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Abstract

Real time pressure control is commonly adopted in water distribution network management to reduce leakage. A numerical de-
scription of the dynamic behaviour of the water distribution network (WDN) is introduced, allowing simulations of different case
studies. A local, linear model is then identified from simulated experiments in order to synthesise different control algorithms
working with control time step of 1 s. A state-of-the-art control algorithm operating with control time step of some minutes is
used as benchmark. Results prove that all the new controllers reduce the control error, suggesting that cost and communication
overheads introduced by control time step reduction are well motivated by sensible benefits in terms of pressure regulation.
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1. Introduction1

Due to its benefits in terms of leakage reduction [1], pipe2

burst abatement [2],[3] and infrastructure life extension, pres-3

sure control has recently been widely adopted in the manage-4

ment of water distribution networks (WDNs). After a WDN5

has been divided into zones of homogeneous elevation (pres-6

sure zones) for facilitating pressure regulation [4], local and7

remote real time control (RTC) can be adopted to drive a con-8

trol valve installed in each pressure zone. The difference be-9

tween local and remote RTC lies in the source of the mea-10

surements used for service pressure regulation. Local RTC is11

carried out by controlling a variable at the valve site (i.e. the12

pressure head at the valve outlet) [5],[6],[7],[8]. Remote RTC,13

instead, is carried out by taking as controlled variable the pres-14

sure head at the critical node, i.e. the node with minimum av-15

erage pressure [9],[10],[11],[12],[13]. While being more bur-16

densome in terms of installation costs, remote RTC is often17

more cost-effective in the long run [13]. In fact, it enables ser-18

vice pressure regulation to meet WDN demand variations in19

time. RTC controllers can serve as low-level controllers in hi-20

erarchical control schemes, where a high-level optimal control21

strategy defines the pressure setpoints for the different pressure22

zones, according to an economic cost-benefit evaluation over23

the whole network [14],[15],[16],[17],[18],[19],[20]. The oper-24

ation of remote RTC can be summarized as follows. At each25

control time step, the pressure head is measured at the remotely26

controlled node. By making use of suitable algorithms operat-27

ing on the pressure head measurements, a programmable logic28

controller sets the new suitable device setting to obtain the de-29

sired pressure at the remote node. In the works of Campisano et30

al. [9],[10],[11], simple proportional algorithms were used for31
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valve control. Based on physical considerations on the WDN, 32

Creaco and Franchini [12] developed a more effective algo- 33

rithm that also makes use of the water discharge measurement 34

in the pipe equipped with the control device. Finally, Creaco 35

[21] and Page et al. [22] showed that implementing water dis- 36

charge prediction inside the control algorithm of Creaco and 37

Franchini [12] may be beneficial in terms of error on the con- 38

trolled variable with respect to the set point and of total vari- 39

ations of the device setting. The benefits stand out above all 40

when the random fluctuations of demand are insignificant com- 41

pared to its hourly variations [21]. The algorithms by Camp- 42

isano et al. [9],[10],[11], Creaco and Franchini [12], Creaco 43

[21] and Page et al. [22] were all developed considering suf- 44

ficiently large control time steps, e.g. order of magnitude of 45

some minutes, across which WDN behaviour can be approx- 46

imated as a sequence of steady states. The aim of this work 47

is instead investigating the possibility of improving the regula- 48

tion preformance by reducing the sampling time of the control 49

system (down to 1 second). This requires taking into account 50

the dynamic behaviour of the WDN. The authors tune differ- 51

ent model-based algorithms (Proportional-Integral and Linear 52

Quadratic Gaussian Controllers) and evaluate their performance 53

with simulations in two different case studies. The algorithm by 54

Creaco and Franchini [12] is used as benchmark for compari- 55

son. The following sections are associated to the description 56

of the two case studies, together with the mathematical models 57

of the WDN behaviour, which are used for simulations. Then 58

the control algorithms are introduced and the tuning process de- 59

scribed in detail. An extensive comparison of results is reported 60

in the final section of this work. 61

2. Case studies 62

The RTC algorithms developed in this work are tested with 63

two different WDN topologies. In both cases, nodal demands 64

Preprint submitted to Control Engineering Practice March 8, 2019



G.Galuppini et al. 2

250 m 4750 m 5000 m 

Control 

Valve 
Demanding 

Node 

Source 

Controlled 

Node 

Figure 1: Case Study A: topology of the water distribution system.
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Figure 2: Case Study A: demand profile.

are generated at the temporal scale of 1 s, making use of statis-65

tic models for demand pulse generation [23]. All the pro-66

posed demand profiles follow patterns that keep into account67

human daily routine. Three main peaks can be identified in the68

daily profiles: one in the morning, one close to midday and69

an evening one, while demand is typically lower during night70

time. The profile would be flatter during day time in presence71

of industrial activities, whose demand is more uniform during72

working hours.73

Case Study A, which is depicted in Figure 1, is represented74

by a simple water distribution system, with a tank acting as75

a source node and a pipe connecting it to a single demanding76

node. The tank provides a constant pressure of 50 m. The time77

behaviour of the demand is depicted in Figure 2. No leakage78

is considered in this system. A pressure control valve (PCV) is79

installed 250 m downstream the source node. The valve closure80

speed was set to obtain the full valve closure from the com-81

pletely open position in 100 s. For control purposes, pressure is82

measured in the middle of the pipe. The control goal is regula-83

tion of the pressure in the middle of the pipe at hsp = 29 m.84

To test the robustness of regulation, simulations are repeated85

introducing different offsets in the demand profile. The offsets86

range in the interval [−0.03; 0.05] [m3/s] and take into account87

seasonal variations of the demand. For Case Study A, a 2 hour88

simulation is also performed to evaluate the behaviour of the89

controller in presence of a step variation (+ 0.03 [m3/s]) of the90

demand, to simulate the opening of a fire hydrant or a sudden91

break in the pipe.92

Case Study B is represented by the skeletonized WDN of a93

town with about 30,000 inhabitants in Northern Italy. The net-94

work is made up of 27 nodes (26 nodes with unknown head with95

Figure 3: Case Study B: topology of the WDN
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Figure 4: Case Study B: demand profiles.

ground elevation of 0 m a.s.l. and 1 source node with ground 96

level of 35 m a.s.l.) and 32 pipes. The complete topology is 97

depicted in Figure 3. In this case study, two demand patterns 98

are considered [21], leading to two different trends of the total 99

WDN demand (see Figure 4): a flatter trend (profile A) and a 100

more peaked trend (profile B). This is done to analyse robust- 101

ness of RTC with respect to different nodal demand behaviours. 102

The source pressure head profile is instead reported in Figure 103

5. Other features of network nodes and pipes are reported in 104

[23]. A PCV with diameter of 250 mm is installed in pipe 26- 105

20 linking the source to the rest of the network. In the RTC, the 106

critical node 1 is chosen as controlled node. The pressure set 107

point value for the critical node is hsp = 25 m. The valve moves 108

from a completely open to a completely closed position in 300 109

s. 110

The two case studies represent processes with different dy- 111

namic behaviours. The dynamics of Case Study A is in fact 112

mainly determined by the water hammer effect, whose impact 113

on RTC is not completely clear, in particular when the control 114

algorithm is implemented with short sampling times (instabil- 115

ity events that arouse in real plants have been studied in similar 116

situations in [24] and [25]). On the other hand, the dynamic 117

behaviour of Case Study B is given by its complex topology, 118

while the water hammer effect is expected to play a minor role. 119
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Figure 5: Case Study B: source pressure head profile.

