
Università degli studi di Pavia
Joint Ph.D. program in Mathematics Milano Bicocca - Pavia - INdAM

Doctoral Thesis

E�cient solvers for Isogeometric Analysis

Author:

Gabriele Loli

Supervisor:

Prof. Giancarlo Sangalli

Co-supervisor:

Prof. Annalisa Bu�a





iii

Acknowledgements

First of all, I am grateful to my PhD supervisor Prof. Giancarlo Sangalli for his
constant support, inspiring ideas and enthusiasm in researching and teaching.

I would like to thank Prof. Annalisa Bu�a for having accepted me as a visitor at
EPFL and for having co-supervised my thesis. It has been such a great pleasure and
honour for me to visit and work with her and her group in Losanna.

I must also express my gratitude to Pouria Behnoudfar, Luca Coradello, Monica
Montardini and Mattia Tani for the fruitful collaborations.

A special thanks goes to my collegues and friends, in particular Alessandro, An-
drea, Andrea, Gennaro, Mattia and Stefano, for the wonderful time spent together
and their precious support.

Finally, I am deeply grateful to my brother for having always encouraged me to
do my best and my parents for their unconditional love.





v

Contents

Acknowledgements iii

1 Introduction 1

2 Preliminaries 5

2.1 B-splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Isogeometric space on a single patch domain . . . . . . . . . . . . . . . 7
2.3 Isogeometric spaces on a multipatch domain . . . . . . . . . . . . . . . 8
2.4 Kronecker product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Preconditioning of the Isogeometric Mass Matrix 11

3.1 Mass preconditioner on a patch . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Mass preconditioner on multipatch domain . . . . . . . . . . . . . . . . 18
3.3 Preconditioners application and cost . . . . . . . . . . . . . . . . . . . 22

3.3.1 Single patch preconditioner . . . . . . . . . . . . . . . . . . . . 22
3.3.2 Multipatch preconditioner . . . . . . . . . . . . . . . . . . . . . 23

3.4 Numerical Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4.1 Single Patch domains . . . . . . . . . . . . . . . . . . . . . . . 23
3.4.2 Multipatch domains . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Explicit high-order generalized-α methods 31

4.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.1.1 Spatial discretization . . . . . . . . . . . . . . . . . . . . . . . . 32
4.1.2 Time-discretization . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2 Explicit generalized-α method . . . . . . . . . . . . . . . . . . . . . . . 32
4.2.1 Order of accuracy in time . . . . . . . . . . . . . . . . . . . . . 34

4.3 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3.1 Convergence of the generalized-α method . . . . . . . . . . . . 35
4.3.2 Performance of the preconditioners . . . . . . . . . . . . . . . . 35

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5 A projected super-penalty method for the isogeometric bilaplace

problem 39

5.1 The projected super-penalty method . . . . . . . . . . . . . . . . . . . 40
5.1.1 The strong form of the Kirchho� plate problem . . . . . . . . . 41
5.1.2 The multi-patch formulation of the perturbed saddle point Kirch-

ho� problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.1.3 Perturbed saddle point problem . . . . . . . . . . . . . . . . . . 47
5.1.4 The projected super-penalty formulation . . . . . . . . . . . . . 49

5.2 A priori error analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.2.1 Coercivity in the discrete kernel . . . . . . . . . . . . . . . . . . 51
5.2.2 Discrete inf-sup stability . . . . . . . . . . . . . . . . . . . . . . 51



vi

5.2.3 Error estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2.4 On the choice of penalty parameters . . . . . . . . . . . . . . . 54

5.3 Cross-points modi�cation . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.4 A nested preconditioner based on the Schur Complement Reduction . 56

5.4.1 The Schur Complement Reduction . . . . . . . . . . . . . . . . 57
5.4.2 Nested block preconditioner strategy based on SCR . . . . . . . 58

A preconditioner based on the Fast Diagonalization (FD) algo-
rithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.5 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.5.1 A four patches example with non-matching curved interfaces . 61
5.5.2 A nine patches geometry . . . . . . . . . . . . . . . . . . . . . . 65
5.5.3 A three patches example with a geometrically non-conforming

interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.5.4 A �at L-bracket . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

A Analysis of doubly constrained saddle point problems 73

B Discrete inf-sup stability on the parametric domain 79

Bibliography 87



vii

List of Figures

2.1 Example of cubic B-spline basis de�ned on the open knot vector Ξ =
{0, 0, 0, 0, 0.2, 0.4, 0.6, 0.8, 0.8, 0.8, 1, 1, 1, 1}. . . . . . . . . . . . . . . . . 6

3.1 Bidimensional domains. . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Tridimensional domains. . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Condition number of preconditioned mass matrix (nsub = 64). . . . . . 30

4.1 L2(Ω) norm relative error at T = 0.0205 on Ω = [0, 1], with nsub = 64
and p = 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Spatial domains. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3 L2(Ω) norm relative error at T = 64 · τ with τ = 10−5 for Blade (top-

left), Donut (top-right) and Fan (bottom). . . . . . . . . . . . . . . . . 38

5.1 Example of two subdomains Ωk,Ωℓ with their coupling interface γk,ℓ,
highlighted in red, and their corresponding normal vectors nk,nℓ. Note
that we have separated the subdomains for visualization purposes. For
a correct interpretation of the colours, the reader is referred to the web
version of this manuscript. . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2 Example of the dofs involved in the computation of the coupling inte-
grals and cross-point modi�cation in a four patches setup. . . . . . . . 55

5.3 Example of reordering of the dofs in a two patches setup, discretized
by B-splines of degree p = 2, associated to the block system matrix A. 57

5.4 Problem setup and initial multi-patch non-conforming discretization for
the curved four patches example. . . . . . . . . . . . . . . . . . . . . . 62

5.5 Convergence study of the error measured in the H2 norm in the non-
matching case for four patches with curved interface example for dif-
ferent Young moduli and values of the thickness, B-splines of degree
p = 2, 3. Comparison of a classic penalty method, the scaled version
with respect to the problem parameters proposed in [34] (scaled) and
our projection approach (proj ). . . . . . . . . . . . . . . . . . . . . . . 63

5.6 Convergence study of the error in the H2 norm in the non-matching
case for the curved four patches example. In�uence of imposing a C0

constraint at the cross point. . . . . . . . . . . . . . . . . . . . . . . . 64
5.7 Element-wise plot of the error in the H2 norm in the non-matching

case for the curved four patches example, B-splines of degree p = 4.
In�uence of imposing a C0 constraint at the cross point, notice the
di�erence of one order of magnitude used in the two colorbars. . . . . . 64

5.8 Problem setup and initial multi-patch non-conforming discretization for
the nine patches example. . . . . . . . . . . . . . . . . . . . . . . . . . 66



viii

5.9 Convergence study of the error measured in the L2,H1 andH2 norms in
the non-matching case for nine patches example for di�erent B-splines
of degree p = 2, 3. Comparison of a classic penalty method, the scaled
version with respect to the problem parameters proposed in [34] (scaled)
and our projection approach (proj ). . . . . . . . . . . . . . . . . . . . . 66

5.10 Initial con�guration and non-conforming discretization for the three
patches example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.11 Convergence study of the error measured in the L2, H1 and H2 norms
in the non-matching case for the three patches example, B-splines of
degree p = 2, 3. Comparison of a classic penalty method, the scaled
version with respect to the problem parameters proposed in [34] (scaled)
and our projection approach (proj ). . . . . . . . . . . . . . . . . . . . . 68

5.12 Geometry setup and non-conforming discretization for the �at L-bracket
example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.13 Solution contour for the �at L-bracket example, B-splines of degree
p = 2, 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.14 Components of the bending stress tensor m for the �at L-bracket ex-
ample, B-splines of degree p = 2, 3. . . . . . . . . . . . . . . . . . . . . 70

5.15 Convergence study of the stress component m11, evaluated at point A
in Figure 5.10a, for the �at L-bracket example for di�erent B-splines
of degree p = 2, 3. Comparison of a classic penalty method, the scaled
version with respect to the problem parameters proposed in [34] (scaled)
and our projection approach (proj ). . . . . . . . . . . . . . . . . . . . . 70



ix

List of Tables

3.1 Condition number of mass matrix for kite. . . . . . . . . . . . . . . . . 25
3.2 Condition number of preconditioned mass matrix for kite. . . . . . . . 25
3.3 Iterations and time spent by PCG for kite. . . . . . . . . . . . . . . . . 26
3.4 Iterations and time spent by PCG for blade. . . . . . . . . . . . . . . . 26
3.5 Condition number of preconditioned mass matrix for holed plate. . . . 26
3.6 Iterations and time spent by PCG for holed plate. . . . . . . . . . . . 26
3.7 Condition number of preconditioned mass matrix for disc with one sin-

gularity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.8 Iterations and time spent by PCG for disc with one singularity. . . . . 26
3.9 Condition number of preconditioned mass matrix for disc with four

singularities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.10 Iterations and time spent by PCG for disc with four singularities. . . . 27
3.11 Condition number of preconditioned mass matrix for nsub = 16 and

p = 6: comparison between M and MCE . . . . . . . . . . . . . . . . 28

3.12 Comparison between q(M− 1
2

CEMM− 1
2

CE) and q(M
− 1

2MM− 1
2 )2 for nsub =

16 and p = 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.13 Condition number of mass matrix for multipatch star. . . . . . . . . . 28
3.14 Condition number of preconditioned mass matrix for multipatch star. . 29
3.15 Iterations and time spent by PCG for multipatch star. . . . . . . . . . 29
3.16 Condition number of mass matrix for multipatch disc. . . . . . . . . . 29
3.17 Condition number of preconditioned mass matrix for multipatch disc. . 29
3.18 Iterations and time spent by PCG for multipatch disc. . . . . . . . . . 29
3.19 Iterations and time spent by PCG for multipatch fan. In the cases

denoted by �*�, we were not able to assemble the mass matrix due to
memory limitations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1 Mean values, across all the time steps, of the iterations needed by PCG
on the Blade, for τ = 10−5 and T = 64 · τ . . . . . . . . . . . . . . . . . 37

4.2 Mean values, across all the time steps, of the iterations needed by PCG
on the Donut, for τ = 10−5 and T = 64 · τ . . . . . . . . . . . . . . . . . 37

4.3 Mean values, across all the time steps, of the iterations needed by PCG
on the Donut, for τ = 5 · 10−5 and T = 64 · τ . . . . . . . . . . . . . . . 37

5.1 Number of iterations needed by di�erent iterative methods, p = 2, 3,
as a function of the elements (el.). For the nested SCR-FGMRES, the
numbers in brackets indicate the average number of intermediate iter-
ations needed to solve equations (5.30), (5.31) and (5.32) in Algorithm
3, respectively. Iterations marked with � did not reached convergence
within the prescribed 1000 maximum number of iterations. . . . . . . . 62



x

5.2 Number of iterations needed by di�erent iterative methods, p = 2, 3, as
a function of the elements (el.) for the parameters proposed in [34]. For
the nested SCR-FGMRES, the numbers in brackets indicate the aver-
age number of intermediate iterations needed to solve euqations (5.30),
(5.31) and (5.32) in algorithm 3, respectively. Iterations marked with
� did not reached convergence within the prescribed 1000 maximum
number of iterations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.3 In�uence of the intermediate and inner tolerances ηt and ηn (where we
always set ηt = ηn) on the number of outer iterations needed by the
FGMRES solver, p = 2, 3, on a �xed mesh with 4096 elements. . . . . 65

B.1 Numerically computed value of C3. . . . . . . . . . . . . . . . . . . . . 83



1

Chapter 1

Introduction

Isogeometric Analysis (IGA) was introduced by Hughes et al. in [41] to unify computer
aided geometric design (CAGD) and numerical simulations. Indeed, IGA uses CAGD
mathematical primitives, that are splines, NURBS and their extensions, to represent
both the geometry and the unknowns of Partial Di�erential Equations (PDEs) that
model physical phenomena of interest. In this way, thanks to an exact representation
of the computational domain, the error due to the approximation of the geometry
is eliminated. Moreover, the use of splines and NURBS as building blocks for the
construction of discrete spaces turns out to be a key ingredient of numerical schemes
enjoying features that would be hard to achieve by standard �nite element methods.
This is in particular due to the spline smoothness that brings several advantages: it
improves the accuracy per degree of freedom (comparing to standard C0 �nite ele-
ments), it improves signi�cantly the approximation of the spectrum of the di�erential
operators, it allows direct approximation of PDEs of order higher than two and it
facilitates construction of spaces that can be used in schemes that preserve speci�c
fundamental properties of the PDE of interest.
The use of highly re�ned meshes or high degree splines introduces challenging prob-
lems at the computational level. Indeed, the conditioning of the matrices associated
to the discrete systems produced by isogeometric methods can degenerate rapidly
for decreasing mesh size h and increasing spline degree p. Therefore the design and
analysis of e�cient and robust iterative solvers and preconditioners for IGA is a very
active research topic. In this context, we say that a preconditioner P for the linear
system Au = b is robust if the condition number κ(P−1A) is bounded from above by a
reasonably low number, independent of the mesh size and the spline degree. Further,
we say that a preconditioner is computationally e�cient if its setup and application
has a computational cost comparable to the one of the matrix-vector product for the
system matrix A.

This thesis is devoted to the study of e�cient method for solving PDEs discretized
through IGA. We begin with an e�cient and robust preconditioner for the isogeometric
mass matrix for single patch domain. Then, we extend it to conforming multipatch
geometries where continuity across the patches is imposed strongly. As an application,
we combine this preconditioners with the high-order generalized-αmethod, introduced
in [21], as the time integrator to solve a model hyperbolic boundary-value problem.
After that, we focus on the analysis of a solver for a fourth-order PDE in the framework
of non conforming multipatch domains. In this case the C1-continuity is imposed
weakly through a super-penalty method. The main idea of our method is to eliminate
the Lagrange multipliers originated in the mortar formulation of the bilaplace problem
by introducing a singular perturbation. Then we propose a preconditioner for the
resulting system based on a combination of the Schur Complement Reduction (SCR),
introduced in [48, 49], with the Fast Diagonalization technique, developed in [62, 57,
51].



2 Chapter 1. Introduction

The structure of the work is as follows. Chapter 2 consists of a brief presentation
of the main tools we use in this thesis. In particular we start by introducing the basic
concepts of Isogeometric Analysis like univariate and multivariate B-spline functions,
single patch and conforming multipatch isogeometric spaces. Then we presents the
notion of Kronecker product and its main properties.

Chapter 3 deals with the fast solution of linear systems associated with the mass
matrix, in the context of isogeometric analysis. We propose a preconditioner that is
both e�cient and easy to implement, based on a diagonal-scaled Kronecker product
of univariate parametric mass matrices. Its application is faster than a matrix-vector
product involving the mass matrix itself. We prove that the condition number of
the preconditioned matrix converges to 1 as the mesh size is reduced, that is, the
preconditioner is asymptotically equivalent to the exact inverse. Moreover, we give
numerical evidence of its good behaviour with respect to the spline degree and the
(possibly singular) geometry parametrization. We also extend the preconditioner to
the multipatch case through an Additive Schwarz method.

Chapter 4 focuses on a novel family of high-order explicit generalized-α methods
applied in combination with isogeometric analysis. Our method can deliver 2k order
of accuracy in time consisting of solving k matrix systems explicitly and updating the
other 2k variables at each time-step.
Next, to deal with the computational cost, we exploit the preconditioners for the
matrix systems presented in Chapter 3. Our high-order schemes require simple mod-
i�cations of the available implementations of the generalized-α method. Finally, we
present numerical examples to prove the performance of the overall methodology re-
garding single and multipatch IGA discretizations.

Chapter 5 focuses on the development of a super-penalty strategy based on the L2-
projection of suitable coupling terms to achieve C1-continuity between non-conforming
multi-patch for the isogeometric discretization of the bilaplace equation. In partic-
ular, the choice of penalty parameters is driven by the underlying perturbed saddle
point problem from which the Lagrange multipliers are eliminated and is performed
to guarantee the optimal accuracy of the method. Moreover, by construction, the
method does not su�er from locking also on very coarse meshes. We demonstrate
the applicability of the proposed coupling algorithm to Kirchho� plates by studying
several benchmark examples discretized by non-conforming meshes. In all cases, we
recover the optimal rates of convergence achievable by B-splines where we achieve a
substantial gain in accuracy per degree-of-freedom compared to other choices of the
penalty parameters.

Parts of the results presented in this thesis are contained in papers that have been
submitted by the author and coauthors in peer reviewed journals, they are available
online or they are in preparation:

� Chapter 3:
[52] G. Loli, G. Sangalli, and M. Tani. Easy and E�cient preconditioning of
the Isogeometric Mass Matrix. Submitted to Computers & Mathematics with
Applications. 2020. arXiv: 2006.02313.

� Chapter 4:
[6] P. Behnoudfar, V. M. Calo, G. Loli, A. Reali, and G. Sangalli. �Explicit high-
order generalized-α methods for isogeometric analysis of structural dynamics�.
In: In preparation (2020).

� Chapter 5:
[13] A. Bu�a, L. Coradello, and G. Loli. A projected super-penalty method for the

https://arxiv.org/abs/2006.02313
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C1-coupling of multi-patch isogeometric Kirchho� plates. 2020. arXiv: 2007.

14343.
[14] A. Bu�a, L. Coradello, and G. Loli. �Isogeometric penalty method for the
Bilaplace equation�. In: In preparation (2020).
[7] A. Benvenuti, G. Loli, G. Sangalli, and T. Takacs. �Isogeometric Analysis
for weak C1-continuous Mortar Method�. In: In preparation (2020).

Finally, we would like to mention two papers co-authored by the author but not
included in this thesis:

� [15] F. Calabrò, G. Loli, G. Sangalli, and M. Tani. �Quadrature Rules in the Iso-
geometric Galerkin Method: State of the Art and an Introduction to Weighted
Quadrature�. In: Advanced Methods for Geometric Modeling and Numerical
Simulation. Ed. by Carlotta Giannelli and Hendrik Speleers. Cham: Springer
International Publishing, 2019, pp. 43�55.

� [51] G. Loli, M. Montardini, G. Sangalli, and M. Tani. �An e�cient solver for
space�time isogeometric Galerkin methods for parabolic problems�. In: Comput-
ers & Mathematics with Applications 80.11 (2020). High-Order Finite Element
and Isogeometric Methods 2019, pp. 2586 �2603. issn: 0898-1221.

The �rst one is focused on an e�cient method for assembling matrices related to
isogeometric analysis, while the second one deals with e�cient solution of parabolic
problems, approximated with smooth splines in both space and time.

https://arxiv.org/abs/2007.14343
https://arxiv.org/abs/2007.14343
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Chapter 2

Preliminaries

This �rst chapter is devoted to �x the notation and present some preliminary results
which will be useful in what follows. In particular, we recall the de�nitions of B-splines
and isogeometric spaces for both single patch and multipatch domain. Finally, we also
report the main properties of the Kronecker product.

2.1 B-splines

Given two positive integers p and m, consider an open knot vector

Ξ := {ξ1, . . . , ξm+p+1}

such that

ξ1 = . . . = ξp+1 < ξp+2 ≤ . . . ≤ ξm < ξm+1 = . . . = ξm+p+1,

where interior repeated knots are allowed with maximum multiplicity p+1. Without
loss of generality, we assume ξ1 = 0 and ξm+p+1 = 1. From the knot vector Ξ, B-
spline functions of degree p are de�ned following the well-known Cox-De Boor recursive
formula: we start with piecewise constants (p = 0):

ˆ︁bi,0(ζ) = {︃ 1 if ξi ≤ ζ < ξi+1,
0 otherwise,

and for p ≥ 1 the B-spline functions are de�ned by the recursion

ˆ︁bi,p(ζ) = ζ − ξi
ξi+p − ξi

ˆ︁bi,p−1(ζ) +
ξi+p+1 − ζ

ξi+p+1 − ξi+1

ˆ︁bi+1,p−1(ζ),

with the convention 0/0 = 0. Each B-spline ˆ︁bi,p depends only on p + 2 knots, which
are collected in the local knot vector

Ξi,p := {ξi, . . . , ξi+p+1},

is non-negative and supported in the interval [ξi, ξi+p+1]. Moreover, these B-spline
functions constitute a partition of unity, that is

m∑︂
i=1

ˆ︁bi,p(x) = 1, ∀x ∈ (0, 1). (2.1)

The univariate spline space is de�ned as

ˆ︁Sh = ˆ︁Sh([0, 1]) := span{ˆ︁bi,p}mi=1,
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0 0.2 0.4 0.6 0.8 1
0

1

Figure 2.1: Example of cubic B-spline basis de�ned on the open knot
vector Ξ = {0, 0, 0, 0, 0.2, 0.4, 0.6, 0.8, 0.8, 0.8, 1, 1, 1, 1}.

where h denotes the maximal mesh-size, and corresponds to piecewise polynomials of
degree p with p−mi continuous derivatives at the point ξi, wheremi is the multiplicity
of the knot ξi in the knot vector Ξ. We assume that the maximum multiplicity of the
internal knots is less than or equal to the degree p, i.e., the B-spline functions are at
least continuous. Finally, we remark that B-splines are not in general interpolatory:
they are interpolatory at knots ξi with multiplicity at least p, that is where B-splines
are at most C0. An example of B-splines is given in Figure 2.1. For brevity, the degree
p is not always reported in the notation. For more details on B-splines properties see
[18, 19].

Multivariate B-splines are de�ned from univariate B-splines by tensorization. Let
d be the space dimension and consider open knot vectors Ξk = {ξk,1, . . . , ξk,m+p+1}
and a set of multi-indices I := {i = (i1, . . . , id) : 1 ≤ il ≤ m}. For each multi-index
i = (i1, . . . , id), we introduce the d-variate B-spline,ˆ︁Bi(ζ) := ˆ︁b[Ξi1,p](ζ1) . . .

ˆ︁b[Ξid,p](ζd).

Observe that, for the sake of simplicity, the knot vectors are assumed to have the same
length and the degree is the same in all directions. The support of each multivariate
basis function is

Q′
i := supp( ˆ︁Bi) =

d∏︂
k=1

[ξk,ik , ξk,ik+p+1].

For notational convenience, we de�ne the index set for mesh elements

Ie := {(j1, . . . , jd) : 1 ≤ jl ≤ m+ p+ 1},

Qj :=

d∏︂
k=1

[ξk,jk , ξk,jk+1], j ∈ Ie (2.2)

and

Ij := {i ∈ I : int(Qj ∩Q′
i) ̸= ∅}. (2.3)

The corresponding spline space is de�ned as

ˆ︁Sh = ˆ︁Sh([0, 1]
d) := span {Bi : i ∈ I} ,
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where h is the maximal mesh-size in all knot vectors, that is

h := max
1≤k≤d

1≤i≤m+p+1

{|ξk,i+1 − ξk,i|}.

Assumption 1. We assume that the knot vectors are quasi-uniform, that is, there
exists α > 0, independent of h, such that each non-empty knot span (ξk,i, ξk,i+1) ful�ls
αh ≤ ξk,i+1 − ξk,i, for 1 ≤ k ≤ d.

A family of linear functionals {ˆ︁φi}i∈I is called a dual basis for the set of tensor-
product B-splines ˆ︁Sh if it veri�es

ˆ︁φi( ˆ︁Bj) = δij,

where δij is the Kronecker delta.

Theorem 1. [65, Theorem 12.5] There exists a dual basis and a positive constant C,
independent of h, satisfying

|ˆ︁φi(ˆ︁u)| ≤ Ch−
d
2 ∥ˆ︁u∥L2(Q′

i)
, ∀ ˆ︁u ∈ L2((0, 1)d) and ∀ i ∈ I.

2.2 Isogeometric space on a single patch domain

Now, we consider a single patch domain Ω ⊂ Rd, given by a d-dimensional spline
parametrization F , that is

Ω = F (ˆ︁Ω), with F (ξ) =
∑︂
i

Ci
ˆ︁Bi(ξ),

where Ci are the control points and ˆ︁Bi are tensor-product B-spline basis functions
de�ned on the parametric patch ˆ︁Ω := (0, 1)d. We require that F is an invertible map.
Further assumptions will be speci�ed in Assumption 2. Following the isoparametric
paradigm, the isogeometric basis functions Bi are de�ned as Bi = ˆ︁Bi ◦ F−1. Thus,
the isogeometric space on Ω is de�ned as

Sh = Sh(Ω) := span
{︂
Bi := ˆ︁Bi ◦ F−1 : i ∈ I

}︂
.

Corollary 1. The family {φi}i∈I, de�ned as

φi(u) := ˆ︁φi(u ◦ F), ∀ i ∈ I,

is a dual basis for Sh. Moreover, there exists a positive constant C, independent of h,
satisfying

|φi(u)| ≤ Ch−
d
2 ∥u∥L2(F(Q′

i))
, ∀u ∈ L2(Ω) and ∀ i ∈ I.

Proof. The inequality is obtained from Theorem 1 by a standard change of variables.

Proposition 1. There exists a positive constant C, independent of h and p, such that

∥u∥L2(F (Qi)) ≤ Ch
d
2 max

j∈Ii
|φj(u)|, ∀u ∈ L2(Ω) and ∀ i ∈ Ie.
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Proof. Using the extension to d-variate isogeometric functions of the partition of unity
property (2.1), it holds

∥u∥2L2(F (Qi))
=

∫︂
F (Qi)

⎛⎝∑︂
i∈Ii

φi(u)Bi

⎞⎠2

≤
∫︂
F (Qi)

⎛⎝max
j∈Ii

|φj(u)|
∑︂
j∈Ii

Bi

⎞⎠2

= |F (Qi)|max
j∈Ii

|φj(u)|2 ≤ Chdmax
j∈Ii

|φj(u)|2.

