of amount of carbohydrate intake and a random ±15% variation of the nominal in-

sulin sensitivity. The perturbed scenarios represent a critical condition because the model is not

aware of these variations. Scenario II simulates that the estimation of carbohydrate intakes is

not reliable and a wrong meal compensation is happening, while Scenario III aims to reproduce

as much as possible the uncertainties of a real scenario due to unknown factors. Hypotreatments

(ht) of 15 g are administrated to the patient in case glucose concentration falls below 65 mg/dl.
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The day periods for Patient A are the following:


T1 = [t1, t2]

T2 = [t2, t3]

T3 = [t3, t1]

(4.19)

where t1 = 4:00, t2 = 11:00, and t3 = 17:00 on the basis of the optimized CR pattern of the

considered patient. Once a model for each day period is identified via in silico trials, the insulin

percent variation model is designed in the following form for Patient A:

α̂OA = θIOA (Tt) + θIIOA (Tt)XR + θIIIOA (Tt)X
2
R, t = 1, 2, 3 (4.20)

where Tt is the tth time interval where CR is constant.

The lower and upper bound for the admissible region of α are set as follows: αMIN = 0.1, and

αMAX = 2. The threshold Th is fixed to 90 mg/dl, the threshold TGS is set to 30 minutes

and the parameters ε1, ε2, and ε3 are set as follows: ε1 = 100, ε2 = 10, ε3(T1) = 0.2, ε3(T2) =

ε3(T3) = 0.3. The values of the parameter ε3 are based on physical considerations: they reflect

the daily pattern of insulin sensitivity, which is lower in the morning than the rest of day [18].

In order to evaluate the fitting performance of the model, the lines of X which belong to the

testing subset are used to compute the optimized correction α̂OA and evaluate the quality of the

MLR prediction with respect to the optimal values αOA via the computation of the Root Mean

Squared Error (RMSE), i.e., the square root of the variance of the residuals, defined as follows:

RMSE =

√
SSE

ν
(4.21)

where ν =
NIα
2 −M represents the residual degrees of freedom and M = 5 is the number of

fitted parameters, and SSE is the sum squared error, defined as follows:

SSE =

NIα/2∑
j=1

(||αOAj − α̂
O
Aj )||

2). (4.22)

An RMSE value closer to 0 indicates a good fit of the identified model. Moreover, the prediction

performance of the model are evaluated on 100 testing samples for each day period by simulating

the scenario reported in Table 4.6 and some performance metrics are evaluated. The adopted

metrics, which have been presented in Section 3.5 and are in line with the consensus AP metrics

[60], are computed overall (O) and take all PP periods into account (4h) as reported in Table

4.8. The evaluation of the night period is discharged because the modification of the therapy is

strictly related to the PP period.
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Table 4.6: 4 Day Testing scenario.

Time CHO [g] Description

Day 1

06:00 35.00 Breakfast

08:45 20.00 Snack

12:40 30.00 Lunch

18:30 25.00 Snack

20:45 80.00 Dinner

Day 2

07:00 15.00 Breakfast

08:25 30.00 Snack

12:45 63.00 Lunch

19:10 50.00 Dinner

Day 3

07:30 45.00 Breakfast

13:05 57.00 Lunch

20:45 35.00 Dinner

Day 4

06:20 35.00 Breakfast

08:00 10.00 Snack

12:30 15.00 Lunch

14:00 48.00 Snack

19:45 48.00 Dinner

4.3.5 Discussion

RMSE values obtained by evaluating the model by using the testing subset of the collected

experiments are reported in Table 4.7, where each RMSE is associated with the corresponding

identified regression model. Since RMSE indicates how close the observed data points are

to the predicted values of the model, we can conclude that the models are identified with

good accuracy. Moreover, although the RMSE results are sufficiently small on a one-hundred

dataset, over-fitting does not occur in the regression model as shown in Figures 4.8(a), 4.8(b),

and 4.8(c), where the fitted surfaces are compared with their own testing experiments. The

performance metrics obtained by testing CT and the improved therapy with MLR on the three

testing scenarios are reported in Table 4.8. Significant improvements are obtained with new

technique in both the PP period and the overall periods. The improved MLR therapy avoids

the hypoglycemic events and demonstrates that the glucose concentration never drops below 70

mg/dl. In PP period, which is mainly affected by the bolus variation, the correction of the meal

bolus computed by MLR is able to decrease the time spent above the target by 80% and 73% in

Scenario I and Scenario II, respectively. The time in target and in tight target are also improved

by 13% and 10% in Scenario I and by 30% and 48% in the Scenario II, respectively. Finally, the

average glucose is allowed to decrease by 4% in both Scenario I and Scenario II in PP periods.
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Table 4.7: RMSE testing results.

Day period T1 Day period T2 Day period T3

0.22 0.19 0.07

The corrections of iB predicted by the identified model allow BG concentration to remain in

the euglycemic range for most of the time and avoid hypoglycemia events, as shown in Figure

4.9(a). In Scenario III, even more challenging than the previous scenarios, the improved MLR

threapy increases the time spent in range, doubles the time spent in tight target and reduces

hyperglycemia by avoiding also the hypoglycemia. The absence of hypoglycemia in Scenario III

results in an increase of the average glycaemia by 2% in the PP period, but it represents a good

compromise for the overall glucose regulation, as shown in Figure 4.9(b).

These promising results are obtained by testing the MLR model via in silico trials on a single

subject; the application of this methodology to a real T1D patient is limited to the fact that

it requires potentially dangerous tests for the patient. In order to apply this technique on real

patients, the identification of an individualized model able to predict patient glucose dynamics

is required [61, 62]. In vivo data can be exploited to identify an offline patient-tailored model,

which has the capability to simulate the patient glucose dynamics also in critical conditions

needed for this approach. Then, the identified model can be used to identify the parameters of

MLR model. Given the satisfactory results, this approach has been published in [63].



63

(a)

(b)

(c)

Figure 4.8: (a-b-c) The regression surface identified from the dataset belonging to day periods
(a) T1 = [t1, t2], (b) T2 = [t2, t3], (c) T3 = [t3, t1] of Patient A of the adult population of the

UVA/Padova simulator. The red points represent the testing samples.
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Table 4.8: Results of CT vs MLR improved therapy on all testing scenarios in Patient A of
the adult population of the UVA/Padova simulator.

Scenario I Scenario II Scenario III

O PP O PP O PP

A [mg/dl]
CT 134.31 138.52 136.92 141.94 139.28 150.88

MLR 132.43 133.00 130.60 132.67 150.20 153.76

Tr [%]
CT 89.20 86.99 81.55 72.08 74.93 68.46

MLR 98.20 98.01 96.75 94.07 86.72 81.29

Ttr [%]
CT 55.13 53.04 47.71 43.06 27.95 15.96

MLR 62.00 61.03 68.19 64.75 37.94 31.76

Ta [%]
CT 5.80 9.61 11.99 21.27 14.41 22.55

MLR 1.80 1.99 3.25 5.93 13.28 18.71

Tb [%]
CT 5.00 3.41 6.46 6.64 10.66 8.99

MLR 0.00 0.00 0.00 0.00 0.00 0.00

Tb60 [%]
CT 3.38 2.40 5.27 5.76 6.18 5.55

MLR 0.00 0.00 0.00 0.00 0.00 0.00

#ht
CT 9.00 5.00 12.00 10.00 18.00 11.00

MLR 0.00 0.00 0.00 0.00 0.00 0.00





Chapter 5

Artificial Pancreas

The main aim of the AP is the automatic regulation of the BG concentration for people affected

by type 1 diabetes through exogenous insulin administrations. The AP system is composed

of three main parts: a glucose sensor, an insulin infusion device, and a control algorithm.

The concept of AP was proposed for the first time in 1959 by Professor Perry McCullagh, an

endocrinologist at The Cleveland Clinic. The first AP was developed in 1964 by Dr. Arnold

Kadish, a Californian internist. The device had the size and shape of a large backpack and was

not compatible for free-living conditions [64]. In 1974, Albisser and colleagues reported the use of

an extracorporeal AP system to maintain BG concentration, i.e. glycemia, in the normal range

during consumption of meals [65]. In the same year, Pfeiffer and colleagues also reported use of

a computerized glucose controlled insulin infusion artificial beta cell system [66]. In 1977, Miles

Laboratories has developed a Glucose Controlled Insulin Infusion System (GCIIS) designated

by the Trademark (BIOSTATOR) [67]. Biostator was the first commercial AP for inpatient

control. It consists of a rapid online glucose analyzer, a computer/controller for the calculation

and control of insulin infusion, and a multichannel infusion system. Biostator needed venous

access and was highly invasive and non-portable, forcing the patients to be hospitalized. In

order to allow to use the AP in the long term, the subsequent improvements concerned with the

miniaturization of the AP. Over the years, the improvements went in the direction of developing

a non-invasive, safe, and portable system, by relying on the latest technological developments.

Continuous Subcutaneous Insulin Infusion (CSII) pump therapy was introduced to treat patients

with type 1 diabetes in the late 1970’s [68]. Then, minimally invasive subcutaneous glucose

sensing was commercially introduced in 1999 by the MiniMed Continuous Glucose Monitoring

(CGM) system. When subcutaneous insulin pump technology was combined with a continuous

BG monitoring system, subcutaneous AP were developed. The current AP components are a

subcutaneous insulin pump, a CGM sensor, and a control algorithm. In the first AP system,

67
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the control algorithm was executed on a computer, which received and interpreted the electrical

signals generated by the glucose analyzer, and in turn instructed insulin pump to delivery

insulin. The performances of the first algorithms were limited by the computational power of

available computers. The most important step toward a non-invasive and portable AP was the

replacement of the laptop and all the wires with a portable device. Currently, the used portable

device is a modified smartphone where the control algorithm resides.

Despite important developments in sensor and pump technologies, the AP must cope with the

delays and inaccuracies in both glucose sensing and insulin delivery. The core of the AP is the

control algorithm used to calculate insulin delivery in order to perform an accurate and robust

Closed-Loop (CL) control. The controller design must take into account that the physiological

dynamics have a relatively slow response, so a delay has to be considered before performing

the next control action. However, a slow response is not able to attenuate PP glucose peaks.

Hence, the design of the control algorithm has to face a trade-off between slow-pace regulation

that includes both soft control actions applicable to quasi-steady state (e.g., overnight when the

glucose levels has to be maintained constant usually without meals), and aggressive responses

in the PP periods [69].

Moreover, since physical devices, like glucose sensor and insulin pumps, are involved, the control

theory has been implemented in discrete time. The adopted sample times can be the sample

times of insulin pumps or CGM sensors, which results to be smaller with respect to the involved

biological dynamics.

5.1 Control algorithms

The main purpose of the control algorithm is to achieve an insulin therapy to keep BG con-

centration within a predefined range by acting on insulin delivery. In the control scheme, the

controlled variable is the glycemia, the manipulated variable is the infused insulin, and the

measured output is the subcutaneous glucose. The subcutaneous glucose is provided by the

CGM sensor, while the insulin is delivered by the subcutaneous pump. Recently, alternative

routes of insulin delivery have been explored such as intraperitoneal [70, 71] and implantable

pumps [72]. The system is subjected to various disturbances, of which the most significant are

represented by the glucose variations induced by the meals intake. It is important to note that

this disturbance may be announced, approximately known, or even predictable [73]. There are

two classes of control schemes: open- and closed-loop. The main difference is that OL methods

design an insulin therapy based only on the knowledge of consumed meals, and eventually some

clinical parameters, without considering measurements coming form CGM sampled every 1-5
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Figure 5.1: Conceptual block diagram of CL glucose control.

minutes, whereas CL control adapts and chooses the control action by exploiting the subcuta-

neous measurements.

The OL control strategy corresponds to the application of the CT, previously described in

Section 2.3.1.

Closed-loop glucose control

A CL control scheme manages the insulin delivery by exploiting the knowledge of the subcu-

taneous glucose concentration measurements. In order to maintain the glycemia within the

euglycemic range, this control approach ideally allows to correct the insulin injections when

glucose level drops too low or increases too much. Furthermore, no explicit knowledge of exter-

nal disturbances should be required because the effects of disturbances are reflected on CGM

measurements. However, the aforementioned control scheme needs to take into account different

critical aspects such as the presence of time-variable dynamics and time delays. The action of

insulin on plasma glucose is subject to significant physiological delays that affect glycemia due

the absorption of insulin from the subcutaneous level to the blood glucose levels. Since the

glucose sensor measures the interstitial glucose, the diffusion process from plasma to interstitial

tissues, i.e. subcutaneous tissues, needs to be taken into account. As a result, the information

about the needed amount of insulin may arrive too late to prevent hyper- or hypoglycemic

episodes. Moreover, the saturation limits of the subcutaneous pump for delivery and lack of

a reliable individual model of the patient impose intrinsic limits to the time constant. The

solution of increasing the responsiveness of the CL system may lead to unstable behaviors. On

the other hand, the glycemic PP peaks cannot be attenuate with a conservative control strategy.

PP regulation can only be managed by delivering the necessary insulin in a brief time window.

The problem is to find a trade-off between PP regulation and fasting regulation. In order to

obtain a faster glucose regulation in presence of meals, a feed-forward action is introduced.
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Figure 5.2: Conceptual AP representation.

This is the concept of meal announcement, where the patient is involved in the control loop by

announcing to the controller a meal intake. The patient announces the meal and specifies the

estimated quantity of carbohydrates (CHO) included in the meal itself. This information alerts

the controller that prompt insulin infusions will be needed to compensate the induced glucose

rise. The patient is involved in the control loop and this means that the proposed concept of AP

system is not fully automated but the control strategy is partially driven by the patient actions.

Meal announcement is considered an additional knowledge, which can improve the critical PP

glycemia control. If the patient forgets to announce the meal, the AP system should remain

able to operate safely. On the other hand, a flow of basal insulin, which typically is constant in

portions, is delivered throughout the day. The controller aims to provide the corrective insulin

value with respect to the basal insulin value to manage the time-variable dynamics. Thus, the

conventional therapy is used to further improve the control strategy, and potentially improving

the glucose control performance since it contains reliable information about the patient that

are continually adjusted by the physician. Finally, the solution for a good glucose regulation is

a control scheme that combines feed-forward and feedback actions [73]. The control algorithm

block is shown in Figure 5.2. The required inputs are not only CGM sensor measurements,

but also the information provided by the conventional therapy and meal announcements. The

output is the optimal insulin administration.
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5.2 Model Predictive Control

In the last years, one of the most promising approach revealed to be the Model Predictive

Control (MPC) algorithm that achieved successful results in the AP context, both in silico and

in vivo. Several MPC algorithms have been tested in clinical trials with satisfactorily results

[59, 74–79]. In these trials the patients followed a therapy defined via a fully automatic CL

control. The MPC approach exploits a glucose-insulin model of the patient to predict near-

future BG values and, consequently, computes the optimal insulin dose.

Specifically, the MPC has three main components that are the model, the cost function, and

the constraints. The model is useful to compute the prediction of both the future states and

outputs of the system as a function of the current state, future inputs, and future values of

the estimated disturbances. In the context of AP, the input is the suggested injected insulin,

the output is the estimated glucose concentration and the disturbances are represented by meal

intakes. At each sampling time k, the future sequence of manipulated variables is computed by

optimizing a cost function J(x(k)), u(·), k), that is:

u0(k) = argmin
u(·)

J(x(k)), u(·), k). (5.1)

Constraints on the inputs can be added in this optimization problem. Then, according to the

receding horizon principle, only the first control action is applied. The receding horizon principle

states that at each time instant, the optimization problem is solved. The u0(k) is computed

over the prediction horizon and only u0(0) is applied to the system as the current input. Then,

the same procedure is repeated by translating the prediction horizon. The MPC approach

allows to convert the controller design problem into a Finite Horizon Optimal Control Problem

(FHOCP). This control approach is driven by a metabolic model that must be able to predict

the glucose-insulin dynamics of the patient under control. Thus, a model with good prediction

capabilities is expected to improve the glucose regulation performance.

