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Magmatism at rifted margins shows widely different developments: margins with transient, 22 

abundant magmatism (magma-rich), and magma-poor margins. Magma-poor margins, as 23 

exemplified by the North Atlantic Iberia-Newfoundland margin (INFM), are accompanied by 24 

extreme crustal thinning and mantle exhumation across wide (~100 km) zones prior to the 25 

formation of igneous oceanic crust. The discovery of the structure of the INFM caused a 26 

paradigm change and has been invoked to interpret seismic imaging across many other rifted 27 

margins, including the northern South China Sea (SCS) margin. International Ocean Discovery 28 

Program (IODP) expeditions 367/368 to the northern SCS, for the first time, tested the INFM 29 

model on a different rifted margin through drilling. Contrary to the INFM model, results from 30 

the highly extended SCS margin show initiation of MORB-type basaltic magmatism during 31 

final breakup, and rapid transition into formation of normal thickness oceanic crust. Cores 32 

suggests that crustal extension was fast, and no evidence of mantle exhumation was 33 
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recovered by drilling. Major and rapid crustal thinning within a relatively thin pre-rift 34 

lithosphere may have caused early melts to weaken the lithosphere, and allowed 35 

asthenospheric upwelling at rates sufficient to generate the observed magmatism by 36 

decompression melting of normal temperature mantle.  37 

 38 

The well surveyed northern South China Sea (SCS) margin (Fig. 1) offers an opportunity for 39 

comparison with the two end members identified by North Atlantic drilling1,2: magma-rich and 40 

magma-poor margins3. The SCS margin features none of the characteristics of the truly magma-41 

rich margins 4 such as transient formation of excessively thick igneous crust (15-30km) and 5+ 42 

km thick seaward-dipping reflectors 5,6. On the contrary, its structural architecture is 43 

reminiscent of the highly extended and magma-poor Iberia-Newfoundland Margin (INFM)7–10 . 44 

However, the SCS formed within younger lithosphere, exhibits higher rate of initial ocean 45 

seafloor spreading 11 than the INFM, and therefore provides for different geodynamic boundary 46 

conditions. Intriguingly, this IODP margin study reveals the first well-established example of the 47 

‘missing link’ between volcanic rifted margins and magma-poor, hyperextended margins, and 48 

thus raises fundamental geodynamic questions about the mechanisms of continental breakup 49 

and plate separation. 50 

 51 

 52 
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 53 
Figure 1: a. Topographic map of the SCS31 with the location of IODP/ODP Sites14,32,33. b. Depth 54 

to acoustic basement and regional seismic dataset modified from17. Bold white lines refer to 55 

seismic data in Figure 2. Magnetic anomalies13,34. Sedimentary basins: Pearl River Mouth Basin 56 

(PRMD), Liwan Basin (LB), Qiongdongnan Basin (QB), Phu Khanh Basin (PKB), Reed Bank (RB), 57 

Taxinan Basin (TXNB). Ocean sub-basins: Eastern sub-basin (ESB), North West sub-basin (NWSB), 58 

South West Sub-Basin (SWSB). IC: Indochina, PW: Palawan, P: Philippines, TW: Taiwan. DG: 59 

Dangerous Ground 60 

 61 

Tectonic setting of the SCS basin  62 

The SCS oceanic basin formed during the early Oligocene to middle Miocene (32-15 Ma)12–14. Its 63 

development includes several sub-basins (Fig. 1a) and rift propagation events14. Our study focus 64 

on a ~ 100 km long margin segment at the northern SCS margin within the north-west sub-basin 65 

(Fig. 1a) stretching seawards from the deep Liwan Basin to oceanic crust (Figs. 1 and 2I). 66 

Previous studies suggest that the main rifting is of Eocene age with final breakup during the 67 

early Oligocene14,15. The margin structure has been interpreted as highly extended and magma-68 
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poor, possibly hosting exhumed lower crust and mantle in its distal parts16,17, to show a delay 69 

between final breakup and onset of major igneous activity, and later overprinted by the late 70 

Miocene Hainan plume18.  71 

 72 

The oldest magnetic anomaly interpreted to be present along the studied margin segment is 73 

