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And lost he wandered under leaves,
And where the Elven-river rolled
He walked alone and sorrowing.
He peered between the hemlock-leaves
And saw in wonder flowers of gold
Upon her mantle and her sleeves,
And her hair like shadow following.

The Road goes ever on and on
Out from the door where it began.
Now far ahead the Road has gone,
Let others follow it who can!
Let them a journey new begin,
But I at last with weary feet
Will turn towards the lighted inn,
My evening-rest and sleep to meet.

J.R.R. Tolkien, The lord of the Rings
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Notations and conventions

We are going to use the following representation for the Dirac matrices:

γ0 =

(
I 0
0 −I

)
, γi =

(
0 σi

−σi 0

)
, γ5 = iγ0γ1γ2γ3 =

(
0 I
I 0

)
, (1)

where the 2-dimensional Pauli matrices are

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (2)

In light-front coordinates we have the definition of the γ± as:

γ± =
1√
2

(γ0 ± γ3) =
1√
2

(
I ±σ3

∓σ3 I

)
, (3)

and the light-cone projectors turns out to be:

P± =
γ∓γ±

2
=

(
I ±σ3

±σ3 I

)
. (4)

We will adopt the standard convention for the Gell-Mann matrices (the ·̂
indexes run in the adjoint representation):

T 1̂ =
1

2




0 1 0
1 0 0
0 0 0


 , T 2̂ =

1

2




0 −i 0
i 0 0
0 0 0


 , T 3̂ =

1

2




1 0 0
0 −1 0
0 0 0


 , (5)

T 4̂ =
1

2




0 0 1
0 0 0
1 0 0


 , T 5̂ =

1

2




0 0 −i
0 0 0
i 0 0


 , T 6̂ =

1

2




0 0 0
0 0 1
0 1 0


 , (6)

T 7̂ =
1

2




0 0 0
0 0 −i
0 i 0


 , T 8̂ =

1

2
√

3




1 0 0
0 1 0
0 0 −2


 , (7)

with the normalization

Tr
(
T âT b̂

)
=

1

2
δâb̂ (8)

and the commutation relations
[
T â, T b̂

]
= if âb̂ĉ T

ĉ, (9)
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0. Notations and conventions

where the structure constants are:

f 1̂2̂
3̂

= 1, f 4̂5̂
8̂

= f 6̂7̂
8̂

=

√
3

2
,

f 1̂4̂
7̂

= −f 1̂5̂
6̂

= f 2̂4̂
6̂

= f 2̂5̂
7̂

= f 3̂4̂
5̂

= −f 3̂6̂
7̂

=
1

2
. (10)
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Chapter 1
Introduction

The current description of fundamental particle physics is performed in terms of
Quantum Field Theories (QFTs). This class of theories combines the quantum
description of the Nature with the Special Relativity, providing a tool to study
microscopic and energetic phenomena. The Standard Model of particle physics
is the current theory that describes the known fundamental particles and their
interactions, using the language of the QFTs. We are interested in particular
in the Quantum ChromoDynamics (QCD) sector of the Standard Model, which
is the QFT of the strong force, i.e. the force acting between quarks and gluons.
QCD is a non-abelian gauge theory, meaning that the force is mediated by
gauge particles, i.e. the gluons, and that the gluons auto-interact. The auto-
interaction of the gluons, combined with with the fact that they are massless,
causes an increase of the strong coupling constant in the low-energy domain.
This increase of the coupling constant prevents a perturbative approach to QCD
at low-energy scales and leads to the phenomenon known as confinement: no
free quarks or free gluons are observed in Nature, they only exist in bound,
colorless states, which are known as hadrons. Quarks and gluons inside had-
rons are collectively known as partons. Since a perturbative description of the
partonic structure of the hadrons is not possible, one has to resort to other
approaches. This motivates the thesis: using different tools of modern hadron
physics, we try to improve the current understanding of the partonic structure
of the proton, assumed as a prototype of hadron. To have a better descrip-
tion of the partonic structure of the proton has several consequences. First,
we would have a much better interpretation of the experimental data, which in
turns may open new possibility for searching evidences of physics beyond the
Standard Model. Second, we would have a testing ground to validate theories
that try to explain the emergence of the confinement from the internal parton
dynamics.

The two main tools that we use in the thesis to investigate the partonic
structure of the proton are the parton distribution functions and the Energy-
Momentum Tensor (EMT). They offer different and, therefore, complementary
descriptions of the partonic structure of the proton. The parton distribution
functions encode information about the momentum distributions of the partons
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1. Introduction

inside the proton. A variety of parton distributions exists: the most general type
encodes a six-dimensional momentum information (three-dimensional partonic
momentum and three-dimensional proton-momentum transfer). From these
mother distributions it is possible, via suitable limits and integrations, to access
distributions that depend only on a sub-set of the six momentum variables. It
is also possible to perform a Fourier transform from the proton-momentum
transfer space to the impact-parameter space, in order to access the transverse
position of the partons along with their three-dimensional momentum. The
parton distributions enter in a variety of high-energy processes in which an
hadron is involved, hence they are among the fundamental tools for precision
experimental physics. The proton matrix elements of the QCD EMT carry
information about global properties of the proton. A detailed study of the
possible decompositions of the EMT in the separate contributions from quarks
and gluons leads to important clues on how the global properties of the proton
emerge from the properties of its elementary constituents.

1.1 Outline

In this thesis, we approach the study of the partonic structure of the proton
from different perspectives. We propose a new model to describe the proton
state in terms of its elementary constituents and discuss global properties of the
proton, such as its mass, from the underlying dynamics of quarks and gluons.

Chapter 2 is devoted to a review of different ways to quantize a theory. For
the most part, we are going to focus our attention on the light-front quantiz-
ation, in which the (anti-)commutation relations among fields are imposed on
a hyperplane tangent to the light-cone. Light-front quantization has many ad-
vantages compared to the standard, instant-form quantization, in the context
of studying the proton structure. The most important one for our purposes
is the possibility of having a well-defined Fock-space expansion of the proton
state. This allows us to introduce the Light-Front Wave Functions (LFWFs).
Moreover, it is the most natural language to formulate the theory of parton
distributions.

In Chapter 3, we give an overview of the possible types of parton distribu-
tions, each of which provides complementary information on the parton com-
position of the proton. We also review the general link that exists between
the LFWFs and the vacuum-to-proton matrix elements of quarks and gluons
operators. Such transition matrix elements can be parametrized in terms of
distributions amplitudes, and the connection between them and the LFWFs
is at the core of our discussion on model calculations of parton distributions.
In particular, we present how the QCD equations of motion can be used to
obtain a link between sub-leading distribution amplitudes and LFWFs with
non-vanishing parton orbital angular momentum for the three-quark state.

In Chapter 4, we lay out the foundations for a possible extraction of the
Generalized Transverse Momentum Dependent parton distributions (GTMDs)
from experiments. In particular, we study the cross-section for exclusive dijet
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1.1. Outline

production in electron-proton collisions. We provide a parametrization of the
full cross section in terms of form factors and angular modulations. The next
step, which is left for future work, will be to link this parametrization to GTMDs
and then to perform a sensitivity study to find the best kinematical conditions
to extract the GTMDs from experimental measurements. This kind of study
has been already performed in the contest of low-x physics to study the gluon
contribution to GTMDs. Our aim is to go beyond the low-x approximation and
to extend these works also to the intermediate x region, where one can probe
other degrees of freedom than the gluons.

Chapter 5 is devoted to the study of model-induced relations between dif-
ferent types of parton distributions. In particular, we eviscerate the so-called
lensing relation, that establishes a link between Transverse Momentum depend-
ent parton Distributions (TMDs) and Impact Parameter Distributions. We
show which are the conditions that must be fulfilled by models to obtain such
a relation, and how, in the full QCD, it is unlikely to match these conditions.

Chapter 6 is devoted to the illustration of our model for the LFWFs, that
is obtained exploiting the link between the LFWFs and the distribution amp-
litudes. In particular, our model includes a three-quark plus one gluon state
in the proton Fock-space decomposition, which is fundamental to obtain a
consistent model based on the distribution amplitudes for the LFWFs with
non-vanishing orbital angular momentum for the three-quark state. With the
explicit model, we show how it is possible to obtain leading-twist TMDs and
generalized parton distributions as appropriate overlaps of LFWFs, showing the
fundamental role played by the LFWFs in the study of parton distributions.

In Chapter 7, the attention is posed on the exploration, both theoretical
and through our model, of one particular higher-twist TMD called eq(x,k⊥).
Higher-twist TMDs are of particular interest, since they allow us to extract
information of the quark-gluon correlations inside the proton. We review a
general, model-independent, decomposition of eq(x,k⊥), addressing also some
of the most recent works on it.

In Chapter 8, we deviate from the study of parton distributions to enter
the realm of local operators and proton global properties. In particular, we
study the EMT, both for an electron in Quantum ElectroDynamics (QED)
and for a proton in QCD. The QED study allows us to explore the theoretical
tools needed to approach the more complex QCD case. For the QED case, we
explore the EMT electron matrix elements in both the off-forward and forward
limit. The latter leads to the study of different electron mass decompositions in
terms of electron and photon contributions. We then extend the discussion to
study the proton mass decompositions. We explore the renormalization-scheme
dependence of each decomposition and perform a study of the dependence of
each term on the loop order.

Finally, in Chapter 9 we summarize our results and give some outlooks for
future perspectives of this work.
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Chapter 2
Foundations of Light-Cone Quantization

In this thesis, we will use both the standard formalism of instant-form quant-
ization and light-front quantization. The latter has become more and more
popular in the study of deeply inelastic processes, since it provides the most
natural framework to investigate them. Since deeply inelastic processes are
used, mainly, to study the internal structure of hadrons in Quantum Chro-
moDynamics (QCD), light-front quantization is also largely employed in the
theoretical studies of hadron internal structure. It turns out that, in light-
front quantization, theoretical calculations on the proton structure drastically
simplify and the underlying physical picture emerges more clearly.

A general review of the basics of light-front quantization can be found in
Ref. [1], from which this chapter is inspired.

2.1 Forms of quantization

We are interested in the study of field theories where the physical systems are
described in terms of fields φi(x; t). The field theories can be either classical
or quantum and either non-relativistic or relativistic. Since our main focus
in the thesis will be the study of QED and QCD, we shall briefly review the
basic concepts of all the four types of field theory, then focusing only on the
relativistic quantum ones. In this brief illustration we shall consider a single
field φ in order to keep the notation as simple as possible, also because the
generalization to a collection of fields is relatively simple.

For a non-relativistic and classical field theory, once the density of Lag-
rangian L[φ, ∂tφ] is assigned as a functional of the field, we can solve the equa-
tion of motions (EOM)1

∂L

∂φ(x)
− ∂t

∂L

∂ (∂tφ(x))
= 0, (2.1)

1We shall not distinguish the notation for the functional derivative and the standard
partial derivative, since no confusion should arise.
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2. Foundations of Light-Cone Quantization

to obtain the field configuration φ(x; t) at any given time t once the initial
configuration φ0(x) = φ(x, t = 0) is specified. This way to tackle the theory is
usually called Lagrangian approach, but it is not the only one. In fact, in non-
relativistic theories the Hamiltonian approach is often preferred. In order to
obtain the Hamiltonian density from the Lagrangian, the canonical conjugate
momentum π[φ] is introduced as:

π[φ] =
∂L

∂ (∂tφ(x))
. (2.2)

The Hamiltonian is then constructed as the Legendre transformation of the
Lagrangian with respect to ∂tφ:

H[φ, π] = π[φ]∂tφ−L[φ, ∂tφ[π]]. (2.3)

With the Hamiltonian one can compute the evolution equation for the field
configuration via the Hamilton equations

∂φ

∂t
=
∂H

∂π
,

∂π

∂t
= −∂H

∂φ
. (2.4)

The interesting aspect of the Hamiltonian approach is that it gives a natural
way to compute the time evolution of any functional of the fields in terms of
the Poisson brackets of the functional of the fields and the Hamiltonian:

dA[φ, π]

dt
=
∂A

∂t
+ [A,H] =

∂A

∂t
+
∂A

∂φ

∂H

∂π
− ∂H

∂φ

∂A

∂π
. (2.5)

In a non-relativistic quantum theory the Poisson brackets are simply re-
placed with quantum commutators (or anti-commutators in case of fermionic
degrees of freedom) and the time evolution is given by the Heisenberg equation.
Gauge theories pose some issues when going from classical to quantum theor-
ies, because of the redundant gauge degrees of freedom and the fact that not
all the fields have associated a canonical momentum, i.e. not all the fields are
independent. We shall comment further on these issues in Sec. 2.2.1.

In a relativistic field theory (quantum or not) we cannot any longer treat
the time as an independent parameter. In fact, the concepts of time and space
are, to some extent, not uniquely defined in the context of a covariant theory:
one can obtain a new parametrization of spacetime simply by transforming the
coordinate from

xµ = (x0, x1, x2, x3) (2.6)

to
x̃ν = x̃ν(xµ) (2.7)

under the only condition that the transformation must possess an inverse. In
the “tilde” coordinate system we have a different metric, given by:

g̃µν =
∂xρ

∂x̃µ
∂xσ

∂x̃ν
gρσ. (2.8)
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2.1. Forms of quantization

The Lagrangian must be invariant under the change in the spacetime paramet-
rization described above in order to have a well-defined relativistic theory. The
Hamiltonian, however, is not invariant under a change of parametrization, since
it is constructed as the Legendre transform with respect to the time derivative
of the field. This is the reason why, in most of the standard presentations of
relativistic field theories, the Lagrangian approach is preferred in contrast to
the Hamiltonian one. Moreover, in a relativistic theory, the concept of initial
field configuration, i.e. the configuration of a field at fixed initial time, becomes
somewhat problematic. First, for convenience, one defines the null hypersur-
face corresponding to the initial time to be the locus in Minkowski space with
the same value of the “time-like” coordinate x̃0. On the null hypersurface one
imposes the initial conditions for the fields, or one imposes the commutation
relations among fields in a quantum theory. The first subtlety is that x̃0 = const
could identify a different hypersurface with respect to x̃0 = const. This because
the metric g̃µν can be non trivial and can change the interpretation of the co-
ordinate when the index is lowered or raised. The second issue is that, in the
standard instant-form approach where the initial conditions are fixed on the
hyperplane x0 = 0, as well as in any other spacetime parametrization that can
be reached from the standard one via a Lorentz transformation, we have the
conceptual problem of knowing precisely the state of the system on a spacetime
surface simultaneously. The only spacetime parametrization that avoids these
issues altogether is the light-front parametrization, as we shall see later.

There are, in principle, infinite possibilities for the choice of the paramet-
rization. One must exclude, however, all those which are connected to each
other through a Lorentz transformation, since they are equivalent in a covari-
ant formalism. Only five independent parameterizations survive; each of them
is in one-to-one correspondence with a unique null hypersurface. They are
referred as forms of relativistic dynamics and correspond to the:

1. Instant Form. It is the textbook standard form in which we have xµ =
(x0, x1, x2, x3).

2. Light-Front Form. It replaces the time coordinate and one spatial co-
ordinate (it is conventionally used x3) with the combinations:

x± =
x0 ± x3

√
2

. (2.9)

It is custom to group the remaining spatial coordinates into a ⊥ vector,
leading to x̃µ = (x+, x−,x⊥), x⊥ = (x1, x2). The metric in this new
parametrization reads:

g̃µν =




0 1 0 0
1 0 0 0
0 0 −1 0
0 0 0 −1


 . (2.10)
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2. Foundations of Light-Cone Quantization

The time variable is x+ and the corresponding time variable in the covari-
ant representation is x− and not x+, as it should be clear from the metric.
This entails that the equal-time surfaces are identified by x+ = const.
This parametrization is well suited to study problems in which one can
identify a preferential spatial direction. Moreover, since the null hyper-
surface is a plane tangent to the light cone, the state of the system for
fixed x+ can be in principle determined via the interaction with a massless
field that has a negative momentum along the x̂3 axis. In this case, there-
fore, no conceptual problem is posed by the requirement of knowing the
complete field configuration for fixed x+. It will be the parametrization
mainly used in this thesis.

3. Point Form. The spacetime parametrization is

xµ = τ(cosh(ω), sinh(ω) sin(θ) cos(φ), sinh(ω) sin(θ) sin(φ), sinh(ω) cos(θ)),
(2.11)

with x̃µ = (τ, ω, θ, φ) and

g̃µν =




1 0 0 0
0 −τ 2 0 0
0 0 −τ 2 sinh2(ω) 0
0 0 0 −τ 2 sinh2(ω) sin2(ω)


 . (2.12)

The equal-time surface is the hyperboloid identified by x2 = const, with
x0 > 0.

4. Point Form-2. It is similar to the point form, with the exception that the
equal-time surface condition is x2 + (x1)2 = const, with x0 > 0.

5. Point Form-3. It is similar to the point form, with the exception that the
equal-time surface condition is x2 + (x1)2 + (x2)2 = const, with x0 > 0.

The equal-time surfaces of each parametrization are shown in Fig. 2.1. Of
course we cannot draw a three-dimensional hypersurface, hence all the plots
are in 1 + 2 dimensions, the time x0 being the vertical axis in the pictures.

To gain a little more insight on the difference between the various paramet-
rizations, we recall that the Poicaré group (semi-direct product of the proper
and ortochronus Lorentz group and translations) has ten generators, each one
characterizing a specific transformation that can be applied to the system:
three boosts, three rotations, three space translations and one time transla-
tion. Lorentz transformations, i.e. rotations and boosts, are obtained from the
Lorentz group generators Mµν = −Mνµ, and the translation from the four-
momentum2 P µ. They obey the following commutation relations:

[P µ, P ν ] = 0,
[
P µ,Mα,β

]
= iPαgµβ − iP βgµα, (2.13)

2The identification between the translation generator and the four-momentum follows by

the fact that P 2 ≡
(
P 0
)2 −∑3

i=1

(
P i
)2

= a1 is a Casimir operator, i.e. it commutes with all
the generators of the group.

8



2.1. Forms of quantization

Figure 2.1: Equal-time surfaces (in yellow) for each spacetime parametrization
presented in the text, in arbitrary units. In the top left: the instant-form; in
the top right: the light-front form, in which we clearly see that the equal-time
surface is tangent to the light cone. In the bottom left: the point form, in
which the equal-time surface is an hyperboloid and finally in the bottom right
we have the equal-time surface for the Point Form-2. The Point Form-3 in 1+2
dimensions coincide with the instant-form parametrization.

9



2. Foundations of Light-Cone Quantization

[
Mµν ,Mαβ

]
= i
(
gµαMνβ + gνβMµα − gναMµβ − gµβMνα

)
. (2.14)

The boost and the rotation operators are obtained from Mµν as:

Ki = M0i, J i = εijkM jk. (2.15)

Different spacetime parametrizations mix the Poincaré generators in different
combinations. In instant form, we have:

K1, K2, K3, generate boosts along the directions x̂1, x̂2, x̂3, respectively;

J1, J2, J3, generate rotations around the x̂1, x̂2, x̂3 axis, respectively;

P 1, P 2, P 3, generate translations along x̂1, x̂2, x̂3 direction, respectively;

P 0, generates a time translation.

In the instant form, the time is x0, and the Hamiltonian of the system, i.e.
the operator that generates time translations, is the zeroth component of P µ =
(P 0, P 1, P 2, P 3). From the definition of the finite translation operator

e−iP
µxµ , (2.16)

where xµ is the parameter of the translation, one can infer which component of
P µ is the Hamiltonian. Since, by definition, the Hamiltonian is the generator
of the time translation, and we have that P µxµ = x0P 0 − x · P , being x0 the
time in instant form, one concludes that P 0 is the Hamiltonian. Analogously,
in the light-front form we have P µxµ = x+P− + x−P+−x⊥ ·P⊥ and since x+

is the time variable, we conclude that P− is the Hamiltonian of the system. In
coordinate representation for a free theory, we have P i = −i∂i and:

∂− =
∂

∂x−
=

∂

∂x+
, (2.17)

i.e. P− involves the time derivative. Conversely, P+ is proportional to a deriv-
ative with respect to the variable x−, that is a space variable.

One way to classify the Poincaré generators is to divide them in two classes,
based on their action on the null hypersurface: the first class is formed by the
so-called kinematic operators, which leave invariant the null hypersuperface.
The remaining operators are called dynamical operators, and evolve equal-time
hypersurfaces.

The different forms of dynamics have different classes of kinematic and dy-
namical operators. In the instant form, the kinematic operators are P 1, P 2, P 3

and J1, J2, J3, i.e. the hyperplane t = 0 is left invariant under space translations
and rotations.

In the light-front form, the kinematic operators are P+, P 1, P 2, i.e. transla-
tions along x̂+, x̂1, x̂2, respectively, J3, i.e. rotations around the x̂3 axis, K3, i.e.
boosts along the x̂3 direction, and B1, B2, defined as the following combinations
of rotations and boosts:

B1 =
1√
2

(
K1 + J2

)
, B2 =

1√
2

(
K2 − J1

)
. (2.18)

10



2.1. Forms of quantization

For example, in the first case, we have a boost (K1) along the x̂1 direction
that mixes the x0 and x1 components, and a rotation (J2) around the x̂2 axis
that mixes the x3 and x1 components. The sum of the two operations leaves
invariant x0 + x3 =

√
2x+. The second generator B2 corresponds to the same

transformations with 1 ↔ 2. It turns out, from a careful examination of the
commutation relations among the Poincaré generators in light-front parametriz-
ation (see Tab. 2.1), that P µ,B⊥ and J3 form a sub-group of the Poincaré group
that is isomorphic to the two-dimensional subgroup of non-relativistic Galilean
transformations. This provides another explanation for the identification of P−

with the Hamiltonian in light-front parametrization. It also provides a more
intuitive interpretation for the B⊥ operators: they are the two-dimensional
Galilean transverse boosts.

The dynamical operators in the light-front parametrization are P− and the
following combinations of rotations and boosts:

S1 =
1√
2

(
K1 − J2

)
, S2 =

1√
2

(
K2 + J1

)
. (2.19)

In the point form, the kinematic generators are J1, J2, J3 and K1, K2, K3,
and therefore all the four translational operators P µ are dynamical operators.
This form proves useful to connect the description of a system between a moving
frame and its rest-frame. This because of the kinematical nature of boosts, that
avoid the introduction of dynamical effects when changing frame via a Lorentz
transformation.

In the case of the point form-2, the kinematic generators are J3, K2, K3 and
P 1.

In the case of the point form-3, the kinematic generators are K3, J3 and
P 1, P 2.

In the following, we will work mainly with the light-front parametrization,
and, to help the interested reader to reconstruct all the results that rely on the
commutation relations among the operators in light-front parametrization, we
summarized them in Tab. 2.1.

Before moving to the next section, which contains the basics of QCD on the
light front, we would like to comment on the interesting feature of P+ being
a semi-positive definite operator. This can be seen by analyzing the Lorentz
boost along the x̂3 axis in light-front parametrization. The boosted version of
a generic operator O can be obtained as:

eiωK
3

Oe−iωK
3

, (2.20)

where ω is the rapidity

ω =
1

2
log

(
1 + β

1− β

)
=

1

2
log

(
c+ v

c− v

)
, with β =

v

c
. (2.21)

In the case of P+, the following commutation relation holds as can be verified
using the commutation relations in Tab. 2.1:

[
iωK3, P+

]
= ωP+. (2.22)

11



2. Foundations of Light-Cone Quantization

P+ P− P i
⊥ Bi Si K3 J3

P+ 0 0 0 0 iP i
⊥ iP+ 0

P− 0 0 0 iP i
⊥ 0 −iP− 0

P j
⊥ 0 0 0 iδjiP+ iδjiP+ 0 iεjlP l

⊥

Bj 0 −iP j
⊥ -iδijP+ 0

− iδijK3

− iεijJ3 iBj −iεjlBl

Sj −iP j
⊥ 0 −iδijP+

− iδjiK3

− iεjiJ3 0 −iSj −iεjlSl

K3 −iP+ −iP− 0 −iBi iSi 0 0

J3 0 0 −iεilP l
⊥ iεilBl iεilSl 0 0

Table 2.1: Summary of the light-front commutation relations. The table entries
are intended as the result of [Orow,Ocol].

Hence, from the well known relation for two generic operators X, Y

eXY e−X = Y + [X, Y ] +
1

2!
[X, [X, Y ]] + ..., (2.23)

we obtain immediately that

eiωK
3

P+e−iωK
3

= eωP+. (2.24)

Now, being ω > 0 if the boost is performed along the positive direction of x̂3,
we have that the eigenstate of P+ with the lowest eigenvalue is associated with
a particle at rest, for which p+ = m/

√
2. For a massless particle we arrive at

the same conclusion taking the four-momentum of the particle in the instant
form as pµ = (E, 0, 0, E) with the energy E > 0. Hence, the condition k+ = 0
can be realized for a massive particle only in the limit of β → −1, whereas we
can have k+ = 0 for a massless particle only for β 6= 1.

Because of the transformation (2.24), the light-front parametrization is usu-
ally adopted to study ultra-relativistic systems, in which one component of the
three-momentum is dominant, that translates into a + component dominance
in light-front parametrization.

2.2 Light-Front quantization

In the previous section, we did not distinguish between quantum or classical
relativistic field theories. The main difference is that for a quantum theory we
must impose (anti-)commutation relations between fields at fixed time, whereas
in the classical case the initial conditions are sufficient for solving the dynamics.
To quantizing a theory in a parametrization different from the instant-form one

12



2.2. Light-Front quantization

means to impose the (anti-)commutation relations at equal x̃0 instead of x0. We
will use only the instant-form and the light-front parametrizations, out of the
five possible ones. Hence, we shall specify all the necessary details for the light-
front form, keeping in mind that, mutatis mutandis, one could follow the exact
same logic for all the other parametrizations. To quantize a theory on the light
front we impose the (anti-)commutation relations between fields at equal x+.
Since we are mainly interested in the study of the electron in QED and quarks
in QCD, i.e. spin-1/2 matter field, we restrict ourself to discuss Dirac fields
and gauge fields only. In QCD the fermionic fields are known as quarks and
the gauge fields as gluons, whereas in QED the fermionic fields are leptons and
the gauge field is the photon. The light-front parametrization is rather special,
since it allows us to separate, in a natural way, the two independent components
out of the four possible ones for a spin-1/2 field. The independent components
are known as the “good” components and the dependent components as “bad”,
where the naming would intend to express the fact that the bad components are
completely determined by the good ones for fixed value of x+. The projectors
P+ and P− that realize the separation between good and bad components are
defined, respectively, as:

P± =
1√
2
γ∓γ±, (2.25)

and the good and bad components of a field ψ are:

ψ± = P±ψ. (2.26)

To explicitly see that the bad components are not independent, we need to ex-
ploit the Lagrangian EOM. First, the QCD is a quantum gauge-field theory with
gauge symmetry SU(3). The quarks belong to the fundamental representation
of the symmetry group, whereas the gluons belong to the adjoint representation.
The QCD Lagrangian reads:

LQCD =
∑

a,b

∑

f

ψ̄(f)
a

(
i /Dab −mδab

)
ψ

(f)
b −

∑

â

1

4
F â
µνF

µν
â , (2.27)

where the sum with respect to a, b is over the color index in the fundamental
representation (i.e. the quarks form a color triplet), and the sum over â is
instead performed in the adjoint representation (the gluons form a color octet),
ψ is the fermionic field and Dµ

ab is the covariant derivative, defined as

Dµ
ab = ∂µδab −

∑

ĉ

igsA
µ
ĉT

ĉ
ab, (2.28)

with gs the strong coupling constant. The superscript f upon the quark fields
in the QCD Lagrangian labels the different possible flavors for the quarks: up,
down, charm, strange, top, bottom. To distinguish between the fundamental
and the adjoint representation we adopted, just for this section, the convention
that the ·̂ indexes run in the adjoint representation. F µν

â is the gluon strength
field tensor, defined as

F µν
â = ∂µAνâ − ∂νAµâ + gsf

b̂ĉ
â Aµ

b̂
Aνĉ , (2.29)
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2. Foundations of Light-Cone Quantization

where f b̂ĉ
â are the SU(3) structure constants. We will suppress the color in-

dexes in the following, unless they are necessary for the comprehension of the
equations. Moreover, we will use the standard notation

Aµ =
∑

â

AµâT
â. (2.30)

The equation of motion for the quark fields reads:

∂L

∂ψ̄
− ∂µ ∂L

∂
(
∂µψ̄

) = 0. (2.31)

After a little algebra and using the light-front parametrization, one obtains:

iD+ψ−(z) =
γ+

2
(iγ⊥ ·D⊥ +m)ψ+(z). (2.32)

The partial derivative ∂+ that appears in Eq. (2.32) inside the covariant deriv-
ative D+ is a spatial derivative:

∂+ = g+−∂− = g+− ∂

∂x−
. (2.33)

Since we established that the bad components are constrained fields, for the
remaining of this chapter we assume to work only with good fermion fields.

2.2.1 Free fields: quarks and gluons

The essential ingredient to define a quantum field theory is having the (anti-)
commutation relations for fields, i.e. quarks and gluons in the case of QCD.
However, in order to properly write the anti-commutation relations for the
quark fields, we need to establish the concept of helicity within the light-front
quantization formalism, see Ref. [2]. Let |p, λ〉 be a generic eigenstate of the
momentum operator P µ

P µ |p, λ〉 = pµ |p, λ〉 . (2.34)

The light-cone helicity λ is introduced as the eigenvalue of the operator

jz = J3 +
B⊥ × P⊥

P+
→ jz |p, λ〉 = λ |p, λ〉 , (2.35)

where J3 is the total angular momentum operator and B⊥ is the operator
defined in Eq. (2.18). It can be shown (see Refs. [2, 3]) that, in the limit of
large p+, jz reduces to the ordinary helicity operator p · S/p. If the state is
such as pµ = (m/

√
2,m/

√
2,0⊥), then we have

jz |(m/
√

2,m/
√

2,0⊥), λ〉 = J3 |(m/
√

2,m/
√

2,0⊥), λ〉
= λ |(m/

√
2,m/

√
2,0⊥), λ〉 , (2.36)
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2.2. Light-Front quantization

from which we obtain, using the commutation relations in Tab. 2.1, that

jz |p, λ〉 = jze
−iv⊥·B⊥e−iωK

3 |(m/
√

2,m/
√

2,0⊥), λ〉 = λ |p, λ〉 , (2.37)

i.e. the light-cone helicity is invariant under light-front boosts.
This definition of light-cone helicity can be rewritten as the difference of

total angular momentum minus the orbital part

jz = J3 −R⊥ × P⊥ (2.38)

by introducing the following operator

R⊥ = −B⊥

P+
. (2.39)

It turns out that this operator can be interpreted as the center of transverse
momentum for a composite state and as the transverse position for a single-
particle state. The operator (2.39) satisfy the following commutation relations:

[R⊥,B⊥] =
[
R⊥, K

3
]

= 0. (2.40)

This ensures that jz commutes both with B⊥ and K⊥, hence light-front boosts
leave invariant the light-cone helicity.

Equipped with the above definition of light-cone helicity, the anti-commutation
relations for the good component of the fermion fields in position space read:

{
ψ

(f)
a,λ(x),

(
ψ

(q)
b,σ(y)

)†}
|x+=y+ = δabδ

fqδλσδ(x
− − y−)δ(x⊥ − y⊥). (2.41)

We can transform the quark field in momentum representation, isolating the
quark and antiquark component as:

ψ
(f)
↓/↑(x) =

∫
dk+dk⊥
2k+(2π)3

[
e−ik·xq↓/↑(k)b

(f)
↓/↑(k) + eik·ξv↑/↓(k)d

(f)†
↑/↓ (k)

]
k2=m2

,

(2.42)
where the light-cone spinors for quark and anti-quark states with light-cone
helicity ↑ and ↓ are:

q↑(k) =
1√

2
√

2k+




√
2k+ +m√

2kR√
2k+ −m√

2kR


 , q↓(k) =

1√
2
√

2k+




−
√

2kL√
2k+ +m√

2kL
−
√

2k+ +m


 ,

v↑(k) =
1√

2
√

2k+




√
2kL

−
√

2k+ +m

−
√

2kL√
2k+ +m


 , v↓(k) = − 1√

2
√

2k+




√
2k+ −m√

2kR√
2k+ +m√

2kR


 ,

(2.43)
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2. Foundations of Light-Cone Quantization

with

kR/L =
1√
2

(kx ± iky) , (2.44)

and m the mass of the free quark. The light-cone spinors are equal to the Dirac
spinors when k = 0. In Eq. (2.42) the on-shell condition for the quark field
reads:

k− =
m2 + k2

⊥
2k+

. (2.45)

The operators b, d in Eq. (2.42) are the annihilation operators of quark and
antiquark states, respectively. These operators annihilate only good quark field.
If the bad components are considered, the operators must be written using the
equation of motion, see Sec. 3.4.3. The anti-commutation relations in Eq. (2.41)
lead to the following relation in momentum space:

{
b(f)
e (k), b

(f ′)†
e′ (p)

}
=
{
d(f)
e (k), d

(f ′)†
e′ (p)

}

= 2k+(2π)3δe,e′δf,f ′δ
(
k+ − p+

)
δ (k⊥ − p⊥) , (2.46)

{
b(f)
e (k), d

(f ′)†
e′ (p)

}
=
{
b(f)
e (k), b

(f ′)
e′ (p)

}

=
{
d(f)
e (k), d

(f ′)
e′ (p)

}
=
{
b(f)
e (k), d

(f ′)
e′ (p)

}
= 0. (2.47)

In the case of the gluon field the problem of gauge fixing arises. In fact, it is
well known that in a gauge theory not all the four components of the gauge field
Aµ are independent and one has to choose a gauge to remove the redundant
components. For this section we shall assume the light-cone gauge [4, 5], i.e.

A+ = 0. (2.48)

The light-cone gauge is classified as an axial gauge. The above condition is not
enough to completely fix the gauge. However, the residual gauge freedom is
confined to the boundary conditions for A⊥ at light-cone infinity ±∞− (as we
shall discuss in Sect. 2.4). Within the light-cone gauge, the A− component is
no longer independent, since it is fully determined by A⊥ at any given value of
x+. This can be seen via the EOM:

∂+∂+A− − ∂+∂iAi = −gsJ+, (2.49)

where the current J+ is independent from the gluon field Aµ. The inversion
of the EOM for both the quark and gluon fields is not a trivial task, because
of the presence of the so-called zero modes, i.e. the fields at k+ = 0. We will
illustrate in detail the problem in Chapter 7. For this reason, we shall consider
only the transverse components Ai ≡ Ai⊥.

The commutation relations read:
[
Aiâ,λ(x),−∂+Aj

b̂,σ
(y)
]
|x+=y+ = iδijδâb̂δλσδ(x

− − y−)δ(x⊥ − y⊥), (2.50)
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2.3. Fock-state decomposition

where a, b are color indexes and λ, σ are the light-cone helicities.
The momentum-space representation is:

Aµ(x) =
∑

λ=↑,↓

∫
dk+dk⊥
2k+(2π)3

[
e−ik·ξεµλ(k)gλ(k) + eik·ξε∗µλ (k)g†λ(k)

]
, (2.51)

with the gluon operator gλ defined as:

gλ =
∑

â

T âgâλ. (2.52)

The polarization vectors are:

ελ(k) =

(
0,
ε⊥λ · k⊥
k+

, ε⊥λ

)
, ε⊥↑ =

−1√
2

(1, i) , ε⊥↓ =
1√
2

(1,−i) . (2.53)

In Eq. (2.51) the on-shell condition

k− =
k2
⊥

2k+
(2.54)

is understood. The commutation relations in Eq. (2.50) translate into the fol-
lowing commutation relations in momentum space:

[
gâλ(k),

(
gb̂σ

)†
(p)

]
= 2k+(2π3)δââδλσδ

(
k+ − p+

)
δ (k⊥ − k⊥) , (2.55)

[
gâλ(k), gb̂σ(p)

]
= 0. (2.56)

2.3 Fock-state decomposition

Equipped with the basic notions of light-front quantization, we can now start
looking into eigenstates of QCD, namely hadrons. Hadrons are multi-particle
states, i.e. they are composite systems constructed with the fundamental de-
grees of freedom of QCD: quarks and gluons. We will focus on the proton
as a working example, but the concepts that we shall illustrate are, mutatis
mutandis, applicable also to all the other types of hadrons3. A complete de-
scription of the proton starting from the QCD Lagrangian is still missing, since
the perturbative methods fail at energies scales comparable with the proton
mass due to the large strong coupling constant. The broad problem of solving
QCD at low-energy scale is sometimes referred to as the confinement problem:
we do not observe free fundamental QCD degrees of freedom.

The first historical attempt to organize the hadrons as multiplets of some
sort led Gell-Mann to propose his famous “Eightfold way” [6], which allows one
to classify all the hadrons on the basis of the quantum numbers of the quarks.

3We will not investigate states that are not stable in QCD, because this is beyond the
scope of this thesis.
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2. Foundations of Light-Cone Quantization

In this model, the proton is viewed as composite of two up quarks and one
down quark. However, a number of problems emerges from this picture: an
intrinsic gluon contribution to the proton was shown to be significant and not
negligible; the helicity of quarks seems to add up to about one-third of the
spin of the proton; other types of quarks are present, to different extent, inside
the proton. An elegant way to encapsulate all these features in a theoretical
description of the proton is to build the proton state as an element of the Fock
space of QCD. The Fock space is constructed as the direct sum of the tensorial
product of Hilbert spaces of free quarks (Hψ), free gluons (HA) and of the
vacuum (H0 = {|0〉}):

F = H0 +
∞⊕

n=1

(
n⊗

i=1

Hψ

)
+
∞⊕

n=1

(
n⊗

i=1

HA

)
. (2.57)

The individual Hilbert spaces are the ones associated with the momentum of the
free particles k+,k⊥ (k− is fixed by the on-shell condition for the free particles),
and with the light-cone helicity λ. We can introduce a basis for the Fock state
as

{|σn(k)〉}n=0,1,... (2.58)

Special attention deserves the vacuum state n = 0, upon which all the other
states can be constructed via the creation operators of the free particles. One
can indeed postulate the vacuum to be the lowest-energy state (assuming the
vacuum energy to be zero) and to be invariant under Lorentz transformations
[1]. This means, in particular, that the vacuum must be an eigenstate of the
generators of space translations, namely4

P+ |0〉 = 0, P⊥ |0〉 = 0⊥. (2.59)

If no gluons were present, these conditions, along with the fact that k+ must
be strictly positive for massive quarks, would have forced the vacuum to have
a trivial structure. However, because the gluons can have k+ = 0, the vacuum
is populated by an infinite number of gluons, each of them having vanishing
plus momentum [7, 8]. We shall not investigate further the vacuum structure,
we only wish to remark that, although the light-front vacuum is simpler with
respect to the instant-form vacuum, it is not trivial. We can now construct
|σn(k)〉 for all n as:

|σn(p)〉 =
n∏

i=1

a†i (k
+
i ,p⊥,i, λi) |0〉 , p+ =

n∑

i=1

p+
i , p⊥ =

n∑

i=1

p⊥,i, (2.60)

where a†i is a shorthand notation that includes gluon, quark, or antiquark cre-
ation operators in momentum space with light-cone helicity λ.

4For this Chapter only, we reserve Pµ as a notation to indicate the momentum operator
and pµ to indicate the momentum eigenvalue.
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2.3. Fock-state decomposition

Since {|σn〉}n forms a basis for the Fock space, we have the completeness
relation: ∑

n

∑∫
|σn〉 〈σn| = 1. (2.61)

where the
∑∫

symbol is a shorthand notation to indicate the sum over all the
discrete variables (like color, light-cone helicity, flavor) and the integration over
all the continuous variables. For the momentum integral, the measure is the
Lorentz invariant measure on the light cone, since we must have

∑∫
〈σn(p)|σm(q)〉 = δnm2p+δ(p+ − q+)δ(p⊥ − q⊥). (2.62)

A proton state is identified as the solution |Ψ〉 of the eigenvalue problem

P− |Ψ〉 =
M2 + P 2

⊥
2P+

|Ψ〉 =
M2 + p2

⊥
2p+

|Ψ〉 (2.63)

with mass M , momentum P+,P⊥ and helicity Λ, and it can be decomposed in
the Fock basis as:

|Ψ〉 =
∑

n

∑∫
〈σn|Ψ〉 |σn〉 =

∑

n

∑∫
Ψn |σn〉 . (2.64)

The coefficient in front of each basis state is called Light-Front Wave Func-
tion (LFWF). It depends upon the intrinsic variables of the partons inside the
proton, i.e.

Ψn = Ψn ({xi,k⊥,i, λi}, Λ) , (2.65)

where xi = k+
i /p

+i and
n∑

i=1

k⊥,i = 0⊥. (2.66)

The fact that the LFWFs do not depend on the total momentum p⊥ is a con-
sequence of the kinematical nature of transverse boosts in light-front paramet-
rization, see Eq. (2.18). The dependence of the state |Ψ〉 on p⊥ is completely
carried by the states |σn〉, where the individual parton states have transverse
momentum

p⊥,i = k⊥,i + xip⊥. (2.67)

In the following, the proton state |Ψ〉 will be indicated with |p, Λ〉, where p
indicates the total proton momentum

pµ =

(
p+,

M2 + p2
⊥

2p+
,p⊥

)
, (2.68)

and Λ its light-cone helicity. The normalization of the hadron state reads:

〈p′, Λ′|p, Λ〉 = 2p+δ(p+ − p′+)δ(p⊥ − p′⊥)δΛΛ′ , (2.69)

with ∑

n

|Ψn|2 = 1. (2.70)
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2. Foundations of Light-Cone Quantization

This leads to the interpretation of the LFWFs as the probability amplitudes of
finding their corresponding Fock state in the proton state.

The light-cone helicity of the proton state Λ is the eigenvalue of the light-
cone helicity operator introduced in Eq. (2.35). The operator R⊥ is determined
by the transverse positions of the partons, weighted by their plus-momentum
fractions with respect to the total plus-momentum of the hadron:

R⊥ =
n∑

i=1

xib⊥,i. (2.71)

The total transverse momentum is

p⊥ =
n∑

i=1

p⊥,i. (2.72)

Combining Eqs. (2.71)-(2.72), one is easily convinced that the sum of light-cone
helicity of the individual partons is not enough to obtain the light-cone helicity
of the proton in Eq. (2.38). Instead, the parton orbital angular momentum
must be included.

2.4 Light-cone gauge

We devote this section to give a brief overview of the light-cone gauge [4, 5]. We
will use light-cone gauge all throughout this thesis, with the only exception of
Chapter 8 where we will use the Feynman gauge. In order to fix the gauge, we
add an extra term to the Lagrangian in Eq. (2.27) as a Lagrangian multiplier.
For the light-cone gauge this reads:

LLC = lim
α→∞

− 1

2α
(nµA

µ)2, (2.73)

where nµ = (0, 1,0⊥) and α is a parameter necessary to obtain the correct
dimension of the gauge-fixing term. For the Feynman gauge instead we have:

LF = −(∂µA
µ)2. (2.74)

We can now derive the propagator in the light-cone gauge for a free gluon
Refs. [9, 10]

−iq2Dµν(q) = −iq2
∑

λ=1,2

(εµλ)∗(q)ενλ(q) = −gµν +
q{µnν}

n · q − q
2 nµnν

(n · q)2
. (2.75)

As previously noted, since the gluon is a massless particle, the “+” component
of its momentum q+ = n · q can vanish. Hence, Eq. (2.75) is intrinsically
ill defined, and this is a direct consequence of the fact that n · A = 0 does
not fix completely the gauge. The residual gauge freedom can be fixed by
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2.4. Light-cone gauge

using additional boundary conditions on the gauge potential. There are three
common choices:

A⊥(∞−) = 0, A⊥(−∞−) = 0, A⊥(∞−) +A⊥(−∞−) = 0, (2.76)

known, respectively, as retarded, advanced and principal value prescription.
These choices map directly to the following prescriptions [11]:

Retarded:
1

n · q −→
1

n · q + iε
, (2.77)

Advanced:
1

n · q −→
1

n · q − iε, (2.78)

Principal Value:
1

n · q −→
1

2

(
1

n · q + iε
+

1

n · q − iε

)
, (2.79)

with ε > 0.
For comparison, and for later convenience, the propagator in Feynman gauge

reads:

−iq2Dµν(q) = −iq2

4∑

λ=0

(εµλ)∗(q)ενλ = −gµν (2.80)

and the gauge condition ∂µA
µ is not imposed directly at the operator level but

at the level of the physical states:

∂µA
µ |Ψ〉 = 0. (2.81)

The choice of a particular gauge is mainly a matter of convenience, in order
to simplify certain problems and/or calculations, since all the physical observ-
ables must be gauge independent.
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Chapter 3
Parton Distributions Landscape

3.1 Introduction

In the previous chapter, we introduced the notion of light-front quantization
and we used it to formally construct the proton state as a superposition of
states of the QCD Fock space. The LFWFs are the coefficients of each state
in the expansion. Direct access to the LFWFs is, however, not possible from
an experimental point of view. Available information on the proton partonic
structure relies largely on the possibility of extracting particular functions from
experiments, called parton distributions functions, see Refs. [12–18] and the
Habil. Thesis [19]. These distributions provide a multi-dimensional description
of the proton in terms of its elementary constituents both in momentum and
position space.

For illustration purposes, let us consider a process in which a proton of mass
M , with initial momentum p and light-cone helicity Λ, interacts with a probe
particle. After the interaction, the proton is in a state with momentum p′ and
light-cone helicity Λ′. Convenient variables for studying this type of processes
are the unbalance in momentum between the final and initial proton and the
average momentum of the two states (see Refs. [20, 21]):

∆ = p′ − p, P =
p+ p′

2
. (3.1)

The on-shell condition for the initial and final proton states leads to

P 2 = M2 − ∆2

4
, P ·∆ = 0. (3.2)

In order to obtain a physical picture of the scattering process, it is essential
to identify all the energy scales at stake. Let us assume that µ is the largest
energy scale of the process (typically, it can be identified as the four-momentum
squared of a virtual photon exchanged between the probe and the proton target,
but other cases are possible). If µ is “large” enough, i.e. if we have

µ

M2
� 1, (3.3)
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3. Parton Distributions Landscape

the resolution power of the probe is enough to distinguish the individual partons
inside the proton. In other words, we can reasonably assume that the inter-
action between the probe and the proton can be written as the convolution of
a hard-scattering kernel between the probe and one parton inside the proton
and a parton distribution function. This interpretation was proven true for
some particular processes, like deeply virtual Compton scattering (DVCS) (see
Ref. [22]), semi-inclusive deep inelastic scattering (SIDIS), Drell-Yan produc-
tion (see Ref. [12]). In the other limit, in which the scale µ is small compared to
the proton mass, the resolution power of the probe is not enough to access the
parton distributions and the process can be described in terms of the resonant
and non-resonant excitation spectrum of the proton. In the intermediate region
a clear physical picture is still lacking.

We are going to focus only on the limit of large µ, and, generally, we are
going to assume that the parton interacting with the probe is a quark and we
will call it the “active parton”.

3.1.1 Processes in the deep inelastic regime

SIDIS The semi-inclusive deep inelastic scattering is the process:

l(l) + P (p)→ l′ + h(ph) +X(PX), (3.4)

where l is a lepton, typically an electron or a muon, P a proton, h a detected
final hadron and X indicates an inclusive system of particles [23]. The four-
momentum of each particle is indicated in brackets. The cross section in the
one-photon exchange approximation is proportional to the product of a leptonic
tensor, that encapsulates the information on the probe, and an hadronic tensor,
that contains all the relevant information on the proton structure. In the SIDIS
process the hard scale µ is provided by the four-momentum squared of the
virtual photon.

DVCS The deeply virtual Compton scattering is an exclusive process:

l(l) + P (p)→ l′ + γ(pγ) + P (p′), (3.5)

where l is a lepton, typically an electron or a muon, P a proton with initial
and final four-momentum p and p′, respectively, and γ a detected real photon
[23]. The four-momentum of each particle is indicated in brackets. Also in this
case the cross section in the one-photon exchange approximation is proportional
to the product of a leptonic tensor, that encapsulates the information on the
probe, and an hadronic tensor, that contains all the relevant information on
the proton structure. However, coherent interaction between the proton and
the probe, i.e. the exchange of a single virtual photon and the emission of
the final real photon via the Bremsstrahlung mechanism, exists alongside the
partonic subprocess. In practice, the interference between the two processes
is used to enhance the hadronic contribution and extract information on the
proton structure. In DVCS the hard scale µ is provided by the four-momentum
squared of the virtual photon.
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3.2. Parton Correlator

k − ∆
2

k + ∆
2

P − ∆
2
,Λ P + ∆

2
,Λ′

Φ

Figure 3.1: Diagram for the fully unintegrated parton correlator. The dots
on top of the quark lines indicate that the quark line is attached to an hard-
scattering kernel.

Drell-Yan Drell-Yan (DY) is hadronic lepton production, i.e.

A(pa) +B(pb)→ l(l)l̄(l′) +X(PX), (3.6)

where A and B indicate two initial-state hadrons (e.g. protons) and l l̄ a pair
of lepton-antilepton detected in the final state. At variance with DVCS and
SIDIS, the DY process does not require a leptonic probe, but rather an hadronic
one, hence it is suitable for investigations at hadron-hadron colliders, such as
LHC. In DY the hard scale µ is provided by the invariant mass squared of the
final lepton sub-system.

3.2 Parton Correlator

The structure of the hadronic tensor for the above-mentioned processes can be
exploited further to arrive at the fundamental object that describes the partonic
structure of the proton: the parton correlator. All parton distributions are the
fundamental building blocks of the parton correlator. The definition of the fully
unintegrated quark-quark correlator reads [13]:

(ΦΛ,Λ′)ij (k,∆, P ) =

∫
d4ξ

(2π)4
〈p′, Λ′| ψ̄j(0)ψi(ξ) |p, Λ〉 , (3.7)

and it is diagrammatically represented in Fig. 3.1.

However, the simple picture of Fig. 3.1 is only an approximation, because it
does neglect the interaction, mediated by the exchange of soft gluons, between
the remnant and the active quark. A more realistic picture is shown in Fig. 3.2.
For SIDIS, DVCS, DY processes, it was proven that the soft gluons can be
factorized from the hard-scattering kernel, leading to the diagrammatic rep-
resentation of the parton correlator given in Fig. 3.2. Therefore, appropriate
definition of the parton distribution functions must be given in terms of the
correlator of Fig. 3.2. Processes that break factorization cannot be described
in terms of parton distribution functions, and we shall not consider them. The
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3. Parton Distributions Landscape

k − ∆
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k + ∆
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P − ∆
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2
,Λ′

Φ

...