Figure 5.3 shows the developed control scheme. In the scheme, the required insulin up is defined

according to the conventional therapy. The signal up is the contribution of both the basal insulin

ib and the suggested insulin uMPC computed by the MPC controller. In order to compute uMPC ,

two different situations have to be taken into account. During fasting periods, uMPC depends

only on the subcutaneous glucose error e = ysp−y, where ysp is the glucose set-point and y is the

CGM measurement. If there is a meal announcement, the estimated amount of carbohydrates

d = m̂ associated to the meal m is used to compute the optimal nominal insulin bolus ioB

according to the open loop therapy, which corresponds to conventional therapy. Then, the

MPC controller uses the nominal insulin bolus ioB, the estimated CHO m̂, and the glucose error
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Figure 5.3: CL scheme for BG regulation. The blue blocks represent the MPC and the patient,
yellow blocks represent the hardware, and the green block represents the OL therapy used to
compute the nominal insulin boluses, which is used in the meal announcement.The red block
is the Kalman filter, which provides an estimation of the non measurable state given the noisy

CGM measurements and the controller insulin suggestions.

to drive uMPC . Thus, the uMPC can be considered as an insulin variation with respect to basal

insulin ib. Then, the pump receives the up and infuses the insulin i.

5.2.1 Linear MPC

Linear MPC (LMPC) exploits a linear model to perform the predictions used to compute the

control inputs. A linear model is usually represented in state-space variables as follows:x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k)
(5.2)

where the system is a linear discrete time-invariant model, and where x ∈ Rn is assumed to be

measurable, u ∈ Rm is the input vector, and y ∈ Rp is the output vector. In the linear case [80],

the optimal control sequence is obtained by minimizing the following cost function:

J(x(k)), u(·), k) =
N−1∑
i=0

(||x(k + i)||2Q) + ||u(k + i)||2R)) + ||x(k +N)||2S ). (5.3)
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In case of non-constrained control, one of the advantages of LMPC is that the control law can

be defined in closed-form, so the solution of the problem is the following:

uo(k + i) = −K(i)x(k + 1), i = 0, 1, ..., N − 1 (5.4)

where

K(i) = (R+B′P (i+ 1)B)−1B′P (i+ 1)A (5.5)

and P (i) is the solution of the Riccati equation

P (i) = Q+A′P (i+ 1)A−A′P (i+ 1)B(R+B′P (i+ 1)B)−1B′P (i+ 1)A (5.6)

with boundary condition P (N) = S. Given the reciding horizon criterion, the MPC control law

is state-feedback, time-invariant, and is given by

uMPC(k) = −K(0)x(k). (5.7)

Since the metabolic model described in the previous chapter is time-variant and highly nonlinear,

the LMPC cannot be directly used. Thus, the original metabolic model needs to be transformed:

it is first approximated to time-invariant and then it is linearized around a fictitious basal

equilibrium point. The time-invariant approximation is performed by approximating the time-

varying gastric emptying coefficient kempt defined in the Eq. 3.2 to its average value kmean. Then,

the second step consists of performing a linearization around an equilibrium point representing

the steady state of the patient during fasting periods. Hence, the insulin input i(t) has been

imposed equal to the insulin basal value ib, and the meal input d(t) of Eq. 3.2 equal to 0.

This transformation procedure can be applied to the entire virtual population, but there is not

a correspondent real patient-specific model, since the virtual population has been generated

by randomly extracting different realizations of the parameters vector from a joint parameters

distribution obtained from real 204 patients [27]. An average nonlinear time-variant model has

been defined by averaging the parameters of the entire virtual population. So, it represents the

best trade-off for the controller synthesis. The resulting model is subsequently approximated

to time-invariant and linearized to be included in the LMPC. The average linear time-invariant

model is then discretized with a sampling time of 15 minutes (that is the sampling time chosen

for the control action), obtaining the following discrete-time state-space model:x(k + 1) = Ax(k) +Bu(k) +Md(k)

y(k) = Cx(k)
(5.8)
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where x and y are the differential states and output with respect to their steady-state values,

respectively, u = uMPC represents the differential infused insulin by the controller with respect

to the basal insulin ib, and d represents the amount of CHO associated to the meal announced to

the controller. Therefore, a discrete-time LMPC is derived from a unique state space linearized

approximation of the nonlinear time-variant model [81].

The state of the model in general is not measurable, thus a Kalman filter has been incorporated

[5]. On one hand the controller task is to achieve the basal equilibrium at the end of the

prediction horizon. The linearized model is then modified as follows:xl(k + 1) = Axl(k) +Bu(k) +Md(k) + εKFx (k)

yl(k) = Cxl(k) + εKFy (k)
(5.9)

where εKF = [εKFx εKFy ]′ is a multivariate zero-mean WGN with covariance matrix given by

V =

QKF 0

0 RKF

 (5.10)

with QKF > 0 and RKF > 0. With the assumption of a stabilizable and detectable system,

LMPC control law is obtained minimizing the following quadratic cost function:

J(x̂(k|k), u(·), k) =
N−1∑
i=0

(q(y(k+ i)−ysp(k+ i))2+(u(k+ i)−u0(k+ i))2+ ||x(k+N)||2P ) (5.11)

with

x(k) = x̂(k|k)

x(k + i+ 1) = Ax(k + i) +Bu(k + i) +Md(k + i)

y(k + i+ 1) = Cx(k + i+ 1)

u0(k + i) = uOL(k + i)− ib(k + i)

(5.12)

where the state x(k) is substituted with its estimation x̂(k|k), q > 0 is the weight associated to

the output, y is the measured noisy subcutaneous glucose, ySP is the glucose set-point, uOL is

the insulin that would be injected by the OL therapy, and P is the unique non-negative solution

of the discrete-time Riccati equation:

P = qC ′C +A′PA−A′PB(1 +B′PB)B′PA. (5.13)
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Finally, the steady-state Kalman filter is described by the following equations:

x̂(k + 1|k) = Akf x̂(k|k) +BKFu(k) +MKFd(k)

x̂(k|k) = x̂(k|k − 1) + L[y(k)− CKF x̂(k|k − 1)]
(5.14)

with

L = PKFC
′
KF [CKF pKFC

′
KF +RKF ]−1 (5.15)

where PKF is the unique positive-definite solution of the Riccati algebraic equation:

PKF = QKF +A′KFPFKAKF −AKFPFKC ′KF (CKF pKFC
′
KF +RKF )−1CKFPFKA

′
KF (5.16)

The Kalman filter has sampling time equal to 5 minutes, like the sampling time of the CGM.

Therefore, since each control action is performed every 15 minutes, three Kalman filter predic-

tions are computed within each control action, leading to three state estimations of which the

last one is passed to the LMPC as initialization state x̂(k|k) in the cost function (5.11).

5.2.2 Closed-Form Implementation

In order to avoid online optimization or the computational and memory burden of an explicit

MPC for constraints systems, the controller does not include explicitly the constraints [5]. Thus,

it is possible to calculate the closed-form of the LMPC control law by relying on the Lagrange

formula. The model output and states predictions within the horizon N can be obtained through

the following formula:

Y (k) = Acx(k) + BcU(k) +McD(k) (5.17)

where x(k) is the linear model state at time k and the other quantities are defined as

Y (k) =



y(k + 1)

y(k + 2)
...

y(k +N − 1)

x(k +N)


, U(k) =


u(k)

u(k + 1)
...

u(k +N − 1)



D(k) =
[
d(k) d(k + 1) · · · d(k +N − 1)

]T
(5.18)
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Ac =



CA

CA2

...

CAN−1

AN


, Bc =



CB 0 · · · · · · 0

CAB CB
. . .

. . .
...

...
. . .

. . .
. . .

...

CAN−2B · · · · · · CB 0

AN−1B · · · · · · AB B



Mc =



CM 0 · · · · · · 0

CAM CM
. . .

. . .
...

...
...

. . .
. . .

...

CAN−2M CAN−3M · · · CM 0

AN−1M AN−2M · · · AM M


Note that, according to the cost function (5.11), the last element of Y (k) represents the model

state prediction x(k + N) at the horizon, and the other matrices are properly defined. The

predicted trajectory Y (k) depends on the applied input trajectory U(k), that has to be optimized

through the minimization of the cost (5.11). By defining the weight matrix Q as

Q =


q 0 · · · 0

0
. . .

. . . 0
...

. . . q
...

0 · · · 0 P

 ∈ R(N−1+n)×(N−1+n)

with n = 13 representing the number of the states associated to the controller model and with

q > 0 representing the output weight defined in Eq. 5.11, the controller cost function can be

rewritten as follows:

J(x̂(k|k), u(·), k) = (Acx̂(k|k) + BcU(k) +McD(k)− Ysp(k))T Q (Acx̂(k|k)

+BcU(k) +McD(k)− Ysp(k)) +
(
U(k)− U0(k)

)T (
U(k)− U0(k)

) (5.19)

where the reference vectors Ysp and U0 are defined as

Ysp(k) =
[
ysp(k + 1) ysp(k + 2) · · · ysp(k +N − 1) 0 · · · 0

]T
U0(k) =

[
u0(k) u0(k + 1) · · · u0(k +N − 1)

]T
By zeroing the gradient with respect to U , the vector Uo containing the optimal input trajectory

is achieved in the following closed-form:

Uo(k) =
(
BTc QBc + I

)−1 (−BTc QAcx̂(k|k)− BTc QMcD(k) + BTc QYsp(k) + U0(k)
)
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where I is an identity matrix with proper dimensions. According to the receding horizon crite-

rion, the time-invariant LMPC control law is given by:

uMPC(k) = [1 0 · · · 0]
(
−Kxx̂(k|k)−KdD(k) +KYspYsp(k) +KU0U0(k)

)
(5.20)

where the gain matrices Kx, Kd, KYsp , and KU0 are defined as

Kx =
(
BTc QBc + I

)−1 BTc QAc
Kd =

(
BTc QBc + I

)−1 BTc QMc

KYsp =
(
BTc QBc + I

)−1 BTc Q
KU0 =

(
BTc QBc + I

)−1
5.3 Modular Control Architecture

In addition to MPC control strategy, a structured modular approach has proved to be a winning

approach toward an automated CL glucose control. The modular AP architecture has been

implemented as the combination of separate interacting components (modules) responsible for

different tasks, and it involves decomposition of control, estimation, and signal management

functions into multiple timescales. The main advantage of the modular AP architecture is the

possibility for sequential development and clinical testing of the CL system [82].

The current architecture is described in detail in [83] and it is shown in Figure 5.4. The

architecture is divided in the following four main layers and includes several modules:

• the offline layer

• the real time layer

• the continous time layer

• the hardware layer.

The offline layer is designed to perform an adaptation of the control algorithm by exploiting the

available information on a specific patient. In order to initialize and individualize the control

algorithm, conventional therapy and trials historical data are the currently needed information

to be collected. More precisely, the conventional therapy, which includes information about the

patient basal insulin, CR and CF parameters, is exploited to properly initialize the controller,

while the clinical data are used to individualize the metabolic model included in the MPC.

Hence, the introduction of this layer has been thought to face the patients inter-variability, but
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Figure 5.4: Representation of the AP modular architecture.

this adaptation strategy has to be computed offline because it is computationally demanding.

In the real time layer, online received information can modify the offline performed controller

individualization through a run-to-run strategy: it has been implemented in the adaptation

module. Online information includes also manual corrections, which become important sources

of knowledge to improve the current control strategy. Moreover, the system is in charge of storing

the manual corrections because they can be used to improve individualization techniques.

The real time layer includes also the controller module, which is composed of two sub-modules,

the Meal Control Module (MCM) and the Range Control Module (RCM). The aim of the

MCM is to perform meal compensation task by exploiting meal announcements and information

provided by the patient about the meal quantity estimation. Even if the meal is not announced,

the AP system is implemented to recover from PP glucose peaks. The RCM has to maintain

the BG level within a safe range according to the MPC approach, employing the information

provided by the MCM and by the online adaptation module.

Finally, in order to prevent from possible complications, the continuous time layer includes the

diagnostic module to guarantee the safety of the patient. The diagnostic module continuously
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monitors the insulin pump and CGM connections statuses and detects possible hardware failures.

It contains an internal model used to predict the possible risk of future hypo- or hyperglycemia

based on the available CGM measurements and on the suggested insulin by RCM. When the

diagnostic module has detected possible dangerous situations for the patient’s health, warnings

or alarms can inform the patient about the undesired current condition. The alarm systems

can be divided in two categories on the base of the method used for the alarm generation:

low-threshold detection and prediction. The first notifies the crossing of a critical BG level [84],

while the second tries to foresee the hypoglycemia risk to allow the user to act in advance in

order to avoid this event [85–88]. The latter typically requires the use of patient models to

perform glucose trend predictions. According to the model prediction, a signal is provided to

the patient indicating one of three possible levels of hypoglycemic risk. This signal is given in

the form of a traffic light: green light codes no risk of hypoglycemia, yellow light indicates that

a risk of hypoglycemia is present, and red light means imminent hypoglycemia. The color of

traffic light implies an automated attenuation of the insulin pump delivery rate based on risk

in a CL setting [85].





Chapter 6

Model Identification

The inter-subject variability characterizing subjects with T1D needs definition of an individu-

alized strategy, which can substantially improve the safety and the effectiveness of the glucose

control. From a control perspective, since MPC performance is highly influenced by the qual-

ity of the model used for prediction, as described in Section 5.2, an individualized control law

achieved by identifying a specific model and including it in the controller could highly improve

the performance of the control. A safety improvement is likewise achieved by including this

model in an alarm system to predict dangerous situation such as hypoglycemia. Hence, patient-

tailored models have a dual purposes: they can be exploited by both the controller and the

alarm system. In order to implement monitoring and alarm systems, and to design control law,

reliable patient models for the evaluation of future glucose levels are necessary. Currently, the

average linear time-invariant metabolic model, which is computed by linearizing the model of

the average adult virtual patient of the UVA/Padova simulator, is used in both the MPC and

the diagnostic module. Of course, the average linear model could limit the performance, so the

research moved to the identification of patient-tailored models. Recently, promising results have

been obtained by identifying individualized models using the UVA/Padova simulator, in par-

ticular in [5] and [30] different individualization techniques have been studied and compared to

the “average” model of the UVA/Padova adult population showing significant improvements in

term of prediction ability. In these works, in silico data were collected during CL simulations of

clinical protocols designed to produce a sufficient input-output excitation without compromis-

ing the patient safety. Indeed, sufficiently noisy data are needed to convey enough information

about dynamics of the signals. Consequently, identification data coming from CL simulations

are preferred with respect to identification data coming from the simulation of the conventional

therapy because CL data are usually characterized by more variable inputs.

The identification technique proposed in [5] has been extended to identify a patient-tailored

81
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model from CL data collected in free-living conditions [59]. This set-up is particularly challeng-

ing because the identification of reliable models on real-data is more difficult than on simulated

data. The glucose-insulin model identification problem is subject to the issue of a poor input

excitation, due to the synchronization and proportion of meals and pre-meal insulin boluses.

The inputs of the model are the injected insulin and the meals, which have opposite effects on

the glucose levels. Indeed, meals and insulin infusions increase and reduce the BG concentra-

tion, respectively. In order to compensate the meal intake, an insulin bolus has to be injected

in correspondence to the meal. Thus, insulin boluses and meals can be considered simultaneous

inputs, and their effects of BG are superimposed. The problem is that these two different inputs

cannot be temporarily separeted without compromising the patient safety. This aspect can be

manage in silico but it can not be avoided in real-life for patient safety reasons and it makes

the identification of the effect of each input signal difficult. This techinque will be described in

details in Section 6.2.1.