3. Numerical model120

The WDN behaviour is described by means of unsteady flow
modelling [23]. This enables proper analysis of the hydraulic
transients due to rapid nodal demand and/or valve setting vari-
ations.
Consider a generic pipe of a WDN. The one-dimensional un-
steady flow equations take the form:

∂hp

∂x + 1
gA

∂Q
∂t + J = 0

∂hp

∂t + c2

gA
∂Q
∂x +

c2q
gA = 0

(1)

where hp [m] and Q [m3/s] are the pressure head and the flow121

discharge along the pipe, x [m] is the position along the pipe,122

t [s] is time, A [m2] is the pipe cross-section area, g [m/s2] is123

the gravity acceleration constant, c [m/s] is the wave celerity,124

q [m2/s] is the leakage outflow per unit length, J is the friction125

slope.126

Remark: in hydraulic framework, pressure is typically127

measured in [m]. It holds 1 m = 9806.38 [Pa], that is the128

pressure exercised by a one meter column of water.129

130

The wave celerity c can be computed as:

c =

 ε
ζ

1 + εd
Es


1
2

(2)

where ε [Pa] and ζ [kg/m3] are water bulk modulus and den-
sity; E [Pa], d [m] and s [m] are pipe modulus of elasticity,
diameter and thickness.
To account for leakage from WDN pipes, the following outflow
q is considered:

q = αleakhγp (3)

where αleak [m/s] and γ [−] are the leakage coefficient and
exponent, respectively. As for leakage evaluation, exponent γ is
set to 1, typical value for plastic pipes [26]. Coefficient αleak [−]
is set to 0 and 9.4 10−9m/s to obtain a leakage percentage rate
of 0% and 20%, in the two case studies, respectively.
The pipe friction slope can be evaluated as:

J = 10.29
n2|Q|Q
d5.33 (4)

where n [s/m
1
3 ] is the Gauckler–Manning coefficient. Pipe fric- 131

tion slopes are then increased using the correction proposed by 132

Pezzinga in [27], to account for the unsteady flow effects. 133

In the model implementation, the network pipes are discre-
tised with spatial steps ∆x. The solution of the water hammer
partial differential equations through the method of the char-
acteristics [28] enables calculating the hydraulic variables of
interest (pressure and water flow) along the pipes at each time
integration step ∆t, with ∆x and ∆t such that:

∆x
∆t

= c (5)

Suitable boundary conditions are assigned in correspondence to 134

source and demanding nodes, where fixed total pressure head 135

and demands are prescribed, respectively. The continuity equa- 136

tion is introduced as well, i.e. the sum of the water discharges 137

entering the generic demanding node through the connected 138

pipes equals the nodal outflow, at each time integration step. 139

The instantaneous demand at each WDN node is evaluated 140

using the stochastic bottom-up approach proposed in [23]. The 141

outflow to the nodal users is evaluated by multiplying the in- 142

stantaneous demand by the correction factor proposed in [29], 143

to account from the dependence of nodal outflow on service 144

pressure. This factor is a function of the ratio of the instan- 145

taneous pressure head h to the desired pressure head hsp and 146

ranges from 0 to 1. 147

The effect of the control valve is modelled by considering no
link at the valve site and setting nodal inflow at the upstream
end at:

Qup = −

√
2g
ξ(α)

A
√

∆Hvalve (6)

and the inflow at the downstream end is set, instead, to:

Qdown = −Qup (7)

where ξ is the valve head loss coefficient, ∆Hvalve is the head 148

drop in the valve and α is the valve closure setting, ranging 149

from 0 (fully open) to 1 (fully closed). The valve head loss 150

coefficient is a growing function of α. This function is typically 151

made available by the valve manufacturer. 152

4. Performance metrics 153

To quantify and compare the performances of the differ- 154

ent control schemes, three metrics are introduced. All sig- 155

nals are sampled with a 1 s sampling time. Let k be the cur- 156

rent discrete-time instant. Let h(k) be the measured pressure, 157

hsp be the pressure setpoint, α(k) be the valve closure and 158

∆α(k) = α(k) − α(k − 1) be the variation of the valve closure 159

over a single sampling time. Let e(k) = h(k) − hsp be the er- 160

ror of the controlled pressure head at time instant k. Then the 161

metrics can be defined as follows: 162

• Mean|e(k)| [m]. The regulation error, which evaluates the 163

proximity of the pressure to the desired setpoint. 164
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Figure 6: Case Study A: closed-loop simulation with P on ξ algorithm and
opening of a fire hydrant. Top: pressure h(t) and pressure setpoint hsp. Middle:
demand D(t). Bottom: valve closure α(t).

•
∑
|∆α(k)| [−]. The cost of control, which impacts on the165

energy required to perform regulation and on wear of ac-166

tuators.167

• % o f Displacement Instants [−], measuring valve activ-168

ity in terms of percentage of time instants during which169

the actuator is in motion.170

5. State of the art of pressure control171

The algorithm used as benchmark is based on physical con-
siderations on steady state conditions in WDNs [12]. It aims to
correct the local head loss coefficient ξ of the valve, which is
an increasing function of α, as derived from the specific valve
curve ξ(α) provided by the valve manufacturer. Then ∆ξ, i.e.
the variation of ξ applied by the regulator, is equal to:

∆ξ = K
2gA2

Q2 e (8)

where A [m2] is the cross area of the pipe equipped with the172

valve. Q [m3/s] is the measured water flow in the same pipe.173

Finally, K is a constant that is tuned by trial and error. Once ∆ξ174

is computed, the α(ξ) curve can be used to define to new valve175

setting α. This controller is usually applied with control time176

steps of the order of magnitude of some minutes. The values177

of e and Q to be used for assessing ∆ξ are the average values178

measured during the previous control time step. For both case179

studies, the algorithm is applied with a time step of 180 s. In180

the following of the paper, this algorithm will be referred to as181

P on ξ.182

Case study A183

The results of simulations described in § 2 are reported in184

Table 1. The best value of the controller constant K is experi-185

mentally determined as K = 0.862. Figure 6 depicts the closed-186

loop simulation of a fire hydrant opening. Pressure is restored187

in about 600 s by P on ξ algorithm.188

Demand Displacement
∑
|∆α| Mean|e(k)|

O f f set Instants
[m3/s] [%] [−] [m]

-0,03 0,68 3,17 2,31
-0,02 0,69 3,19 1,94
-0,01 0,70 3,24 1,68

0 0,71 3,33 1,50
0,01 0,73 3,69 1,25
0,03 0,78 3,98 1,16
0,04 0,81 4,36 1,08
0,05 0,88 4,89 1,01

Table 1: Performance of P on ξ algorithm for different demand offsets.