Figure 3.2: Diagram for the fully unintegrated parton correlator. The dots
on top of the quark lines indicates that the quark line is attached to an hard-
scattering kernel. The double line to which the gluon are attached represents
the gauge-link insertion.

gluon contribution in Fig. 3.2 can be encapsulated in the so-called gauge link
or Wilson line, as shown in Refs. [24–33]. The gauge link is defined as

W(a, b) = Pe−ig
∫
γ(a,b) dζ·A(ζ), (3.8)

where γ(a, b) is a path, connecting the four-dimensional spacetime points a and
b, determined by the specific process under investigation, and P indicates the
path-ordering of the exponential1:

W(a, b) = 1−igs
∫ 1

0

dsγ′(s)·A(s)+(−igs)2

∫ 1

0

ds

∫ s

0

dtγ′(s)·A(s)γ′(t)·A(t)+...

(3.9)
With the inclusion of the gauge link, Eq. (3.7) is modified into:

(ΦΛ,Λ′)ij (k,∆, P, γ) =

∫
d4z

(2π)4
eik·z 〈p′, Λ′| ψ̄j(0)W(0, z)ψi(z) |p, Λ〉 , (3.10)

where we made explicit the dependence of the correlator on the path along
which the gauge link runs. The Eq. (3.10) explicitly states that the quark
correlator is defined in a process-dependent way, hence also the parton distri-
butions are process-dependent quantities. This dependence is, however, under
control, being related to the gauge-link path. The gauge link also ensures the
gauge invariance of the quark correlator. In fact, the bi-local operator of the
näıve version of the quark-quark correlator (Eq. (3.7))

ψ̄(0)ψ(z) (3.11)

is not invariant under local gauge transformation:

ψ̄(0)ψ(z)→ ψ̄′(0)ψ′(z) = ψ̄(0)U †(0)U(z)ψ(z) 6= ψ̄(0)ψ(z), (3.12)

where U is the unitary matrix that implements the gauge transformation in the
fundamental representation of the gauge group.

1The path ordering is inessential in the case of an abelian theory, such as QED.
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3.2. Parton Correlator

It can be shown that under a gauge transformation the gauge link transforms
as

W′(a, b) = U(a)W(a, b)U †(b). (3.13)

In this case, the transformation is performed via unitary matrices in the fun-
damental representation, since the gauge link connects two quark fields. For
gluon correlation functions the Wilson line transforms in the adjoint represent-
ation and it can be shown that two Wilson lines are necessary to ensure the
gauge invariance of a gluon-gluon correlator. It is now immediate to see that
the operator in Eq. (3.10) is gauge invariant.

3.2.1 The quark-quark correlator

The correlator in Eq. (3.10) has a Dirac structure that is inherited from the
uncontracted Dirac indexes of the two quarks fields. The parton correlator can
be parametrized in terms of parton distribution functions by taking the trace
in Dirac space with appropriate Dirac matrices Γ :

Φ
[Γ ]
Λ,Λ′(k,∆, P, γ) =

∫
d4z

2(2π)4
eik·z 〈p′, Λ′| ψ̄(0)W(0, z)Γψ(z) |p, Λ〉 , (3.14)

where we have that Γ belongs to the basis of Dirac structures, i.e.:

Γ ∈ {1, γµ, γ5, γ
µγ5, iσ

µν}. (3.15)

Each Dirac matrix projects on different light-cone helicity configurations of
both the proton and the active parton, encapsulating all the possible helicity
changing combinations. If one or two bad components of the quark field are
involved, they can be removed using the EOM. As a result, the parton dis-
tributions are expressed as the sum of different contributions given in terms
of the good quark fields with different helicities. For each matrices in the set
(3.15), Eq. (3.14) can be easily expressed in terms of parton distributions and
momentum-dependent coefficients, as shown in Ref. [13].

Parton distributions cannot be calculated solely from the QCD Lagrangian
with the current knowledge, since their nature is inherently non-perturbative.
We can, however, extract a number of them from carefully designed experi-
ments. However, to the present day, no process is yet being identified to gain
access to the unintegrated correlator of Eq. (3.14). All the known processes
give access only to the parton distributions that appear in the decomposition
of the k− integrated correlator:

Φ
[Γ ]
Λ,Λ′(x̄,k⊥, ∆, P, γ) =

∫
dk−Φ[Γ ]

Λ,Λ′(k,∆, P, γ)

=

∫
dz−dz⊥
2(2π)3

eix̄P
+·z−e−ik⊥·z⊥ 〈p′, Λ′| ψ̄(0)W(0, z)Γψ(z) |p, Λ〉

∣∣∣
z+=0

,

(3.16)
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3. Parton Distributions Landscape

where x̄ = k+/P+ is the average longitudinal-momentum fraction of the proton
carried by the active parton. In the correlator of Eq. (3.16) is contained a six-
dimensional information about the parton inside the proton. In fact the on-shell
conditions for the initial and final proton reduce the number of independent
component of ∆ from four to three and the component that is eliminated is
usually ∆−. The other three-dimensional information is given in terms of the
parton momentum.

From the six-dimensional momentum picture (three components of the par-
ton momentum and the three components of ∆), we can extract a three dimen-
sional map of the quark in the momentum space (x,k⊥) plus a two-dimensional
picture in transvserse-position space (b⊥). This is done by taking the Fourier
transform with respect to ∆⊥ in the limit ∆+ → 0, in order to ensure a proper
partonic interpretation (see Refs. [34–37]):

Φ
[Γ ]
Λ,Λ′(x̄,k⊥, b⊥, p, γ) =

∫
d∆⊥

(2π)2
e−ib⊥·∆⊥Φ

[Γ ]
Λ,Λ′(x̄,k⊥, ∆

+ = 0,∆⊥, p, γ)

=

∫
dz−dz⊥
2(2π)3

eix̄p
+·z−e−ik⊥·z⊥

〈
p+, r⊥ = 0⊥, Λ

′∣∣ ψ̄(0+, 0−, b⊥)

×W((0+, 0−, b⊥), (0+, z−, b⊥ + z⊥))Γψ(0+, z−, b⊥ + z⊥)
∣∣p+, r⊥ = 0⊥, Λ

〉
.

(3.17)

In Eq. (3.17), the proton is assumed to be in an eigenstate of the operator
R⊥, see Eq. (2.39). This state can be obtained from the standard momentum
eigenstate |p+,p⊥, Λ〉 via the Fourier transform:

|p+, r⊥, Λ〉 = N

∫
d2p⊥
(2π)2

e−ir⊥·p⊥ |p+,p⊥, Λ〉 , (3.18)

where N is a normalization constant to ensure that:

〈q+, s⊥, Λ
′|p+, r⊥, Λ〉 = δ(s⊥ − r⊥)δ(q+ − p+)δΛΛ′ . (3.19)

The normalization constant in Eq. (3.18) turns out to be proportional to a
Dirac delta function. To avoid an infinite normalization constant a momentum
wave packet can be included in the Fourier transform. It is however shown in
Ref. [38] that all the conclusions remain the same if the wave packet is ignored.
Therefore, for simplicity, we shall never include it [37].

Finally, the state |p+, r⊥, Λ〉 is a simultaneous eigenstate of the plus mo-
mentum and the transverse center of momentum because B⊥, and therefore
R⊥, commute with P+, as reported in Tab. 2.1.

Before moving on and classifying all various types of parton distributions,
a final remark is in order. Depending on which Dirac matrix is chosen in
Eq. (3.16) different powers of M/P+ appears. If one identifies the hard scale
µ with P+, a natural ordering in the smallness parameter M/P+ arises. We
can classify all the objects in terms of the power in M/P+ they carry in the
parametrization of the correlator. This is called kinematical-twist expansion
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Figure 3.3: Links among different distribution functions at leading twist. The
red, green, blu and black lines indicate the limits in which we take ∆ = 0,
integrate over x, integrate over k⊥, take the Fourier transform at ∆+ = 0 with
respect to ∆⊥, respectively. The figure is inspired from Ref. [16].

[39], and for a given kinematical twist t the corresponding power of M/P+ is:

(
M

P+

)t−2

. (3.20)

It happens that t can be 2, 3 or 4 for the quark-quark correlator in Eq. (3.14).
This classification is inherently different with respect to the geometric-twist
expansion, that is related to the Lorentz-index structure of the operator [40].

3.3 Parton Distributions

In Fig. 3.3 is given a pictorial representation of all the possible (single) parton
distributions at leading twist and form factors associated with the fully unin-
tegrated parton correlator and its projections. It is clear from the figure that all
the parton distributions can be obtained by performing suitable limits and/or
integrations of the general k−-integrated correlator of Eq. (3.16). On the top
of the figure there are the Generalized Transverse Momentum dependent par-
ton Distributions (GTMDs), that are obtained directly from the correlator of
Eq. (3.16) [13]. Via a Fourier transform of the GTMDs from ∆⊥ to b⊥ and
in the limit of vanishing ∆+, we obtain the Wigner distributions, that are the
QCD analogues of the classical phase-space distributions [34–36, 41].

29



3. Parton Distributions Landscape

From the GTMDs, in the limit of vanishing momentum transfer, one ob-
tains the Transverse Momentum Dependent parton distributions (TMDs). The
TMDs encode the three-dimensional momentum picture of the proton partonic
structure. We will focus extensively on the TMDs in Chapters 5, 6 and 7.
DY and SIDIS are the two most commonly known processes that allow one to
extract information on TMDs. From the GTMDs, via integration over the par-
ton transverse momentum, one obtains the Generalized Parton Distributions
(GPDs) [19], that are related via a Fourier transform to the Impact Parameter
Dependent parton distributions (IPDs) [37]. Special attention to these distribu-
tions and possible connections between IPDs and TMDs are posed in Chapter
5. Deeply Virtual Compton scattering as well as deeply virtual exclusive meson
production represent the golden channels to access the GPDs. By integration
over the parton transverse momentum2, the TMDs reduce to the collinear Par-
ton Distribution Functions (PDFs) that can be recovered also from the GPDs in
the limit ∆→ 0. Extensively studied are also the Form Factors (FFs), that can
be obtained from the GPDs via the integration over the light-cone fraction of
momentum x, as shown in Fig. 3.3. By taking the Fourier transform of the FFs,
one obtains the charge and magnetization densities in impact-parameter space.
Fully integrated quantities (at the bottom of the figure) are called charges, and
encode global properties of the proton. Trying to access the global properties
of the proton via parton distributions can be challenging, especially from the
experimental point of view, since the reconstruction of the full range in the
integration variables is necessary. An alternative way to obtain the charges is
to look at local operators, like the Energy Momentum Tensor, to which the
Chapter 8 is entirely devoted.

We notice here that, if one cuts the diagram in Fig. 3.3 perpendicularly to
the red line (∆→ 0 line), the remaining top right portion is entirely populated
of parton distributions that can be accessed only in exclusive experiments, since
the reconstruction of the final proton is necessary. These distributions show up
at the amplitude level. On the contrary, the remaining bottom left portion of
the diagram contains only parton distributions that can be accessed in
(semi-)inclusive processes and which are defined at the cross section level.

3.3.1 GTMDs and Wigner distributions

In order to properly decompose Eq. (3.16) in terms of GTMDs, we need to fix
the gauge-link path upon which the correlator depends. We choose to work
with the most common paths shown in Fig. 3.5.

They are composed of three different pieces: two straight lines that run along
the minus direction from either 0 or z to ±∞− and a straight line that runs
along the transverse direction at ±∞−. The two gauge links associated to ∞−
and −∞− are characteristic of SIDIS and DY, respectively. We will give a brief

2The integral over the transverse momentum requires a suitable regularization of the
ultraviolet region, which leads to modifications of this simple picture. More details can be
found in the literature, see, e.g., Ref. [15].
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Figure 3.4: Diagrammatic representation of the GTMDs correlator Φ. The full
dots on the quark lines indicate that the quark is extracted from the proton
and enters the hard-scattering part (left dot), or it exits the hard-scattering
part and is re-inserted in the proton (right dot). The diagram enters at the
amplitude level.
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Figure 3.5: Schematic representation of two possible gauge links. The red one
runs from the starting point (− ξ−

2
,−ξ⊥

2
) to +∞− along the light-cone direction,

then it has a transverse piece at light-cone infinity, and it runs to the end point(
ξ−

2
, ξ⊥

2

)
along the light-cone direction. The blue path is very similar, the

only difference being that it runs to −∞− instead of +∞−. The red path
is characteristic of SIDIS processes and it encodes the final-state interactions.
The blue one is proper of Drell-Yan-like events and encodes the initial-state
interactions.
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3. Parton Distributions Landscape

description of these processes in Sec. 3.3.2. Following Ref. [13], we parametrize
the choice with η∞−, where η = ±1. Here we note that the gauge link encodes
the initial-state interactions (η = −1) or the final-state interactions (η = +1),
see Sec. 3.3.2. The leading-twist sector (twist-2) is obtained with

Γ = γ+, γ+γ5, iσ
+iγ5, (3.21)

and corresponds to

Φ
[γ+]
Λ,Λ′(x̄,k⊥, ∆, P, η) =

1

2M
ū(p′, Λ′)

[
F1,1 +

iσi+ki⊥
P+

F1,2

+
iσi+∆i

⊥
P+

F1,3 +
iσijki⊥∆

j
⊥

M2
F1,4

]
u(p, Λ), (3.22)

Φ
[γ+γ5]
Λ,Λ′ (x̄,k⊥, ∆, P, η) =

1

2M
ū(p′, Λ′)

[
−iεij⊥ki⊥∆j

⊥
M2

G1,1 +
iσi+γ5k

i
⊥

P+
G1,2

+
iσi+γ5∆

i
⊥

P+
G1,3 + iσ+−γ5G1,4

]
u(p, Λ), (3.23)

Φ
[iσj+γ5]
Λ,Λ′ (x̄,k⊥, ∆, P, η) =

1

2M
ū(p′, Λ′)

[
−iεij⊥ki⊥
M

H1,1 −
iεij⊥∆

i
⊥

M
H1,2

+
M

P+
iσj+γ5H1,3 +

kj⊥iσ
i+γ5k

i
⊥

MP+
H1,4

+
∆j
⊥iσ

i+γ5k
i
⊥

MP+
H1,5 +

∆j
⊥iσ

i+γ5∆
i
⊥

MP+
H1,6

+
kj⊥iσ

+−γ5

M
H1,7 +

∆j
⊥iσ

+−γ5

M
H1,8

]
u(p, Λ), (3.24)

where εij⊥ = ε+−ij. The letter and subscript convention is as follows: F , G, H
indicate, respectively, an unpolarized, longitudinally- or transversely-polarized
proton target, the first subscript indicates the twist minus 1, the second sub-
script serves the only purpose of enumerating the different functions. The twist-
3 GTMDs are obtained with the matrices Γ = 1, γ5, γ

j, γjγ5, iσ
ijγ5, iσ

+−γ5. We
will not list all the twist-3 GTMDs, since it is beyond the scope of this work,
and the interested reader can find all of them in Ref. [13]. We shall, however,
give the explicit expressions for Γ = 1, since we are going to study one of the
corresponding TMDs in Chapter 7:

Φ1Λ,Λ′(x̄,k⊥, ∆, P, η) =
1

2P+
ū(p′, Λ′)

[
E2,1 +

iσi+ki⊥
P+

E2,2

+
iσi+∆i

⊥
P+

E2,3 +
iσijki⊥∆

j
⊥

M2
E2,4

]
u(p, Λ). (3.25)
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3.3. Parton Distributions

The twist-4 GTMDs are obtained with Γ = γ−, γ−γ5, iσ
j−γ5. Each GTMD

depends on the set of variables (x, ξ,k2
⊥,∆

2
⊥,k⊥ · ∆⊥; η), where ξ is called

skewness and measures the relative size of the transferred plus-momentum with
respect to the average plus-momentum:

ξ = − ∆+

2P+
. (3.26)

All the GTMDs are complex-valued functions and they must satisfy constraints
imposed by hermiticity and time reversal (parity is ensured since it is imple-
mented at the level of the Lorentz structures). With X denoting a generic
GTMD, the hermiticity constraint imposes that:

X(x̄, ξ,k2
⊥,∆

2
⊥,k⊥ ·∆⊥; η) = ±X∗(x̄,−ξ,k2

⊥,∆
2
⊥,−k⊥ ·∆⊥; η), (3.27)

where the + sign holds for F1,1/3/4 G1,1/2/4 H1,2/3/4/6/7 and E2,1/3/4, and the
minus sign for all the others. Time-reversal invariance imposes that:

X∗(x̄, ξ,k2
⊥,∆

2
⊥,k⊥ ·∆⊥; η) = X(x̄, ξ,k2

⊥,∆
2
⊥,k⊥ ·∆⊥;−η). (3.28)

To gain more insights into the constraint imposed by the time-reversal invari-
ance, we can express all the GTMDs as a sum of a real and an imaginary
part:

X = Xe(x̄, ξ,k2
⊥,∆

2
⊥,k⊥ ·∆⊥) + iXo(x̄, ξ,k2

⊥,∆
2
⊥,k⊥ ·∆⊥; η). (3.29)

In Eq. (3.29) only the imaginary part depends on the direction of the gauge
link, as can be deduced from Eq. (3.28):

Xo(x̄, ξ,k2
⊥,∆

2
⊥,k⊥ ·∆⊥; η) = −Xo(x̄, ξ,k2

⊥,∆
2
⊥,k⊥ ·∆⊥;−η), (3.30)

Xe(x̄, ξ,k2
⊥,∆

2
⊥,k⊥ ·∆⊥; η) = Xe(x̄, ξ,k2

⊥,∆
2
⊥,k⊥ ·∆⊥;−η). (3.31)

The real and imaginary part Xe,o are known, respectively, as näıve T-even and
näıve T-odd, because of their behavior under time reversal. The sign change in
Eq. (3.30) was the reason why some of the TMDs, originally defined without
the inclusion of the gauge link, were believed to vanish due to time-reversal
invariance. This also warns us that the GTMDs are, in fact, process-dependent
distributions, since they depend on the gauge-link path in a non-trivial way.
We are able, however, to predict such dependence to some extent, and this
can be used as a powerful testing tool for the theory when compared to the
experiments.

The Wigner distributions can be calculated as Fourier transforms of the
GTMDs at ξ = 0:

X(x̄, ξ,k2
⊥, b

2
⊥,k⊥ · b⊥; η) =

∫
d∆⊥

(2π)2
e−ib⊥·∆⊥X(x̄, ξ,k2

⊥,∆
2
⊥,k⊥ ·∆⊥; η).

(3.32)
One of the main interesting points about Wigner distributions is the pos-

sibility to gain direct access to information about the parton OAM. As shown
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3. Parton Distributions Landscape

k k

P, S P, S
Φ

Figure 3.6: Diagrammatic representation of the TMDs correlator. The dashed
line that cuts the diagrams, not present in the case of the GTMDs, indicates
that the diagram is representing a cross section, not an amplitude. TMDs exist
only at the cross-section level.

in Refs. [34–36, 41, 42], we can express the ẑ component of the quark angular
momentum as:

Lqz(γ) =

∫
dx̄dk⊥db⊥ε

ij
⊥kj⊥bi⊥Φ

γ+

++(x̄,k⊥, b⊥, p, γ)

= −
∫
dx̄dk⊥

k2
⊥

M2
F1,4(x̄, 0,k2

⊥, 0, 0, γ). (3.33)

Interestingly, the differences between all the possible definitions of the OAM are
encoded in the dependence on the gauge-link path γ of Eq. (3.33), see Ref. [43]
for the analysis of two of the most popular definitions of OAM.

3.3.2 Transverse-Momentum dependent parton Distributions

From the general expression of the GTMD correlator, by setting ∆ = 0, we
recover the general TMD correlator [24, 44–48]:

Φ
[Γ ]
Λ,Λ′(x,k⊥, p

+,p⊥ = 0⊥, η) = Φ
[Γ ]
Λ,Λ′(x̄,k⊥, ∆ = 0, P+,P⊥ = 0⊥, η), (3.34)

where x = k+/p+ = x̄ since ∆ = 0. TMDs are given as real-value functions,
therefore they correspond to either the real or to the imaginary part of appro-
priate GTMDs. Moreover, the TMDs are usually defined from the quark-quark
correlator given in the proton spin basis, rather than in the light-cone helicity
base. To connect the two expressions for the correlator, we need the proton-spin
vector, defined as:

S =

(
Λ
p+

M
,−Λ M

2p+
,S⊥

)
. (3.35)

The correlator in the spin basis then reads (see Refs. [49, 50]):

Φ[Γ ](x,k⊥, p, S, η) =
1 + Λ

2
Φ

[Γ ]
++(x,k⊥, p, η) +

1− Λ
2

Φ
[Γ ]
−−(x,k⊥, p, η)
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3.3. Parton Distributions

+
SL
2
Φ

[Γ ]
+−(x,k⊥, p, η) +

SR
2
Φ

[Γ ]
−+(x,k⊥, p, η). (3.36)

From the comparison with Eqs. (3.22)-(3.25) we have:

Φ[γ+](x,k⊥, p, S, η) = f1(x,k2
⊥)− ki⊥S

j
⊥ε

ij
⊥

M
f⊥1T (x,k2

⊥), (3.37)

Φ[γ+γ5](x,k⊥, p, S, η) = Λg1(x,k2
⊥)− k⊥ · S⊥

M
g1T (x,k2

⊥), (3.38)

Φ[iσj+γ5](x,k⊥, p, S, η) = Sj⊥h1(x,k2
⊥) + Λ

ki⊥
M
h⊥1L(x,k2

⊥)

− ki⊥k⊥ · S⊥ + 1
2
k2
⊥S

j
⊥

M
h⊥1T (x,k2

⊥) +
εjiki⊥
M

h⊥1 (x,k2
⊥),

(3.39)

Φ[1](x,k⊥, p, S, η) =
M

p+

(
e(x,k2

⊥)− ki⊥S
j
⊥ε

ij
⊥

M
e⊥T (x,k2

⊥)

)
. (3.40)

With these expressions, the connection between GTMDs and TMDs is easily
obtained:

f1(x,k2
⊥) = F e

1,1(x, 0,k2
⊥, 0, 0), (3.41)

f⊥1T (x,k2
⊥) = −F 0

1,2(x, 0,k2
⊥, 0, 0, η), (3.42)

g1(x,k2
⊥) = Ge

1,4(x, 0,k2
⊥, 0, 0), (3.43)

g1T (x,k2
⊥) = Ge

1,2(x, 0,k2
⊥, 0, 0), (3.44)

h⊥1 (x,k2
⊥) = −Ho

1,1(x, 0,k2
⊥, 0, 0, η), (3.45)

h⊥1L(x,k2
⊥) = He

1,7(x, 0,k2
⊥, 0, 0), (3.46)

h⊥1T (x,k2
⊥) = He

1,4(x, 0,k2
⊥, 0, 0), (3.47)

e(x,k2
⊥) = Ee

2,1(x, 0,k2
⊥, 0, 0), (3.48)

e⊥T (x,k2
⊥) = −Eo

2,2(x, 0,k2
⊥, 0, 0, η). (3.49)

The notation used for labelling the TMDs is related to the polarizations of the
parent hadron and the active quark. Here we adopt the convention proposed in
Ref. [47]: the letters L and T refer to the situation where the spin of the hadron
is along the longitudinal direction and in the transverse plane, respectively.
Similarly, the letters f , g and h refer to unpolarized, longitudinally-polarized
and transversely-polarized active quark, respectively. The ⊥ symbol indicates
that the TMD enters the decomposition of the correlator with a weighting factor
that depends on k⊥ with an open index. The classification of the TMDs in terms
of the proton and active-quark polarization is correct only for the leading-twist
TMDs. For the twist-3 and twist-4 TMDs, the interpretation in terms of states
with well defined polarization of the good quark-field components is lost. A
schematic summary of the twist-2 TMDs is given in Tab. 3.1.

It is also interesting to note that the näıve T-odd TMDs (at twist-2 the
Sivers function f⊥1T and the Boer-Mulders function h⊥1 ) are not directly related
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quark pol.

U L T

n
u
cl

eo
n

p
ol

.

U f1 h⊥1

L g1 h⊥1L

T f⊥1T g1T h1, h⊥1T

Twist-2 TMDs

Table 3.1: Tables of the leading-twist TMDs with their relation to nucleon and
quark polarization states.

to the quark OAM, as it is evident from Eq. (3.33). In fact, the OAM is
expressed in terms of F1,4 that does not appear in the TMD limit.

3.3.3 Generalized Parton Distributions and Impact Parameter

Distributions

Generalized Parton Distributions can be obtained from the GTMDs by integ-
rating over the parton transverse momentum:

Φ
[Γ ]
ΛΛ′(x,∆, P ) =

∫
dk⊥Φ

[Γ ]
ΛΛ′(x,k⊥, ∆, P )

=

∫
dζ−

4π
eixP

+ζ− 〈p′, Λ′| ψ̄(0)W(0, ζ)ψ(ζ) |p, Λ〉
∣∣∣
ζ+=0,ζ⊥=0⊥

.

(3.50)

We note that the gauge-link path for a GPD runs along the light-cone direction
ζ−, without any contribution from the transverse direction. This entails that
all the dependence on η that could derive from the GTMDs disappears. This
immediately leads to the conclusion that all the GPDs are T-even distributions.
We also note that, with a clever choice of the gauge, the gauge link in the
definition of the GPDs can be reduced to unity. In light-cone gauge (see Sec. 2.4)
we immediately have

W(0, ζ−) = Pe−igS
∫ ζ−
0 dz−A+

= 1. (3.51)

This argument strongly favors to using the light-cone gauge when dealing with
the GPDs.

As we have done for the TMDs, we are going to give here the explicit
expression for the traced GPDs correlator. We restrict ourself to the twist-2
GPDs, since our interest will never go beyond the leading twist:

Φ
[γ+]
ΛΛ′ (x,∆, P ) =

1

2P+
ū(p′, Λ′)

(
γ+H(x, ξ, t) +

iσ+µ∆µ

2M
E(x, ξ, t)

)
u(p, Λ),

(3.52)
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Φ
[γ+γ5]
ΛΛ′ (x,∆, P ) =

1

2P+
ū(p′, Λ′)

(
γ+γ5H̃(x, ξ, t)− ξγ5P

+

M
Ẽ(x, ξ, t)

)
u(p, Λ),

(3.53)

Φ
[iσj+γ5]
ΛΛ′ (x,∆, P ) = − εij⊥

2P+
ū(p′, Λ′)

(
iσ+iHT (x, ξ, t) +

γ[+∆i]

2M
ET (x, ξ, t)

+
P [+∆i]

2M
H̃T (x, ξ, t) +

γ[+P i]

2M
ẼT (x, ξ, t)

)
u(p, Λ), (3.54)

where we introduced the shorthand notation a[µbν] := aµbν − aνbµ. The GPDs
depend on the average momentum fraction x, the skewness ξ (introduced in the
GTMD section) and the Mandelstam variable t = −∆2.

The connection between GPDs and GTMDs is a little more involved com-
pared to the TMD case. Since we will never make use of these relations in the
present work, we refer the interested reader to Ref. [13].

The GPDs allow us to access the quark contribution to the total proton
angular momentum via the relation (see Ref. [51]):

〈Jzq 〉 =
1

2

∫ 1

0

dxx (Hq(x, ξ, 0) + Eq(x, ξ, 0)) . (3.55)

A similar relation holds for the gluon contribution to the total proton angular
momentum. These relations require to integrate the GPDs over the full range
in x to access the total proton angular momentum. Another way to obtain
the same information is to use an appropriate local operator evaluated between
proton states. We will analyze this topic in greater detail in Chapter 8. The
integral in Eq. (3.55) are independent on the skewness ξ. This is a consequence
of Lorentz invariance: the integration over x removes all reference to the par-
ticular light-cone direction with respect to which ξ is defined, so that the result
must be ξ-independent.

From the GPDs, via Fourier transform, we can obtain the IPDs. At first,
one could think of considering the three-dimensional Fourier transform

∫
d∆+d∆⊥

(2π)3
eib
−∆+−ib⊥·∆⊥Φ

[Γ ]
ΛΛ′(x,∆, P ) (3.56)

that would encapsulate three-dimensional space information on the distribution
of the partons. However, as shown in Ref. [52], this definition is plagued with
relativistic corrections, that spoil any probabilistic interpretation. Since the
relativistic corrections are proportional to the energy transferred between the
initial and final state, i.e. ∆+ in light-front coordinates, one way to avoid this
problem is to replace Eq. (3.56) with the following

∫
d∆+d∆⊥

(2π)3
2πδ(∆+)e−ib⊥·∆⊥Φ

[Γ ]
ΛΛ′(x,∆, P ). (3.57)

Hence, we obtain the following definition for the one plus two-dimensional IPD
correlator

Φ
[Γ ]
ΛΛ′(x, b⊥, P ) =

∫
d∆⊥

(2π)2
e−ib⊥·∆⊥Φ

[Γ ]
ΛΛ′(x, ξ = 0,∆⊥, P ). (3.58)
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Formally, the correlator on the left-hand side of Eq. (3.58) has the same struc-
ture as the TMDs correlator, with the role of k⊥ taken by b⊥. For this reason,
there have been attempts to connect IPDs and TMDs, at least in model calcu-
lations. In particular näıve T-odd TMDs were found to be connected to some
IPDs in simple models for the proton, see Refs. [37, 52–59]. The connection
between the näıve T-odd TMDs and the T-even IPDs was established via a
näıve T-odd function, known as ’lensing function’, see Chapter 5. In Chapter 5
we are going to present an argument, that we consider both strong and convin-
cing, to show that model-independent relations between TMDs and IPDs can
not in general hold.

3.4 Light-Front Wave Functions and Distribution Amp-

litudes

In view of the variety of parton distributions that give access to different pic-
tures of the parton content of the proton, a unified framework to describe the
proton structure is desirable. To this aim, the LFWFs introduced in Sec. 2.3
are good candidates, both because of their interpretation and their versatility
in model calculations. A complete description of the proton in terms of LFWFs
is right now unrealistic, mainly because the Fock expansion is an infinite series.
Even if we were able to exactly solve the QCD hamiltonian, that would reas-
onably happen only for the first few Fock states. Despite these limitations,
we believe that the LFWFs offer the best tool at our disposal to describe the
parton distributions, since each parton distribution can be seen as a particular
combination of overlaps of LFWFs. We can exploit the LFWF framework to
connect fits of (the valence part of) different types of parton distributions. This
will eventually lead to a unified description of the parton distributions of the
proton, that incorporates all available experimental measurements. If a model
is being used, in which the Fock-state expansion is truncated up to some num-
ber of partons n, we can parametrize the error associated with this assumption
by computing the norm deficiency in the proton state. For illustration pur-
poses, let us assume that we truncate the Fock decomposition at the state with
n partons:

|p, Λ〉n =
n∑

i=1

∑∫
Ψi |σi〉 . (3.59)

Then we have:

n 〈p′, Λ′|p, Λ〉n = 2p+δ(p
′+ − p+)δ(p′⊥ − p⊥)δΛ′,Λ

n∑

i=1

Pi, (3.60)

where {Pi}ni=1 are the probabilities associated with the Fock state with i partons,
and can be expressed as the squared module of LFWFs for the corresponding
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3.4. Light-Front Wave Functions and Distribution Amplitudes

state. They satisfy:
n∑

i=1

Pi < 1 ∀n,
∞∑

i=1

Pi = 1. (3.61)

Therefore, since each Fock state ultimately contributes to any parton distribu-
tion proportionally to its probability Pi, we have an indication of how close is
the approximation to the full result. From a practical point of view, besides
the truncation of the Fock-space expansion, we need to introduce a model for
the LFWFs. We are going to choose a specific model, outlined in Chapter 6.
We shall fit the model parameters to available phenomenological extractions of
the PDFs and then use these fit results to give predictions for the TMDs and
GPDs. We believe that this approach provides a useful and practical tool for
the extraction of the parton distribution functions in a unified framework: in-
stead of creating an ad hoc model for each distribution, we rely on the substrate
of LFWFs to provide the general model for all of them, and use the information
extracted from one fit to obtain predictions for different distributions.

3.4.1 Distribution Amplitudes

A complementary information on the proton structure with respect to the par-
ton distributions is given by the Distribution Amplitudes (DAs). These are
proton-to-vacuum matrix elements of non-local gauge-invariant operators built
of quark and gluon fields at light-like separations. The DAs can be directly
linked to the LFWFs, unlike parton distributions that are given in terms of
overlaps of the LFWFs. The DAs therefore provide a window to look directly
into the physics of the LFWFs. In this section, we shall illustrate how such a
connection is carried out. For illustration purposes, and to establish the basis
for future chapters, we are going to truncate the Fock-space expansion of the
proton state to the three-quark plus one-gluon state. All the arguments that we
are going to present can be applied also to higher-Fock components, with the
obvious increase in complexity due to the increasing number of partons. For
our discussion we need the proton-to-vacuum matrix element of three-quark
field operators:

〈0| εijkuλ1,i′(a1)Wi′,i(a1, a0)uλ2,j′(a2)Wj′,j(a2, a0)dλ3,k′(a3)Wk′,k(a3, a0) |p, Λ〉 ,
(3.62)

and the proton-to-vacuum matrix element of three-quark and one gluon oper-
ators:

〈0| igsεijku↓,i′(a1)Wi′,i(a1, a0)u↑,j′(a2)Wj′,j(a2, a0)

×
[
∂+ĀaL(a4)T ak′l′Wl′,l(a4, a0)d↓l(a3)

]
Wk′,k(a3, a0) |p, Λ〉 , (3.63)

〈0| igsεijku↑,i′(a1)Wi′,i(a1, a0)
[
∂+ĀaL(a4)T aj′l′Wl′,l(a4, a0)u↓,l(a2)

]

×Wj′,j(a2, a0)d↓k′(a3)Wk′,k(a3, a0) |p, Λ〉 , (3.64)
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〈0| igsεijk
[
∂+ĀaL(a4)T ai′l′Wl′,l(a4, a0)u↓,l(a1)

]
Wi′,i(a1, a0)u↓,j′(a2)

×Wj′,j(a2, a0)d↓k′(a3)Wk′,k(a3, a0) |p, Λ〉 . (3.65)

All the points ai are of the form

aµi = (0, a−i ,0⊥), (3.66)

hence, all the gauge links run along the minus light-cone direction. We are going
to adopt the light-cone gauge, therefore all the gauge links in Eqs. (3.62)-(3.65)
reduce to unity.

We also need the truncated Fock expansion for the proton state:

|p, Λ〉 =
∑

{β3}

∫
[dσ3]ΨΛ{β3}(σ3) |σ3, {β3}〉+

∑

{β4}

∫
[dσ4]ΨΛ{β4}(σ4) |σ4, {β4}〉 , (3.67)

where we explicitly have indicated the sum over the discrete quantum numbers
(light-cone helicities and color indexes) and the integral over the momenta, i.e.
we used the definition of the symbol

∑∫
in Eq. (2.64). The three-quark Fock

state basis, by explicitly writing Eq. (2.60), reads:

|σ3, {β3}〉 =
εc1c2c3√

6

∑

{qi}={u,u,d}

3∏

i=1

|λi, qi, ci, xi,p⊥,i〉 , (3.68)

with:
|λi, qi, ci, xi,p⊥,i〉 =

(
qcii,λ(xi,p⊥,i)

)† |0〉 , (3.69)

where ci are the color indices, λi denote the quark light-cone helicities and

p⊥,i = k⊥,i + xip⊥ (3.70)

are the total transverse momenta3. The next-to-leading Fock state has a similar
expression:

|σ4, {β4}〉 =
∑

{qi}={u,u,d}
εdc2c3T ad,c1

(
3∏

i=1

|λi, qi, ci, xi,p⊥,i〉
)
|λ4, g, a, x4,p⊥,4〉 .

(3.71)

In Eq. (3.71), via the following identity:

3∑

l=1

εijl (T a)lk + εilk (T a)lj + εljk (T a)li = 0, (3.72)

we can shift the coupling of the gluon from the down quark to the up quarks.
As we already noticed, since the transverse light-cone boosts are kinematic,

the LFWFs do not depend on p⊥, i.e. the transverse motion of the transverse

3As already outlined in Sec. 2.3, the dependence of the state on the total transverse
momentum is completely contained in the single-parton states.
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center of momentum decouples from the intrinsic transverse motion of the par-
tons inside the proton. For this reason, we can assume p⊥ = 0⊥, without
affecting any of the following considerations. For the proton state we therefore
have from Eq. (2.38) that

jz = J3 =
n∑

i=1

J3
i =

n∑

i=1

jz,i +
n∑

i=1

lz,i =
n∑

i=1

jz,i + Lz, (3.73)

where jz, J
3, and Lz are, respectively, the light-cone helicity, the total angular

momentum and the total OAM of the proton, while jz,i, J
3
i and lz,i are the

corresponding contributions from the individual i-th parton. The total angular
momentum and the OAM are intended as the components along the ẑ direction.
For the general Fock state the integration measure can be written in terms of
the intrinsic coordinates (i.e. the integration variables are changed from {p⊥,i}
to {k⊥,i}) as:

[dσn] −→ [Dx]n =
[dx]n[dk⊥]n√∏n

i=1 xi
, (3.74)

[dx]n =
n∏

i=1

dxiδ

(
1−

n∑

i=1

xi

)
, (3.75)

[dk⊥]n =

(
1

2(2π)3

)n−1 n∏

i=1

dki,⊥δ

(
n∑

i=1

ki,⊥

)
. (3.76)

For all the Fock states we can make explicit the sum over the light-cone
helicity and the parton OAM. This allows us to isolate the so-called Light-Front
Wave Amplitudes (LFWAs). They depend only on the parton momentum and
are eigenstate of the parton OAM operator. Following Ref. [60], one can classify
the number of independent LFWAs in a model-independent way. First, we make
explicitly the sum over the parton light-cone helicities and OAM, noticing that
each unit of OAM for the i-th parton contributes with a factor kR/L,i, where
R/L are for the case lz,i > 0 or lz,i < 0, respectively and

kR/L = kx,⊥ ± iky,⊥. (3.77)

We have:

∑∫
Ψn |σn〉 =

∫
[dσn]

∑

{lz,i},{λi}

n−1∏

i=1

k
|lz,i|
R/L,iψn({xi,k⊥,i}) |σn, {λi}, {ci}〉 . (3.78)

Second, assuming that Lz ≥ 0 (the argument is very similar for the case Lz ≤ 0),

we isolate all the pairs k
lz,i
R,ik

−lz,j
L,j for which lz,j < 0 and lz,i > |lz,j|. Note that,

being Lz > 0, it is always possible to pair the parton momenta in this way.
Then we make use of the identity:

k
lz,i
R,ik

−lz,j
L,j = k

lz,i+lzj
R,i (k⊥,i · k⊥,j + iεmnkm,ikn,j)

−lz,j
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= k
lz,i+lz,j
R,i (φ0 + φ1iε

mnkm,ikn,j) ,

where, from the first to the second line, we used

εijεmn = δimδjn − δinδjm, iεmnkm,ikn,jkR,i = k⊥,i · k⊥,ikR,j − k⊥,i · k⊥,jkR,i
(3.79)

to recast Eq. (3.78) into

∑∫
Ψn |σn〉 =

∫
[dσn]

∑

{mz,i},{λi}

n−1∏

i=1

k
mz,i
R/L,i

(
ψn({xi,k⊥,i})

+
∑

i<j|lz,i+lz,j=0

iεmnkm,ikn,jψn,(ij)({xi,k⊥,i})
)
|σn, {λi}〉 , (3.80)

with mz,i = lz,i + lz,j ≥ 0.
This expression can be made explicit for each parton number n. We therefore

need the explicit expressions for the three-quark state and the three-quark plus
one-gluon state. The first one reads:

|p,+〉3q =

∫
[dσ3]

{
ψLz=0({xi,k⊥,i}) |σ3, {↑↑↓}〉+ ψLz=1({xi,k⊥,i}) |σ3, {↑↓↓}〉

+ ψLz=2({xi,k⊥,i}) |σ3, {↓↓↓}〉+ ψLz=−1({xi,k⊥,i}) |σ3, {↑↑↓}〉
}
,

(3.81)

where we labelled the coefficient of each state with the corresponding value for
Lz. More explicitly, from Eq. (3.80), the component Lz = 0 reads:

|p,+〉Lz=0
3q =

−εijk√
6

∫
[Dx]123

(
ψ

(0)
123 − iεlmk1,lk2,mψ

(2)
123

)

×
(
u†↑,i(1)u†↓,j(2)d†↑,k(3)− u†↑,i(1)d†↓,i(2)u†↑,k(3)

)
|0〉 , (3.82)

where we used the shorthand notations

u(i) = u(xi,p⊥,i), ψ123 = ψ(x1,k⊥,1, x2,k⊥,2, x3,k⊥,3). (3.83)

We notice here that ψ(2), corresponding to ψn,(ij) of Eq. (3.80), encapsulates
the information on the state with two quarks having the same absolute value
of OAM along the ẑ axis, but with opposite sign. Hence, the total Lz for ψ(2)

is zero, while the OAM of the individual quarks is not vanishing. The other
eigenstates of the total OAM along z read:

|p,+〉Lz=1
3q =

εijk√
6

∫
[Dx]123

[
kR,1ψ

(3)(123) + kR,2ψ
(4)(123)

]

×
(
u†↑,i(1)u†↓,j(2)d†↑,k(3)− u†↑,i(1)d†↓,i(2)u†↑,k(3)

)
|0〉 , (3.84)
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|p,+〉Lz=−1
3q =

εijk√
6

∫
[Dx]123

[
−kL,2ψ(5)(123)

]

×
(
u†↑,i(1)u†↑,j(2)d†↑,k(3)

)
|0〉 , (3.85)

|p,+〉Lz=2
3q = −ε

ijk

√
6

∫
[Dx]123

[
kR,1kR,3ψ

(6)(123)
]

× u†↓,i(1)u†↓,j(2)d†↓,k(3) |0〉 . (3.86)

The functions ψ(i) in Eqs. (3.82)-(3.86) are the LFWAs. We can clearly see
that they depend only on the parton momenta, and, since we have factored
out the kR/L,i associated with the OAM, the LFWAs can only depend on the
products k⊥,i · k⊥,i, see Eq. (3.80).

From Ref. [61], one can read also the full expressions for the three-quarks
plus one gluon state. However, due to the very large number (126) of LFWAs,
we are going to explicitly report only the case Lz = 0, that is the only one of
interest for our purposes:

|p,+〉Lz=0
3qg↓ = εijk

∫
[Dx]1234Ψ

↓(1234) T aσig
a†
↓ (4)u†↑,σ(1)u†↑,j(2)d†↑,k(3) |0〉 , (3.87)

|p,+〉Lz=0
3qg↑ = εijk

∫
[Dx]1234

[
Ψ 1↑(1234)T aσig

a†
↑ (4)u†↓,σ(1)

×
(
u†↑,j(2)d†↓,k(3)− d†↑,j(2)u†↓,k(3)

)

+ Ψ 2↑(1234)T aσjg
a†
↑ (4)u†↓,i(1)

(
u†↓,σ(2)d†↑,k(3)− d†↓,σ(2)u†↑,k(3)

)]
|0〉 .

(3.88)

It can be noticed that all the expressions for the proton state given so
far refer to the state with positive light-cone helicity. The corresponding ex-
pressions for a state with negative light-cone helicity can be obtained via the
application of the light-cone parity operator Ŷ (see Refs. [61, 62]), i.e.

|p, λ〉 −→ Ŷ |p, λ〉 = (−1)s+λη |p,−λ〉 , (3.89)

where s is the total angular momentum of the hadron (i.e. s = 1
2

for the proton),
λ is the light-cone helicity of the state and η is the intrinsic parity of the hadron.
For a quark, the intrinsic parity is η = +1, and for a gluon is η = −1.

Before discussing the connection between the LFWAs and the DAs, we must
point out the difference in our Eqs. (3.85) and (3.87), and the corresponding
expressions in Ref. [61]. A careful examination of the symmetry relations of the
LFWAs will bring clarity in the problem. As an example, we are going to work
with the case of Ψ ↓, but the same reasoning applies, mutatis mutandis, to the
case of ψ(5,6). In Ref. [61] the state is given as

u†↑,σ(1)
(
u†↑,j(2)d†↑,k(3)− d†↑,j(2)u†↑,k(3)

)
|0〉 , (3.90)
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instead of

u†↑,σ(1)u†↑,j(2)d†↑,k(3) |0〉 . (3.91)

The underlying assumption of Eq. (3.90) is the anti-symmetric behavior of
Ψ ↓(1234) under the exchange 2↔ 3. The key point, even if trivial, is that the
proton as well as the up and down quarks have isospin one-half. Since we are
not interested in any other type of quarks, we restrict our argument to state of
isospin 1/2. The inclusion of different types of quarks would put the quarks in
an higher isospin state, leaving nevertheless the proton in an isospin 1/2 state.
The isospin-1/2 operators share the same algebra as the spin-1/2, i.e. SU(2).
In the isospin notation, the generators of the group, i.e. the basis of the algebra,
can be called Ii with i = 1, 2, 3:

I1 =
1

2


0 1

1 0


 , I2 =

1

2


0 −i
i 0


 , I3 =

1

2


1 0

0 −1


 , (3.92)

with the commutation relations:

[Ii, Ij] = iεijkIk. (3.93)

The up quark is defined as the isospin eigenstate with eigenvalue I3 = +1
2

and
the down quark as the state with I3 = −1

2
:

I3 |u〉 =
1

2
|u〉 , I3 |d〉 = −1

2
|d〉 . (3.94)

We can also introduce the ladder operators:

I± = I1 ± iI2, (3.95)

which act on the up- and down-quark state state as:

I+ |u〉 = 0, I− |u〉 = |d〉 , I+ |d〉 = |u〉 , I− |d〉 = 0. (3.96)

The action of I+ is to “replace” the down quark with an up quark, and viceversa
for I−. Now we are ready to come back to the flavor symmetry of Ψ ↓. The third
component of the isospin of the proton state, i.e. I3, is given by the sum of the
I3-components of the quarks and gluon, which has I3 = 0:

I3 |p,+〉3qg↓ =
1

2
|p,+〉3qg↓ . (3.97)

If we impose I+ |P,+〉3qg↓ = 0, we are able to find a constraint on the LFWA.
We have:

I+ |p,+〉3qg↓ = εijk
∫

[Dx]1234Ψ
↓(1234) T aσig

a†
↓ (4)u†↑,σ(1)u†↑,j(2)u†↑,k(3) |0〉 ,

(3.98)
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and after projecting into the following state of three-quarks and a gluon:

〈0| gb↓(8)u↑,n(7)u↑,m(6)u↑,l(5), (3.99)

we obtain the equation:

Ψ ↓(1234) + Ψ ↓(1324)− Ψ ↓(3124)− Ψ ↓(3214) = 0. (3.100)

Of course, if Ψ ↓ is anti-symmetric in the third and the fourth arguments, the
condition is fulfilled. However, the most general solution to this equation can
be written as a sum of three terms:

Ψ ↓(1234) = Ψ ↓(+)(1234)− Ψ ↓(+)(1324) + Ψ ↓(0)(1234), (3.101)

where the superscripts indicate a well-defined behavior under a cyclic permuta-
tion of the quark arguments:

Ψ ↓(0)(1234) = Ψ ↓(0)(2314), Ψ ↓(+)(1234) = e
2π
3
iΨ ↓(+)(2314). (3.102)

The Eq. (3.102) implies that the function Ψ ↓ does not have a definite behavior
under the exchange of two quarks. This entails that the state in Eq. (3.90) is
not correct, since it relies on the assumption of the anti-symmetric behavior
under the exchange of the second and third argument of Ψ ↓.

3.4.2 Link with the Light-Front Wave Amplitudes

The DAs introduced in Eqs. (3.62)-(3.65) will be now studied in more detail.
Most of our knowledge of the DAs relies on model calculations (see Ref. [63])
and few information from lattice QCD (see Refs. [64–66]. Since, as we are
going to show, DAs and LFWAs are deeply connected, a good understanding of
the proton DAs has repercussions on the understanding of the various parton
distributions that, we recall, can be written as overlapping integrals of LFWAs.

We shall start the discussion about the link between DAs and LFWAs with
the simplest case: the three-quark state with Lz = 0. To isolate this contribu-
tion, Eq. (3.62) must be projected in the Dirac space with the appropriate Dirac
structures. We refer to Ref. [67] for the general decomposition of Eq. (3.62). It
happens that the three-quark Lz = 0 state is also the leading-twist contribution
in Eq. (3.62), and reads4:

〈0|εijk
(
uTi↑(z1)Cγ+uj↓(z2)

)
γ+dk↑|p, ↑〉

= −1

2
p+γ+N↑(p)

∫
[dx]3e

−ip+
∑
xiziΦ3(x1, x2, x3), (3.103)

where N(p) represents the proton spinor in momentum space, Φ3 is the leading-
twist three-quark distribution amplitude and C = iγ2γ0 is the charge conjug-
ation matrix, essential to give rise to the correct quark annihilation operator.

4No gauge links appear, since we are working in the light-cone gauge.
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In this case, the leading twist is twist-3, from which the subscript of Φ3 comes.
By the insertion of Eq. (3.82) into Eq. (3.103) we obtain:

Φ3(x1, x2, x3) = 4
√

6

∫
[dk⊥]3 ψ

(0)
123. (3.104)

As it should be clear by its definition, the DA cannot provide information on
the actual k⊥ shape of the LFWAs, but only on the dependence on the fractions
of longitudinal quark momentum.

For the four-parton DA we limit ourself to the leading-twist components,
which correspond to twist-4:

〈0|igsεijku+
i↓(z1)u+

j↑(z2)
(
∂+

4 A
a†
L (z4)T akσ

)
d+
σ↓(z3)|P, ↑〉

=
−(P+)5/2m

4

∫
[dx]3e

−iP+
∑
xiziΦg4(x1, x2, x3, x4), (3.105)

〈0|igsεijku+
i↑(z1)

(
∂+

4 A
a†
L (z4)T ajσ

)
u+
σ↓(z2)d+

k↓(z3)|P, ↑〉

=
−(P+)5/2m

4

∫
[dx]3e

−iP+
∑
xiziΨ g4 (x1, x2, x3, x4), (3.106)

〈0|igsεijk
(
∂+

4 A
a†
L (z4)T aiσ

)
u+
σ↓(z1)u+

j↓(z2)d+
k↓(z3)|P, ↓〉

=
−(P+)5/2m

4

∫
[dx]3e

−iP+
∑
xiziΞg

4 (x1, x2, x3, x4), (3.107)

where the + on the spinors identifies the good components.
The same approach used for the three-quark state can be applied here to

compute the connection between the DAs and the LFWFs for the three-quark
and one gluon (3qg) Fock state:

2
√
x4

∫
[dk⊥]4 Ψ

↓
1234 =

M

96gs
(2Ξg

4 (x1, x2, x3, x4) + Ξg
4 (x2, x1, x3, x4)) , (3.108)

2
√
x4

∫
[dk⊥]4 Ψ

1,↑
1234 = − M

96gs
(2Ψ g4 (x2, x1, x3, x4) + Φg4(x1, x2, x3, x4)) ,

(3.109)

2
√
x4

∫
[dk⊥]4 Ψ

2,↑
1234 =

M

96gs
(2Φg4(x1, x2, x3, x4) + Ψ g4 (x2, x1, x3, x4)) . (3.110)

The Eq. (3.110) differs by a sign from the corresponding relation in Ref. [68].
The opposite sign comes from correctly implementing the light-front parity
transformation to change the light-cone helicity of the proton, see Eq. (3.89).