In [30], the successful identification of a good model has been shown to be strictly related with

the identification scenario. The identification technique is based on the input-output data, so

the selection of the identification data plays a key role. In order to identify models from clinical

data, it would have been advisable to reproduce in vivo the same protocols used in simulation.

Unfortunately, the clinical trials have been not conducted for collecting data for identification

purpose. Therefore, the availability of experimental data on long outpatients trials motivated

the identification techniques applicable to free-living patient. Since clinical trials have been

conducted in free-living conditions, many factors can alter the quality of data. There may

be present errors related with meal announcement, i.e. patiens may under/overestimate the

amount of announced CHO, which may lead to a wrong computation of the insulin bolus ac-

cording to Eq. 2.3. The patient can also forget to announce the meal or announces the meal

twice. This error is reflected on unexpected chances of glucose level. In order to guarantee the

causal relationship between glucose and CHO, this wrong information has to be managed in

the identification data. The data portions that contain these input errors have to be discharged

because they compromise the identification of glucose response to meal intake. A malfunction

in the AP system is another factor that is never present in the simulation data. In order to use

data collected during a proper functioning of AP system, the data portions for identification

have to belong to time intervals when CL is guaranteed.

The individualization techniques belong to the offline layer of Figure 5.4, where the patient’s

available information are used both to initialize the controller and to individualize the metabolic

model included in the MPC. The identification of an individualized glucose-insulin model is

usually based on identification techniques that are computationally demanding, and this is the

reason why the individualization module is implemented in the offline layer of the previously
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presented modular architecture.

6.1 Model Identification: Impulse-Response (IR) technique

The measurable inputs of the patient model are the injected insulin in pmol/min/Kg, i(k),

and the carbohydrates content in mg, m(k). The model output is the glucose concentration

measured by the CGM sensor, CGM(k). All these signals are collected every Ts minutes, with

Ts = 5 minutes. Denoting with I(z), M(z) and CGM(z) the Z-transforms of inputs and output,

the model has the following structure:

CGM(z) = Gi(z)I(z) +Gm(z)M(z) + E(z) (6.1)

where Gi(z) and Gm(z) are transfer functions to be estimated from the data and E(z) is the Z-

transform of the residual error e(k). Besides insulin and meal, a number of other unmeasurable

factors affect blood glucose concentration, first and foremost physical exercise, but also stress,

illness, menstrual cycle, etc. The effect of these unmeasured factors and other unmodeled

dynamics are partially accounted for by assuming e(k) to be a colored noise, i.e. assuming that

e(k) is correlated with the past errors e(k− 1), e(k− 2), . . . . Also the spectral characterization

of the error has to be estimated from the data.

6.1.1 Continuous-time Impulse Response Model

In order to successfully identify a black-box model, it is necessary to have sufficiently exciting

input data and to properly define the order of the system. Impulse signals are the most exciting

inputs and are naturally used in continuous time. Hence, following the procedure described in

[5], we first identify a continuous-time model to describe the deterministic part of the system:

CGM(s) = Gi(s)I(s) +Gm(s)M(s)

where Gi(s) and Gm(s) are transfer functions to be estimated from the data, I(s), M(s) and

CGM(s) are the Laplace transforms of inputs, i(t) and m(t), and output, CGM(t). Due to the

impossibility of performing extensive and potentially dangerous experiments on human subjects,

the identification technique is divided in two steps: the first one is entirely developed on the

“average” in silico patient (Av) of the UVA/Padova simulator [27] with highly exciting input

data that could not be applied on human subjects. For example, it is important to have insulin

boluses (impulse-like amount) without meal intake as well as uncontrolled meals (meals without
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insulin boluses). The outputs of this first step are the two transfer functions Gi(s) and Gm(s)

that describe the dynamics of the “average” patient. Starting from the Av model obtained in

step 1, the goal of the second step is to identify a specific patient model using patient input-

output real data.

6.1.1.1 Step 1: linear average model

The transfer functions for the first step are identified starting from single impulse response

experiments performed on the nonlinear model of the Av patient of the UVA/Padova simulator.

The simulations lasted 1 day and involved a single meal of 10 g without any insulin boluses to

identify Gm and a single insulin bolus without meal administration to identify Gi. The insulin

bolus was calibrated to obtain a glucose slope of 10 mg/dl using the CF.

The transfer functions are defined as

Gi(s) = µi
(1+sTi1)(1+sTi2)(1+sTi3)(1+sTi4)

Gm(s) = µm
(1+sTm1)(1+sTm2)(1+sTm3)

(6.2)

where the orders have been selected by a trial and error procedure and the vector of the param-

eters to be identified is

θ =

 θi
θm

 , θi =



µi

Ti1

Ti2

Ti3

Ti4


, θm =


µm

Tm1

Tm2

Tm3


The optimal parameters vector, denoted by θAv, is obtained by two independent constrained

optimization problems, one to compute the optimal value of θi, denoted by θAvi , and the other

to compute the optimal value of θm, denoted by θAvm . Both aim to minimize the Sum of Squares

Residuals (SSR) computed as differences between the observed CGM data (CGM) and the

CGM estimation (ĈGM) obtained by running a simulation using the model:

SSR = ||CGM(t)− ĈGM(t)||2 (6.3)

with ||x(k)||2 the l2 norm of the signal x(k), namely
√

ΣN
k=1x(k)2, where N is the number of

data collected every minute. In order to ensure the stability of the system, the minimization

problems are performed with the constraint of non-negativity of the time constants performed

by adding a barrier function to the SSR.
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Since the residuals are described by a nonlinear function of the model parameters, an iterative

nonlinear least squares algorithm is used.

The initialization of this procedure involves the estimation of the gain and of the slow time

constant of each transfer function, while the other time constants are initialized to 1. The gains

are set equal to the Area Under the Curves (AUC) of the impulse response data, while the

slow time constant (T1) is estimated from the final part of these data (t ∈ [tstart, tend]), with

the assumption that the effects of the other faster time constants are negligible in this data

window. In particular, under this assumption, the selected data can be approximated to the

impulse response of a first order dynamic system described by

CGM(t) =
µ

T1
e
− t
T1 , t ∈ [tstart, tend]

So that

ln (CGM(t)) = ln

(
µ

T1

)
− t

T1
, t ∈ [tstart, tend]

Considering the CGM data in the interval [tstart, tend] and defining the following vectors

ϑ =

ϑ1
ϑ2

 =

ln( µ
T1

)
− 1
T1

 , Y =


ln (CGM(tstart))

...

ln (CGM(tend))

 ,

φ =


1 tstart
...

...

1 tend


we can describe the vector Y by the model

Y = φϑ+ V

where the vector V represents the measurements error of the model. Then, the time constant

T1 can be estimated through the linear Minimal Mean Squared Error (MMSE) estimator:

ϑMMSE = arg min
ϑ

(Y − φϑ)T (Y − φϑ)

Since the identifiability constraint is respected, the global minimum results to be

ϑMMSE = (φTφ−1)φTY
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and the slow time constant can be obtained as

T1 = − 1

ϑMMSE
2

6.1.1.2 Step 2: linear individualized model

The goal of the second step is to identify an individualized model starting from individual

data collected without ad-hoc experiments. An insulin absorption delay (τI) has been added

to the transfer function Gi in order to consider a physiological delay that can be relevant

in some patients. Different values of τI have been considered; for each one a set of different

optimal individual parameters has to be computed by solving a unique constrained minimization

problem for both θi and θm using the individual data. In fact, differently from the first step it

is not possible to separate the effects of insulin and meal. In view of the non-convexity of the

optimization problem, the problem of local minima must be addressed by a proper initialization.

The initialization can affect the final result. Two choices are adopted in this thesis both leaded

by the idea that converging to a local minimum compatible with clinical experience is better

than to find a global minimum far from them. Two different initializations were explored: the

first one (θAv) already described in [5], uses all the parameters estimated for the Av patient in

step 1, while the second one (θCp) complements the time constants of the Av patient with some

available individual clinical information to initialize the gains µi and µm. In particular, µi is

initialized to the CF and the meal gain µm is initialized to CF
CR . Given the computational load,

the optimization problem has been divided in two parts. The first one has the goal to optimize

the parameters θi by keeping fixed θm to the one chosen as initialization value:

θ∗i1 = arg min
θi

SSR

subject to Tij > 0, j = 1, . . . , 4

with θiniti ∈ {θAvi , θCpi }, where

θAv =

θAvi
θAvm

 , θCp =

θCpi
θCpm


This choice is due to the fact that insulin parameters are more variable than the meal ones. In

the second part, the insulin parameters are initialized to θ∗i1 and the entire θ, meaning both θi
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and θm, is estimated to obtain its most accurate estimation:

θ∗ = arg min
θ

SSR

subject to Tij > 0, j = 1, . . . , 4

Tml > 0, l = 1, . . . , 3

with θinit2i = θ∗i1, θ
init2
m ∈ {θAvm , θCpm } and θ∗ =

[
θ∗i2 θ∗m2

]′
. At the end of this procedure the

transfer functions (6.2) are completely individualized.

6.1.2 Discrete-time Model

The continuous-time model identified in the previous section is discretized via zero-order hold

method obtaining Gi(z) and Gm(z). Then, we identify the stochastic part of the model (8.1)

by describing the residual error e(k) as an AR process of order n:

e(k) = a1e(k − 1) + · · ·+ ane(k − n) + ε(t)

with ε(t) a zero-mean white noise with variance λ. The parameters a1, . . . , an and λ are esti-

mated from the data by minimizing the 1 steps ahead prediction. The complexity of the AR

model is fixed a priori and chosen by trial and error to n = 5.

6.2 Data

6.2.1 Experimental set-up

The dataset used was collected during experiments involved in the “AP@home” project [89]

in 2015. The clinical trials took place in three clinical centres of Padova (Italy), Montpellier

(France) and Amsterdam (Netherlands) [59]. 18 patients have been enrolled in a 1-month trial

aimed to test the day-and-night use of a CL controller implemented in an AP system in free-

living conditions. The baseline characteristics of these subjects are presented in Table 6.1. The

considered clinical trial has been conducted through a fully automatic closed-loop control [59].

The patients worn the AP prototype consisting of an suitably modified android smartphone (the

DiAs platform, [90]), communicating wirelessly with the G4 Platinum CGM system, Dexcom

Inc. and the AccuCheck Spirit Combo insulin pump, Roche Diagnostic. The computational

unit run the MPC controller described in [41]. Since data were collected in real-life condition,
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Variable Study population (n=18)

AMS (n=7) MPL (n=4) PAD (n=7)

Age [years] (SD) 37.71 (12.21) 51.50 (5.80) 46.85 (9.42)

Sex
Male (n)(%) 3 (42.86) 2 (50) 2 (28.57)

Female (n)(%) 4 (57.14) 2 (50) 5 (71.43)

Body mass index (BMI)
[kg/m2] (SD)

25.12 (4.47) 25.63 (4.16) 24.06 (2.94)

HbA1c [%] (SD) 7.60 (0.73) 7.44 (0.31) 7.54 (0.42)

Diabetes duration [years]
(SD)

21.71 (12.51) 33.75 (10.43) 29 (12.63)

Insulin delivery mode,
CSII [n] (%)

7 (100) 4 (100) 7 (100)

Duration of CSII use
[years] (SD)

6.42 (3.50) 9.25 (3.77) 10.57 (7.02)

Total daily insulin dose
[U/kg] (SD)

0.59 (0.04) 0.52 (0.10) 0.46 (0.11)

Table 6.1: Baseline characteristics of patients who participated in the extension. For cate-
gorical variables, n (%) is presented. For continuous variables, mean (SD) is presented. CSII,

Continuous Subcutaneous Insulin Infusion.

patients have received appropriate training for the safe use of the CL insulin delivery system.

Carbohydrates ingested at meal time or for snack and those used to treat hypoglycemic episodes

were manually entered by the patient into the system. Capillary blood glucose measurements,

obtained by pricking patient’s finger (Self-Monitoring Blood Glucose measurements, SMBG)

were performed for CGM calibration, at meal and to confirm hypo- or hyperglycemia detected

by the CGM sensor.

It should be noted that this prototype was not specifically designed to collect data for model

identification, posing a number of technical issues regarding device synchronization, complete-

ness of stored data and reliability of patient’s provided information. Furthermore, a few mal-

functions occurred during the trial hampering the reliability of the associated data portions,

as shown in Figure 6.1. Hence, a careful data selection phase has been performed before the

model identification. Moreover, since a clinical trial under free-living condition means that the

patient has a normal life without any type of restriction, the original data need to undergo

preprocessing before the identification.
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Figure 6.1: A portion of the clinical trial. In the first subplot, the blue line represents the
CGM data, the green circles corresponds to the times in which the system was in CL mode,
whereas the red circles emphasize some system malfunctions. In the second subplot, the orange

crosses represent the meal fluxes and the blue signal is the infused insulin.

6.2.2 Data Preprocessing

Current CGM sensors have to be calibrated two times/day by using SMBG measurements to

produce reliable glucose readings. Imperfect calibration induces a systematic distortion in CGM

measurements as illustrated in Figure 6.2 and modeled in [91]. Denoting with CGMb.p.(t) the

CGM before preprocessing, a simplified version of the model in [91] is:

CGMb.p.(t) = αg(t) + β + γt+ eCGM (t)

where g(t) is the true glucose concentration, eCGM (t) is a colored noise and α, β, γ are the

“decalibration” model parameters. The interstitial glucose concentration g(t) can be related

to the blood glucose concentration through a first order continuous-time dynamical system

with unit gain and time constant τ . The parameters α, β, γ, τ abruptly change every time a

calibration is performed.

Apparently, this distortion can affect the estimate of model coefficients and introduce spurious

jumps and additional dynamics. To mitigate these artifacts, we employed a preprocessing

algorithm known as “retrofitting” [92], that retrospectively corrects this calibration-induced

distortion by leveraging on the additional SMBG measurements collected during the trial. Here

we only illustrate the effect of the algorithm in Figure 6.2, while we refer the interested reader

to the original paper for more details.



90 Chapter 6. Model Identification

Figure 6.2: Illustration of CGM data pre-processing performed by the retrofitting algorithm,
taken from [93]. Due errors and uncertainty in the calibration process the CGM measure-
ment (dashed blue line) overestimates the true blood glucose (gray diamond, not available in
our dataset). The retrofitting algorithm, leveraging on a the additional SMBG measurements
collected during the trial (red dots), compensates for calibration error and the output of the

method (red solid line) is closer to the true glucose concentration.

From now on, CGM(t) always refers to the CGM trace after the preprocessing by retrofitting.

It should be noted that the retrofitting algorithm improves the accuracy of the CGM, but it

does not solve the issue of data reliability previously mentioned (e.g. due to AP malfunctioning

or human errors on patient-provided data). Thus, the extraction of a “clean” data portion

remains key also after preprocessing.