Demand Displacement
∑
|∆α| Mean|e(k)|

Pro f ile Instants
[%] [−] [m]

A 2 3.37 1.06
B 2.75 5.55 0.98

Table 2: Case Study B: Performance of PI on ξ algorithm for different demand
profiles.

Case study B 189

Table 2 shows the results of simulations, with the two differ- 190

ent demand profiles introduced in § 2. The controller constant 191

was set to K = 0.4 to obtain the best results for Case Study B. 192

6. Pressure control strategies based on dynamic models 193

In this section different control strategies synthesized on lin- 194

ear dynamic models of the plant are introduced. All the pre- 195

sented algorithms use an approximated linear model identified 196

around a suitable working point of the system under control. 197

6.1. Working points 198

The first step of a model-based synthesis is the definition of a 199

nominal working point, typically an equilibrium of the system. 200

When a mathematical description of the process is available in 201

state-space form, it is possible to find its equilibria by requiring 202

the state derivatives to be zero, when inputs are set to a constant 203

value (i.e. by requiring a steady state condition to be reached). 204

The mathematical modelling of the WDN introduced in § 3 al- 205

lows the detailed description and simulation of the dynamics of 206

the system, but is too complex to be put in state-space form. 207

However, the nominal working point can be found experimen- 208

tally by means of simulations. 209

For this purpose, a Multi-Input Single-Output (MISO) system 210

must be considered in both case studies. Input signals are: 211

• α(t), the valve closure ([−]). 212

• H(t), the source pressure head ([m]). 213
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• Di(t), the water demand ([m3/s]) at node i.214

The output is the pressure h(t) (expressed in [m]) measured
at the desired point of the WDN.
Note that α(t) is the only control variable, since we assume
no possibility of controlling the source pressure H(t). Conse-
quently, H(t) and Di(t) represent stochastic disturbances acting
on the process. Typical profiles of H(t) and D(t) are depicted in
Figure 2 for Case Study A, with D(t) the demand of the single
demanding node. Figure 4 shows the profiles for Case Study B,
with D(t) representing the overall demand of the WDN, i.e.:

D(t) =

Nnodes∑
i=1

Di(t) (9)

where Nnodes is the number of demanding nodes in the WDN. In215

the definition of the working point, the average values of typical216

H(t) and Di(t) profiles are considered as input to the system.217

Case study A218

The control goal in Case Study A is to perform a pressure219

regulation at hsp = 29 m at the controlled node, which is placed220

in the middle of the pipe. Simulations allow to define the value221

of α which results in the desired pressure, when the exogenous222

inputs acting on the system are the average value of the source223

pressure head H(t) and the average value of the demand D(t).224

The working point for Case Study A is then defined by the tuple225

WPA = (α,H,D, h):226

WPA =


α = 0.694
H = 50 m
D = 0.1 m3/s
h = 29 m

(10)

Case study B227

The control goal in Case Study B is to perform the pressure
regulation at hsp = 25 m at the controlled node, which coincides
with node 1. The average value of the source pressure head and
demand must be used in the simulations. Note that, in the case
of multiple demanding nodes, it is necessary to consider the
average value of each demand profile Di(t). The tuple WPB =

(α,H,D1, ...,DNnodes , h) is then the working point for Case Study
B:

WPB =



α = 0.619
H = 39.6 m
D1 = 0.0014 m3/s
...

DNnodes = 0.0007 m3/s
h = 25 m

(11)

Remark: Demand profiles A and B share the same average228

values for each Di(t), therefore it is not necessary to define two229

different working points for Case Study B.230
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Figure 7: Case Study A: identification data. Top: pressure variation δh(t). Bot-
tom: valve variation δα(t).

6.2. Dynamic models 231

The synthesis of regulators requires a dynamic model relat- 232

ing the valve closure α(t) to the pressure h(t). Since analytical 233

linearization is too complex in view of the complexity of the 234

nonlinear model, black-box identification, based on simulated 235

data collected on the simulator, has been exploited for the def- 236

inition of a local model describing the dynamics of the system 237

around the equilibrium. The identification phase is set-up as 238

follows: 239

• Simulation of a step response of the WDN around the 240

working point. The system is first brought around the de- 241

sired working point. Then, once a stedy state condition 242

is reached, a 10% step variation of α is applied (the valve 243

speed limit is disabled for this simulation). Let ∆αstep be 244

the amplitude of the step. 245

• Buildup of input-output identification data. A local model 246

must be identified, therefore it is necessary to construct 247

variation signals δα(t) = α(t) − α and δh(t) = h(t) − h as 248

input-output data. The former signal represents the input 249

of the linearised system, the latter its output. 250

• Definition of the structure of the model. The structure of 251

the local model must be chosen according to the behaviour 252

of the step response δα(t). 253

• Identification of the parameters of the model. Matlab Iden- 254

tification Toolbox [30] allows to use input-output data to 255

optimise the values of parameters, to provide the best fit 256

between model prediction and identification data. 257

• Validation. The model prediction is compared against sim- 258

ulations of step responses of the WDN. Different step am- 259

plitudes are used to validate the model. 260

Case study A 261

A step response simulation around WPA allows to obtain the 262

input-output identification data shown in Figure 7. The step 263

response does not show any overshoot, inverse response or os- 264

cillation. Still, a pure delay is present, and coincides with the 265

time required by the pressure wave generated from the valve to 266

reach the pressure sensor. The celerity of the wave is known, 267

therefore the delay τa can be computed as: 268
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Figure 8: Case Study A: comparison of model and system output with identifi-
cation data.
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Figure 9: Case Study A: comparison of model and system output with valida-
tion data.