By introducing a co-lexicographical reordering of the basis functions, with a minor
abuse of notation we will also write in what follows

Sh = span {Bi : i ∈ I} = span {Bi}Ndof

i=1 . (2.4)

2.3 Isogeometric spaces on a multipatch domain

We follow the notation of [72]. A multipatch domain Ω ⊂ Rd is an open set, de�ned
as the union of Npatch subdomains,

Ω =

Npatch⋃︂
r=1

Ω(r), (2.5)

where the subdomains Ω(r) = F (r)(ˆ︁Ω) are referred to as patches and are assumed
to be disjoint. Each F (r) is a di�erent spline parametrization. In the following,
the superindex (r) will identify entities that refer to Ω(r). Then, following the same
construction as above, we introduce, for each patch Ω(r), B-spline spaces

ˆ︁S(r)
h := span

{︂ ˆ︁B(r)
i : i = 1, . . . , N

(r)
dof

}︂
and isogeometric spaces

S(r)
h := span

{︂
B

(r)
i : i = 1, . . . , N

(r)
dof

}︂
.

We assume for simplicity that the degree p is the same for all patches. For the
de�nition of the isogeometric space in the whole Ω, we further impose continuity at
the interfaces between patches, that is

Vh :=
{︂
v ∈ C0(Ω) : v|Ω(r) ∈ S(r)

h for r = 1, . . . , Npatch

}︂
. (2.6)

To construct a basis for space Vh, we introduce a suitable conformity assumption. For
all r, s ∈ {1, . . . , Npatch}, with r ̸= s, let Γrs = ∂Ω(r) ∩ ∂Ω(s) be the interface between
the patches Ω(r) and Ω(s).

Assumption 2. We assume:

1. Γrs is either a vertex or the image of a full edge or the image of a full face for
both parametric domains.

2. For each B
(r)
i ∈ S(r)

h such that supp(B
(r)
i ) ∩ Γrs ̸= ∅, there exists a function

B
(s)
j ∈ S(s)

h such that B
(r)
i |Γrs = B

(s)
j |Γrs .
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We de�ne, for each patch Ω(r), an application

G(r) : {1, . . . , N (r)
dof} → J = {1, . . . ,dim(Vh)},

in such a way that G(r)(i) = G(s)(j) if and only if Γrs ̸= ∅ and B
(r)
i |Γrs = B

(s)
j |Γrs .

Moreover, we de�ne, for each global index l ∈ J , the set of pairs Jl := {(r, i) :
G(r)(i) = l}, which collects the local indices of patchwise contributions to the global
function, and the scalar

nl := #Jl, (2.7)

that expresses the patch multiplicity for the global index l. Furthermore, let

Nadj := max{nl : l ∈ J } (2.8)

be the maximum number of adjacent patches (i.e., whose closure has non-empty in-
tersection). We de�ne, for each l ∈ J , the global basis function

Bl(x) :=

{︄
B

(r)
i (x) if x ∈ Ω(r) and (r, i) ∈ Jl,

0 otherwise,
(2.9)

which is continuous due to Assumption 2. Then

Vh = span{Bl : l ∈ J }. (2.10)

The set {Bl : l ∈ J } where Bl is de�ned as in (2.9), represents a basis for Vh. Finally,
we also introduce the index set J (r) ⊂ J such that l ∈ J (r) if and only if l = G(r)(i)

for some i. Clearly #J (r) = N
(r)
dof and J (r) can be used directly as index set for ˆ︁S(r)

h

and S(r)
h , with minor abuse of notation.

2.4 Kronecker product

The Kronecker product between two matrices A ∈ Cn1×n2 and B ∈ Cn3×n4 is de�ned
as

A⊗B :=

⎡⎢⎣ [A]1,1B . . . [A]1,n2B
...

. . .
...

[A]n1,1B . . . [A]n1,n2B

⎤⎥⎦ ∈ Cn1n3×n2n4 ,

where the ij-th entry of the matrix A is denoted by [A]i,j . The most important
properties of the Kronecker product that we will exploit in this work are the following:

� if A, B, C and D are matrices of conforming order, then it holds

(A⊗B) · (C⊗D) = (AC)⊗ (BD); (2.11)

� if A and B are non-singular, then

(A⊗B)−1 = A−1 ⊗B−1. (2.12)

Finally, we recall that the matrix-vector product can be e�ciently computed for a
matrix that has a Kronecker product structure. For this purpose we de�ne, for m =
1, . . . , d, the m-mode product ×m of a tensor X ∈ Cn1×···×nd with a matrix M ∈
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Ck×nm as a tensor of size n1 × · · · × nm−1 × k × nm+1 × . . . nd whose elements are

[X×m M]i1,...,id =

nm∑︂
j=1

[X]i1,,...,im−1,j,im+1...,id [M]im,j .

Then, given Mi ∈ Cki×ni for i = 1, . . . , d, it holds

(Md ⊗ · · · ⊗M1) vec (X) = vec (X×1 M1 ×2 · · · ×d Md) , (2.13)

where the vectorization operator �vec� applied to a tensor stacks its entries into a
column vector as

[vec(X)]j = [X]i1,...,id ,

for il = 1, . . . , nl, l = 1, . . . , d and

j = i1 +

d∑︂
k=2

[︂
(ik − 1)Πk−1

l=1 nl

]︂
.

For more details on Kronecker product we refer to [47].
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Chapter 3

Preconditioning of the

Isogeometric Mass Matrix

The focus of this chapter is the solution of the linear systems associated with the
isogeometric Galerkin mass matrix, for arbitrary degree and continuity of the spline
approximation. In particular, we want to cover the case of high-degree and high-
continuity spline approximation (the so-called isogeometric k-re�nement) whose ad-
vantages are explored in, e.g., [27, 71, 61, 67, 11, 63]. Solving the mass matrix system
is needed, for example:

� in explicit dynamic simulation, that is, when an explicit �nite di�erence schemes
in time is coupled to an isogeometric discretization in space, see e.g. [33]

� in PDE-constrained optimization problem [9]

� when the mass matrix is used as a smoother in a multigrid solver [39, 38]

� when the mass matrix is used as a preconditioner for the Schur complement of
the Stokes problem [26]

� in general, when evaluations of L2-projections are needed, for example in nearly-
incompressible elasticity with the B̄�F̄ method [25], or in the mortar method
for multipatch gluing [12], or in other applications like fast simulation of tumor
evolution [53].

Due to the condition number of the mass matrix, that grows exponentially with
respect to the spline degree (see [29]), �nding e�cient solvers is not a trivial task
unless we are in the low degree case.

One of the �rst ideas that have been explored is to use collocation instead of a
Galerkin formulation, since in this case the mass matrix (that is, the B-spline collo-
cation matrix) is easier to invert (see [28, 2] and the references therein).

If we stay with the Galerkin formulation, the classical strategy of lumping and
then inverting the mass matrix lacks accuracy and, as a preconditioner for an iter-
ative solver, lacks robustness with respect to the spline degree. There are instead
ad hoc constructions of sparse and approximated inverse of the mass matrix, see for
example [68], or biorthogonal bases, see [76], designed with the aim of keeping ac-
curacy. Approximated inverses or preconditioners of the mass matrix often use one
key feature of multivariate splines: the tensor-product construction. Indeed ˆ︂M, the
Galerkin mass matrix on the reference patch [0, 1]d, is a Kronecker matrix of the form

ˆ︂M = ˆ︂Md ⊗ . . .⊗ˆ︂M1, (3.1)

where the ˆ︂Mi are unidimensional parametric mass matrices. Inverting ˆ︂M above only
requires the inversion of the factors ˆ︂Mi. However, on a generic patch, due to the
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geometry mapping, the structure above is lost, that is, the true isogeometric mass
matrix M we are interested in is not a Kronecker matrix like ˆ︂M. One could use ˆ︂M as
a preconditioner for M, but, depending on the geometry parametrization of the patch,
the results are not always satisfactory. Then, [30] developed an extension of (3.1)
that better approximate M and is suitable for a fast application, see also [75] for its
parallel implementation. Another possibility is to seek for a low-rank approximation
of M, that is, approximate M as a sum of Kronecker matrices, see [55, 54, 37]. The

recent paper [16] constructs an approximation ofM−1 as ˆ︂M−1Mdet(DF )−1ˆ︂M−1, where
Mdet(DF )−1 is a suitable weighted mass.

In our work, we also propose and study a preconditioner M of the Galerkin mass
matrix. The main feature of our approach is that, compared to previous results, it is
very easy to implement but also extremely e�cient and robust. On a single patch, we
de�ne M as D

1
2 ˆ︁D− 1

2ˆ︂Mˆ︁D− 1
2D

1
2 , where D and ˆ︁D are the diagonal matrices made with

the diagonals of the true mass M and parametric mass ˆ︂M, respectively. Therefore,
we approximate M by the Kronecker ˆ︂M combined with a symmetric diagonal scaling.
The computational cost of one application of the preconditioner is then just O(pNdof)
FLOPS, while each matrix-vector multiplication with M requires O(pdNdof) FLOPS,
where p is the spline degree and Ndof is the number of degrees of freedom. For
multipatch domains, we combine the preconditioner above on each patch with an
Additive Schwarz method. We prove the robustness of the preconditioner with respect

to the mesh size and, in the single patch case, we also show that κ(M− 1
2MM− 1

2 ) → 1
when h → 0. Our numerical benchmarks show that the preconditioned problem
behaves well also for large p and even in the case of typical singular parametrizations
of the computational domain, which is a case not covered by the theory.

The rest of this chapter is organized as follows. In Section 3.1 we describe the
proposed preconditioner on a single patch domain and we prove its h-robustness,
while in Section 3.2 we generalize it to multipatch domains by means of the Additive
Schwarz theory. We show how to e�ciently apply the preconditioner and analyze its
computational cost in Section 3.3. In Section 3.4 we report numerical results assessing
the e�ectiveness of the proposed preconditioner, its good behaviour with respect to
p and in case of singular parametrizations, and compare with the approach of [16].
Concluding remarks are wrapped up in Section 3.5.

3.1 Mass preconditioner on a patch

In this section we propose a preconditioner for the Galerkin mass matrix associated
to a single patch domain, denoted Ω, that is

[M]i,j =

∫︂
ˆ︁Ω ˆ︁Bi

ˆ︁Bj |det(DF )|. (3.2)

Generalizing, we will consider

[M]i,j =

∫︂
ˆ︁Ω ˆ︁Bi

ˆ︁Bjω (3.3)

for a weight ω that ful�ls the following assumption.

Assumption 3. We assume ω ∈ C0([0, 1]d) and ω(x) > 0, for all x ∈ [0, 1]d.

Let
ωmin = min

x∈[0,1]d
ω(x),
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that, thanks to Assumption 3, is strictly positive. Furthermore, thanks to Heine-
Cantor theorem, the function ω is uniformly continuous, that is there exists a non-
decreasing µ : [0,∞) → [0,∞) such that

|ω(x1)− ω(x2)| ≤ µ(|x1 − x2|), ∀x1,x2 ∈ ˆ︁Ω (3.4)

and

lim
t→0+

µ(t) = 0. (3.5)

As a preconditioner for the mass matrix M, de�ned in (3.3), we consider

M := D
1
2 ˆ︁D− 1

2ˆ︂Mˆ︁D− 1
2D

1
2 , (3.6)

where

[ˆ︂M]i,j :=

∫︂
ˆ︁Ω ˆ︁Bi

ˆ︁Bj , ˆ︁D := diag
(︂ˆ︂M)︂ , D := diag (M) . (3.7)

From now on, given u ∈ Sh, we will denote by u the vector containing the coordinates
of u with respect to spline basis.

Lemma 1. There exist a constant ˆ︁C > 0, independent of h, such that

ˆ︁Chd ≤ λmin(ˆ︂M) ≤ λmax(ˆ︂M) ≤ hd, (3.8)

where λmax(ˆ︂M) and λmin(ˆ︂M) are the maximum and minimum eigenvalue of ˆ︂M.

Proof. Recalling Assumption 1, from the classical result [20, Theorem 5.1-5.2], for
d = 1 we get

αh

4(p+ 1)39p

m∑︂
i=1

v2i ≤
⃦⃦⃦⃦
⃦

m∑︂
i=1

viˆ︁bi,p(x)
⃦⃦⃦⃦
⃦
2

L2(0,1)

≤ h
m∑︂
i=1

v2i

The bounds (3.8) follow by tensorization and applying the Courant-Fischer theorem.

Corollary 2. Under Assumption 3, there exist two positive constants C1, C2, inde-
pendent of h, such that

C1h
d ≤ λmin(M) ≤ λmax(M) ≤ C2h

d. (3.9)

Proof. We observe that

λmin(M) = min
v ̸=0

vTMv

vTv
= min

v ̸=0

∫︁ˆ︁Ω (︂∑︁Ndof

i=1 vi
ˆ︁Bi

)︂2
ω

vTv

≥ min
v ̸=0

∫︁ˆ︁Ω (︂∑︁Ndof

i=1 vi
ˆ︁Bi

)︂2
vTv

inf
x∈ˆ︁Ωω(x) = λmin(ˆ︂M) inf

x∈ˆ︁Ωω(x)
and similarly

λmax(M) = max
v ̸=0

vTMv

vTv
≤ λmax(ˆ︂M) sup

x∈ˆ︁Ωω(x).
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Thanks to Assumption 3, ω is bounded from below and above by two positive constants
ωmin and ωmax, thus exploiting Lemma 1, we obtain the thesis with C1 = ωmin

ˆ︁C and
C2 = ωmax.

Remark 1. Thanks to Courant-Fischer theorem, the last inequality in (3.9) can be
rewritten as follows

∥u∥2L2(Ω) ≤ C2h
d
∑︂
i∈I

|φi(u)|2, ∀u ∈ Sh, (3.10)

where {φi}i∈I denotes the dual basis introduced in Corollary 1.

Corollary 3. Under Assumption 3, there exist two positive constants ˜︁C1, ˜︁C2, inde-
pendent of h, such that

˜︁C1h
d ≤ λmin(M) ≤ λmax(M) ≤ ˜︁C2h

d.

Proof. It holds

λmin(M) = λmin(D
1
2 ˆ︁D− 1

2ˆ︂Mˆ︁D− 1
2D

1
2 ) ≥ λmin(D)λmin(ˆ︂M)λmin(ˆ︁D−1)

=
λmin(D)λmin(ˆ︂M)

λmax(ˆ︁D)

(3.11)

and similarly

λmax(M) ≤ λmax(D)λmax(ˆ︂M)

λmin(ˆ︁D)
(3.12)

Having that the matrices D and ˆ︁D are diagonal, their eigenvalues correspond to their
diagonal entries. We have

[D]i,i = [M]i,i = eTi Mei and [ˆ︁D]i,i = [ˆ︂M]i,i = eTi
ˆ︂Mei,

where ei denotes the i-th vector of the standard basis. Thus, it holds

λmin(M) ≤ [D]i,i ≤ λmax(M) and λmin(ˆ︂M) ≤ [ˆ︁D]i,i ≤ λmax(ˆ︂M). (3.13)

In this way, equation (3.11) becomes

λmin(M) ≥ λmin(M)λmin(ˆ︂M)

λmax(ˆ︂M)
, (3.14)

while equation (3.12) becomes

λmax(M) ≤ λmax(M)λmax(ˆ︂M)

λmin(ˆ︂M)
. (3.15)

Combining (3.11) and (3.14) with Lemma 1 and Corollary 2, it follows that there
exists a constant ˜︁C1, independent of h, such that

λmin(M) ≥ ˜︁C1h
d.

Similarly, thanks to (3.12) and (3.15), there exists a constant ˜︁C2, independent of h,
such that

λmax(M) ≤ ˜︁C2h
d.
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By using the de�nition

κ(A) :=
λmax(A)

λmin(A)
, (3.16)

for a symmetric, positive de�nite matrix A, the following result holds.

Theorem 2. Under Assumption 3, there exists a constant C, independent of h, such
that

κ(M− 1
2MM− 1

2 ) ≤ C.

Proof. Recalling Courant-Fischer theorem, it follows

λmin(M− 1
2MM− 1

2 ) = min
v ̸=0

vTMv

vTMv
≥ λmin(M)

λmax(M)

and similarly

λmax(M− 1
2MM− 1

2 ) = max
v ̸=0

vTMv

vTMv
≤ λmax(M)

λmin(M)
.

The thesis follows from Corollary (2), Corollary (3) and from (3.16).

The previous result can be improved as follows.

Theorem 3. Under Assumption 3, it holds

lim
h→0

κ(M− 1
2MM− 1

2 ) = 1. (3.17)

Proof. Recalling Courant-Fischer theorem, it follows

λmin(M− 1
2MM− 1

2 ) = min
v ̸=0

vTMv

vTMv

= min
w ̸=0

wTD− 1
2 ˆ︁D 1

2Mˆ︁D 1
2D− 1

2w

wTˆ︂Mw
= min

w ̸=0

wT˜︂Mw

wTˆ︂Mw

(3.18)

and similarly

λmax(M− 1
2MM− 1

2 ) = max
w ̸=0

wT˜︂Mw

wTˆ︂Mw
, (3.19)

where we have de�ned ˜︂M := D− 1
2 ˆ︁D 1

2Mˆ︁D 1
2D− 1

2 .
The entries of the matrix ˜︂M can be rewritten as

[˜︂M]i,j = [D− 1
2 ˆ︁D 1

2Mˆ︁D 1
2D− 1

2 ]i,j =
∥ˆ︂Bi∥L2(ˆ︁Ω)

∥ˆ︂Bj∥L2(ˆ︁Ω)

∥√ωˆ︂Bi∥L2(ˆ︁Ω)
∥√ωˆ︂Bj∥L2(ˆ︁Ω)

∫︂
ˆ︁Ω ωˆ︂Bi

ˆ︂Bj .

We observe that for all i ∈ {1 . . . , Ndof}, it holds

[˜︂M]i,i =
∥ˆ︂Bi∥2L2(ˆ︁Ω)

∥√ωˆ︂Bi∥2
L2(ˆ︁Ω)

∫︂
ˆ︁Ω ωˆ︂Bi

2
= ∥ˆ︂Bi∥2L2(ˆ︁Ω)

= [ˆ︂M]i,i.
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Let us now consider i, j ∈ {1 . . . , Ndof}, with i ̸= j. From equation (3.4), it follows

ω(x1) ≤ ω(x2) + µ(|x1 − x2|), ∀x1,x2 ∈ ˆ︁Ω.
As a consequence, by observing that diam

(︂
supp(ˆ︂Bi) ∩ supp(ˆ︂Bj)

)︂
≤ h(p+ 1)

√
d, for

all i, j = 1, . . . , Ndof with i ̸= j, and denoting

xij := argmin
{︂
ω(x) : x ∈ supp(ˆ︂Bi) ∩ supp(ˆ︂Bj)

}︂
,

we obtain

ω(xij)

∫︂
ˆ︁Ω ˆ︁Bi

ˆ︁Bj ≤
∫︂
ˆ︁Ω ω ˆ︁Bi

ˆ︁Bj ≤
(︂
ω(xij) + µ(h(p+ 1)

√
d)
)︂∫︂

ˆ︁Ω ˆ︁Bi
ˆ︁Bj . (3.20)

Similarly, for all i, j = 1, . . . , Ndof with i ̸= j and such that
supp(ˆ︂Bi) ∩ supp(ˆ︂Bj) ̸= ∅, it holds

ω(xij)∥ˆ︂Bi∥L2(ˆ︁Ω)
∥ˆ︂Bj∥L2(ˆ︁Ω)

≤ ∥√ωˆ︂Bi∥L2(ˆ︁Ω)
∥√ωˆ︂Bj∥L2(ˆ︁Ω)

≤
(︂
ω(xij) + µ(h(p+ 1)

√
d)
)︂
∥ˆ︂Bi∥L2(ˆ︁Ω)

∥ˆ︂Bj∥L2(ˆ︁Ω)
.
(3.21)

Thus, by combining inequalities (3.20) and (3.21), we have the following bounds for

the entries of ˜︂M:

[˜︂M]i,j =
∥ˆ︂Bi∥L2(ˆ︁Ω)

∥ˆ︂Bj∥L2(ˆ︁Ω)

∥√ωˆ︂Bi∥L2(ˆ︁Ω)
∥√ωˆ︂Bj∥L2(ˆ︁Ω)

∫︂
ˆ︁Ω ωˆ︂Bi

ˆ︂Bj

≤ω(xij) + µ(h(p+ 1)
√
d)

ω(xij)

∫︂
ˆ︁Ω ˆ︁Bi

ˆ︁Bj ,

[˜︂M]i,j =
∥ˆ︂Bi∥L2(ˆ︁Ω)

∥ˆ︂Bj∥L2(ˆ︁Ω)

∥√ωˆ︂Bi∥L2(ˆ︁Ω)
∥√ωˆ︂Bj∥L2(ˆ︁Ω)

∫︂
ˆ︁Ω ωˆ︂Bi

ˆ︂Bj

≥ ω(xij)

ω(xij) + µ(h(p+ 1)
√
d)

∫︂
ˆ︁Ω ˆ︁Bi

ˆ︁Bj .

(3.22)

Having de�ned

σ :=
µ(h(p+ 1)

√
d)

ωmin
,

we observe that
lim
h→0

σ = 0 (3.23)

and

ω(xij) + µ(h(p+ 1)
√
d)

ω(xij)
= 1 +

µ(h(p+ 1)
√
d)

ω(xij)
≤ 1 + σ,

ω(xij)

ω(xij) + µ(h(p+ 1)
√
d)

= 1− µ(h(p+ 1)
√
d)

ω(xij) + µ(h(p+ 1)
√
d)

≥ 1− σ.

(3.24)

Collecting (3.2), (3.22) and (3.24), we can bound the entry-wise distance between the

matrices ˜︂M and ˆ︂M as follows

− σ[ˆ︂M]i,j ≤ [˜︂M]i,j − [ˆ︂M]i,j ≤ σ[ˆ︂M]i,j . (3.25)
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For all w ̸= 0, it holds

wT˜︂Mw

wTˆ︂Mw
=

wT (˜︂M+ˆ︂M−ˆ︂M)w

wTˆ︂Mw
= 1 +

wT (˜︂M−ˆ︂M)w

wTˆ︂Mw
. (3.26)

Exploiting equation (3.25), it follows

sup
w ̸=0

wT (˜︂M−ˆ︂M)w

wTˆ︂Mw
= sup

w ̸=0

∑︁N
i,j=1wiwj([˜︂M]i,j − [ˆ︂M]i,j)

wTˆ︂Mw

≤ sup
w ̸=0

∑︁N
i,j=1 |wiwj ||[˜︂M]i,j − [ˆ︂M]i,j |

wTˆ︂Mw

≤ sup
w ̸=0

σ
∑︁N

i,j=1 |wiwj |[ˆ︂M]i,j

wTˆ︂Mw

≤ σ
supw ̸=0

|w|T [ˆ︂M]|w|
wTw

infw ̸=0
wT [ˆ︂M]w
wTw

≤ σ
λmax(ˆ︂M)

λmin(ˆ︂M)

(3.27)

where, in the last step, we have used the property that

sup
|w|Tˆ︂M|w|

wTw
= sup

wTˆ︂Mw

wTw
,

where indeed the last sup is obtained for a w with non-negative entries, due to the
fact that ˆ︂M has non-negative entries. Similarly

inf
w ̸=0

wT (˜︂M−ˆ︂M)w

wTˆ︂Mw
≥ inf

w ̸=0

−σ∑︁N
i,j=1 |wiwj |[ˆ︂M]i,j

wTˆ︂Mw
(3.28)

≥ −σ sup
w ̸=0

∑︁N
i,j=1 |wiwj |[ˆ︂M]i,j

wTˆ︂Mw
≥ −σλmax(ˆ︂M)

λmin(ˆ︂M)
. (3.29)

From (3.26), (3.27) and (3.28) we get

1− σκ(ˆ︂M) ≤ wT˜︂Mw

wTˆ︂Mw
≤ 1 + σκ(ˆ︂M), ∀w ̸= 0. (3.30)

Finally, combining Lemma 1, (3.16), (3.5), (3.18), (3.19), (3.23) and (3.30) we obtain

lim
h→0

κ(M− 1
2MM− 1

2 ) ≤ lim
h→0

1 + Cσ

1− Cσ
= 1.

Remark 2. By applying Theorem 3 to the constant coe�cient mass matrix (3.2), if
we assume that F ∈ C1([0, 1]d) and that det(DF ) > 0 for all x ∈ [0, 1]d, then the
preconditioned matrix ful�ls (3.17).

Remark 3. Theorem 3 states that if we de�ne

µ(h) := κ(M− 1
2MM− 1

2 )− 1,

then µ(h) = o(1) as h → 0. Clearly, the function µ may depend on other parame-
ters beside the mesh size, in particular it may depend on the spline degree p and the
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parametrization F . However, in all problems considered in Section 3.4 our numerical
tests indicate that µ is linear with respect to p and mildly depends on F , even when
the geometry parametrization is singular.

3.2 Mass preconditioner on multipatch domain

We now turn to examine a preconditioner for the mass matrix arising from multipatch
domains, that is

[M]i,j =

∫︂
Ω
BiBj , Bi, Bj ∈ {Bl : l ∈ J }, (3.31)

where Ω is formed by the union of patches Ω(r), see de�nition (2.5). We combine the
single patch preconditioner, introduced in (3.6), with an Additive Schwarz method.
Let us de�ne a family of local spaces

V
(r)
h := span

{︂
Bl : l ∈ J (r)

}︂
, r = 1, . . . , Npatch, (3.32)

with J (r) de�ned as in Section 2.3. Therefore, V
(r)
h is the subspace of Vh spanned

by the B-splines basis function whose support intersect Ω(r). Moreover, following

the notation of [69], we consider restriction operators R(r) : Vh → V
(r)
h with r =

1, . . . , Npatch, de�ned by

R(r)

(︄∑︂
l∈J

ulBl

)︄
=
∑︂

l∈J (r)

ulBl.