In the case of vanishing parton OAM, we showed that the connection between
DAs and LFWFs is very simple. This is because in the definition of the DAs only
the good components of the quark fields and the transverse components of the
gluon field appear. The sub-leading twist DAs, i.e. twist-4 for the three-quark
state and twist-5 for the three-quark plus one-gluon state, involve bad compon-
ents of the quark fields. Although the calculation becomes more cumbersome,
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3.4. Light-Front Wave Functions and Distribution Amplitudes

in this case one can access the LFWAs with Lz 6= 0. The bad components
in the DA operators cannot be straightforwardly annihilated with the quark
operators in the Fock state, since the Fock state is constructed only using the
good components. Therefore, our general strategy is to use the quark EOM
given in Eq. (2.32) to rewrite the bad components in terms of the good ones.

3.4.3 Inversion of the Equations of Motion

The differential form of the EOM given in Eq. (2.32) must be cast into an integ-
ral form in order to remove the bad quark-field components from the definition
of the DAs. The first step is to remove the covariant + derivative in Eq. (2.32)
in favor of the partial + derivative. To achieve this, we can make use of the
following property

W
(
(z+, ζ−, z⊥), z

)
iD+

z− = i∂+
z−W

(
(z+, ζ−, z⊥), z

)
. (3.111)

Hence, Eq. (2.32) takes the form:

i∂+
z−W

(
(z+, ζ−, z⊥), z

)
ψ−(z) =

γ+

2
W
(
(z+, ζ−, z⊥), z

)
(iγ⊥ ·D⊥ +m)ψ+(z).

(3.112)
Note that this expression for the EOM can be trivially deduced in light-cone
gauge A+ = 0 since the Wilson line runs along the light-cone direction. The
general solution in position space for Eq. (2.32) can be obtained using the Green
function that satisfies

∂+
z−G(ξ− − z−) = δ(ξ− − z−), (3.113)

and using the relation between gauge links

W†(a−, b−) = W(b−, a−). (3.114)

From Ref. [69] we have:

ψ−(z−) =

∫
dξ−W(z−, ξ−)ψ−(ξ−)

+

∫
dξ−

γ+

2i
G(ξ− − z−)W(z−, ξ−)(iD⊥ · γ⊥ +m)ψ+(ξ−). (3.115)

In the first term of the equation we recognize the zero-modes for the bad quark
field. The boundary conditions for the bad quark field are reflected in the expli-
cit structure for the Green function. As in the case of the boundary conditions
for the transverse gluon field in light-cone gauge, three common choices exist:

ψ−(∞−) = 0, ψ−(−∞−) = 0, ψ−(∞−) + ψ−(−∞−) = 0, (3.116)

known as retarded, advanced and principal-value boundary conditions, respect-
ively. Each choice determines the explicit structure for the Green function.
They are, respectively:

G(x) = θ(x), G(x) = −θ(−x), G(x) =
1

2
(θ(x)− θ(−x)) , (3.117)
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where we shortened the notation using x = ξ− − z−. Note that, trivially, we
cannot have a Green function that ensures the boundary conditions

ψ−(∞−)− ψ−(−∞−) = 0, (3.118)

since it should be proportional to

G(x) ∝ θ(x) + θ(−x) = 1. (3.119)

Specifying Eq. (3.115) for the light-cone gauge, that essentially allows us to
neglect the gauge links, we have in momentum space:

ψ−(k) =

∫
dξ−ψ−(ξ−, k−,k⊥)δ(k+) +

γ+

2k+
(m+ γ⊥ · k⊥)ψ+(k)

+ gs
γ+

2k+
γ⊥ · [A⊥ψ+](k) + B.C., (3.120)

where we defined

ψ±(k) =

∫
d4z eik·zψ±(z), (3.121)

[A⊥ψ+](z) = A⊥(z)ψ+(z), (3.122)

[A⊥ψ+](k) =

∫
d4z eik·z[A⊥ψ+](z). (3.123)

The boundary-condition (B.C.) term in Eq. (3.120) depends on the specific
choice of the Green function :

B.C. = ±πδ(k+)

∫
dξ−
(

(m+ γ⊥ · k⊥)ψ+(ξ−, k−,k⊥)

+ gsγ⊥ · [A⊥ψ+](ξ−, k−,k⊥)
)
,

where the plus sign refers to the retarded boundary conditions and the minus
sign to the advanced boundary conditions. In the principal-value prescription
we have instead

B.C. = 0. (3.124)

Note that all the boundary-conditions terms are proportional to δ(k+). We
shall come back to the boundary conditions of the EOM in Chapter 7, when
we are going to investigate the higher-twist TMDs. For the remaining of this
Chapter, we are going to ignore the boundary-condition terms, and this allows
us to express Eq. (3.120) as follows:

k+
(
ψq−(k) + ψq̄−(−k)

)
=
γ+

2
(m+ k⊥ · γ⊥)

(
ψq+(k) + ψq̄+(−k)

)

+ gs
γ+

2

∫
dp+dp⊥
2p+(2π)3

k+p+

(
k+

2
− p+

) (
k+

2
+ p+

)
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×
[
γ⊥ ·A⊥

(
k

2
+ p

)(
ψq+

(
k

2
− p
)

+ ψq̄+

(
−k

2
+ p

))

+ γ⊥ ·A†⊥
(
−k

2
− p
)(

ψq+

(
k

2
− p
)

+ ψq̄+

(
−k

2
+ p

))]
, (3.125)

where we separated the quark and antiquark components, labelled with q and
q̄ respectively. For the good components of the quark field, we have the explicit
representation

ψq(k) = u(k)b(k), ψq̄(k) = v(k)d†(k), (3.126)

where the light-cone helicity and color indexes are understood. Using Eq. (2.51)
in Eq. (3.125) we have that

A
i(†)
⊥ (k) =

∑

λ=↑/↓
ε
i(∗)
λ (k)g

(†)
λ (k). (3.127)

In the first line of Eq. (3.125), the on-shell condition

k− =
m2 + k2

⊥
2k+

(3.128)

is understood, whereas, in the second line, the on-shell conditions read (from a
careful evaluation of the on-shell deltas in the field expansion):

p− =
−k+m2 − k2

⊥p
+ − 2m2p+ + 2k+k⊥ · p⊥ − 4p+p2

⊥
2(k+ − 2p+)(k+ + 2p+)

, (3.129)

k− =
4p+(m2 − 2k⊥ · p⊥) + k+(k2

⊥ + 2m2 + 4p2
⊥)

4(k+ − 2p+)(k+ + 2p+)
. (3.130)

For future use, we now specify Eq. (3.125) in the case of a quark, ignoring
the antiquark part, and ignoring the gluon creation operator A†⊥. Moreover,
we project Eq. (3.125) into states of definite chirality via the projectors

C± =
1

2
(1± γ5) , C±ψξ=± = ±ψξ=±, (3.131)

where ξ is the field chirality. We then obtain:

k+γ−ψ−,ξ(k) = k⊥ · γ⊥ψ+,ξ(k) +mψ+,−ξ(k)

+ gs

∫
dp+dp⊥
2p+(2π)3

A⊥

(
k

2
+ p

)
· γ⊥ψ+,ξ

(
k

2
− p
)

k+p+

(
k+

2
− p+

) (
k+

2
+ p+

) .

(3.132)

Since we are assuming vanishing zero modes, this entails that k+ > 0, and
inverting the previous equation is straightforward. Note that all the results of
the following section are still valid if the zero modes would have been present,
with the caveat of redefining the generic DA D as:

D = Dfull −Dzero modes. (3.133)

As we are going to show in Chapter 6, our model for the DAs will have vanishing
values for k+ = 0, hence we are, for all practical purposes, using D as a DA
instead of Dfull.
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3.4.4 Higher-twist Distribution Amplitudes and Light-Front Wave
Amplitudes

In this section, we are going to use Eq. (3.132) to construct a system of equations
that will allow us to express the twist-4 DAs in terms of the LFWAs. The
general definition of twist-4 three-quark DAs in light-cone gauge is as follows:

〈0| εlmn
(
uTl,↑(z1)Cγ+um,↓(z2)

)
γ−dn,↑ |p〉

= −γ
+

2
N↑

∫
[dx]3e

−ip+
∑
xiziΦ4(x1, x2, x3), (3.134)

〈0| εlmn
(
uTl,↑(z1)Cγ+γjγ

−um,↓(z2)
)
γjγ+dn,↓ |p〉

= −Mγ+N↑

∫
[dx]3e

−ip+
∑
xiziΨ4(x1, x2, x3), (3.135)

〈0| εlmn
(
uTl,↑(z1)Cγ−γ+um,↑(z2)

)
γ+dn,↑ |p〉

=
Mγ+

2
N↑

∫
[dx]3e

−ip+
∑
xiziΞ4(x1, x2, x3). (3.136)

By direct inspection of these equations, one can see that they involve one bad
component and two good ones: in Eq. (3.134) the bad component is from the
down quark, in Eqs. (3.135) and (3.136) the bad component is from u(z2) and
u(z1), respectively. Equipped with Eqs. (3.134)-(3.136), we can clearly see that
each twist-4 DA can be written in terms of LFWAs as a sum of three distinct
pieces: a mass term connected to the three-quark Lz = 0 LFWA, a gluon term,
connected with the three-quark plus one-gluon Lz = 0 LFWA, and a k⊥ term,
connected to the Lz = ±1 LFWAs for the three-quark state. We can invert
these relations to express the Lz = ±1 LFWAs in terms of twist-4 DAs and the
Lz = 0 LFWA. Twist-5 and twist-6 DAs, defined in Ref. [68], involve two and
three quark bad components, respectively:

〈0| εlmn
(
uTl,↑(z1)Cγ−um,↓(z2)

)
γ+dn,↑ |p〉

= −M
2γ+

4p+
N↑

∫
[dx]3e

−iP+
∑
xiziΦ5(x1, x2, x3), (3.137)

〈0| εlmn
(
uTl,↑(z1)Cγ−γjγ

+um,↓(z2)
)
γjγ−dn,↓ |p〉

= −Mγ−N↑

∫
[dx]3e

−ip+
∑
xiziΨ5(x1, x2, x3), (3.138)

〈0| εlmn
(
uTl,↑(z1)Cγ+γ−um,↑(z2)

)
γ−dn,↑ |p〉

=
Mγ−

2
N↑

∫
[dx]3e

−ip+
∑
xiziΞ5(x1, x2, x3), (3.139)

〈0| εlmn
(
uTl,↑(z1)Cγ−um,↓(z2)

)
γ−dn,↑ |p〉

= −M
2γ−

4P+
N↑

∫
[dx]3e

−ip+
∑
xiziΦ6(x1, x2, x3). (3.140)

Therefore, from the inversion of the EOM in Eq. (3.132), they can be written
as combinations of a mass term, an OAM term and a gluon term. However, the

50



3.4. Light-Front Wave Functions and Distribution Amplitudes

gluon term involves both the Lz 6= 0 LFWAs for the three-quark plus one-gluon
state as well as the LFWAs for the two- and three-gluon state with Lz = 0.
For these reasons, the complexity associated with the inversion of the LFWA-
DA system increases rapidly. We notice that the LFWA ψ(2) is linked to the
twist-5 DAs even if it has Lz = 0 because the OAM of the individual quarks
is not vanishing for ψ(2). We shall illustrate in this section only the case of
twist-4 DAs, because we will restrict our model to include only the Lz = ±1
LFWAs (see Chapter 6). We stress that the techniques that we are going to
show can be generalized to incorporate any N parton Fock state, meaning that
a complete knowledge of the proton DAs generates a complete knowledge of the
(k⊥ integrated) LFWAs and vice versa. We think that this construction gives
also a really clear indication of how to build a consistent model for the Fock
expansion of the proton state: when considering contribution of states with
Lz 6= 0, one should take into account also the contribution from the higher-
order Fock states which come into play from the relation between DAs and
LFWAs.

In the last part of this section, we are going to explore in detail the connec-
tion between the three twist-4 DAs and the LFWAs ψ(3,4,5). Let us start with
defining the decomposition:

Φ4 = Φ
(m)
4 + Φ

(k⊥)
4 + Φ

(g)
4 , (3.141)

Ψ4 = Ψ
(m)
4 + Ψ

(k⊥)
4 + Ψ

(g)
4 , (3.142)

Ξ4 = Ξ
(m)
4 + Ξ

(k⊥)
4 + Ξ

(g)
4 . (3.143)

The mass terms is the simplest term to compute for all the DAs, and the results
are:

Φ
(m)
4 (x1, x2, x3) = − m

Mx3

Φ3(x2, x1, x3), (3.144)

Ψ
(m)
4 (x1, x2, x3) =

m

Mx2

(Φ3(x2, x3, x1) + Φ3(x1, x3, x2)) , (3.145)

Ξ
(m)
4 (x1, x2, x3) =

m

Mx1

Φ3(x2, x1, x3), (3.146)

where the leading-twist DA can be expressed in terms of ψ(0) by means of
Eq. (3.104).

The k⊥ terms are the one of interest for us, since they connect the twist-4
DAs to the Lz = ±1 LFWAs through the following relations

Φ
(k⊥)
4 (x1, x2, x3) = − 4

√
6

Mx3

∫
[dk⊥]3

(
k3,Rk2,Lψ

(3)(2, 1, 3) + k3,Rk1,Lψ
(4)(2, 1, 3)

)
,

(3.147)

Ψ
(k⊥)
4 (x1, x2, x3) = − 4

√
6

Mx2

∫
[dk⊥]3

(
k1,Rk2,Lψ

(3)(1, 2, 3) + k2,Rk2,Lψ
(4)(1, 2, 3)

)
,

(3.148)
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Ξ
(k⊥)
4 (x1, x2, x3) =

4
√

6

Mx1

∫
[dk⊥]3

(
k1,Rk1,Lψ

(5)(2, 1, 3) + k1,Rk2,Lψ
(5)(1, 2, 3)

)
.

(3.149)

Last, the gluon contributions read:

Φ
(g)
4 (x1, x2, x3) = −1

2

∫ x3

0

dy
1

x3(x3 − y)
Φg4(x1, x2, y, x3 − y), (3.150)

Ψ
(g)
4 (x1, x2, x3) = −1

2

∫ x2

0

dy
1

x2(x2 − y)
Ψ g4 (x1, y, x3, x2 − y), (3.151)

Ξ
(g)
4 (x1, x2, x3) = −1

2

∫ x1

0

dy
1

x1(x1 − y)
Ξg

4 (y, x2, x3, x1 − y). (3.152)

These results and the link between the gluon DAs and the three-quark plus one-
gluon Lz = 0 LFWAs in Eqs. (3.108)-(3.110) highlight the connection between
the three-quark LFWAs with Lz 6= 0 and the LFWAs for a state with an extra
gluon. To make this connection explicit, we invert the systems of equations
(3.141)-(3.143), with the result:

Φ
(k⊥)
4 = − 4

√
6

Mx3

∫
[dk⊥]3

(
k3,Rk2,Lψ

(3)(2, 1, 3) + k3,Rk1,Lψ
(4)(2, 1, 3)

)

≡ −A(213) = Φ4(x1, x2, x3)− Φ(m)
4 (x1, x2, x3)− Φ(g)

4 (x1, x2, x3)

= Φ4(x1, x2, x3) +
m

Mx3

Φ3(x2, x1, x3)

+
1

2

∫ x3

0

dy
1

x3(x3 − y)
Φg4(x1, x2, y, x3 − y), (3.153)

Ψ
(k⊥)
4 = − 4

√
6

Mx2

∫
[dk⊥]3

(
k1,Rk2,Lψ

(3)(1, 2, 3) + k2,Rk2,Lψ
(4)(1, 2, 3)

)

≡ −B(123) = Ψ4(x1, x2, x3)− Ψ (m)
4 (x1, x2, x3)− Ψ (g)

4 (x1, x2, x3)

= Ψ4(x1, x2, x3)− m

Mx2

(Φ3(x2, x3, x1) + Φ3(x1, x3, x2))

+
1

2

∫ x2

0

dy
1

x2(x2 − y)
Ψ g4 (x1, y, x3, x2 − y), (3.154)

Ξ
(k⊥)
4 =

4
√

6

Mx1

∫
[dk⊥]3

(
k1,Rk1,Lψ

(5)(2, 1, 3) + k1,Rk2,Lψ
(5)(1, 2, 3)

)

≡ C(123) = Ξ4(x1, x2, x3)− Ξ(m)
4 (x1, x2, x3)− Ξ(g)

4 (x1, x2, x3)

= Ξ4(x1, x2, x3)− m

Mx1

Φ3(x2, x1, x3)

+
1

2

∫ x1

0

dy
1

x1(x1 − y)
Ξg

4 (y, x2, x3, x1 − y). (3.155)

To proceed further, we need to perform the integrals over the transverse mo-
menta. We can compute these integrals only in a particular model for the
LFWAs, as it will be described in Chapter 6.

52



3.4. Light-Front Wave Functions and Distribution Amplitudes

To conclude this chapter, we notice that one could generalize the matrix
elements defining the DAs by assuming a dependence of the fields on the trans-
verse position, along with the light-cone minus position. However, in this case,
it would appear a transverse gauge-link that does not reduce to unity in the
light-cone gauge. Therefore the connection with the LFWAs would become
more involved and less transparent.
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Chapter 4
A study of the exclusive dijet cross
section

4.1 Introduction

In recent years, an increasing amount of effort and resources were devoted to
investigate different approaches that could allow us to access information on
the quark and gluon OAM inside the proton. As we introduced in Chapter 3, a
clear and direct information on the OAM can only be obtained via the Wigner
distributions (or their momentum-space counterpart, the GTMDs). For this
reason, every process that allows one to gain insight on GTMDs is of great
interest. Unfortunately, at present, only very few processes are known to give
access to GTMDs, at least in principle [70–80]. Practical difficulties make the
candidate processes very hard to analyze with a precision sufficient to extract
information on the GTMDs. A promising example among the possible processes
is given by the diffractive dijet production in the quasi-real photon limit [72–
79]. The process can be described in the partonic picture by a gluon exchange
between a pair created by the photon and the proton. The final-jet invariant
mass provides the hard scale necessary for the partonic interpretation of the
process. The characteristics of the process make it suitable to study the gluon
Wigner distributions in the small-x approximation [80–82]. Extensive work
was done in this direction, with particular focus on specific cross-section angular
modulations, which allow one to specifically access the gluon OAM contribution
in the small-x region [79]. However, at the best of our knowledge, no explicit and
complete cross-section decomposition was presented in literature so far. We aim
to provide such a decomposition in this chapter. We believe that this will open
the possibility for future works to explore the structure functions associated
with different angular modulations. Moreover, with the fully differential cross
section at our disposal, it might be possible to extend the study of this process
beyond the small-x approximation, eventually leading to a full description in
terms of Wigner functions for moderate values of x.
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4. A study of the exclusive dijet cross section

P target initial momentum

P ′ target final momentum

S target spin vector

q quasi-real photon momentum

j momentum of the first jet

l momentum of the second jet

k momentum of the incoming lepton

k′ momentum of the scattered lepton

Table 4.1: Summary of the momenta of the particles/jets involved in the dijet
diffractive production process.

4.1.1 Conventions

Since we aim to study diffractive dijet production in the quasi-real photon limit,
we assume that the photon is generated by a leptonic probe. This is inessential,
since the photon source can also be of different nature, like an heavy ion in ion-
proton collisions at large impact parameters (in this case we refer to the process
as ultra-peripheral pA collisions). The last ones can be explored at the Large
Hadron Collider (LHC) at CERN (Geneva, Switzerland), whereas the lepton-
proton version of the process is useful in perspective of studies at the future
Electron-Ion Collider (EIC) at the Brookahven National Lab (BNL) in the US.
We also assume the one-photon exchange approximation. We then focus on the
process:

l(k) + p(P )→ p(P ′) + J(j) + J(l) + l(k′), (4.1)

where e, p, J stand, respectively, for an electron, a proton and a jet with the
momentum of each particle/jet in brackets. To help the reader, a summary of
the notation for the momenta is shown in Tab. 4.1.

We will adopt the following shorthand notations

a[µbν] :=
1

2
(aµbν − aνbµ) , (4.2)

a{µbν} :=
1

2
(aµbν + aνbµ) , (4.3)

ε...q... := ε...α...qα. (4.4)

For a partonic description of the process, we need to identify a hard scale.
Since we are working under the assumption of quasi-real photon, the hard scale
is provided by the invariant mass of one of the two jets: µ =

√
j2 or µ =

√
l2

or µ =
√
j2 '

√
l2.
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4.2. Reference frame

4.2 Reference frame

It is useful to introduce the following Lorentz scalars to parametrize the process:

x =
Q2

2P · q , y =
P · q
P · k , zj =

P · j
P · q , zl =

P · l
P · q .

The cross section will be differential in the above variables. Having in mind
to utilize the cross section to extract information on the partonic structure,
and in particular on the Wigner functions, we need to make the cross section
differential in more variables. In particular, we would like to introduce as
variables the azimuthal angles of the produced jets and the polarization angle
of the target proton. To specify such angles, it is useful to choose a reference
frame, although it is possible to define the angles in a frame-invariant way
as shown in Ref. [83]. For simplicity, we choose to work in the Target Rest
Frame (TRF) with the photon three-momentum defining the x̂3 axis. Hence,
the additional variables that we choose to describe the process are:

φS, j
2
⊥, l

2
⊥, φj, φl,

where the ⊥ stands for the components of the vector orthogonal to the direction
of motion of the photon. The angle φS is the proton polarization angle, φj,l are
the angles of the ⊥ components of the jets with respect to the plane identified
by the lepton and photon momentum. A representation of the reference frame
is shown in Fig. 4.1. It is also useful to introduce a parameter that controls the
size of the target-mass correction as:

γ =:
2Mx

Q
. (4.5)

Finally, the invariant masses of the two jets, i.e.

j2 = W 2
j , l

2 = W 2
l , (4.6)

are considered fixed quantities, in analogy to the mass of an hadron. To simplify
the calculations, we shall assume massless electrons, i.e.:

k2 = (k′)2 = 0. (4.7)

In this frame and with these assumptions, we have the explicit expression in
instant-form representation for the relevant four-vectors:

P µ =




M

0

0

0



, Sµ =




0

S⊥ cosφS

S⊥ sinφS

−SL



, qµ =




q0

0

0

q3



,
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kµ =




k0

k̃ sin θe

0

k̃ cos θe



, jµ =




j0

j⊥ cosφj

j⊥ sinφj

j3



, lµ =




l0

l⊥ cosφl

l⊥ sinφl

l3



,

where a⊥ = |a⊥| for any transverse vector a⊥ and k̃ is the magnitude of the
three-momentum of the electron. We can express all the components in terms
of the invariants of the process (for the expression of the angle of the lepton see
Ref. [23]):

qµ =
Q

γ
(1, 0, 0,

√
1 + γ2),

kµ =
Q

yγ
(1, sin θe, 0, cos θe) with

cos θe =
1 + yγ2

2√
1 + γ2

, sin θe =
γ√

1 + γ2

√
1− y − y2γ2

4
,

jµ = zj
Q

γ

(
1,
j⊥γ

Qzj
cosφj,

j⊥γ

Qzj
sinφj,

√
1− γ2

Q2z2
j

(
j2
⊥ +W 2

j

)
)
,

lµ = zl
Q

γ

(
1,
l⊥γ

Qzl
cosφl,

l⊥γ

Qzl
sinφl,

√
1− γ2

Q2z2
l

(l2⊥ +W 2
l )

)
.

For any four-vector v it is useful to introduce the auxiliary vector

vµq =: vµ − qµv · q
q2

(4.8)

that satisfies the property:
vq · q = 0. (4.9)

The general expression for the cross section is

dσ =
|M|2dω

F
, (4.10)

where F is the flux factor, dω is the differential phase space of the final particles
and |M|2 is the amplitude square of the process. The phase space is simply:

dω = (2π)4δ(P ′+k′+j+l−k−P )
d3k′

2k′0(2π)3

d3P ′

2P ′0(2π)3

d3j

2j0(2π)3

d3l

2l0(2π)3
. (4.11)

In the following, we eliminate the delta function for the overall momentum
conservation by simply integrating over P ′. We can manipulate the remain-
ing phase-space factors to express all the differentials in terms of the chosen
variables and invariants:

d3j

2j0
=
j⊥Q2zj
γ2j3

dj⊥dφjdzj =
Q2zj
2γ2j3

dj2
⊥dφjdzj, (4.12)
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Figure 4.1: Pictorial representation of the reference frame for the diffractive
dijet production in the one-photon exchange approximation. For a summary of
the momenta involved see Tab. 4.1.
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k′

q

Figure 4.2: Schematic representation of the dijet process.
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d3l

2l0
=
l⊥Q2zl
γ2l3

dl⊥dφldzl =
Q2zl
2γ2l3

dl2⊥dφldzl, (4.13)

d3k′

2k′0
=

y

4x
dxdQ2dψ =

Q2

4x
dxdydψ =

Q2

4x
dxdydφS

cos (θe)

1− sin2 (θe) sin2 (φS)
. (4.14)

The flux factor can be computed as:

F = 4

√
(P · k)2 − P 2k2 =

4MQ

γy
. (4.15)

Finally, the amplitude square for the process can be written as the product of
the leptonic-probe tensor and an (unknown) hadronic tensor

|M|2 = LµνW
µν e

4

Q4
= LµνW

µν 16π2α2

Q4
, (4.16)

where α is the electromagnetic coupling constant and 1/Q2 comes from the
photon propagator. The leptonic tensor is summed over the final lepton polar-
ization, but we keep the possibility to have a polarized incoming lepton beam
with polarization λe:

Lµν =
∑

σ

ūσ(k′)γνuλ(k)ūλ(k)γµuσ(k′)

= 4k{µk
′
ν} − 2(k · k′)gµν + 2iλeεµνkk′ = 4k{µk

′
ν} + 2(k · q)gµν + 2iλeεµνkq.

(4.17)

Combining all together, we can express Eq. (4.10) as:

dσ =
α216π2

FQ4
WµνL

µν2π
d3l

2l0(2π)3

d3j

2j0(2π)3

d3k′

2k′0(2π)3

= WµνL
µν γy

4MQ

Q2

4x

Q2zj
2γ2j3

Q2zl
2γ2l3

α216π2

Q4

1

(2π)8
dj2
⊥dφjdzjdl

2
⊥dφldzldxdydψ.

(4.18)

4.3 Hadronic tensor

All the proton-structure information is encoded in the hadronic tensor of Eq.
(4.18). The standard approach in this kind of problems is to decompose the had-
ronic tensor on a basis of independent Lorentz tensors. Each Lorentz structure
appears with an unknown coefficient, called structure function, that depends on
the whole set of possible Lorentz scalars. In a partonic picture of the process,
each structure function could then be written in terms of appropriate combin-
ations of parton correlators, Dirac matrixes and particle propagators. We shall
analyze the process only at the level of structure functions. The main goal of
the decomposition of the hadronic tensor in a Lorentz basis is to factorize all
the angular dependences, in such a way that each structure function can be
extracted as the amplitude of a given angular modulation of the cross section
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(or a given combination of them). Therefore, by construction, the structure
functions can depend only on scalar products that are independent from the
azimuthal angles φS,j,l. Such products are:

q · j, q · l, P · j, P · l, q · P. (4.19)

The only scalar product of momenta that brings a dependence on the angles is:

j · l =
Q2zjzl − j3l3

γ2
− j⊥l⊥ cos (φj − φl) . (4.20)

In general, we obtain:

(j · l)n = F
(n)
0 +

n∑

k=1

F
(n)
k cos (k(φj − φl)) , (4.21)

where
F

(n)
k = F

(n)
k

(
j⊥, l⊥, zj, zl, γ

2, Q2
)
, ∀n, k ∈ N, k ≤ n (4.22)

can be computed from Eq. (4.20).
We would like to stress the difference between our approach and the one

presented in Ref. [84] for SIDIS di-hadron production. The conceptual basis
is very similar, since the structure of the cross section is the same and only
the description at the partonic level changes. However, we chose to decompose
the cross section using different variables, in particular we are working with
the individual azimuthal angles of the two jets instead of the average angle
or the difference. This choice was made because it is a more straightforward
generalization of single-hadron SIDIS process.

We impose constraints on the hadronic tensor that derive from parity, her-
miticity and gauge invariance [85, 86]:

parity: W µν (P, q, j, l, S) = ΛµαΛ
ν
βW

αβ
(
P̃ , q̃, j̃, l̃,−S̃

)
, (4.23)

hermiticity: W µν (P, q, j, l, S) = [W νµ (P, q, j, l, S)]∗ , (4.24)

gauge invariance: qµW
µν (P, q, j, l, S) = qνW

µν (P, q, j, l, S) = 0. (4.25)

The parity matrix Λ and the “tilde” vectors are defined as follow:

Λµν =




1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1



, ṽµ = Λµνv

ν . (4.26)

A direct consequence of the parity invariance is the fact that S can appear only
linearly in the hadronic tensor and only in combination with the antisymmetric
symbol εµναβ. The hermiticity constraint imposes the symmetric part of the

61



4. A study of the exclusive dijet cross section

hadronic tensor to be real and the antisymmetric part to be imaginary. The
gauge invariance gives constraints on the possible Lorentz structures, in par-
ticular, if an open index is carried by a vector, then the vector must be in the
form of Eq. (4.8). In the following we shall analyze all the terms in the had-
ronic tensor, organizing the discussion in sections. Each section treats either
the unpolarized or the polarized hadronic tensor and either the symmetric or
antisymmetric part.

4.3.1 Unpolarized symmetric part

The, by far, most intuitive and simple part of the hadronic tensor is the sym-
metric and unpolarized one. We will analyze this part with care, because it
introduces us to the techniques and the caveats that must be carefully con-
sidered also when dealing with the other parts of the hadronic tensor. In the
unpolarized and symmetric sector of the hadronic tensor, the following inde-
pendent and gauge invariant Lorentz structures are present:

U
µν
1 = gµν − qµqν

q2
, Uµν

2 = P {µq P ν}
q , Uµν

3 = P {µq jν}q ,

U
µν
4 = P {µq lν}q , U

µν
5 = j{µq j

ν}
q , U

µν
6 = j{µq l

ν}
q , U

µν
7 = l{µq l

ν}
q . (4.27)

The structures with two antisymmetric symbols that involve a single-jet mo-
mentum like

εqPj{µεν}qPj (4.28)

can be written in terms of the scalar products in Eq. (4.19) and the existing
structures in Eq. (4.27) by means of Eq. (A.4). Instead, the structures that
involve the momenta of both jets, like the following one

εqPj{µεν}qP l (4.29)

can be written in terms of the product j · l and the existing structures in
Eq. (4.27). Finally, the fully-contracted term

(
εqPjl

)2n
(4.30)

involves the product j · l and the scalar products Eq. (4.19). These considera-
tions imply that, using Eq. (4.21) to write the scalar product (j · l)n in terms
of cos (k(φj − φl)), we have for an arbitrary k ∈ N:

(Uµν
1 )(k) = cos (k(φj − φl))

(
gµν − qµqν

q2

)
, (4.31)

(Uµν
2 )(k) = cos (k(φj − φl))P {µq P ν}

q , (4.32)

(Uµν
3 )(k) = cos (k(φj − φl))P {µq jν}q , (4.33)

(Uµν
4 )(k) = cos (k(φj − φl))P {µq lν}q , (4.34)

(Uµν
5 )(k) = cos (k(φj − φl)) j{µq jν}q , (4.35)
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4.3. Hadronic tensor

(Uµν
6 )(k) = cos (k(φj − φl)) j{µq lν}q , (4.36)

(Uµν
7 )(k) = cos (k(φj − φl)) l{µq lν}q . (4.37)

Therefore, we arrived at the following decomposition for the unpolarized
and symmetric hadronic tensor:

W µν =
∞∑

k=0

7∑

i=1

(Uµν
i )(k) B

(k)
i , (4.38)

where B
(k)
i are unknown coefficients that depend on all the invariants of the

process but not on j · l.
To match the standard convention adopted in the description of the SIDIS

and DVCS processes, we introduce the auxiliary variables:

r =
1

y

√
1− y − y2γ2

4
, l =

√
2

(
1

2
− 1

y

)
, (4.39)

that can be expressed in terms of ratio between longitudinal and transverse
photon flux ε, defined as (see Ref. [83])1:

ε =
1− y − y2γ2

4

1− y + y2

4
(2 + γ2)

, (4.40)

ε =
r2

l2 − r2
, l2 − r2 =

1 + γ2

2(1− ε) . (4.41)

By inverting the above relations, we obtain:

r =

√
1 + γ2

√
2(1− ε)

√
ε, l =

√
1 + γ2

√
2(1− ε)

√
1 + ε, rl =

1 + γ2

2(1− ε)
√
ε(1 + ε). (4.42)

As noticed above, the symmetric part of the hadronic tensor must be real
due to the hermiticity constraint in Eq. (4.24). Therefore, the contraction with
the imaginary part of the leptonic tensor must vanish (the check of this property
is straightforward). Explicit results can be found in the App. A and, since they
are quite lenghty, they are given for the unpolarized and symmetric case only.
Here we isolate only the relevant polarization coefficients of Eqs. (4.42), leaving
all the invariants inside the coefficients Ai. For the basic structures of Eq. (4.27)
we have:
(
gµν − qµqν

q2

)
Re (Lµν) = A1, (4.43)

P {µq P ν}
q Re (Lµν) = A2

ε

1− ε, (4.44)

1The symbol ε is reserved for the antisymmetric symbol and ε for the photon polarization
factor. Confusion should not arise.
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4. A study of the exclusive dijet cross section

P {µq jν}q Re (Lµν) = A3
ε

1− ε + A4

√
ε(1 + ε)

1− ε cos (φj) , (4.45)

P {µq lν}q Re (Lµν) = A5
ε

1− ε + A6

√
ε(1 + ε)

1− ε cos (φl) , (4.46)

j{µq j
ν}
q Re (Lµν) = A7

1

1− ε + A8
ε

1− ε + A9

√
ε(1 + ε)

1− ε cos (φj)

+ A10
ε

1− ε cos (2φj) , (4.47)

l{µq l
ν}
q Re (Lµν) = A11

1

1− ε + A12
ε

1− ε + A13

√
ε(1 + ε)

1− ε cos (φl)

+ A14
ε

1− ε cos (2φl) , (4.48)

j{µq l
ν}
q Re (Lµν) = A15

ε

1− ε + A16

√
ε(1 + ε)

1− ε cos (φj)

+ A17

√
ε(1 + ε)

1− ε cos (φl) + A18
1

1− ε cos (φj − φl)

+ A19
ε

1− ε cos (φj + φl) . (4.49)

The contraction between the unpolarized hadronic tensor in Eq. (4.38) and
the leptonic tensor in Eq. (4.17), using Eqs. (4.43)-(4.49), leads to:

Re (W µν)Re (Lµν) =
1

1− ε
∞∑

k=0

cos (kφj − kφl)
{
G

(k)
1 +G

(k)
2 ε

+G
(k)
3

√
ε(1 + ε) cos (φj) +G

(k)
4

√
ε(1 + ε) cos (φl)

+G
(k)
5 ε cos (2φj) +G

(k)
6 ε cos (2φl) +G

(k)
7 ε cos (φj + φl)

}
.

(4.50)

4.3.2 Antisymmetric unpolarized part

The antisymmetric and unpolarized part of the hadronic tensor gives non van-
ishing contribution only when contracted with the imaginary part of the leptonic
tensor (we recall that the antisymmetric part of the hadronic tensor must be
purely imaginary from the hermiticity constraint). We have only three inde-
pendent structures:

(Pµν
1 )(k) = cos (k(φj − φl))P [µ

q j
ν]
q ,

(Pµν
2 )(k) = cos (k(φj − φl))P [µ

q l
ν]
q ,

(Pµν
3 )(k) = cos (k(φj − φl)) j[µ

q l
ν]
q .
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4.3. Hadronic tensor

Therefore, the unpolarized and antisymmetric part of the hadronic tensor reads:

W µν =
∞∑

k=0

3∑

i=1

(Pµν
i )(k) C

(k)
i , (4.51)

where C
(k)
i are unknown coefficients that depend on all the invariant of the

process, but not on j · l.
Using the definitions (4.40)-(4.41), we have:

P
µν
1 Im (Lµν) = B1

√
ε

1− ε sin (φj) ,

P
µν
2 Im (Lµν) = B2

√
ε

1− ε sin (φl) ,

P
µν
3 Im (Lµν) = B3

√
ε

1− ε sin (φj)

+B4

√
ε

1− ε sin (φl) +B5

√
1 + ε sin (φj − φl) . (4.52)

Combining these results, we finally obtain the contraction between the
leptonic part and the hadronic part as:

Im (W µν)Im (Lµν) = λe
1

1− ε
∞∑

k=0

cos (k(φj − φl))
{
H

(k)
1

√
ε(1− ε) sin (φj)

+H
(k)
2

√
ε(1− ε) sin (φl) +H

(k)
3

√
1− ε2 sin (φj − φl) .

(4.53)

4.3.3 Polarized symmetric part

We can now start the study of the hadronic tensor for a polarized target. The
complexity increases due to the larger number of possible combinations of vec-
tors that lead to allowed Lorentz structures. For simplicity and to keep the
notation clear, here we confine ourself to (j · l)0, and the generalization to
(j · l)n for all n is straightforward (see Sec. 4.3.1). In this section, we also in-
clude the results of Sec. 4.3.1 for the unpolarized case, to obtain the final result
for the contraction between the real parts of the hadronic and leptonic tensor.
The hadronic tensor reads:

Re (W µν) =U
µν
1 +

(
gµν +

qµqν

Q2

)(
εSqPjΦ1 + εSqP lΦ2 + εSqjlΦ3

)

+U
µν
2 + P {µq P ν}

q

(
εSqPjΦ4 + εSqP lΦ5 + εSqjlΦ6

)

+U
µν
3 + P {µq jν}q

(
εSqPjΦ7 + εSqP lΦ8 + εSqjlΦ9

)

+U
µν
4 + P {µq lν}q

(
εSqPjΦ10 + εSqP lΦ11 + εSqjlΦ12

)

+U
µν
5 + j{µq j

ν}
q

(
εSqPjΦ13 + εSqP lΦ14 + εSqjlΦ15

)
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+U
µν
6 + j{µq l

ν}
q

(
εSqPjΦ16 + εSqP lΦ17 + εSqjlΦ18

)

+U
µν
7 + l{µq l

ν}
q

(
εSqPjΦ19 + εSqP lΦ20 + εSqjlΦ21

)

+εqPjlS{µq
(
P ν}
q Φ22 + jν}q Φ23 + lν}q Φ24

)

+P {µq
(
εν}SqPΦ25 + εν}SqjΦ26 + εν}SqlΦ27

)

+j{µq
(
εν}SqPΦ28 + εν}SqjΦ29 + εν}SqlΦ30

)

+l{µq
(
εν}SqPΦ31 + εν}SqjΦ32 + εν}SqlΦ33

)
. (4.54)

However, not all the 40 Lorentz structures lead to independent contributions
when contracted with the leptonic tensor. This is a direct consequence of the
following relation:

det




Re (Lµν)P
{µ
q εν}SqP Re (Lµν)P

{µ
q εν}Sqj Re (Lµν)P

{µ
q εν}Sql

Re (Lµν) j
{µ
q εν}SqP Re (Lµν) j

{µ
q εν}Sqj Re (Lµν) j

{µ
q εν}Sql

Re (Lµν) l
{µ
q εν}SqP Re (Lµν) l

{µ
q εν}Sqj Re (Lµν) l

{µ
q εν}Sql


 = 0.

(4.55)
This implies that we have 30 independent polarized structures (at order (j · l)0)
when we contract the hadronic tensor in Eq. (4.54) and the leptonic tensor.
From this observation we conclude that the lepton-hadron scattering in the one
photon-exchange approximation is not able to distinguish all the, in principle,
independent Lorentz structures present in the hadronic tensor. Different pro-
cesses, that can be described via the same hadronic tensor, are, in general,
necessary to fully reconstruct it. The discussion of such processes is beyond the
scope of this work.

The contraction between the leptonic and the hadronic tensors leads to the
following result at order (j · l)0:

Re (W µν)Re (Lµν)

= rlS⊥ sin (φS)G1 + rlS⊥ sin (φS − 2φj)G2

+ rlS⊥ sin (φS − 2φl)G3 +
(
l2 − r2

)
S⊥ sin (φS − 2φj + φl)G4

+
(
l2 − r2

)
S⊥ sin (φS − 2φl + φj)G5 + r2S⊥ sin (φS + 2φj − φl)G6

+ r2S⊥ sin (φS + 2φl − φj)G7 + r2S⊥ sin (φS − 2φj − φl)G8

+ r2S⊥ sin (φS − 2φl − φj)G9 +
(
A1r

2 +B1

(
l2 − r2

)
+ C1

)
S⊥ sin (φS − φj)G10

+
(
A2r

2 +B2

(
l2 − r2

)
+ C2

)
S⊥ sin (φS − φl)G11 + r2S⊥ sin (φS + φj)G12

+ r2S⊥ sin (φS + φl)G13 + r2S⊥ sin (φS − 3φj)G14

+ r2S⊥ sin (φS − 3φl)G15 + rlS⊥ sin (φS − φl) cos (φj)G16

+ rlS⊥ sin (φS − φj) cos (φl)G17 + rlSL sin (φj)G18

+ rlSL sin (φl)G19 + r2SL sin (2φj)G20

+ r2SL sin (2φl)G21 +
(
A3r

2 +B3

(
l2 − r2

)
+ C3

)
SL sin (φj − φl)G22

+ r2SL sin (φj + φl)G23 + rlSL sin (φj − 2φl)G24 + rlSL sin (φl − 2φj)G25

+
(
l2 − r2

)
SL sin (2φj − 2φl)G26 + r2SL sin (φj − 3φl)G27

66



4.3. Hadronic tensor

+ r2SL sin (φl − 3φj)G28 + rl cos (φj)G29

+ rl cos (φl)G30 + r2 cos (2φj)G31

+ r2 cos (2φl)G32 +
(
l2 − r2

)
cos (φj − φl)G33

+ r2 cos (φj + φl)G34 +
(
A4r

2 +B4

(
l2 − r2

)
+ C4

)
.

We note that some spurious angular structures appear, like sin (2φj − 2φl),
since it can be written as:

sin (2φj − 2φl) = 2 sin (φj − φl) cos (φj − φl) , (4.56)

meaning that it belongs to (j · l)1 order, or like cos (φj − φl) that appears in
front of G33 and is clearly a constant contribution at order (j · l)1.

Using the definitions in Eq. (4.42) and eliminating all the spurious contri-
butions, we obtain the following result:

Re (W µν)Re (Lµν) =
1

1− ε
∞∑

k=0

cos (kφj − kφl)

×
{
G

(k)
1 +G

(k)
2 ε+G

(k)
3

√
ε(1 + ε) cos (φj) +G

(k)
4

√
ε(1 + ε) cos (φl)

+G
(k)
5 ε cos (2φj) +G

(k)
6 ε cos (2φl) +G

(k)
7 ε cos (φj + φl)

+
√
ε(1 + ε)S⊥ sin (φS)G

(k)
8 +

√
ε(1 + ε)S⊥ sin (φS − 2φj)G

(k)
9

+
√
ε(1 + ε)S⊥ sin (φS − 2φl)G

(k)
10 + S⊥ sin (φS − 2φj + φl)G

(k)
11

+ S⊥ sin (φS − 2φl + φj)G
(k)
12 + εS⊥ sin (φS + 2φj − φl)G(k)

13

+ εS⊥ sin (φS + 2φl − φj)G(k)
14 + εS⊥ sin (φS − 2φj − φl)G(k)

15

+ εS⊥ sin (φS − 2φl − φj)G(k)
16 +

(
G

(k)
17 +G

(k)
18 ε
)
S⊥ sin (φS − φj)

+
(
G

(k)
19 +G

(k)
20 ε
)
S⊥ sin (φS − φl) + εS⊥ sin (φS + φj)G

(k)
21

+ εS⊥ sin (φS + φl)G
(k)
22 + εS⊥ sin (φS − 3φj)G

(k)
23

+ εS⊥ sin (φS − 3φl)G
(k)
24 +

√
ε(1 + ε)S⊥ sin (φS − φl) cos (φj)G

(k)
25

+
√
ε(1 + ε)S⊥ sin (φS − φj) cos (φl)G

(k)
26 +

√
ε(1 + ε)SL sin (φj)G

(k)
27

+
√
ε(1 + ε)SL sin (φl)G

(k)
28 + εSL sin (2φj)G

(k)
29

+ εSL sin (2φl)G
(k)
30 +

(
G

(k)
31 +G

(k)
32 ε
)
SL sin (φj − φl)

+ εSL sin (φj + φl)G
(k)
33 +

√
ε(1 + ε)SL sin (φj − 2φl)G

(k)
34

+
√
ε(1 + ε)SL sin (φl − 2φj)G

(k)
35 + εSL sin (φj − 3φl)G

(k)
36

+ εSL sin (φl − 3φj)G
(k)
37

}
. (4.57)

We note that 37 independent structures appear in Eq. (4.57), consistently with
what one would expects from the hadronic tensor in Eq. (4.54) taking into
account the three constraints from Eq. (4.55).
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4.4 Polarized antisymmetric part

Following the same procedure of the previous section, we have in total 24 inde-
pendent structures at order (j ·l)0 when including the polarization of the target,
i.e.

Im (W µν) =P
µν
1 + P [µ

q j
ν]
q

(
εSqPjΓ1 + εSqP lΓ2 + εSqjlΓ3

)

+P
µν
2 + P [µ

q l
ν]
q

(
εSqPjΓ4 + εSqP lΓ5 + εSqjlΓ6

)

+P
µν
3 + j[µ

q l
ν]
q

(
εSqPjΓ7 + εSqP lΓ8 + εSqjlΓ9

)

+P [µ
q

(
εν]SqPΓ10 + εν]SqjΓ11 + εν]SqlΓ12

)

+j[µ
q

(
εν]SqPΓ13 + εν]SqjΓ14 + εν]SqlΓ15

)

+l[µq
(
εν]SqPΓ16 + εν]SqjΓ17 + εν]SqlΓ18

)

+εqPjlS[µ
q

(
P ν]
q Γ19 + jν]

q Γ20 + lν]
q Γ21

)
. (4.58)

Also in this case, not all the polarized structures lead to independent struc-
ture functions once contracted with the leptonic tensor. This is due to the
following identities:

det




ενPkqε
νSqP ενPkqε

νSqj ενPkqε
νSql

ενjkqε
νSqP ενjkqε

νSqj ενjkqε
νSql

ενlkqε
νSqP ενlkqε

νSqj ενlkqε
νSql


 = 0, (4.59)

det




εPjkqε
SqPj εPjkqε

SqP l εPjkqε
Sqjl

εPlkqε
SqPj εPlkqε

SqP l εPlkqε
Sqjl

εjlkqε
SqPj εjlkqε

SqP l εjlkqε
Sqjl


 = 0. (4.60)

Moreover, after contraction with the leptonic tensor, the structures in front of
Γ9,20,21 become no longer independent (see Eq. (A.5)). We hence have just 17
independent angular structures at order (j · l)0.

Im (W µν)Im (Lµν)

= λerS⊥ cos (φS)F1

+ λelS⊥ cos (φS − φj)F2 + λelS⊥ cos (φS − φl)F3

+ λerS⊥ cos (φS − 2φj)F4 + λerS⊥ cos (φS − 2φl)F5

+ λerS⊥ sin (φj) sin (φS − φl)F6 + λerS⊥ sin (φl) sin (φS − φj)F7

+ λelS⊥ cos (φS − 2φj + φl)F8 + λelS⊥ cos (φS − 2φl + φj)F9

+ λerSL cos (φj)F10 + λerSL cos (φl)F11

+ λerSL cos (φj − 2φl)F12 + λerSL cos (φl − 2φj)F13

+ λelSL cos (φj − φl)F14 + λelSL cos (2φj + 2φl)F15

+ λelSLF16 + λer sin (φj)F17
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+ λer sin (φl)F18 + λel sin (φj − φl)F19.

The angular structures associated with F14,15 are actually spurious, correspond-

ing to the contributions at order (j · l)1 and (j · l)2 to the “constant” term F
(1)
16

and F
(2)
16 , respectively.

We then have, to all orders in (j · l):

Im (W µν)Im (L)µν = λe
1

1− ε
∞∑

k=0

cos (kφj − kφl)
{
√
ε(1− ε) sin (φj)H

(k)
1

+
√
ε(1− ε) sin (φl)H

(k)
2 +

√
1− ε2 sin (φj − φl)H(k)

3

+
√
ε(1− ε)S⊥ cos (φS)H

(k)
4 +

√
1− ε2S⊥ cos (φS − φj)H(k)

5

+
√

1− ε2S⊥ cos (φS − φl)H(k)
6 +

√
ε(1− ε)S⊥ cos (φS − 2φj)H

(k)
7

+
√
ε(1− ε)S⊥ cos (φS − 2φl)H

(k)
8 +

√
ε(1− ε)S⊥ sin (φj) sin (φS − φl)H(k)

9

+
√
ε(1− ε)S⊥ sin (φl) sin (φS − φj)H(k)

10 +
√

1− ε2S⊥ cos (φS − 2φj + φl)H
(k)
11

+
√

1− ε2S⊥ cos (φS − 2φl + φj)H
(k)
12 +

√
ε(1− ε)SL cos (φj)H

(k)
13

+
√
ε(1− ε)SL cos (φl)H

(k)
14 +

√
ε(1− ε)SL cos (φj − 2φl)H

(k)
15

+
√
ε(1− ε)SL cos (φl − 2φj)H

(k)
16 +

√
1− ε2SLH(k)

17

}
.

4.5 Conclusions

The derivation of the general expression for the cross section of the exclusive
dijet process is the necessary first step to set the basis for future works. The
ultimate goal is to derive the explicit expression of the structure functions in
terms of Wigner distributions and to identify a set of promising observables
that eventually will allow one to extract information on these functions. A
diagrammatic representation for the dijet amplitude in the partonic picture is
shown in Fig. 4.3. The explicit link between the structure functions and the
Wigner functions is far from being trivial, since we have an infinite number of
structure functions associated with all the possible values for the total angular
momentum of the two jets. This is a demanding task and is left for future
work. However, the dijet process holds the promise of being a key measurement
to access information on the Wigner distributions and therefore to give new
insights into our understanding of the partonic structure of the proton.
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j

l

q

P P ′

Figure 4.3: Diagrammatic representation of the amplitude for the dijet process
in the partonic picture. The two jets are originated from the fragmentation of
the two quark lines labelled with j and l in the diagram.
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Chapter 5
Lensing relation

5.1 Introduction

Model-induced relations among different TMDs or among TMDs and GPDs
have been studied for a long time, since they can provide intuition about the
complex QCD phenomena. Some example of such model-induced relations and
corresponding studies can be found in Refs. [53, 56, 87–91].