τa =
Lv−s

c
(12)

where Lv−s is the distance between the valve and the sensor and269

c is the celerity of the wave.270

The structure chosen for the model (a continuous time trans-271

fer function, with s the Laplace variable) and the values of its272

parameters are reported in (13). Figure 8 shows a comparison273

between the model output and the identification data.274

Ga(s) =
µae−sτa

1+sTa

µa = −107.27 m
Ta = 16 s
τa = 11 s

(13)

Validation is performed by simulating the step response with275

different step amplitudes and comparing the results to the re-276

sponse predicted by the model. In particular, Figure 9 shows277

the response to a 5% step in α. The model does not exactly278

predict the gain of the system, due to the presence of some non-279

linearities.280

Let us consider (6), where α does not directly affect the pres-281

sure loss, but appears through ξ. The relation between ξ and282

α, depicted in Figure 10, is strongly nonlinear. A formal lin-283

earisation procedure would approximate the relation with the284

slope of the tangent to the curve in correspondence of the work-285

ing point ( dξ
dα |α=α). The proposed procedure approximates it as286

∆ξ
∆αstep

, which depends on the amplitude of the step applied dur-287

α [-]

0 0.2 0.4 0.6 0.8 1

ξ 
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]

0
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Figure 10: The local loss coefficient ξ as function of the valve closure α and the
straight line tangent to the curve in the working point.
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Figure 11: Absolute value of the gain of the linearised system µa as function of
the flow Q.

ing the identification phase. 288

Equation (4) shows instead that the pressure variation gener- 289

ated by a step ∆αstep also depends on the flow Q. In particular, 290

the absolute value of the pressure variation increases with the 291

square of the flow. Figure 11 depicts the relation between the 292

absolute value of the gain of the linearised system (|µa|) and the 293

flow Q. The relation is obtained by repeating the identification 294

procedure at different values of Q, with same values of α and 295

∆αstep. 296

Nevertheless, the two nonlinearities do not cumulate, but are 297

likely to cancel each other in closed-loop. In fact, whenever 298

the flow Q increases, the pressure h would decrease. The valve 299

closure α must then decrease to compensate for the pressure 300

loss. An increase in Q then results in a decrease in α. When 301

considering this effect in terms of gain of the linearised system, 302

an increase in Q means an increase in the gain, but the result- 303

ing decrease in α means a decrease in the gain. On the other 304

hand, if Q decreases, the pressure h increases and α must be in- 305

creased, thus the two effects still compensate each other. Still, 306

in case of α ≈ 1, the ξ nonlinearity is dominant and is not mit- 307

igated by the Q one. Note that this is not likely to happen in 308

real situations: α ≈ 1 would be required when D ≈ 0, but this 309

never happens due to leakage. On the contrary, when α ≈ 0, the 310

Q nonlinearity dominates. In view of these considerations, it is 311

still important to synthesise regulators providing sufficient mar- 312

gin of robustnes, and setup simulations to test the robustness of 313

the regulators. 314
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Figure 12: Identification data for Case Study B. Top: pressure variation δh(t).
Bottom: valve variation δα(t).
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Figure 13: Case Study B: Comparison of model and system output with identi-
fication data.

Case study B315

The previous procedure can be applied to Case Study B.316

Figure 12 shows the identification step response around WPB.317

Some oscillations are present in the response, due to the effect318

of pressure waves coming from different paths of the WDN.319

This motivates the introduction of a second order transfer func-320

tion model with complex conjugate poles. The pure delay is still321

present, but its computation can no longer be made by means322

of a structural analysis of the WDN, and must be treated as323

a parameter for the identification problem. The overall struc-324

ture chosen for the model and the values of its parameters are325

reported in (14). Figure 13 shows a comparison between the326

model output and the identification data. Validation is depicted327

in Figure 14. The applied step is ∆αstep = 5% (a 10% step was328

used for identification). The considerations about gain nonlin-329

earities which were introduced for Case Study A still hold for330

Case Study B.331

Gb(s) =
µbe−sτb

1+2ζb s/ωb+s2/ω2
b

µb = −92.86 m
ζb = 0.4

ωb = 0.1 rad/s
τb = 19 s

(14)

6.3. Control332

The main goal is regulation to the setpoint hsp of the pressure333

h(t), in presence of process disturbances generated by the effect334

t [s]
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δ
h
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]
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Figure 14: Case Study B: Comparison of model and system output with valida-
tion data.
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Figure 15: SISO system for control purposes.

of exogenous inputs H(t) and Di(t). In this situation, it is pos- 335

sible to refer to a Single-Input Single-Output (SISO) system, 336

whose behaviour around the working point can be described 337

by the local, linear models derived in § 6.2. Regulators are 338

then synthesised on the basis of Ga(s) and Gb(s), requiring 339

the closed-loop bandwidth to be the largest possible, while 340

providing robustness to gain and phase variations. The SISO 341

system and the linear framework considered for the control 342

design are depicted in Figure 15, where δH(t) and δD(t) are the 343

source pressure and nodal demand variation signals from their 344

working point values. Then dH(t) is the disturbance generated 345

by δH(t) through the dynamic relation GH(s), and dQ(t) the 346

disturbance generated by δD(t) through the dynamic relation 347

GD(s). Note that the knowledge of GH(s) and GD(s) is not 348

required by the control algorithms proposed in this work. 349

350

Note that, every time the value of Di changes, a pressure 351

wave is generated from the corresponding demanding node and 352

propagates throughout the WDN. A reflected wave is gener- 353

ated as well when the primary one reaches the end of a pipe or 354

the control valve. This effect is particularly important in Case 355

Study A, since the wave propagates and gets reflected through a 356

single pipe. The same holds every time the value of α changes, 357

with the primary wave propagating from the valve towards the 358

demanding node. 359

The same effect is present in the more complex WDN con- 360

sidered for case Study B. Still, due to the presence of many 361

possible paths for the pressure waves, the power is distributed 362

over a number of harmonics and is expected to have less impact 363
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Figure 16: Antiwindup control scheme for PI regulators.

on closed-loop performance. Some realistic measurement noise364

n(t) is present in Case Study B as well.365

All regulators are implemented in a discrete-time way, by ex-366

ploiting the full capability of the measurement system in terms367

of sampling time, which results in Ts = 1 s. Discretisation of368

regulators is performed with Tustin method to guarantee that369

the stability is preserved (all asymptotically stable/stable con-370

tinuous time poles are respectively mapped into asymptotically371

stable/stable discrete time poles). The design and test of the372

different control schemes based on the dynamic model derived373

in § 6.2 are presented in the following subsections.374

6.4. PI regulators375

A Proportional-Integral (PI) control action u(t) can be ex-
pressed as follows [31]:

u(t) = Kpe(t) + Ki

∫
e(t)dt (15)

where e(t) is the error signal. Moving to the Laplace domain,
one has:

U(s) = KpE(s) +
Ki

s
E(s) (16)

with s the Laplace variable, F(s) the Laplace transform of a
generic time domain signal f (t). The transfer function of the
regulator can be written as follows:

R(s) =
U(s)
E(s)

= Kp +
Ki

s
=

Kps + Ki

s
= Ki

1 + s Kp

Ki

s
(17)

By defining Ti =
Kp

Ki
and µr = Ki, one has:

R(s) = µr
1 + sTi

s
(18)

By properly shaping the loop transfer function L(s) = G(s)R(s),376

it is possible to cope with the different control requirements.377

Note that, when no derivative action is present, an integrator378

in L(s) ensures perfect tracking of step reference signals and379

complete rejection of step process disturbances. Still, the380

presence of a saturation of the control action (recall α ∈ [0; 1])381

calls for an antiwindup implementation of the PI regulator, to382

avoid undershoots/overshoots which may completely empty383

the WDN. The overall control scheme is depicted in Figure384
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Figure 17: Case Study A: design of loop functions for PIna, PI and FPI regu-
lators.

