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Abstract

In recent years, the development of CFD simulations has increased the knowledge in fluid-
structure interaction problems. This trend has been particularly important for Floating Offshore
Wind Turbines (FOWTs) and sailing boats. However, especially for these sectors, in which two
different fluids are involved, the reliability of CFD prediction tools requires further experimental
validations. To this end, as a complementary approach with respect to ocean wave basins, there
is the need for wind tunnel aero-elastic dynamic tests.

This paper presents the customization of a 6-Degrees-of-Freedom (DoF) motion-simulator
device for Hardware-in-the-Loop (HIL) wind tunnel tests on floating scale models. Each step
of the machine design-loop is motivated and described: the kinetostatic synthesis is obtained
through a multi-objective optimization using a genetic algorithm, the inverse dynamic proper-
ties are mapped on the workspace, and finally the drive system is mechanically sized using the
so called α-β theory. The emphasis is placed on the mechatronic design methodology, so that
different mechanisms and requirements may be considered.

Keywords: Mechatronic design-loop, Kinetostatic synthesis, Multi-objective optimization,
Genetic algorithms, PKMs, Hexaglide, HexaFloat.

1. INTRODUCTION

For the experimental simulation of the dynamic working conditions of hydro-aero-elastic
structures, a new testing capability was developed at the Politecnico di Milano wind tunnel
(CIRIVE) for its 14m×4m low-speed test section, represented in Fig. 1, where the airflow re-
produces civil-environmental conditions. To this end, a 6-DoF robotic device with parallel kine-
matics, called HexaFloat, was proposed as successor to the older 2-DoF system, presented by
Bayati et al. in [1]. In particular, there is the need to emulate the sea water under scale models of
Floating Offshore Wind Turbines (FOWTs) and sailing boats, during hardware-in-the-loop (HIL)
dynamic tests. To do this, the force and moment components, exchanged between the models and
the positioning device, will be measured through a 6-axis balance. Then, with this measure, the
hydrodynamic problem is solved in real-time to provide the reference motion for the actuators.

The application context for FOWTs and the sector motivations are presented by Bayati et
al. in [2]. In this field, there is the need to deeply investigate the control issues in connection
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Fig. 1: Politecnico di Milano low-speed wind tunnel (CIRIVE): (1) aeronautical test section,
speed = 55 m/s - dimensions = 4m×4m; (2) civil-environmental test section, speed = 14 m/s -

dimensions = 14m×4m.

Fig. 2: Desired workspace (WSd).

Max. zero-peak amplitudes and max. frequencies
Wind turbine Sail-boat Bridge

f max [Hz] 0.7 1.5 3.0
Ax [m] -//wind 0.50 - 0.01
Ay [m] - ⊥ wind 0.30 - 0.01
Az [m] - vertical 0.25 - 0.01
Aα [deg] - roll 15◦ 5◦ 3◦

Aβ [deg] - pitch 15◦ 10◦ 3◦

Aγ [deg] - yaw 15◦ 10◦ 3◦

Tab. 1: Desired sinusoidal movements.

with different mooring systems, to get significant improvements in the efficiency of the energy
production. Only in this way, the bigger costs necessary to install and manage floating deep-
water wind farms in the large-offshore can be justified with respect to not-floating and near-to-
the-coast plants: shorter payback times are fundamentals. Solving this issues in the next years
will transform the promising sector of FOWTs in one important reality of the energy production
world.

The design process of a machine starts always from a given set of requirements and itera-
tively returns to them until the matching between the desired performances and the actual ones
is considered satisfactory. When this process is conducted with a mechatronic approach it means
that mechanics and electronics issues are considered at same time in a multidisciplinary and in-
tegrated way, as described by Giberti et al. in [3] using as a test case the mechatronic design of a
2-DoF-5R PKM.

The preliminary specifications for the HexaFloat are showed in Tab. 1: the robot is required
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to position its tool center point (TCP) and to orient its end-effector within the six-dimensional
desired workspace (WSd) showed in Fig. 2. Also maximum motion frequencies are given. In
addition, it is necessary to stay low with the TCP in the vertical direction because it is not possible
to place the robot outside of the wind tunnel test section, which has a limited height of 4 m: the
more the workspace is low, the more the usable height of the test section is wide, allowing a
convenient geometric scaling of the aerodynamic models. The usable zone extends from the so-
called flat-ground, under which all the instrumentation and also the robot will be hidden, to an
height close to the ceiling, but far enough away from it, to not encounter the ceiling boundary
layer. Finally, it is worth noting that HIL dynamic tests on FOWTs and sailing boats represents a
new field of research, without a consolidated literature. This means that the previously described
requirements may significantly change, especially after a first experimental phase. Therefore the
design process and the machine itself had to be flexible and reconfigurable, to possibly achieve a
different desired workspace.