We reviewed in Chapter 3 that two different ways to access a “three -
dimensional” parton picture of the proton are possible. The first one is given
by the GPDs from which one can define IPDs as the Fourier transforms from
the momentum space to the impact-parameter space at zero longitudinal mo-
mentum transfer, see Sec. 3.3.3. The IPDs give access to a 2 + 1 picture of
the proton, meaning that they contain a bi-dimensional spatial information
(the distance in transverse space of the active parton from the center of trans-
verse momentum) and a mono-dimensional momentum information (the parton
fraction of longitudinal momentum with respect to the parent proton). An in-
dependent way to access a three-dimensional picture of the proton is given
by the TMDs. In this case the description of the proton is given in terms of
the parton transverse-momentum and longitudinal fraction of momentum with
respect to the parent proton. In Secs. 3.3.2-3.3.3 we briefly summarized the ba-
sics of TMDs and GPDs classification at leading twist when the active parton
is a quark. We recall that eight TMDs and eight GPDs exist at leading twist,
each one being related to a specific proton and quark polarization state, see
Eqs. (3.52)-(3.54) and Eqs. (3.37)-(3.39). In Secs. 3.3.2 and 3.3.3 we showed
how the GPDs and TMDs can be derived from a more general type of distribu-
tions, known as Generalized Transverse Momentum Parton Distributions, see
Refs. [13, 14, 16, 35, 59] and Sec. 3.3.1. In a variety of different model calcu-
lations, relations between distinct parton distributions were found. Inspecting
the models’ details to understand which specific features allow the emerging
of such relations was the main focus of a part of the literature of the past
few years, see, e.g., Refs. [49, 89, 90]. One of the non-trivial relation between
parton distributions establishes a connection between TMDs and IPDs. The
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formal similarities between the structure of the TMD correlator and the IPD
correlator, when the role of the transverse momentum k⊥ is taken by the im-
pact parameter b⊥, offer a justification for the emerging of the relation. This
expectation was indeed realized by a non-trivial lensing relation proven in a
particular model calculation, see Refs. [53, 56]. This relation describes how
the näıve T-odd effects in single spin asymmetries (SSAs) can be factorized in
a so-called “chromodynamics lensing function”, that encapsulates the effects of
final state interactions (FSIs), and the spatial distortion described by the IPDs,
see Refs. [53, 56] and Ref. [87] for a review. Being the SSAs described in terms
of TMDs, the lensing relation automatically implies a well-defined connection
between TMDs and IPDs. The first TMD, in historical order, for which the
relation was established is the Sivers function f⊥1T . This is connected to the IPD
for unpolarized partons in a transversely polarized nucleon target. The rela-
tion was verified using spectator models [55, 92] and a quark target model [49],
and was also used in a phenomenological extraction of the Sivers function [93].
Later, the lensing relation has been discussed for the Boer-Mulders effect and a
certain combination of chiral-odd IPDs describing transversely polarized quark
in an unpolarized target, such as the nucleon [57] or the pion [14, 58, 94]. How-
ever, both these relations have been found to be violated within three-quark
model calculations for the nucleon [95–99]. More in general, it has been argued
that even in the context of spectator models these relations are far from being
obvious if one considers Fock-state contributions beyond the leading terms [49].

In this Chapter, we discuss in detail the lensing relation, with particular
emphasis on the specific conditions that have to be imposed on the FSIs in
order to express T-odd TMDs in terms of an impact-parameter distortion and
a lensing function. These conditions are typically fulfilled only in models where
the target is described as two-body bound system and the FSI modifies only the
spectator transverse momentum, leaving unchanged any of the other spectator
quantum numbers, see Ref. [87].

In Sec. 5.2, after a brief recall of the expressions for the relevant TMDs and
IPDs, we discuss how a link between them can be realized. We put particu-
lar emphasis on the assumptions behind the derivation, clarifying were these
assumptions begin to be crucial for the derivation. After discussed the gener-
ally theory, we proceed in Sec. 5.3 to derive the lensing relation for the Boer-
Mulders effect in the case of the pion target, described in terms of the lowest
qq̄ Fock-state component. We stress how the two-body nature of the system is
an essential ingredient for the validity of the lensing relation. Beside that, we
clarify how the assumption of a perturbative coupling between the spectator
parton and the Wilson gluon, responsible for the FSIs in a SIDIS process, is
another key assumption for the lensing relation. We briefly discuss how an
effective interaction vertex between the Wilson gluon and the spectator may
spoil the lensing relation, and we find that an helicity-conserving vertex that
depends only on the transverse momentum of the exchanged gluon is the only
coupling that allows the lensing relation. We then proceed to study the pos-
sible factorization of the FSIs in a proton target. First, in Sec. 5.4 the proton
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is modeled as a three-quark bound state and we provide a general argument for
the non-validity of the lensing relation, assuming a perturbative coupling for
the Wilson gluon, a general argument for the non-validity of the lensing rela-
tion. Since a three-body model for the proton fails in reproducing the lensing
relation, in Sec. 5.4.1 we study models that describe the nucleon as a two-body
system. In particular great attention is paid to models in which the spectator
system is assumed to be a diquark. We then elucidate under which conditions
one can restore the lensing relations within this class of models.

5.2 The lensing-function relation

In this section, we summarize the arguments that lead to infer a possible non-
trivial relation between näıve T-odd TMDs and IPDs. We recall that the TMD
definition is given in terms of the following correlator (see Eq. (5.1))

Φ[Γ ] (x,k⊥, S) =

∫
dz−dz⊥
2(2π)3

eik·z 〈p, S|ψ
(
−z

2

)
ΓW

(
−z

2
,
z

2

)
ψ
(z

2

)
|p, S〉

∣∣∣
z+=0

.

(5.1)

The Wilson line W is of fundamental importance to ensure the color gauge
invariance of the correlator and is defined in Eq. (3.8) and it will play the central
role in deriving the lensing relation. We are going to work with the Wilson line
shown in Fig. 3.5 (i.e., we are assuming a SIDIS-like process described in terms
of TMDs) and, if necessary, we will show also the results by assuming a future
pointing Wilson line (i.e., by considering a Drell-Yan-like process described in
terms of TMDs). As we already discussed in Chapter 3, the Wilson line in
Eq. (5.1) breaks the näıve time-reversal invariance of the correlator and, as a
consequence, näıve T-odd TMDs do not vanish. In Chapter 3 we discussed
how this gives rise to the näıve T-odd TMDs for a spin-1/2 hadron: the Sivers
function f⊥1T (x,k2

⊥) [45, 100] and the Boer-Mulders function h⊥1 (x,k2
⊥) [48]. In

the case of spin-0 hadron, only the contribution of the Boer-Mulders function
is non-vanishing.

The IPDs were briefly introduced in Sec. 3.3.3. Integrating Eq. (3.17) over
k⊥, we obtain from Eq. (3.58) the following expression for the IPDs correlator:

F[Γ ](x, b⊥, S)

=
1

2

∫
dz−

2π
eixp

+z− 〈p+, r⊥ = 0⊥, S|ψ(z1)ΓW (z1, z2)ψ (z2) |p+, r⊥ = 0⊥, S〉 ,
(5.2)

where the quark fields are evaluated at z1,2 = (0+,∓ z−

2
, b⊥) and the hadron

state is expressed as an eigenstate of the plus-momentum operator P+ and the
center of transverse momentum operator R⊥ (see Eq. (2.39)) with eigenvalues
p+ and r⊥ = 0⊥, respectively, see Refs. [37, 52, 101] and Sec. 3.2.1

In the following we will also need the GPD definition given in Eqs. (3.52)-
(3.54). For ξ = 0, the GPD correlator (3.50) is related to the IPD correlator
by a Fourier transform from the coordinates ∆⊥ to b⊥, see Eq. (3.58).
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quark pol.

U L T

n
u
cl

eo
n

p
ol

.

U H ET + 2H̃T

L H̃

T E HT ,H̃T

Twist-2 IPDs

Table 5.1: Impact-parameter distributions (IPDs) with their relation to nucleon
and quark polarization states. For the complete definition, we refer to Refs. [49,
50].

The full list of leading-twist IPDs is shown in a schematic way in Tab. 5.1.
At leading twist and for spin-1/2 targets, the correlator (3.58) with Γ = γ+ and
transversely polarized targets can be parametrized in terms of the derivative
of the IPD E, while with Γ = iσj+γ5 and unpolarized target we access the
derivative of the combination ET + 2H̃T of chiral-odd IPDs. In the case of spin-
zero targets, the contributions from the IPDs E and ET are absent. Because the
GPDs and, as a consequence, the IPDs, are defined in terms of a Wilson line
that runs only along the light cone, no näıve T-odd GPDs or IPDs can exist.

The analogy between the tensor structure of the parametrizations of the
quark TMD and IPD correlators suggests the following correspondences for the
distributions of spin-1/2 targets [49, 50]

f⊥1T
(
x,k2

⊥
)
↔ −E′

(
x, b2

⊥
)
, h⊥1

(
x,k2

⊥
)
↔ −E′T

(
x, b2

⊥
)
− 2H̃′T

(
x, b2

⊥
)
, (5.3)

where we used the following notation for the derivative of a generic IPD X

X′ (x, b2
⊥
)

=
∂

∂b2
⊥
X
(
x, b2

⊥
)
. (5.4)

Similarly, the correspondence for spin-zero targets reads

h⊥1
(
x,k2

⊥
)
↔ −H̃′T

(
x, b2

⊥
)
. (5.5)

In order to exemplify the derivation of the explicit form of the link in
Eqs. (5.3) and (5.5), we take the average quark transverse momentum of an
unpolarized quark in a transversely polarized target given by

〈ki⊥(x)〉UT =

∫
dk⊥k

i
⊥Φ

[γ+](x,k⊥,S⊥), (5.6)

where the first subscript outside the bra-ket refers to the polarization of the
quark and the second one to the polarization of the hadron.

Following the derivation in Ref. [49], Eq. (5.6) can be rewritten as

〈ki⊥(x)〉UT =
1

2

∫
dz−

2π
eixp

+z−
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× 〈p,S⊥|ψ
(
−z

2

)
W
(
−z

2
,
z

2

)
Ii
(z

2

)
γ+ψ

(z
2

)
|p,S⊥〉

∣∣
z+=z⊥=0

=
1

2

∫
db⊥

∫
dz−

2π
eixp

+z−

× 〈p+, r⊥ = 0⊥,S⊥|ψ̄(z1)W(z1, z2)Ii(z2)γ+ψ(z2)|p+, r⊥ = 0⊥,S⊥〉 . (5.7)

In Eq. (5.7), the operator Ii(z) encodes the contribution of the FSIs, and is
defined as

Ii (z) =
gs
2

∫
dy−W

(
(z−, z+, z⊥), (y−, z+, z⊥)

)

×G+i
(
y−, z+, z⊥

)
W
(
(y−, z+, z⊥), (z−, z+, z⊥)

)
, (5.8)

with G+i the gluon-field strength tensor.
Eq. (5.8) has a more intuitive interpretation in the light-cone gauge, intro-

duced and discussed in Sec. 2.4. In this case, the Wilson lines in the definition
of Ii(z) run along the light cone, and reduce to unity. As a result, one has

Ii (z) =
gs
2

(
Ai⊥
(
∞−, z+, z⊥

)
− Ai⊥

(
−∞−, z+, z⊥

))
. (5.9)

In a similar fashion as in the derivation of the quark EOM given in Sec. 3.4.3,
it does not exist a choice of boundary conditions that allow ones to set to zero
the difference in Eq. (5.9). This ensures that we always obtain a non-vanishing
Ii (z) no matter the choice of boundary conditions for theA⊥ field at light-cone
infinity.

We choose to work with the advanced boundary condition A⊥(−∞−) = 0,
but analogous results hold for the other two prescriptions (as it should be,
since all the results must be gauge invariant). Our choice leads to the following
results

〈ki⊥(x)〉UT =
gs
2

∫
dz−

2π
eixp

+z− 〈p,S⊥|ψ
(
−z
−

2

)
Ai⊥
(
∞−

)
γ+ψ

(
z−

2

)
|p,S⊥〉 ,

(5.10)

〈ki⊥(x)〉jTU =
gs
2

∫
dz−

2π
eixp

+z− 〈p|ψ
(
−z
−

2

)
Ai⊥
(
∞−

)
iσj+γ5ψ

(
z−

2

)
|p〉 .

(5.11)

One notices from Eq. (5.11) that the FSIs in the light-cone gauge with advanced
boundary conditions (and, similarly, with the retarded or principal value pre-
scriptions) reduce to the exchange of a transverse gluon at light-cone infinity
between the active quark and the spectator partons.

Up to this point no-limiting assumptions were made (the light-cone gauge
has been assumed just to obtain the clean physical picture in Eq. (5.9), but it
is unessential since all the results are gauge independent). To further proceed
towards an expression that involves the IPDs we must impose some very specific
conditions on the operator Ii(z), see Ref. [87]. Using the completeness relation,
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we can rewrite the first line of Eq. (5.7) as

〈ki⊥(x)〉UT =
1

2

∫
db⊥

∫
dz−

2π
eixp

+z−
∑∫

X,X′

〈X|Ii(z2)|X ′〉

× 〈p+, r⊥ = 0⊥,S⊥|ψ̄(z1)W(z1, z2)|X〉 γ+ 〈X ′|ψ(z2)|p+, r⊥ = 0⊥,S⊥〉 .
(5.12)

Since we are working with leading-twist distributions, only the good compon-
ents of the quark fields are involved. Therefore, we can Fourier transform the
quark operators ψ(z/2) and φ

(
z
2

)
= ψ̄

(
− z

2

)
W
(
− z

2
; z

2

)
using Eq. (2.42), and

use the light-front Fock expansion for the intermediate states. As a result,
Eq. (5.12) becomes [87]

〈ki⊥(x)〉UT =
1

2

∫
{dk1}{dk2}{dl}

∫
dz−

2π
eixp

+z−e−i
z−
2

(k+
1 +k+

2 +l+)

×
∑

n,m

∑

β,β′

∫ n∏

i=1

dq+
i dq⊥,i

(2π)32q+
i

m∏

i=1

dw+
i dw⊥,i

(2π)32w+
i

× 〈p+,p⊥ = 0⊥,S⊥|φ(k1)γ+|{q+
i , q⊥,i}n〉 〈{q+

i , q⊥,i}n, β′|I i(l)|{w+
i ,w⊥,i}m〉

× 〈{w+
i ,w⊥,i}m, β′|ψ(k2)|p+,p⊥ = 0⊥,S⊥〉 , (5.13)

where {dk} is a shorthand notation to indicate the Lorentz invariant integration
measure. In Eq. (5.13), the index β and β′ are collective indexes to label the
flavor, the color and the helicity of the intermediate states. As we are going to
show, the factorization of the lensing function and the IPD in Eq. (5.13) can
be achieved by requiring that the matrix element of the operator I i(l) satisfies
the following relation

〈{q+
i , q⊥,i}n|I i(l)|{w+

i ,w⊥,i}m〉 = 2πLi
(
l⊥

1− x

)
δn,mδββ′δ(l

+)

×
n∏

i=1

(2π)32q+
i δ(q

+
i − w+

i )δ

(
q⊥,i −w⊥,i − xi

l⊥
1− x

)
, (5.14)

where xi is the light-cone momentum fraction of the i-th constituent with re-
spect to the hadron target light-cone momentum, i.e. xi = w+

i /p
+, with the

constraint
∑

i xi = 1 − x. In the matrix element of the operator I i(l) in
Eq. (5.14) are encoded all the interactions between the active parton and the
spectator system that result in the FSIs of a SIDIS process (similar conclusion
can be reached for a Drell-Yan process, with the caveat of a different explicit
expression for the operator I i(l), in which the initial-state interactions must be
considered). The relation (5.14) imposes several different conditions, some of
them more stringent than others, that can be summarized as follows [87]:

1) the FSIs should connect Fock states with the same number of constituents
and the same parton, helicity and color content;
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2) the FSIs should transfer the total transverse momentum l⊥/(1−x) to the
whole spectator system;

3) the FSIs can not transfer momentum in the light-cone direction to the
spectator system;

4) the FSIs should transfer a fraction of the total transverse momentum,
corresponding to xi = w+

i /p
+, to each constituent of the spectator system.

The last condition is the most stringent. It is crucial to obtain the correct
transverse light-front boost that gives the off-diagonal matrix element defining
the GPD and, as a direct consequence, the transverse distortion in impact-
parameter space that is proper of the IPD.

Before discussing the implication of condition 4), we are going to derive the
four conditions in Eq. (5.14). Condition 1) follows from the requirement that
the IPD we want to factorize in Eq. (5.13) is diagonal in the parton Fock space.
Analogously, condition 2) is necessary to recover the correct Fourier transform
of the quark fields that enters the definition of the IPD correlator. Conditions
3) and 4) are consequences of momentum conservation. The matrix element of
the function I i(l) in Eq. (5.14) connects states with total momenta given by

W⊥ =
n∑

i=1

w⊥,i, W+ =
n∑

i=1

w+
i ,

Q⊥ =
n∑

i=1

q⊥,i, Q+ =
n∑

i=1

q+
i . (5.15)

By imposing total momentum conservation in each matrix elements of Eq. (5.13),
we have

Q⊥ = W⊥ + l⊥, Q+ = W+ = (1− x)p+. (5.16)

Eqs. (5.15) and (5.16) are equivalent to

n∑

i=1

q⊥,i =
n∑

i=1

w⊥,i + l⊥,
n∑

i=1

q+
i

p+
=

n∑

i=1

w+
i

p+
=

n∑

i=1

xi = 1− x. (5.17)

Combining the two relations in Eq. (5.17), we find

q⊥,i = w⊥,i +
xi

1− xl⊥. (5.18)

As final result, we obtain the expression in Eq. (5.14) for the matrix element
of the lensing function from which the conditions 1)–4) follow. By inserting
Eq. (5.14) in Eq. (5.13), we have

〈ki⊥(x)〉UT =
1

2

∫
{dk1}{dk2}

dl⊥
(2π)2

∫
dz−

2π
eixp

+z−e−i
z−
2

(k+
1 +k+

2 )

×
∑

n

∑

β

∫ m∏

i=1

dw+
i dw⊥,i

(2π)32w+
i

Li
(
l⊥

1− x

)
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× 〈p+,0⊥,S⊥|φ(k1)γ+|
{
w+
i ,w⊥,i +

xil⊥
1− x

}

m

〉 〈{w+
i ,w⊥,i}m|ψ(k2)|p+,0⊥,S⊥〉 .

(5.19)

We now use the invariance of the matrix elements in Eq. (5.19) under transverse
light-front boosts to obtain

〈ki⊥(x)〉UT =
1

2

∫
{dk1}{dk2}

dl⊥
(2π)2

∫
dz−

2π
eixp

+z−e−i
z−
2

(k+
1 +k+

2 )

×
∑

n

∑

β

∫ m∏

i=1

dw+
i dw⊥,i

(2π)32w+
i

× Li
(
l⊥

1− x

)

× 〈p+,−l⊥,S⊥|φ(z1)γ+|{w+
i ,w⊥,i}m〉 〈{w+

i ,w⊥,i}m|ψ(z2)|p+,0⊥,S⊥〉

=
1

2

∫
dl⊥

(2π)2

∫
dz−

2π
eixp

+z−Li
(
l⊥

1− x

)
〈p+,−l⊥,S⊥|φ(k1)γ+ψ(k2)|p+,0⊥,S⊥〉 .

(5.20)

Eq. (5.20) can be finally Fourier transformed in the impact-parameter space,
with the result

〈ki⊥(x)〉UT =
1

2

∫
dl⊥

(2π)2

∫
dz−

2π
eixp

+z−
∫
db⊥e

−ib⊥l⊥Li
(
l⊥

1− x

)

× 〈p+,R⊥ = 0⊥,S⊥|φ(z1)γ+ψ(z2)|p+,R⊥ = 0⊥,S⊥〉

=
1

2

∫
dz−

2π
eixp

+z−
∫
db⊥L

i

(
b⊥

1− x

)

× 〈P+,R⊥ = 0⊥,S⊥|φ(z1)γ+ψ(z2)|P+,R⊥ = 0⊥,S⊥〉 , (5.21)

where the convolution of the lensing function L(b⊥/(1−x)) and the correlator
for unpolarized quark in a transversely polarized target, related to the IPD
E′(x, b2

⊥), can be easily recognized, i.e.

〈ki⊥(x)〉UT =

∫
db⊥L

i

(
b⊥

1− x

)
εjk⊥ b

j
⊥S

k
⊥

M
E′(x, b2

⊥). (5.22)

For convenience, we are going to discuss the implications of the condition
4) in light-cone gauge with advanced boundary conditions, where the FSIs re-
duce to the exchange of a transverse gluon at light-cone infinity between the
active parton and the spectator system, see Eq. (5.9). One way to obtain a
non-vanishing contribution from the FSIs in a model calculation is to assume a
perturbative coupling between the Wilson gluon and the spectator system. In
this very common scenario the condition 4) can be realized only if the spectator
system is modeled as a single constituent, i.e. the hadron target is a two-body
bound system. In this peculiar case, through momentum conservation, the
light-cone momentum fraction of the spectator is equal to 1 − x and the con-
straint on the transverse-momentum transferred by the Wilson gluon to the
spectator system follows simply from the conservation of the total momentum
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of the hadron target. Otherwise, the condition 4) imposes to share the trans-
verse momentum carried by the Wilson gluon with each spectator parton in a
proportion equal to the longitudinal momentum fraction xi. This can not be
realized in systems composed by more than two constituents, under the assump-
tion of an interaction vertex between the gauge boson and a single constituent,
i.e. a perturbative interaction at the leading non-vanishing order, We conclude
that if, and only if, the above conditions are fulfilled, we can write

〈ki⊥(x)〉UT = −
∫
dk⊥k

i
⊥
εjk⊥ k

j
⊥S

k
⊥

M
f⊥1T (x,k2

⊥)

=

∫
db⊥L

i
(
b⊥/(1− x)

)
F[γ+](x, b⊥,S⊥)

=

∫
db⊥L

i
(
b⊥/(1− x)

)εjk⊥ bj⊥Sk⊥
M

E′(x, b2
⊥), (5.23)

where εij⊥ = ε+−ij. In the next sections, we will consider explicitly a few model
calculations and we will discuss to which extent the conditions 1) – 4) can be
satisfied.

In an analogous fashion, we can analyze the average quark transverse mo-
mentum of a transversely-polarized quark in an unpolarized target given by

〈ki⊥(x)〉jTU =

∫
dk⊥k

i
⊥Φ

[iσj+γ5](x,k⊥, S). (5.24)

With similar steps as before, under the conditions of applicability of the lensing
hypothesis, we obtain

〈ki⊥(x)〉jTU = −
∫
dk⊥k

i
⊥
εkj⊥ k

k
⊥

M
h⊥1 (x,k2

⊥)

=

∫
db⊥L

i
(
b⊥/(1− x)

)
F[iσj+γ5](x, b⊥)

=

∫
db⊥L

i
(
b⊥/(1− x)

)εkj⊥ bk⊥
M

(
E′T (x, b2

⊥) + 2H̃′T (x, b2
⊥)
)
. (5.25)

Alternatively, by contracting Eqs. (5.23) and (5.25) with −εil⊥Sl⊥/(2M) and
−εij⊥/(2M), respectively, we can write

f
⊥(1)
1T (x) =

∫
db⊥

bi⊥
4
Li
(
b⊥/(1− x)

)
E(1)(x, b2

⊥), (5.26)

h
⊥(1)
1 (x) =

∫
db⊥

bi⊥
4
Li
(
b⊥/(1− x)

) (
E

(1)
T (x, b2

⊥) + 2H̃
(1)
T (x, b2

⊥)
)
, (5.27)

where we used the following notations

f (1)(x,k2
⊥) =

k2
⊥

2M2
f(x,k2

⊥), (5.28)
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X(1)(x, b2
⊥) = − 2

M2
X′(x, b2

⊥) =

∫
d∆⊥

(2π)2
e−i∆⊥·b⊥

∆2
⊥

2M2
X(x, ξ = 0,−∆2

⊥).

(5.29)

For spin-zero targets, only Eqs. (5.25) and (5.27) with ET (x, b2
⊥) = 0 and 2H̃T →

H̃T survive.

5.3 Lensing relation for the pion

This section will be devoted to the study of how the relation between the Boer-
Mulders function and the chiral-odd GPD H̃T is realized for a spin-zero target
described as a quark-antiquark (qq̄) bound state. For illustration purposes, we
are going to assume that the target hadron is a pion, described in terms of
the leading-order Fock-state component. Hence, in the framework of light-front
quantization and working in the gauge A+ = 0, the pion state with momentum
p is given by

|π(p)〉 =
∑

{λi}

∑

{qi}

∫
[Dx]2 Ψqq̄(β, r) |λ1, q1, c1, p1〉 |λ2, q2, c2, p2〉 . (5.30)

In Eq. (5.30), λi are the quark light-front helicities (see Sec. 2.2.1), qi = q, q̄
denotes the quark and antiquark flavor, ci is a color index, and pi is the parton
momentum. The function Ψqq̄ is LFWF of the qq̄ state and its arguments are
indicated with the collective notation β = ({λi}, {ci}, {qi}) and r = {xi,k⊥,i}
with the intrinsic transverse momentum k⊥,i of Eq. (2.67). We can make explicit
the flavor and helicity structure of the parton composition in Eq. (5.30) in the
same way as we did for the proton in Eq. (3.81), to obtain [61]:

|π(p)〉 = Tπ

∫
dx1dx2√
x1x2

dk⊥,1dk⊥,2
2(2π)3

δ (1− x1 − x2) δ (k⊥,2 + k⊥,1)
δc1c2√

3

×
{
ψ(1)(1, 2)

[
qc1†↑ (1)q̄c2†↓ (2)− qc1†↓ (1)q̄c2†↑ (2) |0〉

]

+ ψ(2)(1, 2)
[
kL,1q

c1†
↑ (1)q̄c2†↑ (2) + kR,1q

c1†
↓ (1)q̄c2†↓ (2) |0〉

]}
, (5.31)

where kR(L),i = kx,i ± iky,i, q
ci†
λ and q̄ci†λ are the creation operators of quark

and antiquark with helicity λ and color ci, respectively, and the arguments i
of the LFWAs stand for (xi,k⊥,i). . In Eq. (5.31), Tπ is the isospin factor
which projects on the different members of the isotriplet of the pion, and is
defined as Tπ =

∑
τq ,τq̄
〈1/2τq1/2τq̄|1τπ〉 with τq,q̄,π the isospin of the quark,

antiquark and pion state, respectively. We can recognize the LFWAs ψ(1) and
ψ(2) that correspond to quark states with OAM Lz = 0 and |Lz| = 1, re-
spectively. We recall that they are scalar functions, and depend on the parton
momenta only through scalar products k⊥,i ·k⊥,j. In the light-cone gauge with
advanced boundary conditions for the transverse components of the gauge field,
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5.3. Lensing relation for the pion

the LFWAs are complex functions [29, 102, 103]. This will not impact our con-
clusions. Using the pion state (5.31), we can represent the pion GPD and TMD
in terms of overlap of LFWAs in a model-independent way.

The pion chiral-odd GPD is defined as

F [iσj+γ5]
π (x,∆+,∆⊥) = −iε

kj
⊥∆

k
⊥

Mπ

H̃T,π(x, ξ,−∆2
⊥). (5.32)

We can introduce the following overlap of LFWAs for the qq̄ component of the
pion

Gk (1, 1′) = F k
(
x1,k⊥,1; 1− x1,−k⊥,1

∣∣∣∣x′1,k′⊥,1; 1− x′1,−k′⊥,1
)
, (5.33)

F k (1, 2 || 1′, 2′) = kk⊥,1ψ
(2)(1, 2)ψ(1)∗(1′, 2′)− k′k⊥,1ψ(1)(1, 2)ψ(2)∗(1′, 2′), (5.34)

where the arguments on the right-hand side of || refer to the momentum de-
pendence of the complex conjugate LFWA of the pion in the final state, and the
arguments on the left-hand side give the momentum dependence of the LFWA
of the pion in the initial state. Using the definition in Eq. (5.34) one finds at
ξ = 0

∆k
⊥

2Mπ

H̃T,π(x, 0,−∆2
⊥) =

T 2
π

2(2π)3

∫
dk⊥G

k (x,k⊥ ||x,k⊥ + (1− x)∆⊥) .

(5.35)

We can Fourier transform the integral in Eq. (5.35), with the result
∫
dk⊥G

k (x,k⊥ ||x,k⊥ + (1− x)∆⊥)

=

∫
dk⊥

∫
dA⊥dB⊥e

−iA⊥·k⊥+iB⊥·(k⊥+(1−x)∆⊥)Gk (x,A⊥ ||x,B⊥) (5.36)

=

∫
dB⊥e

i(1−x)B⊥·∆⊥Gk (x,B⊥ ||x,B⊥) . (5.37)

Using this expression, Eq. (5.35) can easily be transformed into the impact
parameter space to obtain the pion chiral-odd IPD

ibk⊥
Mπ

H̃′T,π(x, b2
⊥) =

∫
d∆⊥

(2π)2
e−ib⊥·∆⊥

(
∆k
⊥

2Mπ

HT,π(x, 0,−∆2
⊥)

)

=
T 2
π

2(2π)3

∫
d∆⊥

(2π)2
e−ib⊥·∆⊥

∫
dB⊥e

i(1−x)B⊥·∆⊥Gk (x,B⊥ ||x,B⊥)

=
T 2
π

2(2π)5(1− x)2
Gk

(
x,

b⊥
1− x ||x,

b⊥
1− x

)
. (5.38)

The same Dirac structure giving the GPD H̃T,π in Eq. (5.35) enters the
correlator that defines the Boer-Mulders TMD, i.e.

Φ[iσj+γ5]
π = −ε

kj
⊥ k

k
⊥

Mπ

h⊥1,π(x,k2
⊥). (5.39)
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+h.c.
p

k q k − q

p − k

Figure 5.1: Cut diagram contributing to the average transverse momentum of
T-odd effects in single-spin asymmetries of a SIDIS process for a pion target.
The light-cone gauge is assumed and the target is modeled as a qq̄ bound state.

As we already stressed, the tensor structures in Eqs. (5.32) and (5.39) have
opposite behavior under time reversal, which reveals the naive T-even and näıve
T-odd nature of H̃T,π and h⊥1,π, respectively. As outlined in Sec. 5.2, in the
calculation of the average transverse momentum of the Boer-Mulders effect the
Wilson line reduces to the exchange of one Wilson gluon between the active
quark and the spectator system (see Eq. (5.11)). If we describe the pion as a
bound qq̄ system, the corresponding cut diagram can be represented as in Fig.
5.1, where the blob indicates an effective coupling between the antiquark and
the Wilson gluon. We will assume that the coupling is perturbative and consider
only the tree-level graph. In this framework, the LFWA overlap representation
of the pion Boer-Mulders function has been derived in Ref. [104] and reads

kk⊥h
⊥
1,π

(
x,k2

⊥
)

=
2αs

(2π)4

4

3
T 2
πMπ

∫
dq⊥
q2
⊥
Gk (x,k⊥ ||x,k⊥ − q⊥) , (5.40)

where q⊥ is the transverse momentum of the Wilson gluon (we recall that
q+ = 0 in the eikonal approximation in the light-cone gauge). We note that
Eq. (5.40) involves the same overlap of LFWAs as in Eq. (5.35) for the case of

the GPD H̃T,π. With the formal identification of

−q⊥ = (1− x)∆⊥, (5.41)

the Gk functions in Eqs. (5.35) and (5.40) have the same momentum depend-
ence. This is crucial to recover the lensing function relation. Using Eq. (5.40),
we can now calculate the average transverse momentum of the Boer-Mulders
effect

〈ki⊥〉
j

TU = −
∫
dk⊥k

i
⊥
εkj⊥ k

k
⊥

Mπ

h⊥1,π

= − 2αs
(2π)4

4

3
T 2
π

∫
dq⊥
q2
⊥

∫
dk⊥k

i
⊥ε

kj
⊥G

k (x,k⊥ ||x,k⊥ − q⊥)

= − 2αs
(2π)4

4

3
T 2
π

∫
dq⊥
q2
⊥

∫
dk⊥k

i
⊥ε

kj
⊥

∫
dA⊥dB⊥

× e−iA⊥·k⊥eiB⊥·(k⊥−q⊥)Gk (x,A⊥ ||x,B⊥)

= −i4
3

4παs(1− x)3

∫
dB⊥

∫
dq⊥
q2
⊥

εkj⊥B
k
⊥

Mπ

qi⊥
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× e−iB⊥·q⊥H̃′T,π(x,B2
⊥(1− x)2), (5.42)

where we used the following relation
∫
dk⊥k

i
⊥

∫
dA⊥dB⊥e

−iA⊥·k⊥eiB⊥·(k⊥−q⊥)Gk (x,A⊥ ||x,B⊥)

=
qi⊥
2

∫
dB⊥e

−iB⊥·q⊥Gk(x,B⊥||x,B⊥)

= iqi⊥(1− x)3 (2π)5

MπT 2
π

∫
dB⊥B

k
⊥ H̃′T,π(x,B2

⊥(1− x)2))e−iB⊥·q⊥ .

Introducing the change of variable B⊥ → b⊥/(1−x) in Eq. (5.42), we find [87]

〈ki⊥〉
j

TU =

∫
db⊥

εkj⊥ b
k
⊥

Mπ

Li (b⊥/(1− x)) H̃′T,π(x, b2
⊥), (5.43)

where we introduced the lensing function [55]

Li (b⊥/(1− x)) = −i4
3
αs4π

∫
dq⊥
q2
⊥
qi⊥e

−i b⊥·q⊥
(1−x) = −8

3
αs4π

2 b
i
⊥
b2
⊥

(1− x). (5.44)

Before moving on and discussing the proton case, a few comments are in or-
der. The result for the pion relies on the assumption that the coupling between
the Wilson gluon and the spectator parton is of perturbative nature, i.e., it
is described by the tree-level QCD vertex. The coupling, at leading power of
1/p+, conserves the helicity of the spectator parton. Therefore, the helicity flip
of the active quark must be compensated by a change of the OAM carried by
the partons in the initial and final states. This behavior in the TMD sector
is equivalent to the GPD case, where the active and spectator quarks do not
experience any helicity flip and the change in the helicity of the target must
be compensated by a transfer of OAM between the partons in the initial and
final states. In this case, the transfer of parton OAM to the hadron helicity is
mediated by the external virtual (or real) photon.

Due to the two-body nature of the problem (qq̄ system) the role of the
transverse momentum of the gluon q⊥ is the same as the external transverse
momentum ∆⊥ in the GPD case. This can be traced back to the fact that the
parton distributions should be invariant by light-front transverse boosts and
depend on the intrinsic transverse-momentum coordinates of the partons. In
the case of the average transverse-momentum of the Boer-Mulders effect, there
is no change of the transverse momentum of the pion between the initial and
final state. However, the quark and antiquark have a different intrinsic trans-
verse momentum in the initial and final states due to the gluon exchange. In
the GPD case, the momentum transferred to the pion is absorbed by the active
quark, while the transverse momentum of the spectator quark does not change
in the initial and final states. In terms of the intrinsic transverse-momentum
coordinates in the hadron-in and hadron-out frame of the initial and final had-
rons, respectively, both the active and spectator quarks experience a transfer
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of transverse momentum (see Chapter 6 for a more in-depth discussion about
hadron frames in the GPD context). Therefore, one can make the formal iden-
tification of Eq. (5.41) in the momentum dependence of the LFWAs describing
the contribution of the internal parton dynamics and the effect of the FSIs can
be factorized in the lensing function. In the next section, we will see that in the
case of a three-body system this correspondence can not be established, and,
as a consequence, the lensing-function relation breaks down.

If we do not assume a perturbative coupling between the Wilson gluon
and the antiquark spectator, we may model the interaction via an effective
vertex that depends on the momenta of the gluon and anti-quark. The coupling
with the Wilson gluon may occur with or without flip of the helicity of the
antiquark. In the first case, the lensing relation can not hold, as it will be
discussed in Sec. 5.4.1. If the helicity flip is not allowed, the lensing relation
can still be spoiled by the dependence of the vertex on the momentum of the
antiquark. By introducing the general parametrization for the effective vertex
Λ
(
k2
⊥, q

2
⊥,k⊥ · q⊥

)
γ+, the average transverse momentum of the Boer-Mulders

effect in Eq. (5.42) becomes

〈ki⊥〉
j

TU

= − 2αs
(2π)4

4

3
T 2
π

∫
dk⊥k

i
⊥ε

kj
⊥

∫
dq⊥
q2
⊥
Gk (x,k⊥ ||x,k⊥ − q⊥)Λ

(
k2
⊥, q

2
⊥,k⊥ · q⊥

)

= − 2αs
(2π)4

4

3
T 2
π

{∫
dB⊥dA⊥

∫
dq⊥
q2
⊥
e−iB⊥·q⊥ q

i
⊥
2

× εkj⊥Gk (x,B⊥ −A⊥ ||x,B⊥) Λ̃
(
A2

⊥, q
2
⊥,A⊥ · q⊥

)
+
i

2

∫
dB⊥dA⊥

×
∫
dq⊥
q2
⊥
e−i(B⊥+A⊥)· q⊥

2 εkj⊥ ∂A⊥,i

[
Gk
(
x,A⊥

∣∣∣
∣∣∣x, B⊥ +A⊥

2

)

× Λ̃
((

B⊥ −A⊥

2

)2

, q2
⊥,
B⊥ · q⊥ −A⊥ · q⊥

2

)]}
. (5.45)

It is not possible to manipulate Eq. (5.45) in order to extract a term like
G (x,B⊥ ||x,B⊥) and, therefore, recognize the definition of the IPD, as done
in Eq. (5.42). However, if the effective vertex is assumed as a function of only
q⊥, then the lensing relation (5.43) holds, with the following modified definition
of the lensing function

Li (b⊥/(1− x)) = −i4
3
αs4π

∫
dq⊥
q2
⊥
qi⊥Λ(q2

⊥)e−i
b⊥·q⊥
(1−x) . (5.46)

5.4 Lensing relation for the proton

In this section, we discuss the validity of the lensing relations in Eq. (5.3)
for the proton system, assumed as the preferential prototype of hadrons with
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5.4. Lensing relation for the proton

multiple partons in the remnant. For illustration purposes, we will consider in
detail the relation between the Sivers TMD and the IPD E. However, the same
arguments can be applied for the relation involving the Boer-Mulders TMD and
the combination ET + 2H̃T of chiral-odd IPDs.

We limit ourselves to analyze the general structure of the LFWA overlap
representation of the GPDs and the Sivers function, since the explicit depend-
ence on the LFWAs is not relevant for our discussion. We refer to [95, 97] for
the full calculation of the LFWA overlap. We introduce the LFWA overlap

FT
(
x1,k⊥,1;x2,k⊥,2;x3,k⊥,3 ||x′1,k′⊥,1;x′2,k

′
⊥,2;x′3,k

′
⊥,3
)

(5.47)

and define the function GT as

GT

(
x1,k⊥,1;x2,k⊥,2 ||x′1,k′⊥,1;x′2,k

′
⊥,2
)

= FT
(
x1,k⊥,1;x2,k⊥,2; 1− x1 − x2,−k⊥,1 − k⊥,2∣∣∣∣x′1,k′⊥,1;x′2,k

′
⊥,2; 1− x′1 − x′2,−k′⊥,1 − k′⊥,2

)
. (5.48)

The GPD E in the limit of ξ = 0 is obtained from the quark-quark correl-
ator (3.50) with Γ = γ+ and transversely polarized proton, as it is illustrated by
Eq. (3.52). The incoming and outgoing quark momenta are related by p′i = pi
(i 6= j) for the spectator quarks and p′j = pj +∆ for the active quark that takes
the momentum transferred to the proton. The intrinsic momenta are then ob-
tained via the transverse boost and are related as (see also the ξ → 0 limit of
Eqs. (6.49)-(6.50))

x′i = xi, k′⊥,i = k⊥,i − xi∆⊥, spectator quarks, (5.49)

x′j = xj, k′⊥,j = k⊥,j + (1− xj)∆⊥, active quark. (5.50)

Using momentum conservation for the intrinsic variables, i.e.,
∑

i xi = 1 and∑
i k⊥,i = 0⊥ =

∑
i k
′
⊥,i, one finds the following LFWA overlap representa-

tion [97]

iεij⊥∆
j
⊥S

i
T

M
E(x, ξ = 0,−∆2

⊥) =
1

4(2π)6

×
∫
dk⊥

∫ x

0

dy

∫
dt⊥GT (x,k⊥; y, t⊥ ||x,k⊥ + (1− x)∆⊥; y, t⊥ − y∆⊥) .

(5.51)

The results for the IPD distribution are then obtained taking the Fourier trans-
form of Eq. (5.51) with respect to b⊥ and expressing GT in terms of its Fourier
integral. One finds

− εij⊥b
j
⊥S

i
T

M
E′(x, ξ = 0, b2

⊥) =
1

4(2π)8

1

1− x

×
∫ x

0

dy

∫
dB⊥GT

(
x,
yB⊥ − b⊥

1− x ; y,B⊥ ||x,
yB⊥ − b⊥

1− x ; y,B⊥

)
. (5.52)
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The LFWA overlap representation of the Sivers function has been derived
in Ref. [95], using the three-quark component of the nucleon state and the one-
gluon exchange approximation, with a perturbative quark-gluon coupling. It is
given by the same function GT as for the GPD E, but with different arguments,
i.e.,

εij⊥k
j
⊥S

i
T

M
f⊥1T
(
x,k2

⊥
)

= − αs
3(2π)7

×
∫
dq⊥
q2
⊥

∫ x

0

dy

∫
dt⊥GT (x,k⊥; y, t⊥ ||x,k⊥ − q⊥; y, t⊥ + q⊥) . (5.53)

From this expression, one clearly sees that the formal identification in Eq. (5.41)
does not apply in the case of Eqs. (5.51) and (5.53), since (1 − x) and y are
independent variables. As we will see, this is sufficient to break the lensing-
function relation in the case of the proton, see Ref. [87].

From Eq. (5.53), one can calculate the average transverse momentum of the
Sivers effect as

〈ki⊥〉UT = −
∫
dk⊥k

i
⊥
εij⊥k

j
⊥S

i
T

M
f⊥1T = αs

M

3(2π)7

×
∫
dk⊥k

i
⊥

∫
dq⊥
q2
⊥

∫ x

0

dy

∫
dt⊥GT (x,k⊥; y, t⊥ ||x,k⊥ − q⊥; y, t⊥ + q⊥)

= αs
M

3(2π)7

∫ x

0

dy

∫
dA⊥dB⊥

∫
dq⊥
q2
⊥

× qi⊥
2
eiq⊥·A⊥GT (x,B⊥ −A⊥; y,B⊥ ||x,B⊥ −A⊥; y,B⊥)

= −iαs
M

6(1− x)(2π)6

∫ x

0

dy

∫
db⊥dB⊥

× bi⊥
b2
⊥
GT

(
x,
B⊥ − b⊥

1− x ; y,B⊥ ||x,
B⊥ − b⊥

1− x ; y,B⊥

)
. (5.54)

Comparing this equation with Eq. (5.52), we immediately notice that the
different dependence of the function GT on B⊥ prevents us to factorize the
contribution of the IPD from a lensing function. This can be traced back to
the fact that in the LFWF overlap representation of the GPD the transverse
momentum ∆⊥ appears multiplied by both (1 − x) and y, since both the two
spectator quarks have different intrinsic transverse momentum in the initial
and final states. In other words, the transverse boost from a given frame to
the hadron frames transforms the transverse-momentum coordinates of the two
spectator quarks in a different way, depending on their fraction xi of longitudinal
momentum. Vice versa, in the TMD case the hadron does not change the
transverse momentum in the initial and final states, and the gluon interaction
occurs between the active quark and a single spectator quark, leaving unchanged
the intrinsic momentum of the other spectator quark.

The non-validity of the lensing relation is ultimately related to the, at least,
three-body nature of the nucleon together with the assumption of the interac-
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tion of the Wilson gluon with a single constituent in the remnant. A multi-
particle, non-perturbative coupling between the Wilson gluon and the remnant
can be used to restore the lensing relation. The coupling should be construc-
ted in such a way to satisfy the conditions 1) − 4) illustrated in Sec. 5.2. If
the perturbative vertex is chosen, then the lensing relation is spoiled also for
the pion when considering Fock-state components beyond the leading-order qq̄
state. For the nucleon, one way in which it might be possible to recover the
lensing relation is to consider models in which the nucleon is described as a
two-body system. Examples of such models are the quark diquark models, in
which the spectator system is described as an on-shell, point-like particle with
quantum numbers of a diquark. However, one has to distinguish between dif-
ferent variants of diquark spectator models, depending on the spin structure of
the diquark and its coupling with the Wilson gluon, as we will discuss in the
following section.

5.4.1 Diquark spectator models for the proton

The basic idea of spectator models is to evaluate the quark-quark correlators
entering the definition of the TMDs and of the GPDs by inserting a complete
set of intermediate states, assigning an effective vertex for the transition p →
q+{Xi}. The spectator models which we are going to consider, are collectively
known as diquark models, in which the remnant complexity is hidden inside
a single particle, the diquark, which is assumed to be on-shell and with the
quantum numbers that can be obtained from the combination of the quantum
numbers of two quarks. The way in which the diquark is constructed forces it
to be either an isospin singlet with spin 0 (scalar diquark) or an isospin triplet
with spin 1 (axial-vector diquark). In the last case, the axial nature of the
diquark is due to the axial coupling between the proton and the quark-diquark
state which ensures the angular momentum conservation. The target is then
seen as made of an off-shell quark that participates in the hard reaction of the
process and an on-shell diquark. Different spectator diquark models can be
obtained by varying the form of the effective vertex with the proton and the
vertex form factor that effectively parametrizes the composite nature of the
target and by choosing different polarization four-vectors for the axial-vector
diquark. The approximation of a diquark spectator spoils part of the richness
of the non-perturbative structure of the proton, that is impossible to capture
via the vertex form factor alone.

The very first hint on the validity of the lensing relation came from the scalar
diquark calculation performed in Ref. [53]. The general arguments which lead
to the lensing relations are the same as discussed in Sec. 5.3 for the pion, i.e., the
hadron described as a two-body system and the assumption of a perturbative
helicity-conserving coupling between the gauge boson and the spectator system.
For the axial-vector diquark model (AVDQ), the validity of the lensing-function
relations depends entirely on the helicity structure of the diquark. One way
to classify AVDQ models is to distinguish between models that allow for the
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presence of a longitudinal polarization and models that admit only transverse
polarizations for the axial-vector diquark. The latter presents similarities to the
quark-target model, in which the diquark is substituted by an on-shell gluon and
the proton is assumed to be a single quark. The former AVDQ models do not
satisfy the lensing relation, and to illustrate why, we introduce the polarization
vectors of the AVDQ (see, e.g., Ref. [92]):

ε+1(l) =

(
0,
−lR√
2l+

, ε+1,⊥

)
, (5.55)

ε−1(l) =

(
0,
−lL√
2l+

, ε−1,⊥

)
, (5.56)

ε0(l) =
1

Ma

(
l+,

l2⊥ −M2
a

2l+
, l⊥

)
, (5.57)

where Ma is the AVDQ mass, l ≡ p− k, and:

ε+1,⊥ = − (ε−1,⊥)∗ = − 1√
2

(1, i) . (5.58)

Here we do not consider the (unphysical) time-like polarization that is discussed
in Ref. [92]. The polarization vectors in Eqs. (5.55)-(5.57) satisfy the following
relations: ε+1(l) · ε∗−1(l′) = 0 for any value of l, l′, whereas ε±1(l) · ε∗0(l) = 0 and
ε±1(l) · ε∗0(l′) 6= 0 for l 6= l′. The interaction between the diquark and the gluon
is given by the following coupling tensor

i

ec
Γ ρ
νσ = (2l + q)ρgνσ − (l + (1 + κa)q)σδ

ρ
ν − (l − κaq)νδρσ, (5.59)

where ec and κa are, respectively, the diquark color charge and the diquark an-
omalous chromomagnetic moment, which takes into account that the diquark
is not a point-like massive axial particle, but is an effective constituent degree
of freedom. In the calculation of the T-odd TMDs, the indices of the coupling
tensor (5.59) are saturated with the gluon propagator and the AVDQ polar-
ization vector (see Fig. 5.2). The contraction of the coupling tensor with the
polarization vectors of the axial-vector diquark gives the following interaction
vertex

Rρ =
∑

λ1,λ2=±1,0

εν∗λ1
(l)εσλ2

(l + q)Γ ρ
νσ. (5.60)

This expression can be compared with the corresponding q̄gq̄ interaction vertex,
which enters the calculation of the Boer-Mulders function of the pion, i.e.

Rρ =
∑

λ1,λ2=±1/2

v̄λ1(l + q)γρvλ2(l). (5.61)

In both cases, the vertex function has the following scaling behavior [87]

R+ ' O(p+), Ri
⊥ ' O(1), R− ' O(1/p+). (5.62)
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p

k q

p − k

k − q

+h.c.

Figure 5.2: Cut diagram contributing to the average transverse-momentum of
T-odd effects in single spin asymmetries of a SIDIS process, in the A+ = 0
gauge and for a proton target described in a quark-diquark model.

However, in the case of the pion, the leading-order term R+ in Eq. (5.61) is
helicity conserving, whereas the leading contribution R+ in Eq. (5.60) for the
axial-vector diquark contains terms that flip the helicity of the diquark. As a
result, the following transitions are allowed for the AVDQ interacting with the
Wilson gluon

λa = ±1↔ λa = 0,±1. (5.63)

On the contrary, in the calculations of the GPDs, since the Wilson line in
the light-cone gauge reduces to unity, the spectator can not flip the helicity
between the initial and final states. We conclude that the LFWA overlap must
be different for the average transverse momentum of the T-odd TMD functions
and for the GPDs, hence the lensing relation cannot hold. Only if one assumes
that the longitudinal polarization for the AVDQ is absent in the proton, the
lensing relation can be restored. This situation occurs within the quark target
model, where the non-abelian three-gluon vertex enters the computation of the
T-odd TMDs and allows only for helicity-conserving transitions.

5.5 Conclusions

Models are a useful resource in theoretical calculations to investigate problems
and, by consequence, to learn more about the fundamental theories. However,
models rely on simplifying assumptions and may lead to approximate results
that do not hold in general. In this Chapter, based on Ref. [87], we stressed
this point by investigating the origin of non-trivial relations between transverse
distortions in the distribution of quarks in impact-parameter space and ana-
logous distortions in transverse-momentum space. The former can be encoded
in non-perturbative objects called impact-parameter distributions (IPDs) and
contribute to observable asymmetries in exclusive processes involving hadrons.
The latter are expressed in terms of the naive T-odd Sivers and Boer-Mulders
transverse-momentum distributions (TMDs), and give rise to observable asym-
metries in semi-inclusive processes involving hadrons.