6.3 Performance metrics

To assess the efficacy of an identified model we compare the model predictions of future CGM

(ĈGM) against its actual values (CGM(t)). Since the identified model is meant to be used in

our MPC controller [41] with a specific Prediction Horizon (PH) the prediction capabilities over

finite PHs have to be evaluated. In particular, the accuracy of the model predictions is assessed

by considering various PHs. The considered PHs are expressed in terms of steps, where each

step corresponds to the sampling time, Ts = 5 minutes. In this work, the authors consider PHs

from 1 step, i.e. 5 minutes, to 12 steps, i.e. 60 minutes, where one hour can be considered a

sufficiently long PH with respect to glucose dynamics and coincides with the PH of the MPC

presented in Section 5.2. Moreover, simulation capabilities of the identified models are evaluated

by testing the prediction capabilities over an infinite PH. Hence, the vector of all possible PHs,

PH can be defined as follows PH = [Ts, 2Ts . . . , 12Ts,+∞] = [5, 10, . . . , 60,+∞] minutes.
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In details, let us denote with ĈGM(t|t − PH) the PH-steps ahead prediction of a model,

i.e. the prediction obtained by exploiting past glucose values up time t− PH, CGM(t− PH),

CGM(t−PH−1), . . . and inputs up to time t, i(t), i(t−1), . . ., m(t), m(t−1), . . . . Furthermore,

let us denote with PH = +∞ the glucose simulation, i.e. the output of the model when fed

with the inputs i(t), i(t − 1), . . ., m(t), m(t − 1), . . . without taking advantage of any of the

measure outputs.

The signal ĈGM(t|t−PH) and CGM are compared using the metrics listed below. The starting

point is Root Mean Square Error (RMSE) defined as:

RMSE(PH) =
1

N
||CGM(t)− ĈGM(t|t− PH)||2

where we denote with ||x(t)||2 the l2 norm of the signal x(t), namely
√

ΣN
t=1x(t)2, N being the

length of the dataset.

RMSE assesses the variance of the prediction error: the larger it is, the poorer is the prediction.

Instead of presenting this absolute quantity, we report two normalized versions commonly used

in system identification [58, 94].

Metric 1: Index of fitting (FIT).

Defined as

FIT (PH) = 100

(
1− ||ĈGM(k|k − PH)− CGM(k)||2

||CGM(k)− CGM ||2

)

where CGM(t) is the sample mean of the glucose signal. FIT is equal to 100% if and only

if ĈGM(k) = CGM(k) ∀k = 1, . . . , N (perfect prediction), and smaller than 100% otherwise.

Note that FIT can become negative.

Metric 2: Coefficient of Determination (COD).

Defined as

COD(PH) = 100

(
1− ||ĈGM(k|k − PH)− CGM(k)||22

||CGM(k)− CGM ||22

)
Similarly to FIT, COD is equal to 100% for perfect predictions, smaller than 100% and possibly

negative otherwise.

Metric 3: Pearson’s correlation coefficient ρ.

Defined as

ρ(PH) =

tmax∑
t=PH

(CGM(t)−CGM)(ĈGM(t|t−PH)−ĈGM(t|t−PH))

||CGM(t)− CGM ||2 · ||ĈGM(t|t−PH)− ĈGM(t|t−PH)||2
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with ĈGM(t|t−PH) being the sample mean of the predicted CGM.

All the metrics mentioned above are function of the prediction horizon PH. Furthermore, the

average value of each metric (FIT , COD, ρ) over the considered PH was used as the primary

outcome to evaluate the models. In addition to the performance metrics for individuals, indeces

of performance for a patient cohort are also needed. Hence, for every PH, a secondary outcome

is computed as the average value of each metric (FIT , COD, ρ) for every PH over the considered

population. For each index, the mean (± Standard Deviation (SD)) for normally distributed

data or median [25th – 75th percentiles] for the non Gaussian case have been computed over the

patient cohort as cumulative index of the entire population.

6.4 Identification Results

In order to verify the glucose prediction capabilities of the presented identification approach, an

identification process has been performed on a single in vivo patient. For this first case-study,

trials data belonging to a patient affiliated to the Amsterdam clinical centre have been used

[59]. The aim is to show the prediction capabilities of the patient-tailored model identified by

the technique described in Section 6.1.1 with respect to the average model, currently used in

the controller.

Before proceeding with the achieved results, an important remark concerns the identification

dataset. In [30], the authors have shown how much fundamental is the role of the identification

scenario for the identification of a reliable model. Unfortunately, the clinical trials have not

been conducted for collecting data for identification purpose purposes and, for this reason,

a preliminary phase consisted in finding suitable scenarios that allow to capture the correct

dynamics of the patient. The choice of the identification scenario consists of a total of 49

hour of data, selected randomly among the available ones, and containing two (not necessarily

consecutive) data sub-portions, used to estimate the parameters of the input-output relation (30

hours) and the stochastic part (19 hours). Once the identification scenario is defined, ten models

of the patient have been identified using all the possible combinations of the initializations,

θinit ∈ {θAv, θCp}, and delays, τI ∈ {0, 15, . . . , 60} as reported in Table 6.2. The identified

models are tested on two testing protocols to assess model prediction. Firstly, a short 1-day

scenario has been considered. This dataset is completely disjoint from the training-set and

manually selected by visual inspection among those free from technical issues of the AP system

including infusion set failures and possible errors on patient provided information. Then, the

entire 1-month dataset containing all data from the trial for the selected patient is considered
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without any manual ad-hoc exclusion. The obtianed results, which have been published in [61],

are particularly relevant due to the fact that the entire 1-month dataset is really challenging

because it includes all the problems experienced during the whole trial

Model
Parameters

µ0i µ0m τ

M1 µAvi µAvm 0

M2 µAvi µAvm 15

M3 µAvi µAvm 30

M4 µAvi µAvm 45

M5 µAvi µAvm 60

M6 µCpi µCpm 0

M7 µCpi µCpm 15

M8 µCpi µCpm 30

M9 µCpi µCpm 45

M10 µCpi µCpm 60

Table 6.2: List of all considered models.

The performance metrics of the identified models on both testing datasets are reported in

Tables 6.3 and 6.4, respectively. In both Tables the average value of the different metrics are

computed considering the prediction horizons (PH) varying from 1 to 12 (i.e. from 5 to 60

minutes). Moreover, the performance of the “average” in silico model (Av) is also reported for

comparison with the patient-tailored models.

It is evident that the technique is rather independent from algorithm initialization and insulin

delay estimation. The best patient-tailored model is M7 for both test-sets, it uses the clinical

patient information as initial condition and assumes the insulin delay τI = 15 minutes. M7 is

able to improve the performance metrics of the Av model of almost three times in terms of FIT

and COD (247% FIT , 245% COD) and of 22% in terms of ρ. Figure 6.3 reports the performance

metrics (FIT (a), COD (b) and ρ (c)) as a function of PH for all the considered models with the

daily testing dataset. By increasing the PH, the FIT, COD and ρ are expected to decrease. The

figure clearly shows that the performance of the individualized models decreases significantly

less than the Av model. If the entire trial is considered, the best patient-tailored model remains

M7. The improvements of M7 with respect to the Av model increase with respect to 49-hour

scenario; they are of 275% in terms of FIT , 335% in terms of COD and 27% in terms of ρ.

Figure 6.4 reports the performance metrics (FIT (a), COD (b) and ρ (c)) as a function of PH
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Model FIT [%] COD [%] ρ

M1 65.8 (± 22.6) 83.6 (± 16.2) 0.92 (± 0.08)

M2 65.9 (± 22.5) 83.8 (± 16.1) 0.92 (± 0.08)

M3 66.9 (± 21.7) 84.7 (± 15.1) 0.93 (± 0.07)

M4 65.4 (± 22.6) 83.4 (± 16.4) 0.92 (± 0.08)

M5 67.6 (± 21.0) 85.5 (± 14.3) 0.93 (± 0.07)

M6 65.6 (± 22.8) 83.4 (± 16.5) 0.92 (± 0.08)

M7 68.6 (± 20.3) 86.4 (± 13.2) 0.93 (± 0.07)

M8 65.6 (± 22.7) 83.5 (± 16.4) 0.92 (± 0.08)

M9 67.1 (± 21.4) 85.0 (± 14.7) 0.93 (± 0.07)

M10 67.0 (± 21.6) 84.9 (± 14.9) 0.93 (± 0.07)

Av 19.8 (± 34.0) 25.1 (± 52.4) 0.76 (± 0.15)

Table 6.3: Performance metrics of the identified models for patient 1 on a daily scenario.

Model FIT [%] COD [%] ρ

M1 57.7 (± 26.6) 75.6 (± 22.6) 0.88 (± 0.11)

M2 57.1 (± 27.1) 74.8 (± 23.4) 0.88 (± 0.11)

M3 58.0 (± 26.3) 76.0 (± 22.1) 0.89 (± 0.11)

M4 55.9 (± 27.6) 73.5 (± 24.4) 0.87 (± 0.12)

M5 58.3 (± 26.0) 76.4 (± 21.8) 0.89 (± 0.10)

M6 57.4 (± 26.9) 75.3 (± 23.0) 0.88 (± 0.11)

M7 59.2 (± 25.4) 77.4 (± 20.7) 0.89 (± 0.10)

M8 57.0 (± 27.1) 74.8 (± 23.4) 0.88 (± 0.11)

M9 57.9 (± 26.4) 75.9 (± 22.3) 0.88 (± 0.11)

M10 58.4 (± 26.0) 76.5 (± 21.7) 0.89 (± 0.11)

Av 15.8 (± 35.0) 17.8 (± 56.4) 0.71 (± 0.20)

Table 6.4: Performance metrics of the identified models for patient 1 on the entire trial.
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Figure 6.3: A comparison of the prediction performance of the proposed technique compared
to the “average” patient of the in silico population in term of FIT (a), COD (b) and ρ (c) on

the 49-hour scenario.

for all the considered models with the second testing scenario. The results obtained with the

first scenario are confirmed also by considering the entire trial; this result is very important

considering the large impact of the many confounding factors and technical issues that affect

the entire trial testing dataset. In general, both initializations show a good performance with

a preference for the clinical one that includes additional information about the patient; the

introduction of an a priori insulin delay τI seems to improve the prediction ability of the model,

particularly with a value of 15 minutes. The improvement of the prediction capability of the

individualized model with respect to “average” model used to synthetize this MPC algorithm
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Figure 6.4: A comparison of the prediction performance of the proposed technique compared
to the “average” patient of the in silico population in term of FIT (a), COD (b) and ρ (c) on

the entire trial.

paves the way for a new generation of individualized glucose control strategies for AP.

6.5 Individualized models of population

Given the good results obtained on a single patient, the technique has been extended to all the

7 T1D patients studied at Amsterdam clinical centre. The aim is to show the ability of the IR
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technique to adapt to different subjects, showing its effectiveness in front of inter-subject vari-

ability that is the main reason for the need of patient-tailored models. Patients inter-variability

is caused by different biological characteristics like medical history, gender, age, weight, height

and metabolism and implies that different patients have different insulin responses. Therefore,

the identification of reliable models on real data is particularly difficult. The available patient

clinical data plays a key role to identify individualized models and to deal with the patients

inter-variability. Since clinical data have been collected in free-living conditions, an additional

difficulty is to take into account that each patient can experience different problems during the

trial and different factors of uncertainty can affect their data. Some examples are the physical

exercise or differences in daily activities, human errors in patient-provided information or tech-

nical issues affecting the AP prototype adopted during the trial.

Among the possible initializations for the optimization, for the population study the initializa-

tion that uses some available clinical parameters to adapt the two gains µi and µm has been

considered in order to define the initialization vector since it showed the best performance in the

case-study presented in Section 6.4. Regarding the insulin absorption delay (τI), the parameter

has been set constant to 15 minutes on the basis of the results obtained in Section 6.4. For

each patient of the Amsterdam clinical center an individualized model has been identified by

using an identification protocol that consists of 49 hours of data picked up randomly among the

available ones. A unique testing scenario is considered, that is the entire trial. The set intervals

used for the identification have not been considered to compute the performance metrics of

these models, for this reason the performance of Patient #1 are slightly different with respect

to the ones showed in Table 6.4.

Patient FIT COD ρ

Patient #1 58.72 76.95 0.89

Patient #2 60.56 79.55 0.9

Patient #3 74.42 91.35 0.96

Patient #4 67.92 86.23 0.93

Patient #5 70.77 88.18 0.94

Patient #6 45.68 58.49 0.83

Patient #7 68.12 86.37 0.93

Population
mean (±SD)

63.74 (± 9.67) 81.02 (± 11.11) 0.91 (± 0.04)

Table 6.5: Predictive performance of patient-tailored models identified for the 7 patients. All
indices are normally distributed, so mean ± SD are reported for the entire population.
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The results reported in Table 6.5 includes the average values of the different metrics computed

by considering the prediction horizons varying from 1 to 12 (i.e. from 5 to 60 minutes). From

the results it is possible to note that the FIT computed on the entire population remains above

60% (63.74%) with a COD of 81.02%. The results are in line with those in Section 6.4. Patient

#1 is the test-case used in Section 6.4 to identify a patient-tailored model. It is worth to note

that the training set interval was so limited with respect to the entire trial that the performance

is not significantly affected by excluding it from the testing dataset: FIT passes from 59.2%

to 58.72%, COD from 77.4% to 76.65, and ρ remains constant. One patient (Patient #6)

performed worse than the others. However, considering the large changes of the patients’ habits

and the time-varying nature of the system under study, all the results seem acceptable. The

PH FIT COD ρ

1 96.83 (± 0.84) 99.91 [99.86, 99.94 ] 1 [1,1]

2 92.47 (± 1.69) 99.41 (± 0.27) 1 [1,1]

3 86.84 (±2.93) 98.19 (±0.8) 0.99 [0.99, 0.99]

4 80.34 (±4.45) 95.97 (±1.81) 0.98 (±0.01)

5 73.45 (±6.21) 92.62 (±3.45) 0.96 (±0.02)

6 66.53 (±8.14) 88.23 (±5.79) 0.94 (±0.03)

7 59.79 (±10.21) 82.94 (±8.89) 0.92 (±0.04)

8 53.35 (±12.36) 76.93 (±12.71) 0.89 (±0.06)

9 47.24 (±14.52) 70.36 (±17.18) 0.86 (±0.07)

10 41.43 (±16.63) 63.32 (±22.19) 0.83 (±0.08)

11 35.92 (±18.65) 55.96 (±27.6) 0.8 (±0.1)

12 30.72 (±20.56) 48.38 (±33.29) 0.76 (±0.11)

Table 6.6: Predictive performance of patient-tailored models identified for the entire popula-
tion across the PH. The indices normally distributed are reported in terms of mean ± SD and

the others as median [25th, 75th percentiles].

results reported in Table 7.3 show the population values of FIT , COD, and ρ, which have been

computed by considering each single prediction horizons varying over the patient cohort from 1

step, i.e. 5 minutes, to 12 steps, i.e. 60 minutes, where one hour can be considered a sufficiently

long PH with respect to glucose dynamic. The performance decreases with the increase of the

PH as expected.

The IR technique has resulted to be acceptable and suitable to identify patient-tailored models

from real-life data. This technique is rather simple, and at the same time flexible to be extended
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to be used on free-living data even though a very tough training dataset. The identified models

showed satisfactory results in prediction capabilities as shown in Table 6.5. There is only one

patient (Patient #6) whose prediction results are worse than the average results obtained on

the entire population. This can be addressed to the complex and tricky dataset, which requires

a detailed data analysis to improve model identification.





Chapter 7

Individualized models for alarm

system

One of the main concerns of glucose control is the avoidance of the hypoglycemia events. In this

perspective, in the last year several alarm systems have been studied to predict dangerous situa-

tion such as hypoglycemia and to allow the patient to prevent them. The alarm systems can be

divided in two categories on the base of the method used for the alarm generation: low-threshold

detection and prediction. Hypoglycemia alarms based on low-threshold detection alert the user

of the risk of hypoglycemia when the glucose concentration falls below a certain threshold [84].