All this requirements led us toward the field of parallel kinematic machines (PKMs), be-
cause of their potential advantageous features. PKMs often occupy a complementary position
with respect to serial robots, in the sense of higher loading capabilities, achievable velocities
and accelerations, positioning accuracy and components modularity. However, these kind of
robots have been always devoted to specific tasks, such as flight and driving motion simula-
tors, micro positioners and pointing systems, without a widespread diffusion, especially in the
industrial sector. This is due to a more complicated and less well-established design phase in
connection with some critical aspects, which can be summarized as follow: the workspace is
little with respect to the overall size of the machine; big end-effector linear displacements are
often in contrast with big end-effector rotations (e.g. linear delta vs. parallel wrists); the usable
workspace is limited by singular poses and interference problems, especially the link-to-link risk
of collision; the anisotropic behaviour determines low overall dexterity; the passive joints are
key elements in determining the boundary of the workspace because of their limited mobility
ranges. All these disadvantageous features makes PKMs poorly flexible to task modifications, so
that they are rarely available on the market as standard ready-to-use solutions and require a deep
customization phase (e.g. PKMs as machine tools [4]). Therefore, there is the need for design
methodologies that can overcome long times, uncertain results and high development costs.

This paper presents the steps of the HexaFloat design-loop, whose flow diagram representa-
tion is showed in Fig. 3. The 6-PUS architecture is chosen and deeply investigated. Doing this,
we traced a possible way to make effective the PKMs’ advantages, while overcoming their dis-
advantages, with the aim to best meet the given requirements. The next Sections are organized as
follow. Section 2 deals with the Hexaglide kinematic architecture: the motivations of its choice,
the solution of the inverse kinematic problem, the workspace computation, and the geometric
parametrization. Section 3 presents the kinematic and kinetostatic synthesis: a multi-objective
optimization approach is adopted to determine the value of the geometric dimensions, two cost
functions are defined with a novel strategy [5], making use of thresholds, and their optimality
is sought in the sense of Pareto, using a genetic algorithm provided by Matlab. Then, the cones
of mobility of the joints are centered on the actual poses. Section 4 presents the inverse dy-
namic analysis: the condition of heavier usage of the robot are defined in terms of masses and
task-space movements, the forces to realize the given motion laws are obtained with a Simulink
model. Finally, in Section 5 these forces allow to compare different Pareto-optimal solutions and
to mechanically size the drive system [6].
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Fig. 3: Steps of the machine design-loop.

2. ARCHITECTURE

Because of their non-linear transmission of movements and forces from joint- to task-space,
the performances achieved by parallel machines are difficult to standardize, so that, pretending
to do universal design choices that uniquely relates the given requirements to a specific kine-
matic topology is currently hazardous. In fact, the same kinematic topology could provide very
good or very bad performances, depending on its geometric dimensions. Therefore, a definitive
comparison between different architectures, without a deeply investigation of each of them, it
is at least difficult if not impossible. This is clearly highlighted by Merlet in [7, chap. 11] or
by Weck and Staimer in [4], where they stated that a parallel machine with a poor topology but
optimally designed with respect to its geometric dimensions may perform better than a parallel
machine with appropriate topology but poorly designed. They report the example of a classical
Gough-Stewart platform: changing the radius of the platform by 10% may modify the worst-case
stiffness by 700%.

Among the PKMs that can provide 6-DoF, the focus has been placed on the Hexaglide, which
is also reported as 6-PUS kinematic architecture with parallel linear guideways. Its linkages
consist of six closed-loop kinematic chains which connect the fixed base to the mobile platform
with the same sequence of joints: actuated Prism (P), Universal (U) and Spherical (S). The links
have fixed length, while the actuation takes place through the linear guideways, which are not
necessarily coplanar but lie on parallel planes.

This kinematic solution was developed in the mid ’90s at ETH of Zürich to built a high-speed
milling machine tool [8, 9, 10]. Later, other researchers studied the Hexaglide: Bonev in [11, 12]
presents a geometric method to compute the workspace (vertex-space). Finally, an important
application of the Hexaglide architecture is the Model Positioning Mechanism (MPM), which
has been used since 2005 to simulate air-planes manoeuvres in the NWB wind tunnel located in
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Braunshweig (Germany) [13, 14].

2.1. Topology choice motivations

Looking at the requirements, the Hexaglide kinematic topology has been chosen because:

1. its workspace center can be very close to its fixed base. This is not true for other hexapod
robots such as the well-known Gough-Stewart platform, whose TCP is not able to occupy
positions so much close to the base with a workspace of the same extension. Furthermore,
also the parking position can be very low in the vertical direction, so that the robot can be
completely hidden under the flat-ground when not used;

2. its workspace has a predominant direction. This direction is the same of the guideways and
can coincide with the direction of the wind, which is the most demanding one in terms of
the required TCP motion amplitudes;

3. its actuation is completely left to the ground. This allows a favourable ratio between the
mobile mass of the robot and the payload mass, so that high velocities and accelerations can
be achieved. Furthermore, interference problems between the links are reduced because of
the minimum size of their cross-sections, contrary to the Gough-Stewart platform, in which
the links are the actuators.