Their transpose, in the basis representation, R(r)T : V
(r)
h → Vh correspond, in our

case, to the inclusion of V
(r)
h into Vh. We denote with R(r) and R(r)T the rectangular

matrices associated to R(r) and R(r)T , respectively. From now on, given u(r) ∈ V
(r)
h ,

we will denote by u(r) the vector of its coordinates with respect to the basis {Bl :

l ∈ J (r)} and de�ne the family of bilinear forms a(r) : V
(r)
h × V

(r)
h → R, for r =

1, . . . , Npatch, as

a(r)(u(r), v(r)) := v(r)TM(r)u(r), u(r), v(r) ∈ V
(r)
h , (3.33)

with

M(r) := D(r)
1
2 ˆ︁D(r)−

1
2ˆ︂M(r) ˆ︁D(r)−

1
2 D(r)

1
2 , (3.34)

where we have set

[ˆ︂M(r)]i,j :=

∫︂
ˆ︁Ω ˆ︁B(r)

i
ˆ︁B(r)
j , ˆ︁D(r) := diag

(︂ˆ︂M(r)
)︂
, D(r) := diag

(︂
M(r)

)︂
, (3.35)

with the assumption that the basis functions { ˆ︁B(r)
i }N

(r)
dof

i=1 and {B(r)
i }N

(r)
dof

i=1 are ordered
as described at the end of Section 2.3. We underline that the bilinear forms {a(r)}
are symmetric and positive de�nite. The Additive Schwarz Preconditioner (inverse)
is de�ned as

M−1
ad :=

Npatch∑︂
r=1

R(r)TM(r)−1
R(r). (3.36)
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The following Lemma follows straightforwardly from [69, Theorem 2.7] and pro-
vides a bound on the condition number of the multipatch mass matrix (3.31) precon-
ditioned by (3.36).

Lemma 2. Let the following three hypothesis be satis�ed:

� (Stable Decomposition) There exists a constant CSD > 0, such that every u ∈ Vh
admits a decomposition

u =

Npatch∑︂
r=1

u(r), with u(r) ∈ V
(r)
h ,

that satis�es
Npatch∑︂
r=1

a(r)(u(r), u(r)) ≤ CSD∥u∥2L2(Ω).

� (Strengthened Cauchy-Schwarz Inequalities) There exist constants 0 ≤ ϵrs ≤ 1,
for 1 ≤ r, s ≤ Npatch, such that

|(u(r), u(s))L2(Ω)| ≤ ϵrs∥u(r)∥L2(Ω)∥u(s)∥L2(Ω),

for u(r) ∈ V
(r)
h and u(s) ∈ V

(s)
h .

� (Local Stability) There exists CLS > 0, such that for all r = 1, . . . , Npatch,

∥u(r)∥2L2(Ω) ≤ CLSa
(r)(u(r), u(r)), ∀u(r) ∈ V

(r)
h .

Then the condition number of the preconditioned operator satis�es

κ

(︃
M− 1

2
ad

MM− 1
2

ad

)︃
≤ CSDCLSρ(E),

where ρ (E) represents the spectral radius of the matrix E = {ϵrs}.
Assumption 4. Let F (r) ∈ C1([0, 1]d) and assume that for all x ∈ [0, 1]d, det(DF (r)) >
0, for all r = 1, . . . , Npatch.

We are now able to present the main result of this section.

Theorem 4. Under Assumption 4, there exists a constant C, independent of h and
Nadj, verifying

κ

(︃
M− 1

2
ad

MM− 1
2

ad

)︃
≤ CN2

adj,

where Nadj, de�ned in (2.8), denotes the maximum number of adjacent patches.

Proof. We show that the hypothesis of Lemma 2 hold with CSD and CLS independent
of h and ρ(E) ≤ Nadj.

Part I: Stable Decomposition. The argument we use is similar to the one pre-
sented in [73, Lemma 4.1]. Given u ∈ Vh, with

u =
∑︂
l∈J

ulBl,



20 Chapter 3. Preconditioning of the Isogeometric Mass Matrix

we de�ne u(r) ∈ V
(r)
h as

u(r) :=
∑︂

l∈J (r)

ul
nl
Bl, r = 1, . . . , Npatch,

where nl is de�ned in (2.7). It is straightforward to see that

Npatch∑︂
r=1

u(r) = u.

Recalling de�nitions (3.33), (3.34) and (3.35) and introducing

[M(r)]i,j :=

∫︂
Ω(r)

B
(r)
i B

(r)
j ,

we have

Npatch∑︂
r=1

a(r)(u(r), u(r)) =

Npatch∑︂
r=1

u(r)TM(r)u(r)

=

Npatch∑︂
r=1

u(r)TM(r)u(r)

u(r)TM(r)u(r)
u(r)TM(r)u(r)

≤
Npatch∑︂
r=1

u(r)TM(r)u(r)

u(r)TM(r)u(r)
∥u(r)|Ω(r)∥2L2(Ω(r))

≤
(︄

max
r=1,...,Npatch

u(r)TM(r)u(r)

u(r)TM(r)u(r)

)︄Npatch∑︂
r=1

∥u(r)|Ω(r)∥2L2(Ω(r))
.

(3.37)

Combining Corollary 2 and Corollary 3, we obtain a constant Cmax, independent of
h, such that

u(r)TM(r)u(r)

u(r)TM(r)u(r)
≤ Cmax, ∀u(r) ∈ V

(r)
h , ∀r = 1, . . . , Npatch. (3.38)

By observing that nl ≥ 1, for all l, it follows⃓⃓⃓⃓
ul
nl

⃓⃓⃓⃓
≤ |ul|

and thus ⃓⃓⃓
φi(u

(r)

|Ω(r))
⃓⃓⃓
≤
⃓⃓⃓
φi(u|Ω(r))

⃓⃓⃓
, ∀i ∈ I(r), (3.39)

where {φi}i∈I(r) denotes the dual basis introduced in Corollary (1), relative to the iso-
geometric space de�ned on the patch Ω(r). Using Corollary 1, (3.39) and (3.10) in the
patch Ω(r) and the adjacent ones Ω(s), there exist constants C1, C2, C3, independent
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of h and Nadj, such that

∥u(r)∥2
L2(Ω(r))

≤ C1h
d
∑︂
i∈I(r)

φi(u
(r))2 ≤ C1h

d
∑︂
i∈I(r)

φi(u|Ω(r))2

≤ C2

∑︂
i∈I(r)

∥u|Ω(r)∥2
L2(F (r)(Q′

i))
≤ C3∥u∥2L2(Ω(r))

Finally, summing over all r ∈ {1, . . . , Npatch}, it holds

Npatch∑︂
r=1

∥u(r)∥2
L2(Ω(r))

≤ C3∥u∥2L2(Ω). (3.40)

Combining (3.37), (3.38) and (3.40), we obtain

CSD ≤ C3Cmax. (3.41)

Part II: Strengthened Cauchy-Schwarz Inequalities. Cauchy-Schwarz inequal-
ity, assures us that ϵrs ≤ 1, for all 1 ≤ r, s ≤ Npatch. Furthermore, for each
r ∈ {1, . . . Npatch}, there are at most Nadj indices s ∈ {1, . . . Npatch} such that there
exists two basis functions Bl1 ∈ {Bl : l ∈ J (r)} and Bl2 ∈ {Bl : l ∈ J (s)} with
supp(Bl1) ∩ supp(Bl2) ̸= ∅. As a consequence, in every row of the matrix E = {ϵrs}
there are at most Nadj non-zero entries. Combining these facts, we can conclude that
the spectral radius of E satis�es:

ρ (E) ≤ Nadj. (3.42)

Part III: Local Stability. Using (3.10) in the patch Ω(r) and the adjacent ones
Ω(s), there exists a constant C, independent of h and Nadj, such that

∥u(r)∥2L2(Ω) =
∑︂

s :Ω(r)∩Ω(s) ̸=∅

∥u(r)|Ω(s)∥2L2(Ω(s))

≤ CNadjh
d
∑︂
i∈I(r)

(u
(r)
i )2 = CNadjh

d(u(r))Tu(r).

It holds

hd(u(r))Tu(r) = hd
(u(r))T (u(r))

(u(r))TM(r)u(r)
(u(r))TM(r)u(r)

≤ hd

λmin(M(r))
a(r)(u(r), u(r)).

(3.43)

Using (3.43) and Corollary 3, �nally yields local stability:

∥u(r)∥2L2(Ω) ≤ CNadja
(r)(u(r), u(r)), (3.44)

with another constant C, independent of h and Nadj.
Finally, by applying Lemma 2 with the estimates provided in (3.41), (3.42) and

(3.44), we obtain that there exists a constant C, independent of h, verifying

κ

(︃
M− 1

2
ad MM− 1

2
ad

)︃
≤ CN2

adj.
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3.3 Preconditioners application and cost

The mass matrices and the preconditioners introduced in this paper are symmetric
and positive de�nite. We then adopt the Preconditioned Conjugate Gradient method
(PCG) to solve the associated linear systems. For evaluating the computational cost of
PCG, we recall that for each iteration, the two most expensive steps are: the solution of
a linear system associated to the preconditioner and the computation of the residual,
through a matrix-vector with M. We recall that all the univariate matrices have
dimension m. Then, the single patch mass matrix has dimension Ndof = md, while
for the multipatch one we have Ndof ≈ Npatchm

d.

3.3.1 Single patch preconditioner

The application of the single patch preconditioner is the solution of a linear system
associated to

M = D
1
2 ˆ︁D− 1

2ˆ︂Mˆ︁D− 1
2D

1
2 .

Thanks to (2.11), it holds

ˆ︁D = diag(ˆ︂Md ⊗ · · · ⊗ˆ︂M1) = ˆ︁Dd ⊗ · · · ⊗ ˆ︁D1,

where we have set ˆ︁Di = diag(ˆ︂Mi), for i = 1, . . . , d, and

ˆ︁D− 1
2ˆ︂Mˆ︁D− 1

2 = ˆ︁D− 1
2

d
ˆ︂Md

ˆ︁D− 1
2

d ⊗ · · · ⊗ ˆ︁D− 1
2

1
ˆ︂M1

ˆ︁D− 1
2

1 .

By exploiting (2.12), the inverse of M may be expressed as

M−1 =
(︂
D

1
2 ˆ︁D− 1

2ˆ︂Mˆ︁D− 1
2D

1
2

)︂−1

= D− 1
2

(︃ˆ︁D− 1
2

d
ˆ︂Md

ˆ︁D− 1
2

d

)︃−1

⊗ · · · ⊗
(︃ˆ︁D− 1

2
1
ˆ︂M1

ˆ︁D− 1
2

1

)︃−1

D− 1
2 .

Therefore, the solution of a linear system associated to M can be summarized as
follows.

Algorithm 1 Single patch

1: Assemble the matrices ˆ︁D− 1
2

i
ˆ︂Mi
ˆ︁D− 1

2
i , for i = 1, . . . , d.

2: Compute the diagonal scaling ˜︁z = D− 1
2z.

3: Solve the linear system

(︃ˆ︁D− 1
2

d
ˆ︂Md

ˆ︁D− 1
2

d ⊗ · · · ⊗ ˆ︁D− 1
2

1
ˆ︂M1

ˆ︁D− 1
2

1

)︃ ˜︁y = ˜︁z.
4: Compute the diagonal scaling y = D− 1

2 ˜︁y.
Step 1 represents the preconditioner setup. The matrices ˆ︁D− 1

2
i
ˆ︂Mi
ˆ︁D− 1

2
i need to be

constructed only once, before starting the PCG solver. The overall cost of this step
is C(p)dm FLOPs, where C(p) denotes a constant that depends on p and depends on

how the matrices ˆ︂Mi are computed: Gauss quadrature is the least e�cient approach
and in such a case C(p) = O(p3). However this cost can be considered negligible in
practice (for examples, in all the tests we present in Section 3.4, where p≪ m), since
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m = N
1/d
dof and Steps 2-4 have a cost which is proportional to Ndof. Furthermore,

Steps 2-4 need to be performed at each iteration. Both Steps 2 and 4 consist in the
product of a diagonal matrix by a vector, thus their cost is 2Ndof FLOPs. Thanks to
(2.13) and recalling that univariate mass matrices are symmetric banded matrices with
bandwidth p, Step 3 costs roughly 2d(2p + 1)Ndof = O(pNdof) FLOPs. To sum up,
we get that the application of Algorithm 1 requires roughly 2 (d(2p+ 1) + 1)Ndof =
O(pNdof) FLOPs. We emphasize that the cost of our preconditioner is proportional
to Ndof, and depends linearly with respect to p. Moreover, this cost is even smaller
than that required for the residual computation PCG (or any iterative solver). Indeed,
having in mind that the computational cost of a matrix-vector product is twice the
number of non-zero entries of that matrix and that for the isogeometric mass matrix
this number is at most (2p+1)dNdof, it follows that the residual computation requires
2(2p+ 1)dNdof = O(pdNdof) FLOPs.

3.3.2 Multipatch preconditioner

The application of M−1
ad , provided in (3.36), involves, for r ∈ {1, . . . , Npatch}, the ap-

plication of the operators R(r) and R(r)T , whose cost is negligible, and the application

of
(︂
M(r)

)︂−1
, whose cost has been analyzed in the previous section. In conclusion,

the cost of application of M−1
ad is O(p

∑︁Npatch

r=1 N
(r)
dof) = O(pNdof).

3.4 Numerical Tests

In this section we show the performance of the preconditioners presented in this paper.
In our simulations, we consider only sequential executions and we force the use of
a single computational thread in a Intel Core i7-5820K processor, running at 3.30
GHz and with 64 GB of RAM. All the tests are performed with Matlab R2015a and
GeoPDEs toolbox [70]. The linear system is solved by PCG, with tolerance equal
to 10−8 and with the null vector as initial guess. We denote by nsub the number
of subdivisions, which are the same in each parametric direction and in each patch.
Moreover, we underline that we only consider splines of maximal regularity. The
symbol �*� denotes the impossibility of formation of the matrix M, due to memory
requirements.

For assessing the performance of the preconditioners, we consider the problem of
�nding the L2-projection of a given function f , on di�erent domains, see Figures 3.1
and 3.2. For bidimensional problems, the given function is
f(x, y) = cos(πx) cos(πy), while for the tridimensional ones, we have set
f(x, y, z) = cos(πx) cos(πy) cos(πz).

3.4.1 Single Patch domains

As examples of regularly parametrized single patch domains, we consider a bidimen-
sional kite and a tridimensional blade (see Figures 3.1a and 3.2a). For the kite domain,
we compute the condition number of the unpreconditioned and preconditioned mass
matrix for di�erent values of h and p and report them in Tables 3.1 and 3.2, re-
spectively. By comparing these numbers, we can see that the condition number is
dramatically reduced by our preconditioning strategy. In particular, as predicted by
Theorem 3, the condition number of preconditioned matrices converges to 1 as the
mesh-size h goes to 0. Tables 3.3 and 3.4 show the number of iterations and com-
putation time spent by PCG for the kite and the blade domain, respectively. We
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(a) Kite. (b) Multipatch Star.

(c) Holed plate. (d) Multipatch Disc.

(e) Disc with one singularity. (f) Disc with four singularities.

Figure 3.1: Bidimensional domains.
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(a) Blade. (b) Multipatch Fan.

Figure 3.2: Tridimensional domains.

nsub p = 2 p = 3 p = 4 p = 5 p = 6

16 5.540 · 102 2.980 · 103 1.673 · 104 9.892 · 104 6.106 · 105
32 7.040 · 102 4.063 · 103 2.435 · 104 1.523 · 105 9.853 · 105
64 8.150 · 102 4.929 · 103 3.082 · 104 2.002 · 105 1.340 · 106
128 8.900 · 102 5.536 · 103 3.555 · 104 2.366 · 105 1.617 · 106

Table 3.1: Condition number of mass matrix for kite.

emphasize that the number of iterations is always very low and even decreases when
h is reduced.

The case of singularly parametrized domains is beyond the theory of Section 3.1
(Assumption 3 does not hold). Nevertheless, we test numerically this situation on
three examples: a holed plate with a singular point in the top left vertex (see Figure
3.1c); a disc with a singularity in the center (Figure 3.1e) and a disc with four singu-
larities on the boundary (Figure 3.1f). In all the three examples the condition number
is always close to 1 and, even though it does not converge to 1 as in the non-singular
case, it does not grow as h goes to 0. Accordingly, the number of PCG iterations is
very low (see Tables 3.6, 3.8 and 3.10).

We are interested in studying the dependence on p of the condition number
of the preconditioned system. For this purpose, we follow Remark 3 and de�ne

µ := κ
(︂
M− 1

2MM− 1
2

)︂
− 1. For all the problems considered so far, the numerical

results show that µ grows roughly linearly with respect to p. This phenomenon can
be clearly seen in Figure 3.3a. The crucial consequence of this fact is that the number
of PCG iterations is almost independent of p. This is con�rmed by the results already
shown in Tables 3.3, 3.4, 3.6, 3.8 and 3.10.

We now compare our preconditioner M as de�ned in (3.6) with the preconditioner

nsub p = 2 p = 3 p = 4 p = 5 p = 6

16 1.056 1.077 1.103 1.129 1.157

32 1.034 1.047 1.062 1.078 1.094

64 1.019 1.027 1.035 1.045 1.054

128 1.010 1.015 1.019 1.024 1.030

Table 3.2: Condition number of preconditioned mass matrix for kite.
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nsub p = 2 p = 3 p = 4 p = 5 p = 6

16 4 / 0.00134 4 / 0.00141 4 / 0.00152 4 / 0.00167 4 / 0.00184

32 3 / 0.00191 3 / 0.00203 3 / 0.00225 4 / 0.00316 4 / 0.00352

64 3 / 0.00465 3 / 0.00525 3 / 0.00578 3 / 0.00675 3 / 0.00812

128 3 / 0.0155 3 / 0.0181 3 / 0.0213 3 / 0.0255 3 / 0.0310

Table 3.3: Iterations and time spent by PCG for kite.

nsub p = 2 p = 3 p = 4 p = 5 p = 6

16 6 / 0.0137 6 / 0.0315 6 / 0.0654 6 / 0.137 7 / 0.274

32 5 / 0.0821 5 / 0.154 5 / 0.299 5 / 0.608 6 / 1.27

64 4 / 0.499 4 / 1.01 4 / 1.75 4 / 3.49 4 / 6.37

Table 3.4: Iterations and time spent by PCG for blade.

nsub p = 2 p = 3 p = 4 p = 5 p = 6

16 1.692 1.861 2.018 2.173 2.330

32 1.696 1.866 2.024 2.177 2.330

64 1.699 1.869 2.028 2.182 2.334

128 1.700 1.871 2.029 2.184 2.336

Table 3.5: Condition number of preconditioned mass matrix for
holed plate.

nsub p = 2 p = 3 p = 4 p = 5 p = 6

16 6 / 0.00181 7 / 0.00227 7 / 0.00248 7 / 0.00275 7 / 0.00311

32 6 / 0.00335 6 / 0.00370 6 / 0.00414 6 / 0.00466 6 / 0.00528

64 5 / 0.00734 6 / 0.00968 6 / 0.0108 6 / 0.0124 6 / 0.0151

128 5 / 0.0250 5 / 0.0287 5 / 0.0343 5 / 0.0405 5 / 0.0488

Table 3.6: Iterations and time spent by PCG for holed plate.

nsub p = 2 p = 3 p = 4 p = 5 p = 6

16 1.093 1.170 1.249 1.323 1.395

32 1.090 1.159 1.230 1.305 1.381

64 1.082 1.148 1.212 1.276 1.339

128 1.077 1.140 1.200 1.259 1.317

Table 3.7: Condition number of preconditioned mass matrix for disc
with one singularity.

nsub p = 2 p = 3 p = 4 p = 5 p = 6

16 5 / 0.00156 5 / 0.00172 5 / 0.00192 6 / 0.00259 5 / 0.00259

32 4 / 0.00198 5 / 0.00274 5 / 0.00305 5 / 0.00355 5 / 0.00416

64 4 / 0.00435 4 / 0.00498 5 / 0.00693 5 / 0.00815 5 / 0.00951

128 4 / 0.0125 4 / 0.0146 4 / 0.0175 4 / 0.0220 5 / 0.0330

Table 3.8: Iterations and time spent by PCG for disc with one sin-
gularity.
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nsub p = 2 p = 3 p = 4 p = 5 p = 6

16 1.167 1.252 1.350 1.459 1.575

32 1.161 1.241 1.341 1.450 1.564

64 1.158 1.237 1.338 1.447 1.559

128 1.156 1.236 1.336 1.444 1.556

Table 3.9: Condition number of preconditioned mass matrix for disc
with four singularities.

nsub p = 2 p = 3 p = 4 p = 5 p = 6

16 5 / 0.00157 5 / 0.00172 6 / 0.00203 6 / 0.00229 6 / 0.00245

32 5 / 0.00282 5 / 0.00310 5 / 0.00329 5 / 0.00368 6 / 0.00478

64 4 / 0.00575 4 / 0.00648 5 / 0.00858 5 / 0.00983 5 / 0.0117

128 4 / 0.0191 4 / 0.0223 4 / 0.0264 4 / 0.0315 4 / 0.0378

Table 3.10: Iterations and time spent by PCG for disc with four
singularities.

proposed by Chan and Evans in [16], that we denote byMCE . This preconditioner has
some similarity with the one we propose and, moreover, is one of the best performing
to our knowledge. The application of MCE is, by de�nition, a multiplication by

M−1
CE = ˆ︂M−1Mdet(DF )−1ˆ︂M−1,

where Mdet(DF )−1 is a weighted mass matrix as (3.3) with ω = det(DF )−1. Table
3.11 reports on the condition number of the preconditioned mass matrix, by M and
MCE . For a more in-depth analysis of the e�ciency of the two methods, we need
to consider that one iteration of MCE-PCG costs roughly as two iterations of M-
PCG. This is because in the latter case the cost is concentrated in the matrix-vector
product with M and the solution of a system with ˆ︂M, while in the former case two
such products (one with M and one with Mdet(DF )−1) and two such solutions are
needed.

It is well-known that when Conjugate Gradient (CG) is used to solve a linear
system Ax = b, with A symmetric and positive de�nite, it holds

∥ek∥A
∥e0∥A

≤ 2

(︄√︁
κ (A)− 1√︁
κ (A) + 1

)︄k

, k = 1, 2, . . . ,

where ek is the error relative to the k−th iteration, and ∥ek∥A :=
√︂

eTkAek for k ≥ 0.

Thus, at each iteration of CG , the upper bound on the relative error is reduced by a
factor

q (A) :=

√︁
κ (A)− 1√︁
κ (A) + 1

< 1.

In our case, A is the preconditioned mass matrix. Then, we use this principle in
order to compare the e�ectiveness of M and MCE . Since one iteration of MCE-

PCG costs twice as one iterations of M-PCG, we compare q(M− 1
2

CEMM− 1
2

CE) with
the factor by which the error bound is reduced after 2 iterations of M-PCG, which

is q(M− 1
2MM− 1

2 )2. The results are shown in Table 3.12. In all cases, the bound-
reducing factor is signi�cantly small, con�rming that both approaches lead to fast
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domain κ(M− 1
2

CEMM− 1
2

CE) κ(M− 1
2MM− 1

2 )

kite 1.049 1.157

blade 1.202 1.538

holed plate 1.051 1.216

disc (e) 3.652 1.395

disc (f) 3.185 1.575

Table 3.11: Condition number of preconditioned mass matrix for
nsub = 16 and p = 6: comparison between M and MCE .

domain q(M− 1
2

CEMM− 1
2

CE) q(M− 1
2MM− 1

2 )2

kite 1.20 · 10−2 1.33 · 10−3

blade 4.60 · 10−2 1.15 · 10−2

holed plate 1.24 · 10−2 2.39 · 10−3

disc (e) 3.13 · 10−1 6.89 · 10−3

disc (f) 2.82 · 10−1 1.28 · 10−2

Table 3.12: Comparison between q(M− 1
2

CEMM− 1
2

CE) and

q(M− 1
2MM− 1

2 )2 for nsub = 16 and p = 6.

solvers, with an advantage for M in all the considered problems and especially in the
case of the singular parametrizations considered.

3.4.2 Multipatch domains

Finally, in order to evaluate the performance of our Additive Schwarz preconditioner,
we consider three domains: a multipatch �ve-pointed star (Figure 3.1b), a multipatch
disc (Figure 3.1d) and a multipatch fan (Figure 3.2b), obtained by gluing together 7
blade-shaped patches like the one represented in Figure 3.2a.

As in the single patch case, we compare the condition number of the original mass
matrix (Tables 3.13 and 3.16) with that of the preconditioned one (Tables 3.14 and
3.17). In all cases, the preconditioner greatly reduces the condition number of the
matrix, robustly with respect to h. Moreover, the growth of the condition number
with respect to the spline degree p seems to be linear (see Figure 3.3b). This is
re�ected also in the number of iterations needed by PCG to reach the given tolerance,
see Tables 3.18 and 3.19.