C11n (~29.5 Ma; early Oligocene) (Fig. 113), but it has low amplitude suggesting other 74 

mechanisms 19 than seafloor spreading could be invoked to explain it. Younger magnetic 75 

anomalies within the SCS basin are stronger, and mature oceanic crust of normal thickness and 76 

mid-ocean ridge basalt (MORB) composition is verified by drilling14. Initial seafloor spreading 77 

was lower end of intermediate (half-rate: 2.5 cm/yr)11,13. 78 

 79 

A deep crustal reflection seismic profile from the regional 2D seismic lines (Fig. 1) interpreted 80 

prior to drilling is shown in Figure 2I. The basement of the Liwan Basin is characterized by highly 81 

thinned crust, 10 km or less thick, where the upper to mid crust has undergone extensive 82 

normal faulting, and the development of thick (up to 6–8 km) rift basins20 (Fig. 2I). Post-rift fill 83 

attains thicknesses of 2 km or locally more. Most of the extensional faults appear to root into a 84 

major decollement at mid- to lower-crustal levels. The Liwan Basin is bounded seaward by the 85 

Outer Margin High (OMH). Crustal thickness decreases markedly seaward of the OMH. The 86 

main decollement level is interpreted to continue laterally seawards below the OMH. Unlike the 87 

Moho reflection, which remains strong until a crustal thickness of 6-8 km is reached within the 88 

distal margin (Ridge A of Fig. 1 and 2), the faults at the base of the OMH cannot be followed 89 

with confidence this far (Fig. 2). The lower crust shows variable thickness, thinnest (~8 km) 90 

below the deep rift basins, yet it thickens below the OMH, suggesting that the lower crust 91 

remained ductile and able to flow during rifting21–23. 92 

 93 

Drilling results and linkage to seismic data 94 

IODP Site U1501 was drilled on the crest of the OMH (Figs. 2I and 2II), and successfully 95 

penetrated acoustic basement (Tg) below syn- and post-rift sediments (Fig. 3). Two distinct 96 

lithostratigraphic units, separated by an unconformity (T60; ~26 Ma), were recovered above 97 
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reflector Tg: (1) a mixed succession of upper Miocene to Pleistocene calcareous-rich sediment 98 

and calcareous ooze; and (2) a succession of lowermost Oligocene and possibly upper Eocene 99 

siliciclastic sediment. The lower unit is ~300 m thick and shows a record of continuous and 100 

uniform sedimentation with a trend of upward fining beds dipping ~5 degrees northeast. The 101 

base of the succession contains coarse sand intervals with up to pebble-sized clasts that are 102 

interbedded with mm thin beds of lignite or coal and glauconite-bearing sand. Throughout the 103 

uppermost ~80 m of the succession, the coarse sand transitions into fine sand, silt and clay. This 104 

change is accompanied by the presence of lower Oligocene microfossils, suggesting that the 105 

basin underwent deepening and starved in clastic input from the Eocene–Oligocene boundary 106 

(ca. 34 Ma). Deepening of the basin within this time interval is consistent with the inferred ca. 107 

32–30 Ma age of final breakup along the northern SCS11,14, but is not associated with any 108 

unconformity in either seismic data or the drill cores (Fig. 3). Nevertheless, we infer that this 109 

succession of early Oligocene–Eocene sediments corresponds to syn-rift deposition along the 110 

northern margin of the SCS. Site U143514 (Fig. 1) recovered similar facies and age syn-rift 111 

sediments. 112 

 113 
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 114 
Figure 2: Interpreted seismic sections (location in Figure 1). Drill sites marked with ‘p’ are 115 

projected into the main cross-line. Regional seismic stratigraphic unconformities T30-T83 with 116 

ages obtained from IODP drill cores. T70 was not sampled. Tg: Acoustic basement. Sub Tg 117 

stratigraphic relationships can be locally interpreted. Lithologies sub-cropping below Tg ranges 118 

from Oligocene syn-rift sediments, through Oligocene submarine basalts to pre-rift sediments 119 

(Mesozoic?); see Figure 3. Black line: Moho reflector, location below Site U1500 from cross-line 120 

in panel VI. Seimics data courtesy of Chinese National Offshore Oil and Gas Company (CNOOC). 121 
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 122 

The boundary (Tg) between the syn-rift succession and the underlying formation at Site U1501 123 

is a positive, high-amplitude seismic reflector (Figs. 2II, 3). The seismic data (Fig. 2II) indicates 124 

the presence of tilted and locally folded beds below Tg, and drill cores recovered highly lithified, 125 

~20-degree dipping, coarse sandstones to conglomerates (Fig. 3). Their dip, degree of 126 

lithification, and a sudden downward increase in seismic velocities and density measured on 127 

the cores suggest that these sediments underwent an earlier deformational event prior to 128 