We identified the conditions under which it is possible to express the Sivers
and Boer-Mulders functions as convolutions of an IPD and a lensing function,

89



5. Lensing relation

incorporating the effects of the FSIs between the active parton and the rest of
the hadron. These conditions, listed in Sec. 5.2, appear to be very specific and
hold in a restricted class of models.

To better illustrate the nature of these conditions, we investigated the emer-
ging of the lensing relation in three distinct cases: (1) the pion, taken as a pro-
totype of hadrons with a two-body valence structure; (2) the proton, described
as a bound state of three quarks; (3) the proton described as bound state of
a quark and a spectator, using the framework of a particular class of models
where the lensing relations have been originally established. The conditions of
validity of the lensing relations can be fulfilled in models where the hadron is
described as a two-body bound system, as in the model classes (1) and (3).
However, they can be violated even in these simple models, as happens in cer-
tain versions of (3), e.g., with axial-vector spectator that admits longitudinal
polarization. Finally, the conditions are violated in models that belong to class
(2) and, in general, the conditions cannot be obtained if the hadron is described
by more than two constituents and the interaction vertex of the gauge boson
occurs with a single constituent.

In conclusion, it seems that the lensing relation is unlikely to survive in the
full complexity of non-perturbative QCD, even approximately. Phenomenolo-
gical studies of the Sivers and Boer-Mulders function, as well as possible lattice
QCD studies, should be able to confirm the violation of the lensing hypothesis.
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Chapter 6
A model for the Light-Front Wave
Amplitudes

In Secs. 3.4.1 and 3.4.4, we introduced the concept of proton Distribution Amp-
litudes (DAs) and how they can be linked to the light-front wave amplitudes
(LFWAs) of the proton. We claimed that an explicit model for the transverse
momentum dependence of the LFWAs is necessary for a full inversion of the
relations between DAs and LFWAs. In this Chapter, we are going to illustrate
the model that we chose to work with. The model consists in two parts: the
first one concerns the transverse-momentum dependence of the LFWAs, which
is also necessary to link them to the DAs. The second one concerns the DAs, for
which we are going to assume a model inspired from Ref. [105]. The model will
be used to obtain explicit predictions for a variety of PDFs, TMDs and GPDs.
To obtain results that are as close as possible to the current available know-
ledge of the partonic structure of the proton, we are going to fit our model to a
phenomenoligical parametrization for the up, down and gluon unpolarized PDF
f1(x). Although the model is unable to reproduce the full phenomenological
extraction, it proves satisfactory in its simplicity.

6.1 The construction of the model

A rather standard approach to model the transverse-momentum dependence of
the LFWAs is to assume a product of N gaussian functions in the transverse-
momentum space, where N corresponds to the number of partons of the cor-
responding Fock state. The transverse momentum of each parton is weighted
with the inverse of the corresponding fraction of longitudinal momentum. This
construction assumes that eventual hard gluon contributions have been already
subtracted from the DAs, leaving the intrinsic soft contributions only. This ar-
gument is valid if the scale at which the model is constructed is low enough (. 1
GeV). This construction is shown in Ref. [105] and is known as the Brodsky-
Huang-Lepage prescription [106]. We are going to modify the model of Ref. [105]
by including the masses of the constituent partons. The masses are treated as
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effective masses and are assumed to be generated by non-perturbative dynam-
ical processes that bind the partons inside the nucleon. For the three-quark
state we are going to consider only LFWAs with Lz = 0,±1, i.e. only LFWAs
that can be linked to DAs of twist-3 and twist-4. Since the LFWAs ψ(2) is
linked to a twist-5 DA we are not going to consider it. For consistency, the only
LFWAs for the three-quark plus one-gluon state that we include are the ones
with Lz = 0, since they are linked to the four-parton twist-4 DAs. The model
for the LFWAs reads (in the first line we have l = 0, 3, 4, 5):

ψ(l)({xi,k⊥,i}) =
φ(l)(x1, x2, x3)

4
√

6
Ω3({xi,k⊥,i}, al) e

(
−a2

l

∑3
j=1

m2
j

xj

)
, (6.1)

Ψ ↓({xi,k⊥,i}) =
φ↓(x1, x2, x3, x4)√

2x4

Ω4({xi,k⊥,i}, a↓) e

(
−a2
↓
∑4
j=1

m2
j

xj

)
, (6.2)

Ψ 1,2↑({xi,k⊥,i}) =
φ1,2↑(x1, x2, x3, x4)√

2x4

Ω4({xi,k⊥,i}, a1,2↑) e

(
−a2

1,2↑
∑4
j=1

m2
j

xj

)
,

(6.3)

where

ΩN({xi,k⊥,i}, a) =
(4πa)2(N−1)

∏N
i=1 xi

e

(
−a2

∑N
i=1

k2
⊥,i
xi

)
, (6.4)

and mi are the effective parton masses. The normalization of the Gaussian in
Eq. (6.4) is chosen in such a way that the following identity holds:

∫
[dk⊥]NΩN({xi,k⊥,i}, a) = 1. (6.5)

We introduce only two parton masses: one for the gluon and one for the
quarks, independently from their flavor. The explicit representation of the
transverse-momentum dependent part of the LFWAs in Eqs. (6.1)-(6.4) is
enough to explicitly compute the integrals in Eqs. (3.153)-(3.155) and then
invert the relations between the DAs and the LFWAs. As it is clear from
Eqs. (3.153)-(3.155), once the system of equations is inverted, one last piece
of information is needed in order to obtain explicit results for the LFWAs
with Lz 6= 0: the integrals of the four-parton DAs, see Eqs. (3.150)-(3.152).
Therefore, an analytical expression for the DAs must be fixed. To do so, we
follow Ref. [105] and expand the DAs onto a basis of orthogonal polynomials.
Each element of the basis is an eigenfunction of the one-loop evolution kernel.
We truncate the expansion for the three-parton DAs to the second non-trivial
term and the four-parton DAs to the first term (see Refs. [65, 66, 68, 105, 107]):

Φ3(x1, x2, x3) = 120fNx1x2x3

(
1 + f−0 (x1 − x3) + f+

0 (x1 + x3 − 2x2)
)
,

(6.6)

Φ4(x1, x2, x3) = 24x1x2(φ0
4 + φ−4 (x1 − x2) + φ+

4 (1− 5x3)), (6.7)
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Ψ4(x1, x2, x3) = 24x1x3(ψ0
4 + ψ−4 (x1 − x3) + ψ+

4 (1− 5x2)), (6.8)

Ξ4(x1, x2, x3) = 24x2x3(ξ0
4 + ξ−4 (x2 − x3) + ξ+

4 (1− 5x1)), (6.9)

Φg4(x1, x2, x3, x4) = −8!

4
x1x2x3x

2
4

(
λg2 −

λg3
3

)
, (6.10)

Ψ g4 (x1, x2, x3, x4) =
8!

4
x1x2x3x

2
4

(
λg2 +

λg3
3

)
, (6.11)

Ξg
4 (x1, x2, x3, x4) =

8!

6
x1x2x3x

2
4λ

g
1. (6.12)

Via Eq. (3.104), we have the following identification:

φ(0)(x1, x2, x3) = Φ̃3(x1, x2, x3)e

(
a2

0

∑3
j=1

m2
j

xj

)
= Φ3(x1, x2, x3), (6.13)

where we assumed that the total twist-3 DA Φ̃3(x1, x2, x3) can be written as
the product of Eq. (6.6) and the mass exponential. From Eqs. (3.108)-(3.110)
we obtain the similar results for the three-quark plus one-gluon LFWAs:

φ↓(x1, x2, x3, x4) = e

(
a2
↓
∑4
j=1

m2
j

xj

)
M

96gs

(
2Ξ̃g

4 (x1, x2, x3, x4) + Ξ̃g
4 (x2, x1, x3, x4)

)

=
M

96gs
(2Ξg

4 (x1, x2, x3, x4) + Ξg
4 (x2, x1, x3, x4)) , (6.14)

φ1,↑(x1, x2, x3, x4) = −e

(
a2

1,↑
∑4
j=1

m2
j

xj

)

× M

96gs

(
2Ψ̃ g4 (x2, x1, x3, x4) + Φ̃g4(x1, x2, x3, x4)

)

= − M

96gs
(2Ψ g4 (x2, x1, x3, x4) + Φg4(x1, x2, x3, x4)) , (6.15)

φ2,↑(x1, x2, x3, x4) = e

(
a2

2,↑
∑4
j=1

m2
j

xj

)

× M

96gs

(
2Φ̃g4(x1, x2, x3, x4) + Ψ̃ g4 (x2, x1, x3, x4)

)

=
M

96gs
(2Φg4(x1, x2, x3, x4) + Ψ g4 (x2, x1, x3, x4)) , (6.16)

where we assumed that the total twist-4 DAs Ξ̃4, Φ̃4 and Ψ̃4 can be written as
the product of the corresponding expression in Eqs. (6.10)-(6.12) and the mass
exponential.

All the parameters in Eqs. (6.6)-(6.12) encapsulate the scale dependence of
the DAs. However, since we shall not deal with the problem of evolving the
DAs to different scales, we are going to ignore such dependence. A numerical
estimate for the parameters can be obtained using both QCD sum-rule tech-
niques [108, 109] and lattice-QCD results [66, 107, 110, 111] for the DA moment
at the low-energy scale of µ = 1 GeV.
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The inversion of Eqs. (3.153)-(3.155) leads to the following results:

φ(3)(x1, x2, x3) = −Ma2
3

(
1− x2

x1

A(x1, x2, x3) +
x2

x1

B(x1, x2, x3)

)
, (6.17)

φ(4)(x1, x2, x3) = −Ma2
4 (A(x1, x2, x3)−B(x1, x2, x3)) , (6.18)

φ(5)(x1, x2, x3) = Ma2
5

(
1− x1

x3

C(x2, x1, x3) +
x1

x3

C(x1, x2, x3)

)
, (6.19)

where we introduced the functions1

A(x1, x2, x3) = −Φ4(x2, x1, x3) +
7!

6

(
λg2 −

λg3
3

)
x1x2x

2
3 −

mq

Mx3

Φ3(x1, x2, x3),

(6.20)

B(x1, x2, x3) = −Ψ4(x1, x2, x3)− 7!

6

(
λg2 +

λg3
3

)
x1x

2
2x3

+
mq

Mx2

(Φ3(x2, x3, x1) + Φ3(x1, x3, x2)) , (6.21)

C(x1, x2, x3) = Ξ4(x1, x2, x3) +
7!λg1

9
x2

1x2x3 −
mq

Mx1

Φ3(x2, x1, x3). (6.22)

The values of the parameters, obtained from the QCD sum rules and lattice
results, are given in the second column of Tab. 6.1. The other columns of the
table contain the fit results that are going to be discussed in Sec. 6.4. Notice
that no information about the transverse-momentum parameters is available.
In order to fix the values of these parameters, we chose to perform a fit of the
collinear unpolarized parton distribution f1(x) for the up and down quark, as
well as for the gluon. Before presenting the results of the fit, we are going
to show in Sec. 6.2 the explicit LFWA overlap representations for the twist-2
T-even TMDs and in Sec. 6.3 the LFWA overlap representation for the twist-
2 chiral-even GPDs. The overlap representations depend only on the chosen
truncation of the Fock-state expansion, not on the specific Ansätze for the
LFWAs. To obtain the PDF f1(x) is enough to perform an integration over k⊥
of the unpolarized TMD f1(x,k⊥). In Sec. 6.4, we are going to illustrate the
results of the fit and in Sec. 6.4.2 a discussion on the numerical results for the
twist-2 T-even TMDs and chiral-even GPDs is given.

6.2 Light-Front Wave Amplitude overlap represent-

ation of TMDs

The twist-2 TMD definitions were given in Sec. 3.3.2 in terms of the trace of
the quark-quark correlator contracted with specific Dirac structures. We are
going to obtain the LFWA overlap representation for the TMDs, by expanding

1We neglect the mass exponentials of Eqs. (6.13)-(6.16), and use the DAs of Eqs. (6.6)-
(6.12).
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the proton state in terms of the LFWAs defined above. The results of this
section depend only on the truncation imposed to the Fock-state expansion (see
Eq. (3.59)), but not on the specific model for the LFWAs. In this section, we are
going to introduce and present the results for the LFWA overlap representation
of the unpolarized and longitudinally polarized gluon TMDs. This is possible
since in our model we have an intrinsic gluon contribution to the proton. To
lighten the notation, we adopt the following conventions:

δi = δ(x− xi)δ(k⊥ − k⊥,i), (6.23)

ψijl = ψ(xi,k⊥,i, xj,k⊥,j, xl,k⊥,l), for ψ = ψ(0), ψ(3), ψ(4), ψ(5), (6.24)

ψijlm = ψ(xi,k⊥,i, xj,k⊥,j, xl,k⊥,l, xm,k⊥,m), for ψ = Ψ ↓, Ψ 1,↑, Ψ 2,↑, (6.25)

dµN = δ

(
1−

N∑

i=1

xi

)
δ

(
N∑

i=1

k⊥,i

)
1

(2(2π)3)N−1

N∏

i=1

(dxidk⊥,i) . (6.26)

In the light-cone gauge with advanced boundary conditions for the transverse
components of the gauge field, the gauge-link becomes unity. However, the
LFWAs acquire a complex phase that encodes the effects of the final state
interactions [29, 102, 103]. For this reason we are going to present the results
assuming complex LFWAs, even if we are going to discard the effect of the
complex phase in our model.

fu1 /g
u
1 (x,k⊥) =

∫
dµ3

{
2δ1

(∣∣∣ψ(0)
123

∣∣∣
2

+ ψ
(0)
123ψ

(0)∗
321

)
+ (δ3 ± δ2)

∣∣∣ψ(0)
123

∣∣∣
2

± 2δ2

(
kR,1ψ

(3)
123 + kR,2ψ

(4)
123

) (
kL,1ψ

(3)∗
123 + kL,2ψ

(4)∗
123 + kL,1ψ

(3)
132 + kL,3ψ

(4)∗
132

)

+ (δ1 ± δ3)
(
kR,1ψ

(3)
123 + kR,2ψ

(4)
123

)(
kL,1ψ

(3)∗
123 + kL,2ψ

(4)∗
123

)

+ (δ1 + δ2)kL,2ψ
(5)
123

(
kR,2ψ

(5)∗
123 + kR,1ψ

(5)∗
213

)}

+ 4

∫
dµ4

{
(δ1 + δ2)(2

∣∣∣Ψ ↓1234

∣∣∣
2

− Ψ ↓∗2134Ψ
↓
1234) + δ1

[
± 4|Ψ 1,↑

1234|2 ± 4|Ψ 2,↑
1234|2

± 2Re
(
Ψ 1,↑∗

1324Ψ
2,↑
1234 + Ψ 2,↑∗

1324Ψ
1,↑
1234

)
∓ Ψ 1,↑∗

3214Ψ
1,↑
1234 ∓ Ψ 2,↑∗

2134Ψ
2,↑
1234 ∓ 2Ψ 2,↑∗

3124Ψ
1,↑
1234

∓ 2Ψ 1,↑∗
2314Ψ

2,↑
1234

]
+ δ2

[
2|Ψ 1,↑

1234|2 ± 2|Ψ 2,↑
1234|2 + Ψ 2,↑∗

1324Ψ
1,↑
1234 ∓ 2Ψ 1,↑∗

2314Ψ
2,↑
1234

± Ψ 1,↑∗
1324Ψ

2,↑
1234 ∓ Ψ 2,↑∗

2134Ψ
2,↑
1234

]
+ δ3

[
2|Ψ 2,↑

1234|2 ± 2|Ψ 1,↑
1234|2 + Ψ 1,↑∗

1324Ψ
2,↑
1234

∓ Ψ 1,↑∗
3214Ψ

1,↑
1234 ∓ 2Ψ 2,↑

3124Ψ
1,↑
1234 ± Ψ 2,↑∗

1324Ψ
1,↑
1234

]}
, (6.27)

fd1 /g
d
1(x,k⊥) =

∫
dµ3

{
± δ2

(∣∣∣ψ(0)
123

∣∣∣
2

+ ψ
(0)
123ψ

(0)∗
321

)
+ δ3

∣∣∣ψ(0)
123

∣∣∣
2

+ δ1

(
kR,1ψ

(3)
123 + kR,2ψ

(4)
123

)(
kL,1ψ

(3)∗
123 + kL,2ψ

(4)∗
123 + kL,1ψ

(3)
132 + kL,3ψ

(4)∗
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)
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± δ3

(
kR,1ψ

(3)
123 + kR,2ψ

(4)
123

)(
kL,1ψ

(3)∗
123 + kL,2ψ

(4)∗
123

)

+ δ3kL,2ψ
(5)
123

(
kR,2ψ

(5)∗
123 + kR,1ψ

(5)∗
213

)}

+ 4

∫
dµ4

{
δ3(2

∣∣∣Ψ ↓1234

∣∣∣
2
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2,↑
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3124Ψ
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1234
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, (6.28)

hu1(x,k⊥) = 2

∫
dµ3

{
δ3ψ

(0)∗
312 ψ
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(0)
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∫
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δ2
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2Ψ ↓∗1234Ψ
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1,↑
1234

]
+ δ3

[
Ψ ↓∗3124Ψ
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1234
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,

(6.29)

hd1(x,k⊥) = 2

∫
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∫
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+ δ3
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2,↑
1234
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.

(6.30)

Incidentally, we note that we have a different sign for the gluon part of h1

compared to the results for the collinear version h1(x) given in Ref. [68]. This
is due to a sign mistake in Ref. [68] for the three-quark plus one-gluon state
|P, ↓〉.

The TMDs so far presented are the only ones that survive the collinear
limit, leading to the PDFs f1, g1 and h1, respectively. The other TMDs, albeit
they can have non-vanishing k⊥ integrals, appear in the quark-quark correlator
expansion with pre-factors that contain odd powers of k⊥. This leads to the
vanishing contribution of the following TMDs to the collinear parton correlator:

gu1T (x,k⊥) = −2M

k2
⊥

∑

j=1,2

kj
∫
dµ3

{
δ1ψ

(0)∗
123

(
kj2ψ

(3)
213 + kj1ψ

(4)
213

)

− δ2ψ
(0)
123

(
kj2ψ

(3)∗
213 + kj1ψ

(4)∗
213

)
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+ (δ1 + δ3)ψ
(0)∗
123

(
kj2ψ

(3)
213 + kj1ψ

(4)
213 + kj2ψ

(3)
231 + kj3ψ

(4)
231

)}
, (6.31)

gd1T (x,k⊥) = −2M

k2
⊥

∑

j=1,2

kj
∫
dµ3

{
δ3ψ

(0)∗
123

(
kj2ψ

(3)∗
213 + kj1ψ

(4)∗
213

)

− δ2ψ
(0)
123

(
kj2ψ

(3)∗
213 + kj1ψ

(4)∗
213 + kj2ψ

(3)∗
231 + kj3ψ

(4)∗
231

)}
, (6.32)

hu1L(x,k⊥) =
∑

j=1,2

2Mkj

Λk2
⊥

∫
dµ3

{
δ1ψ

(0)
123

(
kj3ψ

(3)∗
321 + kj2ψ

(4)∗
321 + kj3ψ

(3)∗
312 + kj1ψ

(4)∗
312

)

+ δ2

(
kj1ψ

(3)∗
123 + kj2ψ

(4)∗
123

)(
ψ

(0)
132 + ψ

(0)
231

)
+ kj2ψ

(5)∗
123 ψ

(0)
123

}
, (6.33)

hd1L(x,k⊥) = −
∑

j=1,2

2Mkj

Λk2
⊥

∫
dµ3

{
δ3ψ

(0)
123

(
kj1ψ

(3)∗
123 + kj2ψ

(4)∗
123

)

+ δ2ψ
(0)
123

(
kj3ψ

(5)∗
132 + kj1ψ

(5)∗
312

)}
, (6.34)

(h⊥1T )u(x,k⊥) =
2M2

(k2)2 − (k1)2

∫
dµ32δ2

{(
kR,1ψ

(3)
123 + kR,2ψ

(4)
123

)

×
(
kR,3ψ

(3)∗
321 + kR,2ψ

(4)∗
321 + kR,3ψ

(3)∗
312 + kR,1ψ

(4)∗
312

)}
, (6.35)

(h⊥1T )d(x,k⊥) = − 2M2

(k2)2 − (k1)2

∫
dµ3δ3

{(
kR,1ψ

(3)
123 + kR,2ψ

(4)
123

)

×
(
kR,2ψ

(3)∗
213 + kR,1ψ

(4)∗
213

)}
. (6.36)

To conclude this section, we are going to give the results for the unpolarized
and longitudinally polarized gluon TMDs. They are defined in terms of the
gluon-gluon correlator as follows:

f g1 (x,k⊥) = −g⊥,ijΦg,ji(x,k⊥) =
8∑

a=1

2∑

i=1

1

xP+

∫
dξ−dξ⊥
(2π)3

eik·ξ

× 〈P, S|W
(
ξ

2
,−ξ

2

)
F+i
a

(
−ξ

2

)
W

(
−ξ

2
,
ξ

2

)
F+i
a

(
ξ

2

)
|P, S〉

∣∣∣
ξ+=0

, (6.37)

gg1(x,k⊥) = −iεij⊥Φg,ji(x,k⊥) =
8∑

a=1

1

xP+

∫
dξ−dξ⊥
(2π)3

eik·ξ iεij⊥

× 〈P, S|W
(
ξ

2
,−ξ

2

)
F+i
a

(
−ξ

2

)
W

(
−ξ

2
,
ξ

2

)
F+j
a

(
ξ

2

)
|P, S〉

∣∣∣
ξ+=0

, (6.38)
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where gij⊥ = −δi1δj1 − δi2δj2, being δij the Kronecker symbol.
We notice that the gluon TMDs (and all the gluon distributions in general)

are defined with two gauge links in the adjoint representation. Usually three
distinct type of gluon distributions are identified, each one associated with
a specific combination of paths for the gauge links: both links being SIDIS-
like, both links being Drell-Yan-like and one link being Drell-Yan-like and the
other one being SIDIS-like (see Fig. 6.1). Which specific gauge link to use is
determined by the process in which the gluon TMDs enter. We are going to
ignore the gauge-link part, as we did for the quark TMDs. We obtain the
following LFWA overlap representation:

f g1 /g
g
1(x,k⊥) = 4

∫
dµ4δ4

{
± 2|Ψ ↓1234|2 ∓ Ψ ↓∗2134Ψ

↓
1234 + 4|Ψ 1,↑

1234|2 − Ψ 1,↑∗
3214Ψ

1,↑
1234

+ 4|Ψ 2,↑
1234|2 − Ψ 2,↓∗

2134Ψ
2,↑
1234 + 2Ψ 1,↑∗

1324Ψ
2,↑
1234 + 2Ψ 2,↑∗

1324Ψ
1,↑
1234

− 2Ψ 1,↑∗
2314Ψ

2,↑
1234 − 2Ψ 2,↑∗

2314Ψ
1,↑
1234

}
. (6.39)

All the results shown in this section can prove useful for combined phe-
nomenological analysis of TMDs and PDFs, since all these distributions are
obtained by the overlap of the same LFWAs in different kinematical domains.
We will give an idea of how this process might work in Sec. 6.4.2, by using the
simple polynomial model for the LFWAs illustrated in Sec. 6.1.

6.3 Light-Front Wave Amplitude overlap represent-

ation of GPDs

As we did for the TMDs in the previous section, we are going to give explicit
results for the LFWA overlap representation of the twist-2 chiral-even GPDs.
It will be clear how the GPDs E and Ẽ connect LFWAs for Fock states with
different values of Lz. The GPD E can be used to extract information on the
total angular momentum carried by the quarks [51], see Eq. (3.55). We recall
the GPD definitions given in Sec. 3.3.3:

FΛ′Λ(x, ξ, t) =
1

2

∫
dz−

2π
eiz
−xP+ 〈p′, Λ′| ψ̄(0)γ+ψ(z) |p, Λ〉 |z+=z⊥=0

=
1

2P+
ū(p′, Λ′)

(
γ+H(x, ξ, t) +

iσ+∆

2M
E(x, ξ, t)

)
u(p, Λ), (6.40)

F̃Λ′Λ(x, ξ, t) =
1

2

∫
dz−

2π
eiz
−xP+ 〈p′, Λ′| ψ̄(0)γ+γ5ψ(z) |p, Λ〉 |z+=z⊥=0

=
1

2P+
ū(p′, Λ′)

(
γ+γ5H̃(x, ξ, t) +

∆+γ5

2M
Ẽ(x, ξ, t)

)
u(p, Λ).

(6.41)
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z⊥

z−

(
ξ−
2 ,

ξ⊥
2

)

(

−ξ−
2
,−ξ⊥

2

)−∞−

z⊥

z−

(
ξ−
2 ,

ξ⊥
2

)

(

−ξ−
2
,−ξ⊥

2

)

∞−

z⊥

z−

(
ξ−
2 ,

ξ⊥
2

)

(

−ξ−
2
,−ξ⊥

2

)

∞−

−∞−

Figure 6.1: Possible gauge-link paths for the gluon TMDs. The double SIDIS-
like link is in top left, the double DY-like link is in the top right and the mixed
one is at the bottom.

In the following, we will give the LFWA overlap representation of the helicity
amplitudes, that appears more simple than in the GPD case. The GPDs can
then be obtained from the following combination of helicity amplitudes, see,
e.g., Ref. [21]:

H(x, ξ, t) =
1√

1− ξ2

(
F++(x, ξ, t) +

2Mξ2

η
√
t0 − t

√
1− ξ2

F−+(x, ξ, t)

)
, (6.42)

E(x, ξ, t) =
2M

η
√
t0 − t

F−+(x, ξ, t), (6.43)

H̃(x, ξ, t) =
1√

1− ξ2

(
F̃++(x, ξ, t) +

2Mξ

η
√
t0 − t

√
1− ξ2

F̃−+(x, ξ, t)

)
, (6.44)

Ẽ(x, ξ, t) =
2M

ηξ
√
t0 − t

F̃−+(x, ξ, t), (6.45)

where we defined:

−t0 = min
∆⊥

(−t) =
4ξ2M2

1− ξ2
, η =

∆R√
∆2

⊥
. (6.46)

We notice how each GPD is in one-to-one correspondence with a specific
helicity amplitude in the limit of vanishing skewness (ξ = 0).
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x + ξ x − ξ −x − ξ−x+ ξ

(a)

x+ ξ −x+ ξ

(b)

Figure 6.2: Different possible diagrams for the quark GPDs with ξ > 0. The
diagrams (a) represent the GPDs in the DGLAP region, in which a quark
(x > ξ > 0) or an antiquark (x < −ξ < 0) is emitted from the proton and
reabsorbed after the hard scattering (represented with the black dots). The
diagram (b) represents the GPDs in the ERBL region, in which a quark-anti-
quark pair is extracted from the proton (−ξ < x < ξ). We refer to the main
text for a broader discussion about the two regions.

The helicity amplitudes satisfy the following constraints:

F++(x, ξ, t) = F−−(x, ξ, t), F+−(x, ξ, t) = −F ∗−+(x, ξ, t), (6.47)

F̃++(x, ξ, t) = −F̃−−(x, ξ, t), F̃+−(x, ξ, t) = F̃ ∗−+(x, ξ, t). (6.48)

Therefore, out of the eight possible helicity amplitudes, only four are independ-
ent, consistently with the number of independent GPDs.

General results for the overlap representation of the GPDs in terms of
LFWFs are known for a very long time now, see Refs. [21, 97, 98, 112]. It
is also a commonly known fact that the skewness variable2 ξ identifies two dis-
tinct regions in x, namely RDGLAP = {x ∈ (−1, 1) : |x| > ξ} and RERBL =
{x ∈ (−1, 1) : |x| < ξ}. The LFWF representation of the GPDs allows us
to investigate the differences between the two regions. In the first one, i.e.
RDGLAP, the GPDs are obtained from the diagrams in Fig. 6.2a. In the region
ξ < x < 1, the process is described as the emission of a quark with momentum
fraction x+ ξ from the proton and the absorption of a quark with momentum
fraction x − ξ. In the region −1 < x < −ξ, the process is described as the
emission of an antiquark with momentum fraction −x− ξ from the proton and

2In all known processes where GPDs may be measured one has ξ ≥ 0, which we will tacitly
assume unless otherwise specified.
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6.3. Light-Front Wave Amplitude overlap representation of GPDs

the absorption of an antiquark with momentum fraction −x+ ξ. These regions
are named DGLAP, since here the GPDs evolve to different scales through the
DGLAP evolution equations. As clear from the description above, in the Fock-
state decompositions of the initial and final proton states, we have only terms
that have the same parton content, i.e. the GPDs in the DGLAP region are
diagonal in the Fock space. In the second region, RERBL, we extract from the
proton a quark-antiquark pair and we annihilate it in the hard-scattering part
of the process. The diagram that corresponds to the ERBL region is shown in
Fig. 6.2b. In the Fock-state decompositions of the initial and final proton states,
we have only terms where the parton content of the initial and final state differs
for a quark-antiquark pair. Therefore, the GPDs in the ERBL region are not
diagonal in the Fock space. Also for the ERBL region the name derives from
the evolution equation that are used to evolve the GPDs to different scales, see
Refs. [113, 114]. Some information on the GPDs in the ERBL region can be
extracted from the DGLAP region by exploiting the connection between GPDs
and double parton distributions, see Refs. [115–117]. We will restrict ourself to
the DGLAP region in the remaining of this Chapter, because in our model we
do not consider the three-quark plus the quark-antiquark pair state, hence we
cannot explicitly compute the ERBL region contribution.

Finally, before being able to obtain explicit results, we must fix a reference
frame, i.e. we must fix the convention of how to split the transferred momentum
∆ between the initial and final proton states. Two common choices exist: the
photon-proton center of mass frame and the symmetric frame, see Ref. [20]. We
choose to work with the symmetric frame, in which the initial-state partonic
variables read:

xi =
x̄i + ξ

1 + ξ
, k⊥,i = κ⊥,i −

1− x̄i
1 + ξ

∆⊥

2
, active quark,

xi =
x̄i

1 + ξ
, k⊥,i = κ⊥,i +

x̄i
1 + ξ

∆⊥

2
, spectator quark, (6.49)

and the final-state partonic variables are

x̂i =
x̄i − ξ
1− ξ , k̂⊥,i = κ⊥,i +

1− x̄i
1− ξ

∆⊥

2
, active quark,

x̂i =
x̄i

1− ξ , k̂⊥,i = κ⊥,i −
x̄i

1− ξ
∆⊥

2
, spectator quark, (6.50)

where x̄i and κ⊥,i are the average fraction of longitudinal momentum and the
average transverse momentum of the partons, respectively3.

To facilitate the reading, we use the shorthand notations:

dµ̄N = δ

(
1−

N∑

i=1

x̄i

)
δ

(
N∑

i=1

κ⊥,i

)
1

(2(2π)3)N−1

N∏

i=1

(dx̄idκ⊥,i) , (6.51)

3The average fraction longitudinal of momentum is defined as the the average plus mo-
mentum of the partons divided by the average plus momentum P+ of the proton.
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and

ψ
(34)
123 = k1,Rψ

(3)
123 + k2,Rψ

(4)
123,

ψ̃
(34)
123 = k1,Lψ

(3)
123 + k2,Lψ

(4)
123, ψ̃

(5)
123 = k2,Lψ

(5)
123.

The results for the quark helicity-conserving amplitudes read:

F u
++,L=0

(
F̃ u

++,L=0

)
=

∫
dµ̄3√
1− ξ2

{
δ1ψ

(0)
123

(
2ψ

(0)∗
1̂2̂3̂

+ ψ
(0)∗
3̂2̂1̂

)

+ δ3ψ
(0)
123

(
ψ

(0)∗
1̂2̂3̂

+ ψ
(0)∗
3̂2̂1̂

)
± δ2ψ

(0)
123ψ

(0)∗
1̂2̂3̂

}
, (6.52)

F d
++,L=0

(
F̃ d

++,L=0

)
=

∫
dµ̄3√
1− ξ2

{
δ3ψ

(0)
123ψ

(0)∗
1̂2̂3̂
± δ2ψ

(0)
123

(
ψ

(0)∗
1̂2̂3̂

+ ψ
(0)∗
3̂2̂1̂

)}
,

(6.53)

F u
++,L=1

(
F̃ u

++,L=1

)
=

∫
dµ̄3√
1− ξ2

{
(δ1 ± δ2)ψ

(34)
123 ψ

(34)∗
1̂2̂3̂

± (δ2 + δ3)ψ
(34)
123

(
ψ

(34)∗
1̂2̂3̂

+ ψ
(34)∗
1̂3̂2̂

)}
, (6.54)

F d
++,L=1

(
F̃ d

++,L=1

)
=

∫
dµ̄3√
1− ξ2

{
(δ1 ± δ3)ψ

(34)
123 ψ

(34)∗
1̂2̂3̂

+ δ1ψ
(34)
123 ψ

(34)∗
1̂3̂2̂

}
,

(6.55)

F u
++,L=−1

(
F̃ u

++,L=−1

)
=

∫
dµ̄3√
1− ξ2

{
(δ1 + δ2) ψ̃

(5)
123

(
ψ̃

(5)∗
1̂2̂3̂

+ ψ̃
(5)∗
2̂1̂3̂

)}
, (6.56)

F d
++,L=−1

(
F̃ d

++,L=−1

)
=

∫
dµ̄3√
1− ξ2

{
δ3ψ̃

(5)
123

(
ψ̃

(5)∗
1̂2̂3̂

+ ψ̃
(5)∗
2̂1̂3̂

)}
, (6.57)

F u
++,g↓

(
F̃ u

++,g↓

)
= 4

∫
dµ̄4

1− ξ2

{
(δ1 + δ2)Ψ ↓1234

(
2Ψ ↓∗

1̂2̂3̂4̂
− Ψ ↓∗

2̂1̂3̂4̂

)}
,

(6.58)

F d
++,g↓

(
F̃ d

++,g↓

)
= 4

∫
dµ̄4

1− ξ2

{
δ3Ψ

↓
1234

(
2Ψ ↓∗

1̂2̂3̂4̂
− Ψ ↓∗

2̂1̂3̂4̂

)}
, (6.59)

F u
++,g↑

(
F̃ u

++,g↑

)
= 4

∫
dµ̄4

1− ξ2

{
δ1

[
± 4Ψ 1,↑

1234Ψ
1,↑∗
1̂2̂3̂4̂

± 4Ψ 2,↑
1234Ψ

2,↑∗
1̂2̂3̂4̂
± 2Re

(
Ψ 1,↑∗

1̂3̂2̂4̂
Ψ 2,↑

1234 + Ψ 2,↑∗
1̂3̂2̂4̂

Ψ 1,↑
1234

)

∓ Ψ 1,↑∗
3̂2̂1̂4̂

Ψ 1,↑
1234 ∓ Ψ 2,↑∗

2̂1̂3̂4̂
Ψ 2,↑

1234 ∓ 2Ψ 2,↑∗
3̂1̂2̂4̂

Ψ 1,↑
1234 ∓ 2Ψ 1,↑∗

2̂3̂1̂4̂
Ψ 2,↑

1234

]

+ δ2

[
2Ψ 1,↑

1234Ψ
1,↑∗
1̂2̂3̂4̂
± 2Ψ 2,↑

1234Ψ
2,↑∗
1̂2̂3̂4̂
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+ Ψ 2,↑∗
1̂3̂2̂4̂

Ψ 1,↑
1234 ∓ 2Ψ 1,↑∗

2̂3̂1̂4̂
Ψ 2,↑

1234 ± Ψ 1,↑∗
1̂3̂2̂4̂

Ψ 2,↑
1234 ∓ Ψ 2,↑∗

2̂1̂3̂4̂
Ψ 2,↑

1234

]

+ δ3

[
2Ψ 2,↑

1234Ψ
2,↑∗
1̂2̂3̂4̂
± 2Ψ 1,↑

1234Ψ
1,↑∗
1̂2̂3̂4̂

+ Ψ 1,↑∗
1̂3̂2̂4̂

Ψ 2,↑
1234 ∓ Ψ 1,↑∗

3̂2̂1̂4̂
Ψ 1,↑

1234 ∓ 2Ψ 2,↑
3̂1̂2̂4̂

Ψ 1,↑
1234 ± Ψ 2,↑∗

1̂3̂2̂4̂
Ψ 1,↑

1234

]}
,

(6.60)

F d
++,g↑

(
F̃ d

++,g↑

)
= 4

∫
dµ̄4

1− ξ2

{
δ2

[
2Ψ 1,↑

1234Ψ
1,↑∗
1̂2̂3̂4̂
± 2Ψ 2,↑

1234Ψ
2,↑∗
1̂2̂3̂4̂

− Ψ 1,↑∗
3̂2̂1̂4̂

Ψ 1,↑
1234 + Ψ 2,↑∗

1̂3̂2̂4̂
Ψ 1,↑

1234 ± Ψ 1,↑∗
1̂3̂2̂4̂

Ψ 2,↑
1234 − 2Ψ 2,↑∗

3̂1̂2̂4̂
Ψ 1,↑

1234

]

+ δ3

[
2Ψ 2,↑

1234Ψ
2,↑∗
1̂2̂3̂4̂
± 2Ψ 1,↑

1234Ψ
1,↑∗
1̂2̂3̂4̂

+ Ψ 1,↑∗
1̂3̂2̂4̂

Ψ 2,↑
1234

± Ψ 2,↑∗
1̂3̂2̂4̂

Ψ 1,↑
1234 − 2Ψ 1,↑∗

2̂3̂1̂4̂
Ψ 2,↑

1234 − Ψ 2,↑∗
2̂1̂3̂4̂

Ψ 2,↑
1234

]}
. (6.61)

The results for the quark helicity-flip amplitudes read:

F u
+−,L=0,L=−1

(
F̃ u

+−,L=0,L=−1

)
= −

∫
dµ̄3√
1− ξ2

{
(δ2 ± δ1) ψ̃

(34)
123 ψ

(0)∗
2̂1̂3̂

+ (δ2 + δ3) ψ̃
(34)
123

(
ψ

(0)∗
2̂1̂3̂

+ ψ
(0)∗
3̂1̂2̂

)}
, (6.62)

F d
+−,L=0,L=−1

(
F̃ d

+−,L=0,L=−1

)
= −

∫
dµ̄3√
1− ξ2

{
(δ3 ± δ1) ψ̃

(34)
123 ψ

(0)∗
2̂1̂3̂

± δ1ψ̃
(34)
123 ψ

(0)∗
3̂1̂2̂

}
, (6.63)

F u
+−,L=1,L=0

(
F̃ u

+−,L=1,L=0

)
=

∫
dµ̄3√
1− ξ2

{
(δ2 ± δ1)ψ

(0)
123ψ

(34)∗
2̂1̂3̂

± (δ1 + δ3)ψ
(0)
123

(
ψ

(34)∗
2̂1̂3̂

+ ψ
(34)∗
2̂3̂1̂

)}
, (6.64)

F d
+−,L=1,L=0

(
F̃ d

+−,L=1,L=0

)
=

∫
dµ̄3√
1− ξ2

ψ
(0)
123

{
(δ3 ± δ2)ψ

(34)∗
2̂1̂3̂

+ δ2ψ
(34)∗
2̂3̂1̂

}
.

(6.65)

The pre-factors

1
√

(1− ξ2)
N−2

(6.66)

that appear in front of the integrals in the previous equations are derived from
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the following change of variables:

∫
[dx]N [dx̂]N√
x1...xN x̂1...x̂N

N∏

i=2

p+
i δ(p

+
i − p̂+

i ) =

∫
[dx]N [dx̂]N√
x1...xN x̂1...x̂N

N∏

i=2

x̄iδ(x̄i − ¯̂xi)

=

∫
(1 + ξ)1−N/2 (1− ξ)1−N/2 [dx̄]N

x̄2
1

.

(6.67)

From the GPDs, by taking the integral over x, we can compute the electro-
magnetic form factors of the proton, see Fig. 3.3. The integral over x remove
the ξ dependence: this follows from the Lorentz invariance, see Eq. (3.55). We
have:

F q
1 (t) = eq

∫ 1

−1

dxF++(x, ξ, t), F q
2 (t) = 2Meq

∆L

∆2
⊥

∫ 1

−1

dxF−+(x, ξ, t), (6.68)

where eq is the quark electric charge.
The GPDs at non-vanishing t give also an immediate generalization of

Eq. (3.55):

Jq(t) =
1

2

∫ 1

−1

dx x (Hq(x, ξ, t) + Eq(x, ξ, t)) . (6.69)

At vanishing momentum transfer t = 0 and if we sum over all the quark flavors,
we must have: ∑

q=u,d,...

Jq(t = 0) =
1

2
− Jg(t = 0), (6.70)

where the gluon total angular momentum is defined in a similar fashion as the
quark contribution:

Jg =
1

2

∫ 1

−1

dx (Hg(x, ξ, t) + Eg(x, ξ, t)) . (6.71)

In our model, it is possible to compute only partially the gluon GPDs, since to
compute Eg and Ẽg it is necessary to incorporate the four-parton state with
non-vanishing parton OAM. In Chapter 8, we are going to see that the total
angular momentum introduced in Eq. (6.69) can be obtained directly from a
local matrix element of a suitable operator.

6.4 Fit of the parameters

In this section, we are going to illustrate our fitting strategy. Despite its simpli-
city, our model (Eqs. (6.6)-(6.12)) is able to reproduce the main features of the
parton distributions in the valence region. The model can be further refined
to improve the agreement with the phenomenological extractions of the parton
distributions. A refined version of the model can be used as a starting point
for future combined fits of TMDs and GPDs. As anticipated, our focus will be
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on the collinear and unpolarized PDF f1. We fit the parameters of the model
to the phenomenological parametrizations of the collinear parton distributions
extracted from available experimental data. The fit of the model to the para-
metrization allows us to find the best set of parameters that are compatible
with the QCD sum rules and lattice estimation. It also provides a way to fix
the effective quark and gluon masses (see Eqs. (6.1)-(6.3)) and the widths of the
transverse-momentum Gaussians. We chose to not compute the evolution of f1

with the scale, because a consistent procedure would require to have a non-
vanishing sea-quark contribution that is not included in our model. Among
the available phenomenological parametrizations, we use the MMHT2014 [118]
that provides results at the same scale of our model, i.e. µ = 1 GeV. We chose
to use the results of MMHT2014 at NLO. We will perform a simultaneous fit
of both the quark and gluon contribution to f1, using the results of Sec. 6.2.

In historical order, we first included in our model only the contributions that
come from the Lz = 0 LFWAs (see Ref. [119]). The more recent development
of the model allows us to include in the analysis also the LFWAs for the states
with |Lz| = 1. The new results including the non-vanishing OAM components
of the LFWFs will be presented also in a forthcoming manuscript [120].

6.4.1 Fit methodology

A variety of minimization algorithms can be applied to fit the model paramet-
ers to the experimental data. One of the most used is the gradient-descendent
method. In this approach, the parameter space is explored in the opposite dir-
ection with respect to the gradient of a loss function that defines the goodness
of the current set of parameters (usually a χ2-like function). Gradient methods
rely on analytical or numerical evaluations of the gradient of the loss function.
In general, these types of methods work well enough, however they might fail
in some situations. For example, the loss function can be almost flat or, on
the opposite, it can have a large number of local minima that differ not very
much from the global one (pathological situations, in which the global minima
is reached for a divergent value of some parameters, are also possible). Also,
gradient methods are not very suited for a problem with a high-dimensional
parameter space4. Alternatives to the gradient methods are geometrical meth-
ods that do not require to compute the derivative of the loss function. The
gold standard for geometrical minimization methods is the simplex algorithm.
The simplex is a geometrical construction that is the generalization of the tri-
angle to any dimension d > 2. The simplex minimization algorithm consists in
a set of rules that construct the simplex in the parameter space and collapse
it into the global minimum of the loss function. The simplex algorithm has
the advantage of avoiding the evaluation of the derivative of the loss function.
However, it is quite slow, especially for a high-dimensional parameter space.
Last, a large class of Monte-Carlo based methods exists. Monte-Carlo meth-
ods are, in general, best suited for problems with high-dimensional parameter

4A good gradient method suited for large parameter sets is ADAM, see Ref. [121].
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space. For this reason, we chose a simple version of Monte-Carlo methods, in
which n parameter-configurations are sampled and the best one is selected. The
best parameter configuration is defined as the one that minimizes the following
χ2-like function:

χ2 =
N∑

i=1

(xif
u
1 (xi)− P (xi, valence up))2

σ2
i,u

+

(
xif

d
1 (xi)− P (xi, valence down)

)2

σ2
i,d

+ θ(xi − 0.4)
(xif

g
1 (xi)− P (xi, gluon))2

σ2
i,g

, (6.72)

where P (x, parton) is the value of the MMHT2014 parametrization at NLO for
xfparton1 (x) and σi is the associated error. For the points xi we assumed an
equally spaced grid:

xi =
i+ 1

N + 1
, (6.73)

with N = 100. In Eq. (6.72), the gluon PDF appears only for values of x >
0.4, since in the mid-to-low x range our model is not able to reproduce the
phenomenological behavior of the gluon distribution.

To obtain a set for one Monte-Carlo iteration, all the parameters of the DAs
in Eqs. (6.6)-(6.12) are assumed to follow a gaussian distribution with mean
and standard deviation equal, respectively, to the central value and the error of
the QCD sum-rule or lattice evaluations (see the second column of Tab. 6.1).
For the widths of the transverse-momentum gaussian functions we chose central
values that are consistent with the values in Ref. [105]. The standard deviations
were fixed in such a way to ensure a good variability of the parameters. A close
inspection reveals that the gaussian-width parameters ai participate in the total
PDF normalization, hence it is possible a relatively narrow range of variation.
The masses are sampled uniformly in the whole possible range, i.e. the quark
mass is sampled in the interval

mq ∈
[
0,
M

3

]
, (6.74)

and the gluon mass is sampled in the interval

mg ∈ [0,M − 3mq], (6.75)

in such a way that we always ensure that 0 ≤ 3mq + mg ≤ M. Finally, the
gaussian widths a3 and a4 for the Lz = 1 state are assumed to be equal, and
the same is assumed for the widths of the three-quark plus one-gluon state, i.e.
we have that:

a3 = a4, a↓ = a1,2↑. (6.76)
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We performed two separate fits. First, we ignored the LFWAs for the states
|Lz| = 1 and performed the fit only with the LFWAs for Lz = 0, following the
analysis of Ref. [119]. The results are shown in the column labeled “Old Fit” in
Tab. 6.1. Instead, in the new fit configuration, we considered also the LFWAs
for the three-quark state with |Lz| = 1, and the results are given in the last
column of Tab. 6.1. From the table, one can appreciate how the parameters that
were present in both versions of the fit do not change value drastically: all the
parameters in the two configurations are separated by less than one standard
deviation, beside λg3 which varies about two standard deviations. Overall this
indicates that the values of the parameters of the LFWA expansion are quite
robust under different truncation of the Fock-space expansion.

Finally, in Figs. 6.3-6.4 we show the results for the fitted PDFs xf1(x) in
both the old and new configuration. In Fig. 6.3 the total results for the PDFs
xf1(x) are compared with the MMHT2014 parametrization. The results for the
quark PDFs reproduce fairly the MMHT2014 parametrization at large x (x '
0.3), while they have a much faster fall-off for x→ 0 than the Regge-motivated
behavior of the parametrization. We notice how the inclusion of Lz 6= 0 LFWAs
slightly improves the behavior for medium-to-low-x, while it makes slightly
worse the comparison at large x between the MMHT2014 parametrization and
the model results. In Fig. 6.4 the different OAM contributions to xf1(x) are
compared. One can notice how the LFWAs for Lz 6= 0 produce a relatively
small contribution per se, but have a large impact on the Lz = 0 contributions.

6.4.2 Fit results

Using the parameters that are obtained from the fit, we can now compute all
the parton distributions given in Secs. 6.2 and 6.3. First, let us start with the
analysis of the norm of the proton in our model. The results are shown in
Tab. 6.2. The total norm, including the states with |Lz| = 1, is

N ' 0.645. (6.77)

The norm gives an indication of the goodness of the approximation introduced
by the truncation in the Fock expansion. For comparison, our older results,
that did not include the states with non-vanishing OAM, give a norm equal to
0.56. The norm in Eq. (6.77) can be separated into the contributions from the
various Fock states, with the results:

P3qg↑ + P3qg↓ = 0.502,

P3q,Lz=0 = 0.120, P3q,Lz=1 = 0.004, P3q,Lz=−1 = 0.019. (6.78)

Comparing these results with the old ones from Ref. [119]:

P3qg↑ + P3qg↓ = 0.384, P3q,Lz=0 = 0.176, (6.79)

we observe that even a relatively small variation in the parameters can produce
a sizable effect on the norm of the different Fock-state components. Another
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Parameter Lattice/QCD sum rules Old Fit New Fit

fN (GeV2) 5.0± 0.5 10−3 4.68 10−3 4.92 10−3

f−0 1± 0.3 1.14 1.04

f+
0 4± 1.5 0.5 1.87

φ0
4 (GeV2) −1.11± 0.45 10−2 NA −1.52 10−2

φ−4 (GeV2) 3.50± 2.73 10−2 NA 1.64 10−2

φ+
4 (GeV2) 2.11± 1.51 10−2 NA 1.98 10−2

ψ0
4 (GeV2) 1.58± 0.45 10−2 NA 1.18 10−2

ψ−4 (GeV2) −6.10± 5.25 10−2 NA −6.88 10−2

ψ+
4 (GeV2) 1.07± 0.97 10−2 NA −0.70 10−2

ξ0
4 (GeV2) 0.85± 0.32 10−2 NA 1.08 10−2

ξ−4 (GeV2) 2.79± 1.77 10−2 NA 4.11 10−2

ξ+
4 (GeV2) 0.56± 0.35 10−2 NA −0.48 10−2

λg1 (GeV2) 2.6± 1.2 10−3 2.79 10−3 3.11 10−3

λg2 (GeV2) 2.3± 0.7 10−3 1.33 10−3 1.63 10−3

λg3 (GeV2) 0.54± 0.2 10−3 0.36 10−3 0.76 10−3

Parameter Initial values Old Fit New Fit

a0 (GeV−1) 0.73± 0.2 0.85 0.61

a3 (GeV−1) 0.5± 0.1 NA 0.31

a4 (GeV−1) 0.5± 0.1 NA a3

a5 (GeV−1) 0.5± 0.1 NA 0.47

a1,2↑ (GeV−1) 0.8± 0.1 0.782 0.76

a↓ (GeV−1) 0.8± 0.1 a1,2↑ a1,2↑

mq (GeV)
[
0, M

3

]
0.161 0.149

mg (GeV) [0,M − 3mq] 0.05 0.030

Table 6.1: Parameters of the model illustrated in Eqs. (6.6)-(6.11). The theor-
etical central values are shown in the top part with the associated errors and
the fit results in the old configuration from Ref. [119] (only Lz = 0 LFWAs)
and in the new configuration of this work (three-quark LFWAs with Lz = ±1
included). The bottom part of the table contains the initial guess for the para-
meters, the standard deviation and the fit results in the two configurations.
For the masses, the uniform range of sampling is shown. In Ref. [119], f∓0 were
given as A,B.

interesting aspect to investigate are the momentum fractions carried by quarks
and gluons. The average fraction of longitudinal momentum is defined via the
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State Old Fit New Fit

P (|3q, Lz = 0〉) 0.176 0.120

P (|3q, Lz = +1〉) 0 0.002

P (|3q, Lz = −1〉) 0 0.019

P (|3qg, g ↑〉) 0.103 0.168

P (|3qg, g ↓〉) 0.281 0.334

Table 6.2: Norm of the various Fock components in the old fit configuration
from Ref. [119] and in the new fit configuration of the present work.

second Mellin moment of the unpolarized distribution:

〈x〉a =

∫ 1

0

dx xfa1 (x), (6.80)

where a distinguishes between the up quark, the down quark and the gluon. The
results for the average longitudinal-momentum fractions are shown in Tab. 6.3
in both fit configurations and for the MMHT2014 parametrization as well. We
notice that the results of the new fit are in better agreement with the phenomen-
ological parametrization than the results from the old fit. The prediction for
the gluon is still not able to correctly reproduce the phenomenological value:
this is due to the fact that the model is not able to capture correctly the gluon
dynamic below x ' 0.4.