3.5 Conclusions

In this chapter, we have presented a simple and e�cient preconditioner for mass
matrices arising in isogeometric analysis. The main idea for the single patch case is to

nsub p = 2 p = 3 p = 4 p = 5 p = 6

16 1.326 · 102 9.994 · 102 6.848 · 103 4.611 · 104 3.160 · 105
32 1.503 · 102 1.156 · 103 8.104 · 103 5.565 · 104 3.845 · 105
64 1.618 · 102 1.258 · 103 8.935 · 103 6.217 · 104 4.351 · 105

Table 3.13: Condition number of mass matrix for multipatch star.
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nsub p = 2 p = 3 p = 4 p = 5 p = 6

16 39.69 48.05 56.17 64.03 71.62

32 39.80 48.23 56.42 64.32 71.95

64 39.86 48.33 56.55 64.48 72.13

Table 3.14: Condition number of preconditioned mass matrix for
multipatch star.

nsub p = 2 p = 3 p = 4 p = 5 p = 6

16 13 / 0.0111 14 / 0.0134 14 / 0.0145 15 / 0.0175 15 / 0.0198

32 12 / 0.0251 12 / 0.0276 13 / 0.0320 13 / 0.0375 14 / 0.0488

64 10 / 0.0647 12 / 0.0892 12 / 0.102 12 / 0.119 12 / 0.141

128 9 / 0.221 11 / 0.303 11 / 0.348 11 / 0.393 12 / 0.502

Table 3.15: Iterations and time spent by PCG for multipatch star.

nsub p = 2 p = 3 p = 4 p = 5 p = 6

16 2.098 · 102 1.550 · 103 1.049 · 104 7.007 · 104 4.761 · 105
32 2.585 · 102 1.970 · 103 1.374 · 104 9.360 · 104 6.399 · 105
64 2.949 · 102 2.291 · 103 1.637 · 104 1.143 · 105 7.994 · 105

Table 3.16: Condition number of mass matrix for multipatch disc.

nsub p = 2 p = 3 p = 4 p = 5 p = 6

16 13.88 16.02 18.03 19.92 21.70

32 13.99 16.16 18.18 20.08 21.87

64 14.06 16.24 18.28 20.18 21.98

Table 3.17: Condition number of preconditioned mass matrix for
multipatch disc.

nsub p = 2 p = 3 p = 4 p = 5 p = 6

16 14 / 0.0125 15 / 0.0147 17 / 0.0180 17 / 0.0203 18 / 0.0240

32 14 / 0.0310 15 / 0.0365 16 / 0.0424 17 / 0.0513 17 / 0.0617

64 14 / 0.0995 14 / 0.114 16 / 0.145 16 / 0.170 16 / 0.196

128 14 / 0.380 14 / 0.421 15 / 0.496 16 / 0.606 16 / 0.704

Table 3.18: Iterations and time spent by PCG for multipatch disc.

nsub p = 2 p = 3 p = 4 p = 5 p = 6

16 12 / 0.205 13 / 0.436 13 / 0.844 14 / 1.96 15 / 3.76

32 10 / 1.11 10 / 2.04 12 / 4.50 12 / 9.02 12 / 16.0

64 9 / 7.70 9 / 13.2 10 / 27.7 * *

Table 3.19: Iterations and time spent by PCG for multipatch fan.
In the cases denoted by �*�, we were not able to assemble the mass

matrix due to memory limitations.
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Figure 3.3: Condition number of preconditioned mass matrix
(nsub = 64).

exploit the Kronecker product structure of parametric mass matrix on the reference
domain, combined with a diagonal scaling to correctly incorporate the e�ect of the
geometry parametrization. In order to deal with multipatch domains, we have used
the single patch strategy in an Additive Schwarz preconditioner. The preconditioner
has an application cost of O(pNdof) FLOPs, and is well suited for parallelization. We
have proved that the single-patch preconditioner converges, as the mesh-size h goes
to 0, to the exact mass, and that robustness with respect to h is preserved in the
multipatch case. Numerical tests re�ect the theoretical results and show a very good
behaviour also with respect to the spline degree p.
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Chapter 4

Explicit high-order generalized-α
methods

Chung and Hulbert in [17] introduced the generalized-α method for solving hyperbolic
equations arising in structural dynamics. The method has second-order accuracy in
time, unconditional stability and user-control on the high-frequency numerical dissi-
pation. Consequently, the method has been widely used for various applications. In
[21], Behnoudfar, Calo and Deng propose a k-step form of the generalized-α method
that delivers 2k accuracy in time for problems of second derivatives in time. The main
idea of their generalization is to add higher-order terms as the residuals obtained by
solving auxiliary systems as well as adopting higher-order terms in Taylor expansions
used in the generalized-α method. More precisely, to gain 2k-th order of accuracy,
they build an algorithm that consists of 3k equations. For each set of three equations,
it is solved a system for a variable while other two variables are updated explicitly. For
applying explicit generalized-α method in combination with isogeometric discretiza-
tion in space, at each time step we need to solve a linear system associated to the
isogeometric mass matrix. The resolution of this linear systems could require a con-
siderable computational e�ort, especially if we deal with splines of high degree. In this
chapter, we combine the explicit fourth-order generalized-α method with the precon-
ditioners presented in Chapter 3, which is very easy to implement but also extremely
e�cient and robust.

The structure of this chapter is as follows. In Section 4.1 we introduce the model
problem and its spatial discretization. In Section 4.2 we recall the de�nition of the
classical generalized-α method and its extension to the fourth-order accuracy. Fi-
nally, in Section 4.3 we present some numerical results assessing the accuracy of the
generalized-α method and the performance of the preconditioner for both single patch
and multipatch spatial domains.

4.1 Problem Statement

We start with a initial boundary-value hyperbolic problem that can describe a struc-
tural dynamics as⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ü(x, t)−∆u(x, t) + C (u̇(x, t)) = f(x, t), (x, t) ∈ Ω× (0, T ],

u(x, t) = uD, x ∈ ∂Ω,

u(x, 0) = u0, x ∈ Ω,

u̇(x, 0) = v0, x ∈ Ω.

(4.1)

Let Ω = (0, 1)d ⊂ Rd, d = 1, 2, 3, an open bounded domain. The operator ∆ denotes

Laplacian and superscript dot shows derivative with respect to time as u̇(x, t) = ∂u(x,t)
∂t
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and ü(x, t) = ∂2u(x,t)
∂t2

. C (u̇(x, t)) denotes a linear function of damping. The source
f , the initial data u0, v0, and the Dirichlet boundary condition uD are given and
assumed regular enough so that the problem admits a weak solution.
To solve (4.1), we �rst obtain a semi-discretized problem by considering spatial dimen-
sions. Then, we deploy our explicit generalized-α method to have a fully discretized
system.

4.1.1 Spatial discretization

We adopt an isogeometric method for the spatial discretization. For this aim we
consider a �nite-dimensional spline space Vh on Ω as in 2.2 or 2.3, depending on
if Ω is a single patch or multipatch domain. We multiply the hyperbolic equation
(4.1) with a su�ciently regular test function w ∈ Vh, integrate over Ω, and apply the
divergence theorem to obtain the the semi-discretised form of the continuous problem
as: �nd uh(t) = uh(·, t) ∈ Vh for t > 0, such that

(üh, wh) + (∇uh,∇wh) = (f, wh), ∀wh ∈ Vh, (4.2)

where (·, ·) is the L2 scalar product. Besides, we approximate u(x, t) for each �xed
t by a function that belongs to Vh denoted by uh(x, t). We consider the variational
formulation (4.2) with u0,h = uh(·, 0) and u̇0,h = u̇h(·, 0) being the L2-projection of
u0 and v0 in Vh, respectively.
Then, one can obtain the matrix form of the discrete problem (4.2) as:

MÜ + CU̇ +KU = F, (4.3)

where M , C, and K are the mass, damping, and sti�ness matrices, respectively. U
denotes the vector of the unknowns, and F is the source vector. The initial conditions
also read:

U(0) = U0, V (0) = V0, (4.4)

where U0 and V0 are the given vectors of initial conditions u0,h and u̇0,h, respectively.
In the next section, we present the numerical technique to deal with the time derivative
Ü and U̇ in (4.3) with accuracy of order 2k in the temporal domain with k ∈ N.

4.1.2 Time-discretization

To obtain a fully discretized description of the (4.2), we require to adopt an appropriate
time integrator to deal with üh. For this aim, one can consider the discretization of
the temporal domain and then choose an appropriate algorithms including implicit
or explicit families. In the next section, we propose our novel high-order explicit
generalized-α method.

4.2 Explicit generalized-α method

We start introducing the method by taking into account a partitioning of the time
interval [0, T ] with a grid size τ : 0 = t0 < t1 < · · · < tN = T and approximating
U(tn), U̇(tn), Ü(tn) using Un, Vn, An, respectively. To solve (4.3) at time-step n + 1,
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the explicit generalized-α method with second-order of accuracy in time reads:

MAn+αm + CVn +KUn = Fn+αf
(4.5a)

Vn+1 = Vn + τAn + τγJAnK (4.5b)

Un+1 = Un + τVn +
τ2

2
An + τ2βJAnK, (4.5c)

where we have set

Fn+αf
= F (tn+αf

)

An+αm = An + αmJAnK.
(4.6)

with

JAnK = An+1 −An.

To retrieve the unknown A at the initial state, we solve

A0 =M−1(F0 −KU0). (4.7)

Plugging (4.6) into (4.5) results in the method which consists of two steps. Firstly, we
solve an explicit system to �nd JAnK. Then, apply the result to the (4.5b) and (4.5c)
to update Vn+1 and Un+1, respectively. We continue this approach until we �nd the
solutions at the �nal time step.
In the method introduced in (4.5), the order of accuracy in time is controlled by
the truncation errors of O(τ3) applied to the system by the Taylor expansion used
to derive the formulations (for more details, see [17]). To overcome this limitations,
assuming su�cient regularity in the time dimension, we exploit a Taylor expansion
with higher-order terms. For this aim, let La(·) denotes the a-th order derivative in
time operator. Therefore, for example, to derive a fourth-order explicit generalized-α
method, we propose an approach based on solving

MAα1
n + CVn +KUn = Fn+αf1

ML3(Aα2
n ) + CL2(An) +KL1(An) = L3(Fn+αf2

),
(4.8)

with updating conditions

Un+1 = Un + τVn +
τ2

2
An +

τ3

6
L1(An) +

τ4

24
L2(An) +

τ5

120
L3(An) + β1τ

2Pn

Vn+1 = Vn + τAn +
τ2

2
L1(An) +

τ3

6
L2(An) +

τ4

24
L3(An) + γ1τPn

L1(An+1) = L1(An) + τL2(An) +
τ2

2
L3(An) + τ2β2JL3(An)K

L2(An+1) = L2(An) + τL3(An) + τγ2JL3(An)K,
(4.9)
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where

Pn = An+1 −An − τL1(An)−
τ2

2
L2(An)−

τ3

6
L3(An)

Aα1
n = An + τL1(An) +

τ2

2
L2(An) +

τ3

6
L3(An) + α1Pn

L3(Aα2
n ) = L3(An) + α2JL3(An)K.

(4.10)

Following the approach stated in (4.7), one can readily obtain the initial data of the
unknowns using the given information on U0 and V0 as

A0 =M−1(F0 −KU0)

L1(A0) =M−1(L1(F0)−KV0)

L2(A0) =M−1(L2(F0)−KA0)

L3(A0) =M−1(L3(F0)−KL1(A0)).

In the next section, we discuss the accuracy of the proposed method.

4.2.1 Order of accuracy in time

Herein, we report the conditions on the parameters γ1 and γ2 to guarantee the fourth-
order accuracy of the scheme in the form of (4.8). For the generalization to 2kth-order
we refer to [21]. We have the following result.

Theorem 5. Assuming that the solution is su�ciently smooth with respect to time,
the method in (4.8) is fourth-order accurate in time given

γ1 =
1

2
− αf1 + α1, γ2 =

1

2
− αf2 + α2. (4.11)

Proof. For the proof we refer to [21].

Before closing this section, we should notice that a possible drawback of using
explicit time integrators can be the cost inverting the mass matrix. To overcome this
shortcoming we propose the use of the preconditioner for isogeometric mass matrix
presented in Chapter 3.

4.3 Numerical results

In this section, we provide di�erent numerical results to show the performance of our
method. All the tests are performed with Matlab R2015a and GeoPDEs toolbox [70].
The linear systems are solved by PCG, with tolerance equal to 10−12 and with the
null vector as initial guess. We focus only on the fourth-order in time method and we
restrict our tests to splines of maximal regularity. In this context, for all the numerical
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Figure 4.1: L2(Ω) norm relative error at T = 0.0205 on Ω = [0, 1],
with nsub = 64 and p = 8.

tests we set:

αf1 = 1

αf2 = 0

α1 =
2− ρ(1 + ρ)

(1− ρ)2

α2 =
2 + ρ(1− ρ)

(1 + ρ)2

β1 =
(1 + ρ)3

(1− ρ)(2− ρ(1 + ρ))

β2 =
−5− 7ρ+ ρ2 + 3ρ3

(1 + ρ)2(2− 23ρ+ ρ3)
,

with ρ = 0.8 while γ1 and γ2 are chosen as in Theorem 5.

4.3.1 Convergence of the generalized-α method

For verifying the accuracy of the 4-th order explicit generalized-α method, we solve
(4.1) on Ω = [0, 1], choosing the source term, Dirichlet boundary conditions and initial
conditions such that the exact solution is

u(x, t) = sin(x) [cos(60πt) + sin(60πt)] .

Figure 4.1 con�rms the 4-th order of convergence of our method with respect to τ .

4.3.2 Performance of the preconditioners

In order to analyze the behaviour of the proposed preconditioners, we solve (4.1)
on a regular single patch domain (Figure 4.2a), a singular one (Figure 4.2b) and a
multipatch domain (Figure 4.2c), obtained by gluing together 7 blade-shaped patches
like the one represented in Figure 4.2a. For each of them, source term, Dirichlet
boundary condition and initial conditions are chosen such that the exact solution is
always

u(x1, x2, x3, t) = sin(x1) sin(x2) sin(x3) [cos(20πt) + sin(20πt)] .
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(a) Blade. (b) Donut.

(c) Multipatch Fan.

Figure 4.2: Spatial domains.
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nsub p = 1 p = 2 p = 3 p = 4

8 7.5 10.1 10.2 10.4

16 6.1 8.4 8.4 8.9

32 5.5 6.5 6.5 7.2

64 5.0 5.5 5.5 6.0

Table 4.1: Mean values, across all the time steps, of the iterations
needed by PCG on the Blade, for τ = 10−5 and T = 64 · τ .

nsub p = 1 p = 2 p = 3 p = 4

8 6.0 8.0 9.0 10.0

16 5.0 7.0 8.0 8.0

32 5.0 6.0 7.0 8.0

64 5.3 6.5 7.0 7.8

Table 4.2: Mean values, across all the time steps, of the iterations
needed by PCG on the Donut, for τ = 10−5 and T = 64 · τ .

We report the mean value, across all the time steps, of the number of iterations
needed by PCG for reaching the given tolerance for the three di�erent spatial domains.
Tables 4.1 and 4.3 shows that the number of PCG iterations is always very low and
decreases when the subdivisions are increased. This is true also for the singularly
parametrized Donut domain (see Table 4.2), even though this case is beyond the
robustness result presented in Section 3.1.

Furthermore, for assessing the good behaviour of the isogeometric discretization,
for each spatial domain, we report the relative error in L2(Ω) norm at the �nal instant
T = 6.4 · 10−4 with τ = 10−5 for di�erent mesh size and spline degree. In Figure 4.3,
we can see that the rates of convergence are optimal with respect to the mesh size
h ≈ n−1

sub, i.e. of order O(hp+1), for p = 1, 2, 3, 4, as expected from standard a priori
error estimate.

4.4 Conclusions

In this chapter we have combined an explicit high-order time integrator with an iso-
geometric discretization in space for the solution of an hyperbolic boundary-value
problem. In order to recover computational e�ciency, we have exploited the precon-
ditioning technique presented in Chapter 3. Numerical tests shows that our method
performs very well in terms of both accuracy and computational costs.

nsub p = 1 p = 2 p = 3 p = 4

8 22.5 32.0 37.7 41.9

16 21.0 27.8 30.8 35.6

32 19.0 25.5 27.9 29.9

64 17.0 22.5 26.0 27.5

Table 4.3: Mean values, across all the time steps, of the iterations
needed by PCG on the Donut, for τ = 5 · 10−5 and T = 64 · τ .
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Figure 4.3: L2(Ω) norm relative error at T = 64 · τ with τ = 10−5

for Blade (top-left), Donut (top-right) and Fan (bottom).
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Chapter 5

A projected super-penalty method

for the isogeometric bilaplace

problem

A distinguishing feature of splines is the high regularity achievable by construction,
which allows the approximation of higher-order variational problems directly in their
primal, for instance Kirchho� plates [58, 50], Kirchho�-Love shells [45, 60, 46, 43]
and the Cahn-Hilliard equation [31]. For a detailed review of the method and its
recent applications, the reader is referred to [41, 18, 42], whereas its mathematical
foundations can be found in [5, 72].

Although smoothness is attained naturally within a patch, geometries of engineer-
ing relevance are in general described by multiple patches, where typically the underly-
ing spline representations are non-conforming at the common interface. Clearly, in this
scenario, a direct strong coupling between patches is not straightforward to achieve.
Moreover, as in the scope of this chapter we are interested in the bilaplace problem,
an e�cient strategy to obtain C1-coupling is needed since a global C1-continuity is
required to obtain a well-de�ned bilinear form for the problem at hand. In the litera-
ture, three methods are predominantly used to achieve the latter coupling in a weak
sense and they are summarized in the following.
High-order mortar methods have been studied in [40, 36] in the context of Kirchho�
plates and Kirchho�-Love shells, respectively, and have been extended to a general
Cn-coupling in [23]. For a detailed review in the context of isogeometric analysis, we
refer to the review article [35]. However, mortar methods leads to the formulation of a
saddle point problem, where the associated Lagrange multipliers constitute additional
unknowns to be solved for in the global system of equations.
Nitsche method has been analyzed in [64] for coupling isogeometric Kirchho� plates in
the scope of immersed methods and in [32] for imposing weakly kinematic boundary
conditions for fourth-order PDEs. Although this family of method is less sensitive to
the choice of parameters compared to classical penalty approaches, their formulation
requires additional consistency terms which, in the Kirchho� problem, involve the
computation of derivatives of shape functions up to order three. This adds some extra
steps of complexity in the implementation and increases the overall computational cost
of the coupling strategy.
Finally, penalty methods are widely used in the engineering community due to their
conceptual simplicity, see the seminal work [3]. Furthermore, they can be easily and
e�ciently incorporated into a numerical code, where we refer to [44, 1, 24, 34] for more
insights and some applications in the context of isogeometric Kirchho�-Love shells.
Nonetheless, a major drawback of this approach resides in their lack of robustness
with respect to the choice of penalty parameters. Typically, the choice of penalty
coe�cients is problem-dependent and is based on a time-consuming, heuristic process.
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As noted in [34], on one hand, if the penalty factors are chosen too small the interface
constraint is satis�ed only loosely. On the other hand, if the coe�cients are too high,
the condition number of the resulting system matrix is negatively impacted and the
convergence behaviour is spoiled by spurious locking phenomena.

Our contribution falls into this realm. Inspired by the super-penalty method stud-
ied in [4], our goal is to introduce a simple coupling procedure for the displacement and
rotation �elds, respectively, for non-conforming multi-patch Kirchho� plates, which
preserves the high-order optimal convergence rates achievable by B-splines while mit-
igating the detrimental e�ects related to locking. To alleviate the over-constraint of
the solution space we perform an L2-projection of the penalty terms onto a space of
reduced degree de�ned on the slave side of the coupling interface where, motivated by
the work in [12] for mortar methods, we select a p/p− 2 pairing, where p denotes the
B-splines degree. In particular, starting from the perturbed saddle point formulation
of the bilaplace model problem, we show how the corresponding Lagrange multipliers
can be eliminated from the system and, more importantly, how the perturbation gives
us insights into the optimal choice for the penalty coe�cients. Indeed, the proposed
methodology is truly parameter-free, as the penalty factors are fully determined by
the given physical constants, the geometry and its discretization, i.e. mesh size and
spline degree. We remark that the proposed methodology is especially advantageous
for moderate degrees p = 2, 3, where locking phenomena are particularly pronounced
and the L2-projection proves to be an e�ective and computationally e�cient remedy.
Then, we address the ill-conditioning issues stemming from our choice of super-penalty
parameters. We adapt the block preconditioner based on an inexact Schur Comple-
ment Reduction (SCR) introduced in [48, 49] and we combine it with a preconditioner
tailored to the isogeometric discretization of the bilaplace problem, where we exploit
the tensor product structure of B-splines and an e�cient algorithm for the solution
of the arising Sylvester-like system; for a detailed derivation we refer to [62, 57, 51].
Finally, we show through several numerical benchmarks the optimal convergence prop-
erties of the presented methodology, where our approach does not su�er from locking
also on very coarse meshes. This leads to a substantial improvement in the accuracy
achievable per degree-of-freedom (dof).

The structure of this chapter is as follows. Section 5.1 describes in details the
derivation of the proposed methodology. In Section 5.2 we provide an estimate of the
a priori error and motivates our choice of penalty parameters. In Section 5.3 we discuss
how to actually impose the continuity at the cross-points. Section 5.4 presents the
ideas used in the construction of the preconditioner employed in this work. In Section
5.5 the method is validated on several numerical benchmarks and it is applied to the
analysis of an idealized multi-patch design of an L-bracket. Finally, some conclusions
are drawn in Section 5.6.

5.1 The projected super-penalty method

In this section, we introduce a method which alleviates locking phenomena arising
when coupling non-conforming isogeometric patches. Inspired by the work presented
in [12] in the context of isogeometric mortar methods, the proposed technique is based
on the projection of the coupling terms at the interface, typically de�ned in terms
of the degree p of the solution space, onto a reduced space of B-splines of degree
pred = p− 2 de�ned on the slave side of the interface.
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5.1.1 The strong form of the Kirchho� plate problem

Let us introduce the governing PDE, characterized by the bilaplace di�erential op-
erator, that describes the bending-dominated problem of a Kirchho� plate, following
the notation in [60]. Let us de�ne an open set Ω ⊂ R2 with a su�ciently smooth
boundary ∂Ω, such that the normal vector n to the boundary is well-de�ned (almost)
everywhere. Let us also introduce two admissible splittings of the boundary ∂Ω into
∂Ω = Γu ∪ ΓQ and ∂Ω = Γϕ ∪ ΓM , such that Γu ∩ ΓQ = ∅ and Γϕ ∩ ΓM = ∅,
respectively. Consequently, the strong form of the problem reads:

D∆2u = g in Ω

u = uΓ on Γu

−∇u · n = ϕΓ on Γϕ

νD∆u+ (1− ν)Dn · (∇∇u)n =MΓ on ΓM

D(∇(∆u) + (1− ν)Ψ(u) ) · n = QΓ on ΓQ , (5.1)

where u represents the de�ection of the plate, D its bending sti�ness, ν is the Poisson
ratio, g is the load per unit area in the thickness direction, uΓ, ϕΓ, MΓ and QΓ are
the prescribed de�ection, rotation, bending moments and e�ective shear, respectively.
The bending sti�ness D is de�ned as:

D =
Et3

12(1− ν2)
,

where E is the Young modulus and t denotes the thickness of the plate. For the sake
of simplicity and without loss of generality, these are assumed to be a constant in Ω.
Finally, the di�erential operator Ψ(·) reads:

Ψ(·) =
[︃
∂3(·)
∂x∂2y

,
∂3(·)
∂2x∂y

]︃⊤
.

5.1.2 The multi-patch formulation of the perturbed saddle point

Kirchho� problem

Here, following the notation used in [12], we introduce a decomposition of Ω into N
non-overlapping subdomains Ωi such that:

Ω =
N⋃︂
i=1

Ωi , where Ωi ∩ Ωj = ∅ for i ̸= j .

Now, let us de�ne the interface γk,ℓ between two adjacent patches Ωk,Ωℓ, 1 ≤ k, ℓ ≤ N
as the intersection of their corresponding boundaries:

γk,ℓ = ∂Ωk ∪ ∂Ωℓ .

Then, the skeleton Γ is de�ned as the union of all non-empty interfaces (which we
suppose to be labelled with an index ℓ = 1, . . . , L) and reads:

Γ =
L⋃︂

ℓ=1

γℓ .
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Figure 5.1: Example of two subdomains Ωk,Ωℓ with their coupling
interface γk,ℓ, highlighted in red, and their corresponding normal vec-
tors nk,nℓ. Note that we have separated the subdomains for visual-
ization purposes. For a correct interpretation of the colours, the reader

is referred to the web version of this manuscript.

Consequently, we can denote by uk and nk the value of the primary �eld and the
outward normal on ∂Ωk, and uℓ and nℓ the value of the primary �eld and outward
normal on the neighbouring subdomain ∂Ωℓ, see Figure 5.1 for an example on two
patches. Then, for each interface γk,ℓ we can write the following coupling conditions:

uk − uℓ = 0 on γk,ℓ

∇uk · nk +∇uℓ · nℓ = 0 on γk,ℓ ,

which can be rewritten using the standard jump and normal jump operators, respec-
tively, as:

JuK = 0 on γk,ℓ

J∇uKn = 0 on γk,ℓ . (5.2)

Further, given 1 ≤ s, t ≤ L, s ̸= t, we denote the cross-points by cs,t = γs ∩ γt and we
label them with an ordered index cs, s = 1, . . . , S. For ease of notation and without
loss of generality, in the following we assume the �exural rigidity D to be constant in
Ω and the Poisson ratio ν to be zero. Further, we assume ∂Ω = Γu = Γϕ, that is we
restrict our analysis to the case of fully Dirichlet boundary conditions.

Now, let us introduce for each subdomain Ωi the following space:

H2
⋆ (Ω

i) =

{︃
vi ∈ H2(Ωi) : vi|∂Ω∩∂Ωi =

∂vi

∂n

⃓⃓⃓⃓
∂Ω∩∂Ωi

= 0

}︃
,

from which the following broken Sobolev space can be characterized as:

V =
{︁
v ∈ L2(Ω) : v|Ωi ∈ H2

⋆ (Ω
i), i = 1, . . . , N , v is continuous in cs, s = 1, . . . , S

}︁
,

endowed with the broken norm ∥ · ∥2V =
∑︁N

i=1 ∥ · ∥2H2(Ωi)
. Then, let us also de�ne the

spaces:

H
1
2
⋆ (Γ) = {J∇vKn : v ∈ V }

H
3
2
⋆ (Γ) = {JvK : v ∈ V } ,
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equipped, respectively, with the norms

∥ · ∥2
H

1/2
⋆ (Γ)

=
L∑︂

ℓ=1

∥ · ∥2
H1/2(γℓ)

∥ · ∥2
H

3/2
⋆ (Γ)

=

L∑︂
ℓ=1

∥ · ∥2
H3/2(γℓ)

.