2.2. Inverse kinematics

Solving the inverse kinematics means to determine the relation between a given pose of the
robot in the task-space and the actuated variables in the joint-space. In our case, by one hand
we have the set of the TCP position pTCP = {x, y, z}TCP and platform orientation Θ = {α, β, γ}, on
the other hand, we have the displacements qi of the sliders along their rails, which are collected
in q = {q1, ...q6}. This relation can be obtained writing one vector loop equation for each of the
six independent kinematic chains. Using the reference frames and the quantities shown in Fig. 4,
without involving the passive joint variables, the inverse kinematic solution can be expressed as:

qi = di,x + hi

√
l2i − d2

i,y − d2
i,z (1)

where di = pTCP + [R(Θ)]b′i − si, and hi = +1 or hi = −1, depending on the assembly. [R(Θ)]
is the rotation matrix that leads from the mobile reference frame TCP-x′y′z′ to the fixed one
O-xyz. After fixing the assembly vector h = {h1, ...h6} and the robot dimensions li, si, and b′i ,
the solution of the inverse kinematics is unique. Therefore, a given pose X = {pTCP;Θ} is related
to only one specific set of displacements q. It is noticed that the mobile platform orientation Θ
is defined using the nautical angles of roll α, pitch β, and yaw γ, in the XYZ Euler sequence, to
allow the best transposition of the given requirements.

2.3. Velocity analysis and kinetostatics

The velocities are mapped from task-space into the joint-space using the Inverse Jacobian
matrix as follows: q̇ = [J]−1W, where W = {ṗTCP;ω} collects the linear and angular velocities of
the mobile platform. The analytical expression of [J]−1 is easily obtained by the time derivative
of the kinematic vector loop equations and can be written as:

[J]−1 = [Jq]−1[JGS ]−1 = diag(1/ni,x)
[
n̂T

i (bi × n̂i)T
]

(2)
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Fig. 4: Diagram of the i-th closed-loop kinematic chain.

in which n̂i = {ni,x, ni,y, ni,z} is the unit vector which represents the direction of the i-th link and
two contributions can be recognized: [Jq]−1, which collects the cosine of the angles formed by
each link with its respective rail, and [JGS ]−1, which has the same expression of the Gough-
Stewart platform Inverse Jacobian.

Then, to solve the kinetostatic problem, the (Direct) Jacobian matrix [J] is computed by
numerical inversion of [J]−1. The force and moment components exerted on the mobile platform
are mapped into the thrust actuation forces on the rails as follows: τrails = [J]T fTCP. Also in this
case, two contributions can be recognized:

τrails = [Jq]T [JGS ]T fTCP = [Jq]Tτlinks = diag(ni,x)τlinks (3)

Therefore, [JGS ]T and [Jq]T assume the meaning of generalized transmission ratios, leading
from the TCP to the links, and then, from the links to the rails. As shown in Fig. 5, every link is
connected to the rest of the robot with a spherical and a universal joint. The link direction passes
through the centers Ui and S i of the joints. The spherical joint can’t transmit moments but only
a force and this force, instant by instant, can be decomposed into three orthogonal components
with respect to the reference frame of the universal joint Ui-xUi yUi zUi . The u-joint can’t transmit
moments along the axes of its cross, so that the following equations can be written:Mx,Ui = Fz,Ui∆yUi − Fy,Ui∆zUi = 0

My,Ui = Fx,Ui∆zUi − Fz,Ui∆xUi = 0
(4)

which lead to the following relation between the force components:

Fx,Ui

∆xUi

=
Fy,Ui

∆yU
=

Fz,Ui

∆zUi

(5)

stating that the static forces supported by the links are always axially directed. Consequently, no
torque is transmitted by the u-joints: Mz,Ui = 0. This is really true if the weight of the links can
be neglected, as in the case of the Hexaglide. Moreover, the forces along the links are always
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Fig. 5: Universal-Spherical i-th joined link.

larger than the forces along the rails. In fact, they are related by the direction cosine ni,x, that is
always smaller than the unit.

2.4. Workspace
The workspace of interest is the total orientation workspace (total oWS), which is defined as

the set of all the possible locations of the TCP which can be reached with any platform orientation
within a given range RΘ = [Θmin,Θmax]. To evaluate the total oWS, RΘ is discretized in a grid of
N orientations αβγ-grid and the boundary of a constant orientation workspace (constant oWS) is
determined for each node of the grid. Finally, the N workspaces are intersected by each other.

Fig. 6: Symmetry of the total orientation workspace (total oWS): 3D vs. 2D.