Old Fit New Fit valence MMHT2014 (NLO)

〈x〉up 0.305 0.339 0.346± 0.008

〈x〉down 0.136 0.148 0.143± 0.007

〈x〉gluon 0.119 0.158 0.350± 0.033

Table 6.3: Results for the average longitudinal-momentum fraction for the up
and down quarks and for the gluon, corresponding to the configuration from
Ref. [119] (second column), the new fit configuration of this work (third column)
and the MMHT2014 parametrization (last column).

So far we explored mainly the x-dependence of the parton distributions. To
gain information on the transverse-momentum part, it is useful to introduce the
average transverse-momentum fractions. These quantities allow us to compare
the spread in the transverse-momentum space of the different distributions. At
variance with Ref. [119], we adopt the following convention, that has the merit
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of producing dimensionless numbers:

〈k⊥〉 =

∫ 1

0

dx

∫

R2

dk⊥
k⊥
M

TMD(x,k⊥), (6.81)

〈k2
⊥〉 =

∫ 1

0

dx

∫

R2

dk⊥
k2
⊥

2M2
TMD(x,k⊥). (6.82)

The results for the different distributions are given in Tab. 6.4. We notice
how the values for the TMDs that have no collinear counterpart are smaller
compared to the ones that have a PDF counterpart. This is due to the fact
that g1T and h⊥1L are given as superposition of LFWAs with different Lz (see
Sec. 6.2), and, as can be seen from Fig. 6.3, the contributions of the LFWAs
with |Lz| = 1 are rather small compared to the contributions of Lz = 0.

We can also study the x-dependence of the average transverse momentum
for different distributions (see Ref. [16]). We define

〈k⊥〉 (x) =

∫

R2

dk⊥
k⊥
M

TMD(x,k⊥), (6.83)

〈k2
⊥〉 (x) =

∫

R2

dk⊥
k2
⊥

2M2
TMD(x,k⊥). (6.84)

In Fig. 6.5 are shown the results for the PDFs f1(x), g1(x) and h1(x) and for
〈k⊥〉 (x) for the TMDs g1T and h⊥1L. We notice that, due to a factor k2

1 − k2
2

at the denominator (see Eqs. (6.35)-(6.36)), h⊥1T presents numerical instabilities
and is not shown. Our model, at variance with other models, like the one of
Ref. [96], does not assume SU(6) symmetry for the LWFAs. This implies that
our model does not comply with the TMD relations discussed in Ref. [89].

Finally, the results for the GPDs at different values of ξ and t as function of x
are shown in Figs. 6.6-6.8. In Fig. 6.6, we present the results for Hu(x, ξ, t) and
H̃u(x, ξ, t) as function of x for three selected values of ξ and t. In particular
we choose ξ = 0, t = 0 GeV2, ξ = 0, t = −0.2 GeV2 and ξ = 0.2, t =
−0.34 GeV2. The results for the three-quark and the three-quark plus one-
gluon states are shown separately as well as the total results. In Fig. 6.7, the
same configuration as in Fig. 6.6 is used to show the results for Hd(x, ξ, t) and
H̃d(x, ξ, t) as function of x. For both the up and down quark we observe how
the three-quark plus one-gluon contribution tends to dominate in the mid-to-
low x region, whereas the three-quark contribution dominates at high values of
x. We also note how increasing the value of ξ tends to decrease the magnitude
of the GPDs. We can notice how the three-quark contribution to H̃d is the
only negative contribution among the GPDs Hu,d and H̃u,d. In Fig. 6.8 we
present the results for Eu,d(x, ξ, t) and Ẽu,d(x, ξ, t) as function of x for three
selected values of ξ and t. In particular we choose ξ = 0.1, t = −0.1 GeV2,
ξ = 0.1, t = −0.2 GeV2 and ξ = 0.2, t = −0.34 GeV2. The limit ξ → 0 and
t→ 0 GeV2, although being finite in the model, presents numerical instabilities
and, therefore, it is not shown. The two GPDs H̃(x, ξ, t) and E(x, ξ, t) have
a clear different behavior for the up and down quark. For H̃(x, ξ, t) this is
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especially evident in the three-quark contribution. Comparing our results with
the one presented in Ref. [16], we can notice profound differences in H̃d and
in Eu,d. These discrepancies are probably due to the very different modeling
of the Lz = ±1 LFWAs in the two models. Within our model we find very
poor results for the electromagnetic proton form factors. This can be due to
different reasons. We believe that the model can be significantly improved
either by increasing the number of polynomials in the expansion of the DAs,
since it is known that the convergence in the polynomial expansion is slow.
Another approach could be to abandon the polynomial expansion for the DAs,
replacing it with a more comprehensive and sophisticated model, like a neural
network approach. Work in this direction has been planned and will be pursued
in the future. The work presented so far served to provide model-independent
relations between the LFWAs and DAs and a unified framework to calculate a
variety of parton distributions. This gives us an essential playground for future
more refined phenomenological analysis.

TMD 〈k⊥〉 〈k2
⊥〉

fu1 0.493 0.130

fd1 0.240 0.061

f g1 0.193 0.048

gu1 0.322 0.086

gd1 0.071 0.018

gg1 −0.064 −0.016

hu1 0.192 0.050

hd1 −0.059 −0.014

gu1T −0.006 −0.002

gd1T 0.001 0.001

h⊥,u1L −0.008 −0.003

h⊥,d1L −0.049 −0.012

h⊥,u1T 0.005 0.002

h⊥,d1T 0.003 0.001

Table 6.4: Average transverse-momentum (second column) and average squared
transverse-momentum (third column) for the leading-twist T-even TMDs as
defined in Eqs. (6.81)-(6.82). The h⊥1T is not showed because it present problems
of numerical nature during the integration due to the k2

1 − k2
2 factor at the

denominator, see Eqs. (6.35)-(6.36).
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6.5 Conclusions

In this Chapter, we presented our model for the LFWAs of the three-quark and
three-quark plus one-gluon states. The model discussed in Sec. 6.1 was con-
structed in three steps: first, we assumed a gaussian Ansatz for the transverse-
momentum dependence of the LFWAs. Second, we inverted the relations
between the DAs and the LFWAs (see Sec. 3.4.4) to obtain the LFWAs in
terms of the DAs. Third, we assumed a specific polynomial expansion for
the DAs based on the conformal expansion of Ref. [66]. This procedure gives
the complete model for the LFWAs. In Secs. 6.2 and 6.3, we illustrated the
LFWA overlap representation for the leading-twist T-even TMDs and chiral-
even GPDs. These expressions are independent from the explicit model for the
LFWAs and, therefore, have an importance that transcends the specific of our
model. The parametrization we adopted for the DAs has already been discussed
in similar form in the literature, see Refs. [65, 66, 68, 105, 107]. These studies
provided the values for the parameters of the DAs via QCD sum-rule techniques
and lattice-QCD estimation, at the scale µ = 1 GeV. However, we modified the
model including the quark and gluon effective masses. The values of the masses
along with the parameters of the DAs have been fitted to a phenomenological
parametrization of the unpolarized PDF f1(x). Specifically, we chose the phe-
nomenological extraction MMHT2014 [118], since it provides results at the same
scale (µ = 1 GeV) of the QCD sum rules and lattice calculations of the DAs,
which represent a benchmark for our model results.

The fit procedure and the fit results have been illustrated in Sec. 6.4 along
with a selection of results for the GPDs and TMDs. The possibility of fit-
ting the LFWAs to a sub-set of parton distributions and using the information
acquired in such a way to obtain predictions for other parton distributions is
one of the main advantages of using LFWAs for phenomenological analysis.
Moreover, since the LFWAs can provide a parametrization of different parton
distributions, they can be used to fit simultaneously experimental data for dif-
ferent distributions. These features prove valuable in view of the future EIC
and upcoming new data from JLab and COMPASS.
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Figure 6.3: Fit results both in the old configuration from Ref. [119] (only
Lz = 0 states) and in the new configuration of this work (also |Lz| = 1 three-
quark states included). In (a), (b) and (c) are shown the comparison between
MMHT2014 and the total results for the up, down and gluon contributions,
respectively.
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Figure 6.4: Fit results both in the old configuration from Ref. [119] (only Lz = 0
states) and in the new configuration of this work (also |Lz| = 1 three-quark
states included). In (a) and (b) are shown the comparison of the old and new
fit results for the different LFWA contributions to the up and down quark
unpolarized PDF.
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Figure 6.5: Panels (a) and (b) show the PDFs f1(x) and g1(x), respectively,
for the up and down quark and for the gluon. Panel (c) shows the PDF h1(x)
for the up and down quark. Panels (d) and (e) show the average transverse-
momentum as function of x of Eq. (6.83) for the TMDs g1T and h⊥1L. Panel (f)
shows the average transverse-momentum as function of x of Eq. (6.83) for the
TMD h⊥1T .
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Figure 6.6: Results for the up quark contribution to the GPDs Hu(x, ξ, t) and
H̃u(x, ξ, t) as function of x at different values of ξ and t: ξ = 0 and t = 0 in
the panels (a) and (b); ξ = 0, t = −0.2 GeV2 in the panels (c) and (d) and
ξ = 0.2, t = −0.34 GeV2 in the panels (e) and (f).
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Figure 6.7: Results for the down quark contribution to the GPDs Hd(x, ξ, t)
and H̃d(x, ξ, t) as function of x at different values of ξ and t: ξ = 0 and t = 0
in the panels (a) and (b); ξ = 0, t = −0.2 GeV2 in the panels (c) and (d) and
ξ = 0.2, t = −0.34 GeV2 in the panels (e) and (f).
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Figure 6.8: Results for the up and down quark contribution to the GPDs
E(x, ξ, t) and Ẽ(x, ξ, t) as function of x at different values of ξ and t: ξ =
0.1, t = −0.1 GeV2 in the panels (a) and (b); ξ = 0.1, t = −0.2 GeV2 in the
panels (c) and (d) and ξ = 0.2, t = −0.34 GeV2 in the panels (e) and (f).
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Chapter 7
Twist-3 distributions

7.1 Introduction

In the previous Chapters, we focused our attention on the leading-twist parton
distributions (mainly GPDs and TMDs). These distributions have a probabil-
istic interpretation as parton densities, at variance with the sub-leading twist
parton distributions that are going to be the focus of this Chapter. Twist-3
parton distributions, especially when the dependence on the parton transverse
momenta is taken into account, give access to a wealth of information about the
proton parton structure [17, 47, 122]. They describe multiparton correlations
inside the proton, corresponding to the interference between scattering from a
coherent quark-gluon pair and from a single quark [123–126]. As such, they
help understanding the quark-gluon dynamics inside the hadrons.

Twist-3 TMDs contribute to various observables in SIDIS. Although be-
ing suppressed with respect to twist-2 observables, twist-3 structure functions
are not negligible in the kinematics of fixed-target experiments. As an ex-
ample of the importance of twist-3 distributions, one of the priority tasks of
the experimental program at JLab12 is the measurement of different twist-3
spin-azimuthal asymmetries in SIDIS [127–129]. The future electron ion col-
lider planned in USA will extend such experimental investigation by accessing
different kinematical regions [130, 131].

Historically, model studies have been shown to have important impact for
the understanding of sub-leading twist TMDs and the theoretical interpret-
ation of related observables (see, e.g., Ref. [132]). Twist-3 quark PDFs and
TMDs can, in general, be decomposed into contributions from leading-twist
mass terms, singular terms and pure interaction-dependent (“tilde”) terms. The
procedure to obtain such decomposition is similar to the case of the distribu-
tion amplitudes discussed in Sec. 3.4.1. The approximation of vanishing tilde
and singular terms is sometimes referred to as Wandzura-Wilczek approxim-
ation [133] and has been often used both as starting point to simplify the
description of twist-3 SIDIS observables [134–136], and as a useful numerical
approximation [91]. However, there is no real experimental evidence of its valid-
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7. Twist-3 distributions

ity, and it misses one of the main motivation to study sub-leading twist, i.e.
the intrinsic, non-perturbative physics of quark-gluon correlations encoded in
the tilde terms. We note that twist-3 effects can be introduced also by the per-
turbative exchange of gluons between the active parton and the remnant. This
procedure, that must be taken into account for a full twist-3 description of an
observable, is spurious, since it does not encapsulate any real non-perturbative
information about quark-gluon correlations inside the proton [137, 138].

Twist-3 TMDs have been calculated in various models: the MIT bag model
[123, 137, 139, 140], diquark spectator models [141–144], instanton models of
QCD vacuum [145, 146], chiral quark soliton models [147–151] and perturb-
ative light-front Hamiltonian approaches with a quark target [152–155]. More
recently, in Ref. [69] twist-3 and twist-4 distributions have been computed em-
ploying perturbative methods. Moreover, the work in Ref. [156] discusses the
possibility of a vanishing singular contribution to eq(x,k⊥). We will not treat
the twist-3 distributions thoroughly as we did with the leading-twist ones, since
a very limited amount of information is available about them and, moreover,
most of the twist-3 distributions involve gluon states with non-vanishing OAM,
that are not included in our model. We will not discuss GTMDs of higher twist,
since for now an extraction of them is unrealistic in the near-to-mid future.

The twist-3, unpolarized, chiral-odd quark TMD eq(x,k⊥) [125] is going
to be the focus of this Chapter. This distribution can be constructed as the
overlap of LFWAs for states with the same Lz, but different parton content.
More specifically, the states must differ by one gluon. For this reason, the model
presented in Chapter 6 is particularly well suited to study eq(x,k⊥).

In Sec. 7.2, we are going to derive the general decomposition of eq(x,k⊥) in
tilde, mass and singular terms using the EOM. The overall complexity of the
calculation is increased compared to the similar procedure utilized in Sec. 3.4.1,
due to the presence of a non-unity transverse gauge-link. In Sec. 7.3 we are going
to discuss in detail the derivation of the singular contribution to eq(x,k⊥),
commenting on the results presented in Refs. [69, 156]. Finally, in Sec. 7.4, we
are going to use the truncated Fock-state expansion of Eq. (3.67) to derive the
LFWA overlap representation for eq(x,k⊥). We are going to utilize the explicit
model presented in Chapter 6 to obtain predictions for both the TMD eq(x,k⊥)
and the PDF eq(x). Conclusions are drawn in Sec. 7.5.

7.2 Twist-3 decomposition

In Sec. 3.3.2, we reviewed the definition of the quark TMDs in terms of the
trace of the quark-quark correlator with an appropriate Dirac structure, see
Eq. (5.1) and Refs. [17, 39].

For the sake of clearness, we recall here the definition of eq(x,k⊥):

M

p+
eq(x,k⊥) =

∫
dz−dz⊥
2(2π)3

eik·z 〈p|ψ(0)W(0; z)1ψ(z)|p〉 |z+=0. (7.1)
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7.2. Twist-3 decomposition

To fully specify the TMD, we need to fix the Wilson line W(0; z). In this
case, we choose to work with a SIDIS-like Wilson line [25] (see Fig. 3.5). The
generalization to a Drell-Yan-like Wilson line is straightforward, whereas more
complicated Wilson line structures would demand a dedicated study.

The bilocal quark operator in Eq. (7.1) can be rewritten as

O
(
0; z−, z⊥

)
= ψ(0)W(0; z)ψ(z)|z+=0

= ψ+(0)W(0; z)ψ−(z)|z+=0 + ψ−(0)W(0; z)ψ+(z)|z+=0. (7.2)

If we assume that the plus component k+ of the quark momentum is strictly
positive, we can invert the EOM (3.132) in a straightforward way. Instead,
problems arise when we include the contribution from zero modes corresponding
to k+ = 0. In this case, as can be easily seen from Eq. (3.120), there appear
singularities in the bad components of the field, and one needs a regularization
prescription [69, 157, 158]. For this reason, we use the EOM (2.32) to derive
the following operator identity

W(0; z)ψ−(z)|z+=0 = W1(0−,0⊥; 0−, z⊥)ψ−(0+, 0−, z⊥)

− i
∫ z−

0−
dζ−W1(0−,0⊥; ζ−, z⊥)

γ+

2
(iγ⊥ ·D⊥ +m)ψ+(0+, ζ−, z⊥), (7.3)

where we defined W1(a−,a⊥; b−, b⊥) ≡ W(0+, a−,a⊥; 0+, b−, b⊥). Note that
this approach, that we used in Ref. [119], is different with respect to using the
Green function to solve the EOM as presented in Eq. (3.120). With the present
approach, we will be able to give a more clear interpretation of the singular term
after the integration over k⊥. The derivation using Eq. (3.120) would lead to
different-looking, but equivalent, results. Using the expression in Eq. (7.3) for
the bad components, Eq. (7.2) can be rewritten as

O
(
0; z−, z⊥

)
= Os + Om + Otw3, (7.4)

with

Os = ψ(0)W1(0−,0⊥; 0−, z⊥)ψ(0+, 0−, z⊥), (7.5)

Om = −im
∫ z−

0

dζ−ψ+(0)W1(0−,0⊥; ζ−, z⊥)γ+ψ+(0+, ζ−, z⊥), (7.6)

Otw3 = − i
2

∫ z−

0

dζ−ψ+(0)σj+
[
W1(0−,0⊥; ζ−, z⊥)

→
D⊥,j(ζ

−, z⊥)

+
←
D
†
⊥,j(0)W1(0−,0⊥; ζ−, z⊥)

]
ψ+(0+, ζ−, z⊥), (7.7)

where the index j = 1, 2 labels the transverse components.
The bad components ψ− contribute only to Os in Eq. (7.5). This operator,

when inserted in the matrix element of Eq. (7.1) and integrated over z−, gives
a singular contribution proportional to δ(x):

eqs (x,k⊥) =
δ(x)

2M

∫
dz⊥
(2π)2

e−iz⊥·k⊥ 〈P |ψ(0)W1(0−,0⊥; 0−, z⊥)ψ(0+, 0−, z⊥)|P 〉 .
(7.8)
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This contribution is well known for the PDF eq(x), being related to the pion-
nucleon sigma term (see, e.g., Ref. [125]).

The contribution to eq from the operator Om can be worked out using the
Fourier expansion of the matrix element of the operator (7.6) and the definition
of f q1 in (3.37), as explained in Sec. 7.3, with the result

eqm =
m

Mx
f q1 (x,k⊥)− m

M
δ(x)

∫ 1

−1

dy
f q1 (y,k⊥)

y
, (7.9)

where the singular term is a natural consequence of the divergences associated
with the zero modes (x = 0).

Limiting ourselves to the T-even sector and to the target-spin averaged
matrix element, the contribution from the operator Otw3 can be rewritten as

etw3 = −P
+

M

gs
2

∫
dz−dz⊥
2(2π)3

eik
+z−−k⊥·z⊥

×
(∫ z−

0−
dζ−

∫ ζ−

∞−
dη− 〈P |ψ(0)W1(0−,0⊥; η−, z⊥)G+

j(0
+, η−, z⊥)

× σj+W1(η−, z⊥; ζ−, z⊥)ψ(0+, ζ−, z⊥) |P 〉

+

∫ z−

0−
dζ−

∫ ∞−

0−
dη− 〈P |ψ(0)W1(0−,0⊥; η−,0⊥)G+

j(0
+, η−,0⊥)

× σj+W1(η−,0⊥; ζ−, z⊥)ψ(0+, ζ−, z⊥) |P 〉
)
, (7.10)

where Gµν is the gluon-field strength tensor. Using the results in Sec. 7.3,
Eq. (7.10) can be rewritten in the form

eqtw3(x,k⊥) = ẽq(x,k⊥)− δ(x)

∫ 1

−1

dy ẽq(y,k⊥), (7.11)

where

ẽq(x,k⊥) = − i

Mx
Φ

[σj+]
A,j (x,k⊥) (7.12)

is a pure twist-3 contribution defined in terms of the quark-gluon-quark correl-
ation function [33]

Φ
[σj+]
A,j (x,k⊥) =

1

2
Tr
[
ΦA,j(x,k⊥)σj+

]
=
gs
2

∫
dz−dz⊥
2(2π)3

eik
+z−−k⊥·z⊥

×
(∫ ζ−

∞−
dη−〈P |ψ(0)W1(0−,0⊥; η−, z⊥)G+

j(0
+, η−, z⊥)

× σj+W1(η−, z⊥; ζ−, z⊥)ψ(0+, ζ−, z⊥)|P 〉

+

∫ ∞−

0−
dη−〈P |ψ(0)W1(0−,0⊥; η−,0⊥)G+

j(0
+, η−,0⊥)
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× σj+W1(η−,0⊥; ζ−, z⊥)ψ(0+, ζ−, z⊥)|P 〉
)
. (7.13)

Collecting the results in Eqs. (7.8)-(7.11), we end up with the following
decomposition:

eq(x,k⊥) = eqs (x,k⊥) + ẽq (x,k⊥) +
m

xM
f q1 (x,k⊥)

− δ(x)

∫ 1

−1

dy

(
m

My
f q1 (y,k⊥) + ẽq(y,k⊥)

)
. (7.14)

The singular term beyond the contribution of es was usually not discussed in
literature before Ref. [119]. Using the Green function approach for the inversion
of the EOM, the singular terms of Eq. (7.14) would have been originated from
the boundary condition terms of Eq. (3.115).

The decomposition (7.14) is independent on the choice of the gauge. In the
light-cone gauge A+ = 0, with advanced boundary conditions for the transverse
components of the gauge field, the gauge links in the correlators can be ignored1

and ΦA,j in Eq. (7.13) becomes [33, 83]:

Φ̃
[σj+]
A,j (x,k⊥) =

gs
2

∫
dz−dz⊥
2(2π)3

eik·z

× 〈P, S|ψ(0) [A⊥,j(z)− A⊥,j(0)]σj+ψ(z)|P, S〉z+=0 . (7.15)

Integrating Eq. (7.14) over k⊥, one obtains the corresponding decomposition
for the PDF eq(x)

eq(x) = es (x) + ẽq (x) +
m

xM
f q1 (x)− δ(x)

∫ 1

−1

dy

(
m

My
f q1 (y) + ẽq(y)

)
,

(7.16)

from which one can easily infer well-known relations for the first Mellin moments
of eq(x) [125]. The singular contribution es(x) reads:

es(x) =
δ(x)

2M
〈P |ψ(0)ψ(0)|P 〉 =

δ(x)

m
σπN , (7.17)

where σπN is the pion-nucleon sigma term.

7.3 Derivation of the singular terms

In this section, we show the derivation of the contributions eqm in Eq. (7.9) and
eqtw3 in Eq. (7.11).

1This argument is strictly related to the choice of a SIDIS-like Wilson line. Different
choices of the Wilson line would require different boundary conditions in order to reproduce
a similar-looking equation.
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We start by considering the matrix elements of the operators Om and Otw3

in Eqs. (7.6) and (7.7), respectively, which enter the definition (7.1) of the TMD
eq(x,k⊥) (l = m, tw3):

∫
dz−dz⊥

(2π)3
eiz
−xP+−iz⊥·k⊥

∫ z−

0−
dζ−Ml(ζ

−, z⊥), (7.18)

with

Mm(ζ−, z⊥) := −im
2
〈P |ψ(0)γ+W1

(
0−,0⊥; ζ−, z⊥

)
ψ(ζ−, z⊥)|P 〉 , (7.19)

Mtw3(ζ−, z⊥) :=
gs
2

(∫ ζ−

∞−
dη−〈P |ψ(0)W1

(
0−,0⊥; η−, z⊥

)
G+

j(η
−, z⊥)

σj+W1

(
η−, z⊥; ζ−, z⊥

)
ψ(ζ−, z⊥)|P 〉

+

∫ ∞−

0−
dη−〈P |ψ(0)W1

(
0−,0⊥; η−,0⊥

)
G+

j(η
−,0⊥)

σj+W1

(
η−,0⊥; ζ−, z⊥

)
ψ(ζ−, z⊥)|P 〉

)
, (7.20)

where z+ = 0 is understood in the argument of the fields. By integrating
over z⊥ and introducing the Fourier-transform in the variable ζ− of the matrix
element Ml, Eq. (7.18) can be rewritten as

∫
dz−

2π
eiz
−xp+

∫ z−

0−
dζ−

∫
dh+e−iζ

−h+

Ml(h
+,k⊥). (7.21)

The integral over ζ− in Eq. (7.21) can be easily performed, giving

i

∫
dz−

2π
eiz
−xp+

∫
dh+ e

−iz−h+ − 1

p+
Ml(h

+,k⊥). (7.22)

Finally, integrating Eq. (7.22) over z− and changing the integration variable as
p+ = yP+, we obtain

i

xp+
Ml(xp

+,k⊥)− iδ(x)

p+

∫
dy

y
Ml(yp

+,k⊥). (7.23)

The Eq. (7.23), for l = m and with the definition (3.37) for f q1 , corresponds to
the contribution eqm in Eq. (7.9). Analogously, Eq. (7.23), for the matrix element
with l = tw3 and with the definition (7.12) for ẽq, gives the contribution eqtw3

in Eq. (7.11).
Two works appeared recently in literature, discussing the singular behaviour

of the eq(x) distributions [69, 156]. In Ref. [156], it is claimed that the decom-
position in Eq. (7.14) is actually wrong and no singular term should appear.
The authors of Ref. [69] argued that, using Eq. (3.120), the claim of Ref. [156]
is valid only in the limit of vanishing zero-mode contributions. We discuss here
an alternative argument, with respect to the one provided by Ref. [69], that
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explains why the singular terms are not vanishing. In Eq. (7.3), we could have
chosen the subtraction point at ∞− instead of 0−, as it is done in Ref. [156].
This would have given the following expression instead of Eq. (7.22):

i

∫
dz−

2π
eiz
−xP+

∫
dp+

(
e−iz

−p+

p+
Ml(p

+,k⊥)− lim
z−→∞−

e−iz
−p+

p+
Ml(p

+,k⊥)

)
.

(7.24)

The second term is proportional to

Ml(p
+ = 0+,k⊥). (7.25)

Since Ml(p
+,k⊥) is written exclusively in terms of dynamical field components

(good components for the quark fields and transverse components for the gluon
field), we have that

Ml(p
+ = 0+,k⊥) = 0. (7.26)

This entails that the total singular contribution to eq(x,k⊥) (see Eq. (7.14))

eqs(x,k⊥)− δ(x)

∫ 1

−1

dy

(
m

My
f q1 (y,k⊥) + ẽq (y,k⊥)

)
(7.27)

can be equivalently written as:

δ(x)

2M

∫
dz⊥
(2π)2

e−iz⊥·k⊥
(
〈P |ψ+(0)W1(0;∞−, z⊥)ψ−(0+,∞−, z⊥)|P 〉

+ 〈P |ψ−(0+,∞−,−z⊥)W1(∞−,−z⊥; 0)ψ+(0)|P 〉
)
. (7.28)

From this it is rather simple seeing how no singular part arises, under the
assumption of Ref. [156] of vanishing ψ−(∞−) (see Eq. (17) of Ref. [156], in
which ψ−(∞−) is clearly assumed to vanish). However, as we stressed, while
it is safe to assume that ψ+(∞−) = 0 because it is a dynamical field, it is not
guaranteed that the same holds for the bad component.

From Eq. (7.8), one can also see why we chose 0− instead of ∞− as a
subtraction point. Integrating Eq. (7.8) over k⊥, instead of recovering the
pion-nucleon sigma term of Eq. (7.17) and the integrals of the PDFs in the last
term of Eq. (7.16), one would have obtained:

δ(x)

2M
〈P |ψ+(0)ψ−(0+,∞−,0⊥) + ψ−(0+,∞−,0⊥)ψ+(0)|P 〉 . (7.29)

The meaning of the singular part, when expressed in this form, is more obscure.

7.4 Model results

7.4.1 Light-Front Wave Amplitude overlap representation

We can use the truncated Fock-space expansion for the proton state in Eq. (3.67)
to derive the LFWA overlap representation of ẽq(x,k⊥). Since we are not con-
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7. Twist-3 distributions

sidering three-quark plus one-gluon states with Lz 6= 0, the overlap represent-
ation is given in terms of only Lz = 0 LFWAs:

ẽu(x, k⊥) =
4gs

Mx
√

3

∫
dµ4√
x4

{
− δ(x− x4 − x1)δ(k⊥ − k⊥4 − k⊥1)

×
[(

4ψ
(0)∗
(−2−3)32 + 2ψ

(0)∗
23(−2−3)

)
Ψ 1,↑

1234

+

(
2ψ

(0)∗
(−2−3)23 + ψ

(0)∗
32(−2−3)

)
Ψ 2,↑

1234 − 2ψ
(0)∗
2(−2−3)3Ψ

↓
1234

]

+ δ(x− x4 − x2)δ(k⊥ − k⊥4 − k⊥2)

[
2ψ

(0)∗
(−1−3)13Ψ

2,↑
1234 − ψ(0)∗

1(−1−3)3Ψ
↓
1234

]

+ δ(x− x4 − x3)δ(k⊥ − k⊥4 − k⊥3)ψ
(0)∗
(−1−2)12Ψ

1,↑
1234

}
, (7.30)

ẽd(x, k⊥) = − 4gs

Mx
√

3

∫
dµ4√
x4

{
δ(x− x4 − x2)δ(k⊥ − k⊥4 − k⊥2)2ψ

(0)∗
31(−1−3)Ψ

2,↑
1234

+ δ(x− x4 − x3)δ(k⊥ − k⊥4 − k⊥3)

×
[
ψ

(0)∗
21(−1−2)Ψ

1,↑
1234 −

(
ψ(0)∗(1,−1− 2, 2) + ψ

(0)∗
2(−1−2)1

)
Ψ ↓1234

]}
, (7.31)

where we used the notation of Eqs. (6.23)-(6.26) and we defined

ψ
(0)
ij(−i−j) = ψ(0) (xi,k⊥,i, xj,k⊥,j, 1− xi − xj,−k⊥,i − k⊥,j) . (7.32)

By integrating Eqs. (7.30) and (7.31) over k⊥, the corresponding results for the
PDF ẽq(x) can be obtained.

7.4.2 Pure twist-3 distribution

By inserting the explicit parametrization for the LFWAs given in Sec. 6.1 into
the LFWA overlap representations (7.30)-(7.31), we obtain the results shown
in Figs. 7.1. The results are obtained using the parameters in the new fit con-
figuration corresponding to the last column of Tab. 6.1. The dot-dashed curves
represent the pure twist-3 contributions, whereas the leading-twist ones are rep-
resented by the dashed-double-dot curves. The sum of the two contributions
is given by the solid curve. We can appreciate how the pure twist-3 contribu-
tions to the total xeq(x) become sizable for moderate-to-high values of x. This
can be intuitively understood because the longitudinal-momentum fraction x
is given by the sum of the quark and gluon longitudinal-momentum fractions,
hence, low values of x entail low values for both the momentum fraction of
the quark and gluon and, in our model, the LFWAs vanish for small values
of any longitudinal-momentum fraction. The relative size of twist-2 and pure
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twist-3 contributions depends critically on the quark-mass parameter, which
enters as proportionality constant that weights the twist-2 term in Eq. (7.16).
In our model calculation, the partons masses also appear in the functions ΩN in
Eq. (6.4) and have a direct effect on the shape of the x dependence. In Figs. 7.2
we compare our results with the two sets of parameters given in Tab. 6.1. The
oldest set corresponds to the parameters that we used in Ref. [119]. The two
sets of parameters have been obtained from the fit of the unpolarized PDFs
fu,d,g1 . It is evident how the inclusion of LFWAs with non-vanishing OAM does
not alter in a significant way the dominant contribution of the Lz = 0 LFWAs
to the unpolarized distributions. The strong dependence on the mass for the
relative size of the leading-twist and twist-3 contributions is always understood.
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Figure 7.1: Results for the PDFs xeu(x) (panel (a)) and xed(x) (panel (b)) with
the new set of parameters of Tab. 6.1. The dot-dashed light-blue curves are the
twist-2 contributions, the dashed-double-dot purple curves are the pure twist-3
contributions and the sum of the two terms, corresponding to the total PDFs
xeu,d(x), is given by the solid black curves.

The CLAS collaboration has reported preliminary results of a measurement
of the beam asymmetry in di-hadron SIDIS, using a longitudinally polarized 6
GeV electron beam off an unpolarized proton target [129, 159]. These data have
been analyzed to extract the following flavor combination of the valence-quark
contribution to eq(x):

eV (x) =
4

9
eu(x)− 1

9
ed(x). (7.33)

In Fig. 7.3, the preliminary CLAS data points at the scale µ2 = 1.5 GeV2 are
compared with our model predictions at the scale µ2 = 1 GeV2 for both the old
set of parameters from Ref. [119] and the new set of parameters of the present
work. We can appreciate how the new set of parameters goes into the direction
of a slightly better agreement with the experimental data. The model results
for the separate twist-2 and pure twist 3-terms are also shown.

Our results are in quite good agreement with the experimental extraction
at the two higher-x bins, but they are not able to reproduce the observed fast
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Figure 7.2: Comparison between the results for the PDFs xeu,d(x) in the old
and new fit configuration of Tab. 6.1. In panel (a) and (b) are shown the results
for the twist-2 and twist-3 contributions for the up quark (panel (a)) and for
the down quark (panel (b)). The short-dashed blue curves and the solid green
curves represent the twist-2 contributions and the pure twist-3 contributions, re-
spectively, in the old configuration. The dot-dashed purple blue curves and the
long-dashed red curves represent the twist-2 contributions and the pure twist-3
contributions, respectively, in the new configuration. In panel (c) and (d) are
shown the results for the total PDF xeu(x) (panel (c)) and xed(x) (panel (d)).
The solid green curves represent the results in the old configuration, whereas
the long-dashed red curves represent the results in the new configuration.

rising at lower x. This is due to a lack of our model, that, according to the
fit results for the unpolarized PDF f1 shown in Fig. 6.3, is unreliable in the
mid-to-low x region. We also notice that the pure twist-3 contribution in the
considered x-range is very small, supporting the results within the light-front
constituent-quark picture that was used in Ref. [137] and shown to be able to
reproduce the results of the CLAS data at higher x. However, one should bear
in mind that these data are still preliminary and have unestimated systematic
uncertainties.

128



7.4. Model results

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

 0.2  0.4  0.6  0.8

e
V

x

old

new

Ref.[159]

(a)

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

 0.2  0.4  0.6  0.8

e
V

x

twist-3

twist-2

total

Ref.[159]

(b)

Figure 7.3: Predictions for the combination eV = 4
9
eu(x) − 1

9
ed(x) at the scale

µ2 = 1 GeV2, in comparison with the extraction of Ref. [159] at the scale
µ2 = 1.5 GeV2. We can clearly see how the new set of parameters slightly
improves the agreement with the extraction.

7.4.3 Transverse momentum dependence

To study the transverse-momentum dependence of eq(x,k⊥), we use the defini-
tions given in Eqs. (6.81) and (6.84). These equations allow for a direct compar-
ison between the different contributions to the total distribution eq(x,k⊥). The
average transverse-momentum densities as function of x are shown in Fig. 7.4.
It can be appreciated how, also for the transverse momentum, the twist-2 con-
tributions dominate compared to the pure twist-3 ones. Moreover, the peaks
of 〈k2

⊥〉 (x) for the pure twist-3 contributions are shifted to larger values of x
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ẽu ẽd

〈k⊥〉 0.037 0.019

〈k2
⊥〉 0.011 0.005

Table 7.1: Average transverse momentum for the pure twist-3 contributions.
The second and third columns show the results for the up and down quark,
respectively.

compared to the twist-2 contributions. It is also interesting to compare the
results for the up and down quark distributions, especially for the pure twist-3
terms. The results are shown in Fig. 7.5 for both ẽq(x,k⊥) and eq(x,k⊥). We
notice how the pure twist-3 distributions are considerably different, whereas the
shape, but not the magnitude, of the total distributions is rather similar. This
last feature can be traced back to the dominance of the twist-2 contributions
to eu,d and to the very similar shape and different magnitude of fu1 and fd1 . In
Tab. 7.1 are given the results for the total average transverse momentum for
the pure twist-3 distribution ẽu,d.
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Figure 7.4: Average transverse momentum of Eq. (6.84) for eu in panel (a) and
for ed in panel (b) as function of x. The dashed-dot purple curves are the results
for the pure twist-3 distribution, the dashed-double-dot light blue curves are
the results for the twist-2 contributions and the solid black curves are the total
results.

7.5 Conclusions

In this Chapter, the twist-3 distribution eq(x,k⊥) has been studied. Sub-
leading-twist distributions are interesting since they encode the physics of quark-
gluon correlations inside the proton. A model-independent decomposition of
eq(x,k⊥) has been presented using the QCD EOM. In particular, the decom-
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Figure 7.5: Comparison between the up and down average transverse mo-
mentum of Eq. (6.83) for ẽ (panel (a)) and e (panel (b)) as function of x.

position produces a pure twist-3 part, i.e. the “tilde” term encoding the quark-
gluon correlations, a pure twist-2 contribution and a singular (δ-like) term. The
singular term is in turn given by a well-know contribution that can be related
to the pion-nucleon sigma term, and an additional term that is, instead, poorly
discussed in literature. We discussed some of the most recent arguments that
either point in the direction of a vanishing singular contribution or in the dir-
ection of a non-vanishing δ-like term. We tried to clarify how the claim of a
vanishing singular contribution derives from incorrect boundary conditions for
the bad components of the quark field at light-cone infinity.

The second part of the Chapter has been devoted to study the twist-3 dis-
tribution using the LFWA overlap approach. To this aim, we used the model
presented in Chapter 6. We constructed the ẽ distribution as an overlap of
Lz = 0 LFWAs for the three-quark and three-quark plus one-gluon states. The
Lz = ±1 LFWAs for the three-quark state would appear in combination with
the Lz = ±1 LFWAs for the three-quark plus one-gluon state. However, the
latter are not present in our model. Using the parameters of the model fitted to
the phenomenological parametrization of the leading-twist unpolarized PDF as
explained in Sec. 6.4 (see Tab. 6.1), we provided predictions for both ẽq(x) and
ẽq(x,k⊥), in comparison with the corresponding twist-2 contribution given in
terms of f q1 . We also considered preliminary results from a phenomenological
extraction of a particular flavor combination of the valence-quark contribution
to eq(x) [159]. For this quark-flavor combination, our model predictions are
almost saturated by the twist-2 contribution to eq(x), and showed a quite good
agreement with the extracted results in the large x-region.
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Chapter 8
The Energy-Momentum Tensor

In this final Chapter, we part ourselves from the study of parton distributions
and light-front wave functions to approach a different problem. We want to
investigate the physics of the Energy-Momentum Tensor, a local operator that
encodes the information about the global properties of a particle, such as the
mass and the spin. A detailed study of the possible decompositions of the
Energy-Momentum tensor in separate contributions (like the quark and gluon
contribution to the proton matrix elements of the QCD Energy-Momentum
Tensor) could lead to important clues on how the global properties of a particle
emerge from the dynamics of its elementary constituents. We will first discuss
the electron matrix elements of the QED Energy-Momentum Tensor using per-
turbation theory. Using this benchmark calculation, we will then tackle the
more challenging case in QCD, where a full perturbative treatment is not prac-
ticable. We follow the discussion of Refs. [160, 161] for the electron and proton
mass decompositions, while the results for the form factors of the electron EMT
will be presented in a forthcoming work [162]. Throughout this Chapter, the
instant-form quantization is used. This is a non-limiting choice, since the fun-
damental objects of interest are the EMT form-factors, which are identical in
both quantization forms. We chose the instant form over the light-front form to
make more direct contact with the pre-existing literature on the proton mass.

8.1 Introduction

Let us suppose to study a generic field theory (quantum or classical) described
in terms of the Lagrangian:

L(φs(x), ∂µφs(x)), (8.1)

where φs is a generic field and x the space-time position. The index s has
different meaning for different types of fields. For example, it is inessential for
a scalar field, it is a Dirac index for a spin 1/2 field, and it plays the role of a
Lorentz index for a vector field. Of course spin-1/2 fields are not present in a
classical field theory. We aim to specify the Lagrangian to a relativistic field
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theory. This can be done by requiring the invariance of the Lagrangian under
Poincaré transformations. In the Poincaré group are contained the translations
and the (proper and orthochronous) Lorentz transformations, see Chapter 2 for
more details on the Poincaré group. From the Noether theorem, it follows that
there exists a conserved current for each symmetry in the Lagrangian. The
conserved current associated with the translations is the Energy-Momentum
Tensor (EMT), and the “canonical” Noether construction leads to the following
definition for the EMT:

T̃ µν =
δL

δ (∂µφs(x))
∂νφs(x)− gµνL. (8.2)

If the Lagrangian describes a gauge invariant theory, such as Electrodynamics
(ED), the EMT defined as in Eq. (8.2) can be gauge non-invariant. Because a
gauge non-invariant object poses problems when one wants to extract it from
experimental data, it is often stated that additional manipulations are needed to
construct a gauge-invariant (and therefore physically meaningful) EMT. How-
ever, it was shown that also a canonical construction of the Noether current
can lead to a gauge invariant EMT. The procedure is quite involuted and it is
discussed in detail in Refs. [163–166].

The conserved current associated with the Lorentz transformations is the
generalized angular momentum tensor. We are going to focus only on the
EMT in the remaining of the Chapter. Some study of the generalized angu-
lar momentum tensor could be found in [167]. The continuity equation that
characterizes the EMT as a Noether current reads:

∂µT̃
µν = 0. (8.3)

The spatial components of the EMT must decrease fast enough at spatial in-
finity, in order to have well defined conserved charges:

P ν =

∫
d3x T̃ 0ν(x). (8.4)

These can be identified with the four-momentum carried by the field (in a
quantum theory P ν obviously become operators, see Chapter 2). Since the
charges represent the physical information contained in the EMT, all the re-
definitions of the EMT that leave the charges unmodified are equivalent. One
example of such redefinitions is the addition of a superpotential Φρµν

T µν = T̃ µν + ∂ρΦ
ρµν , (8.5)

where Φρµν = −Φµρν . Furthermore, to preserve Eq. (8.4) we must require that
∂ρΦ

ρ0ν decrease fast enough at spatial infinity. This redefinition of the EMT
is known as the Belinfante-Rosenfeld procedure [168, 169], and it allows one to
incorporate specific properties in the EMT, such as the gauge invariance and
the symmetry in the Lorentz indexes. In the following section, we are going to
specify this procedure to the particular case of QED.
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The Chapter is organized as follows: in Sec. 8.2 we are going to review
the basic definitions and concepts about the EMT, specifically for the QED
case. In Sec. 8.3, we are going to address the problem of renormalizing the
individual operators that enter in the EMT definition. Some of the procedures
are illustrated, as an example, in the QED case. However, most of the results are
general and can be applied also to other gauge theories, like the non-abelian
case of QCD. In Sec. 8.4, we are going to extensively study the EMT form
factors for an electron in QED both in the off-forward and forward case. In
Sec. 8.5, we are going to use the results of the form factors in the forward limit
to study a variety of mass decompositions proposed in the literature. We are
going to use this section as the foundation for the study of the proton mass
decompositions, that is discussed in Sec. 8.6. Finally, in Sec. 8.7 we are going
to summarize our results.

8.2 Definitions

Let us start with the definition of the QED Lagrangian:

LQED = ψ̄

(
i

2

↔
/D −m

)
ψ − 1

4
FµνF

µν . (8.6)

Via the canonical construction in Eq. (8.2), we obtain:

T̃ µν = ψ̄
i

2
γµ
↔
∂νψ − F µρF ν

ρ − F µρ∂ρA
ν +

1

4
gµνFαβFαβ. (8.7)

This is an example in which the standard canonical construction fails to provide
a gauge-invariant EMT. We can use now the Belinfante-Rosenfeld procedure to
obtain a gauge invariant and, incidentally, symmetric EMT in the photon sector.
Note that the superpotential is determined by the gauge sector only. Let us
define the superpotential as the following combination

Φρµν =
1

2
(Sρµν + Sµνρ + Sνµρ) (8.8)

with the spin tensor defined as:

Sρµν =
δL

δ (∂ρAµ)
Aν − δL

δ (∂ρAν)
Aµ = F µρAν − F νρAµ. (8.9)

A straightforward calculation leads to:

Φρµν = F µρAν , (8.10)

which, with the addition of the equation of motion for the gauge field

∂ν
δL

δ (∂νAµ)
= ∂νF

µν =
δL

δAµ
= −eψ̄γµψ, (8.11)
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leads to the following redefinition of the EMT:

T µν = ψ̄
i

2
γµ
↔
∂νψ − F µρF ν

ρ − F µρ∂ρA
ν +

1

4
gµνFαβFαβ + ∂ρ (F µρAν)

= ψ̄
i

2
γµ
↔
∂νψ − F µρF ν

ρ +
1

4
gµνFαβFαβ − eψ̄γµAνψ

= ψ̄
i

2
γµ
↔
Dνψ − F µρF ν

ρ +
1

4
gµνFαβFαβ. (8.12)

Note that, whereas this procedure leads to a symmetric tensor in the photon
case, the leptonic sector contains both the symmetric and antisymmetric part.
The antisymmetrtic part is related to the spin density of the leptonic field. In a
classical theory, where the notion of non-integer spin is absent, it should be elim-
inated by an additional Belinfante-Rosenfeld superpotential. The Belinfante-
Rosenfeld procedure allows one to shuffle some of (or all) the spin contributions
into the orbital angular momentum contributions of the EMT. Being the spin
of the electron a natural notion in QED, we are not going to modify further
the EMT. A challenging problem in quantum field theory is the presence of
divergences associated with quantum fluctuations of the fields. These fluctu-
ations in a quantum field theory framework and in the language of Feynman
diagrams are commonly known as loops. Each loop can come with a divergent
integral. In order to produce predictions from the theory, a regularization and
renormalization procedure is needed. The first one deals with the problem of
parametrizing the divergences in terms of a suitable parameter called regulator.
The divergences appear when an appropriate limit of the regulator is taken. A
variety of different regularization procedures exist. We are going to adopt one
of the most used, which is dimensional regularization. The idea is to work in
a space-time with dimension d different than 4, to ensure the convergence of
the problematic integrals. The dimensional regularization has the advantage of
preserving the Poincaré invariance (in d dimension) and the gauge invariance
of the theory. In dimensional regularization it is also introduced a scale µ to
ensure that the coupling constant is dimensionless, see, e.g., Ref. [40]. Once the
divergences have been regularized, a renormalization procedure must be imple-
mented in order to consistently eliminate the divergences. The modern way
to renormalize a Lagrangian quantum-field theory is to rewrite the fields and
the parameters of the Lagrangian as the product of the renormalized quantities
(fields and parameters) and constants called counterterms. The counterterms
contain a divergent part that exactly cancels, order by order in perturbation
theory, the divergent part that comes from the quantum loops. The finite parts
of the counterterms are unconstrained and different prescriptions to fix them
exist. Later in the Chapter, we will see some examples. We can now write the
QED Lagrangian in terms of renormalized quantities and counterterms, using
dimensional regularization:

LQED = Z2ψ̄

(
i

2

↔
/∂

)
ψ − Z2eµ

2εψ̄ /Aψ − Z3

4
FµνF

µν − Z2Zmmψ̄ψ, (8.13)
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where ε is defined in terms of the space-time dimension d as ε = 2−d/2. All the
divergences in the theory are parametrized as poles in ε. Note that in Eq. (8.13)
we introduced the scale µ to an appropriate power to ensure that the electric
charge e remains dimensionless. We also point out that the time dimension
is not affected by the dimensional regularization, hence a more precise way to
define ε is via the equation d = 1+(3−2ε). The time dimension is not changed
in order to avoid issues with the definition of the equal-time hypersurfaces
used to quantize the fields. At variance with the previous part of the thesis,
we are going to use only instant-form quantization throughout this Chapter.
For completeness, we notice that in light-front quantization the dimensional
regularization is chosen usually in such a way to ensure that the plus and
minus dimensions are unmodified. Hence in light-front quantization we have
d = 1+1+(2−2ε). This is because the metric in light-front parametrization is
anti-diagonal in the plus-minus components, and then it is useful to have both
with integer dimensions.

In Eq. (8.13), we ignored the presence of a gauge-fixing contribution. How-
ever, in the end, we will be interested only in matrix elements of the EMT and
the gauge-fixing contribution vanishes on physical states. Whenever is needed
for explicit calculations, we are going to use the Feynman gauge [40]. The
renormalized EMT reads:

T µν = T µνe,S + T µνe,A + T µνγ , (8.14)

T µνe,S = Z2 ψ̄
i

4
γ{µ

↔
∂ν}ψ − Z2µ

2ε eψ̄γ{µAν}ψ, (8.15)

T µνe,A = Z2 ψ̄
i

4
γ[µ

↔
∂ν]ψ − Z2µ

2ε eψ̄γ[µAν]ψ, (8.16)

T µνγ = −Z3 F
µαF ν

α + Z3
gµν

4
FαβFαβ, (8.17)

where a{µbν} = aµbν + aνbµ, a[µbν] = aµbν − aνbµ, and the indexes e and γ refer
to the electron and photon contributions, respectively.

The general parametrization of the electron and photon EMT matrix ele-
ment between electron states is (i = e, γ):

〈e (p′) , s′|T µνi |e (p) , s〉 =

〈
e

(
P +

∆

2

)
, s′
∣∣∣∣T

µν
i

∣∣∣∣e
(
P − ∆

2

)
, s

〉

= ū′
(
Ai(∆

2)
P µP ν

m
+ Ji(∆

2)
iP {µσν}ρ∆ρ

2m

+Di(∆
2)
∆µ∆ν − gµν∆2

4m
+mC̄i(∆

2)gµν + Ci(∆
2)P [µγν]

)
u, (8.18)

where, for the electron spinors, we used the shorthand notation

ū′ = ūs′

(
P +

∆

2

)
, u = us

(
P − ∆

2

)
, (8.19)
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with s and s′ being the initial and final electron helicities, respectively. The
Dirac spinors are normalized as ūs(p)us(p) = 2m, with m the electron mass.
In Eq. (8.18), Ai, Ji, Di, Ci and C̄i (i = e, γ) are the EMT form factors
(sometimes called gravitational form factors). They depend on the momentum
transfer and, even if it is not shown for brevity, on the scale µ. We adopt the
covariant normalization for the states, i.e.