Lastly, we need to introduce the following dual spaces:

Q1 =

[︃
H

3
2
⋆ (Γ)

]︃′
Q2 =

[︃
H

1
2
⋆ (Γ)

]︃′
.

Let u be a smooth function and v ∈ V . Thanks to standard Green's identities, it
holds∫︂
Ω
∆2uv =

N∑︂
i=1

∫︂
Ωi

∆u∆v +
L∑︂

ℓ=1

∫︂
γℓ

(∂n∆uJvK −∆u J∇vKn) =

N∑︂
i=1

∫︂
Ωi

∇(∇u) : ∇(∇v) +
L∑︂

ℓ=1

∫︂
γℓ

(∂n∆uJvK −∆u J∇vKn + ∂ttu J∇vKn − ∂ntu J∇vKt) =

N∑︂
i=1

∫︂
Ωi

∇(∇u) : ∇(∇v) +
L∑︂

ℓ=1

∫︂
γℓ

(∂n∆uJvK −∆u J∇vKn + ∂ttu J∇vKn + ∂nttu JvK) ,

(5.3)

where ∂n and ∂t denotes the normal and the tangential derivative, respectively.
We are now ready to formulate (5.1) as a saddle point problem. Given f ∈ V ′, �nd
(u, λ1, λ2) ∈ V ×Q1 ×Q2 such that:

N∑︂
i=1

∫︂
Ωi

∇(∇u) : ∇(∇v) +
L∑︂

ℓ=1

(︃∫︂
γℓ

JvKλ1 +
∫︂
γℓ

J∇vKn λ2
)︃

= (f, v) ∀v ∈ V

L∑︂
ℓ=1

∫︂
γℓ

JuKµ1 = 0 ∀µ1 ∈ Q1

L∑︂
ℓ=1

∫︂
γℓ

J∇uKn µ2 = 0 ∀µ2 ∈ Q2 .

(5.4)
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We also de�ne three continuous bilinear forms a : V × V → R, b1 : V ×Q1 → R and
b2 : V ×Q2 → R as follows:

a(u, v) =

N∑︂
i=1

∫︂
Ωi

∇(∇u) : ∇(∇v) u, v ∈ V

b1(v, µ1) =
L∑︂

ℓ=1

∫︂
γℓ

JvKµ1 v ∈ V, µ1 ∈ Q1

b2(v, µ2) =
L∑︂

ℓ=1

∫︂
γℓ

J∇vKn µ2 v ∈ V, µ2 ∈ Q2 .

Further, we denote by A : V → V ′, B1 : V → Q′
1 and B2 : V → Q′

2, respectively,
the linear continuous operators associated with a, b1 and b2, namely

⟨Au, v⟩V ′×V = a(u, v) ∀u, v ∈ V

⟨B1v, µ1⟩Q′
1×Q1

=
⟨︁
v,BT

1 µ1
⟩︁
V×V ′ = b1(v, µ1) ∀v ∈ V, ∀µ1 ∈ Q1

⟨B2v, µ2⟩Q′
2×Q2

=
⟨︁
v,BT

2 µ2
⟩︁
V×V ′ = b2(v, µ2) ∀v ∈ V, ∀µ2 ∈ Q2.

For i = 1, 2, we set Ki = kerBi, Hi = kerBT
i and K = K1 ∩K2.

Theorem 6. The following characterization holds:

H2
0 (Ω) = K.

Proof. If v ∈ H2
0 (Ω), then for all ℓ = 1, . . . , L it follows

JuK = J∇uKn = 0 on γℓ.

In particular, it holds

b1(v, µ1) = b2(v, µ2) = 0 ∀µ1 ∈ Q1, ∀µ2 ∈ Q2,

which corresponds to have v ∈ K.
On the other hand, let be v ∈ K, which means

b1(v, µ1) = b2(v, µ2) = 0 ∀µ1 ∈ Q1, ∀µ2 ∈ Q2. (5.5)

We observe that for every v ∈ V , it holds JvK ∈ Q′
1 and J∇vKn ∈ Q′

2. Then (5.5)
implies

b1(v, JvK) =
L∑︂

ℓ=1

∥JvK∥2L2(γℓ) = 0

b2 (v, J∇vKn) =
L∑︂

ℓ=1

∥J∇vKn∥2L2(γℓ) = 0.

Thus, for all ℓ = 1, . . . , L it follows

JuK = J∇uKn = 0 on γℓ,

then we get v ∈ H2
0 (Ω).
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Combining Theorem 6 with generalized Poincaré-Friedrichs inequality, it follows
that there exists a constant CP > 0 such that

CP∥v0∥2V ≤ a(v0, v0), ∀v0 ∈ K.

Further, we are able to prove the coercivity of the bilinear form a in a subspace of V
bigger than K.

Theorem 7. There exists a constant α > 0 such that

α∥v∥2V ≤ a(v, v), ∀v ∈ V0,

where we have set

V0 =

{︃
v ∈ V :

∫︂
γℓ

J∇vKn =

∫︂
γℓ

JvK = 0, l = 1, . . . , L

}︃
.

Proof. First of all, we recall that

a(v, v) =

N∑︂
i=1

∥∂xxv∥2L2(Ωi)
+ ∥∂yyv∥2L2(Ωi)

+ 2∥∂xyv∥2L2(Ωi)
.

We proceed by contradiction. Suppose the thesis does not hold for any constant α > 0.
Then there exists a sequence {vm} ⊂ V0, with ∥vm∥V = 1 for all m ∈ N, such that

1

m
>

N∑︂
i=1

∥∂xxv∥2L2(Ωi)
+ ∥∂yyv∥2L2(Ωi)

+ 2∥∂xyv∥2L2(Ωi)
.

We observe that

lim
m→∞

N∑︂
i=1

∥∂xxvm∥2L2(Ωi)
+ ∥∂yyvm∥2L2(Ωi)

+ 2∥∂xyvm∥2L2(Ωi)
= 0. (5.6)

Thanks to the compact embedding H2(Ωi) ↪→ H1(Ωi), there exists a subsequence,
that with an abuse of notation we still denote by {vm}, such that

vm → v w.r.t. ∥ · ∥H1(Ω) =
N∑︂
k=1

∥ · ∥H1(Ωi).

From (5.6), it follows that {vm} converges in V0, w.r.t. ∥ · ∥V , and ∇v|Ωi
is constant

for all i = 1, . . . , N . To proceed, we consider two di�erent cases:

1. If ∂Ωi ∩ ∂Ω has positive measure, denoting by n and t respectively the normal
and tangent versor to ∂Ωi ∩ ∂Ω, we have

(∇v · n)|∂Ωi∩∂Ω = (∇v · t)|∂Ωi∩∂Ω = 0,

which implies

∇v|∂Ωi∩∂Ω = 0. (5.7)

Combining (5.7) with the fact that ∇v|Ωi
is constant, it follows

∇v|Ωi = 0.
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Further, recalling homogeneous Dirichlet boundary conditions for v, we obtain

v|Ωi = 0.

2. Let Ωi and Ωj be such that γℓ ⊂ ∂Ωi ∩ ∂Ωj , for some l = 1, . . . , L, and let us
assume v|Ωi

= 0. From the continuity at cross-points, we have v|∂γℓ = 0, that
implies ∫︂

γℓ

∇v · t = 0. (5.8)

Moreover, combining the de�nition of V0 with v|Ωi
= 0, it holds∫︂

γℓ

∇v · n =

∫︂
γℓ

J∇vKn = 0. (5.9)

Having ∇v constant on each patch, (5.8) and (5.9) become

∇v|γℓ ·
∫︂
γℓ

n = 0

∇v|γℓ ·
∫︂
γℓ

t = 0. (5.10)

Recalling that γℓ is not a closed path, we obtain that{︃∫︂
γℓ

n,

∫︂
γℓ

t

}︃
form an orthogonal basis of R2. As a consequence, from (5.10) it follows

∇v|γℓ = 0,

which, combined with the fact that ∇vΩj is constant, implies

∇v|Ωj = 0,

Hence v|Ωj is constant and, having∫︂
γℓ

v = 0,

we have v|Ωj = 0.

Starting from a patch Ωi as in the �rst case, iterating the considerations in the second
one for all the remaining patches, we obtain v = 0 on Ω, which is in contradiction to
the fact

lim
n→∞

∥vm∥V = ∥v∥V = 1.
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By construction it holds

Im (B1) = Q′
1

Im (B2|K1) = Q′
2.

Finally, we are in the hypothesis of Appendix A Theorem 11, hence there exists a
unique solution (u, λ1, λ2) of (5.4).

5.1.3 Perturbed saddle point problem

Now, given ε
(ℓ)
1 , ε

(ℓ)
2 > 0, ℓ = 1, . . . , L, we can introduce the singularly perturbed

version of (5.4): given f ∈ V ′, �nd (uε, λ1,ε, λ2,ε) ∈ V × L2(Γ)× L2(Γ), such that

N∑︂
i=1

∫︂
Ωi

∇(∇uε) : ∇(∇v) +
L∑︂

ℓ=1

(︃∫︂
γℓ

JvKλ1,ε +
∫︂
γℓ

J∇vKn λ2,ε
)︃

= (f, v) ∀v ∈ V

L∑︂
ℓ=1

(︃∫︂
γℓ

JuεKµ1 − ε
(ℓ)
1

∫︂
γℓ

λ1,εµ1

)︃
= 0 ∀µ1 ∈ L2(Γ)

L∑︂
ℓ=1

(︃∫︂
γℓ

J∇uεKn µ2 − ε
(ℓ)
2

∫︂
γℓ

λ2,εµ2

)︃
= 0 ∀µ2 ∈ L2(Γ) .

(5.11)

Proposition 2. For all ε
(ℓ)
1 , ε

(ℓ)
2 > 0, there exists a constant ˜︁α > 0 such that

˜︁α∥v∥2V ≤ a(v, v) +
L∑︂

ℓ=1

(︄
1

ε
(ℓ)
1

∥JvK∥2L2(γℓ) +
1

ε
(ℓ)
2

∥J∂nvK∥2L2(γℓ)

)︄
, ∀v ∈ V.

Proof. We proceed by contradiction. Suppose the thesis does not hold for any constant˜︁α. Then there exists a sequence {vm} ⊂ V , with ∥vm∥V = 1 for all m ∈ N, such that

1

m
> a(vm, vm) +

L∑︂
ℓ=1

(︄
1

ε
(ℓ)
1

∥JvmK∥2L2(γℓ) +
1

ε
(ℓ)
2

∥J∂nvK∥2L2(γℓ)

)︄
.

We observe that

lim
m→∞

a(vm, vm) = lim
m→∞

N∑︂
i=1

∥∂xxvm∥2L2(Ωi)
+ ∥∂yyvm∥2L2(Ωi)

+ 2∥∂xyvm∥2L2(Ωi)
= 0

(5.12)

lim
m→∞

L∑︂
ℓ=1

∥JvmK∥2L2(γℓ) = 0 (5.13)

lim
m→∞

L∑︂
ℓ=1

∥J∇vmKn∥2L2(γℓ) = 0. (5.14)
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Thanks to the compact embedding H2(Ωi) ↪→ H1(Ωi), there exists a subsequence,
that with an abuse of notation we still denote by {vm}, such that

vm → v w.r.t. ∥ · ∥H1(Ω) =

N∑︂
k=1

∥ · ∥H1(Ωi).

From (5.12), it follows that {vm} converges in V and ∇v|Ωi is constant. To proceed,
we consider two di�erent cases:

1. If ∂Ωi ∩ ∂Ω has positive measure, homogeneous Dirichlet boundary conditions
imply ∇v|Ωi = 0 and v|∂Ωi = 0.

2. Let be Ωi and Ωj such that γℓ ⊂ ∂Ωi ∩ ∂Ωj , for some ℓ = 1, . . . , L, and let us
assume v|Ωi = 0. From (5.13) and (5.14), it follows v|Ωj

= 0.

Starting from a patch Ωi as in the �rst case, iterating the considerations in the second
one for all the remaining patches, we obtain v = 0 on Ω, which is in contradiction to
the fact

lim
m→∞

∥vm∥V = ∥v∥V = 1.

Combining Proposition 2 with

∥B1v∥L2(Γ) = sup
w∈L2(Γ)

(B1v, w)L2(Γ)

∥w∥L2(Γ)
≥
∑︁L

l=1

∫︁
γℓJvK2

∥JvK∥L2(Γ)
= ∥JvK∥L2(Γ)

∥B2v∥L2(Γ) = sup
w∈L2(Γ)

(B2v, w)L2(Γ)

∥w∥L2(Γ)
≥
∑︁L

l=1

∫︁
γℓ J∇vK2n

∥J∇vKn∥L2(Γ)

= ∥J∇vKn∥L2(Γ) ,

(5.15)

we obtain that for all ε0 > 0, there exists a constant ˜︁α > 0 such that, for all

0 < ε
(ℓ)
1 , ε

(ℓ)
2 ≤ ε0,

˜︁α∥v∥2V ≤ a(v, v) +

L∑︂
ℓ=1

(︄
1

ε
(ℓ)
1

∥B1v∥2L2(γℓ) +
1

ε
(ℓ)
2

∥B2v∥2L2(γℓ)

)︄
.

From Appendix A Theorem 12, it follows that (5.11) has a unique solution (uε, λ1,ε, λ2,ε).

The following estimation of the error introduced by the perturbations ε
(ℓ)
1 and ε

(ℓ)
2 on

the solution of the original saddle point problem (5.4) holds.

Lemma 3. If we assume u ∈ H5(Ω), then there exists a constant C > 0 such that

∥u− uε∥V + ∥λ1 − λ1,ε∥Q1 + ∥λ2 − λ2,ε∥Q2

≤ C
(︂
ε1∥λ1∥H3/2

⋆ (Γ)
+ ε2∥λ2∥H1/2

⋆ (Γ)

)︂
,

where we have de�ned:

ε1 = max
ℓ=1,...,L

ε
(ℓ)
1 and ε2 = max

ℓ=1,...,L
ε
(ℓ)
2 .
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Proof. From (5.3) and (5.4), it follows

λ1 = (∂n∆u+ ∂nttu) |Γ
λ2 = (∂ttu−∆u) |Γ

and, under the assumption u ∈ H5(Ω), it follows

λ1 ∈W+
1 = {w ∈ L2(Γ) : ∥w∥Q′

1
= ∥w∥

H
3/2
⋆ (Γ)

<∞}
λ2 ∈W+

2 = {w ∈ L2(Γ) : ∥w∥Q′
2
= ∥w∥

H
1/2
⋆ (Γ)

<∞}.

Hence, the thesis follows from Appendix A Remark 12.

5.1.4 The projected super-penalty formulation

For each patch Ωi, we assume p ≥ 2 and we indicate with Sp
hi
(Ωi) the space trivially

obtained extending by zero the elements of Sp
hi
(Ωi) over Ω \ Ωi. Additionally, let us

de�ne:

Vi,h = span
{︂
B

(i)
j ∈ Sp

hi
(Ωi) : B

(i)
j |∂Ω = ∂nB

(i)
j |∂Ω= 0

}︂
.

This allows us to introduce the following �nite dimensional subspace of V ,

Vh =

{︄
v ∈

N⋃︂
i=1

Vi,h : v is continuous in cs, s = 1, . . . , S

}︄
.

Moreover, for each interface γℓ, we denote by Ξℓ the knot vector on γℓ inherited
from the slave side. Motivated by the choice of the p/p− 2 stable pairing in [12], we
construct the following isogeometric space Sp−2

h,M (γℓ) on the reduced knot vector Ξℓ
⋆

obtained by removing from Ξℓ the �rst and last two knots, for reducing the spline
degree, and the �rst and last internal knots, for a further reduction of the dual space
dimension:

Ξℓ = {ξ1, ξ2, . . . , ξp+1, ξp+2, . . . , ξm, ξm+1, . . . , ξm+p, ξm+p+1}
Ξℓ
⋆ = {��ξ1,��ξ2, . . . , ξp+1,���ξp+2, . . . ,��ξm, ξm+1, . . . ,���ξm+p,����ξm+p+1} ,

with

ξ1 = ξ2 = . . . = ξp+1 < ξp+2 < . . . < ξm < ξm+1 = . . . = ξm+p = ξm+p+1.

Similarly to before, we indicate with Sp−2
h,M (γℓ) the space obtained extending by zero

over Γ \ γℓ the elements of Sp−2
h,M (γℓ). We can now de�ne the discrete counterpart of

the Lagrange multiplier spaces as:

Q1,h = Q2,h =

L⋃︂
ℓ=1

Sp−2
h,M (γℓ) .
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Denoting by hℓ the mesh size on γℓ, we can endow Q1,h and Q2,h with the following
mesh-dependent norms

∥ · ∥2Q1,h
=

L∑︂
ℓ=1

∥ · ∥2Q1,h,ℓ
∥ · ∥2Q2,h

=
L∑︂

ℓ=1

∥ · ∥2Q2,h,ℓ
,

where we have de�ned

∥ · ∥2Q1,h,ℓ
= h

3
2
ℓ ∥ · ∥2L2(γℓ) ∥ · ∥2Q2,h,ℓ

= h
1
2
ℓ ∥ · ∥2L2(γℓ).

Remark 4. The inf-sup stabilities are proved on the reduced knot vector Ξℓ
⋆. However,

from a numerical standpoint, we retain the optimality of the method without removing
the �rst and last internal knots and in all our examples we directly employ, as the
projection spaces, Sp−2

h (γℓ), de�ned on

Ξℓ
⋆⋆ = {��ξ1,��ξ2, . . . , ξp+1, ξp+2, . . . , ξm, ξm+1, . . . ,���ξm+p,����ξm+p+1} .

Remark 5. By construction, it holds Vh ⊂ V . Moreover, we have

Q1,h ⊂ L2(Γ) ⊂
[︃
H

3
2
⋆ (Γ)

]︃′
= Q1,

Q2,h ⊂ L2(Γ) ⊂
[︃
H

1
2
⋆ (Γ)

]︃′
= Q2.

With these de�nitions at hand, the discretized version of (5.11) reads: �nd
(uh, λ1,h, λ2,h) ∈ Vh ×Qh ×Qh such that:

N∑︂
i=1

∫︂
Ωi

∇(∇uh) : ∇(∇vh) +
L∑︂

ℓ=1

(︃∫︂
γℓ

JvhKλ1,h +
∫︂
γℓ

J∇vhKn λ2,h
)︃

= (f, vh) (5.16)

L∑︂
ℓ=1

(︃∫︂
γℓ

JuhKµ1,h − ε
(ℓ)
1

∫︂
γℓ

λ1,hµ1,h

)︃
= 0 (5.17)

L∑︂
ℓ=1

(︃∫︂
γℓ

J∇uhKn µ2,h − ε
(ℓ)
2

∫︂
γℓ

λ2,hµ2,h

)︃
= 0 (5.18)

∀vh ∈ Vh, µ1,h ∈ Q1,h and µ2,h ∈ Q2,h.
We can now formally eliminate the Lagrange multipliers and recast (5.16) into its
primal form. Indeed, we can write:

λ1,h|γℓ =
1

ε
(ℓ)
1

ΠℓJuhK

λ2,h|γℓ =
1

ε
(ℓ)
2

Πℓ J∇uhKn ,

where Πℓ : L2(γℓ) → Sp−2
h (γℓ) denotes the L2-projection, associated to the interface

γℓ, onto the reduced space Sp−2
h,M (γℓ). Finally, employing the previous results and the

properties of the L2-projection, the resulting discretized bilinear form, augmented by
suitable penalty terms that weakly enforce the coupling conditions (5.2), reads: �nd
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uh ∈ Vh such that:

N∑︂
i=1

∫︂
Ωi

∇(∇uh) : ∇(∇vh)+

+
L∑︂

ℓ=1

(︄
1

ε
(ℓ)
1

∫︂
γℓ

ΠℓJuhKΠℓJvhK +
1

ε
(ℓ)
2

∫︂
γℓ

Πℓ J∇uhKnΠℓ J∇vhKn

)︄
= (f, vh) ∀vh ∈ Vh .

(5.19)

5.2 A priori error analysis

In section 5.1.3, we have already provided an estimate for the error introduced by
perturbating the original saddle point problem (5.4). In order to state an estimation
of the discretization error for the perturbed saddle point problem (5.11), we need to
prove the coercivity of the bilinear form a in the discrete kernel

Kh = {vh ∈ Vh : b1(vh, µ1) = b1(vh, µ2) = 0, ∀µ1, µ2 ∈ Qh},

and the inf-sup stability condition for both the bilinear forms b1 and b2.

5.2.1 Coercivity in the discrete kernel

By observing that for all h > 0, Q1,h and Q2,h contain constant functions, it holds
Kh ⊂ V0, for all h > 0. Thus, Theorem 7 yields coercivity for the bilinear form a in
the discrete kernel Kh, uniformly with respect to the mesh size h.

5.2.2 Discrete inf-sup stability

In this section, in order to apply the convergence results of [10] for singularly perturbed
saddle point problems, we prove the inf-sup stability for the bilinear form b1 between
Q1,h and Vh and the inf-sup stability for b2 between Q2,h and Vh ∩K1.
From now on, C will denote a positive constant, independent of h, possibly di�erent
at each occurrence.

Theorem 8. For h su�ciently small, there exists a constant β1 > 0, independent of
h, such that

inf
µh∈Q1,h

sup
vh∈Vh

b1(vh, µh)

∥vh∥V ∥µh∥Q1,h

≥ β1.

Proof. The thesis follows by combining Appendix B Theorem 14 with arguments
similar to the ones in the proof of [12, Theorem 13] and the ones in the proof of [74,
Lemma 1.9].

Theorem 9. For h su�ciently small, there exists a constant β2 > 0, independent of
h, such that

inf
µh∈Q2,h

sup
vh∈Vh∩K1

b2(vh, µh)

∥vh∥Vh
∥µh∥Q2,h

≥ β2.

Proof. Fixed ℓ ∈ {1, . . . , L}, let us set k = s(ℓ). There are four possible cases:

� γℓ = {Fk(0, ˆ︁y) : ˆ︁y ∈ [0, 1]},
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� γℓ = {Fk(1, ˆ︁y) : ˆ︁y ∈ [0, 1]},

� γℓ = {Fk(ˆ︁x, 0) : ˆ︁x ∈ [0, 1]},

� γℓ = {Fk(ˆ︁x, 1) : ˆ︁x ∈ [0, 1]}.

We focus only on the �rst case. Indeed, the other cases can be treated with a similar
argument. On the physical interface γℓ, the outward normal nℓ, w.r.t. the master
side, can be expressed in parametric coordinates as

nℓ ◦ Fk(0, ˆ︁y) = 1

∥∂ˆ︁yFk(0, ˆ︁y)∥
[︄
∂ˆ︁yFk,2(0, ˆ︁y)
−∂ˆ︁yFk,1(0, ˆ︁y)

]︄
or

nℓ ◦ Fk(0, ˆ︁y) = 1

∥∂ˆ︁yFk(0, ˆ︁y)∥
[︄
−∂ˆ︁yFk,2(0, ˆ︁y)
∂ˆ︁yFk,1(0, ˆ︁y)

]︄
,

depending on the orientation of Fk. As before, we focus only on the �rst case. It
holds

J−1
Fk

(nℓ ◦ Fk(0, ˆ︁y)) =
1

det(JFk
)∥∂ˆ︁yFk(0, ˆ︁y)∥

[︄
∂ˆ︁yFk,2(0, ˆ︁y) −∂ˆ︁yFk,1(0, ˆ︁y)
−∂ˆ︁xFk,2(0, ˆ︁y) ∂ˆ︁xFk,1(0, ˆ︁y)

]︄[︄
∂ˆ︁yFk,2(0, ˆ︁y)
−∂ˆ︁yFk,1(0, ˆ︁y)

]︄
=

1

det(JFk
)∥∂ˆ︁yFk(0, ˆ︁y)∥

[︄
∂ˆ︁yFk,2(0, ˆ︁y)2 + ∂ˆ︁yFk,1(0, ˆ︁y)2
−∂ˆ︁xFk(0, ˆ︁y) · ∂ˆ︁yFk(0, ˆ︁y)

]︄
=

1

det(JFk
)

[︄
∥∂ˆ︁yFk(0, ˆ︁y)∥

−∂ˆ︁xFk(0,ˆ︁y)·∂ˆ︁yFk(0,ˆ︁y)
∥∂ˆ︁yFk(0,ˆ︁y)∥

]︄
.

For each vk = ˆ︁vk ◦ F−1
k ∈ Vk,h, it holds∫︂

γℓ

∂nvkµ =

∫︂
ˆ︁γ ∇ˆ︁vk(0, ˆ︁y) · J−1

Fk
(nℓ ◦ Fk(0, ˆ︁y))ˆ︁µdet(JF(k))dˆ︁y

=

∫︂
ˆ︁γ
[︁
ρℓ(ˆ︁y)∂ˆ︁xˆ︁vk(0, ˆ︁y) + σℓ(ˆ︁y)∂ˆ︁yˆ︁vk(0, ˆ︁y)]︁ ˆ︁µdˆ︁y, (5.20)

where we have set

ρℓ(ˆ︁y) = ∥∂ˆ︁yFk(0, ˆ︁y)∥
σℓ(ˆ︁y) = −∂ˆ︁xFk(0, ˆ︁y) · ∂ˆ︁yFk(0, ˆ︁y)

∥∂ˆ︁yFk(0, ˆ︁y)∥ .