Demand Displacement
∑
|∆α| Mean|e(k)|

O f f set Instants
[m3/s] [%] [−] [m]

-0,03 100 223,21 2,29
-0,02 100 169,05 1,73
-0,01 100 93,63 1,03

0 100 38,33 0,51
0,01 100 35,02 0,49
0,02 100 33,49 0,48
0,03 100 32,48 0,48
0,04 100 31,78 0,49
0,05 100 31,3 0,5

Table 3: Case Study A: performance of PIna algorithm for different demand
offsets.

16. Note that the model of the saturation affects δα. It must 385

be therefore implemented as δα ∈ [1 − α;−α]. Stability of the 386

resulting closed-loop systems can be assessed by means of the 387

Bode Criterion, which is reported in Theorem 1 [31]. 388

389

Theorem 1. Let L(s) have poles with non-positive real 390

part only, and let the Bode diagram of |L( jω)| cross the 0 391

dB axis only once. Then, by defining as µL the gain of L(s) 392

and as φm the phase margin, the negative feedback system is 393

asymptotically stable iif µL > 0 and φm > 0. 394

395

Case study A 396

Let the model of the system be described by (13). It is then
possible to set:

Ti = Ta µr =
ωc

µa
(19)

where ωc is the desired closed-loop bandwidth expressed in
rad/s.
The resulting loop transfer function L(s) is reported in (20):

L(s) =
ωc

s
e−sτ (20)
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Figure 18: Case Study A: closed-loop simulation with PIna and demand offset
−0.03 m3/s. Top: pressure h(t) and pressure setpoint hsp. Middle: demand
D(t). Bottom: valve closure α(t).
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Figure 19: Case Study A: closed-loop simulation with PI algorithm. Top: pres-
sure h(t) and pressure setpoint hsp. Middle: demand D(t). Bottom: valve clo-
sure α(t).

The only free design parameter is ωc, which must be chosen397

according to the design specifications.398

399

A first PI is tuned by requiring ωc = 0.0314 rad/s. In the400

following, this algorithm will be referred to as PIna. The re-401

sulting loop function L(s) is depicted in Figure 17. The associ-402

ated phase margin, including the effect of the pure delay, results403

φm = 70◦, ensuring robust stability of the closed-loop and very404

little oscillations in the closed-loop step response. Phase mar-405

gin reduction due to discretisation is negligible.406

Table 3 shows the results of closed-loop simulations with
PIna. Note that, for negative demand offset values, the cost of
regulation grows very high and the regulation error gets worse.
This is due to the presence of a pressure wave with frequency

fw =
1

25
= 0.04 Hz (21)

propagating through the pipe. The effect is shown in Fig-407

ure 18, with reference to a simulation with demand offset of408

−0.03 m3/s. Recall that a pressure wave is generated every time409

the valve setting α changes. Such wave propagates through the410
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Figure 20: Case Study A: closed-loop simulation with PI algorithm and open-
ing of a fire hydrant. Top: pressure h(t) and pressure setpoint hsp. Middle:
demand D(t). Bottom: valve closure α(t).

Demand Displacement
∑
|∆α| Mean|e(k)|

O f f set Instants
[m3/s] [%] [−] [m]

-0,03 100 8,57 1,12
-0,02 100 7,96 1,02
-0,01 100 7,55 0,94

0 100 7,24 0,89
0,01 100 7,01 0,85
0,02 100 6,83 0,82
0,03 100 6,7 0,8
0,04 100 6,62 0,78
0,05 100 6,56 0,78

Table 4: Case Study A: performance of PI algorithm for different demand off-
sets.

pipe and gets reflected once it reaches the demanding node, hit- 411

ting the pressure sensor again while moving back towards the 412

valve. When the controller tries to compensate for the pressure 413

variation, a new wave is generated and reflected. In addition, 414

with very low values of the demand D(t), the regulator sets val- 415

ues of α which get close to 1. According to the effect of gain 416

nonlinearities described in § 6.3, the ξ nonlinearity dominates 417

and the gain of the process increases. This in turn means that the 418

closed-loop bandwidth is enlarged and that the regulator tries to 419

compensate the effect of the pressure wave propagating through 420

the pipe, instead of filtering it. By doing so, other waves at 421

the same frequency are generated. Other works instead suggest 422

that the observed oscillations are the result of the phase margin 423

reduction which occours due to the enlarged closed-loop band- 424

width [8],[24],[25]. 425

A retuning of the regulator is therefore necessary. A possi- 426

bility is to reduce the closed-loop bandwidth. A second attempt 427

is then made with ωc = 0.0063 rad/s. The new phase margin is 428

φm = 86◦ (phase margin reduction due to discretisation is neg- 429

ligible). The new PI will be referred to simply as PI. Results 430

are reported in Table 4. Figure 19 shows the main signals of 431
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Figure 21: Case Study B: design of loop functions for PI and FPI regulators.

Demand Displacement
∑
|∆α| Mean|e(k)|

Pro f ile Instants
[%] [−] [m]

A 100 33.5 0.7
B 98 22.9 0.55

Table 5: Case Study B: Performance of PI algorithm for different demand pro-
files.

the control-loop for a whole day simulation with the nominal432

demand profile. Figure 20 shows the response of the system in433

presence of an additional step disturbance Ds(t) = 0.03 m3/s.434

This simulation mimics real situations, such as a sudden break435

of a pipe or the opening of a fire hydrant. The control system436

manages to bring the pressure back to the setpoint without any437

oscillation in about 300 s.438

Case study B439

For Case Study B, the local model of the system is reported
in (14). A possible tuning is:

Ti =
1

2ωb
µr =

ωc

µb
(22)

with
ωc < ωb

.440

The best results are obtained with ωc = 0.0314 rad/s. Phase441

margin results φm = 48◦: the closed loop system is asymptot-442

ically stable but some damped oscillations may be present in443

the closed-loop step response. The Bode diagram of the loop444

function L(s) is depicted in Figure 21 (phase margin reduction445

associated to the discretisation can be neglected). The proposed446

tuning tries to find a balance between phase margin and distance447

of |L( jω)dB| from the 0 dB axis right afterωc. The phase margin448

must be sufficient to avoid wide oscillations in the closed-loop449

response and provide robustness to model uncertainty. The res-450

onance peaks in |L( jω)|dB must not be too close to the 0 dB axis451

to provide robustness against the gain variations. Due to the res-452

onance peak, an increase in the gain would in fact move ωc at453
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Figure 22: Case Study B: closed-loop simulation with PI algorithm and de-
mand profile A. Top: pressure h(t) and pressure setpoint hsp. Middle: demand
D(t). Bottom: valve closure α(t).
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Figure 23: Case Study B: closed-loop simulation with PI algorithm and de-
mand profile B. Top: pressure h(t) and pressure setpoint hsp. Middle: demand
D(t). Bottom: valve closure α(t).

very high frequencies, and this may compromise the stability 454

of the closed-loop system. The results of the simulations with 455

the two demand profiles are presented in Table 5 and depicted 456

in Figures 22 and 23. 457

6.5. Filtered PI regulators and Smith predictor 458

According to the previous considerations, it may be possi-
ble to improve the PI performance by introducing a low pass
filter to enhance rejection of noise at frequency fw. The over-
all regulator R(s) can then be considered as the cascade of a
PI controller, as described in § 6.4, and the filter given by the
transfer function R f (s), reported in (23).