Predictive alarms assess the risk of hypoglycemia on the basis of the estimated evolution of

glucose concentration. If the future glucose level can be predicted, the hypoglycemic event can

be avoided by taking a rescue action, i.e. suspending the insulin infusion [85–88]. The core of

an hypoglycemia predictive alarm system is the model which provides glucose predictions and

allows to forewarn the patient in case of potentially dangerous events ahead in time. Different

glucose-insulin models can be used in the alarm systems: for example, minimal, maximal or

black-box linear models. The first class is accepted both as clinical tool and as an approach

to understand the composite effects of insulin on glucose tolerance [95, 96]; the second is able

to better represent the significant inter-patient variability that characterizes T1D population,

e.g. the one included in the UVA/Padova simulator [24, 34]. The third class includes mod-

els typically identified from real-life data. Although the identification of reliable models on real

data is more difficult, an individualized model that describes the glucose-insulin dynamics of the

specific patient has better performance with respect to a population average model, as shown in

Section 6.4. In this chapter a method to use an individualized models of the patient to develope

and validate Individualised hypoglycemia Predictive Alerts (IHPAs) on a rather long period (1

month) is presented. Once again, firstly the performance of the proposed system is compared

101
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for a single case-study to the Hypoglycemia Prediction State of Art (HPSA). It is set to the

algorithm for hypoglycemia prevention [85] used in [59, 75]. Then, the technique is validated for

all the 7 patients studied at the University of Amsterdam Medical Centre and the performance

achieved are reported for each single patient and as mean of the entire cohort.

7.1 Individualised Hypoglycemia Predictive Alert (IHPA)

At time k∗, IHPA algorithm exploits the model to predict the future glycemia during a Prediction

Window (PW),i.e. from k∗+1 to k∗+PW (i.e. PH = PW ) assuming that the all future insulin

administration will be stopped, i.e. setting

i(k∗) = i(k∗ + 1) = · · · = i(k∗ + PW ) = 0

If for at least Nsamp samples, the predicted glucose values are below the threshold GIHPA
hypo in the

PW, an hypo alarm is issued. In fact, according to the model, the impending hypoglycemia

can not be avoided only by suspending insulin and, hence, the subject with T1D has to take

some rescue carbohydrates. This alarm system is designed to be used in conjunction with an

AP, where the insulin suspension is automatically performed by the system to optimize the

glucose profile. So, the main purpose of this alarm is to notify when the AP can not avoid the

hypoglycemia by itself by only stopping the insulin delivery. If data are missing in the previous

hour for more than 20 minutes, insufficient data are available for a reliable prediction and the

IHPA is preventively shut off. The parameters that characterize the algorithm have been set

to PW = 8 (i.e. 40 minutes), GIHPA
hypo = 70 mg/dl and Nsamp = 2 (i.e. 10 minutes). The

prediction capabilities of the patient-tailored models reported in Table 6.5 bodes well to build

a reliable alarm system. In Section 6.4, the individualized model of Patient #1 has showed a

significant gap in predictive performance computed on real-life data with respect to the average

model. Moreover, Table 6.6 shows that the individualized models of the entire population have

satisfactory performance in prediction, in particular considering PHs shorter than 40 minutes.

An average value of FIT and COD of 76.20 % and 91.77 % have been achieved by averaging the

FIT and COD values over the PHs from 1 (5 minutes) to 8 (40 minutes) on the all 7 patients.

All this, together with the fact that a FIT value > 50% and a COD value > 70 % have been

obtained in the 40-minute ahead prediction is expected to be good in improving the reliability

of a safety system.
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7.2 Performance Metrics for Hypoglycemia Alarms Evaluation

Before defining the performance metrics, the following definitions are introduced:

• Hypoglycemia Event (HE): it starts when the glycemia of the patient falls below the

threshold Ghypo and it ends when the glycaemia remains above the threshold for more

than trec minutes.

• True Positive (TP): when an hypoglycemia event occurred at time kh and an alarm is

activated by the algorithm in the Detection Window (DW) [kh − DWs, kh − DWe], as

shown in Figure 7.1(a). Note that the hypoglycemia event has to be notified at least DWe

minutes before its occurrence and that the alarm is considered correct if clearly related to

the event (not too far in the past too far by DWs).

• False Positive (FP): when an alarm at k∗ is activated and no hypoglycemia occurred in

the window [k∗, k∗+DWs], as shown in Figure 7.1(b). Given that the alarm has to inform

of an upcoming hypoglycemia not avoidable without the administration of carbohydrate

by the patient, an episode is not counted as a FP if a meal or an hypotreatment are

administrated in the future [k∗, k∗ + DWs]. Note also that “late” alarms, i.e. alarms

occurring after DWe are not associated to a FP event even if they do not count as TP.

• False Negative (FN): when an hypoglycemia event occurs and no alarm is issued in the

DW interval, as showed in Figure 7.1(c). The DW does not contain any alarm, in fact,

the alarm system turns on the alarm too late, just after the DW end resulting in a FN.

• True Negative (TN): when no alarm is issue and no hypoglycemia occurred in the window

[k∗, k∗ + (DWs −DWe)], as shown in Figure 7.1(d).

• Not Evaluable Hypoglycemia Event (NEHE): an hypoglycemia event occurred just after

a period characterized by too many missing data and/or system failures to consider the

data reliable. In particular, this happens if in the last DW samples there are less than

NA values. Note that if system failures occurred during the trial but CGM, insulin and

meal data are available, IHPA runs correctly while the alarms of HPSA are not available.

The parameters related to these definitions have been set trec = 20 minutes, DWs = 9 (i.e. 45

minutes), DWe = 2 (i.e. 10 minutes) and NA = 3.

The performance of the method is evaluated through the following metrics:
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• True Positive Rate (TPR), or sensitivity, and True Negative Rate (TNR), or specificity,

to measure the proportion of positives and negatives that are correctly identified, respec-

tively; these indices can be computed as follows:

TPR =
TP

TP + FN
, TNR =

TN

TN + FP

• Positive Predictive Value (PPV), or precision, and Negative Predictive Value (NPV) to

measure the proportion of positives and negatives that are correctly identified over all the

positive or negative predictions;

PPV =
TP

TP + FP
, NPV =

TN

TN + FN

• False Positive Rate (FPR) and False Negative Rate (FNR) to measure the proportion of

positives and negatives that are wrongly identified, respectively;

FPR =
FP

FP + TN
, FNR =

FN

TP + FN

• Accuracy (ACC) to measure the proportion of classifications, both positives and negatives,

that are correctly identified:

ACC =
TP + TN

TP + FP + TN + FN

• False Omission Rate (FOR) to measure the proportion of negatives wrongly predicted over

all the negatives:

FOR =
FN

TN + FN

• F1 score (F1) to measure the harmonic average of the precision and sensitivity, F1 score

reaches its best value at 1 (perfect precision and sensitivity) and worst at 0:

F1 =
2 ∗ TPR ∗ PPV
TPR+ PPV

It should be noted that, from a classification point of view, the considered dataset is strongly

unbalanced since the percent of time spent in hypoglycemia by the patient under study is only

3.07% of the total. Moreover, in the studied patients population, time spent in hypoglycemia

was 1.9% ± 1.1% (mean ± SD) [59]. This poses well known problems when interpreting of the

metrics reported above. In fact, in this condition TN is very large with any reasonable alarm

system, and it saturates the metrics influenced by this quantity, e.g. TNR will be close to 100%,
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Parameter HPSA IHPA

TP 26 34

FN 6 2

NEHE 4 0

FP 23 10

TN 6856 7050

Total 6915 7096

Table 7.1: Comparison between HPSA and IHPA on a single patient (Patient #1).

making these metrics less informative than in the case of balanced datasets. For instance, in

an unbalanced dataset any degenerate alarm/classification algorithm that detects always the

most common class (not hypoglycemia in our case) scores a very high accuracy. In view of

this, the results are focused on sensitivity and precision, not depending on TN, even if all the

performance metrics reported before are computed for completeness.

7.3 Evaluation of IHPA algorithm

A preliminary study and evaluation of the algorithm has been conducted on a single patient

(Patient #1). The performance metrics of the alarm sytem are evaluated on the entire trial

where 36 hypoglycemia events were found. The number of TP, FN, FP and TN detected for each

algorithm are reported in Table 7.1. HPSA algorithm was not evaluated for 4 events because

the system was off when the hypoglycemia occurred during the trial. In 3 of these cases, IHPA is

able to detect correctly the event. IHPA is able to increase the number of TP of 30.77% respect

to HPSA, decreasing at the same time the FN of 66.67% and the FP of 56.52%. The prediction

performance achieved by HPSA and IHPA have been computed as described in Section 7.2 and

reported in Table 7.2. The new methodology is able to improve all the considered metrics: the

sensitivity (TPR) of the predictor by 16.23% and the precision (PPV) by 45.63%; the FPR by

58.96%, the FNR by 70.37% and the F1 by 32.40%. Regarding the performance metrics affected

by the unbalanced nature of the dataset, the specificity (TNR) decreases by 3.01%, the accuracy

(ACC) improves by 0.26%, the NPV by 0.06%, and FOR by 68.58%. The improvements are

limited where HPSA had already good performance, while the new methodology is able to

optimize the other characteristics. For example, the sensitivity of the alarm system IHPA

ensures to predict an unavoidable hypoglycemia in 94.44% of the cases, giving the possibility to

the patient to implement recovery treatments on time. It is worthy to note that IHPA system
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Performance
index

HPSA IHPA

TPR 81.25 % 94.44 %

PPV 53.06% 77.27 %

FPR 18.75 % 5.56 %

FNR 0.33 % 0.14 %

F1 0.64 0.85

TNR 95.92 % 93.03 %

NPV 99.91 % 99.97 %

ACC 99.58 % 99.84 %

FOR 0.09 % 0.03 %

Table 7.2: Performance index comparison between HPSA and IHPA on a single patient (Pa-
tient #1).

is designed to detect unavoidable hypoglycemia events, so part of the undetected 5.56% could

be relative to avoidable hypoglycemia events for which the pump had not been shut off during

the trial. Moreover, this was a retrospective study, not designed ad hoc for this purpose, where

the hypotreatment was driven by HPSA alarm. For this reason, FPs of HPSA could be hidden

by not necessary hypotreatment delivered only because of the presence of the alarm. In spite

of this favorable limitation for HPSA, IHPA is able to improve its performance. This alarm

system has shown significant improvements in hypoglycaemia detection in comparison with the

safety system used in the trial: the case-study conducted on Patient #1 has been published in

[62].

7.4 Results on the patient cohort

The good results on a single patient obtained by considering the entire month, where the patient

habits have widely changed, have represented a starting point for the validation of the IHPA on

the entire cohort of the patient of the Amsterdam Medical Centre. The patients experienced

about 20 HE on average. The performance indices of IHPAs on each patient and on the entire

the population are reported in Table 6.6. In case of an unbalanced dataset, the specificity

could provide false assumptions on the algorithm. Hence it is better to rely on sensitivity and

precision. The results include the sensitivity (TPR) of the predictor of 84.67%: since sensitivity

measures the accuracy of positive cases, an high value of TPR means that this algorithm is



108 Chapter 7. Individualized models for alarm system

able to forecast correctly the hypoglycemic events with great accuracy. Moreover, precision

(PPV) of 41.41% has been obtained. Precision on the other hand is a measure of a model’s

exactness, thus higher precision value for this algorithm is an indication of a good prediction

capabilities. Simultaneously, the IHPA has shown FPR of 0.328% and FNR of 15.33% and F1

reaches 52.82% on average for all 7 patients. Regarding the performance metrics affected by

the unbalanced nature of the dataset, the specificity (TNR), accuracy (ACC), NPV (all > 96%)

and FOR (< 0.042%) indicate alarms activated mostly when needed. The IPHAs based on

patient-tailored models showed a sensitivity (TPR) of 84.67% with FPR of 0.328% on the entire

cohort of patients: on average about 85% of the hypoglycemia events occurred during the trial

have been detected in time to allow a rescue action with a negligible (< 0.4%) number of false

alarms. Since the results obtained on the entire population have confirmed the validity and the

reliabilty of the proposed hypoglycemia detection algorithm, this approach has been published

in [97].
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Chapter 8

Individualized model for controller

Currently, the model included in the MPC is the average linear time-invariant metabolic model,

which is computed by linearizing the model of the average adult virtual patient of the UVA/-

Padova simulator. The performance of the controller can probably be improved by synthesizing

the controller on an individualized model. Since promising results have been obtained in the

identification of patient-tailored models from clinical data as reported in Chapter 6, the appli-

cation of these techniques has been extended to adapt the patient-tailored model to the patient

changes over time. In order to capture the variations in patient’s dynamics, an in-depth anal-

ysis of the data can be used to extract hidden information from the dataset useful to improve

model identification and understand better the time changes. An ANOVA analysis has been

performed on the real-life data, and it has shown that there is a significant dependence between

different day periods and the glucose profile, i.e. different glucose dynamics are present during

the day. The results of the ANOVA tests have been exploited to build a multi-model able to

captures different PP glucose dynamics along the day using different models in each sub-period.

In particular, a data-driven Multiple-Model Predictor (MMP) based on real-data analysis is

proposed and analyzed in this chapter in terms of predictive performance. With data-driven

MMP we indicate a predictor that exploits different identified models on the basis of the a priori

knowledge acquired through the analysis of real patient. The MMP uses three Basic Models

(BMs) defined on the basis of the data analysis: each one is specific of a Day Period (DP).

The DPs considered in this work are breakfast (B), lunch (L) and dinner (D). The use of the

DPs is strictly dependent from the results obtained via the statistical analysis that correlates

them to the PP glucose dynamics. This correlation could be not universally verified since it is

a characteristic typical of the dataset. However, this approach allows to exploit correlation to

other meal parameters to build the MMP. The statistical analysis is here performed on patient

data collected during clinical trials described in Section 6.2.1. The main focus of the analysis

111
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is the PP glucose control, which is typically one of the most problematic aspects of glucose

regulation. From the collected dataset a correlation between PP glucose profiles and different

daytimes was observed. This feature is confmed by the presence of the intra-day variability, a

phenomenon well-known in the literature [18], which results in different responses to meals and

insulin during the day. The presented data analysis is focused on the PP glucose dynamics with

the aim of proving the existence of a statistical correlation between them and the DPs they

belong to.

8.1 Data Analysis

The availability of long term trials in CL [59, 75, 98] allows the collection of datasets rich of

information potentially useful to improve model identification. A deep analysis of this large

amount of data can lead to understand the correlation between some known parameters and

the meal response, if it exists. In Chapter 4 this kind of analysis was carried out on in silico

data. The relation between the two main PP variables that describe the meal response, the am-

plitude of the excursion and the shape of the glucose profile, and several parameters available

at meal time such as BG, Carbohydrate intake (CHO), DP, etc. was considered. An interesting

result obtained in silico was the correlation between the DP and the shape of the meal response,

also justified by the well-known intra-day variability of PP glucose dynamics. In this work the

influence of this feature on the characteristics of the meal glucose response is studied for all the

patients belonging to the three centres involved in the trial presented in [59].

In order to study this correlation, the meal glucose response characteristics have to be formally

defined. A meal intake induces a rise in BG concentration, while an insulin bolus results in a

decrease in glucose level. The rise in BG concentration due to the absorption of carbohydrate

may be immediate or delayed with respect to the mealtime depending on the meal composition

and other factors [99]. On the other hand, it is well-known from physiology that the insulin

response is also affected by absorption delays. Thus, the magnitude variation in glucose con-

centration and the time interval amplitudes mainly depict the PP glucose response as shown

in Figure 8.1. The magnitude variations with respect to the glycemia value at mealtime are

positive or negative if they are due to meal or insulin response, respectively. The time interval

amplitudes are greater or equal to zero depending on the absorption delays.

The parameters characterizing the PP curve considered in this thesis are shown in Figure 8.1

where:
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Meal

Figure 8.1: An example of glucose trend with the indicators ∆Gu,∆tu (in blue) and ∆Go,∆to
(in red).