If we restrict ourselves to vk ∈ Y , with

Yk =
{︁
vk = ˆ︁vk ◦ F−1

k ∈ Vk,h ∩K1 : ∂ˆ︁yˆ︁vk(0, ˆ︁y) = 0, ∀ˆ︁y ∈ [0, 1]
}︁
,

equation (5.20) reduces to∫︂
γℓ

∂nvkµ =

∫︂
ˆ︁γ ρℓ(ˆ︁y)∂ˆ︁xˆ︁vk(0, ˆ︁y)ˆ︁µdˆ︁y.



5.2. A priori error analysis 53

We observe that ρℓ is smooth except at the mesh line, where it is only Cp−3, it is
bounded by above and below and it is h-independent. Moreover, it is straightforward
to see that for each

ˆ︁w ∈ Sp
hℓ
(ˆ︁γ) : ˆ︁w(0) = ˆ︁w′(0) = ˆ︁w(1) = ˆ︁w′(1) = 0,

there exists vk ∈ Yk such that ∂ˆ︁xˆ︁vk(0, ·) = ˆ︁w. Consequently, the thesis can be proven
with an argument similar to the proof of Theorem 8.

5.2.3 Error estimates

Thanks to Theorem 7, 8 and 9, we are in the hypothesis of Appendix A Theorem 13,
hence there exists a constant C > 0, independent of h, such that

∥uε − uh∥V + ∥λ1,ε − λ1,h∥Q1,h
+ ∥λ2,ε − λ2,h∥Q2,h

≤ C

(︄
inf

vh∈Vh

∥uε − vh∥V + inf
µ1,h∈Q1,h

{︁
∥λ1,ε − µ1,h∥Q1,h

+
√
ε1∥λ1,ε − µ1,h∥L2(Γ)

}︁
+

inf
µ2,h∈Q2,h

{︁
∥λ2,ε − µ2,h∥Q2,h

+
√
ε2∥λ2,ε − µ2,h∥L2(Γ)

}︁)︄
. (5.21)

Theorem 10. Let q be an integer such that 2 ≤ q ≤ p + 1. If u ∈ H5(Ω) ∩Hq(Ω),
then there exists a constant C > 0, independent of h, such that

∥u− uh∥V + ∥λ1 − λ1,h∥Q1,h
+ ∥λ2 − λ2,h∥Q2,h

≤ C

[︄
N∑︂
i=1

hq−2
i ∥u∥Hq(Ωi) +

∑︂
ℓ=1

hq−2
ℓ (h

3/2
ℓ +

√
ε1)∥λ1,ε∥Hq−2(γℓ)+

∑︂
ℓ=1

hq−2
ℓ (h

1/2
ℓ +

√
ε2)∥λ2,ε∥Hq−2(γℓ) + ε1∥λ1∥H3/2

⋆ (Γ)
+ ε2∥λ2∥H1/2

⋆ (Γ)

]︄
.

Proof. We start by observing that

∥u− uh∥V ≤ ∥u− uε∥V + ∥uε − uh∥V . (5.22)

For the estimation of ∥uε − uh∥V we can rely on (5.21). Firstly, it holds

inf
vh∈Vh

∥uε − vh∥V = ∥u− uε∥V + inf
vh∈Vh

∥u− vh∥V . (5.23)

Further, recalling the de�nitions of Q1,h and Q2,h, we have

∥λ1,ε − µ1,h∥Q1,h
+
√
ε1∥λ1,ε − µ1,h∥L2(Γ) =

∑︂
ℓ=1

(h
3/2
ℓ +

√
ε1)∥λ1,ε − µ1,h∥L2(γℓ),

∥λ2,ε − µ2,h∥Q2,h
+
√
ε2∥λ2,ε − µ2,h∥L2(Γ) =

∑︂
ℓ=1

(h
1/2
ℓ +

√
ε2)∥λ2,ε − µ2,h∥L2(γℓ).

(5.24)
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From standard approximation results for splines, see [5], we get

inf
vh∈Vh

∥u− vh∥V ≤ C
N∑︂
i=1

hq−2
i ∥u∥Hq(Ωi),

inf
µ1,h∈Q1,h

∑︂
ℓ=1

(h
3/2
ℓ +

√
ε1)∥λ1,ε − µ1,h∥L2(γℓ) ≤ C

∑︂
ℓ=1

hq−2
ℓ (h

3/2
ℓ +

√
ε1)∥λ1,ε∥Hq−2(γℓ),

inf
µ2,h∈Q2,h

∑︂
ℓ=1

(h
1/2
ℓ + ε2)∥λ2,ε − µ2,h∥L2(γℓ) ≤ C

∑︂
ℓ=1

hq−2
ℓ (h

1/2
ℓ +

√
ε2)∥λ2,ε∥Hq−2(γℓ).

(5.25)

Finally, combining Lemma 3 with (5.21), (5.22), (5.23), (5.24) and (5.25), we get the
thesis.

5.2.4 On the choice of penalty parameters

It is well-known that the penalized problem (5.19) is variationally consistent only in

the limit ε
(ℓ)
1 = ε

(ℓ)
2 → 0 ℓ = 1, . . . , L. On the other hand, the well-posedness of this

problem is robust with respect to the choice of the parameters ε
(ℓ)
1 and ε

(ℓ)
2 . Therefore,

the proposed methodology will not su�er from locking for any choice of penalty values.

As a consequence, ε
(ℓ)
1 and ε

(ℓ)
2 can be chosen solely to guarantee the optimal accuracy

of the method.

Remark 6. A clear trade-o� of this choice is the negative impact on the conditioning
of the resulting system matrix. A possible remedy based on an ad-hoc preconditioner
will be discussed in a later section. Another drawback consists in the loss of signi�cant
digits due to the (potentially big) di�erence in magnitude between the penalty contri-
bution and the internal sti�ness. For this reason (amongst other which will be pointed
out in the rest of manuscript), we advise to use this method in combination with
splines of degree p = 2, 3, as these round-o� errors occur below a tolerance threshold
of signi�cance to most engineering applications.

Inspired by the method proposed in [34] in the context of Kirchho�-Love shells, we
want to develop a fully parameter-free penalty method. To this end, we scale the
de�ection and rotation penalty parameters by the physical constants, the local mesh
size and the geometry as:

1

ε
(ℓ)
1

= meas(γℓ)θ−1 Et

(hℓ)θ(1− ν2)

1

ε
(ℓ)
2

= meas(γℓ)θ−1 Et3

12(hℓ)θ(1− ν2)
, (5.26)

where the exponent θ is chosen to ensure the optimal convergence of the method
with respect to the degree p of the underlying discretization. Note that all of these
parameters are known and depend only on the problem de�nition, meaning that no
user-de�ned factor is required. We highlight that our choice is based on the fact that
the perturbations introduced in (5.11) cannot be �big� compared to the accuracy with
which we want to solve the original problem and the estimate provided in Theorem 10
guides the choice of θ. Moreover, as we want to recover optimal rates of convergence
for the error, the exponent θ must be a function of the underlying splines degree p.
From the numerical experiments conducted thus far, as expected from Theorem 10,
the scaling factor θ = p − 1 in (5.26) is necessary to ensure optimal convergence of
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x

y

Ω1 Ω2

Ω3 Ω4

γ1,2

γ1,3 γ2,4

γ3,4
coupling dofs

(a) B-splines involved in the computation of the
coupling terms, where each coloured box contains
the dofs associated to the corresponding coupling

interface γk,ℓ.

x

y

Ω1 Ω2

Ω3 Ω4

γ1,2

γ1,3 γ2,4

γ3,4

coupling dofs

master dof
slave dofs

(b) Cross-point modi�cation, where the black dots
represent the untouched control points associated
to basis functions that give non-zero contribution
to the interface coupling. The squares are the con-
trol variables used to impose the C0 constraint,
where we choose a master node (the red one) and
the rest are labelled as slave nodes (the blue ones)
and are eliminated from the system, see Algorithm

2.

Figure 5.2: Example of the dofs involved in the computation of the
coupling integrals and cross-point modi�cation in a four patches setup.

the method in the H2 norm, whereas for a scaling of θ = p we observed optimality in
the H2 and H1 norms. Finally, a factor of θ = p + 1 provides optimality in the H2,
H1 and L2 norms. If not stated otherwise, we will use θ = p+ 1 in all our numerical
examples.

5.3 Cross-points modi�cation

In the literature of mortar methods, it is well-known that the treatment of cross-
points requires extra considerations, see [22] and references therein for a discussion
in the context of mortar coupling of isogeometric multi-patches. Analogously, our
method also inherits the need for a cross-points modi�cation. Indeed, in order to
retain optimality of the method, a linear constraint must be imposed to the control
variables meeting at the cross-point to ensure C0-continuity. An example with four
patches is depicted in Figure 5.2, where in Figure 5.2a we depict the dofs associated to
each coupling interface and in Figure 5.2b we visualize the imposition of the constraint.
To explain the procedure, let us start from the following unconstrained system of
equations:

Auh = f . (5.27)

Now, the constraint can be incorporated easily into the standard linear system in a
fully algebraic fashion, where a possible implementation is presented in Algorithm 2.
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Algorithm 2 Algorithm for applying a C0 constraint at a cross-point.

1: procedure Apply_C0_constraint(vector of dofs at cross-points ucp)
2: Label one dof in ucp as master
3: Label the remaining dofs in ucp as slaves
4: Build the rectangular matrix C representing the linear master-slaves constraints

(see (5.28))
5: Solve the reduced system ˆ︁Aˆ︁uh = ˆ︁f , where ˆ︁A = C⊤AC and ˆ︁f = C⊤f
6: Recover the solution uh from uh = Cˆ︁uh

7: end procedure

The construction of the rectangular matrix C is best explained with an example.
Let us assume that the dofs at the cross-point are numbered as ucp = [ucp1 ucp2 ucp3 ucp4].
Now, without loss of generality, we pick ucp1 as the master control point and the rest
as slave nodes. Then, the constraint can be expressed via the matrix C as follows:

uh =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1
...

ucp1
...

ucp2
...

ucp3
...

ucp4
...

undof

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0
...

. . .

0 0 . . . 1 0 . . . 0
...

. . .

0 0 . . . 1 0 . . . 0
...

. . .

0 0 . . . 1 0 . . . 0
...

. . .

0 0 . . . 1 0 . . . 0
...

. . .

0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

·

⎡⎢⎢⎢⎢⎢⎢⎢⎣

u1
...

ucp1
...

undof

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= Cˆ︁uh , (5.28)

where ndof denotes the total number of degrees-of-freedom in the system. This
procedure allows to eliminate the unknowns associated to the slave nodes from the
system.

5.4 A nested preconditioner based on the Schur Comple-

ment Reduction

In this section, following the notation introduced in [59] and building upon the work
presented in [48, 49] in the context of elastodynamics and hemodynamics, we present
an e�cient way to mitigate the detrimental e�ects on the condition number stemming
from our choice of super-penalty parameters. This preconditioner is based on the
approximate solution of the block factorization of the system matrix known as Schur
Complement Reduction (SCR). We remind the reader that before performing the
algorithm described in the following, we apply a symmetric diagonal scaling to the
system matrix.
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x

y

Ω1 Ω2Γ = γ1,2

Dirichlet dofs

internal dofs i

interface dofs Γ

Figure 5.3: Example of reordering of the dofs in a two patches setup,
discretized by B-splines of degree p = 2, associated to the block system

matrix A.

5.4.1 The Schur Complement Reduction

We begin by reordering the matrix A ∈ Rndof×ndof stemming from (5.19) in blocks as
follows:

A =

[︄
Ai,i Bi,Γ

B⊤
i,Γ CΓ,Γ

]︄
,

where the subscripts i and Γ refer to internal and interface dofs, respectively, where an
example is depicted in Figure 5.3. Let us remark that Ai,i is a block-diagonal matrix
where every block is the matrix associated to an homogeneous Dirichlet problem (fully
clamped) on the corresponding patch Ωi. Moreover, with a slight abuse of notation,
we assume that, if needed, A has already been modi�ed to account for the constraints
related to the cross-points introduced in the previous section.

Now, we can perform the following block factorization of A:

A = LDU =

[︄
I 0

B⊤
i,ΓA

−1
i,i I

]︄[︄
Ai,i 0

0 SΓ,Γ

]︄[︄
I A−1

i,i Bi,Γ

0 I

]︄
,

where we have introduced the Schur complement SΓ,Γ := CΓ,Γ −B⊤
i,ΓA

−1
i,i Bi,Γ and I

denotes the identity matrix. Multiplying by L on both sides we get:[︄
Ai,i Bi,Γ

0 SΓ,Γ

]︄[︄
xi

xΓ

]︄
=

[︄
I 0

B⊤
i,ΓA

−1
i,i I

]︄−1 [︄
ri
rΓ

]︄

=

[︄
I 0

−B⊤
i,ΓA

−1
i,i I

]︄[︄
ri
rΓ

]︄

=

[︄
ri

rΓ −B⊤
i,ΓA

−1
i,i ri

]︄
. (5.29)

We highlight that, up to this point, this factorization is performed in exact algebra.
Then, from (5.29), we can solve for x in a segregated fashion by exploiting Algorithm
3.
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Algorithm 3 SCR algorithm

1: procedure Solution of Ax = r based on SCR

2: Solve for an intermediate solution x̂i

Ai,ix̂i = ri (5.30)

3: Update the interface residual rΓ = rΓ −B⊤
i,Γx̂i

4: Solve for the interface solution xΓ from the Schur equation

SΓ,ΓxΓ = rΓ (5.31)

5: Update the internal residual ri = ri −Bi,ΓxΓ

6: Solve for the internal solution xi from

Ai,ixi = ri (5.32)

7: end procedure

Clearly, the Schur complement SΓ,Γ is in practice expensive and often infeasible
to compute explicitly. A way around this issue is given in Algorithm 4, where we
summarize a matrix-free procedure to apply the Schur complement to a vector.

Algorithm 4 Algorithm for applying the Schur complement to a vector

1: procedure Application of SΓ,Γ to a vector xΓ

2: Compute the matrix-vector multiplication x̂Γ = CΓ,ΓxΓ

3: Compute the matrix-vector multiplication xΓ = Bi,ΓxΓ

4: Solve for an intermediate solution x̃Γ from

Ai,ix̃Γ = xΓ (5.33)

5: Compute the matrix-vector multiplication xΓ = B⊤
i,Γx̃Γ

6: Return x̂Γ − xΓ

7: end procedure

Remark 7. As noted in [48], the cost of the preconditioner is often dominated by the
solution of the Schur system (5.31). To reduce the computational burden of this step,
we use as preconditioner a coarse approximation of the Schur complement obtained
by applying only a few iterations of GMRES to Ai,i for assembling S̃Γ,Γ = CΓ,Γ −
B⊤

i,ΓÃ
−1
i,i Bi,Γ, where for e�ciency we leverage again the FD algorithm. Although this

choice works reasonably well for our numerical examples, we remark that more research
is needed to �nd a robust (both in h and p) and scalable preconditioner for the Schur
complement and, more in general, for fourth-order PDEs.

5.4.2 Nested block preconditioner strategy based on SCR

The main idea presented in [48] is to combine the robustness of the SCR factorization
with the ease of application of a block preconditioners (such as SIMPLE or variants
thereof [59]). Indeed, we can build a preconditioner PSCR based on an approximate
factorization of (5.29), where equations (5.30), (5.31) and (5.32) are solved within
a prescribed tolerance. Given that PSCR changes its algebraic de�nition at every
iteration, following [48], we employ a �exible GMRES algorithm (FGMRES) as the
iterative method for the most outer solve Ax = r. At each iteration of FGMRES, we



5.4. A nested preconditioner based on the Schur Complement Reduction 59

can apply the preconditioner PSCR via Algorithm 3, where this entails the solution of
the blocks Ai,i and SΓ,Γ. This part of the algorithm is denoted as intermediate solver.
Last, since we do not assemble the Schur complement explicitly, but we apply its action
on a vector through Algorithm 4, we perform a �nal solve for Ai,i in (5.33), denoted
as inner solver. The �nal performance of the preconditioner is therefore determined
by the prescribed tolerances for the outer, intermediate and inner layers, respectively,
where the objective is �nding a good balance between the computational cost and the
robustness of the method. In the following, we denote the aforementioned tolerances
by ηo, ηt and ηn for the outer, intermediate and inner layers, respectively.

A preconditioner based on the Fast Diagonalization (FD) algorithm

Since each outer iteration of the nested preconditioner is based on the solution of three
systems involving the block Ai,i, an e�cient and robust preconditioner for this block
is required. In this work, we extend the isogeometric preconditioner studied in [62,
57], based on the Fast Diagonalization algorithm, to the Kirchho� plate problem. In
the following, we focus our derivation on the single-patch case. The extension to the
multi-patch case is straightforward by construction, since the block Ai,i is formed by
disjoint sub-blocks associated to each patch Ωi.

Now, exploiting the tensor product structure of the B-spline basis at the patch
level, let us introduce the preconditioner PFD in Kronecker form as:

PFD =M1 ⊗K2 +K1 ⊗M2 , (5.34)

where Mk and Kk with k = 1, 2 refer to the one-dimensional, parametric mass and
hessian matrices associated to the k-th parametric dimension, respectively. They can
be expanded as follows:

[Mk]i,j =

∫︂ 1

0
bi,p(ηk) bj,p(ηk) dηk

[Kk]i,j =

∫︂ 1

0
b′′i,p(ηk) b

′′
j,p(ηk) dηk ,

where b indicates the univariate B-spline basis functions introduced in Chapter 2.
Then, analogously to [56], we partially include the geometry and physical coe�cients
inside the preconditioner. In particular, let us denote by C the following function:

C(η) = D
(︁⃓⃓⃓⃓
J−1
F

⃓⃓⃓⃓
2

)︁4 |det (JF)| ,
where we recall that JF represents the jacobian of the B-spline parametrization F and
D is the �exural sti�ness of the plate. Now, as explained in [56, Appendix A.3], we
perform a separation of variables on C such that we can write:

C(η) ≈ ˜︁C(η) = [︄ω1(η1)τ2(η2) 0

0 τ1(η1)ω2(η2)

]︄
,

where this matrix is evaluated at each quadrature point. With this, we can modify the
preconditioner given in (5.34) to partially account for the geometry and coe�cients
information as follows:

PF
FD = ˜︂M1 ⊗ ˜︁K2 + ˜︁K1 ⊗ ˜︂M2 , (5.35)
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where [︂˜︂Mk

]︂
i,j

=

∫︂ 1

0
ωk(ηk)bi,p(ηk) bj,p(ηk) dηk[︂ ˜︁Kk

]︂
i,j

=

∫︂ 1

0
τk(ηk)b

′′
i,p(ηk) b

′′
j,p(ηk) dηk .

Finally, each iteration of the iterative solver requires the solution of the following
system:

PF
FDs = r , (5.36)

where r denotes the current residual. Due to the tensor structure of the preconditioner,
we can rewrite (5.36) as a Sylvester matrix equation [66]:

˜︂M2S ˜︁K1 + ˜︁K2S˜︂M1 = R ,

where s = vec(S) and r = vec(R).

Remark 8. Let us recall that for any matrix Z ∈ Rr×c the operator vec(Z) gives as
output the vector z ∈ Rrc formed by stacking the columns of Z.

Let us now consider the generalized eigendecomposition of the matrix pencils ( ˜︁K1,˜︂M1)

and ( ˜︁K2,˜︂M2), respectively, as:

˜︁K1U1 = ˜︂M1U1D1˜︁K2U2 = ˜︂M2U2D2 . (5.37)

Here, D1 and D2 are diagonal matrices containing the eigenvalues of ˜︂M−1
1
˜︁K1 and˜︂M−1

2
˜︁K2, respectively. Further, U1 and U2 are de�ned as:

U⊤
1
˜︂M1U1 = I

U⊤
2
˜︂M2U2 = I .

With these de�nitions at hand, we can rewrite (5.35) in Kronecker form as:

(U1 ⊗ U2)
−⊤ (D1 ⊗ I+ I⊗D2) (U1 ⊗ U2)

−1 s = r ,

where the preconditioner can be e�ciently applied via Algorithm 5.

Algorithm 5 FD method for applying PF
FD

1: procedure Update of the iteration residual via the FD method

2: Compute the generalized eigendecomposition in (5.37)
3: Compute the intermediate result r̃ = (U1 ⊗ U2)

⊤ r
4: Compute the intermediate residual s̃ = (D1 ⊗ I+ I⊗D2)

−1 r̃
5: Return s = (U1 ⊗ U2) s̃
6: end procedure

Remark 9. We remark that the application of the nested preconditioner PSCR com-
bined with PF

FD
can be implemented in a fully matrix-free framework. Furthermore,

although not investigated in this work, the patch-wise block structure of Ai,i could be
further exploited for parallelization.
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For the sake of conciseness, we do not provide here further details of the FD algorithm,
but we refer to [62, 57] for a thorough theoretical and numerical investigation of the
method in the scope of isogeometric analysis.

5.5 Numerical Examples

In this section we assess the performance of the proposed coupling method with sev-
eral numerical examples de�ned on multi-patch geometries. All the numerical exper-
iments presented in the following have been implemented in the open-source and free
Octave/Matlab package GeoPDEs [70], a software designed for the solution of partial
di�erential equations in the context of isogeometric analysis.

5.5.1 A four patches example with non-matching curved interfaces

In this example we consider the computational domain Ω = [0, 2] × [0, 2] depicted
in Figure 5.4, split into four subdomains Ωi. We remark that all meshes are non-
conforming at every coupling interface, as the irrational factor

√
2/100 has been used

to shift the interface knots. The body source and boundary data are computed such
that the exact solution is smooth and it reads:

uex = sin(πx) cos(πx) .

This setup is used to test the robustness of our method in the case of severe non-
matching discretizations and with respect to the problem parameters. To this end,
we present the convergence results for all combinations of Young's moduli E =
[104, 108] [Pa] and thickness of the plate t = [0.05, 0.01, 0.005] [m], where we set the
Poisson's ratio ν = 0 [−]. We compare our method to a classical penalty approach,
where we set 1

ε
(ℓ)
1

= 1

ε
(ℓ)
2

= 104E, ℓ = 1, . . . , L, and to a choice of penalty parameters

scaled with respect to the physical parameters as proposed in [34]. In particular, they
read:

1

ε
(ℓ)
1

= δ
Et

hℓ(1− ν2)

1

ε
(ℓ)
2

= δ
Et3

12hℓ(1− ν2)
,

where the user-de�ned parameter δ = 103 is chosen. From the results in Figure 5.5,
we observe that the projection strategy shows robustness with respect to the input
parameters and allows for an easy treatment of locking phenomena, where optimal
convergence rates are attained also for very coarse meshes.

In Figure 5.6 the convergence behaviour of the error measured in the H2 norm
with and without the imposition of the C0 constraint at the cross-point is plotted.
We observe that the loss of accuracy hinders the convergence for p = 3, 4, whereas
the expected optimal rates of convergence are recovered in all cases when the linear
constraint is imposed to the system. This is further highlighted in Figure 5.7, where
the element-wise H2 error is depicted for a discretization of degree p = 4, without
and with the constraint, respectively. On one hand, we remark how the error is
concentrated and much higher in the elements around the cross-point, spoiling the
optimal convergence, when the constraint is not imposed. On the other hand, with
the linear constraint, we recover optimal convergence properties of the method.
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x
y

z

L
=
2
[m
]

L = 2 [m]

E = [104, 108] [N/m2]
thickness t = [0.01, 0.05, 0.001] [m]
ν = 0 [−]

(a) Geometry setup and physical parameters.

Ω1 Ω2

Ω3 Ω4

x

y

(b) Initial discretization.

Figure 5.4: Problem setup and initial multi-patch non-conforming
discretization for the curved four patches example.

Finally, for this example we also analyze the performance of the nested precon-
ditioner. In Table 5.1 we report the iterations needed by the external solver and
in brackets the average number of intermediate iterations, for several degrees of the
discretization p = 2, 3, and we compare it with a classical diagonally preconditioned
conjugate gradient (PCG), a PCG where an incomplete LU (ILU) is used as pre-
conditioner and a GMRES preconditioned with ILU. All the results refer to a global
tolerance ηo of 10−10 and, for the nested SCR-FGMRES strategy, the intermediate
and inner tolerances ηt and ηn are set to 10−6. Further, the Schur complement is
preconditioned by an approximation S̃Γ,Γ obtained with a maximum of 6 iterations of
GMRES. For the sake of completeness, we perform the same test with the choice of
penalty parameters studied in [34]. The results are summarized in Table 5.2, where we
observe no substantial di�erence regarding the iterations needed to solve the system
compared to the case where our choice of parameters is employed. This suggests that
the proposed preconditioner is robust with respect to the penalty factors and it is also
suitable to precondition systems stemming from other penalty approaches.

256 el. 1024 el. 4096 el. 16384 el.

Diagonally scaled PCG 792 953 � �

PCG with ILU 111 980 � �

GMRES with ILU 63 174 402 �

Nested SCR-FGMRES 3 (21.6/3.3/20.3) 3 (36/6/30.3) 4 (51/17.5/40.7) 6 (66.5/51/51.3)

(a) p = 2.

256 el. 1024 el. 4096 el. 16384 el.

Diagonally scaled PCG 921 � � �

PCG with ILU 53 221 � �

GMRES with ILU 35 73 � �

Nested SCR-FGMRES 3 (26.6/4/24) 3 (41.6/9/35) 4 (58/25.5/45.7) 6 (76.3/68.3/55.3)

(b) p = 3.

Table 5.1: Number of iterations needed by di�erent iterative meth-
ods, p = 2, 3, as a function of the elements (el.). For the nested
SCR-FGMRES, the numbers in brackets indicate the average number
of intermediate iterations needed to solve equations (5.30), (5.31) and
(5.32) in Algorithm 3, respectively. Iterations marked with � did not
reached convergence within the prescribed 1000 maximum number of

iterations.