R f (s) =
(1 + sTd)
(1 + sT f )

(23)

When the filtering pole is placed just outside of the closed-loop 459

bandwidth, the phase margin of the system can be reduced sig- 460

nificantly. The zero of R f (s) can be used to reduce the phase 461

margin loss. In the following of the paper, this algorithm will 462

be referred to as FPI (Filtered PI). Since the system under con- 463

trol is characterised by the presence of a pure delay, it is also 464
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Figure 24: Control scheme with Smith Predictor.
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Figure 25: Antiwindup control scheme for FPI regulators with Smith Predictor.

possible to compensate for its effect on the phase margin by465

introducing a Smith Predictor (SP), which is now presented.466

Consider an asymptotically stable SISO system with transfer
function

G(s) = G′(s)e−sτ (24)

where G′(s) is a rational transfer function. Then, with reference
to the control scheme in Figure 24, it is possible to neglect the
presence of the pure delay e−sτ in the design of the regulator
R′(s) when

P(s) = (1 − e−sτ)G′(s) (25)

The effect of the scheme is to obtain a feedback with a predic-467

tion z(t) = y(t + τ) of the controlled variable y(t).468

The overall control scheme for the FPI algorithm with anti-469

windup implementation and Smith Predictor is depicted in Fig-470

ure 25.471

Case study A472

In Case Study A it is possible to compute the frequency fw
of the pressure wave as described in (21). The PIna algorithm
presented in § 6.4 can be extended to provide more rejection
of noise at frequency fw. The best design of the filter R f (s) is
obtained by setting:

Td =
1
5

1
2π fw

T f = 20Td (26)

which provides 30dB of rejection of the pressure wave. The473

bode diagram of the overall loop function L(s) is reported474

in Figure 17. The closed-loop bandwidth is approximately475

ωc = 0.0314 rad/s. Thanks to the Smith Predictor, the phase476
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Figure 26: Case Study A: closed-loop simulation with FPI algorithm and open-
ing of a fire hydrant. Top: pressure h(t) and pressure setpoint hsp. Middle:
demand D(t). Bottom: valve closure α(t).

Demand Displacement
∑
|∆α| Mean|e(k)|

Pro f ile Instants
[m3/s] [%] [−] [m]

-0,03 100 15 0,74
-0,02 100 14,1 0,69
-0,01 100 13,46 0,66

0 100 12,98 0,64
0,01 100 12,62 0,62
0,02 100 12,34 0,6
0,03 100 12,18 0,56
0,04 100 12,11 0,59
0,05 100 12,11 0,59

Table 6: Case Study A: performance of FPI algorithm for different demand
offsets.

margin results φm = 67◦ (by neglecting the effect of discretisa- 477

tion), ensuring robust stability of the closed-loop and very little 478

oscillations in the closed-loop step response. Note that, in con- 479

trast with the closed-loop bandwidth reduction introduced for 480

the PI algorithm, the proposed filter design limits the closed- 481

loop bandwidth in case of increase in the process gain, while 482

keeping the nominal closed-loop bandwidth almost unchanged. 483

Result of whole day simulations are reported in Table 6. Sim- 484

ulation of fire hydrant opening is instead shown in Figure 26. 485

Regulation to hsp is faster than the PI case but shows a little 486

overshoot/undershoot. In the following, this algorithm will be 487

simply referred to as FPI. 488

Case study B 489

The WDN considered in Case Study B shows a complex
topology with many possible paths connecting the control valve
to the controlled node. Cycles are also present. Many pressure
waves are therefore generated when a variation of the status of
the valve occurs. In addition, each demanding node generates
waves which propagate through the network. It is then very dif-
ficult to identify the frequencies of such waves. Still, a possi-
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Demand Displacement
∑
|∆α| Mean|e(k)|

Pro f ile Instants
[%] [−] [m]

A 100 11.4 0.74
B 98 9.6 0.62

Table 7: Case Study B: Performance of FPI algorithm for different demand
profiles.

PLANT 

𝛼  

𝑛 𝑡  

ℎ(𝑡) 𝛼 𝑡  

+ 

+ 

+ 

+ 

𝑑𝑄 𝑡 + 𝑑𝐻 𝑡  

+ 

+ 
−𝐾𝐿𝑄 

Smith 
Predictor  

Kalman 
Filter 

+ + 

ℎ𝑠𝑝 

− 

𝛿𝛼 𝑡  
  
𝟏

𝒔
  

𝛿𝛼 𝑡  

𝑥 𝑡  

Figure 27: Control scheme for the LQG regulator, featuring integral action and
Smith Predictor

ble design for the R f (s) placing the filtering pole right after the
closed-loop bandwidth and then placing the zero in an arbitrary
position to improve the phase margin. The Smith Predictor de-
scribed in the previous section is still included in the design.
Let therefore:

T f =
0.6
ωc

Td = 0.1T f (27)

With the PI tuned as in § 6.4, with ωc = 0.0314 rad/s, the490

overall regulator provides a phase margin φm = 59◦. The ef-491

fect of discretisation on the phase margin is negligible. The492

corresponding loop function is reported in Figure 21. A com-493

parison of the loop functions obtained with the PI and the FPI494

algorithms highlights that the FPI results in a reduced magni-495

tude in correspondence of the resonance peak, which is outside496

of the closed-loop bandwidth and in turn present in the control497

sensitivity function as well. The overall effect is a reduction498

of the associated actuator oscillations. Table 7 reports the re-499

sults of simulations of the WDN in closed loop with the FPI500

algorithm.501

6.6. Linear Quadratic Gaussian control502

Linear Quadratic Gaussian (LQG) control is one of the most503

common optimal control techniques. Optimal control allows504

to formulate control problems as optimisation ones, explicitly505

taking into account cost/benefit trade-offs in the synthesis of506

the controller. In particular, LQG control is the combination507

of a Linear Quadratic (LQ) state-feedback controller and a508

Kalman Filter (KF) for estimation of nonmeasurable states. In509

particular, the LQG schemes developed in this work features a510

discrete time, infinite horizon LQ regulator and a steady-state511

KF. The main results of infinite horizon LQ control are 512

summarised in Theorem 2, while Theorem 3 discusses the 513

steady-state KF [32]. 514

515

Theorem 2. Consider a linear, discrete time system de-
scribed by:

x(k + 1) = Ax(k) + Bu(k) (28)

and the infinite horizon quadratic cost function:

J =
∑∞

k=0(x>(k)Qx(k) + u>(k)Ru(k))
with
Q ≥ 0 R > 0

(29)

If the pair (A,B) is reachable, and the pair (A,Cq) is observ-
able, with Q = Cq>Cq,
then, the optimal control law is given by

u(k) = −KLQx(k) (30)

with
K = (R + B>PB)−1B>PA (31)

where P is the unique positive definite solution of the stationary
Riccati Equation

P=A>PA + Q − A>PB(R + B>PB)−1B>PA (32)

The closed-loop system

x(k + 1) = (A − BKLQ)x(k) (33)

is asymptotically stable. 516

517

Theorem 3. Assume that the considered system is described
by: {

x(k + 1) = Ax(k) + Bu(k) + w(k) x(0) = x0
y(k) = Cx(k) + n(k) (34)

with w(k) and n(k) respectively process and measurement noise. 518

Let w(k) be white, Gaussian with zero mean and covariance Qk. 519

Analogously, let n(k) be white, Gaussian with zero mean and 520

covariance Rk. Let also assume that the two noises are not cor- 521

related. 522

If the pair (A,Bq), with Bq such that Qk = Bq>Bq, is reachable 523

and that the pair (A,C) is observable, the optimal state estima- 524

tor is then given by: 525

x̂(k + 1|k + 1) = Ax̂(k|k) + Bu(k)+
+L[y(k + 1) − C(Ax̂(k|k) + Bu(k))] (35)

with
L = PC>[CPC> + Rk]−1 (36)

where P is the unique positive definite solution of the station- 526

ary Riccati Equation 527

P = APA> + Qk − APC>[CPC> + Rk]−1CPA (37)

The estimator is asymptotically stable, i.e. the eigenvalues of 528

(A − LC) have modulus less than 1. Note that the eigenvalues 529
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Figure 28: Case Study A: closed-loop simulation with ILQG algorithm and
opening of a fire hydrant. Top: pressure h(t) and pressure setpoint hsp. Middle:
demand D(t). Bottom: valve closure α(t).

of the overall closed-loop system are those of (A − BKLQ) and530

of (A − LC), so that the closed-loop stability is guaranteed.531

532

Figure 27 shows the overall closed-loop setup for the imple-
mentation of the LQG control used in this paper. As for PI
and FPI algorithms, the regulator is tuned according to linear
models derived in § 6.2. Note that an integrator is introduced
in the loop, providing a twofold contribution. On one hand, it
allows to synthesise the LQ regulator with control action u co-
inciding with the derivative of the valve closure variation δα.
This in turn means that the derivative appears (in its discrete-
time version) in the cost function, providing a more direct way
to weight the performance metric

∑
|∆α|. On the other hand,

with a SISO system without any derivative action, the presence
of the integrator in the control loop ensures complete rejection
of step process disturbances and perfect tracking of step refer-
ences. Accumulation in the integrator is limited to the interval
[1 − α;−α], to account for saturation of the control action and
avoid integral windup.
Let A, B, and C be a realisation of (13) or (14). To introduce the
integral action as described in Figure 27, the system is extended
as:

A =

[
0 0
B A

]
B =

[
1
0

]
C =
[
0 C

]
(38)

The LQ and KF are then synthesised over the extended system533

(A,B,C), discretised with step of 1 s and a Zero-Order534

Hold algorithm. The control scheme also features the Smith535

Predictor developed in § 6.5 for pure delay compensation. In536

the following of this work, this algorithm will be denoted as537

ILQG.538

539

Case study A540

Simulations with the water distribution system of Case Study
A and ILQG algorithm provided the results shown in Table 8.
Simulation of hydrant opening is depicted in Figure 28. Regu-
lation to the setpoint is performed in about 250 s, with no oscil-

Demand Displacement
∑
|∆α| Mean|e(k)|

Pro f ile Instants
[m3/s] [%] [−] [m]

-0,03 100 13,4 0,84
-0,02 100 12,42 0,77
-0,01 100 11,77 0,73

0 100 11,32 0,7
0,01 100 11 0,68
0,02 100 10,75 0,66
0,03 100 10,6 0,65
0,04 100 10,5 0,65
0,05 100 10,5 0,65

Table 8: Case Study A: performance of ILQG algorithm for different demand
offsets.

Demand Displacement
∑
|∆α| Mean|e(k)|

Pro f ile Instants
[%] [−] [m]

A 100 20 0.7
B 98 15 0.6

Table 9: Case Study B: Performance of ILQG algorithm for different demand
profiles.

lations in the response. The values of tuning parameters are:

Q =

[
10−4 0

0 10−8

]
R = 1 Qk = 0.005I2×2 Rk = 1

where the non-zero elements in Q weight respectively the state 541

of the integrator and the state of the linearised system. 542

Case study B 543

For the WDN considered in case Study B, the best results are
obtained with

Q =

10−3 0 0
0 10−8 0
0 0 10−8

 R = 1 Qk = 0.00005I3×3 Rk = 1

Performance metrics are reported in Table 9. 544

6.7. Linear Quadratic Gaussian control with shaping functions 545

Note that, for Case Study A, it is particularly interesting to
bring in the LQG algorithm the same concepts introduced with
the FPI one: an enhanced filtering at frequency fw, and a lim-
itation on the increase in the closed-loop bandwidth in case of
increased gain of the process (see § 6.5). This result can be
achieved by means of a control scheme with disturbances pre-
filtering, as in Figure 29.
Let vd, vn1, vn2 be uncorrelated white noises, and let S d and
S n be asymptotically stable systems producing the stationary
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Process 
𝑑 𝑡  

𝑦 𝑡  

+ 𝑧 𝑡  
Regulator 

𝑺𝒅 

− + 

+ 

+ 

𝑺𝒏 

𝑣𝑑 𝑡  

𝑣𝑛2 𝑡  

𝑣𝑛1 𝑡  

𝑛 𝑡  

𝑢 𝑡  

Figure 29: Control scheme for LQG control with disturbances prefiltering.
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Figure 30: Shaping functions used for disturbances prefiltering.

noises d(t) and n(t). The process is described by:
ẋ(t) = Ax(t) + Bu(t)
z̃(t) = Cx(t) + d(t)
y(t) = z̃(t) + n(t)

(39)

while S d and S n are described by:{
ẋd(t) = Adxd(t) + Bdvd(t)
d(t) = Cdxd(t) (40)

and {
ẋn(t) = Anxn(t) + Bnvn1(t)
n(t) = Cnxn(t) + vn2(t) (41)

Now define:546

x(t) =

 x(t)
xd(t)
xn(t)

 A =

A 0 0
0 Ad 0
0 0 An

 B =

B00
 (42)

v(t) =

 0 0
Bd 0
0 Bn


[

vd(t)
vn1(t)

]
C =
[
C Cd Cn

]
and the enlarged system:547 {

ẋ(t) = Ax(t) + Bu(t) + v(t)
y(t) = Cx(t) + vn2(t)

(43)
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Figure 31: Case Study A: closed-loop simulation with ILQG − S F algorithm
and opening of a fire hydrant. Top: pressure h(t) and pressure setpoint hsp.
Middle: demand D(t). Bottom: valve closure α(t).