Indicators Description

∆Gu Gm −Gmin

∆Go Gmax −Gm

∆tu tmin − tm

∆to tmax − tmin

Table 8.1: The fours indicators of the glucose trend with relative definitions.

• Gmin is the minimum glucose below Gm reached before the glucose starts rising due to

the meal intake

• Gmax is the maximum value of PP glucose concentration

• tmin and tmax are the time instants when Gmin and Gmax values are reached, respectively

with Gm, the glucose at meal time, tm. If the glucose starts rising immediately after the meal

intake, Gmin and tmin are set equal to Gm and tm, respectively. Denote with ∆Gu the amplitude

of the maximum negative BG variation between Gm and Gmin and ∆Go the amplitude of the

positive BG variation between Gm and Gmax. Furthermore, define ∆tu as the time interval

between tmin and tm and ∆to as the time interval between tmax and tmin. All these parameters

are computed on a PP period of 7 hours [100]. Table 8.1 summarizes the definitions of the fours

indicators of the glucose trend. In order to study the relation between DP and these charac-

teristics, the DPs have to be defined. The idea is to take into account the intra-day variability
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of PP glucose dynamics to enhance the predictive capabilities of the patient model. In this

prospective, the DPs have been defined on the base of well-known clinical parameters individ-

ualized for each subject. In fact, information about the intra-day variability for each diabetic

patient can be extracted by the open-loop CT. The computation of the insulin bolus involves

CR that is time-varying along the day. CR is influenced by the patient insulin sensitivity strictly

connected to the intra-day patient variability, as well as the basal insulin. Thus, the information

needed to define the day periods can be extracted by the time intervals used to set the CR or

the ones used for the basal; since each patient has his/her own daily pattern, this information is

already individualized. Three different ways to define the DPs have been explored: one based

on the basal intervals (DPb), another based on the CR intervals (DPC) and, as standard, one

derived from the common three daily meals (DPS , with tB=5:00, tL=12:00 and tD=19:00).

This decision is due to the awareness that these parameters contain specific information about

the intra-day variability, but which one is the most accurate is not known a priori. Each meal

is assigned to a specific DP [tstart, tend] on the base of tm, i.e. if tm ∈ [tstart, tend − 30]. If tm is

close to a switch time (less than 30 minutes), the meal is assigned to the next DP.

Once the indicators ∆Go, ∆Gu, ∆to, ∆tu and the input feature DPb, DPC , DPS have been

defined, an ANOVA test is performed for every patient of the dataset to determine if a statistical

correlation exists, where a statistical correlation is significant at the level 0.05. This test allows

also to chose the proper DP definition for each patient. We define that PP glucose profile is

statistically correlated with DP if at least 3 indicators are dependent from DP.

Since a clinical trial under free-living condition means that the patient has a normal life without

any type of restriction. The original data need to undergo preprocessing before the analysis.

For example, PP glucose dynamics belonging to different meals closed to each other are usually

overlapped. In order to cope with this problem, the concept of cumulative meal is introduced.

Since the glucose dynamics are slow, two meals consumed in a small time interval (<40 minutes)

do not produce distinct PP glycemic response (peaks 15 minutes apart). So, the indicators of

each single meal defined in Section 8.1, can not be correctly computed. A cumulative meal,

having the carbohydrate amount equal to the sum of the two individual meals, is considered

as a single meal consumed at time of the first meal and associated to the overall PP glucose

profile. The drawback of this approach is related to the combination of meals belonging to

different groups of indicators.

Since the datasets of some patients were characterized by many inaccuracies, which alter the

reliability of the data, thirteen patients of the total cohort [59] are considered. The selection of

these patients is based on the accurate graphical analysis of the individual glucose profile of each

patient, also used to deduct the eating habits. In particular, the preprocessing step reduced the

total amount of meals available from the trial by 11%. For each patient 116.38 (±38.46) meals
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Patients
Indicators

∆tu ∆to ∆Gu ∆Go

Patient #1 S, C,B

Patient #2 S S, B S, B S, B

Patient #3 S S, B S, C,B S, B

Patient #4

Patient #5 B

Patient #6 B B B, C

Patient #7 S, C,B S, C,B S, C,B

Patient #8 S S S, B

Patient #9 S, C,B S S

Patient #10 B, C B, S B, C B, S, C

Patient #11 S S

Patient #12 C

Patient #13 S S S S

Table 8.2: Results obtained via ANOVA test. The presence of a letter indicates a statistical
correlation between DP and the specific indicator. The letters indicate the DP definitions
(B = DPb, C = DPCR, S = DPS) that satisfy this correlation. The strongest correlation is

highlighted in bold.

were included in the dataset (total considered meals, M=2095). The patients with a dataset

size below mean-SD (78 meals) were excluded from the statistical correlation analysis in the

following section. Five patients did not respect this criteria, so they were totally discharged.

The remaining patients did not show imbalance between the considered DPs.

8.1.1 Statistical correlation analysis

The aim of this section is to establish the existence of a statistical correlation between PP

glucose profile, depicted by four indicators (∆Gu,∆Go,∆to,∆tu) presented in Section 8.1, and

DPs. This goal is achieved through an ANOVA analysis performed independently for each of

the 13 considered patients: Table 8.2 shows the results of ANOVA test, where the presence of

a letter indicates a statistical correlation between DP and the specific indicator. In particular,

for a given patient, it indicates that the correspondent indicator of PP glucose dynamics in a

particular DP is different with respect to the same indicator in at least another DP. The letter

in Table 8.2 specifies which DP definition satisfies the dependence; in particular, the primary
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correlation is reported in each cell in bold with the other secondary ones in normal style.

Eight patients out of 13 have at least 3 indicators significantly dependent from DP; in particular,

Patients #2 and #4 have all the indicators dependent from DPS , that means the meals belong-

ing to different DPs have PP glucose profiles completely different in terms of all the selected

characteristics (∆Go, ∆Gu, ∆to, ∆tu). Also Patient #6 shows 3 indicators dependent from

DPB. Patient #1 is the test-case used in Section 6.5 to identify a patient-tailored model. The

ANOVA test confirms that for this patients the PP glucose profile is not dependent from the

DPs, so the use of the Multiple-Model (MM) approach is not expected to improve the prediction

capability for this subject. Patient #13 has all the indicators dependent from DPS , while Pa-

tient #10 from DPb. For Patient #7, all the DP definitions resulted to be significant correlated

to 3 indicators: ∆Gu, ∆to, ∆tu. Since, both his/her CR and basal contains 5 intervals, DPS as

been selected as primary definition for this patient. The other patients do not show relations so

significant to any DPs. The detailed results of ANOVA for Patient #7 are reported in Figure

8.2. The DPs selected for this patient are: breakfast DP (B, in red) [5:00-12:00], lunch DP

(L, in blue) [12:00-19:00] and dinner DP (D, in green) [19:00-5:00]. In Figure 8.2, for each DP

the mean of the specific indicator with the range of variation in terms of SD is reported. For

example, the ∆tu has a mean of 14 minutes for the breakfasts, of 40 minutes for the lunches

and of 78 minutes for the dinners. On the other hand, the ∆Gu has a mean of 3 mg/dl for the

breakfasts, of 19 mg/dl for the lunches and of 40 mg/dl for the dinners. These results denote

a PP glucose response characterized by a small undershoot limited in time for the breakfasts,

while a large and long undershoot for the dinners. The lunches have average characteristics

of the other two that sometimes overlap one or the other category. Figure 8.3 represents an

example of a day profile where these characteristics are clearly shown: the first two meals that

belong to the breakfast DP are characterized by a ∆tu = 0, while the last meal belonging to

the dinner DP has significant ∆tu.

8.2 Multiple-Model Predictor

The identification of a patient-tailored model is one of the most challenging aspects of glucose

regulation. Given the high inter-patient variability that characterizes the system, the availabil-

ity of a specific model for each patient represents an improvement in terms of glucose control

and hypoglycemia prevention. However, considering the intra-day variability that characterizes

the diabetic patients, a linear time-invariant model is intrinsically limited. In particular, consid-

ering the high correlation between PP glucose response and DP demonstrated in Section 8.1.1,

the representation of different dynamics with a time-invariant model limits the model prediction
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Figure 8.2: Boxplots associated to ANOVA test of each indicator in the three selected DPs:
breakfast (B), lunch (L) and dinner (D).

Figure 8.3: Glucose trend of Patient #7.



118 Chapter 8. Individualized model for controller

performance. In order to keep the model simple enough to guarantee the implementation of

a linear MPC based on this model on a smartphone, a Multiple-Model Predictor (MMP) is

proposed to cope with the intra-day variability of the system. For each DP defined as reported

in Section 8.1 a linear time-invariant Basic Model (BM) is identified via the IR identification

approach presented in Section 6.1.1. The ANOVA tests have shown that Patient #7 has a very

large values of ∆to as shown Figure 8.2. The ∆tu has a mean of 81 minutes for the breakfasts, of

127 minutes for the lunches and of 148 minutes for the dinners. A large ∆to implies that there

is a significant delay in the rise of glucose levels after the meal. In order to take into account

this delay, the delay of meal absorption (τM ) has been introduced in the IR technique. In each

DP, the prediction is performed with the specific model identified for that DP. The BM models

will be referred in the following as BM Breakfast (BMB), BM Lunch (BML) and BM Dinner

(BMD).

Each BM has two measurable inputs, the injected insulin, i(k), and the carbohydrates con-

tent, m(k) and one output, the glucose concentration measured by the CGM sensor, CGM(k),

collected every Ts minutes. The model has the following structure:

CGMp(z) = Gpi (z)I
p(z) +Gpm(z)Mp(z) + E(z) (8.1)

where Ip(z), Mp(z) and CGMp(z) denote the Z-transforms of inputs and output in a particular

DP, p, Gpi (z) and Gpm(z) are transfer functions to be estimated from the data collected in p and

E(z) is the Z-transform of the residual error e(k). Once a model for each DP is identified, the

predictor is designed in the following form:


xB(k + 1) = ABxB(k) +BBu(k) +KBe(k)

xL(k + 1) = ALxL(k) +BLu(k) +KLe(k)

xD(k + 1) = ADxD(k) +BDu(k) +KDe(k)

y(k) = αCBxB(k) + βCLxL(k) + γCDxD(k) + e(k)

(8.2)

where xB, xL, xD ∈ <n, with n = 12, are the space vectors of the BMB, BML and BMD

respectively, and {AB, BB, CB,KB}, {AL, BL, CL,KL} and {AD, BD, CD,KD} are their min-

imal state-space realization, and u(k) = [i(k),m(k)]′ is the input vector. The parameters

α, β, γ ∈ {0, 1} determine the switch between the three models that remain always active:

α = 1 if k ∈ B, β = 1 if k ∈ L, γ = 1 if k ∈ D and α, β, γ are set to 0 otherwise.

In order to evaluate the improvement of the new approach, a model identified on a daily subset,

called Daily Model (DM), using the standard procedure described in Section 6.1.1 is considered.

The performance of MMP is here compared to the one achieved by DM Predictor (DMP), a

predictor based on DM for a test-case study. The selected patient is Patient #7 since from the
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data analysis he resulted particularly suitable for the MMP approach as reported in Section

8.1.1.

For each model, two datasets were selected: an identification dataset of variable length depend-

ing on the type of model (DM, BMB, BML or BMD) and a testing dataset, including the entire

1-month dataset from the trial. The identification dataset consists of three different disjoint

subsets of data: two are used to compute an average SSR as shown in Eq. 6.3, in order to avoid

overfitting, while the third is used to estimate the stochastic part of the model. The first two

subsets are specific of the type of model to identify and in the following they will be referred

as training-set A and training-set B. The third subset is common to all types of models and

includes 24 hours of data; it will be referred as test-set.

For DM two 24-hour subsets have been selected as training-set A and B. For each BM model,

a different sub-portion of these subsets have been selected: for BMB two segments of 5 hours

starting from 5:00; for BML two portions of 6 hours starting from 12:00 and for BMD two

segments of 7 hours starting from 19:00.

8.3 Identification results

All type of models (DM and BMs) using all the possible combination of the initialisations,

θinit ∈ {θAv, θCp}, and delays, τI ∈ {0, 15, . . . , 60} and τM ∈ {0, 15, . . . , 75} have been identified.

DMP with the best performance uses a DM with τI = 45 minutes, τM = 60 minutes and the

clinical initialization of the gains, while MMP uses a BMB with τI = 60 minutes, τM = 15

minutes and the average initialization of the gains, a BML with τI = 45 minutes, τM = 45

minutes identified on the dinner subset with the clinical initialization of the gains, and a BMD

with τI = 15 minutes, τM = 75 minutes and the average initialization of the gains. It is

important to note that for MMP, the best BMs resulted to have τM equal to the average

indicator ∆tu for the specific DP. In fact, as reported in Section 8.1.1, the ∆tu has a mean of

14 minutes for the breakfasts, of 40 minutes for the lunches and of 78 minutes for the dinners.

So, the models with τM set to 15 minutes for BMB, to 45 minutes for BML and to 75 minutes

for BMD obtained the best results. From the ANOVA analysis, the lunches resulted not to be

clearly distinguishable from the other two meals. This is the only case where the model with

the best performance in a DP resulted to be the one identified using data belonging to another

DP.

In Table 8.3 the metrics of these DMP and MMP achieved on the test-set are reported. MMP

obtained a limited improvement of the prediction performance in terms of FIT (3.87%), in
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Predictor FIT [%] COD [%] ρ

DMP 61.44 80.78 0.89

MMP 63.82 83.15 0.91

Table 8.3: Prediction metrices.

Predictor FIT [%] COD [%] ρ

DMP Breakfast 42.81 58.27 0.75

MMP Breakfast 50.82b 69.67b 0.84a

DMP Lunch 66.5 85.32 0.92

MMP Lunch 67.32 86.06 0.93

DMP Dinner 63.1 82.19 0.9

MMP Dinner 63.19 82.19 0.91

Table 8.4: Prediction metrics in each DP. p-value (p) significance levels are: a := p <
0.001, b := p < 0.01, c := p < 0.05.

terms of COD (2.93%) and in terms of ρ (2.25%). In order to better understand the nature

of these limited improvements, a individual analysis has been conducted for each single DP. In

Table 8.4 the performance achieved on the day period B, L and D is reported. The meals that

presented problematic characteristics as discussed in Section 8.1 have not been considered in

this analysis; in particular, 6 breakfasts, 2 lunches and 7 dinners have been excluded. MMP

presents similar performance for lunches and dinners (differences not statistically significant),

but it is able to improve the prediction performance during the breakfast by 18.72% in terms of

FIT , by 19.56% in terms of COD and by 11.39% in terms of ρ. All these results are statistically

significant and confms the existence of different dynamics characterizing different categories of

meals.

It is worthy to note that the parameters α, β, γ cause a sudden switch between a model to

another. In Figure 8.4 the predicted glucose profiles obtained by MMP and DMP with PH=12

(60 minutes) are compared with the real glucose. The profile is related to a single day, where the

different dynamics characterizing B with respect to L and D are well represented. In particular,

the DMP is not able to predict the fast dynamic of B (DMP 38.81% vs MMP 65.51% in terms

of FIT) since L and D requed slower dynamics. This aspect is not highlighted in Table 8.3

due to reduced number of breakfasts with respect to the total of lunches and dinners. The

sudden switch between the models is not particularly critical as shown in Figure 8.4. However,

the design of MPC for switching dynamics is not trivial, even if with limited switching time
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as proposed here (three per day) the critical points are restrained. However, even if only one

patient is considered, since the strength of the results obtained is enforced by the large changes

of the patient habits and the time-varying nature of the system under study, the MMP approach

has been published in [101].