In Table 5.3 we study the in�uence of the intermediate and inner tolerances on
the number of outer iterations required by the FGMRES solver, on a �xed mesh of
4096 elements, for B-splines of degree p = 2, 3. We note that as the chosen tolerances
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(a) E = 104, t = 0.05.
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(b) E = 108, t = 0.05.
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(c) E = 104, t = 0.01.
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(d) E = 108, t = 0.01.
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(e) E = 104, t = 0.005.
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(f) E = 108, t = 0.005.

Figure 5.5: Convergence study of the error measured in the H2

norm in the non-matching case for four patches with curved interface
example for di�erent Young moduli and values of the thickness, B-
splines of degree p = 2, 3. Comparison of a classic penalty method,
the scaled version with respect to the problem parameters proposed in

[34] (scaled) and our projection approach (proj ).
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(a) Without C0 constraint.

101 102

10−3

10−2

10−1

100

101

1
1

1
2

1
3

√
dofs

E
rr

or
in

H
2

no
rm

p = 2 proj
p = 3 proj
p = 4 proj

(b) With C0 constraint.

Figure 5.6: Convergence study of the error in the H2 norm in the
non-matching case for the curved four patches example. In�uence of

imposing a C0 constraint at the cross point.
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(a) Without C0 constraint.
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(b) With C0 constraint.

Figure 5.7: Element-wise plot of the error in theH2 norm in the non-
matching case for the curved four patches example, B-splines of degree
p = 4. In�uence of imposing a C0 constraint at the cross point, notice
the di�erence of one order of magnitude used in the two colorbars.
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256 el. 1024 el. 4096 el. 16384 el.

Diagonally scaled PCG 992 � � �

PCG with ILU 175 � � �

GMRES with ILU 79 209 478 �

Nested SCR-FGMRES 3 (22.3/4/21.6) 3 (32/7.3/28.3) 4 (44.5/20.2/34.7) 5 (63.2/55/50.2)

(a) p = 2.

256 el. 1024 el. 4096 el. 16384 el.

Diagonally scaled PCG 778 � � �

PCG with ILU 697 � � �

GMRES with ILU 90 209 � �

Nested SCR-FGMRES 3 (28.6/5.3/27.3) 3 (39.3/13/34.6) 5 (55.8/29.4/41) 6 (74/73.3/48.3)

(b) p = 3.

Table 5.2: Number of iterations needed by di�erent iterative meth-
ods, p = 2, 3, as a function of the elements (el.) for the parameters
proposed in [34]. For the nested SCR-FGMRES, the numbers in brack-
ets indicate the average number of intermediate iterations needed to
solve euqations (5.30), (5.31) and (5.32) in algorithm 3, respectively.
Iterations marked with � did not reached convergence within the pre-

scribed 1000 maximum number of iterations.

become smaller and smaller, we recover the algebraically exact SCR method, where
in the limit the algorithm converges in one iteration. We also remark that �nding an
optimal choice for these parameters is, to the best of the authors' knowledge, still an
open question in the community.

ηt = ηn = 10−4 ηt = ηn = 10−5 ηt = ηn = 10−6 ηt = ηn = 10−8 ηt = ηn = 10−10

p = 2 11 5 4 3 2

p = 3 13 7 4 3 2

Table 5.3: In�uence of the intermediate and inner tolerances ηt and
ηn (where we always set ηt = ηn) on the number of outer iterations
needed by the FGMRES solver, p = 2, 3, on a �xed mesh with 4096

elements.

5.5.2 A nine patches geometry

In this example we consider the computational domain Ω = [0, 3] × [0, 3] depicted
in Figure 5.8, divided into nine subdomains Ωi. Similarly to the previous example,
all meshes are non-conforming at every coupling interface, where again an irrational
factor of

√
2/100 has been used to shift the interface knots. The body source and

boundary data are derived from the following analytical exact solution:

uex = sin(πx) cos(πx) .

Further, we set the Young's modulus to E = 106 [Pa], the thickness of the plate to
t = 0.01 [m] and the Poisson's ratio to ν = 0 [−]. The convergence results of the error
measured in the L2, H1 and H2 are presented in Figure 5.9, for splines of degree
p = 2, 3. In this example we test the robustness of the method with respect to:

• �oating patches;

• the presence of multiple cross-points where a constraint must be applied.
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thickness t = 0.005 [m]
ν = 0 [−]

(a) Geometry setup and physical parameters.
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(b) Initial discretization.

Figure 5.8: Problem setup and initial multi-patch non-conforming
discretization for the nine patches example.
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(a) Error L2.
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(b) Error H1.
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Figure 5.9: Convergence study of the error measured in the L2, H1

and H2 norms in the non-matching case for nine patches example for
di�erent B-splines of degree p = 2, 3. Comparison of a classic penalty
method, the scaled version with respect to the problem parameters

proposed in [34] (scaled) and our projection approach (proj ).

We observe again the expected asymptotic convergence rates of the error for all norms,
where we remark that the method behaves optimally also for very coarse meshes, where
locking phenomena are avoided. Indeed, on one hand, we notice again that a classical
�vanilla� choice of the penalty parameters yield a severe overconstraint of the solution
space, resulting in a loss of accuracy of several order of magnitudes compared to the
projection method. On the other hand, the scaling studied in [34] leads to better
results especially in the energy norm. However, for coarse meshes, we note that the
method still su�ers from locking, thus hindering the accuracy achievable by B-splines.

5.5.3 A three patches example with a geometrically non-conforming

interface

In this example we consider the computational domain Ω = [0, 2] × [0, 2], split into
three subdomains Ωi, see Figure 5.10a. The initial non-conforming discretization used
in the following is depicted in Figure 5.10b, where the interface knots are again shifted
by a factor of

√
2/100 to induce the non-conformity. The peculiarity of this example is
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(a) Initial subdomains and corresponding inter-
faces.

Ω1

Ω2

Ω3

x

y

(b) Non-conforming discretization.

Figure 5.10: Initial con�guration and non-conforming discretization
for the three patches example.

the presence of a geometrically non-conforming interface between the patches, which
is further used to assess the robustness of our method.

Remark 10. Similarly to [12], we de�ne an interface as geometrically conforming if
the pull-back with respect to both slave and master domains is an entire edge of each
parametric domain ˆ︁Ωi.

Similarly to the previous examples, the exact solution reads:

uex = sin(πx) cos(πx) ,

from which the applied body load and imposed boundary conditions are derived.
Regarding the problem parameters, we set the Young's modulus to E = 106 [Pa], the
thickness of the plate to t = 0.01 [m] and the Poisson's ratio to ν = 0 [−].

The convergence results of the error measured in the L2, H1 and H2 are presented
in Figure 5.11, for splines of degree p = 2, 3. Analogously to our previous results, our
method attains optimal rates of convergence, even in the presence of a geometrically
non-conforming interface. Moreover, this numerical experiment con�rms again that
our method is insensitive to locking, starting from very coarse discretizations, where
a substantial gain in accuracy per degree-of-freedom is observed.

5.5.4 A �at L-bracket

The last example we present is meant to show the applicability of the method to
more complex multi-patch geometries. Analogously to the example studied in [8], we
modeled a �at L-bracket with 28 patches, coupled along 34 interfaces, as depicted in
Figure 5.12. We applying a constant line load of 100 [N/m] in the negative z-direction
on the upper right edge and we impose clamped boundary conditions on the entire
boundary of the upper left and lower left holes, respectively. Further, we set the
Young's modulus to E = 200 · 109 [Pa], the thickness of the plate to t = 0.01 [m] and
the Poisson's ratio to ν = 0 [−]. The solution �eld obtained with B-splines of degree
p = 2, 3 is depicted in Figure 5.13, where we remark the smoothness of the obtained
solution, especially across the coupling interfaces. In Figure 5.14 we also plot the
bending stress tensor m, where its components are de�ned as:

mij = D (νδijukk + (1− ν)uij) ,

and where δij denotes the standard Kronecker delta. We obtain again a smooth
stress �eld, where no visible spurious oscillations are introduced by the proposed
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Figure 5.11: Convergence study of the error measured in the L2, H1

and H2 norms in the non-matching case for the three patches example,
B-splines of degree p = 2, 3. Comparison of a classic penalty method,
the scaled version with respect to the problem parameters proposed in

[34] (scaled) and our projection approach (proj ).

coupling strategy. Finally, in Figure 5.15, we plot the convergence results of the stress
component m11, evaluated at point A marked in Figure 5.12a, as a function of the
number of dofs on a series of uniformly re�ned meshes. We note that for the classical
penalty approach, and only for this example, we have tuned the penalty parameters
to converge towards the reference value, where we have set 1

ε
(ℓ)
1

= 104E , 1

ε
(ℓ)
2

= E, ℓ =

1, . . . , L. This example highlights once again the gain in accuracy achieved on coarse
meshes by the proposed method, also for point-wise quantities of interest.

5.6 Conclusions

In this chapter we have introduced a simple methodology for the C1-coupling of iso-
geometric patches based on the L2-projection of suitable super-penalty terms in the
context of bilaplace equation. Exploiting standard results for saddle point problems,
we have proved that the mortar formulation and its singular perturbation, which is at
the base of our penalty method, are well-posed. Further we have provided a criterion
for choosing the penalty parameters, in function of the mesh size and the spline de-
gree, in order to get optimal order convergence in the H2 norm. The method does not
su�er from locking phenomena, even in the case of severe non-matching discretization,
where optimal rates of convergence of the error measured in the L2, H1 and H2 norms
have been attained also on very coarse meshes and a substantial gain in accuracy per
degree-of-freedom has been observed compared to a classical penalty approach and
to the scaled choice of parameters presented in [34] in the scope of Kirchho�-Love
shells. The method turns out to be particularly e�ective for moderate spline degrees
p = 2, 3. Our choice of parameters is completely determined by the problem de�nition
and is based upon the underlying perturbed saddle point formulation associated to
the plate, from which the two Lagrange multipliers are eliminated and the magnitude
of the corresponding perturbations gives us insights on how to appropriately select the
penalty factors. Then, to mitigate the detrimental e�ects of this choice on the condi-
tion number of the system matrix, we have combined the nested block preconditioner
introduced in [48] with a preconditioner based on the Fast Diagonalization algorithm
tailored for isogeometric bilaplace equation, inspired by the strategy in [62].
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Figure 5.12: Geometry setup and non-conforming discretization for
the �at L-bracket example.

(a) p = 2. (b) p = 3.

Figure 5.13: Solution contour for the �at L-bracket example, B-
splines of degree p = 2, 3.
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(a) m11, p = 2. (b) m12, p = 2. (c) m22, p = 2.

(d) m11, p = 3. (e) m12, p = 3. (f) m22, p = 3.

Figure 5.14: Components of the bending stress tensor m for the �at
L-bracket example, B-splines of degree p = 2, 3.

101 102

−600

−400

−200

0

√
dofs

be
nd

in
g

st
re

ss
m

11

p = 2
p = 3
p = 2 scaled
p = 3 scaled
p = 2 proj
p = 3 proj
converged value

Figure 5.15: Convergence study of the stress component m11, eval-
uated at point A in Figure 5.10a, for the �at L-bracket example for
di�erent B-splines of degree p = 2, 3. Comparison of a classic penalty
method, the scaled version with respect to the problem parameters

proposed in [34] (scaled) and our projection approach (proj ).
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To conclude, we have demonstrated numerically the applicability and robustness of
the proposed projected super-penalty approach for the bilaplace equation discretized
by non-conforming isogeometric patches, where the method does not show any locking
also on very coarse meshes.
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Appendix A

Analysis of doubly constrained

saddle point problems

In what follows, we recall some useful results obtained generalizing the ones from [10]
to saddle point problems with two constraints.

Assumption 5. Let V, Q1, Q2 be three Hilbert spaces. Let be a : V × V → R,
b1 : V ×Q1 → R and b2 : V ×Q2 → R three continuous bilinear forms. We denote by
A, B1 and B2, respectively, the linear continuous operators associated with them. We
also set, for i = 1, 2,

Ki = kerBi, K = K1 ∩K2, Hi = kerBT
i .

Let us consider the following generalized saddle-point problem: given f ∈ V ′,
g1 ∈ Q′

1 and g2 ∈ Q′
2, �nd (u, λ1, λ2) ∈ V ×Q1 ×Q2 such that

a(u, v) + b1(v, λ1) + b2(v, λ2) = ⟨f, v⟩ ∀v ∈ V

b1(u, µ1) = ⟨g1, µ1⟩ ∀µ1 ∈ Q1

b2(u, µ2) = ⟨g2, µ2⟩ ∀µ2 ∈ Q2. (A.1)

Theorem 11. Together with Assumption 5, assume that ImB1|K2
= Q′

1, ImB2 = Q′
2

and that the bilinear form a is coercive on K, that is

∃α0 > 0 : α0∥v0∥2V ≤ a(v0, v0) ∀v0 ∈ K. (A.2)

Then, for every (f, g1, g2) ∈ V ′ ×Q′
1 ×Q′

2, problem (A.1) has a unique solution.

Proof. Let us �rst prove the existence of a solution. From the surjectivity of B2 and
Corollary [10, p. 4.1.1], we have that there exists a lifting operator LB2 such that
B2(LB2g) = g for every g ∈ Q′

2. Setting ug := LB2g, we therefore have B2ug = g.
We now consider the new unknown u0 := u − ug and, in order to have B2u = g, we
require u0 ∈ K2. For every v0 ∈ K2, we obviously have b2(v0, q) = 0 for every q ∈ Q2,
so that the �rst two equations of (A.1) now imply

a(u0, v0) + b1(v0, λ1) = ⟨f, v0⟩ − a(ug, v0) ∀v0 ∈ K2

b1(u0, µ1) = ⟨g1, µ1⟩ ∀µ1 ∈ Q1, (A.3)

and [10, Theorem 4.2.1] ensures that we have a unique (u0, λ1) ∈ K2 ×Q1 satisfying
(A.3). Remark now that the functional

v → ℓ(v) := ⟨f, v⟩ − a(ug + u0, v)− b1(v, λ1),
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thanks to (A.3), vanishes identically for every v ∈ K2. Hence, ℓ ∈ K0
2 (the polar space

of K2), which due to [10, Theorem 4.1.4], coincides with ImBT
2 . Hence, ℓ is in the

image of BT
2 , and there exists a λ2 ∈ Q2 such that BT

2 λ2 = ℓ. This means that⟨︁
BT

2 λ2, v
⟩︁
= ⟨ℓ, v⟩ = ⟨f, v⟩ − a(ug + u0, v)− b1(v, λ1)

for every v ∈ V , and since u = ug + u0, the �rst two equations are satis�ed. On the
other hand, B2u = B2ug +B2u0 = g and the third equation is also satis�ed.
We now prove uniqueness. By linearity, assume that f = 0, g1 = 0 and g2 = 0: then,
u ∈ K. testing the �rst equation on v = u we get a(u, u) = 0 and then u = 0 from
(A.2). Using u = 0 and f = 0 in the �rst equation of (A.1), we have then

b1(v, λ1) + b2(v, λ2) = 0 ∀v ∈ V. (A.4)

In particular, for all v2 ∈ K2 we have b1(v2, λ1) = ⟨B1v2, λ1⟩ = 0 and from Corollary
[10, p. 4.1.1], we have λ1 = 0 and (A.4) reduces to b2(v, λ2) = 0, for all v ∈ V . Finally,
Corollary [10, p. 4.1.1] implies λ2 = 0.

Assume that, for i = 1, 2, we are given a Hilbert space Wi continuously embedded
in Qi and dense in Qi. We now consider, for every ε1, ε2 > 0, problems of the form:
�nd (uε, λ1,ε, λ2,ε) ∈ V ×W1 ×W2 such that

a(uε, v) + b1(v, λ1,ε) + b2(v, λ2,ε) = ⟨f, v⟩ ∀v ∈ V (A.5a)

b1(uε, µ1)− ε1(λ1,ε, µ1)W1 = ⟨g1, µ1⟩Q′
1×Q1

+ ⟨h1, µ1⟩W ′
1×W1

∀µ1 ∈W1

(A.5b)

b2(uε, µ2)− ε2(λ2,ε, µ2)W2 = ⟨g2, µ2⟩Q′
2×Q2

+ ⟨h2, µ2⟩W ′
2×W2

∀µ2 ∈W2.

(A.5c)

Assumption 6. Let us assume that for every χ∗ > 0 there exists an α∗ > 0 such
that:

∀χ > χ∗ ∃α̃ > α∗ : α̃∥u∥2V ≤ a(u, u) + χ∥Biv∥2W ′
i
∀v ∈ V. (A.6)

Theorem 12. Together with Assumption 5, assume that, for i = 1, 2, ImBi is closed
in Qi and that a(·, ·) is positive semi-de�nite and veri�es Assumption 6. Then, for
every 0 < ε1, ε2 ≤ 1/2, for every f ∈ V ′, for every g1 ∈ ImB1|K2, g2 ∈ ImB2 and for
every hi ∈W ′

i , for i = 1, 2, the problem (A.5) has a unique solution which, moreover,
satis�es

∥uε∥V + ∥λ1,ε∥Q1 + ∥λ2,ε∥Q2 + ε
1/2
1 ∥λ1,ε∥W1 + ε

1/2
2 ∥λ2,ε∥W2

≤ C

(︄
∥f∥V ′ + ∥g1∥Q′

1
+ ∥g2∥Q′

2
+

1

ε
1/2
1

∥h1∥W ′
1
+

1

ε
1/2
2

∥h2∥W ′
2

)︄
, (A.7)

where, for i = 1, 2, λi,ε is the component of λi,ε in H
⊥
i .

Proof. Since we do not yet have the existence of the solution, we apply a regularization
argument. We �rst substitute a with aδ given by

aδ(u, v) = a(u, v) + δ(u, v)V ,

with δ > 0. Then, we prove a-priori bounds independent of δ and we have the solution
in the limit for δ → 0+. For brevity, we do not re-write problem (A.5) with aδ in
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place of a, and we do not indicate the dependence of the solution of the regularised
problem on δ. Taking the �rst equation (A.5a) with v = uε, and subtracting the
second equation (A.5b) for µ1 = λ1,ε and the third equation (A.5c) for µ2 = λ2,ε, we
get

δ∥uε∥2V + a(uε, uε) + ε1(λ1,ε, λ1,ε)W1 + ε2(λ2,ε, λ2,ε)W2

= ⟨f, uε⟩+ ⟨g1, λ1,ε⟩Q′
1×Q1

+ ⟨h1, λ1,ε⟩W ′
1×W1

+ ⟨g2, λ2,ε⟩Q′
2×Q2

+ ⟨h2, λ2,ε⟩W ′
2×W2

.

(A.8)

From Corollary [10, p. 4.1.1] and the �rst equation (A.5a), we have

β1∥λ1,ε∥Q1 + β2∥λ2,ε∥Q2 ≤ C (∥uε∥V + ∥f∥V ′) , (A.9)

and since we assumed gi ∈ ImBi for i = 1, 2, we have

⟨g1, λ1,ε⟩+ ⟨g2, λ2,ε⟩ =
⟨︁
g1, λ1,ε

⟩︁
+
⟨︁
g2, λ2,ε

⟩︁
≤ C

(︂
∥g1∥Q′

1
+ ∥g2∥Q′

2

)︂
(∥uε∥V + ∥f∥V ′) .

(A.10)

On the other hand, we also have

⟨f, uε⟩ ≤ ∥f∥V ′∥uε∥V . (A.11)

and, for i = 1, 2,

⟨hi, λi,ε⟩ ≤
1

ε
1/2
i

∥hi∥W ′
i
ε
1/2
i ∥λi,ε∥Wi ≤

1

2εi
∥hi∥2W ′

i
+
εi
2
∥λi,ε∥Wi . (A.12)

Inserting (A.10) and (A.11) and (A.12) in (A.8) and dropping the term with δ (which
is positive), we then easily have

a(uε, uε) + ε1∥λ1,ε∥2W1
+ ε2∥λ2,ε∥2W2

≤ C

[︄(︂
∥g1∥Q′

1
+ ∥g2∥Q′

2

)︂
(∥uε∥V + ∥f∥V ′) + ∥f∥V ′∥uε∥V +

∥g1∥2Q′
1
+ ∥g2∥2Q′

2
+

1

ε1
∥h1∥2W ′

1
+

1

ε2
∥h2∥2W ′

2

]︄

≤ C

[︄
∥uε∥V

(︂
∥f∥V ′ + ∥g1∥Q′

1
+ ∥g2∥Q′

2

)︂
+ ∥f∥2V ′+

∥g1∥2Q′
1
+ ∥g2∥2Q′

2
+

1

ε1
∥h1∥2Q′

1
+

1

ε2
∥h2∥2Q′

2

]︄
. (A.13)

On the other hand, from the second equation (A.5b) we have that ε1RW1λ1,ε (where
RW1 is the Ritz operator in W1) is equal to B1uε − g1 − h1. Hence,

ε1∥λ1,ε∥2W1
= ε1∥RW1λ1,ε∥2W ′

1
=

1

ε1
∥B1uε − g1 − h1∥2W ′

1
. (A.14)
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Hence, using (a + b)2 ≤ 2a2 + 2b2, the assumption ε1 ≤ 1/2, (A.14) and ∥w∥W ′
1
≤

C∥w∥Q′
1
, we have

∥B1uε∥2W ′
1
≤ 2∥B1uε − g1 − h1∥2W ′

1
+ 2∥g1 + h1∥2W ′

1

≤ 1

ε1
∥B1uε − g1 − h1∥2W ′

1
+ 4∥g1∥2W ′

1
+ 4∥h1∥2W ′

1

≤ ε1∥λ1,ε∥2W1
+ 4∥g1∥2W ′

1
+ 4∥h1∥2W ′

1
.

(A.15)

Similarly, we also have

∥B2uε∥2W ′
2
≤ ε2∥λ2,ε∥2W1

+ 4∥g2∥2W ′
2
+ 4∥h2∥2W ′

2
. (A.16)

Combining (A.15), (A.16) and (A.13), we obtain

a(uε, uε) + ∥B1uε∥W ′
1
+ ∥B2uε∥W ′

2
+ ε1∥λ1,ε∥2W1

+ ε2∥λ2,ε∥2W2

≤ C

[︄
∥uε∥V

(︂
∥f∥V ′ + ∥g1∥Q′

1
+ ∥g2∥Q′

2

)︂
+ ∥f∥2V ′+

∥g1∥2Q′
1
+ ∥g2∥2Q′

2
+

1

ε1
∥h1∥2W ′

1
+

1

ε2
∥h2∥2W ′

2

]︄
. (A.17)

Finally, using (A.9) together with (A.6) and (A.17) gives

∥uε∥2V + ∥λ1,ε∥2Q1
+ ∥λ2,ε∥2Q2

+ ε1∥λ1,ε∥2W1
+ ε2∥λ2,ε∥2W2

≤ C
(︁
∥uε∥2V + ∥f∥2V ′ + ε1∥λ1,ε∥2W1

+ ε2∥λ2,ε∥2W2

)︁
≤ C

(︂
a(uε, uε) + ∥B1uε∥W ′

1
+ ∥B2uε∥W ′

2
+ ∥f∥2V ′ + ε1∥λ1,ε∥2W1

+ ε2∥λ2,ε∥2W2

)︂
≤ C

[︄
∥uε∥V

(︂
∥f∥V ′ + ∥g1∥Q′

1
+ ∥g2∥Q′

2

)︂
+ ∥f∥2V ′+

∥g1∥2Q′
1
+ ∥g2∥2Q′

2
+

1

ε1
∥h1∥2W ′

1
+

1

ε2
∥h2∥2W ′

2

]︄
,

which easily yields the (A.7). Hence, the operator M : (uε, λ1,ε, λ2,ε) ↦→ (f, g1, g2) is
bounding. Then, M is injective and MT ≡ M is surjective. This ensures existence
and uniqueness for the solution of (A.5).

Remark 11. Under the assumption ImBi = Q′
i, it holds H

0
i = Q′

i, which implies
Hi = {0} and H⊥

i = Qi. Hence, (A.7) reduces to

∥uε∥v + ∥λ1,ε∥Q1 + ∥λ2,ε∥Q2 + ε
1/2
1 ∥λ1,ε∥W1 + ε

1/2
2 ∥λ2,ε∥W2

≤ C

(︄
∥f∥V ′ + ∥g1∥Q′

1
+ ∥g2∥Q′

2
+

1

ε
1/2
1

∥h1∥W ′
1
+

1

ε
1/2
2

∥h2∥W ′
2

)︄
. (A.18)

For the sake of simplicity, from now on, we will restrict our analysis to the case
ImBi = Q′

i.

Proposition 3. With the same assumptions of Theorem 12, and assuming moreover
that hi = 0 for i = 1, 2, let (uε, λ1,ε, λ2,ε) ∈ V ×W1 ×W2 be the solution of problem
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(A.5) and (u, λ1, λ2) ∈ V ×Q1 ×Q2 be the solution of problem (A.1). We then have

∥u− uε∥V + ∥λ1 − λ1,ε∥Q1 + ∥λ2 − λ2,ε∥Q2

≤ C

[︃
inf

w1∈W1

(∥λ1 − w1∥Q1 +
√
ε1∥w1∥W1) + inf

w2∈W2

(∥λ2 − w2∥Q2 +
√
ε2∥w2∥W2)

]︃
.