Eocene rifting. 129 

 130 

 131 
 132 
Figure 3: Summary chart of drilling results. All details and background material are in the IODP 133 

367-368 Proceeding volume 33 134 

 135 
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Seaward of the OMH, three distinct linear ridges - Ridges A, B and C (Figs. 1B and 2) - parallel 136 

the margin, trending from west-southwest to east-northeast. The extensional faults bounding 137 

ridges B and C are extremely uniform along strike for ~100 km, and the top of the basement 138 

reflection along these two ridges is remarkably continuous and flat (Fig. 2V, VI). Seismic 139 

reflections showing clear layering below Tg are seen on both ridges, and can in places be 140 

followed to significant depths (Ridge B; ~ 2km) (Fig. 2V and VI). Magnetic anomaly C11n is 141 

located close to Ridge B and C10n seaward of Ridge C (Figs 1 and 2). Contrary to ridges B and C, 142 

Ridge A shows significant morphological variation (depth, width, reflection character) along 143 

strike. The seismic reflections below Tg do not form any regional systematic pattern that can be 144 

interpreted with confidence (Fig. 2). The continental Moho reflector below the OMH can be 145 

followed seawards to, but not below Ridge A (Fig. 2). A less clear Moho reflector re-appears 146 

below Ridge B and C (Fig. 2I, VI), and continues further seawards below the oceanic crust.  147 

 148 

IODP Sites U1499 and U1502 sampled Ridge A (Figs. 2I, II, III and 3), but yielded widely different 149 

results consistent with their different seismic images. The lower intervals of Site U1499 consists 150 

of a condensed succession of lowermost Miocene and upper Oligocene fine-grained red clay, 151 

with strongly lithified red claystone at the base of the succession. Below the red clay, the cored 152 

intervals recovered coarse siliciclastic sediments (top to bottom) composed of a matrix 153 

supported breccia of sand with angular and pebble-sized sedimentary clasts, followed 154 

downwards by a succession of very coarse-grained gravel, mostly consisting of cobble-sized 155 

clasts. The clasts within the gravel predominantly comprise previously eroded sedimentary 156 

rocks (mostly coarse-grained sandstone).  The age of the gravel unit is tentatively constrained 157 

by the presence of upper Oligocene clays above, and a single, lower Oligocene age datum 158 

within the unit itself. 159 

 160 

Site U1502 is located 40 km to the east along Ridge A (Fig. 2III). The Tg here forms an onlapping 161 

surface and is characterized by a set of strong, parallel and dipping (~25o) reflectors below 162 

which no coherent seismic energy can be seen. A total of 180 m of basaltic lavas with pillow 163 

structures representing the acoustic basement were recovered, overlain by a sequence of 164 



 9

deep-marine, upper Oligocene to lower Miocene sediments (Fig. 3). No significant amount of 165 

sediments was observed between the lavas suggesting rapid emplacement of the flows. The 166 

basalt flows suffered pervasive hydrothermal alteration up to greenschist facies conditions and 167 

profound brecciation (hydro-fracturing) associated with massive iron-sulphide mineralization. 168 

The effect of strong hydrothermal activity (with minor brecciation), extends ~5 metres into the 169 

overlying, deep-marine sediments of Oligocene age (Fig.3). Given the basaltic nature of the 170 

lavas, the original depositional dip is inferred to be only a few degrees. The seismic image of the 171 

overlying sedimentary section does not show significant tilting of these, and hence, volcanism, 172 

seaward tilting of the fault-block and hydrothermal activity is confined to a brief period of time.  173 

 174 

Seismic data (Fig. 2) suggests that Ridge A is floored, at least partially, by continental crust, and 175 

coring captured the interplay between extensional basin development stage and magmatism. 176 

The sandstone and gravels recovered from the base of Site U1499 possibly were deposited by 177 

submarine gravity flows in response to late-stage rifting of the northern SCS. The basalt flows 178 

recovered at Site U1502 within the more easterly part of Ridge A record syn-rift magmatism 179 

that occurred in conjunction with the rift-to-drift transition of the SCS. This magmatism is not 180 

seen at Site U1499 and may not have continued southwest-ward from Site U1502 all along the 181 

ridge A.  182 

 183 

Site U1500 on Ridge B cored through 1380 m of deep marine Neogene to late Paleogene 184 

sediments and recovered 150 m of volcanic basement below Tg (Fig. 2I, V). Basement consists 185 