Because of the rails arrangement on parallel planes, the x-motion of the TCP is decoupled
from the others, resulting in six equal displacements qi. Considering this and the uniqueness of
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the inverse kinematic solution, it follows that the external boundary of the workspace and all the
kinetostatic and dynamic properties can be evaluated over a single yz-plane, as shown in Fig. 6.
By this way, the 3D workspace is simply obtained translating its two-dimensional evaluation
along the rails direction, until one of the sliders reaches the respective rail limit.

Fig. 7: Conical mobility ranges of the joints.

To determine the boundary of each constant oWS, the yz-plane is probed with a discretiza-
tion approach, exploring the (y, z) points through a polar coordinate system and checking the
following constraints for each i-th kinematic chain:

• ∆i = l2i −d2
i,y−d2

i,z > 0. If ∆i is negative the length of the i-th link is not enough to reach the
required point. When ∆i = 0 the link is perpendicular to its rail, determining a first-type
singularity as defined in [7]: there are directions along which the mobile platform looses
its mobility and the robot can ideally support near-to-infinity forces, thanks to the reactions
given by the guideways;

• θAi ≤ θ̄tilt,Ai and θBi ≤ θ̄tilt,Bi . The angle θS i between the actual direction of the link n̂i

and the joint axis ĵS i must be less than the joint tilt angle θ̄tilt,S i . All the mobility ranges
of the joints are modelled as cones. They are fixed to the sliders or to the platform, as
shown in Fig. 7. The vertexes of the cones, their axes of symmetry and half-apertures
are respectively the joint centers, their axes of symmetry and their tilt angles. This is not
really true for the universal joints, but the pyramidal shape of their mobility ranges can be
well-approximated with the inscribed cone;

• q̄i,min ≤ qi ≤ q̄i,max. The sliders displacements have to respect the rails limits. However,
this constraint is not considered in the synthesis phase since one of the objectives is to
obtain the minimum longitudinal size of the robot, so that the rail limits are not known a
priori.

2.5. Parametrization
To parametrize a machine means to choose a set of independent parameters whose values

identify uniquely its geometry. In this phase, structural geometric constraints can be formerly
considered, as for example dimensions equalities. Furthermore, to identify the same geometry,
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Fig. 8: Architectures classified by symmetry and height of rails (top view).

different sets of parameters could be chosen, but some choices are more appropriate than others
to assimilate the given requirements.

In our case, the aim of the parametrization is to ensure a symmetrical total oWS with respect
to the longitudinal-vertical xz-plane, in the 3D case, or simply to the z-axis, with the 2D simpli-
fication. To do this, the machine must have a symmetric structure. In particular, when the TCP
belongs to the centerline plane (yTCP = 0) and the platform has null orientation, the links and their
respective joints have to obey in pairs to one of the two following constraints: (type 1) symmetry
with respect to the xz-plane, or (type 2) central symmetry with respect to z-axis. As shown in the
first row of Fig. 8 and summarized in Tab. 2, the parametrization leads to five distinct families
associated with a different assembly vector h. Since the joints are modelled with conical ranges

Family Symmetry type 1 Symmetry type 2 Assembly vector

xz-plane z-axis h = {h1, h2, h3, h4, h5, h6}

Fam. 1 3 pairs L/J - {−1,+1,−1,−1,+1,−1}
Fam. 2 2 pairs L/J (opposite sides) 1 pair L/J {−1,+1,−1,−1,+1,+1}
Fam. 3 2 pairs L/J (same side) 1 pair L/J {−1,−1,−1,−1,−1,+1}
Fam. 4 1 pairs L/J 2 pairs L/J {−1,−1,−1,−1,+1,+1}
Fam. 5 - 3 pairs L/J {−1,−1,−1,+1,+1,+1}

L = link, J = joints

Tab. 2: Architectural families determined by type of symmetry.

of fixed apertures, they are completely determined by their centers and axes of symmetry. Two
types of parametrization are used to describe their position S i and their orientation ĵS i . They
differ in the existence or not of the so-called joints home pose (JHP), which is defined as the
pose of the robot in which the axes directions of all the joints coincide with the directions of
the links. Considering the platform in null orientation and the TCP in (x, y, z) = (0, 0, zJHP), the
JHP is completely determined by its height zJHP, which is not forced to coincide with the height
zWSd of the desired workspace center. zWSd is itself an additional parameter whose range is limited
around the desired height of the flat-ground. Together with zJHP and zWSd, the parameters shown in
Fig. 9 constitute the set of 19 parameters to be synthesized in the case of families with the JHP.
Without the JHP, for each pair of symmetrical joints it is necessary to describe the direction of
one of their axes with two angular parameters, so that, since the pairs of joints are six, the total
number of parameters is given by: 19 − 1(zJHP) + 2 × 6 = 30. To limit the computation time,
these families are not used in the synthesis phase, but to integrate the joint centering and the
constructive modifications into the kinematic model.
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Fig. 9: Geometric parameters common to both parametrization types, with or without JHP.