Demand Displacement
∑
|∆α| Mean|e(k)|

Pro f ile Instants
[m3/s] [%] [−] [m]

-0,03 100 23 0,56
-0,02 100 22,1 0,53
-0,01 100 21,47 0,52

0 100 21 0,51
0,01 100 20,73 0,51
0,02 100 20,5 0,51
0,03 100 20,37 0,51
0,04 100 20,36 0,51
0,05 100 20 0,52

Table 10: Case Study A: performance of ILQG − S F algorithm for different
demand offsets.

Assuming that the covariance Qkn2 of vn2 is positive definite, 548

then (43) fulfils the conditions required for the design of a sta- 549

bilizing LQG regulator. 550

This algorithm is implemented on a discretised version of (43) 551

and will be referred to as ILQG − S F. Shaping functions S d 552

and S n can be chosen to place the power of measurement noise 553

n(t) from fw towards higher frequencies and process noise d(t) 554

towards lower frequencies. Figure 30 depicts the chosen shapes 555

and (44) reports the mathematical expressions. 556

ωw = 2π fw

S d(s) =
ωw 106

(1+s106)

S n(s) =
(1+s/(5ωw))3

(1+s/(0.1ωw))3

(44)

With weights reported in (45), the regulation error improves 557

significantly. 558
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Figure 32: Case Study A: regulation error as function of the demand offset.

Demand Offset [m
3
/s]

-0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05

∑
|∆

α
|

0

5

10

15

20

25

P on ξ

PI

FPI with SP

ILQG with SP

ILQG-SF with SP

Figure 33: Case Study A: cost of control as function of the demand offset.

Q =



1 0 0 0 0 0
0 10−12 0 0 0 0
0 0 0.26 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


R = 1 (45)

Qk = 0.05I6×6 Rk = 1

Performance metrics are reported in Table 10. Figure 31559

shows the fire hydrant opening simulation. Regulation is560

slightly faster than the standard ILQG case, but shows some561

minor overshoot.562

7. Analysis of results563

The results of simulations introduced in § 5 and § 6 are now564

discussed and compared. To make comparison easier, results of565

Case Study A are reported in Figure 32 and Figure 33, where566

respectively the regulation error (Mean|e(k)|) and the cost of567

control (
∑
|∆α|) are plot as function of the demand offset. Note568

that regulators were tuned to obtain the best regulation error569

Control Displacement
∑
|∆α| Mean|e(k)|

Algorithm Instants
[%] [−] [m]

PI 100 33.5 0.7
FPI with S P 100 11.4 0.74

ILQG with S P 100 20 0.7
P on ξ 2 3.37 1.06

Table 11: Case Study B: performance comparison of algorithms tested on the
WDN with Demand A.

Control Displacement
∑
|∆α| Mean|e(k)|

Algorithm Instants
[%] [−] [m]

PI 98 22.9 0.55
FPI with S P 98 9.6 0.62

ILQG with S P 98 15 0.6
P on ξ 2.75 5.55 0.98

Table 12: Case Study B: performance comparison of algorithms tested on the
WDN with Demand B.

first. Then, if possible, tuning was changed to improve the con- 570

trol cost without degrading the regulation error. All the algo- 571

rithms accounting for the dynamics of the system work with 572

a control sampling time of 1 s, trying to compensate for the 573

instantaneous variations of the pressure generated by demand 574

and source pressure variations. The percentage of displacement 575

instants is therefore always 100%. All these algorithms outper- 576

form the PI on ξ algorithm in term of regulation error. Note that 577

PI on ξ regulation performance suffers more from demand off- 578

set variations, while the other algorithms provide more constant 579

results. The ILQG − S F stands out, providing the best regula- 580

tion error, with very little variations due to the demand offset. 581

FPI and ILQG follow with similar performance. The PI algo- 582

rithm could not properly rejects pressure wave noise and could 583

only be applied with a reduced closed-loop bandwidth, thus is 584

the less performing algorithm of the family. As expected, the 585

cost of control grows with better regulation performances: the 586

control valve has to move more when trying to compensate for 587

faster disturbances. The new algorithms perform well also in 588

the rejection of a demand step variation, with satisfying settling 589

times and no or very little oscillations in the response, as dis- 590

cussed in § 6 (fire hydrant opening simulations). 591

The results for Case Study B are summarised in Tables 11 592

and 12. Recall that a single tuning of the control algorithm was 593

performed to cope with two different demand trends. Consider- 594

ations about the percentage of displacement instants still hold. 595

Note that a displacement instants of 98% is obtained with de- 596

mand profile A because of saturation of the actuator (see Figure 597

22 as example). Again, all the new algorithms outperform the 598

P on ξ benchmark. The best regulation performance is deliv- 599

ered by the PI algorithm. The power of pressure waves, which 600
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were responsible for its bad performance in Case Study A, is601

now distributed over many harmonics. The PI could then be602

used with larger closed-loop bandwidths. Still, the cost of reg-603

ulation is quite high when compared to ILQG algorithm, which604

provides almost the same regulation performance with a signif-605

icant reduction of control cost. Note that the results achieved606

with the ILQG − S F algorithm are not reported because do not607

improve the one achieved without the shaping functions. The608

FPI algorithm instead further reduces the control cost, at the609

price of slightly worse regulation error.610

8. Conclusion611

Several model based control techniques for pressure regula-612

tion have been successfully implemented and tested with two613

different WDN case studies. A detailed numerical model is614

used for WDN simulations. The presented algorithms take into615

account the dynamic behaviour of the WDN around the nomi-616

nal working point by means of a linear model, which is derived617

from simulations. All control algorithms improve the state of618

the art in terms of regulation error in presence of pulsed nodal619

demand. On average, the reduction in the regulation error adds620

up to about 40%. Pressure is quickly regulated to the setpoint621

even in presence of demand step variations. Note that these622

algorithms require very low computational power and can be623

easily implemented on low power devices. Their application in624

the field is viable in all the cases where the increase in control625

cost, which may cause the more rapid wearing of the control626

valve, is not a limiting factor. A requirement for the applica-627

tion of these algorithms operating with a sampling time of 1628

s is the possibility to transfer continuously the pressure head629

signal from the remote note to the control valve site. This is630

easy in new WDNs, where wiring is already present alongside631

pipes. In old WDNs, where the absence of wiring alongside632

pipes makes wireless communication necessary, the use of con-633

trol algorithms operating with longer sampling times may be634

preferable. The study of the presented algorithms with longer635

settling times is left as future work.636
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