of fresh basaltic flows alternating between thick massive flows and pillow flows (Fig. 3). The 186 

inferred Oligocene age of cm-thin, clayish marine sediments intercalated within the upper lavas 187 

is consistent with both the presence of deep-marine, upper Oligocene to lower Miocene 188 

sediments deposited on the igneous basement, and the proximity (Figs 2 and 3) of magnetic 189 

chron C11n (early Oligocene, ca. 29.5 Ma). The seismic strike-line (Fig. 2V, VI) shows that the 190 

basement cored at Site U1500 is acoustically layered down to ~ 2 km below Tg (Vp of 4.5 – 5.0 191 

km/s measured at the drill core). This deep seismic layering is also observed along a wider 192 

section of the line (Fig. 2VI), revealing that Site U1500 is located at the crest of a mound-like 193 
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structure overlain by younger strata towards the southwest. This stratigraphic pattern is 194 

interpreted to reflect time-wise migration of the centre of extrusive activity southwest-wards 195 

along the rift axis. This development is equally consistent with an advanced stage of rifting as 196 

well as full ocean floor spreading, but importantly, either of the two cases is proof that 197 

considerable, MORB type magmatism along the entire Ridge B was established by Chron C11n 198 

time. Ridge C is associated with the well-developed spreading anomaly C10r and forms, apart 199 

from its fault-bounded nature, a straight continuation into the younger SCS ocean crust11,14. 200 

 201 

The key for understanding the morphological evolution of ridges B and C is that they only 202 

developed as ridges after magmatism. They are both landwards tilted fault blocks bounded by 203 

seaward-dipping normal faults (Fig. 2). Along strike, the top of Ridge B and C are remarkably flat, 204 

non-faulted and continuous for ~ 100 km, implying that the seaward-dipping normal faults are 205 

ridge parallel and laterally very extensive. The normal faults show significant displacements (up 206 

to ~ 500 m) of the igneous basement, but do not affect the overlying latest Oligocene to early 207 

Miocene sediments. Faulting thus occurrence within a short mid-Oligocene time interval. 208 

Faulting at a similar scale is not seen seaward of Ridge C (Fig. 2I) suggesting this tectonic activity 209 

was a transient process during the breakup to early seafloor spreading interval. 210 

 211 

Importantly, the composition of the basalts from ridges A and B forms a continuum with that of 212 

the igneous ocean crust sampled by IODP Expedition 349 within the younger SCS basin14. Site 213 

U1500 and U1502 lavas all have MORB compositions (Fig. 4) with MORB-like petrography 214 

(highly plagioclase phyric, olivine-bearing, lacking clinopyroxene phenocrysts). This is consistent 215 

with mantle-derived primitive, dry melts, generated by decompression melting in a mid-ocean-216 

ridge setting. From this, we infer that a melting regime comparable to a mature spreading 217 

centre in terms of melt composition, productivity and lateral extent was present during final 218 

breakup. 219 

 220 
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 221 
Figure 4: Ti-V discrimination diagram35 of basalts sampled by IODP expeditions 367-368 (margin 222 

Sites U1500 and 1502)33 and IODP 349 sites located on oceanic crust14. (See supplementary 223 

material) 224 

 225 

Discussion and conclusion 226 

Our unique drilling data supports the kinematic history of the SCS with breakup during the 227 

Oligocene at around magnetic chron C11n (~30 Ma), but questions previous interpretations of 228 

mantle exhumation and initial magma starvation16,17. Whether full igneous ocean crust formed 229 

right from the beginning of plate separation around C11n time, or a transitional crust (Fig. 5) 230 

with a large component of igneous material formed during a brief period (~ 1 myr) from ~C11n 231 

and into C10r cannot be resolved by current geophysical and geochemical data. This 232 

uncertainty, however, has only negligible impact on the requirement for a mature, productive 233 

mantle melting regime to be in place no later than ~30 Ma. The potentially slightly older basalts 234 

at Ridge A (U1502 in Fig. 3) likely a less extensive along the rift than Ridge B extrusive, but 235 

nevertheless share the same bulk composition, suggesting a similar melting regime. 236 