Finally, it is worth nothing that the non-coplanarity arrangement of the rails helps to decrease
the longitudinal size of the robot. This option costs two parameters, namely the heights of two
pairs of rails, while the height of the third pair of rails is set to zero. Keeping the parameters
independency, it is considered more convenient to optimize zWSd, but this choice has determined
an additional division of the five families previously introduced, bringing them to a total of nine,
different from each other not only for their symmetry type, but also for the pair of rails with zero
height. They are shown in the second row of Fig. 8.

3. SYNTHESIS

Performing the synthesis of a machine means determining its dimensions (geometric param-
eters) to achieve the best matching with the requirements. Very often, in particular for a robot,
the task is not predetermined and defining a fixed operating cycle is not possible. Therefore, only
objectives of kinematic and kinetostatic nature can be considered because of their independence
from inertias and motions. As described by Merlet in [7], there are different approaches to the
synthesis problem. In particular, he supports the use of interval analysis to check imperative con-
strain relations with a true-false approach on increasingly smaller subsets in which the space of
the parameters is progressively divided, obtaining in this way the certified satisfaction of all the
requirements. This method was coined appropriate design [15, 16]. However, interval algebra
properties and operations are not easy to manage and very often it’s not possible to decide a pri-
ori the performance levels which must be imperatively satisfied. For these reasons we preferred
to use a multi-objective optimal design approach, in which the closeness to an ideal optimum
machine, capable to realize perfectly all the requirements, is measured using appropriate cost
functions. This method has been already used in other cases, but with different performance
indexes and optimization strategies. For example, in [17] Koteswara Rao et al. present the
multi-objective optimal dimensional design of a 6-PUS machine with not parallel rails, generally
called Hexaslide. They consider two objectives, averaged on the workspace: the workspace vol-
ume index and the global dexterity index. As motivated in the followings, we preferred to use
objectives not averaged on the workspace and aggregated together, using appropriate thresholds,
to limit their number.
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Fig. 10: Cost functions: from the decision- to the objectives-space.

The multi-objective optimization problems can be written in the following general form:

Min. or max. fm(x), m = 1, 2, ...,M;
subjected to g j(x) ≥ 0, j = 1, 2, ..., J;

hk(x) = 0, k = 1, 2, ...,K;
xi,(lb) ≤ xi ≤ xi,(ub), i = 1, 2, ..., n.

 (6)

where fm is one of the M cost functions which map the parameters space (or decision space) into
the objectives space (or search space) as shown in Fig. 10, x = {x1, ...xn} is the generic solution
point which collects the n parameters to be optimized, g j and hk are the constrain relations given
on the parameters, xi,(lb) and xi,(ub) are the lower and the upper bounds of variability for the i-
th parameter xi. The satisfaction of all the constraints determines the boundary of the feasible
decision space within the parameters space.

With the optimum of all the objectives in the versus of the minimum values, it is said that the
solution x(1) dominates x(2) if:

1. fm(x(1)) ≤ fm(x(2)) ∀m = 1, 2, ...,M;
2. ∃ m̄ such that fm̄(x(1)) < fm̄(x(2));

which means that the solution x(1) is no worse than x(2) in all the objectives and is strictly better
than x(2) in at least one objective. If x(1) doesn’t dominate x(2) and x(2) doesn’t dominate x(1),
they are mutually non-dominant. In multi-objective optimization problems there isn’t only one
optimal solution but a set of optimal points x(i) which are mutually non-dominant and whose op-
timality with respect to the M objectives is in the sense of Pareto. These optimal points form the
so-called Pareto front (or optimal Pareto set), which lie in the left-bottom corner of the objective
space, if the optimality of all the objectives has to be searched in the versus of their minimum
values. For a given finite set of feasible solutions, x(i) belongs to the local Pareto front if it is
not dominated by any other solution. When the set of solutions coincide with the entire feasible
search space, we can find the global Pareto front.
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3.1. Objectives definitions

The objectives taken into account in the synthesis phase are: (1) the coverage of the desired
workspace, (2) the kinetostatic multiplication of the forces from the TCP to links, (3) the lon-
gitudinal size determined by the operating stroke of the sliders, (4) the link-to-link interference,
and (5) the link-to-rail interference.

Coverage of the desired workspace
Because the optimality is searched in the direction of the minimum values, what is actually

considered in the cost function is the not-covered area Anc, which is the area of the WSd not-
covered by the actual constant oWS. The covered area outside the WSd is not taken into account.
This evaluation is performed on the generic yz-plane without any constrain on the extension of
the rails, being itself an objective of the optimization.

After fixing the orientation Θ, the edge of the constant oWS is determined. Then, Anc is
computed with the following boolean operation:

Anc(Θ) = WSd − [WSd ∩ oWS(Θ)] (7)

which can be implemented in Matlab using polybool.m and polyarea.m. Anc(Θ) is determined
for each orientation of the αβγ-grid.