〈e(p′), s′|e(p), s〉 = 2p0(2π)3δs,s′δ(p
′ − p), (8.20)

where aµ = (a0,a) for any four-vector aµ. In the forward limit ∆ → 0, the
EMT matrix element simplifies into:

〈e(P )|T µνi |e(P )〉 ≡ 〈e|T µνi |e〉 = 2P µP νAi(0) + 2m2gµνC̄i(0)

=

(
2P µP ν − gµν

2
M2

)
Ai(0) +

gµν

2
M2

(
Ai(0) + 4C̄i(0)

)
.

(8.21)

Note that only diagonal matrix elements in the spin space survive in the for-
ward limit, hence the spin dependence in Eq. (8.21) has been suppressed. The
electron and photon form factors are not completely independent, since the
conservation of the total EMT imposes the following sum rule:

C̄e(0) + C̄γ(0) = 0. (8.22)

We also have the constraint:

Ae(0) + Aγ(0) = 1, (8.23)

that follows from the momentum conservation. In addition to these equations,
we have also:

Je(0) + Jγ(0) =
1

2
. (8.24)

This sum rule encodes the total angular momentum conservation and is equi-
valent to the sum rule for the Ai form factors when the generalized angular-
momentum tensor is considered instead of the EMT, see [167].

We are now interested in the explicit expression of the form factors in
Eq. (8.18) in perturbation theory. To obtain such expression, we can compute
the Green function with the insertion of the EMT operator, i.e.

〈e(p′)|T
[
T µνi (0) exp

(
i

∫
d4xLI

)]
|e(p)〉 , with LI = −eψ̄ /Aψ, (8.25)

where the space-time point at which the EMT is evaluated is fixed to 0. If it
was evaluated at an arbitrary point y, translational invariance would have led
to a simple overall phase factor e−iy∆ .

In Fig. 8.1 are illustrated the diagrams associated with the expansion of
Eq. (8.25) up to order α. We use the common notation of a crossed dot for
the counterterm diagrams and a black solid dot to indicate the EMT insertion
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L0 δ2L0

L1 L2 Lc.t.
1 Lc.t.

2

V1 V2 V3 V4

Figure 8.1: Relevant diagrams for the calculation of the electron EMT at O(α).
The solid black dot represents the insertion of the EMT into the Green function.

into the Green function. L0 is the diagram corresponding to the tree-level con-
tribution and δ2L0 is the overall vertex counterterm. Since the total EMT is
renormalized with the standard Lagrangian renormalization and we are consid-
ering only the matrix elements on the electron state, the vertex counterterm
coincides with the electron field counterterm. L1,2 are the diagrams with the
leg-loop corrections, while Lc.t.1,2 give the leg counterterms. V1,2 are the diagrams
associated with the interaction term present in T µνe , while V3 is the one-loop
electron vertex correction that arises from the the derivative term in T µνe . V4 is
the one-loop vertex correction with the photon coupled to the external operator.

In this section, we are going to present the results for the electron matrix
elements of the EMT, as it turns out from a direct computation of Eq. (8.25).
In the calculation of the diagrams in Fig. 8.1, one finds ultraviolet (UV) diver-
gences in the separate electron and photon contributions. Moreover, infrared
divergences emerge in the electron contribution. Only V1 + V2 is infrared safe
because of the four-particle vertex where the photon couples directly with the
external operator. The infrared divergences are canceled only in the forward
limit for the total electron contribution. It is also useful to introduce the fol-
lowing total leg contribution:

Ltot = (1 + δ2)L0 + L1 + L2 + Lc.t.1 + Lc.t.2 , (8.26)

since Ltot is independent on the Lagrangian renormalization scheme. We em-
ploy the dimensional regularization for both the UV and infrared divergences,
indicating with ε > 0 and εI > 0 the corresponding dimension parameters.
To obtain the intermediate expressions for the leg contributions, we adopt the
on-shell scheme to fix the Lagrangian counterterms. We obtain the following
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results:

(1 + δ2)Lµν0 =

(
1 +

α

2π

(
2

εI
− 1

)
−P(1 + 2ε)

)
Lµν0 , (8.27)

where

Lµν0 =

(
P µP ν

m
ū′u+ ū′

iσ{µ∆P ν}

4m
u− 1

2
ū′P [µγν]u

)
, (8.28)

and

P =
αΓ (ε)

4π

(
4πµ2

m2

)ε
=

α

4π

(
∆UV + log

(
µ2

m2

))

=
α

4π

(
1

ε
− γE + log (4π) + log

(
µ2

m2

))
. (8.29)

The combination of the leg diagrams evaluates to 0, i.e.

Lo.l. = L1 + L2 + Lc.t.1 + Lc.t.2 = 0, (8.30)

consistently with the on-shell renormalization condition. In fact, one can see
that the general expression for Lo.l. is as follows:

Lo.l. = lim
/p→m

2ū′γµP ν
i(/p+m)

p2 −m2

(
−iΣR(/p)

)
u, (8.31)

where
ΣR(/p) = /p

(
ΣV (/p) + δ2

)
−m

(
−ΣS(/p) + δ2 + δm

)
. (8.32)

The on-shell renormalization condition prescribes that:

lim
/p→m

i(/p+m)

p2 −m2

(
−iΣR(/p)

)
= 0, (8.33)

to ensure that the pole of the propagator is at the renormalized electron mass,
and the residual is equal to 1.

Therefore we have:

Ltot = (1 + δ2)Lµν0 + Lo.l. =

(
1 +

α

2π

(
2

εI
− 1

)
−P(1 + 2ε)

)
Lµν0 . (8.34)

As we stated above, this result is scheme independent, and this feature can
easily be checked by computing it in other schemes, e.g. the MS scheme1.

For the sum of the four-particle vertexes, we have:

V1 + V2 = −2P(1 + 3ε)Lµν0 −mP(1 + ε)gµν ū′u. (8.35)

To obtain the explicit expression for the one-loop electron vertex V3 and the
one-loop photon vertex V4, we have to introduce the Feynman parameters and

1Of course, Lo.l. is no longer zero in MS and, accordingly, the expression for (1 + δ2)Lµν0
is different.
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perform the corresponding integrals. First, it is useful to isolate the antisym-
metric part of Lµν0 by defining:

Lµν0 = L̃µν0 + Aµν , Aµν = −1

2
ū′P [µγν]u, (8.36)

with L̃µν0 = L̃νµ0 , see Eq. (8.28). For the electron vertex, we have:

V3 =

∫ 1

0

dx

∫ 1−x

0

dyNµν
e , (8.37)

having defined

Nµν
e = L̃µν0

[
α

2πMe

(
x(1− x2 − 2x)− xd2

m(1− z)(1− y)
)

+ Ue2x(1− 2ε)
(

1 +
ε

2

)]
+mgµν ū′u(4− 2ε− 2x+ 2εx)

(
1 +

ε

2

)
Ue

+
P µP ν

m
ū′u

α

πMe

x2(−1 + x) +
∆µ∆ν

4m
ū′u

α

πMe

(y − z)2(x− 2)

+ Aµν

[
α

2πMe

(
x(1− x2 − 2x)− xd2

m(1− z)(1− y)
)

+ Ue (2x(1− 2ε) + 4(1− ε)(1 + x))
(

1 +
ε

2

)]
, (8.38)

where

Me = (1− x)2 + y(1− x− y)d2
m, d2

m = −∆2/m2 ≥ 0, (8.39)

and
Ue = P

(
1− ε

2
− ε log [Me]

)
. (8.40)

For the photon coupling to the external operator we have:

V4 =

∫ 1

0

dx

∫ 1−x

0

dyNµν
γ , (8.41)

with

Nµν
γ = L̃µν0

{ α

πMγ

[
−x2 +

∆2

m2
y(1− x− y)

]
+ 4(1 + x)(1− ε)

(
1 +

ε

2

)
Uγ

}

+
P µP ν

m
ū′u

α

πMγ

x2(1− x) +
∆µ∆ν

4m
ū′u

α

πMγ

(1− x− (1 + x)(1− x− 2y)2)

+mgµν ū′u
{ α

8πMγ

[
2x3 − 2

∆2

m2
(2 + x)y(1− x− y)

]

−Uγ(1 + x− 2ε− 5xε)
(

1 +
ε

2

)}
, (8.42)

where
Mγ = x2 + y(1− x− y)d2

m. (8.43)

Since we are using a symmetric definition for the photon EMT, the anti-
symmetric Lorentz structure is not present in Eq. (8.42).
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8.3 Renormalization

The renormalization of the UV divergences is a rather tricky subject, discussed
in detail in Refs. [170, 171] for QCD. We retraced the steps of [170, 171] in our
works for the QED (see Ref. [160]) and QCD cases (see Ref. [161]). One can
introduce the following operators2

O3,S =
i

4
ψ̄γ{µ

↔
Dν}ψ, O3,A =

i

4
ψ̄γ[µ

↔
Dν]ψ, O4 = gµνmψ̄ψ, (8.44)

O1 = −F µαF ν
α, O2 = gµνFαβFαβ, (8.45)

where we suppressed the Lagrangian counterterms to lighten the notation. The
full electron operator reads:

O3 = O3,S + O3,A, (8.46)

from which we have the full EMT as:

T µν = O1 +
O2

4
+ O3. (8.47)

To carry out the renormalization program, we choose to use the MS scheme in-
stead of the MS, that was adopted in Refs. [170, 171]. The transition between
the two schemes can be performed via the following substitution (see App. B
and Eqs. (B.4)-(B.5) for a more detailed explanation of how to relate the coun-
terterms in the two schemes):

1

ε
=

1

ε
Sε, (8.48)

with

Sε
∣∣
MS1

=
(4π)ε

Γ (1− ε) = 1 + ε (log (4π)− γE)

+ ε2
6γ2

E − π2 − 12γE log (4π) + 6 log2 (4π)

12
+O(ε3)

≡ 1 + ε δUV + ε2
δUV

2

2
− ε2 π

2

12
+O(ε3) , (8.49)

or

Sε
∣∣
MS2

= (4πe−γE)ε = 1 + ε δUV + ε2
δUV

2

2
+O(ε3) , (8.50)

where δUV = log (4π)− γE. The definition in Eq. (8.49) is used in Ref. [12] and
related works, whereas the definition in Eq. (8.50) seems to be more popular in
literature. For the QED case, since we work at O(α), the two definitions of MS
coincide. Their difference will be important in Sec. 8.6. Therefore, the trans-
ition between MS and either version of MS at O(α) can be simply performed
with the replacement 1/ε→ ∆UV. We will carry out the renormalization for the

2To simplify the notation, we omit the tensor indexes in the operator Oi if not necessary.
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operators evaluated between electron states, therefore some of the counterterms
associated with the photon contributions are vanishing. Additional work would
be required to renormalize the EMT evaluated between photon states. In the
following, the Lagrangian renormalization for all the fields is understood (the
charge renormalization is not present at order α), and we will deal explicitly
with the renormalization of the composite operators Oi, i = 1, ..., 4.

We have the following system of equations:

OR
1 = ZTO1 + ZMO2 + ZLO3,S + ZSO4, (8.51)

OR
2 = ZFO2 + ZCO4, (8.52)

OR
3,S = ZψO3,S + ZKO4 + ZQO1 + ZBO2, (8.53)

OR
3,A = Z5O3,A, (8.54)

OR
4 = O4. (8.55)

The counterterms for the trace of the photon EMT (in the MS scheme) are
well known in literature from the trace anomaly [172–175]:

ZF = 1 +
β(e)

e
∆UV = 1 +

α

3π
∆UV, ZC = 2γm∆UV =

3α

π
∆UV, (8.56)

where we used the definitions of the QED β-function and electron anomalous
dimension at order α:

β(e)

2e
= −αβ0

8π
, β0 = −4

3
, γm =

3α

2π
. (8.57)

To ensure the invariance of the total EMT under renormalization, we have the
following constraints on the counterterms:

ZT + ZQ = 1, (8.58)

ZL + Zψ = 1, (8.59)

ZM + ZB +
ZF
4

=
1

4
, (8.60)

ZS + ZK +
ZC
4

= 0, (8.61)

Z5 = 1. (8.62)

From Eq. (8.62), we can see that the antisymmetric part does not need any
additional renormalization. This happens because there are no gauge-invariant
antisymmetric operators with the correct correct dimension to mix with it. The
fact that the antisymmetric part is free of divergences can also be checked from
the explicit results given in the previous section. From now on in this section
we are going to drop the subscript S in the symmetric part of O3 to lighten the
notation.

We can introduce the traceless operators Õi for the electron and the photon
as:

ÕR
1 = OR

1 +
1

4

(
1− β(e)

2e
+ x

)
OR

2 +
y − γm

4
OR

4 , (8.63)
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ÕR
3 = OR

3 −
x

d
OR

2 −
1 + y

4
OR

4 , (8.64)

where x, y are finite α-dependent parameters, starting at O(α). We recall from
Eq. (8.21) that the traceless operators are directly related to the Ai(0) form
factors. Contrary to what is stated in Ref. [170], Eqs. (8.58)-(8.62) do not
add new constraints on the values of x, y. For the MS scheme, the correct
procedure was described in [171] and it consists in requiring a vanishing finite
part for all the counterterms. Depending on the scheme, the procedure to fix
x and y is different. Accordingly, the choice of the values for x and y implies
to using a specific scheme for the counterterms. We will review the different
procedures to fix x and y in MS-like schemes in Sec. 8.6. However, MS-like
schemes are not, perhaps, the most physically intuitive because the trace of
the renormalized photon operator is written in terms of the combination of the
renormalized traces of the photon and electron, as it can be clearly see from
Eq. (9) of Ref. [176]:

〈e| (Te,R)µµ |e〉 = (1 + y) 〈e|
(
mψ̄ψ

)
R
|e〉+ x 〈e| (F µνFµν)R |e〉 , (8.65)

〈e| (Tγ,R)µµ |e〉 = (γm − y) 〈e|
(
mψ̄ψ

)
R
|e〉+

(
β(e)

2e
− x
)
〈e| (F µνFµν)R |e〉 .

(8.66)

To diagonalize this system of equations, we need to choose a different scheme
with respect to MS-like choices. We introduce two schemes, that we call “diag-
onal” schemes, as follows:

• D1 scheme (see Ref. [160]): x = 0, y = γm. In this scheme, Eqs. (8.65)-
(8.66) become diagonal, in the sense that the trace of the renormalized
electron EMT is given solely in terms of electron operators.

• D2 scheme (see Ref. [161]): x = y = 0. In this scheme, the entire trace
anomaly is attributed to the trace of the renormalized photon part Tγ,R
of the EMT.

The D2 scheme reflects the fact that, in dimensional regularization, the trace
anomaly entirely emerges from the photon sector. Through all the sections
dedicated to the QED case, we are going to consider only the D1 scheme, the
D2 scheme will be used only in Sec. 8.6 when dealing with the proton case.

For the purposes of the one-loop calculation in this section, the value of x
is not relevant, since for an electron state the product

x 〈e|F 2
R|e〉 (8.67)

is of O(α2). In MS we obtain the same value for x as in the D1 scheme since
we are considering only electron states, but this is a coincidence, not a general
feature. We have, therefore:

x = 0, y =

{
α
3π

MS

γm = 3α
2π

D1

. (8.68)
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The counterterms that involve the parameters x and y are ZB,M,K,S. They read:

ZM =
ZT
d
− ZF

d

(
1− β(e)

2e
+ x

)
, (8.69)

ZS = −ZL
d
− ZC

d

(
1− β(e)

2e
+ x

)
− y − γm

d
, (8.70)

ZB =
ZQ
d

+
x

d
ZF , (8.71)

ZK = −Zψ
d

+
x

d
ZC +

1 + y

d
. (8.72)

The counterterms Zψ,Q,L,T are fixed from the evolution equations of the form
factors Ai(0). Note that Ai(0) is already Lagrangian renormalized, therefore it
has a scale dependence that is not acquired during the renormalization proced-
ure of this section. For this reason, the scale dependence of Ai(0) and ARi (0) is
the same. From our previous results, we can derive immediately:

∂

∂ lnµ
Ae(0) = − ∂

∂ lnµ
Aγ(0) = −4α

3π
Ae(0). (8.73)

The full evolution equations would require Ae and Aγ also for a photon state.
We will not consider them, since we are dealing with an electron state only.
However, it is known that the evolution equations of Ai are the second moment
of the DGLAP kernel, see Ref. [170] for the explicit expression, with nf = 1,
CF = 1 and CA = 0 for the QED case. Following the procedure illustrated in
detail in Ref. [171], we obtain in the two schemes:

ZT = 1, ZQ = 0, Zψ = 1 +
2α

3π
∆UV, (8.74)

ZL = −2α

3π
∆UV, ZM = − α

12π
∆UV, ZB = 0, (8.75)

ZS =

{
− 7α

12π
∆UV, MS

− 7α
24π
− 7α

12π
∆UV, D1

, ZK =

{
− α

6π
∆UV, MS

7α
24π
− α

6π
∆UV, D1

. (8.76)

The difference between the two schemes is a finite part of O(α).
Using the values for the counterterms in Eqs. (8.56) and (8.74)-(8.76), along-

side with the tree-level results3

〈O3〉tree = L̃µν0 = Lµν0 +
1

2
ū′P [µγν]u, 〈O4〉tree = mgµν ū′u, 〈O1,2〉tree = 0,

(8.77)
we obtain from Eqs. (8.51)-(8.55) in the MS scheme

〈OR
3 〉

MS
= 〈O3〉+

2α

3π
∆UV L̃

µν
0 −

α

6π
∆UV (mgµν ū′u), (8.78)

3We recall that we are considering only the symmetric part of O3, since the antisymmetric
part does not need any additional renormalization, see Eq. (8.62).
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〈OR
1 〉

MS
= 〈O1〉 −

2α

3π
∆UV L̃

µν
0 −

7α

12π
∆UV (mgµν ū′u), (8.79)

〈OR
2 〉

MS
= 〈O2〉+

3α

π
∆UV (mgµν ū′u), (8.80)

where we introduced the notation

〈O〉 = 〈e(p′)|O|e(p)〉 . (8.81)

The corresponding results with the counterterms in the D1 scheme are

〈OR
3 〉

D1
= 〈O3〉+

2α

3π
∆UV L̃

µν
0 +

(
7α

24π
− α

6π
∆UV

)
(mgµν ū′u), (8.82)

〈OR
1 〉

D1
= 〈O1〉 −

2α

3π
∆UV L̃

µν
0 +

(
− 7α

24π
− 7α

12π
∆UV

)
(mgµν ū′u), (8.83)

〈OR
2 〉

D1
= 〈O2〉+

3α

π
∆UV (mgµν ū′u). (8.84)

As a result, the renormalised contributions read:

LRtot =

(
1 +

α

πεI
− α

π
− αL

4π

)
L̃µν0 +

(
1 +

α

πεI
− α

π

)
Aµν , (8.85)

(V1 + V2)R =

{(
−3α

2π
− αL

2π

)
L̃µν0 − 3α

2π
Aµν −

(
α
4π

+ αL
4π

)
(mgµν ū′u), MS(

−3α
2π
− αL

2π

)
L̃µν0 − 3α

2π
Aµν −

(
− α

24π
+ αL

4π

)
(mgµν ū′u), D1

,

(8.86)

(Nµν
e )R = L̃µν0

[ α

8πMe

(
4x(1− x2 − 2x) + 4x

∆2

m2
(1− z)(1− y)

)

+
αx

2π
(L − log (Me)− 2)

]

+mgµν ū′u
α

2π
(x− 1− (2− x) (log (Me)−L))

+
P µP ν

m
ū′u

α

πMe

x2(−1 + x)
∆µ∆ν

4m
ū′u

α

πMe

(y − z)2(x− 2)

+ Aµν
[
− α

2π
(1 + 3x+ x log (Me))

+
α

2πMe

(
x(1− x2 − 2x)− xd2

m(x+ y)(1− y)
) ]
, (8.87)

(
Nµν
γ

)R
= L̃µν0

{ α

πMγ

[
−x2 +

∆2

m2
y(1− x− y)

]

+
α

π
(1 + x) (L − 1− log (Mγ))

}
+
P µP ν

m
ū′u

α

πMγ

x2(1− x)

+
∆µ∆ν

4m
ū′u

α

πMγ

(1− x− (1 + x)(1− x− 2y)2)

+mgµν ū′u

(
α

4πMγ

[
x3 + d2

m(2 + x)y(1− x− y)
])
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+mgµν ū′u

{
− α

4π
((1 + x)(L − log (Mγ))− 2− 5x) , MS

− α
4π

(
(1 + x)(L − log (Mγ)) + 1

3
− 5x

)
, D1

,

(8.88)

where we assigned the finite part of the counterterm of gµν to V1 + V2, and

defined L = log
(
µ2

m2

)
.

Note that we used the following relation

− 7α

24π
=

α

4π

∫ 1

0

dx

∫ 1−x

0

dyf(x, y) (8.89)

to include the finite part of the counterterm in the photon sector. Imposing
f(x, y) = c, with c a costant, we find that c = −7/3. Of course, one can choose
a different function, but it does not matter since we are ultimately interested
in the integrated values.

8.4 Form Factors

The integrals over the Feynman parameters can be manipulated to reproduce
the total results shown in Ref. [177]. However, they cannot be completely solved
using analytic techniques to produce a close form for the results. Only in the
forward limit the integrals simplify and lead to the following expressions:

LRtot (∆ = 0) = 2P µP ν

(
1 +

α

πεI
− α

π
− αL

4π

)
, (8.90)

(V1 + V2)R (∆ = 0) =

{
2P µP ν

(
−αL

2π
− 3α

2π

)
− 2m2gµν

(
αL
4π

+ α
4π

)
, MS

2P µP ν
(
−αL

2π
− 3α

2π

)
− 2m2gµν

(
αL
4π
− α

24π

)
, D1

,

(8.91)

V R
3 (∆ = 0) = 2P µP ν

(
− α

πεI
+

14α

9π
+
αL

12π

)
+ 2m2gµν

(
5αL

12
+

7α

36π

)
,

(8.92)

V R
4 (∆ = 0) =

{
2P µP ν

(
2αL
3π

+ 17α
18π

)
+ 2m2gµν

(
−αL

6π
+ α

18π

)
, MS

2P µP ν
(

2αL
3π

+ 17α
18π

)
+ 2m2gµν

(
−αL

6π
− 17α

72π

)
, D1

.

(8.93)

To obtain the form factors in terms of the Feynman-parameter integrals for a
generic value of ∆, we can compare Eqs. (8.85)-(8.88) with the general para-
metrization of the EMT given in Eq. (8.18). We obtain:

ARe (∆2) = 1 +
α

π

(
1

εI
− 3L

4
− 5

2

)
+

α

2π

∫ 1

0

dx

∫ 1−x

0

dy

×
(
x3 − 4x2 + x− d2

mx(1− y)(x+ y)

Me

+ x(L − 2− logMe)

)
,

(8.94)

147



8. The Energy-Momentum Tensor

JRe (∆2) =
1

2
+

α

2π

(
1

εI
− 3L

4
− 5

2

)
+

α

4π

∫ 1

0

dx

∫ 1−x

0

dy

×
(
x(1− x2 − 2x)− d2

mx(1− y)(x+ y)

Me

+ x(L − 2− logMe))

)
,

(8.95)

CR
e (∆2) = 1 +

α

π

(
1

εI
− 5

2

)
+

α

2π

∫ 1

0

dx

∫ 1−x

0

dy

×
(
x(1− x2 − 2x)− d2

mx(1− y)(x+ y)

Me

− 1− 3x− x logMe

)
,

(8.96)

DR
e (∆2) =

α

π

∫ 1

0

dx

∫ 1−x

0

dy
(x− 2)(1− x− 2y)2

Me

, (8.97)

C̄R
e (∆2) = −αL

4π
− αce

4π
+

α

2π

∫ 1

0

dx

∫ 1−x

0

dy

(
−d2

m(x− 2)(1− x− 2y)2

2Me

+ x− 1− (2− x) (logMe −L)

)
, (8.98)

where

ce =

{
1, MS

−1
6
, D1

, (8.99)

ARγ (∆2) =
α

π

∫ 1

0

dx

∫ 1−x

0

dy

(
−x3 − d2

my(1− x− y)

Mγ

+ (1 + x)(L − 1− logMγ

)
, (8.100)

JRγ (∆2) =
α

2π

∫ 1

0

dx

∫ 1−x

0

dy

(
−x2 − d2

my(1− x− y)

Mγ

+ (1 + x)(L − 1− logMγ

)
, (8.101)

CR
γ (∆2) = 0, (8.102)

DR
γ (∆2) =

α

π

∫ 1

0

dx

∫ 1−x

0

dy
1− x− (1 + x)(1− x− 2y)2

Mγ

, (8.103)

C̄R
γ (∆2) =

α

4π

∫ 1

0

dx

∫ 1−x

0

dy

(
− (1 + x)(L − logMγ) + 5x+ 2ce

+
x3 + d2

m ((2 + x)y(1− x− y)− 1 + x+ (1 + x)(1− x− 2y)2)

Mγ

)
.

(8.104)
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8.4.1 Feynman-parameter integrals

Although a closed form for the integrals in the previous section is impossible
to obtain, we are going to manipulate the integrals to isolate the infrared di-
vergences and then show their cancelation in the forward limit, as well as to
obtain a more suitable expression for the numerical implementation. The integ-
rals that we need to analyze can be divided in infrared-safe and infrared-unsafe
integrals. The fundamental difference between the electron integrals and the
photon integrals (see Eqs. (8.94)-(8.104)) lies in the “mass” function that ap-
pears at the denominator and inside the logarithm (see Eqs. (8.39) and (8.43)).
We start by introducing the following general integrals:

f (n,m)
γ (x, y) = xnymM−1

γ = xnym
(
x2 + y(1− x− y)d2

m

)−1
, (8.105)

f (n,m)
e (x, y) = xnymM−1

e = xnym
(
(1− x)2 + y(1− x− y)d2

m

)−1
, (8.106)

I
(n,m)
I =

∫ 1

0

dx

∫ 1−x

0

dy f
(n,m)
i (x, y). (8.107)

We can make use of the following relation:

I
(n,m)
I =

∫ 1

0

dx

∫ 1−x

0

dy f
(n,m)
i (x, y) =

∫ 1

0

dx

∫ 1

0

dw (1− x)f
(n,m)
i (x,w(1− x))

(8.108)

=
−1

d2
m

∫ 1

0

dx (1− x)m−1xn
∫ 1

0

dw wm
(
w2 − w − ci

)−1

=
−1

d2
m

∫ 1

0

dx (1− x)m−1xn J (m)(ci), (8.109)

where

cγ =
x2

d2
m(1− x)2

, ce =
1

d2
m

, cγ,e ≥ 0 ∀x ∈ (0, 1). (8.110)

The integrals J (m) over w are simple to perform, and here we give some ex-
amples:

J (0)(ci) =
2√

1 + 4ci
log

(
2ci

1 + 2ci +
√

1 + 4ci

)
, (8.111)

J (1)(ci) =
1√

1 + 4ci
log

(
2ci

1 + 2ci +
√

1 + 4ci

)
, (8.112)

J (2)(ci) = 1− 1 + 2ci√
1 + 4ci

log

(
1 +
√

1 + 4ci
1−√1 + 4ci

)
. (8.113)

(8.114)

With these results in hand, we can classify the infrared behaviour of the integrals
easily. We have that:

I(n,0)
e = −∞, the integrand diverges for x→ 1, (8.115)
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I(0,m)
γ = −∞, the integrand diverges for x→ 0. (8.116)

However, sometimes, the infrared divergent integrals appear in particular com-
binations, in which the divergences cancel exactly. It is therefore useful to
define the following infrared-safe combinations:

H(n,m)
e =

∫ 1

0

dx

∫ 1−x

0

dy
(
f (n,m)
e (x, y)− f (n+1,m)

e (x, y)
)

= − 1

d2
m

∫ 1

0

dx (1− x)mxn J (m)(ce), (8.117)

H(n,m)
γ =

∫ 1

0

dx

∫ 1−x

0

dy
(
f (n,m)
γ (x, y)− f (n,m+1)

γ (x, y)
)

= − 1

d2
m

∫ 1

0

dx (1− x)m−1xn
(
J (m)(cγ)− (1− x)J (m+1)(cγ)

)
. (8.118)

The IR-pole in I
(n,0)
e is simple to isolate in dimensional regularization. The key

equation is:

∫ 1

0

dx xσφ(x) =
φ(0)

1 + σ
+

∫ 1

0

dx xσ(φ(x)− φ(0)), (8.119)

where φ(x) is some regular function for x→ 1. Being ce = 1/d2
m, we have that:

I(n,0)
e = − 1

d2
m

∫ 1

0

dx
xn

1− xJ
(0)
e

(
1

d2
m

)
. (8.120)

Since Je is constant in x, we have:

∫ 1

0

dx
xn

1− x →
∫ 1

0

ddx
(1− x)n

x
=

π
d
2

Γ
(
d
2

)
∫ 1

0

dx
(1− x)n

x2−d

=
π
d
2

Γ
(
d
2

)
(

1

1 + d− 2
+

∫ 1

0

dx
(1− x)n − 1

x

)
=

(
1

εI
−

n∑

k=1

1

k

)
,

(8.121)

where d = 1 + εI > 1. Therefore we have

I(n,0)
e = − 1

d2
m

J (0)
e

(
1

d2
m

)(
1

εI
−

n∑

k=1

1

k

)
. (8.122)

The angular-measure prefactor in d dimensions is

2π
d
2

Γ
(
d
2

) . (8.123)

However, in Eq. (8.121), the angular measure is half of the total one, since the
integral in x is between 0 and 1, i.e. we are integrating over the half-ball in 1D.
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With these definitions in hand, we can rewrite the form factors in a more
compact form:

ARe (∆2) = 1 +
α

π

(
1

εI
− 2L

3
− 8

3

)
− α

2π

∫ 1

0

dx

∫ 1−x

0

dy x logMe

+
α

2π

(
H(1,0)
e −H(2,0)

e − 2I(2,0)
e − d2

m

(
I(2,0)
e +H(1,1)

e − I(1,2)
e

))
, (8.124)

JRe (∆2) =
1

2
+

α

2π

(
1

εI
− 2L

3
− 8

3

)
− α

4π

∫ 1

0

dx

∫ 1−x

0

dy x logMe

+
α

4π

(
H(2,0)
e +H(1,0)

e − 2I(2,0)
e − d2

m

(
I(2,0)
e +H(1,1)

e − I(1,2)
e

))
, (8.125)

CR
e (∆2) = 1 +

α

π

(
1

εI
− 3

)
− α

2π

∫ 1

0

dx

∫ 1−x

0

dy x logMe

+
α

2π

(
H(3,0)
e +H(1,0)

e − 2I(2,0)
e − d2

m

(
I(2,0)
e +H(1,1)

e − I(1,2)
e

))
, (8.126)

DR
e (∆2) =

α

π

(
− 2H(0,0)

e −H(2,0)
e + 3H(1,0)

e − 8I(0,2)
e

+ 8I(0,1)
e − 12I(1,1)

e + 4I(1,2)
e + 4I(2,1)

e

)
, (8.127)

C̄R
e (∆2) =

αL

6π
− α

4π

(
ce +

2

3

)
− α

2π

∫ 1

0

dx

∫ 1−x

0

dy(2− x) logMe

− d2
mα

4π

(
−2H(0,0)

e + 8H(0,1)
e + 3H(1,0)

e − 4H(0,2)
e − 4H(1,1)

e − 4I(0,2)
e

)
,

(8.128)

ARγ (∆2) = −2α

3π
+

2αL

3π
− α

π

∫ 1

0

dx

∫ 1−x

0

dy(1 + x) logMγ

− α

π

(
I(3,0)
γ + d2

mH
(0,1)
γ − d2

mI
(1,1)
γ

)
, (8.129)

JRγ (∆2) = − α

3π
+
αL

3π
− α

2π

∫ 1

0

dx

∫ 1−x

0

dy(1 + x) logMγ

− α

2π

(
I(2,0)
γ + d2

mH
(0,1)
γ − d2

mI
(1,1)
γ

)
, (8.130)

CR
γ (∆2) = 0, (8.131)

DR
γ (∆2) =

α

π

(
4H(0,1)

γ − I(3,0)
γ + I(2,0)

γ − 4I(1,2)
γ − 4I(2,1)

γ

)
, (8.132)

C̄R
γ (∆2) =

α

8π

(
5

3
+ 2ce

)
− αL

6π
+

α

4π

∫ 1

0

dx

∫ 1−x

0

dy(1 + x) logMγ

+
α

4π

(
I(3,0)
γ + d2

m

(
−2H(0,1)

γ − I(1,1)
γ + I(3,0)

γ − I(2,0)
γ + 3I(1,2)

γ + 3I(2,1)
γ

))
,

(8.133)

where ce is defined in Eq. (8.99).
In Fig. 8.2, the form factors are plotted against the adimensional variable

d2
m, at the scale µ2 = m2 and, if present, the infrared divergences are ignored.

The red short-dashed curves represent the photon form factors, the blue long-
dashed curves show the electron form factors. We can clearly see the different
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behavior of the electron and photon, especially for the Di form factor. We
notice that, in the limit of d2

m → 0, Di saturates at very small values in the
electron case, whereas it diverges for the photon. We can also investigate the
low-∆ behavior of the form factors and compare it to the one given in Ref. [177].
In our notation, the form factors Fi of Ref. [177] are:

F1(d2
m) = 2J(d2

m) = 2(JRe (d2
m) + JRγ (d2

m)), (8.134)

F2(d2
m) = A(d2

m)− 2J(d2
m) = ARe (d2

m) + ARγ (d2
m)− 2(JRe (d2

m) + JRγ (d2
m)),

(8.135)

F3(d2
m) = −D(d2

m)

2
= −D

R
e (d2

m) +DR
γ (d2

m)

2
. (8.136)

From Ref. [177], we have that:

F1(d2
m � 1) = 1−

√
d2
mαπ

8
, F2(d2

m � 1) = −
√
d2
mαπ

16
, F3(d2

m � 1) = − απ

8
√
d2
m

.

(8.137)

As it can be appreciated from Fig. 8.3, there is a perfect agreement between
the two calculations. We can also see that the divergent behavior of F3(d) is
entirely due to the photon D-term, as can be see from the panels (c) and (d)
of Fig. 8.2. Furthermore, one can notice from the panels (a) and (b) of Fig. 8.2
that the electron form factors Ae and Je tend to have a more flat behavior near
d ' 0 compared to their photon counterparts.

We can now easily compute the form factors in the forward limit ∆→ 0:

ARe (0) = 1− 2αL

3π
− 17

18

α

π
, (8.138)

ARγ (0) =
2αL

3π
+

17

18

α

π
, (8.139)

C̄R
e (0) =

{
αL
6π
− α

18π
, MS

αL
6π

+ 17
72
α
π
, D1

, (8.140)

C̄R
γ (0) =

{
−αL

6π
+ α

18π
, MS

−αL
6π
− 17

72
α
π
, D1

. (8.141)

We notice that these results are consistent with the ones derived in Ref. [178]
for the dimensional-regularization case.

We can also compute the limit ∆ → 0 for the other form factors, although
they do not appear in the decomposition of the forward matrix element (see
Eq. (8.18)), since they appear with coefficients that vanish in the limit4 ∆→ 0.
We have:

JRγ (0) =
α

2π

(
11

18
+

2L

3π

)
, (8.142)

4We note from Eq. (8.137) that that the photonD-term 1/∆ and the prefactor in Eq. (8.18)
vanishes as ∆2.
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Figure 8.2: The photon and electron contribution to the EMT form factors
as function of d2

m = −∆2/m2 at the scale µ2 = m2. The D form factors are
shown in two separate panels ((c) and (d)) because of the huge difference in the
absolute values between the photon and the electron contribution. The panel
(e) contains the results in MS scheme for the C̄i form factors. The panel (f)
shows the Ce form factor, that is associated with the antisymmetric part of the
EMT and it vanishes for the photon, see Eq. (8.131).
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Figure 8.3: Comparison of the low-d2
m behavior of the form factors F1,2,3 as

defined in Eqs. (8.134)-(8.136) between our results (red short-dashed curves)
and the calculation of Ref. [177] (blue long-dashed curves).
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JRe (0) =
1

2
− α

2π

(
11

18
+

2L

3π

)
, (8.143)

DR
γ (0) = +∞, DR

e (0) = − 5α

18π
, CR

e (0) = 1− 71

72

α

π
. (8.144)

8.5 Forward limit

Different mass sum rules derived from the EMT exist in the literature: a four-
term decomposition proposed by Ji in Ref. [179], a two-term and a four-term
decomposition by Lorcé [180], as well as a two-term decomposition of the mass
squared by Hatta, Rajan, Tanaka [170]. In the following, we are going to
explore the different sum rules for the electron in QED (see Ref. [160]) and for
the proton in QCD (see Ref. [161]). All the results at the operator level look
identical in QED and QCD (with the obvious difference in the definition of the
gauge strength field tensor and an implicit sum over the quark flavors in QCD).
For this reason, we are going to discuss in detail the operators in the QED part
of the section, whereas in the QCD part we shall focus mainly on the numerics.

8.5.1 Two-term decompositions

We start with the two-term decomposition of m2 proposed in Ref. [170], which
reads

m =

∫
d3x

(
〈(Te,R(0))µµ〉+ 〈(Tγ,R(0))µµ〉

)

〈e(P )|e(P )〉

∣∣∣∣∣
P=0

≡ m̄e + m̄γ. (8.145)

From Eqs. (8.65)-(8.66), we find:

m̄e

m
= ARe (0) + 4C̄R

e (0) = 1 + y − γm =

{
1− 7α

6π
, MS

1, D1

, (8.146)

m̄γ

m
= ARγ (0) + 4C̄R

γ (0) = γm − y =

{
7α
6π
, MS

0, D1

, (8.147)

where we used 〈(mψ̄ψ)R〉 = 2m2(1 − γm) and neglected O(α2) terms. We
observe that, at O(α) and in the D1 scheme, the electron mass is exclusively
related to the trace of the renormalized electron operator, while the photon
contribution vanishes. Once higher-order terms are taken into account, one
would find m̄γ 6= 0 in the D1 scheme. However, to any order in perturbation
theory, the D1 scheme ensures that m̄e is exclusively given by the renormalized
fermion operator and m̄γ by the renormalized photon operator. Therefore, the
D1 scheme is perhaps the most natural scheme for the two-term decomposition
of m2 proposed in Ref. [170]. We also point out that one can hardly assign a
physical interpretation to both the size and the sign of the O(α) corrections,
which may both depend on the scheme.
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8. The Energy-Momentum Tensor

The two-term sum rule for m of Ref. [170] has the advantage of being a
frame-independent decomposition, in the sense that, in a generic frame one
has:

m̄e

m
=
m

E

(
ARe (0) + 4C̄R

e (0)
)
,

m̄γ

m
=
m

E

(
ARγ (0) + 4C̄R

γ (0)
)
, (8.148)

where E is the electron energy in the moving frame. We can clearly see that the
ratio of the two terms remains equal, although they are individually modified.

All the other decompositions that we consider in the following depend on the
reference frame, in the sense that the relative contributions change in different
frames. We therefore discuss them first in the rest frame of the electron and
afterwards comment on the required modifications in a moving frame.

In the two-term decomposition of Ref. [180], the mass of a particle is written
as the sum of the energies carried by the constituents and gauge degrees of
freedom (electron and photon in our case),

m = Ue + Uγ. (8.149)

The definition of the (partial) energies Ui, in terms of renormalized operat-
ors (please note that in Ref. [180] the renormalization was assumed but not
discussed in any detail), is

Ui =

∫
d3x 〈T 00

i,R(0)〉
〈e(P )|e(P )〉

∣∣∣∣∣
P=0

= m
(
ARi (0) + C̄R

i (0)
)
. (8.150)

We can therefore use the results in Eqs. (8.138)–(8.141) to compute the partial
energies in the two renormalization schemes,

Ue =

{
m
(
1− αL

2π
− α

π

)
, MS

m
(
1− αL

2π
− 17α

24π

)
, D1

, Uγ =

{
m
(
αL
2π

+ α
π

)
, MS

m
(
αL
2π

+ 17α
24π

)
, D1

. (8.151)

We repeat that the scheme dependence prevents a clean interpretation of the
results. Yet, we find positive values for Uγ in either scheme (unless the renormal-
ization scale µ is extremely low), in agreement with what one would intuitively
expect for the contribution due to the photon energy.

We anticipate that the renormalized operators associated with the Ui are5,6:

T 00
e,R = g0

µg
0
ν

(
ψ̄iDνγµψ

)
R

= (mψ̄ψ)R + (ψ† iD ·αψ)R , (8.152)

T 00
γ,R = −g0

µg
0
ν

(
F µλF ν

λ

)
R

+
1

4

(
F 2
)
R

=
1

2
(E2 +B2)R , (8.153)

where the first term on the r.h.s. of Eq. (8.152) is the electron-mass contri-
bution to m. The second term in that equation is typically referred to as

5We are going to discuss these results in more detail in the next section.
6The second equalities in Eqs. (8.152)-(8.153) are valid by assuming that the time di-

mension is left untouched in the dimensional-regularization procedure. All the results in the
present Chapter can be generalized to d = 4 − 2ε dimension by using the first equality in
Eqs. (8.152)-(8.153) instead of the second one.
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kinetic plus potential energy of the electron [179, 181], while the operator in
Eq. (8.153) represents the (total) energy stored in the photon field. Compar-
ing both two-term decompositions in Eqs. (8.145)-(8.149) and the underlying
operators (see Eqs. (8.152)-(8.153) and Eqs. (8.65)-(8.66)) we find the relation

〈
g0
µg

0
ν

(
ψ̄iDνγµψ

)
R
− (mψ̄ψ)R − g0

µg
0
ν

(
F µλF ν

λ

)
R

+
1

4

(
F 2
)〉

=

〈
(ψ† iD ·αψ)R +

1

2
(E2 +B2)R

〉
=

〈
γm(mψ̄ψ)R +

β(e)

2e
(FαβFαβ)R

〉
,

(8.154)

that is, the sum of the electron energy and the photon-field energy coincides
with the anomaly contribution to the electron mass.

Note that the same exact results hold for the QCD case and the proton
mass.

8.5.2 Four-term decompositions

We now turn to the study of the four-term sum rule proposed in Ref. [179] and
studied for the electron for the first time in Ref. [182]. In the latter paper, the
individual contributions to the mass decomposition are defined in terms of the
bare operators instead of the renormalized composite operators introduced in
the previous section. Following Ref. [179], we can decompose the EMT into a
trace part and a traceless part according to

T µν = T̂ µν + T̄ µν , (8.155)

with the trace term given by T̂ µν = 1
4
gµν Tαα . As discussed in the initial part

of the Chapter, the separation of the two operators in terms of electron and
photon contributions depends on the renormalization scheme and, in general,
involves mixing of the two contributions under renormalization. Therefore, the
procedure of Ref. [179], where the traceless partial operators are obtained by
subtracting the trace term from the full EMT separately for the electron and
photon, deserves a fresh look. In accordance with Ref. [179], we introduce the
QED Hamiltonian H and the Hamiltonian density H as

H =

∫
d3xT 00(0, x) =

∫
d3xH(0, x). (8.156)

In Ref. [179], the separate electron and photon contributions to the traceless
and trace operators were then defined as 7

(H′e)[179] =
[
(T̄ 00

e )R
]

[179]
=
(
ψ† (iD ·α)ψ

)
R

+
3

4
mψ̄ψ, (8.157)

7The label indicates that here we are using the definitions of Ref. [179], which will be
revised below. Note also the in Ref. [179] the covariant derivative is assumed to be D[179] =
∇− igsA = −∂ − igsA = −D.
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(H′m)[179] =
[
(T̂ 00

e )R

]
[179]

=
1 + γm

4
mψ̄ψ, (8.158)

(H′γ)[179] =
[
(T̄ 00

γ )R
]

[179]
=

1

2

(
E2 +B2

)
R
, (8.159)

(H′a)[179] =
[
(T̂ 00

γ )R

]
[179]

= −β(e)

4e

(
E2 −B2

)
R
. (8.160)

In the first and third line we note that the traceless part is erroneously con-
structed by subtracting the classical trace, and not the full trace. Following
Ref. [179], we can define

(He)[179] ≡ [(T̃ 00
e )R][180] = (H′e)[179] + ce (H′m)[179] , (8.161)

(Hm)[179] ≡ [(Ť 00
e )R][180] = (1− ce)(H′m)[179], (8.162)

(Hγ)[179] ≡ [(T̃ 00
γ )R][180] = (H′γ)[179] + cγ(H

′
a)[179], (8.163)

(Ha)[179] ≡ [(Ť 00
γ )R][180] = (1− cγ)(H′a)[179], (8.164)

where we give the reference to the corresponding nomenclature from Ref. [180]
in terms of the T̃ 00

i and Ť 00
i components of the EMT. Choosing for the constants

ci the values

ce =
−3

1 + γm
, cγ = 0, (8.165)

we then obtain the definitions of Ref. [179], i.e.

(He)[179] =
(
ψ† (iD ·α)ψ

)
R
, (8.166)

(Hm)[179] =
4 + γm

4
mψ̄ψ, (8.167)

(Hγ)[179] = (H′γ)[179], (8.168)

(Ha)[179] = (H′a)[179], (8.169)

where He represents the electron kinetic and potential energy, Hm is the elec-
tron mass contribution, Hγ is the photon kinetic and potential energy, and
Ha is the anomaly contribution. We can also introduce the two parameters a
and b of Ref. [179] as the matrix elements of the traceless and trace electron
contributions, respectively,

3

2
m2a[179] =

〈(H ′e)[179]〉
e(P )|e(P )

∣∣∣∣∣
P=0

, 2m2b[179] =
〈(H ′m)[179]〉
e(P )|e(P )

∣∣∣∣∣
P=0

. (8.170)

Using the constraints in Eqs. (8.22) and (8.23), we also obtain the relations

3

2
m2(1− a[179]) =

〈(H ′γ)[179]〉
e(P )|e(P )

∣∣∣∣∣
P=0

, 2m2(1− b[179]) =
〈(H ′a)[179]〉
e(P )|e(P )

∣∣∣∣∣
P=0

. (8.171)

So far we have reviewed the main points of the mass sum rule of Ref. [179]. In
the following we suggest a modification of the sum rule in order to take into ac-
count the correct procedure of the trace subtraction. In Ref. [179], the results for
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8.5. Forward limit

the traceless photon and electron contributions have been obtained by subtract-
ing from the full EMT the trace part calculated in the classical case, i.e. without
the inclusion of the trace anomaly. However, as already discussed in Ref. [171],
this manipulation can not be applied when dealing with the renormalized oper-
ators OR

i , since the trace operation and the renormalization do not commute,

i.e. gµν(F
µλF ν

λ )R 6= (F µλFµλ)R and gµν(iψ̄γ
(µ
↔
D ν)ψ)R 6= (iψ̄γ(λ

↔
D λ)ψ)R. If

instead we use the correct renormalized traceless electron and photon operat-
ors ÕR

1 and ÕR
3 in Eqs. (8.63)–(8.64), we find that the 00-component of the

traceless electron and photon parts are given by

H′e = (T̄ 00
e )R =

(
ψ† (iD ·α)ψ

)
R

+mψ̄ψ − 1 + y

4
mψ̄ψ − x

4
(F µνFµν)R ,

(8.172)

H′γ = (T̄ 00
γ )R =

1

2

(
E2 +B2

)
R

+
y − γm

4
mψ̄ψ +

1

2

(
β(e)

2e
− x
)(

E2 −B2
)
R
.

(8.173)

The matrix element of the revised expression in Eq. (8.172) for the 00-component
of the traceless electron operator allows us to identify the parameter a with the
renormalized form factor ARe (0).

The 00-components of the trace parts also change because of additional
mixing, as can be seen from Eqs. (8.65)–(8.66). We find

H′m = (T̂ 00
e )R =

1 + y

4
mψ̄ψ +

x

4
(F µνFµν)R , (8.174)

H′a = (T̂ 00
γ )R =

γm − y
4

mψ̄ψ − 1

2

(
β(e)

2e
− x
)(

E2 −B2
)
R
. (8.175)

If we take the sum of Eq. (8.172) and (8.174), we obtain the result anticipated
in Eq. (8.152), and by taking the sum of Eq. (8.173) and (8.175) we obtain
Eq. (8.153). Note that we would have found a non-vanishing (and incorrect)
contribution of the trace anomaly to the total 00 EMT component if we would
have used Eqs. (8.157)-(8.160). In dimensional regularization, the time di-
mension, however, is left untouched, which implies that T 00 is rather special
compared to the spatial components of the EMT trace, see, e.g., Refs. [40, 183].
In fact, a careful analysis reveals that the anomaly is entirely contained in the
spatial part of the EMT.

To recover the intuitive picture in terms of kinetic and potential energy of
the electron and photon, we need to take different combinations of the operators
according to

He ≡ [(T̃ 00
e )R] = H′e + cemH

′
m + ceaH

′
a, (8.176)

Hm ≡ [(Ť 00
e )R] = (1− cem − cγm)H′m + cmaH

′
a, (8.177)

Hγ ≡ [(T̃ 00
γ )R] = H′γ + cγmH

′
m + cγaH

′
a, (8.178)

Ha ≡ [(Ť 00
γ )R] = (1− cea − cγa − cma)H′a, (8.179)
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with the constants

cem =
(3− y)β(e)

2e
− x(3− γm)

−(1 + y)β(e)
2e

+ x(1 + γm)
, cea =

4x

(1 + y)β(e)
2e
− x(1 + γm)

, (8.180)

cγm = 0, cγa = 1, cma = −cea. (8.181)

This leads to the definitions

He =
(
ψ† (iD ·α)ψ

)
R
, Hm = mψ̄ψ, Hγ =

1

2

(
E2 +B2

)
R
, Ha = 0.

(8.182)

We argue that the results in Eq. (8.182) are the appropriate operators for the
mass sum rule if one follows the overall logic of Ji’s original work, but uses
the properly renormalized 00-components of the traceless parts of the EMT for
the fermion and the gauge field. It is also noteworthy that the expressions in
Eq. (8.182) coincide formally with the classical results, i.e. the results one would
obtain from the classical electromagnetic Lagrangian without the inclusion of
the trace anomaly. We have arrived at a decomposition with three nontrivial
terms only.