(A.19)

Proof. Subtracting (A.5) from (A.1) with µ1 ∈W1 and µ2 ∈W2, one has

a(u− uε, v) + b1(v, λ1 − λ1,ε) + b2(v, λ2 − λ2,ε) = 0 ∀v ∈ V

b1(u− uε, µ1) = ε1(λ1,ε, µ1)W1 ∀µ1 ∈W1

b2(u− uε, µ2) = ε2(λ2,ε, µ2)W2 ∀µ2 ∈W2. (A.20)

Let be λ1,w ∈W1 and λ2,w ∈W2. We rewrite (A.20) as

a(u− uε, v) + b1(v, λ1,w − λ1,ε) + b2(v, λ2,w − λ2,ε) =

b1(v, λ1,w − λ1) + b2(v, λ2,w − λ2) ∀v ∈ V

b1(u− uε, µ1) + ε1(λ1,w − λ1,ε, µ1)W1 = ε1(λ1,ε, µ1)W1 ∀µ1 ∈W1

b2(u− uε, µ2) + ε2(λ2,w − λ2,ε, µ2)W2 = ε2(λ2,ε, µ2)W2 ∀µ2 ∈W2.
(A.21)

Applying Theorem 12 with ⟨h1, µ1⟩ = ε1(λ1,w, µ1)W1 and ⟨h2, µ2⟩ = ε2(λ2,w, µ2)W2 ,
and using estimate (A.18), we get

∥u− uε∥2V + ∥λ1,w − λ1,ε∥2Q1
+ ∥λ2,w − λ2,ε∥2Q2

≤ C
(︁
∥λ1,w − λ1∥2Q1

+ ε1∥λ1,w∥2W1
+ ∥λ2,w − λ2∥2Q2

+ ε2∥λ2,w∥2W2

)︁
. (A.22)

From the triangle inequality and the arbitrariness of λ1,w and λ2,w, one deduces (A.19).

Remark 12. Having de�ned

W+
i =

{︂
w ∈Wi : ∥w∥Q′

i
<∞

}︂
,

for every λ+i ∈W+
i , we have

(λ+i , µi)Wi ≤ ∥λ+i ∥Q′
i
∥µi∥Qi ∀µi ∈Wi.

Taking now λi,w ∈W+
i , we can go back to (A.21), considering this time that the right-

hand side of the second and third equations (that are ε1(λ1,w, µ1)W1 and ε2(λ2,w, µ2)W2)
corresponds to the choice h1 = h2 = 0, ⟨g1, µ1⟩ = ε1(λ1,w, µ1)W1 and ⟨g2, µ2⟩ =
ε2(λ2,w, µ1)W2 when using Theorem 12. In particular, thanks to (A.18), we now have

∥u− uε∥V + ∥λ1 − λ1,ε∥Q1 + ∥λ2 − λ2,ε∥Q2

≤ C

(︄
inf

λ1,w∈W+
1

{︂
∥λ1 − λ1,w∥Q1 + ε1∥λ1,w∥W+

1

}︂
+

inf
λ2,w∈W+

2

{︂
∥λ2 − λ2,w∥Q2 + ε2∥λ2,w∥W+

2

}︂)︄
.
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Finally, we observe that, whenever λi ∈W+
i , we would have

∥u− uε∥V + ∥λ1 − λ1,ε∥Q1 + ∥λ2 − λ2,ε∥Q2 ≤ C
(︂
ε1∥λ1∥W+

1
+ ε2∥λ2∥W+

2

)︂
. (A.23)

Let us consider the discretized version of the problem (A.5): given f ∈ V ′, g1 ∈ Q′
1

and g2 ∈ Q′
2, �nd (uh, λ1,h, λ2,h) ∈ Vh ×Q1,h ×Q2,h such that

a(uh, vh) + b1(vh, λ1,h) + b2(vh, λ2,h) = ⟨f, vh⟩ ∀vh ∈ Vh

b1(uε, µ1,h)− ε1(λ1,h, µ1,h)W1 = ⟨g1, µ1,h⟩Q′
1×Q1

∀µ1,h ∈ Q1,h

b2(uh, µ2,h)− ε2(λ2,h, µ2,h)W2 = ⟨g2, µ2,h⟩Q′
2×Q2

∀µ2,h ∈ Q2,h. (A.24)

Assumption 7. Together with Assumption 5, we assume that we are given three �nite
dimensional spaces Vh ⊂ V , Q1,h ⊂ Q1 and Q2,h ⊂ Q2. Let us de�ne Ah and Bi,h,
respectively, the restrictions A|Vh

and Bi|Vh
. Together with the kernels Ki and Hi, we

consider then the discrete kernels

Ki,h = kerBi,h, Kh = K1,h ∩K2,h, Hi,h = kerBT
i,h.

Assumption 8. Let us assume that there exist two constants β1, β2 > 0 such that

inf
µh∈Q1,h

sup
vh∈K2,h

b1(vh, µh)

∥vh∥V ∥µh∥Q1

≥ β1

and

inf
µh∈Q2,h

sup
vh∈Vh

b2(vh, µh)

∥vh∥V ∥µh∥Q2

≥ β2.

Theorem 13. Together with Assumption 6, 7 and 8, assume that, for i = 1, 2, Qi,h ⊂
Wi. For every 0 ≤ ε1, ε2 ≤ 1/2, let (uε, λ1,ε, λ2,ε) and (uh, λ1,h, λ2,h) be the solutions
of (A.5) and (A.24) respectively. Then, we have

∥uε−uh∥2V +∥λ1,ε−λ1,h∥2Q1
+ε1∥λ1,ε−λ1,h∥2W1

+∥λ2,ε−λ2,h∥2Q2
+ε2∥λ2,ε−λ2,h∥2W2

≤ C
(︂

inf
vh∈Vh

∥u− vh∥2V + inf
µ1,h∈Q1,h

{︁
∥λ1,ε − µ1,h∥2Q1

+ ε1∥λ1,ε − µ1,h∥2W1

}︁
+

inf
µ2,h∈Q2,h

{︁
∥λ2,ε − µ2,h∥2Q2

+ ε2∥λ2,ε − µ2,h∥2W2

}︁)︂
.

Proof. For the proof we refer to [10, Theorem 5.5.4 and Remark 5.5.5].
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Appendix B

Discrete inf-sup stability on the

parametric domain

In this section, we report some useful results about the discrete inf-sup stability be-
tween spline spaces built on parametric domains, see [7]. Starting from a generic open
knot vector, de�ned on ˆ︁γ = [0, 1],

Ξp = {ξ1, . . . , ξn+p+1} ,

with

0 = ξ1 = ξ2 = . . . = ξp+1 < ξp+2 < . . . < ξn < ξn+1 = . . . = ξn+p = ξn+p+1 = 1,

we consider three reduced knot vectors:

Ξp−1 = {��ξ1, ξ2, . . . , ξp+1, ξp+2, . . . , ξn, ξn+1, . . . , ξn+p,����ξn+p+1}
Ξp−1
M =

{︁
��ξ1, ξ2, . . . , ξp+1,���ξp+2, . . . ,��ξn, ξn+1, . . . , ξn+p,����ξn+p+1

}︁
Ξp−2
M =

{︁
��ξ1,��ξ2, . . . , ξp+1,���ξp+2, . . . ,��ξn, ξn+1, . . . ,���ξn+p,����ξn+p+1

}︁
.

We also introduce six di�erent isogeometric spaces:

Sp
h,00 =

{︁
w ∈ Sp

h (Ξ
p) : w(0) = w(1) = w′(0) = w′(1) = 0

}︁
Sp−1
h,0 =

{︂
w ∈ Sp−1

h

(︁
Ξp−1

)︁
: w(0) = w(1) = 0

}︂
Sp−1
h,0,zmv =

{︃
w ∈ Sp−1

h,0 :

∫︂
ˆ︁γ w = 0

}︃
Sp−1
h,M =

{︂
w ∈ Sp−1

h

(︂
Ξp−1
M

)︂}︂
Sp−1
h,M,zmv =

{︃
w ∈ Sp−1

h,M :

∫︂
ˆ︁γ w = 0

}︃
Sp−2
h,M =

{︂
w ∈ Sp−1

h

(︂
Ξp−2
M

)︂}︂
.

Assumption 9. Let us assume n ≥ 3p− 1.

Proposition 4. The derivative operators D : Sp
h,00 → Sp−1

h,0,zmv and D : Sp−1
h,M,zmv →

Sp−2
h,M are bijections.
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Proof. Let us focus on the operator D : Sp
h,00 → Sp−1

h,0,zmv. For [65, Theorem 5.9] the

derivative of a spline of degree p is a spline of degree p− 1. Now, if v ∈ Sp
h,00 it holds∫︂

ˆ︁γ Dv = v(1)− v(0) = 0,

then Dv ∈ Sp−1
h,0,zmv. To show the injectivity let v, w ∈ Sp

h,00 be such that Dv = DW .
Then we have v = w + c, with c ∈ R. But v(0) = w(0) = 0 and so v = w.
The surjectivity is shown by constructing an element of the preimage space. Given
w ∈ Sp−1

h,0,zmv we de�ne

v(x) =

∫︂ x

0
w(s)ds.

From [65, Theorem 5.16] it follows that v is a spline of degree p. We also have
v(0) = v(1) = 0, v′(0) = w(0) = w(1) = v′(1) = 0. Thus v ∈ Sp

h,00.

Similarly, for D : Sp−1
h,M,zmv → Sp−2

h,M , if v ∈ Sp−1
h,M,zmv, from [65, Theorem 5.9]

it follows that Dv ∈ Sp−2
h,M . For the injectivity, if v, w ∈ Sp−1

h,M,zmv are such that

Dv = Dw ∈ Sp−2
h,M , then v = w + c, with c ∈ R. From the hypothesis follows that

0 =

∫︂ 1

0
v =

∫︂ 1

0
w + c = c+

∫︂ 1

0
w,

but we have ∫︂ 1

0
w = 0

so c = 0. For the surjectivity, if w ∈ Sp−2
h,M , we can de�ne

v(x) =

∫︂ x

0
w(s)ds−

∫︂ 1

0
w(s)ds.

From [65, Theorem 5.16] it follows that v ∈ Sp−1
h,M and from∫︂ 1

0
v(x)dx =

∫︂ 1

0
w(s)ds−

∫︂ 1

0
w(s)ds = 0

we obtain v ∈ Sp−1
h,M,zmv.

Proposition 5. There exists a constant C > 0 such that

∥w∥L2(ˆ︁γ) ≤ C∥Dw∥[H1(ˆ︁γ)]′ , ∀w ∈ H1
0 (ˆ︁γ).

Proof. For all w ∈ L2(ˆ︁γ), there exists a function w ∈ H1
zmv(ˆ︁γ), with

H1
zmv(ˆ︁γ) = {︃w ∈ H1(ˆ︁γ) : ∫︂ˆ︁γ w = 0

}︃
,
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such that Dw = w. For all v ∈ H1
0 (ˆ︁γ) it holds

∥v∥L2(ˆ︁γ) = sup
w∈L2(ˆ︁γ)

∫︁ˆ︁γ vw
∥w∥L2(ˆ︁γ) = sup

w∈H1
zmv(ˆ︁γ)

∫︁ˆ︁γ vDw
|w|H1(ˆ︁γ)

≤ C sup
w∈H1

zmv(ˆ︁γ)
∫︁ˆ︁γ wDv
∥w∥H1(ˆ︁γ) ≤ C∥Dv∥[H1(ˆ︁γ)]′ ,

where C is the Poincaré constant.

Proposition 6. Let be 2 ≤ p ≤ 9. For a uniform knot vector de�ned on ˆ︁γ, there
exists a constant C > 0, independent of h, such that

inf
w∈Sp−1

h,0

sup
µ∈Sp−1

h,M

∫︁ˆ︁γ wµ
∥w∥L2(ˆ︁γ)∥µ∥L2(ˆ︁γ) ≥ C. (B.1)

Proof. If we prove that, for all w ∈ Sp−1
h,0 , there exists µ ∈ Sp−1

h,M such that

∥µ∥
L2( ˆ︁γ) ≤ C1∥w∥L2(ˆ︁γ) (B.2)

∥w∥2L2(ˆ︁γ) ≤ C2

∫︂
ˆ︁γ wµ, (B.3)

then the thesis holds with C = 1
C1C2

.
First of all, we observe that

dim
(︂
Sp−1
h,0

)︂
= dim

(︂
Sp−1
h,M

)︂
= n− 2 = m.

Let ( ˆ︁Bi)
m
i=1 and ( ˜︁Bi)

m
i=1 be the B-spline basis functions of S

p−1
h,0 and Sp−1

h,M , respectively.

We denote by ˆ︁Ii and ˜︁Ii the supports of ˆ︁Bi and ˜︁Bi, respectively, and by |ˆ︁Ii| and |˜︁Ii|
their respective lengths. Having w ∈ Sp−1

h,0 , we can express it as

w =
m∑︂
i=1

wi
ˆ︁Bi

and we can de�ne µ ∈ Sp−1
h,M as

µ =

m∑︂
i=1

wi
˜︁Bi.

Let be I ⊂ (0, 1) a knot span. The restriction of µ on I can be expressed as

µ|I =
∑︂

i: I⊂˜︁Ii
wi
˜︁Bi,

then we have

∥µ∥2L2(ˆ︁γ) ≤
∫︂
I

⎛⎝ ∑︂
i: I⊂˜︁Ii

wi
˜︁Bi

⎞⎠2

≤
∫︂
I

⎛⎝ ∑︂
i: I⊂˜︁Ii

w2
i ·

∑︂
i: I⊂˜︁Ii

˜︁B2
i

⎞⎠ .
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Since every function in B-spline basis ( ˜︁Bi)
m
i=1 satis�es 0 ≤ ˜︁Bi ≤ 1, we obtain

∥µ∥2L2(ˆ︁γ) ≤ |I|
∑︂

i: I⊂˜︁Ii
w2
i .

From [65, Theorem 4.41], there exists a constant C > 0, independent of h, such that

∥µ∥2L2(ˆ︁γ) ≤ |I|
∑︂

i: I⊂˜︁Ii
w2
i ≤ C|I|

∑︂
i: I⊂˜︁Ii

|ˆ︁Ii|−1∥w |2
L2(ˆ︁Ii) ≤ C

∑︂
i: I⊂˜︁Ii

∥w |2
L2(ˆ︁Ii).

Finally, summing over all knot span I, we get (B.2).
In order to prove (B.3), we note that, for all p+ 1 ≤ i ≤ n− p, it holds ˆ︁Bi = ˜︁Bi,

then ∫︂
ˆ︁γ wµ =

∫︂ ξ2p+1

0
wµ+ ∥w∥2L2(ξ2p+1,ξn−1)

+

∫︂ 1

ξn−1

wµ. (B.4)

We focus on the �rst term of (B.4). We want to prove that there exists a constant
C2 > 0, independent of h, such that

inf
w∈Sp−1

h,0 ,

w ̸=0

∫︁ ξ2p+1

0 wµ

∥w∥2
L2(0,ξ2p+1)

≥ C2. (B.5)

The restrictions of w and µ on [0, ξ2p+2] can be expressed as

w(ζ)|[0,ξ2p+1] =

2p∑︂
i=1

wi
ˆ︁Bi(ζ)|[0,ξ2p+1] =

2p∑︂
i=1

wi
ˆ︁B∗
i

(︃
ζ

h

)︃
|[0,ξ2p+1]

µ|[0,ξ2p+1] =

2p∑︂
i=1

wi
˜︁Bi(ζ)|[0,ξ2p+1] =

2p∑︂
i=1

wi
˜︁B∗
i

(︃
ζ

h

)︃
|[0,ξ2p+1]

,

where ( ˆ︁B∗
i )

m
i=1 and ( ˜︁B∗

i )
m
i=1 are, respectively, the B-spline basis analogous to ( ˆ︁Bi)

m
i=1

and ( ˜︁Bi)
m
i=1, but built on

Ξp−1
∗ =

{︁
��ξ
∗
1 , ξ

∗
2 , . . . , ξ

∗
p+1, ξ

∗
p+2, . . . , ξ

∗
n, ξ

∗
n+1, . . . , ξ

∗
n+p,����ξ∗n+p+1

}︁
Ξp−1
M,∗ =

{︂
��ξ
∗
1 , ξ

∗
2 , . . . , ξ

∗
p+1,�

��ξ∗p+2, . . . ,��ξ
∗
n, ξ

∗
n+1, . . . , ξ

∗
n+p,����ξ∗n+p+1

}︂
,

with

0 = ξ∗1 = ξ∗2 = . . . = ξ∗p+1 < ξ∗p+2 < . . . < ξ∗n < ξ∗n+1 = . . . = ξ∗n+p = ξ∗n+p+1,
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p = 2 p = 3 p = 4 p = 5 p = 6 p = 7 p = 8 p = 9

0.5763 0.5889 0.6152 0.6268 0.6044 0.5321 0.3984 0.1819

Table B.1: Numerically computed value of C3.

where each knot span in Ξp−1
∗ has size equal to 1. With a change of variables, we

obtain

inf
w∈Sp−1

h,0 ,

w ̸=0

∫︁ ξ2p+1

0 wµ

∥w∥2
L2(0,ξ2p+1)

= inf
w∈Rp\{0}

∫︁ ξ2p+1

0

(︂∑︁2p
i=1wi

ˆ︁Bi(ζ) ·
∑︁2p

i=1wi
˜︁Bi(ζ)

)︂
dζ∫︁ ξ2p+1

0

(︂∑︁2p
i=1wi

ˆ︁Bi(ζ)
)︂2
dζ

= inf
w∈Rp\{0}

∫︁ ξ∗2p+1

0

(︂∑︁2p
i=1wi

ˆ︁B∗
i (z) ·

∑︁2p
i=1wi

˜︁B∗
i (z)

)︂
dz∫︁ ξ∗2p+1

0

(︂∑︁2p
i=1wi

ˆ︁B∗
i (z)

)︂2
dz

= C3.

(B.6)

We stress the fact that C3 is independent of h. To conclude, we only need to show
that it is positive. This step can be done numerically. In Table B.1 we report the
value of C3 for p = 2, . . . , 9. Thanks to the symmetry of B-spline basis, with a similar
argument, we can also prove that

inf
w∈Sp−1

h,0 ,

w ̸=0

∫︁ 1
ξn−1

wµ

∥w∥2
L2(ξn−1,1)

= C3. (B.7)

Combining (B.4), (B.6) and (B.7) we get (B.3).

Remark 13. The restriction to p ≤ 9 in the assumptions of Proposition 6 is due to the
fact that for p ≥ 10 the constant C2 appearing in (B.5) becomes negative. Nevertheless,
numerical tests show that the quantity in (B.1) is positive and independent of h even
for greater values of p.

De�nition 1. The operator ˆ︂M∗
h : L2(ˆ︁γ) → Sp−1

h,M given by∫︂
ˆ︁γ ˆ︂M∗

hwψ =

∫︂
ˆ︁γ φψ, ∀ψ ∈ Sp−1

h,0 ,

is well de�ned. This follows from the fact that dim(Sp−1
h,0 ) = dim(Sp−1

h,M) and from
Proposition 6.

Lemma 4. The operator ˆ︂M∗
h : Sp−1

h,0 → Sp−1
h,M is bijective.

Proof. Let us assume that there exists φ ∈ Sp−1
h,0 such that ˆ︂M∗

hφ = 0. For all Sp−1
h,0 it

holds ∫︂
ˆ︁γ φψ =

∫︂
ˆ︁γ
(︂
φ− ˆ︂M∗

hφ
)︂
ψ = 0,

then φ = 0 on ˆ︁γ. By the fact that dim(Sp−1
h,0 ) = dim(Sp−1

h,M ), surjectivity follows.
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Proposition 7. There exists a constant C > 0, independent of h, such that, for any
φ ∈ Sp−1

h,0 , it holds

sup
λ∈Sp−1

M

∫︁ˆ︁γ φλ
∥λ∥H1(ˆ︁γ) ≥ C∥φ∥[H1(ˆ︁γ)]′ .

Proof. First of all, we are interested in showing that ˆ︂M∗
h is L2-stable. Thanks to

Proposition [10, Proposition 3.4.3], we can interchange the spaces in Proposition 6
and we obtain

sup
w∈Sp−1

h,0

∫︁ˆ︁γ wµ
∥w∥L2(ˆ︁γ) ≥ C∥µ∥L2(ˆ︁γ) ∀µ ∈ Sp−1

h,M .

In particular, for each λ ∈ L2(ˆ︁γ) it holds ˆ︂M∗
hλ ∈ Sp−1

h,M , thus

∥ˆ︂M∗
hλ∥L2(ˆ︁γ) ≤ C sup

w∈Sp−1
h,0

∫︁ˆ︁γ wˆ︂M∗
hλ

∥w∥L2(ˆ︁γ) = C sup
w∈Sp−1

h,0

∫︁ˆ︁γ wλ
∥w∥L2(ˆ︁γ) ≤ C∥λ∥L2(ˆ︁γ).

We check that ˆ︂M∗
h is also H1-stable. Let be λ ∈ H1(ˆ︁γ) and let λh be its best

approximation in Sp−1
h,M . Using the inverse inequality for splines, we get

∥ˆ︂M∗
hλ∥H1(ˆ︁γ) ≤ ∥ˆ︂M∗

hλ− λh∥H1(ˆ︁γ) + ∥λh∥H1(ˆ︁γ)
= ∥ˆ︂M∗

h(λ− λh)∥H1(ˆ︁γ) + ∥λh∥H1(ˆ︁γ)
≤ Ch−1∥ˆ︂M∗

h(λ− λh)∥L2(ˆ︁γ) + ∥λh∥H1(ˆ︁γ),
but thanks to the L2-stability we have

∥ˆ︂M∗
hλ∥H1(ˆ︁γ) ≤ Ch−1∥λ− λh∥L2(ˆ︁γ) + ∥λh∥H1(ˆ︁γ)

≤ C∥λ∥H1(ˆ︁γ) + C ′∥λ∥H1(ˆ︁γ) ≤ C∥λ∥H1(ˆ︁γ).
For any φ ∈ [H1(ˆ︁γ)]′ it holds

sup
µ∈H1(ˆ︁γ)

∫︁ˆ︁γ µφ
∥µ∥H1(ˆ︁γ) = C∥φ∥[H1(ˆ︁γ)]′ , (B.8)

and, in particular, it holds for any φ ∈ Sp−1
h,0 . Now, from Lemma 4, for each ψ ∈ Sp−1

h,M

there exists µ ∈ Sp−1
h,0 such that ψ = ˆ︂M∗

hµ, that is∫︂
ˆ︁γ ψφ =

∫︂
ˆ︁γ µφ ∀φ ∈ Sp−1

h,0

and ∥ψ∥H1(ˆ︁γ) ≤ C∥µ∥H1(ˆ︁γ). Hence, for all φ ∈ Sp−1
h,0 there exists ψ = ˆ︂M∗

hµ ∈ Sp−1
h,M

such that ∫︁ˆ︁γ ψφ
∥ψ∥H1(ˆ︁γ) ≥ C

∫︁ˆ︁γ µφ
∥µ∥H1(ˆ︁γ) ,

taking the supremum over µ ∈ H1(ˆ︁γ) and using (B.8) yields the thesis.
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Proposition 8. There exists a constant C > 0, independent of h, such that, for any
λ ∈ Sp−1

h,M,zmv, it holds

sup
φ∈Sp−1

h,0,zmv

∫︁ˆ︁γ φλ
∥φ∥[H1(ˆ︁γ)]′ ≥ C∥λ∥H1(ˆ︁γ).

Proof. From Proposition 7 we have that for all φ ∈ Sp−1
h,0 there exists λ ∈ Sp−1

h,M such
that ∫︂

ˆ︁γ φλ ≥ C∥φ∥[H1(ˆ︁γ)]′∥λ∥H1(ˆ︁γ),
and in particular it holds for all φ ∈ Sp−1

h,0,zmv. Now we can choose

λ∗ = λ−
∫︂
ˆ︁γ λ.

In this way, we obtain ∫︂
ˆ︁γ φλ∗ =

∫︂
ˆ︁γ φλ ≥ C∥φ∥[H1(ˆ︁γ)]′∥λ∥H1(ˆ︁γ).

It is straightforward to see that ∥λ∗∥H1(ˆ︁γ) ≤ ∥λ∥H1(ˆ︁γ), then for all φ ∈ Sp−1
h,0,zmv it

holds

sup
λ∗∈Sp−1

h,M,zmv

∫︁ˆ︁γ φλ∗
∥λ∗∥H1(ˆ︁γ) ≥ C∥φ∥[H1(ˆ︁γ)]′ .

Thanks to [10, Proposition 3.4.3], we can interchange the spaces and we obtain the
thesis.

Theorem 14. There exists a constant C > 0, independent of h, such that

inf
µ∈Sp−2

h,M

sup
w∈Sp

h,00

∫︁ˆ︁γ wµ
∥w∥L2(ˆ︁γ)∥µ∥L2(ˆ︁γ) ≥ C.

Proof. Let µ ∈ Sp−2
h,M , then there exists λ ∈ Sp−1

h,M,zmv such that λ′ = µ. integrating by
parts, we get

sup
w∈Sp

h,00

∫︁ˆ︁γ wµ
∥w∥L2(ˆ︁γ) = sup

w∈Sp
h,00

∫︁ˆ︁γ wλ′
∥w∥L2(ˆ︁γ) = sup

w∈Sp
h,00

∫︁ˆ︁γ w′λ

∥w∥L2(ˆ︁γ) .
From Proposition 5 we have that for all

∥w∥L2(ˆ︁γ) ≤ C∥w′∥[H1(ˆ︁γ)]′ ∀w ∈ H1
0 (ˆ︁γ).

Then, setting φ = w′ we obtain

sup
w∈Sp

h,00

∫︁ˆ︁γ w′λ

∥w∥L2(ˆ︁γ) ≥ C sup
w∈Sp

h,00

∫︁ˆ︁γ w′λ

∥w′∥[H1(ˆ︁γ)]′ = C sup
φ∈Sp−1

h,0,zmv

∫︁ˆ︁γ φλ
∥φ∥[H1(ˆ︁γ)]′
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and applying Proposition 8 we get the result

sup
φ∈Sp−1

h,0,zmv

∫︁ˆ︁γ φλ
∥φ∥[H1(ˆ︁γ)]′ ≥ C∥λ∥H1(ˆ︁γ) ≥ C|λ|H1(ˆ︁γ) = C∥µ∥L2(ˆ︁γ).
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