Static forces multiplication
To evaluate the kinetostatic properties we consider a grid of equally spaced points yz-grid.

After fixing the orientation Θ, the points Pin of the yz-grid which lie within the region WSd ∩
oWS(Θ) are identified. This boolean operation can be performed in Matlab with inpolygon.m.

For each of these points Pin, the maximum multiplication of the static forces is computed by
applying on the TCP all the possible combinations of unit forces and torques, in all directions,
and evaluating the forces along the links, to limit not only the actuation forces, but also the
reactions supported by the rails. We don’t consider relative weights between the different force
and torque components, because no information is available about typical loading modalities that
may justify such a choice.

For a specific pose of the robot X = {Pin; Θ̄}, the maximum forces multiplication for all the
links corresponds to the infinity norm of the Transpose Jacobian matrix [JGS ]T evaluated in that
pose, that is the generalized transmission ratio between the TCP and the links:

τmax(Pin,Θ) =
∥∥∥[JGS ]T

Pin ,Θ

∥∥∥
∞

(8)

whose maximal value, among all the explored poses, must be lower than an acceptable threshold:

τMAX = max
Pin ,Θ

(τmax) ≤ τ̄MAX (9)

The condition in Eq. 9 has led to a new definition of non-covered working area:

A′nc(Θ) = Anc(Θ) +
∑

Pin

∆A · k f orce (10)

k f orce = 0, if τmax(Pin,Θ) ≤ τ̄MAX

k f orce = 1, otherwise
(11)
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where ∆A is the area which pertains to the point Pin. Computing the force multiplication in
this way corresponds to use a constant characteristic length Lc equal to 1 m. The meaning of
Lc and one of its possible definitions are discussed by Legnani et al. in [18, 19, 20]. The
characteristic length can be used to normalize the Jacobian matrix. In fact, when linear degrees
of freedom are mixed together with rotational degrees of freedom, the Jacobian matrix terms are
not homogeneous with respect to their units of measurement. We have discarded the idea to build
an average index of static forces because a good average could hide unwanted peaks associated
with near-to-singularity poses.

Finally, it is worth noting that kinetostatic indices, used for PKMs’ synthesis, commonly map
the joint space into the task space. However, we considered more effective to do the kinetostatic
mapping in the opposite direction, because we want to limit the actuation and reaction forces
on the guideways. This also allows to consider in the synthesis phase the distance of the actual
poses from the so-called second type singular configurations, as defined by Merlet in [7]. In these
poses the mobile platform gains lability and the robot can’t support loads along some particular
directions even with near-to-infinity actuation forces. It is important to consider this aspect for
the Hexaglide, because its capacity to stay low with the TCP is paid in terms of bigger actuation
forces. Contrary to the case of second type singularities, the location of the first type singular
configurations is known a priori. They are the poses in which the mobile platform loses its
mobility in some directions and they are located on the border of the workspace, when at least
one of the links becomes perpendicular to its rail. However, very often it is firstly achieved the
limitation on the tilt angle of the joints.

Links and rails interference
We have interference between the links, that are assumed to be rectilinear, when at least

two of them are too close. Attention must be paid to the links crossover because it could even
happen moving the platform between two poses without interference problems when observed
individually. To decrease the risks of collision, the link-to-link and the link-to-rail axial distances
must always be above fixed thresholds: d̄ and r̄.

To take account of interference, the definition of the not-covered working area is further
integrated:

A′′nc(Θ) = Anc(Θ) +
∑
Pin

∆A · k (12)

k = 0, if k f orce = 0 and kcrash = 0
k = 1, otherwise

(13)

kcrash = 0, if di j ≥ d̄ and ri j ≥ r̄ ∀ i, j with i , j
kcrash = 1, otherwise

(14)

so that, to be considered as belonging to the working area, the point of the yz-grid must be
achieved, not only with a static forces multiplication below τ̄MAX, but also with a configuration
that allow a minimum link-to-link and minimum link-to-rail axial distances respectively bigger
than d̄ and r̄, both determined a priori as acceptable.

In order to not complicate the construction phase and to not modify the axial loading mode,
the links shape is kept rectilinear. Therefore, the distance between a couple of links is calculated
as the minimum distance between two segments in the space, for a sufficiently dense yz-grid to
not lose crossings.
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Longitudinal size
The longitudinal size of the robot is defined as the sum of the maximum positive and maxi-

mum negative sliders excursions necessary to reach every pose of the total oWS. It is calculated
on the generic yz-plane as:

sizex = max
(Pin ,Θ),i

(qi) − min
(Pin ,Θ),i

(qi) (15)

It is noticed that sizex is independent from the x-dimension of the WSd: because of the paral-
lelism of the rails, the total longitudinal size is simply obtained by adding Lx,WSd.