We can also work out the revised expressions of the constants a, b, defined
as the (correct) traceless and trace electron contributions,

3

2
m2a =

∫
d3x 〈Õ00

3,R〉
〈e(P )|e(P )〉

∣∣∣∣∣
P=0

, (8.183)

2m2b =

∫
d3x 〈(1 + γm)mψ̄ψ〉
〈e(P )|e(P )〉

∣∣∣∣∣
P=0

, (8.184)

3

2
m2(1− a) =

∫
d3x 〈Õ00

1,R〉
〈e(P )|e(P )〉

∣∣∣∣∣
P=0

, (8.185)

2m2(1− b) =
β(e)

2e

∫
d3x 〈(F µνFµν)R〉
〈e(P )|e(P )〉

∣∣∣∣∣
P=0

. (8.186)

We stress that b is not directly the trace of the renormalized quark operator.
Using the above definitions and Eqs. (8.176)-(8.179), we have the following mass
decomposition:

me =
3

4
ma+

m

4

(
x(1− b) 2e

β(e)
+ b

y − 3

1 + γm

)
, (8.187)

mγ =
3

4
m(1− a) +

m(1− b)
4

(
1− x 2e

β(e)

)
+mb

γm − y
4(1 + γm)

, (8.188)

mm =
mb

1 + γm
, ma = 0, (8.189)

where

mi =
〈Hi〉

〈e(P )|e(P )〉
∣∣∣
P=0

. (8.190)
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In the two renormalization schemes, the results at O(α) read

me

m
=

{
α
2π
− αL

2π
, MS

19α
24π
− αL

2π
, D1

,
mm

m
=

{
1− 3α

2π
, MS

1− 3α
2π
, D1

, (8.191)

mγ

m
=

{
α
π

+ αL
2π
, MS

17α
24π

+ αL
2π
, D1

, (8.192)

Equipped with the proper one-loop results for the renormalized operators that
appear in Eq. (8.182), one can readily show that at one loop the terms in
Eqs. (8.166)–(8.169) do not add up to the mass of the electron. This is just a
consequence of the aforementioned issue with the sum rule in Ref. [179].

Before moving on to the second four-term sum rule, we make a brief compar-
ison with the two-term decomposition of Ref. [180]. By means of Eqs. (8.150),
(8.172)-(8.175), and (8.182), we find

Ue = me +mm, Uγ = mγ. (8.193)

Our three-term sum rule above could therefore be considered a refinement of
the two-term decomposition of Ref. [180]. The relations in (8.193) also allow
one to readily identify the properly renormalized operators for Ue and Uγ, see
Eqs. (8.152) and (8.153).

In Ref. [180], another type of four-term decomposition has been discussed,
which makes use of the concept of the energy introduced in Eq. (8.150) and of
the partial pressure-volume work W j

i in the directions j = x, y, z,

W j
i = g j

µ g
j
ν

〈
∫
d3x T µνi,R(0)〉
〈e(P )|e(P )〉

∣∣∣∣∣
P=0

. (8.194)

While we follow here the general logic of Ref. [180], we (again) pay close atten-
tion to the operator renormalization. The partial energies and pressure-volume
works can be related to the matrix elements of the operators (T̄ 00

i )R and (T̂ 00
i )R

according to

〈(T̄ 00
i )R〉

〈e(P )|e(P )〉

∣∣∣∣∣
P=0

=
3

4
(Ui +Wi),

〈(T̂ 00
i )R〉

〈e(P )|e(P )〉

∣∣∣∣∣
P=0

=
1

4
(Ui − 3Wi), (8.195)

where 3Wi = W x
i +W y

i +W z
i . The four-term decomposition of Ref. [180] reads

as
m = Ũe + Ũγ + Ǔe + Ǔγ, (8.196)

where the individual terms correspond to the contributions of the internal en-
ergy to the matrix elements of the T̂ 00

i and Ť 00
i operators defined in Eqs. (8.161)-

(8.164). Using the properly renormalized operators in Eqs. (8.176)–(8.179), we
obtain:

Ũe =
Ue
4

(3 + cem) +
Uγ
4
cea, Ǔe =

Ue
4

(1− cem − cγm) +
Uγ
4
cma, (8.197)
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Ũγ =
Uγ
4

(3 + cγa) +
Ue
4
cγm, Ǔγ =

Uγ
4

(1− cea − cγa − cma) , (8.198)

with the constants ci defined in Eqs. (8.180) and (8.181). The main differ-
ence with respect to Ref. [180] is that we need to mix (T̄ 00

e )R with (T̂ 00
e )R and

(T̂ 00
γ )R, (T̄ 00

γ )R with (T̂ 00
γ )R and (T̂ 00

e )R with (T̂ 00
γ )R. Using the coefficients in

Eqs. (8.180) and (8.181), we find for the photon sector

Ũγ = Uγ, Ǔγ = 0. (8.199)

This means that, once working with properly renormalized operators, the four-
term sum rule of Ref. [180] in fact reduces only to three nontrivial contributions.
Finally, in the two renormalization schemes we have the following explicit results
at O(α)

Ũe
m

=

{
α
3π
, MS

3α
2π
, D1

,
Ǔe
m

=

{
1− 4α

3π
− αL

2π
, MS

1− 53α
24π
− αL

2π
, D1

,(8.200)

Ũγ
m

=

{
α
π

+ αL
2π
, MS

17α
24π

+ αL
2π
, D1

. (8.201)

8.5.3 Energy decompositions in a moving frame

Except for the two-term decomposition of Ref. [170], all other mass sum rules
only hold in the rest frame. However, one may expect that in a moving frame
they still provide meaningful results. In fact they become energy decomposi-
tions as we discuss in the following (see Ref. [184] for a more general discussion
on the frame dependence of the matrix elements of the EMT). For a moving
electron with energy E, the partial energies become

Ui = EARi (0) +
m2

E
C̄R
i (0). (8.202)

If the electron momentum points along the ẑ axis, i.e. P µ = (E, 0, 0, p), we find
for the partial pressure-volume works

W x
i = W y

i = −m
2

E
C̄R
i (0), W z

i =
E2 −m2

E
ARi (0)− m2

E
C̄R
i (0), (8.203)

and therefore

Wi =
E2 −m2

3E
ARi (0)− m2

E
C̄R
i (0). (8.204)

The values of the a, b coefficients are not modified in a moving frame since they
are related to the form factors and not to the energy. Recalling the identification
a = ARe (0), we obtain the following modification of the expectation values of
the traceless operators:

∫
d3x 〈Õ00

3,R〉
〈e(P )|e(P )〉

∣∣∣
P=0

=
3

4
am→ a

(
E − m2

4E

)
, (8.205)
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∫
d3x 〈Õ00

1,R〉
〈e(P )|e(P )〉

∣∣∣
P=0

=
3

4
(1− a)m→ (1− a)

(
E − m2

4E

)
. (8.206)

The trace parts are affected too because of the normalization of the states. We
have

∫
d3x 〈(1 + γm)mψ̄ψ〉
〈e(P )|e(P )〉

∣∣∣
P=0

= mb→ b
m2

E
, (8.207)

β(e)

2e

∫
d3x 〈(F µνFµν)R〉
〈e(P )|e(P )〉

∣∣∣
P=0

= m(1− b)→ m2

E
(1− b). (8.208)

These results allow us to obtain the counterparts of Eqs. (8.191) and (8.192)
for a moving frame:

me

E
=





E2−m2

E2 + α
π

(
−17

18
+ 13m2

9E2 − 2L
3

+ Lm2

6E2

)
, MS

E2−m2

E2 + α
π

(
−17

18
+ 125m2

72E2 − 2L
3

+ Lm2

6E2

)
, D1

, (8.209)

mm

E
=

{
m2

E2

(
1− 3α

2π

)
, MS

m2

E2

(
1− 3α

2π

)
, D1

,

mγ

E
=





α
π

(
17
18

+ m2

18E2 + 2L
3
− Lm2

6E2

)
, MS

α
π

(
17
18
− 17m2

72E2 + 2L
3
− Lm2

6E2

)
, D1

, (8.210)

while for the decomposition in Eq. (8.196) we obtain

Ũe
E

=

{
α
3π
, MS

3α
2π
, D1

, (8.211)

Ǔe
E

=





1 + α
π

(
−23

18
− m2

18E2 − 2L
3

+ Lm2

6E2

)
, MS

1 + α
π

(
−22

9
+ 17m2

72E2 − 2L
3

+ Lm2

6E2

)
, D1

,

Ũγ
E

=





α
π

(
17
18

+ m2

18E2 + 2L
3
− Lm2

6E2

)
, MS

α
π

(
17
18
− 17m2

72E2 + 2L
3
− Lm2

6E2

)
, D1

. (8.212)

One can readily verify that the terms in Eq. (8.210) and in Eq. (8.212) add up
to E. On the other hand, the individual terms of the energy decompositions
cannot be obtained by multiplying the corresponding expressions in the rest
frame by a common overall kinematic factor.

8.6 Proton mass decompositions

In this section, we are going to use the general results at the operator level
obtained in the QED sector and specify them to the proton in QCD. We are
not going to perform a perturbative calculation of the matrix elements, but
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rather we are going to make use of the currently available phenomenological and
lattice-QCD information to obtain numerical values for the matrix elements.
This procedure will also provide us with the opportunity of studying the scheme
dependence of the various sum rules.

8.6.1 Numerical results

From the results presented in the previous part of the Chapter, it is evident
that two independent numerical inputs suffice to fix all the terms of the different
sum rules8. One input/constraint comes from the parton momentum fractions
ai in the proton through [179, 181]

3

2
M2 aq =

∫
d3x〈H′q 〉
〈P |P 〉

∣∣∣
P=0

,
3

2
M2 ag =

∫
d3x〈H′g 〉
〈P |P 〉

∣∣∣
P=0

, (8.213)

where aq is a shorthand notation for the sum of the momentum fractions of
all active quark flavors. Note that now the 〈...〉 symbol denotes the expecta-
tion value between proton states and that H′q,g are the QCD counterparts to
Eqs. (8.172) and (8.173). The sum rule aq+ag = 1 is satisfied, which is equival-
ent to the constraint for the form factors Ai(0) in (8.23), and therefore leave us
with just one independent input. We take the quark mass term as the second
independent input. Specifically, we define a parameter b according to

2M2 b =
∑

f=u,d,...

(1 + γm)

∫
d3x〈 (mψ̄(f)ψ(f))R 〉

〈P |P 〉 , (8.214)

that is the QCD counterpart to Eq. (8.184). Please note that the sum over the
flavors will be understood in the remaining of the section.

We make use of Eq. (8.186) to fix the gluon contribution to the trace anomaly
from b. We also refer to [185] for a recent attempt to directly compute the
gluon contribution to the EMT trace in lattice QCD. With these ingredients,
the matrix elements of the QCD counterparts to Eqs. (8.172)-(8.175) can be
written as

M ′
q =

3

4
M aq , (8.215)

M ′
m =

1

4
M

(
(1 + y) b

1 + γm
+ x(1− b)2g

β

)
, (8.216)

M ′
g =

3

4
M ag , (8.217)

M ′
a =

1

4
M

(
1− (1 + y) b

1 + γm
− x(1− b)2g

β

)
, (8.218)

which lead to the expressions equivalent to Eqs. (8.187)-(8.189):

Mq =
3

4
M aq +

1

4
M

(
(y − 3) b

1 + γm
+ x(1− b)2g

β

)
, (8.219)

8Only two independent form factors survive in the forward limit of the matrix element of
the EMT and they encapsulate all the information on the EMT.
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Mm = M
b

1 + γm
, (8.220)

Mg =
3

4
M ag +

1

4
M

[
(γm − y) b

1 + γm
+

(
1− x2g

β

)
(1− b)

]
. (8.221)

Now we have collected all the equations that allow us to evaluate numerically
the various sum rules discussed in the Chapter.

Our numerical results are given at the scale µ = 2 GeV. We take the parton
momentum fractions from the CT18NNLO parameterization [186], which, in
the case of four active quark flavors, gives

aq = 0.586± 0.013 , ag = 1− aq = 0.414± 0.013 . (8.222)

Other phenomenological fits of parton distributions provide very similar results
(see, for instance, Refs. [118, 187–190]). In order to fix the parameter b in
Eq. (8.214), we use input for the quark mass term (sigma term), up to and
including charm quarks,

σu + σd = σπN =
〈P | m̂

(
ūu+ d̄d

)
|P 〉

2M
,

σs =
〈P |ms s̄s |P 〉

2M
, σc =

〈P |mc c̄c |P 〉
2M

, (8.223)

with m̂ = (mu+md)/2, and q=u,d,s, c stands for the field of quark with different
flavor. For b we actually consider two cases. In the first one, we take the sigma
terms from an analysis in chiral perturbation theory (ChPT) in Refs. [191, 192]
for the three lightest quark flavors,

σπN
∣∣
ChPT

= (59± 7) MeV , σs
∣∣
ChPT

= (16± 80) MeV . (8.224)

The independent phenomenological determination in Ref. [193] gives a very
similar value for σπN . In the second scenario, we use results from lattice QCD
(LQCD) which also include a sigma term for charm quarks [194],

σπN
∣∣
LQCD

= (41.6± 3.8) MeV , σs
∣∣
LQCD

= (39.8± 5.5) MeV ,

σc
∣∣
LQCD

= (107± 22) MeV . (8.225)

Other LQCD calculations, performed at (nearly) physical quark masses, mostly
provide similar results for the sigma terms of the light quarks [195–198]. To
the best of our knowledge, Ref. [194] is the only LQCD study which reports a
value for the charm sigma term. The numerical values for σπN and σs are quite
different for ChPT and LQCD. However, the difference for the sum σπN + σs
is small and irrelevant for our purpose. On the other hand, including or not
σc has a clear impact on our numerics for the mass sum rules. Moreover, the
error on the strange contribution in the phenomenological analysis is very large,
leading to large errors in the mass sum rules. To summarize this discussion, we
consider numbers for the mass decompositions for the following two scenarios:
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O(α1
s) O(α2

s) O(α3
s)

b
∣∣
ChPT

0.094± 0.100 0.101± 0.108 0.103± 0.110

b
∣∣
LQCD

0.235± 0.029 0.253± 0.031 0.258± 0.031

Table 8.1: Parameter b for different orders in αs, obtained from input for the
sigma terms from ChPT and LQCD.

MS MS1 MS2 D1 D2

Scenario A

Mq 0.309± 0.044 0.194± 0.033 0.178± 0.032 0.362± 0.045 0.357± 0.051

Mm 0.075± 0.080 0.075± 0.080 0.075± 0.080 0.075± 0.080 0.075± 0.080

Mg 0.555± 0.036 0.669± 0.047 0.686± 0.048 0.502± 0.035 0.507± 0.029

Scenario B

Mq 0.234± 0.006 0.135± 0.003 0.120± 0.003 0.286± 0.006 0.272± 0.008

Mm 0.187± 0.023 0.187± 0.023 0.187± 0.023 0.187± 0.023 0.187± 0.023

Mg 0.517± 0.017 0.617± 0.020 0.631± 0.020 0.465± 0.017 0.479± 0.015

Table 8.2: Scheme dependence of the (nonzero) terms of the mass sum rule in
Eqs. (8.219)-(8.221). All the results are in units of GeV, and for O(α3

s) accuracy.
The definition of the MS1 and MS2 schemes is given in Eqs. (8.49) and (8.50).

• Scenario A: ai from (8.222); b from ChPT sigma terms in (8.224).

• Scenario B: ai from (8.222); b from LQCD sigma terms in (8.225) including
charm.

We will show results at 1-loop, 2-loop and 3-loop accuracies. For this we
need the QCD beta function and the anomalous dimension of the quark mass
through O(α3

s):

β(g)

2g
= −β0

2

(αs
4π

)
− β1

2

(αs
4π

)2

− β2

2

(αs
4π

)3

+ . . . , (8.226)

γm(g) = γm0
αs
4π

+ γm1

(αs
4π

)2

+ γm2

(αs
4π

)3

+ . . . , (8.227)

where the explicit expressions for the coefficients βi and γmi are given in Refs. [199,
200]. For the flavor number nf = 3, we find the following values for αs by using
the Mathematica package of Ref. [201]:

αs,1-loop = 0.269 , αs,2-loop = 0.299 , αs,3-loop = 0.302 . (8.228)

In Tab. 8.1, we show the results for the parameter b, based on the sigma terms
from ChPT and LQCD. The numbers differ by about 10% between the 1-loop
and the 3-loop analysis. The significant difference between the ChPT and
LQCD results is caused by the (large) charm sigma term from LQCD.
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O(α1
s) O(α2

s) O(α3
s)

Scenario A
M q −0.113± 0.102 -0.120 ±0.105 −0.115± 0.107

M g 1.051± 0.102 1.057± 0.105 1.053± 0.107

Scenario B
M q 0.032± 0.030 0.030± 0.031 0.035± 0.030

M g 0.906± 0.030 0.908± 0.030 0.903± 0.030

Table 8.3: Numerics for the QCD counterpart to the sum rule in Eq. (8.145)
for 1-loop, 2-loop and 3-loop analyses with the change of notation m̄i → M̄i for
the proton case. All the results are in units of GeV. The errors are obtained by
computing the terms for ai ±∆ai and b±∆b and then subtracting the results
obtained for ai and b.

The numerical input for the parameters ai and b is in the MS scheme.9

However, as we saw in the previous sections, the numerics for the mass sum
rules also depends on the choice (scheme) used for the parameters x and y which,
according to Eqs. (8.65) and (8.66), fix the individual contributions to the trace
of the EMT. As an example, the scheme dependence of the terms of the mass
decomposition in Eqs.(8.219)-(8.221) is shown in Tab. 8.2. The contribution
Mm does not depend on x and y, but the quark and gluon energies Mq and
Mg do so. In fact, their numerical values change significantly when switching
schemes, with the largest discrepancies between the MS scheme(s) and the
other three schemes. (As discussed in App. B and in Eqs. (8.48)-(8.50), two
commonly used MS subtractions prescription exist. They lead to somewhat
different numbers for the proton mass decomposition.)

There is a conceptual difference between the MS scheme and the D-type
schemes in the context of our study. In principal, a fully consistent calculation
in the MS scheme could be done, since all the numerical input that we use could
be obtained in the MS scheme. (Comparing the numerics for the MS scheme
and, in particular, the MS scheme(s) should therefore be done with care.) In
contrast, the D-type schemes have no meaning beyond fixing x and y, which
means that the numbers in these two schemes cannot be “improved.” However,
according to Tab. 8.2, the numerical values obtained in the MS scheme and the
D-type schemes are not very different. All the following results in Tabs. 8.3-8.6
are in the MS scheme, which was used in the previous studies in Refs. [170, 171].
We also point out that obtaining results in the MS scheme(s) is somewhat
cumbersome, see App. B for more details.

In Tabs. 8.3-8.6, we present the numerical results for the sum rules for the
1-loop, 2-loop and 3-loop analyses. Generally, the dependence of the numbers
on the loop order is very mild. Strictly speaking, our results do not reflect
the full dependence on the loop order since in each case we have taken the
parton momentum fractions ai from the 2-loop analysis of Ref. [186]. On the

9This statement does not hold for the sigma terms from ChPT though [191, 192].

167



8. The Energy-Momentum Tensor

O(α1
s) O(α2

s) O(α3
s)

Scenario A
Uq 0.384± 0.035 0.383± 0.036 0.384± 0.036

Ug 0.554± 0.035 0.556± 0.036 0.555± 0.036

Scenario B
Uq 0.420± 0.016 0.420± 0.017 0.421± 0.017

Ug 0.518± 0.016 0.518± 0.017 0.517± 0.017

Table 8.4: Numerics for the sum rule in Eq. (8.149) for 1-loop, 2-loop and 3-
loop analyses. All the results are in units of GeV. (See caption of Tab. 8.3 for
more details.)

O(α1
s) O(α2

s) O(α3
s)

Scenario A

Mq 0.311± 0.043 0.310± 0.043 0.309± 0.044

Mm 0.073± 0.080 0.073± 0.079 0.074± 0.080

Mg 0.554± 0.035 0.556± 0.036 0.555± 0.036

Scenario B

Mq 0.237± 0.006 0.235± 0.006 0.234± 0.006

Mm 0.183± 0.023 0.184± 0.022 0.187± 0.023

Mg 0.518± 0.016 0.518± 0.017 0.517± 0.017

Table 8.5: Numerics for the sum rule in Eqs. (8.219)-(8.221) (with the change of
notation mi →Mi for the proton case). for 1-loop, 2-loop and 3-loop analyses.
All the results are in units of GeV. (See caption of Tab. 8.3 for more details.)

O(α1
s) O(α2

s) O(α3
s)

Scenario A

Ũq −0.070± 0.008 −0.067± 0.009 −0.064± 0.009

Ǔq 0.455± 0.027 0.449± 0.026 0.448± 0.027

Ũg 0.554± 0.035 0.556± 0.036 0.555± 0.036

Scenario B

Ũq −0.062± 0.004 −0.057± 0.004 −0.055± 0.004

Ǔq 0.482± 0.013 0.477± 0.012 0.476± 0.013

Ũg 0.518± 0.016 0.518± 0.017 0.517± 0.017

Table 8.6: Numerics for the sum rule in Eq. (8.196) for 1-loop, 2-loop and 3-loop
analyses. All the results are in units of GeV. Recall that Ũg = Ug according to
the QCD equivalent of Eq. (8.199). (See caption of Tab. 8.3 for more details.)

other hand, we do not expect this point to have a significant impact on the
qualitative outcome of a mild sensitivity to the loop order.
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The impact of including a sigma term for charm quarks, that is, going from
Scenario A to Scenario B, is clearly visible for all the sum rules. In the first
place, by definition this switch affects the quark mass term Mm of the sum
rule in Eq. (8.220) — see Tab. 8.5 for the corresponding numbers. It is often
asked how much of the proton mass can be attributed to the Higgs mechanism.
What seems clear is that Mm is entirely due to the Higgs mechanism, as this
contribution would vanish if the quark masses were zero. In that case the entire
mass of the proton could be associated with either the gluon contribution to
the trace anomaly, or the sum of what we have called the quark and gluon
energies. In Scenario A, less than 10% of the proton mass are due to the
Higgs mechanism, while in Scenario B this number is close to 20%. In view
of this discussion, it is important to obtain further independent information
about the contribution of heavier quarks to the quark mass term Mm. A direct
calculation of, for instance, the expectation value 〈 (FαβFαβ)R 〉 could therefore
help to clarify the role played by the Higgs mechanism for the numerics of the
proton mass decomposition.

The contribution of the gluon energy Mg to the proton mass is at least 50%.
However, we repeat that the precise number depends on the renormalization
scheme. We also find some negative contributions to mass sum rules, namely
the quark term M q in Tab. 8.3 and Ũg in Tab. 8.6. But these terms can become
positive when changing the scenario and/or the scheme. We repeat that the
quark mass term Mm does not depend on the choice of x and y. It is the only
term from the various sum rules showing that feature and, since the operator
(mψ̄ψ) does not get an additional renormalization (respect to the Lagrangian
one), this contribution has no renormalization scheme dependence at all.

8.7 Conclusions

In this Chapter, we studied the EMT for both the QED and the QCD case. We
reviewed the decomposition of the EMT matrix elements in form factors and
we explicitly derived them at O(α) for an electron in QED. We then turned our
attention to the forward limit of the EMT matrix elements, studying different
mass decompositions proposed in the literature. We reviewed the key ingredi-
ent to obtain consistent results, namely the renormalization of multiple local
operators. This procedure enlightens the additional dependence on a renormal-
ization scheme [170, 171]. We analyzed in detail both the operator definitions
of the different sum rules and their explicit expressions in terms of the forward
EMT form factors. We then obtained explicit results at 1-loop order in QED
as a proof-of-concept of the renormalization procedure and its application to
the different sum rules. In the last section, we applied the same concepts to
the proton in QCD, in order to obtain its mass decomposition. We studied dif-
ferent renormalization schemes, and enlightened the strong dependence of the
results on the choice of the renormalization scheme. This scheme dependence
prevents us to assign a unique physical meaning to the individual terms of the
sum rules. Nevertheless, we presented the numerics for the different sum rules,
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and we compared the results at different loop orders, finding a very mild de-
pendence on the truncation order of the αs series. Incidentally, we also found a
very strong dependence of the various sum rules on the charm sigma term. It
would be interesting to study the effects of even heavier quarks, like the bottom.
We also stress that any sum rule for the proton mass one could think of has
at most two independent contributions since, for forward kinematics, the EMT
has only two form factors.
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Chapter 9
Conclusions

The Standard Model of particle physics has proven to be a very accurate model
in classifying and describing elementary particles. However, despite the impress-
ive list of achievements, it is still unable to explain some fundamental properties
of subatomic particles. This is true, in particular, for what concerns the QCD
sector, which describes the strong interactions: the non-Abelian nature of the
theory, that results in the auto-interaction of the force mediators and the in-
creasing of the coupling constant at low energies, makes it impossible to apply
the ordinary perturbative approaches. This leads to a phenomenon known as
confinement. In nature, we never observe free QCD degrees of freedom, that
are quarks and gluons, collectively named partons. They always appear in col-
orless bound states, known as hadrons. One of the unsolved problems in QCD
is the explanation of the exact mechanisms that lead to the realization of con-
finement. The understanding of the confinement has a twofold repercussion on
our picture of hadrons. We would be able to resolve the internal dynamics of
the hadrons and then to obtain the distributions, along with all the possible
correlations, of the partons inside the hadrons at different scales. We tackle the
problem in the reverse order: we look for a better description of the structure
properties of the hadrons in terms of its constituents to gain insights for an
explanation of the dynamics of the confinement.

In this thesis, we investigated different aspects of the partonic structure of
the hadrons, with particular emphasis on the proton, as the preferential pro-
totype of hadron. The two main tools that we used to fulfill this study are
the parton distribution functions and the Energy-Momentum Tensor (EMT).
They offer different and, therefore, complementary descriptions of the partonic
structure of the proton. The proton matrix elements of the QCD EMT carry
information about global properties of the proton. A detailed study of the
possible decompositions of the EMT in the separate contributions from quarks
and gluons leads to important clues on how the global properties of the proton
emerge from the properties of its elementary constituents. The study of parton
distributions has been done within the framework of light-front quantization.
Light-front quantization presents many advantages compared to the standard
instant-form quantization in the study of parton distributions. It provides the
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natural framework to describe processes that give access to the parton distribu-
tions, leading to a great simplification of the practical calculation. Furthermore,
it provides a relativistic description of bound systems such as the hadrons in
terms of quantum-mechanical wave functions and then it allows one to gain
a more intuitive physical interpretation of the physical content of the parton
distributions. Within light-front quantization it is possible to introduce a well-
defined expansion of the proton state in terms of the basis of the Fock space
constructed with free quarks and gluon states. This is due to the different va-
cuum structure between the instant-form and the light-front quantization: in
the latter, the vacuum contains only gluons in a very specific kinematic domain,
whereas in the former the vacuum is populated by gluons and a quark-antiquark
pairs. Each state of the Fock-space basis in light-front quantization enters the
expansion of the proton state with a coefficient that represents the probability
amplitude of the corresponding state. These coefficients are called Light-Front
Wave Functions (LFWFs). Due to the different vacuum structure, the probab-
ilistic interpretation is lost in instant-form quantization, hence the advantage
of using the light-front approach. The LFWFs offer one of the most suitable
tools for a unified description of the known parton distributions. Moreover,
going beyond the leading-twist parton distributions, the LFWFs provide a very
intuitive picture of the genuine higher-twist parton distributions in terms of
quark-gluon correlations.

Two Chapters deviate from the use of light-front quantization: Chapter
4 and Chapter 8. In Chapter 4, we laid the foundations for the extraction
of the Generalized Transverse-Momentum Dependent parton distributions via
the study of the cross section for a specific dijet process. In Chapter 8, we
investigated the proton mass as emerging property from the underlying parton
structure in terms of the EMT, and we used the more natural language, for this
context, of instant-form quantization.

9.1 Results

In Chapter 2, we reviewed the basics of different types of quantization, with par-
ticular emphasis posed on the light-front quantization. The concepts presented
in the Chapter represent the theoretical background on which all the arguments
of the thesis are developed.

In Chapter 3, we showed how one can link the LFWFs to the vacuum-to-
proton matrix elements of particular combinations of quark and gluon oper-
ators. Such matrix elements are parametrizable in terms of distribution amp-
litudes. We derived the general expressions that allow one to link the LFWFs
and the distributions amplitudes when a proton state with non-vanishing parton
Orbital Angular Momentum (OAM) is considered. We reviewed how the sys-
tem of equations for the three-quark LFWFs with non-vanishing OAM involves
also the LFWFs for the three-quark plus one gluon state.

We reserved two chapters for studying two general arguments, that are un-
related to the specific model for the LFWFs that we built in this work. In
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Chapter 4, we studied the cross-section for exclusive dijet production in lepton-
proton collisions. We presented the results for the cross section parametrized in
terms of all the possible angular modulations of the detected jets. These results
represent the foundations for a possible sensitivity study of the different coeffi-
cients of the angular modulations to different types of Generalized Transverse
Momentum dependent parton Distributions (GTMDs), extending the studies
existing in the literature beyond the small-x approximation.

An application of the language of LFWFs is the investigation of model-
induced relations between different types parton distributions. An example of
such relation, i.e. the lensing relation, is reviewed in Chapter 5. The lensing
relation allows one to write the average transverse momentum of näıve T-odd
Transverse Momentum dependent parton Distributions (TMDs) as a convolu-
tion of T-even Impact Parameter Distributions and a T-odd lensing function.
Using the light-front formalism, we analyzed which features of the models allow
the validity of the lensing relation and how, in general, such features are far too
restrictive to make them plausible in a full QCD calculation.

In Chapter 6, we exploited the link between distribution amplitudes and
LFWFs derived in Chapter 3 to construct a model for the LFWFs based on
a parametrization of the distribution amplitudes. We showed the interplay
between the three-quark plus one gluon LFWFs and the distribution amp-
litudes connected to the non-vanishing OAM three-quark states. Estimates for
the model parameters have been obtained from QCD sum-rule techniques and
lattice QCD. We used these results as starting point for a fit to the unpolar-
ized collinear parton distribution functions f1(x) for the up and down quark
and for the gluon, extracted from a phenomenological analysis. We presented
the results for the LFWF overlap representation of the T-even, twist-2 TMDs
and of the chiral-even Generalized Parton Distributions. We then discussed the
numerical predictions for these distributions, using the parameter set obtained
from the fit of the unpolarized collinear parton distribution functions.

We used the LFWFs also to study subleading-twist TMDs. In particular,
Chapter 7, is devoted to the study of one particular higher-twist distribution,
the eq(x,k⊥). Higher-twist distributions are very interesting, since they provide
a privileged window to study the quark-gluon correlations inside the proton.
We reviewed the general decomposition of higher-twist distributions using the
equations of motion for the quark field and discussed some of the recent works
on these types of decompositions. Higher-twist parton distributions can be
written as spurious lower-twist terms plus a pure higher-twist contribution.
The latter can be represented as the overlap of LFWFs for states that differs
by one gluon. We exploit our model, in which both the three-quark state and
the three-quark plus one gluon state are present, to perform a model-dependent
study of the pure higher-twist contribution. We showed within our model that
the pure twist-three contribution is indeed small compared to the lower-twist
contribution.

Chapter 8 is devoted to a different topic, i.e. the EMT. The EMT offers
a different perspective on the partonic structure of hadrons compared to the
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parton distributions. In particular, the EMT matrix elements encode inform-
ation on the global properties of particles, like their mass and their spin. The
decomposition of the EMT of a composite system in the individual contribu-
tions from its constituents (e.g., quarks and gluons in the the case of hadrons
or leptons and photons in the case of leptons) can give insights on how the
global properties of the system emerge from the internal dynamics. However,
a number of issues must be faced. We first revisited the renormalization of the
separate contributions to the EMT from electrons and photons in QED, which
is equivalent to the renormalization of the separate contributions of quarks and
gluons in QCD. With the correct renormalization procedure at our disposal, we
presented the results for the EMT form factors in a one-loop QED calculation
for an electron state. The results are then specified to the forward limit, and
are used to study the different EMT-based mass decompositions available in
the literature. Again, the QED case served as testing ground for the QCD case.
For the QCD case, we used the perturbative results for the counterterms and
for the QCD beta function at three-loop accuracy. We then used the inputs
from phenomenological analysis and lattice QCD to obtain results for the EMT
form factors. With these results, we studied the proton-mass decompositions
in different renormalization schemes, finding a quite strong scheme dependence
of the various terms. Overall, the revised renormalization procedure for the
separate lepton and gauge-boson operators allowed us to provide a different
interpretation of the renormalized operators and to find a new link between
these operators and the trace anomaly at the level of matrix elements.

9.2 Outlooks

Two main perspectives for future works emerge from the thesis.
The first one is related the application of the LFWF formalism to con-

struct models for different types of partonic distributions. Using LFWFs as
the underlying theoretical tools, it is possible to fit simultaneously different
types of parton distributions. In this way, we can easily transfer the informa-
tion acquired from the fit of specific parton distributions to others, providing
predictions and sensitivity studies that would be valuable for the planning of
future phenomenological studies and/or experiments. On a more concrete note,
we will work in the direction of improving our model. The link between LFWFs
and distribution amplitudes is a powerful tool. However, the resulting model for
the LFWFs is as good as the underlying model for the distribution amplitudes.
Different proposals to modify the model for the distribution amplitudes are
being considered, like a neural-network induced model, and are left for future
investigations.

The second point is the detailed analysis of the dijet cross section in terms
of GTMDs. A deep study of the cross section in terms of parton distributions
could lead to the identification of specific combinations of angular modulations
of the cross section suited for the extraction of different GTMDs from experi-
mental data. Moreover, a detailed view in terms of parton distributions could
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allow the planning of specific fits and phenomenological analysis. The work in
this direction has already been started by a number of authors, which presented
studies on an handful of angular modulations of the dijet cross section in the
small-x regime. The work that has been pursued in this thesis and its future
developments are of great importance in view of the construction of new ex-
perimental facilities, such as the Electron-Ion Collider, whose realization at the
Brookhaven National Laboratory in the US is under consideration.

The solution of such complicated problems demand an effort that goes bey-
ond the contributions that a single individual or a single group can give. A
consistent, prolonged community effort is needed. However, even the tinier
contributions are important in order to construct a road that brings us even so
little closer to the final goal of understanding the complex world of QCD.
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Appendix A
Explicit results for the contraction of
the leptonic and hadronic tensors

In this appendix, we are going to illustrate a relation that involves the product
of two antisymmetric symbols εµνρσ and the explicit contraction between the
unpolarized and symmetric hadronic tensor and the leptonic tensor, see Chapter
4.

The parity matrix introduced in Eq. (4.26), when applied to the totally
antisymmetric symbol εµνρσ, satisfies the following identities:

LµαL
ν
βL

ρ
γL

σ
δε
αβγδ = −εµνρσ, (A.1)

Lµνp
ν = p̃µ. (A.2)

Others useful identities that have being used to identify the independent
Lorentz structures of the hadronic tensor are the following ones:

gαβεµνρσ = gαµεβνρσ + gανεµβρσ + gαρεµνβσ + gασεµνρβ. (A.3)

εi1,i2,i3,i4εk1,k2,k3,k4 = det




δi1,k1 δi1,k2 δi1,k3 δi1,k4

δi2,k1 δi2,k2 δi2,k3 δi2,k4

δi3,k1 δi3,k2 δi3,k3 δi3,k4

δi4,k1 δi4,k2 δi4,k3 δi4,k4



. (A.4)

Assuming A,B,C,D, j, l,m, n to be generic vectors, Eq. (A.4) explicitly
reads:

εABCDεjlmn ≡ εµνρσεαβγδA
µBνCρDσjαlβmγnδ

= (Aj)(Bl)(Cm)(Dn)− (Aj)(Bl)(Cn)(Dm)

− (Aj)(Bm)(Cl)(Dn) + (Aj)(Bm)(Cn)(Dl)

+ (Aj)(Bn)(Cl)(Dm)− (Aj)(Bn)(Cm)(Dl)

− (Al)(Bj)(Cm)(Dn) + (Al)(Bj)(Cn)(Dm)

+ (Al)(Bm)(Cj)(Dn)− (Al)(Bm)(Cn)(Dj)
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− (Al)(Bn)(Cj)(Dm) + (Al)(Bn)(Cm)(Dj)

+ (Am)(Bj)(Cl)(Dn)− (Am)(Bj)(Cn)(Dl)

− (Am)(Bl)(Cj)(Dn) + (Am)(Bl)(Cn)(Dj)

+ (Am)(Bn)(Cj)(Dl)− (Am)(Bn)(Cl)(Dj)

− (An)(Bj)(Cl)(Dm) + (An)(Bj)(Cm)(Dl)

+ (An)(Bl)(Cj)(Dm)− (An)(Bl)(Cm)(Dj)

− (An)(Bm)(Cj)(Dl) + (An)(Bm)(Cl)(Dj), (A.5)

where we used the notation (AB) = A · B for any four-vector A and B. From
Eq. (A.5), one could derive the analogous relations when one index is uncon-
tracted. If we assume that the µ index of the first εµνρσ is an open index, i.e. is
not contracted with Aµ, in the previous equation we just need to perform the
substitution:

A · v = (Av)→ vµ, (A.6)

with v being any four-vector of the set {j, l,m, n}.
Finally, we would like to give an example of explicit contraction between

the leptonic and hadronic tensor. We will show it only for the symmetric and
unpolarized sector, since it is illustrative and not too much complicated:

(
gµν − qµqν

q2

)
Re (Lµν) = −Q2, (A.7)

P {µq P ν}
q Re (Lµν) = −M

2Q2 (−4 + 4y + y2γ2)

y2γ2
, (A.8)

P {µq jν}q Re (Lµν) =
−4j3MQ2γ + 4j3MQ2yγ + j3MQ2y2γ3

y2γ3
√

1 + γ2

+
4M(Q2)3/2zj

√
1 + γ2 − 4M(Q2)3/2yzj

√
1 + γ2 −M(Q2)3/2y2zjγ

2
√

1 + γ2

y2γ3
√

1 + γ2

+
−2j⊥MQ2γ2

√
4− 4y − y2γ2 cos (φ1) + j⊥MQ2yγ2

√
4− 4y − y2γ2 cos (φ1)

y2γ3
√

1 + γ2
,

(A.9)

P {µq lν}q Re (Lµν) =
−4l3MQ2γ + 4l3MQ2yγ + l3MQ2y2γ3

y2γ3
√

1 + γ2

+
4M(Q2)3/2zl

√
1 + γ2 − 4M(Q2)3/2yzl

√
1 + γ2 −M(Q2)3/2y2zlγ

2
√

1 + γ2

y2γ3
√

1 + γ2

+
−2l⊥MQ2γ2

√
4− 4y − y2γ2 cos (φ2) + l⊥MQ2yγ2

√
4− 4y − y2γ2 cos (φ2)

y2γ3
√

1 + γ2
,

(A.10)

j{µq j
ν}
q Re (Lµν) =

j2
⊥Q

2

1 + γ2

(
l2 − r2

)
+

j2
⊥Q

2

1 + γ2
r2 cos (2φj)
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− r2
Q2
(

4j3Qzjγ
√

1 + γ2 − 2(j3)2γ2 − 2Q2z2
j

)

γ4 (1 + γ2)

+ cos (φj)
2
√

2j⊥Q2
(
Qzj

√
1 + γ2 − j3γ

)

γ2 (1 + γ2)
rl, (A.11)

l{µq l
ν}
q Re (Lµν) =

l2⊥Q
2

1 + γ2

(
l2 − r2

)
+

l2⊥Q
2

1 + γ2
r2 cos (2φl)

− r2
Q2
(

4l3Qzlγ
√

1 + γ2 − 2(l3)2γ2 − 2Q2z2
l

)

γ4 (1 + γ2)

+ cos (φl)
2
√

2l⊥Q2
(
Qzl
√

1 + γ2 − l3γ
)

γ2 (1 + γ2)
rl, (A.12)

j{µq l
ν}
q Re (Lµν) = cos (φj − φl)

l2 − r2

1 + γ2
+ cos (φj + φl)

r2

1 + γ2

− r2Q2
Qzl
√

1 + γ2
(
j3γ −Qzj

√
1 + γ2

)
+ l3γ

(
Qzj

√
1 + γ2 − j3γ

)

γ4 (1 + γ2)

+ cos (φj) rl

√
2j⊥Q2

(
Qzl
√

1 + γ2 − l3γ
)

γ2 (1 + γ2)

+ cos (φl) rl

√
2l⊥Q2

(
Qzj

√
1 + γ2 − j3γ

)

γ2 (1 + γ2)
. (A.13)

In the last expression, we used the following identity:

cos (φj − φl)
l2 − r2

1 + γ2
+ cos (φj + φl)

r2

1 + γ2

= cos (φj) cos (φl) l
2 j⊥l⊥Q

2

1 + γ2
+ sin (φj) sin (φl)

j⊥l⊥Q2

2
.

All the complexity of Eqs. (A.7)-(A.13) is hidden inside the coefficients Ai
(see Eqs. (4.43)-(4.49)) for the unpolarized and symmetric hadronic tensor.
Similar expressions can be obtained for the other contributions to the hadronic
tensor.
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Appendix B
Counterterms in different
renormalization schemes

In this appendix, we discuss the decomposition of the trace of the EMT into
individual contributions from quarks and gluons (for the QED case analogous
results hold for the electron and photon fields), which requires to fix x and y
in Eqs. (8.65) and (8.66). The focus of this appendix is to find x and y in the
MS and in the MS schemes. For the MS scheme we just outline the essential
steps, since the full procedure can be found in Refs. [170, 171], while we give
more details in the case of the MS scheme.

We repeat that, according to Eqs. (8.51)-(8.55), the complete renormaliza-
tion of the EMT requires to determine ten renormalization constants ZX , with
X = T , M , L, S, F , C, ψ, K, Q and B. While ZF and ZC are associated
with the renormalization of the EMT trace, ZT,L,ψ,Q are needed for the renor-
malization of the traceless part of the EMT. The remaining constants ZM,S,B,K

are then constrained through the Eqs. (8.69)–(8.72), which contain x and y. In
other words, to fix the finite contributions to ZM,S,B,K requires to fix x and y.

In the MS scheme, the renormalization constants take the form

ZX = δX,T + δX,ψ + δX,F +
aX
ε

+
bX
ε2

+
cX
ε3

+ . . . , (B.1)

where δX,X′ denotes the Kronecker symbol, and aX , bX , cX are constants de-
pending on αs, the number of quark flavors and color factors. In order to fix
the values of x and y by means of Eqs. (8.69) and (8.70), we need the results
of the four renormalization constants ZT,F,L,C which can be found in Ref. [171]
through O(α3

s). By taking the Laurent expansion of both sides of Eqs. (8.69)
and (8.70) about ε = 0 and collecting the O(ε0) terms, we find the relations

1

32

[
(8 + 4aT + 2bT + cT + . . .)

−
(

1 + x− β

2g

)
(8 + 4aF + 2bF + cF + . . .)

]
= 0, (B.2)
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1

32

[
− (4aL + 2bL + cL + . . .)

−
(

1 + x− β

2g

)
(4aC + 2bC + cC + . . .) + 8(γm − y)

]
= 0, (B.3)

from which follow x and y in the MS scheme. Note that using Eqs. (8.71) and
(8.72) (instead of Eqs. (8.69) and (8.70)) provides the same results.

Now we proceed to discuss the process of finding the renormalization con-
stants in the MS scheme when taking results in the MS scheme as starting
point. For this purpose, we first write the generic structure of a renormaliza-
tion constant in the MS scheme as

Z
∣∣
MS

= (1, 0) + αs
a1

ε
+ α2

s

(
b2

ε2
+
b1

ε

)
+ α3

s

(
c3

ε3
+
c2

ε2
+
c1

ε

)
. (B.4)

The corresponding formula in the MS scheme reads

Z
∣∣
MS

= (1, 0) + αs
ā1

ε
Sε + α2

s

(
b̄2

ε2
+
b̄1

ε

)
S2
ε + α3

s

(
c̄3

ε3
+
c̄2

ε2
+
c̄1

ε

)
S3
ε , (B.5)

where different conventions for the quantity Sε can be found in the literature.
The most popular ones are given in Eqs. (8.49) and (8.50). The comparison
between Eqs. (8.49) and (8.50) shows that the two schemes differ at O(ε2) (and
higher), which causes numerical differences for the present study of the proton
mass decomposition, see the results for the MS1 and MS2 schemes in Tab. 8.2,
but leads to the same result for our QED study. In the following, we present
the main steps that are needed to get x and y in a MS scheme, by showing the
relevant equations for just the MS1 scheme. In general, using as starting point
the results for the renormalization constants in the MS scheme from Ref. [171],
it is easier to find x and y in the MS scheme than in a MS scheme.

We first note that the divergent terms on the r.h.s. of Eqs. (B.4) and (B.5)
must be identical, which implies

ā1 = a1, b̄1 = b1 − 2b2δUV, b̄2 = b2,

c̄1 = c1 − 3c2δUV +
c3

4
(18δUV

2 + π2), c̄2 = c2 − 3c3δUV, c̄3 = c3. (B.6)

The parameters x and y appear in the constant term of renormalization con-
stants, which in the MS1 scheme take the general form

C
∣∣
MS1

= αsā1δUV + α2
s

(
2b̄1δUV + 2b̄2δUV

2 +
π2

6
b̄2

)

+ α3
s

(
3c̄1δUV +

9

2
c̄2δUV

2 +
9

2
c̄3δUV

3 − π2

4
c̄2 −

3π2

4
c̄3δUV +

1

2
c̄3ψ

(2)(1)

)
,

(B.7)

with the polygamma function ψ(n)(z) = dn+1

dzn+1 logΓ (z). Using the relations
in (B.6), we can express the constant term in Eq. (B.7) through the coefficients
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of the renormalization constants in the MS scheme, i.e.

C
∣∣
MS1

= αsa1δUV + α2
s

(
2b1δUV − 2b2δUV

2 − π2

6
b2

)

+ α3
s

(
3c1δUV −

9

2
c2δUV

2 +
9

2
c3δUV

3 − π2

4
c2 +

3π2

4
c3δUV +

1

2
c3ψ

(2)(1)

)
.

(B.8)

The renormalization constants ZM,S,B,K in Eqs. (8.69)–(8.72) do not right away
appear in the form of Eq. (B.8) if they are computed by combining the finite
terms on the r.h.s. of these equations. Here we pick one example to illustrate
this point. For the parameter x we use the perturbative expansion

x = αsx1 + α2
sx2 + α3

sx3, (B.9)

and consider the constant ZB. We find

O(αs) :
1

8

(
ā1,Q + 2ā1,QδUV + 2x1

)
,

O(α2
s) :

1

48

(
6b̄1,Q(1 + 4δUV) + b̄2,Q(3 + 12δUV + 24δUV

2 − 2π2)

+ 6
(
ā1,F δUVx1(1 + 2δUV) + 2x2

))
,

O(α3
s) :

1

32

(
c̄3,Q + 6c̄3,QδUV + 18c̄3,QδUV

2 + 36c̄3,QδUV
3 + 4c̄1,Q(1 + 6δUV)

− c̄3,Qπ
2 − 6c̄3,QδUVπ

2 + 2c̄2,Q(1 + 6δUV + 18δUV
2 − π2) + 4b̄1,Fx1

+ 2b̄2,Fx1 + 16b̄1,F δUVx1 + 8b̄2,F δUVx1 + 16b̄2,F δUV
2x1 −

4

3
b̄2,Fπ

2x1

+ 4ā1,Fx2 + 8ā1,F δUVx2 + 8x3 + 4c̄3,Qψ
(2)(1)

)
, (B.10)

instead of

O(αs) :
1

4
ā1,QδUV,

O(α2
s) :

1

24

(
12b̄1,QδUV + b̄2,Q(6δUV + 12δUV

2 − π2) + 12ā1,F δUVx1

)

O(α3
s) :

1

32

(
24c̄1,QδUV + 6c̄3,QδUV + 18c̄3,QδUV

2 + 36c̄3,QδUV
3 − c̄3,Qπ

2

− 6c̄3,QδUVπ
2 + 2c̄2,Q(6δUV + 18δUV

2 − π2) + 24b̄1,F δUVx1 + 12b̄2,F δUVx1

+ 12b̄2,F δUV
2x1 − 2b̄2,Fπ

2x1 + 24ā1,F δUVx2 + 4c̄3,Qψ
(2)(1)

)
. (B.11)

By equating the terms for a given order in αs for the expressions in Eqs. (B.10)-
(B.11), we obtain a system of equations that fix the xi in Eq. (B.9). Applying
the same procedure for ZK , we obtain the values for the corresponding expan-
sion coefficients for y. Using the same method, one can compute x and y from
ZM,S instead of ZB,K , obtaining identical results.
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[16] C. Lorcé, B. Pasquini and M. Vanderhaeghen, “Unified framework for
generalized and transverse-momentum dependent parton distributions
within a 3Q light-cone picture of the nucleon”, J. High Energy Phys. 05
(2011) 041 [1102.4704].

[17] K. Goeke, A. Metz and M. Schlegel, “Parameterization of the
quark-quark correlator of a spin-1/2 hadron”, Phys. Lett. B618 (2005)
90 [hep-ph/0504130].

[18] S. Boffi and B. Pasquini, “Generalized parton distributions and the
structure of the nucleon”, Riv. Nuovo Cim. 30 (2007) 387 [0711.2625].

[19] M. Diehl, “Generalized parton distributions”, Phys.Rep. 388 (2003) 41
[hep-ph/0307382].

[20] M. Diehl, T. Feldmann, R. Jakob and P. Kroll, “Linking parton
distributions to form-factors and Compton scattering”, Eur. Phys. J. C8
(1999) 409 [hep-ph/9811253].

[21] M. Diehl, T. Feldmann, R. Jakob and P. Kroll, “The overlap
representation of skewed quark and gluon distributions”, Nucl. Phys.
B596 (2001) 33 [hep-ph/0009255].

[22] J. C. Collins and A. Freund, “Proof of factorization for deeply virtual
Compton scattering in QCD”, Phys. Rev. D59 (1999) 074009
[hep-ph/9801262].

[23] M. Diehl and S. Sapeta, “On the analysis of lepton scattering on
longitudinally or transversely polarized protons”, Eur. Phys. J. C41
(2005) 515 [hep-ph/0503023].

[24] J. C. Collins and D. E. Soper, “Parton Distribution and Decay
Functions”, Nucl. Phys. B194 (1982) 445.

188



BIBLIOGRAPHY

[25] C. J. Bomhof, P. J. Mulders and F. Pijlman, “Gauge link structure in
quark-quark correlators in hard processes”, Phys. Lett. B596 (2004) 277
[hep-ph/0406099].

[26] C. Bomhof, P. Mulders and F. Pijlman, “The Construction of
gauge-links in arbitrary hard processes”, Eur. Phys. J. C 47 (2006) 147
[hep-ph/0601171].

[27] K. G. Wilson, “Confinement of Quarks”, Phys. Rev. D10 (1974) 2445.
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