Chapter 9

Deep Learning for glycemia

forecasting

The MPC approach described in Section 5.2 exploits a glucose-insulin model to forecast the

BG values in order to compute the optimal insulin therapy. For this reason, the predictive

performance of the model plays a key role in the overall control performance as already reported

in the previous chapters. Classical mathematical model used in the AP research field are not able

to fully describe the nonlinear glucose-insulin dynamics. In order to overcome this limitation,

the complexity of the model has to be increased and new effective identification techniques

are required. Data-driven approaches based on deep learning architecture have received an

increasing attention in the last few years mainly because of the remarkable performance obtained

in several research fields [102, 103]. Depending on the task at hand (i.e., classification, regression,

prediction, etc.) the aim of these approaches is to learn a model directly from the data. Since a

huge amount of data collected during long-period trials is available, new data-driven approaches

have been explored in this research field. Among these approaches, recurrent neural networks

represent a family of deep learning architectures which have been explicitly designed to model

the evolution over time of a phenomenon. In particular, given an input composed of a sequence

of observations from a signal, such as the BG level in our scenario, these models try to predict

its future value or values. Thus, the development of a new forecasting model able to predict

the future BG of a patient subject to several possible insulin treatments is explored in order to

define his/her optimal future insulin therapy. In particular, the final purpose of this research

is to have a model to be included in the MPC described in Section 5.2. In this perspective,

a deep learning architecture able to forecast the BG level of T1D patients is studied. The

model architecture is composed of two models, one observing the CGM measurements, insulin

injections and carbohydrate intakes up to a given time and a second model that receives as input

123



124 Chapter 9. LSTM for forecasting glucose levels

the future insulin that will be administered to the patient and the future carbohydrates that

he/she will assume. Both models are composed of stacked Long-Short Term Memory (LSTM)

networks [104]. The output of the two models is combined and given as input to a Fully

Connected (FC) layer which is used to predict the future values of the Interstitial Glucose (IG),

considering a fixed prediction horizon. Training is performed in a supervised fashion on a subset

of identities, separated from those that will be considered as test, in order to obtain a model

which is able to generalize to new unseen data.

9.1 Solutions based on Neural Networks

The first solution exploiting neural networks for modeling the BG metabolism of a T1D patient

was proposed in [105]. In particular, the authors tried to predict the glucose level of a diabetic

patient by training a Recurrent Neural Network (RNN) architecture which receives insulin

levels, meals and level of exercise as inputs, alongside current and previous estimates of BG.

However, the data used for both train and test was acquired from a single patient and this may

result in a lack of generalization for the final model. Recently, a few solutions exploiting deep

learning techniques for glucose level prediction in diabetic patients have been proposed [106–

110]. Similarly to [105], Allam et. al. [106] proposed the use of CGM signals to train a RNN for

predicting future values of the glucose concentration, considering several PHs. Again, the data

used for both train and test were selected from the same population, which may result in a model

that hardly generalize to new unseen data. LSTM networks achieve state-of-the-art performance

in modeling several time-dependent phenomena. For this reason, the authors of [107] proposed

to exploit LSTM in a model which takes CGM values, insulin dosages and carbohydrate intake

as inputs and tries to predict the glucose level at PHs of 30 and 60 minutes. Data incoming

from four patients acquired using different CGM devices has been used in both train and test.

Unfortunately, the training needed to be repeated multiple times, mainly because of initialization

issues which left the optimization stuck in a bad local optima. An LSTM-based architecture has

also been exploited in [108]. In this case, the model is trained on the measurements provided

by CGM systems, and used to predict a singular value after a pre-defined prediction horizon.

The output is modeled as a univariate Gaussian distribution, so as to be able to follow the

uncertainty of the prediction. The LSTM dimension was set to 128 and it was trained on the

Ohio T1DM Dataset [111], considering the first 80% of the glucose level as training data for

each patient, and validating on the last 20%. A more complex architecture was designed by Sun

et. al. [109]. In particular, they proposed to use a sequential model with one LSTM layer, one

bidirectional LSTM layer and several fully connected layers to predict BG levels for different
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PHs. The model was trained on the CGM measurements of both in silico and in vivo data

coming from 20 real patients. Convolutional RNNs have also been exploited to predict the

BG level [110]. The concatenated time series of glucose level, carbohydrate and insulin has

been firstly preprocessed by a deep convolutional networks, so that the recurrent LSTM layers

accepts these features instead of the CGM measurements directly. The model has been trained

on in silico data consisting on a small sample of 10 adult T1D subjects simulated using the

UVA/Padova simulator.

9.2 Long-Short Term Memory Architecture

Glucose concentration depends mainly on the injected insulin and carbohydrate intake, which

have opposite effects on glucose levels, and its future evolution is also influenced by its current

value and trend. All these variables can be easily measured without an invasive data collection.

For these reasons, the inputs of the proposed model will be composed by these three measurable

signals sampled at a given rate Ts: the injected insulin (i(t)) recorded by subcutaneous insulin

pump, the carbohydrate amount (m(t)) inserted manually by the patient, and the glucose con-

centration (CGM(t)) measured by the CGM sensor. The output of the model is the interstitial

fluid glucose concentration (ig(t)). The signal CGM(t) is the interstitial (i.e. subcutaneous)

glucose concentration measured by a CGM device and affected by measurement noise, while

ig(t) is the real interstitial glucose. The available measures are related to the CGM, while the

variable of interest is the IG. All these signals have different ranges of values according to the

units adopted by the UVA/Padova simulator: injected insulin doses [pmol/min] and carbohy-

drate [mg] amounts are about 100 times larger than the glucose measurements [mg/dl] in this

dataset. In order to eliminate the units of measurements for data and to guarantee that all

features contribute equally in the training process, a data preprocessing step is introduced. In

particular, each signal is independently rescaled using the minimum and maximum values and

then subdivided in intervals of fixed size, depending on the PH in analysis. These sub-samples

constitute the training and testing data for our model, as detailed in Section 9.3. Denoting

the current time with t0 and given PH ∈ PH, where PH = [5, 10, · · · , 60] is the set of the

considered PHs as described in Section 6.3, let’s define the following signals:
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←−−−−
CGM(t0,PH) =

[
CGM(t0 − PH), CGM(t0 − PH +1), · · · , CGM(t0 − 1)

]
,

←−
i (t0,PH) =

[
i(t0 − PH), i(t0 − PH +1), · · · , i(t0 − 1)

]
,

←−m(t0,PH) =
[
m(t0 − PH),m(t0 − PH +1), · · · ,m(t0 − 1)

]
,

−→
i (t0,PH) =

[
i(t0), i(t0 + 1), · · · , i(t0 + PH−1)

]
,

−→m(t0,PH) =
[
m(t0),m(t0 + 1), · · · ,m(t0 + PH−1)

]
,

îg(t0,PH) =
[
îg(t0), îg(t0 + 1), · · · , îg(t0 + PH−1)

]
(9.1)

where
←−−−−
CGM(t0,PH),

←−
i (t0,PH), and ←−m(t0,PH) are the CGM data, the delivered insulin and

the ingested carbohydrates in the past PH minutes, respectively, while
−→
i (t0,PH), −→m(t0,PH)

are the suggested amount of insulin and the meal information in the future PH minutes. For

each PH a single model is identified as described in Section 9.2.1. The aim of each model is to

depict the relation between ig in the future PH minutes
(
îg(t0), îg(t0 + 1), · · · , îg(t0 + PH−1)

)
,

collected in the vector îg, and the above mentioned signals. In particular, each single îg value

can be described as:

îg(t0 + k,PH) = g
(←−−−−
CGM(t0,PH),

←−
i (t0,PH),←−m(t0,PH),

−→
i (t0,PH),−→m(t0,PH)

)
(9.2)

with k = 0, 1, 2, · · · ,PH−1. In the perspective of employing our solution in an MPC and in

order to be able to accurately predict a glucose trend, an ensemble of these models can be

trained, independently for each PH, and the predictions from these models can be combined to

obtain a trend of future glucose concentration as follows:

îg (t0) = [îg(t0, 5), îg(t0 + 1, 5), · · · , îg(t0 + 4, 5),

îg(t0 + 5, 10), îg(t0 + 6, 10), · · · , îg(t0 + 9, 10),

...

îg(t0 + 54, 60), îg(t0 + 55, 60), · · · , îg(t0 + 59, 60)].

(9.3)

9.2.1 Proposed Architecture

A simple model based on stacked Long Short-Term Memory (LSTM) cells [104, 112] has been

chosen. LSTMs are a special kind of RNNs, which are able to learn how to filter (e.g. forget)

part of their hidden state during the inference process in order to model long-term temporal

dependencies.
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Figure 9.1: (a) The basic structure of an LSTM cell. For each arrow pointing to a circle, an
addition is performed. Dots represent vector/matrix multiplications. (b) Temporal unfolding

and data flow on n stacked LSTM cells.

Formally, a single LSTM cell with input x(t), output h(t) and an internal cell state c(t) is

described by the following equations, also represented in graphical form in Figure 9.1(a):

cin(t) = tanh(Wxcx(t) + Whch(t− 1) + bc)

iin(t) = sigmoid(Wxix(t) + Whih(t− 1) + bi)

f(t) = sigmoid(Wxfx(t) + Whfh(t− 1) + bf )

o(t) = sigmoid(Wxox(t) + Whoh(t− 1) + bo)

c(t) = f(t)c(t− 1) + iin(t)cin(t)

h(t) = o(t) tanh c(t)

(9.4)

where each weight matrix Wx, Wh ∈ Rd×d and b, x(t), h(t), cin(t), iin(t), f(t), o(t), c(t) ∈ Rd

while d represent the LSTM dimension, an hyperparameter defined upfront by design and

constant among all cells. Respectively, iin(t), f(t),o(t) are called the input, forget and output

gates, while cin(t) contains a vector of new candidate values for the cell state. During temporal

unfolding, both h(t) and c(t) are passed to the temporal replica of the next cell in the fold.

Models made of multiple, stacked LSTM cells can be easily conceived, by making the output of

a given cell the input of the next one in the stack. The process of training through unfolding

n-stacked LSTM cells is illustrated in Figure 9.1(b). Multiple models have been trained, one

for each PH ∈ PH. Depending on PH, the whole signal is sampled as described in Eq. 9.1 and

each sub-sample is split into two arrays
←−
X and

−→
X, the former representing past information

given to the model, the latter representing the suggested therapy and meals for the future:
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Figure 9.2: Deep Glucose Forecasting (DGF) architecture. The input is split into two sets:
past observations and estimated future inputs. Both branches are processed by n-stacked LSTM
cells with dimension d. The output of the branches is concatenated into a final Fully Connected

(FC) layer.

←−
X(t0,PH) =


←−−−−
CGM(t0,PH)
←−
i (t0,PH)

←−m(t0,PH)

 , −→
X(t0,PH) =

 −→i (t0,PH)

−→m(t0,PH)

 (9.5)

←−
X and

−→
X are separately processed through two identical branches of the architecture, each

being a stack of n LSTM cells. The output of both branches is then concatenated and processed

through a final fully connected layer that produces the intended output. Since the main goal of

this work is to predict the future BG of a patient subject to different insulin therapy in order to

define the optimal treatment, the second branch containing the suggested future therapy cannot

be excluded. As the model aims to forecast the IG signals, the supervised architecture assumes

to have access to the IG signal during training in order to use them as ground truth. More

formally, leaving out the flowing of the internal cell states, the model is described by:

←−
h 1(t0,PH) = LSTM1(

←−
X(t0,PH))

−→
h 1(t0,PH) = LSTM1(

−→
X(t0,PH))

←−
h 2(t0,PH) = LSTM2(

←−
h 1(t0,PH))

−→
h 2(t0,PH) = LSTM2(

−→
h 1(t0,PH))

...
...

←−
h n(t0,PH) = LSTMn(

←−
h n−1(t0,PH))

−→
h n(t0,PH) = LSTMn(

−→
h n−1(t0,PH))

(9.6)

îg(t0,PH) = WFC [
←−
h n(t0,PH)

−→
h n(t0,PH)] + bFC

where WFC ∈ Rd×ph, bFC ∈ Rph and LSTMn represents the n-th LSTM layer in the stack and

it is described by Eq. 9.4.
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The training process uses a Mean Squared Error loss function (MSE) with a default Adam

optimizer (learning rate 10−3, batch size of 200, 180 epochs), so that for each sample:

MSE :=
1

PH

t0+PH∑
t=t0

(îg(t,PH)− ig(t,PH))2. (9.7)

The complete solution is shown in Figure 9.2 and from now on the reader will refer to it as

therapy-driven Deep Glucose Forecasting (DGF).

9.3 Dataset

The in silico dataset has been generated using the UVA/Padova simulator [24, 27] in its most

recent version where the circadian variability of insulin sensitivity and meal absorption param-

eters have been [25, 28, 29], as described in Chapter 3. Two different scenarios are designed in

order to to simulate the realistic intra-subject change in eating habits in terms of timing and

meal size variations. Different food habits imply different insulin therapies, which in turn impact

differently on glucose levels. Hence, in silico data collected by running two different scenarios

allow to a richer and more realistic data set. Table 9.1 shows Scenario 1, the training scenario,

which is a 4-day protocol simulated in closed-loop using the MPC described in Section 5.2.2

to define the optimal insulin therapy. The first three days are used for model training, while

the remaining day is used for validation purposes. The training scenario involves three meals

per day with additional snacks in each day. Moreover, in order to define a real-life scenario,

possible errors in the meal announcement are included, i.e. a limited events of unannounced

meals or meals announced with a wrong estimation of the amount. Scenario 2 lasts three days

and it is reported in Table 9.2. The meal amounts and times of this protocol are designed to

reproduce a real-life scenario. Hypotreatments of 15 g are administrated to the patient in case

glucose concentration falls below 65 mg/dl in both scenarios. Scenario 1 is used to perform

model training and validation, while Scenario 2 is exploited to assess the prediction capabilities

of the proposed model. Specifically, Scenario 2 is defined to reproduce eating patterns different

from those present in Scenario 1. Moreover, an in vivo dataset is considered and it is composed

of clinical data of a single T1D patient of the Padova clinical centre collected during experi-

ments involved in the “AP@home” project [17]. This dataset is challenging because the clinical

trial has been conducted in free-living conditions and it is the one used to identify the classic

mathematical model described in Chapter 8 [101], which represents the state-of-art reached so

far via the classic identification techniques developed in this thesis. Testing on a dataset not
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Time CHO [g] Insulin Bolus

D
a
y

1

08:00 60 Bolus on time

13:00 60 Bolus at 14:00

17:00 30 No bolus

20:00 80 Bolus on time

D
a
y

2

08:00 50 Bolus on time

10:00 15 No bolus

13:00 35 Bolus on time

19:00 80 Bolus on time

22:00 20 Bolus on time

D
a
y

3

06:30 40 Bolus on time

09:30 20 No bolus

12:30 45 Bolus at 12:00 for 50 g

17:00 20 Bolus on time

20:00 70 Bolus at 20:30

23:00 20 No bolus

D
a
y

4

08:00 35 Bolus on time

11:30 20 Bolus on time

13:30 60 Bolus at 13:30 for 30 g

16:30 20 No bolus

20:30 90 Bolus on time

Table 9.1: Training Scenario.

belonging to the training set and acquired following a real-life scenario allows the evaluation of

the robustness of this approach to new unseen data and subjects.

9.4 Parameter Settings and Evaluation Protocol

The accuracy of the model predictions is assessed by considering various PHs expressed in

terms of minutes. For this application, PHs from 5 minutes to 60 minutes are considered.