3.2. Optimization method

To find the machine that best meets the requirements, a multi-objective optimization is carried
out for each architectural family, in their version with the JHP. The multi-objective optimality is
in the sense of Pareto, and therefore it is conceptually different from a (single-objective) min-
imization. In fact, each point on the so-called Pareto front gives a different trade-off between
the objectives, allowing the designers to choose the best compromise solution using also other
criteria (i.e. dynamical performances, constructive constraints) not-already considered in the
synthesis phase, to not make it too complex.

Two cost functions are used:

• objective 1: not-covered area (extended definition)

ob1 =

√∑
Θ

A′′nc(Θ)2 (16)

• objective 2: longitudinal size
ob2 = sizex (17)

In the first one, three objectives are aggregated: (1) the working area not covered because of
kinematic constrains; (2) the respect of the threshold for the maximum force multiplication; (3)
the respect of the minimum link-to-link and link-to-rail distances. This aggregation approach
using thresholds, it is necessary to limit the computation time.

The cost functions map the space of the 19 parameters to be optimized, also called the deci-
sion space, into the space of the objectives, which is a two dimensional space. The boundary of
the decision space is fixed by setting the lower bound (lb) and the upper bound (ub) for each pa-
rameter. Within the objectives space, at each step, the local Pareto front is identified with respect
to the concept of dominance between feasible solutions. The global Pareto front can be deter-
mined using the genetic algorithm implemented in the Matlab function gamultiobj.m. In general,
the genetic algorithms are adequate for the solution of multi-objective optimal problems because
their approach is based on a population of individuals [21]. Moreover, another advantage of the
genetic algorithms is the possibility to solve non-smooth problems, when the cost functions, as
in our case, don’t have derivability properties, and so gradient-based methods are not suitable.

The genetic algorithms are based on a selection process that mimics biological evolution. In
general, they work by running the following steps:

1. creation of a population with a fixed number of individuals which covers the entire decision
space in a statistically significant way. Each individual represents an evaluation of the set of
parameters to be optimized and the assigned values are the so-called genes of the individual;
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2. cost functions evaluation to give a score to each individual. If the individual is not feasible,
with respect to constraint relations, its score is assigned by a penalty function, that is the
maximum fitness function evaluation among the feasible individuals of the population, plus
a term that measure the constraint violations. This provides the necessary ranking among
individuals for the production of the new generation;

3. computation of the average spread of the individuals over the local Pareto front. The algo-
rithm stops at this point if the weighted average of this index computed on the so-called Ns

stall generations is less than the tolerance;
4. selection of a fixed number of best individuals (elite) which pass unchanged to the next

generation;
5. selection of the parents individuals and production of the children individuals according to

two modality, in addition to the elitist one: (1) crossover, the child is produced by random
combination of the genes of two parents individuals, whose values remain unchanged; (2)
mutation, the child is produced by random mutation of the genes of a single parent individ-
ual. The algorithm resumes with a new iteration from step 2.

As described in the third step, the stopping criterion is based on a tolerance threshold and
takes into account Ns stall generations prior to the current one, whose number is chosen by the
user. Also different stopping criteria can be considered, such as the achievement of a maximum
number of generations or a maximum time limit. The algorithm stops as soon as one of these
conditions is met.

A key feature of genetic algorithms is the preservation of so-called diversity between pa-
rameters in the production of children. It represents the average distance among individuals of
a population, both in the decision- and objective spaces. The maintenance of diversity among
individuals, from generation to generation, is essential because allows the algorithm to search for
the optimum in the wider region as possible.

Another general feature of genetic algorithms is to quickly reach a near-to-optimum solution
but to converge very slowly. Naturally, to gain an advantage from the use of genetic algorithm,
its computation time have to be much less than the time necessary to try systematically all the
possible combinations of (densely discretized) parameters values.

3.3. Joints centering
After the optimization, it is evaluated the gain to overcome the JHP with a centering proce-

dure of the joints mobility ranges on the poses achieved by the robot moving its mobile platform
in the WSd. To do this, we used the families with 30 parameters.

As shown in Fig. 11, if the mobility range is not uniformly saturated, the joint centering leads
to a decrease in the tilt angle necessary to explore all the desired poses. Before we have θ̄max,S i ,
which is saturated in the optimization phase as the maximum tilt angle given by the joint, then
we obtain θ̄c,S i < θ̄max,S i . After the joint centering, if the gain in the tilt angle is significant, we
have three options: (1) achieve the same WSd using joints with lower mobility ranges, more
easily available on the market; (2) increase the extension of the total oWS with the same joints
as before; (3) consider a bigger margin before the collision between the joint parts.