 237 
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 238 
Figure 5: Conceptual model of three stages of breakup based on integration of seismic and 239 

drilling data (Figs. 2, 3). Stage 1: a deep basin with thin crust existed within final zone of plate 240 

rupture and hosted magmatism at 32 – 30 Ma. Initial magmatism (U1502) likely was confined to 241 

select parts of the rift zone. Stage 2: Ascending melts rapidly weakened the mantle lithosphere 242 

and massive extrusive activity along the entire rift zone takes place, underpinned by a thicker 243 

zone of melting in the asthenosphere. Stage 3:  Mature seafloor spreading and passive 244 
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upwelling of asthenospheric mantle is established. Note that in time, stages 2 and 3 are only ~ 1 245 

myrs apart (or less), but high rate (~ 2.5 cm/yr, half-rate) of plate separation translates to 246 

significant distance in space. 247 

 248 

At magma-poor margins like the INFM, thinning of crust and the lithospheric mantle  is believed 249 

to be coupled and primarily driven by faulting and associated mechanical stretching24. Magma 250 

starvation is explained by slow ascent rates of the asthenosphere constrained by rate of plate 251 

separation and the nature of breakup process25,26.  At volcanic margins, the coincidence of 252 

transient, excessive magmatism and breakup is readily explained by emplacement of 253 

anomalously hot asthenosphere that provides a mechanism for thermal erosion of the sub-254 

continental lithospheric mantle27,28. The uniqueness of the SCS margin is that none of the 255 

characteristics of the magma-poor INFM or volcanic margins are present, and therefore its 256 

formation requires a rifting model to explain the characteristics of the SCS margin without 257 

generating features of the other two types of margins. 258 
  259 
We propose a model to illuminate the formation of the SCS margin that is consistent with key 260 

crustal observations and involves a plausible mechanism to thin the lithospheric mantle (Fig. 5). 261 

The model includes a major and brief period of extension starting in the Eocene before the 262 

oldest identified age datum (34 Ma) obtained from the syn-rift fill ~200 m above the basal 263 

angular unconformity (Tg) at Site U1501 (Fig. 3). It ended at ~ 30 Ma, and may therefore have 264 

been very short-lived. Faulting did not cross through the lower crust, which remained ductile 265 

throughout, allowing decoupled extension of crust and mantle to take place across most of the 266 

margin. At the extreme distal margin, however, crustal thinning was at a maximum, and seismic 267 

data cannot exclude the possibility that faults reached the mantle and that modest amounts of 268 

mantle exhumation might have taken place around ridges A to B. 269 

 270 

Prior to break up around the Eocene–Oligocene boundary (stage 1 in Fig. 5), continental crust 271 

was thinned to ~ 8 km or less. The thickness of the lithosphere likely was smaller than the 272 

present day 80 km below southeast China29 , implying that a 20-25 km of crustal thinning 273 

proportion-wise represents major thinning of the entire lithosphere. Discarding effect of any 274 
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tectonic stretching of the mantle lithosphere at the location of final breakup, this thinning 275 

would allow the asthenosphere to ascend through approximately 1/4 - 1/3 of the window of 276 

decompression melting. Provided efficient melting conditions, this could result in a melt column 277 

~1/3 of oceanic crust (i.e., 1-2 km thick), being even more if a gradient driven lateral flow along 278 

the lithosphere-asthenosphere boundary took place (Fig. 5). Since melts rise orders of 279 

magnitude faster than the solid mantle27, they can rapidly transfer heat into the overlying 280 

lithosphere. However, for this mechanism to work, the ascent rate of asthenospheric mantle 281 

should be >1 cm/yr to support effective decompression melting of normal temperature 282 

mantle30. Rapid rifting and crustal extension is supported by this study, and by the 283 

comparatively high initial spreading rates derived from plate kinematic studies(half-rate: 2.5 284 

cm/yr or higher11,13. If rate of extension increased linearly from zero to the rate of initial plate 285 

separation, passive upwelling rate exceeding 1 cm/yr would be in place within less than half of 286 

the rift duration and might enable melt-driven weakening of the lithosphere (stage 1-2 of fig. 5) 287 

and eventually final breakup (stage 3 of fig. 5).  288 

 289 

A key driver in this model thus is major and fast rifting. Furthermore, the southeast Asia 290 

lithosphere has been interpreted as hot and weak21,23, and potentially susceptible to thinning 291 

by melt impregnation. Continued ductility of the lower crust enabled decoupling of crust and 292 

mantle extension, and may have been aided by massive sedimentation from the nearby large 293 

continent, helping to keep the lower crust hot across most of the margin. It can therefore be 294 

hypothesized that it requires specific geodynamic boundary conditions for this type of rifted 295 

margin to develop.  296 

 297 
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