Since the proposed model is aimed to be included in the MPC controller, that is characterized

by a sample time of Ts = 5 minutes for the predictions, the vector of the considered PHs is



131

Time CHO [g] Insulin Bolus

D
a
y

1

08:00 50 Bolus on time

13:00 50 Bolus on time

19:00 70 Bolus on time

23:00 20 Bolus on time

D
a
y

2

06:30 50 Bolus on time

09:30 15 No bolus

13:00 60 Bolus at 12:00 for 50 g

17:00 25 Bolus on time

20:00 90 Bolus at 20:15 for 70 g

23:00 15 No bolus

D
a
y

3

08:30 50 Bolus on time

11:30 20 Bolus on time

14:00 60 Bolus at 13:00 for 30 g

17:00 20 No bolus

20:30 100 Bolus on time

Table 9.2: Testing Scenario.

PH = [5, 10, · · · , 60] and the predicted signals are sampled every Ts. For a given patient p

and a specific PH ∈ PH, denote with îg(·, PH) the PH-steps ahead prediction on the entire

testing scenario, ig(·) the considered reference, and ig its average value. The predictions of the

model are evaluated in terms of COD, FIT, and RMSE. These metrics are the standards used to

evaluate performance in system identification [94, 113] described in Section 6.3 and they allow

a fair comparison of the proposed model with respect to previously published solutions [101].

These metrics are defined as follows:

CODp(PH) = 100 ∗

(
1− ||îg(j,PH)− ig(j)||2

|| ig(j)− ig||2

)

FITp(PH) = 100 ∗

(
1− ||îg(j,PH)− ig(j)||

|| ig(j)− ig||

)
RMSEp(PH) =

1

Nsample
|| ig(j)− îg(j,PH)||

(9.8)

where j = PH,PH +Ts, · · · , Nsample · Ts is used to index the considered samples, and Nsample

is the number of samples of the signal when sampled every Ts minutes. The average value of
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each metric (COD,FIT ,RMSE) for all PH is used as main outcome to evaluate the overall

performance as follows:

COD =
1

NPH

NPH∑
i=1

 1

Np

Np∑
p=1

CODp(PH(i))


FIT =

1

NPH

NPH∑
i=1

 1

Np

Np∑
p=1

FITp(PH(i))


RMSE =

1

NPH

NPH∑
i=1

 1

Np

Np∑
p=1

RMSEp(PH(i))


(9.9)

where Nph is the total number of PH ∈ PH (i.e. NPH = 12) and Np is the total number of

patients involved in each testing experiment.

9.5 Results

In order to maximize the generalization capability of the proposed algorithm, a training and a

testing data sets–large enough to describe the dynamics under study–are required. Since these

data sets are supposed to be fairly different, two disjoint scenarios have been adopted to simulate

the realistic intra-subject change in eating habits in terms of timing and meal size variations.

Different food habits imply different insulin therapies and a different glucose control. The model

has been trained on different patients with eating habits drastically different with respect to

those observed in the testing scenario by running two different scenarios, which do not contain

the same set of meals. To do so, the population of 100 adults is split in two parts (Np = 50):

the model is trained on the first Np patients in Scenario 1, and the tests are conducted on the

second half of the patients in Scenario 2. The same is performed but considering the other

half of patients in each scenario. The final results are obtained by averaging the performance

from the two different train and test groups. This data separation has been chosen in order to

test the capability of the model to represent subjects not belonging to the training set but also

to check the model robustness against a variation in meal sizes and correlation of meal sizes

between a day. The same experiments have also been performed by testing the two trained

models described above on the real patient (i.e. in vivo) and taking the average of the two

results. This experiment has been performed in order to assess the generalization capability of

the model in a real-life scenario.

Firstly, the study focuses on the choice of both the size of the hidden units in each layer

(d ∈ {16, 32, 64}) and the number of LSTM layers (n ∈ {1,2, 3}). The choice of powers of 2 in
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COD [%] FIT [%] RMSE

@
@
@d
n

1 2 3 1 2 3 1 2 3

S
IL

IC
O

16 79.48 79.27 79.12 55.93 55.59 55.40 12.57 12.65 12.72

32 81.31 81.14 79.60 57.94 57.12 56.27 11.93 11.79 12.41

64 82.10 81.93 81.32 58.84 58.66 57.98 11.68 11.72 11.93

V
IV

O

16 67.67 71.92 71.61 45.03 48.17 47.92 29.09 27.43 27.56

32 67.20 72.57 72.05 44.96 48.93 48.65 29.13 27.03 27.18

64 62.06 71.70 72.50 41.41 48.44 49.17 31.01 27.29 26.91

Table 9.3: Performance metrics on each combination of d− n.

the number of hidden units follows a standardized practice. The performance of the scenarios

characterized by either n >= 3 and d >= 128 have also been studied. In both scenarios the

performance dropped sharply and the training time increase significantly, so the results are not

reported here. From Table 9.3 it is possible to observe that increasing the number of hidden

units for each LSTM entails a slight improvement of the performance indices while the number

of stacked LSTM does not significantly affect the final performance. Generally speaking models

with more parameters are able to improve prediction performance only up to a point, that is

when the amount and variability of available data is sufficient to train the model. The result

presented in this section suggest that given the available data, the best configuration is the one

with a single LSTM and d = 64. However, the performance of the single-LSTM implementation

drops sharply (by more than 5%) on the real patient. As the only significant difference is in

the number of parameters, this behavior is associated to over fitting on the training set. This

behavior on the real patients was not observed on models with multiple LSTMs. For these

reasons all subsequent experiments have been performed with the configuration n = 2, d = 64.

Secondly, an analysis has been performed regarding how the different features considered as

input for the network influence the final performance. For this reason, past insulin (
←−
i ) and

carbohydrates (←−m) have been removed from the input stream. Denoting with
←−
X* the modified

input array, the vector representing past information given to the model is defined as follows:

←−
X*(t0,PH) =

[←−−−−
CGM(t0,PH)

]
. (9.10)
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Figure 9.3 shows the comparison of the prediction performance of the models with

•
[←−
X*(t0,PH)

−→
X(t0,PH)

]
•
[←−
X(t0,PH)

−→
X(t0,PH)

]
as inputs, respectively. It denotes that the introduction of the information regarding the past

insulin therapy and ingested meals guarantees an improvement in the prediction performance

of the model. In particular, considering the results obtained by using in silico data, there is a

slight improvement in performance. Indeed, the virtual patients belonging to the training and

testing groups are subsets of the same population.

Since the LSTM is able to learn the behaviour of the population, the additional information

about past history does not provide a significant improvement. On the other hand, Figure 9.3

shows a significant gap in performance computed on real-life data. Indeed, if the LSTM is

trained on in silico data, the lack of past therapy information lowers the performance on in vivo

testing dataset. Hence, the past evidence
←−
i and ←−m help mitigating the differences in the data

distribution. The model obtained considering these additional information is able to generalize

to new unseen data and improve the overall glucose control.

9.6 Discussion

The proposed solution is a population average model identified on the 100 adults of the UVA/-

Padova simulator. An average model could ideally limit the performance since it describes the

average dynamics of the population, so it is necessary to test both its prediction and general-

ization capabilities on a dataset different from the one used in training. Firstly, the model has

been re-trained considering the entire adult virtual population as a training dataset in order

to maximize the available information provided to the training procedure. Then, the proposed

algorithm is tested on a 1-month dataset containing all the data collected during the clinical

trial [59] for a single patient. This dataset is challenging because it includes eating patterns

not present in the training dataset, but also it includes all the problems experienced during the

clinical trial.

The performance obtained by the DFG model and the linearized average model (AVG) of

the UVA/Padova simulator are reported in Table 9.4. By considering the first two rows of

Table 9.4, the DFG model shows superior prediction performance against the AVG. Moreover,
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Figure 9.3: Comparison of the prediction performance on both in silico and in vivo testing
data in term of COD (a), FIT (b) and RMSE (c) on Scenario 2 and real-life data.

DGF approach proves to be able to generalize over different datasets by achieving interesting

improvements with respect to AVG, despite being an average model.

9.6.1 Fine tuning

The drawback of an average model is that it cannot fully describe the variety of individual

glucose response of the entire population. The definition of an individualized insulin therapy

by exploiting a patient-tailored model can substantially improve the effectiveness of the glucose

control as showed in Chapters 6 and 7. Hence, in order to improve the DGF model performance,

the LSTM trained on in silico data is fine-tuned on data of the specific patient.
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Predictor COD [%] FIT [%] RMSE

AVG 15.23 11.48 46.82

DGF 69.85 48.44 27.29

DMP [101] 80.79 61.44 –

DGF Fine Tuned 73.23 49.69 26.63

DGF Fine-tuned + Exp. Filtering 84.05 60.14 21.09

Table 9.4: Prediction matrices.

In this context, Fine-Tuning (FT) slightly modifies the weights of the LSTM in order better fit

the individual behaviour of the real patient. For the purpose of this work, the partial retraining

entailed by any FT has been extended to the entire architecture, by using a suitably small

learning rate (10−5) for 10 additional epochs on the FT dataset. A filtered version of the

collected CGM data (igR) is used as reference for the signal ig since this signal is not available

in vivo. The signal igR is obtained by using a retrofitting algorithm, which is able to reconstruct

an accurate continuous-time BG profile by exploiting BG samples from the fingerstick and CGM

data from the sensor [92]. In order to provide a good amount of information to describe the

dynamic of a specific patient, the FT dataset contains two days picked up randomly among the

available ones.

The FT technique improves the accuracy by 6% on the 2-layer stacked LSTM, as reported in the

row 4 of Table 9.4. Figure 9.4 reports the performance metrics as a function of PH for the 2-layer

stacked LSTM with in vivo testing dataset. The higher the PH, the lower the performance. This

is motivated by the fact that the further you want to predict the more difficult it becomes. The

improvements of the fine-tuned models are evident for large PH values where the performance

increases with respect to the original model without FT. These improvements are less obvious

if their performance are compared against the performance of the individualized model (Daily

Model Predictor, DMP) presented in Section 8.3 and reported in Table 9.4. The individualized

model is identified from real-data on the base of the a-priori knowledge acquired through the

analysis of the patient real-data, while here real-data are used to adjust the model pre-trained

on in silico data.

9.6.2 Output filtering

The main limitation of the proposed approach is that the network is trained on noisy input

measurements but a noiseless signal is required as output. Since the measurement noise that
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Figure 9.4: A comparison of the prediction performance of 2-layer stacked LSM compared to
its fine-tuned version in term of COD (a), FIT (b) and RMSE (c) on the clinical dataset.

affects the CGM data is not negligible, the network would try to reduce the noise on the output

in order to improve the overall quality of the prediction. However, this effect can be limited

and in order to further improve the prediction smoothness an exponential filtering is applied

a posteriori to the predictions. The exponential filter decreases gradually the weights on the

past observations and, considering the decay of the effects of meals and insulin on the glucose,

it represents the natural choice for this kind of applications. The exponential filter also allows

to forget erroneous values predicted in the previous steps.
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The predicted îg(·,PH) is filtered by the following exponential filter:

îgexp(t0+k, ph) = α · îg(t0+k, ph)+(1−α) · îgexp(t0+k−1, ph) k = 0, 1, · · · ,PH−1 (9.11)

where α ∈ (0, 1) is the smoothing factor and is defined as follows:

α =
2

wexp + 1
(9.12)

and wexp is the length of the window used by the filter. It is set to 5, i.e. the minimum window

observed by the model and it is kept fixed for all models. Figure 9.5 shows the noisy CGM data,

the output of the retrofitting algorithm igR, which represents the ground truth, and the output

of the exponential filter îgexp. It may be noted in Figure 9.5 that there is a scaling problem in

the signal îgexp.

This effect can be explained by considering that îgexp is rescaled with the minimum and maxi-

mum values of ig computed in training while these two values for the test data cannot be known

a priori. However, it is important to highlight that the glucose metabolism is highly affected by

the food and lifestyle habits of the specific patient. This implies that the range of the injected

insulin, carbohydrate amounts and glucose levels are individual characteristics of the patient.

In order to cope with this problem, a larger dataset of the patient is required to capture the

individual variability without compromising the testing dataset. The last row of Table 9.4 shows

the results obtained by applying the exponential filter to the output of the 2-layer stacked LSTM

model. It is evident that the filtering technique is able to highly improve the performance by

partially removing the noise that affects the CGM data. The proposed approach concerned

with therapy-driven deep glucose forecasting has been published in [114]. However, the use of a

single real patient for the final validation of the model is the main limitation of this study, but

the strength of the results obtained is enforced by the large changes of the patient habits and

the time-varying nature of the system under study.

In view of the use of this model for the synthesis of the MPC presented in Section 5.2, it is

worth to be noted that this process is a challenging task. The implementation of a nonlinear

MPC is heavy from a computational point of view because the control law cannot be defined in

closed-form and an optimization problem has to be solved online. Future work will be devoted

to this purpose.
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Chapter 10

Conclusions

The improvements in the safety and the reliability of the artificial pancreas system have been

allowed by an effective control approach usable for long periods by the patients during their

normal lives. The aim of the presented research is the improvement of the overall glucose control

performance achieved by acting on the conventional therapy, and by identifying individualized

models of T1D patients from real-life data to be exploited in the MPC strategy and in the alarm

systems.

Regarding the post-prandial glucose regulation, two new approaches based on machine-learning

methodologies have been proposed. A multiple KNN classification algorithm able to predict

post-prandial glucose profile due to the nominal therapy is proposed in order to compute cor-

rections to time and/or amount of the meal bolus. Satisfactory results have been obtained in

terms of reduction of the average glucose and of hyperglycemia, and in terms of increment of

the time in target with limited increase of hypoglycemia. In order to handle the inter-patient

variability, an individualized multi-linear regression model able to enhance conventional therapy

has been designed. The model identification was performed in two steps and the model vali-

dation was computed in an ideal and in perturbed scenarios. A test study demonstrated that

this approach is able to successfully handle a personalized post-prandial glucose regulation but

requires potentially dangerous experiments on real patient. New researches can be conducted

in this prospective.

A new individualization technique has been defined to be used on free-living data collected with-

out ad-hoc clinical protocols. This approach has been used to identify patient-tailored models

for all patients belonging to the Amsterdam medical centre. The individualized models are com-

pared with the “average” model used to synthetize the MPC controller employed in the trial.

The patient-tailored models show a performance improvement in thier prediction capabilities.

Moreover, the identified patient-tailored models have been used to develop an individualized

141
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alarm system for each patient. The use of individualized models showed an high sensitivity of

the system on the entire cohort of patients. Most of the hypoglycemia events (85%) occurred

during the trial have been detected in time to allow a rescue action.

In order to fully exploit the available data, a complete data analysis on the entire group of

patients involved in the trial has been presented. The relation between day period and the

characteristics of the meal response already observed in silico has been detected also in several

real subjects. These characteristics have been exploited to define a new predictor based on

different models to predict the glucose during different day periods. This predictor is compared

with a predictor based on a unique daily model identified on an entire day with satisfactory

results.

Moreover, deep learning technique have been explored to derive a therapy-driven approach in

order to predict a trend of future glucose concentration in T1D patients. The approach entails

multiple models trained on the in silico adult patients of the UVA/Padova simulator. Each

model is used to predict a glucose profile for a fixed prediction horizon and the individual pre-

dictions are aggregated to obtain a profile of future glucose levels. The achieved results show

that the proposed approach can significantly improve predictive performance despite being an

average model. In order to individualize the trained models, fine-tuning is applied to each model

separately considering a small portion of the data pertaining to a specific patient. Satisfactory

results have been obtained in terms of prediction capabilities.

Future works will be focused on the synthesis of individualized MPC algorithms based on these

individualized models, on the investigation of new model identification techniques based on dy-

namical model decomposition, and on the definition of the control law for intraperitoneal insulin

delivery for new protptypes of intraperitoneal pumps under development.

——————————————————-
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