The centering algorithm determines the unit vectors ĵc,S i which substitute that ones given by
the joint home pose definition ĵS i . This algorithm is based on [22], where Barequet and Elbert
solve the problem to find the cone of minimum aperture which includes a set of given 3D unit
vectors. Firstly, exploring all the desired poses, it is determined the set of points achieved by
n̂i on the sphere of unit radius which has its center in the i-th joint center. Their coordinates
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Fig. 11: Before and after the joints centering.

are read in the fixed reference frame with respect to the base, for the Ai centered joints, or with
respect to the mobile platform, for Bi centered joints. The algorithm computes the spherical cap
of minimum radius which include all the points. The axis of symmetry of this cap is ĵc,S i .

4. INVERSE DYNAMICS

The dynamic performances of the machine must be taken into account to prove the effective-
ness of the synthesis phase, which is based only on kinetostatics, but also to compare Pareto-
optimal solutions from different families and to mechanically size the drive system, which is the
final aim of this work. In particular, it is of interest to solve the inverse dynamics of the robot,
which means to compute the forces and torques required to produce a desired motion of the
mobile platform. To this end, a multi-body model with rigid bodies is built in Simulink, using
the blocks of the SimMechanics library. Unlike the kinetostatic case, the dynamic behaviour of
the robot depends not only on the machine geometry, but also on its inertial properties and on
the platform movements. Thus, with the aim to size the drive system, payloads and movements,
which could well represent the most severe operating conditions of the robot for the wind tunnel
applications, are established. Mathematical formulations of the Hexaglide dynamic problem can
be found in [7, 23, 24].

4.1. Simulink model

The Simulink model is shown in Fig. 12. It is easy to recognize the base of the robot, which is
weld-joined to the ground of the model, the six limbs, which connect the base to mobile platform,
and the payload, which is fixed over the platform. The model is parametric, so that it’s possible to
easily simulate different Pareto-optimal geometric solutions coming from the optimization phase.
The following steps are performed: (1) generation of the platform displacements and rotations,
(2) conversion of the platform movements into the six sliders displacements through a function
block, which solves the inverse kinematics of the robot, (3) imposition of the prismatic joints
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Fig. 12: Simulink model divided into functional macro-groups (payload: wind turbine model).
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linear motions, (4) measurement of the force and moment components in every center Ai of the
universal joints which connect the links to the sliders.

It is noted that for PKMs, because of their closed-loop chains, Simulink requires to select the
kinematics analysis mode by setting the machine environment block. Moreover, it is important
to observe that Simulink applies the actuation forces on the joints whose motion is imposed.

4.2. Forces evaluation

Through the ball joints centers Bi arranged on the platform, only axial forces and no moments
can be discharged along the links. Measuring the force components in the opposite side of the
links, that are the centers Ai of the universal joints, and comparing them with the components
of the link unit vector n̂i, it is possible to check that the force vector FAi , with a good approxi-
mation, has always the link direction. The misalignment is negligible because it is caused only
by the contribution of the link proper inertia and weight. For the same reason, the three moment
components are negligible. Thanks to this approximation and to the rectilinear form of the links,
the links loading mode is assumed of pure and uniform tension or compression, so that the force
value is computed using the three components measured in Ai as:

|FAi | =

√
F2

Ai,x
+ F2

Ai,y
+ F2

Ai,z
(18)

The sign of the measured forces depends on the base(B)-follower(F) sequence set in the
Simulink block diagram. In order to determine how to interpret this sign, a simple static test is
performed and it is observed whether the sum

∑
i FAi,z balances the total weight of the robot or

coincides with it. By placing a sign change before the measurement, FAi,x is the driving force
transmitted to the robot through the i-th universal joint, while FAi,y and FAi,z are the reaction
forces given by the i-th rail. Thus, when the force vector has the same versus of n̂i, the link
is under compression (−), while, when they have opposite versus, the link is under tension (+).
Therefore, the axial force along the link can be written as:

Nlink,i = −sign(FAi,x · ni,x) · |FAi | (19)

Finally, we observe that, since the motion of the system is rigidly imposed through the pris-
matic joints without other elements that connect the links to the rails, except the universal joints,
the forces measured in Ai are independent of the drive system inertial properties. They depend
only on the load inertia (links, mobile platform, payload). This observation is helpful because
the contribution of different transmission units, including the mass of the sliders, and of different
motor-reducer groups can be added later, without increasing the number of simulations.

4.3. Load inertial properties

The load inertial properties in this phase are simulated in a simplified manner as shown in
Fig. 13, while the parameters values are reported in Tab. 3. With respect to the payload, four cases
are taken into account: (1) wind turbine, (2) sail-boat, (3) bridge, and (4) high static load. The
links are simulated as rods with length li, while the platform is the parallelepiped of minimum
size containing the TCP and all the centers Bi of platform joints.
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(a) Turbine (b) Sail-boat (c) Bridge

(d) Statics

Fig. 13: Inertias schematisation.

Symbol Units Values Symbol Units Values
mP [kg] 35 mhP [kg] 100
mlink−i [kg] 1.5 mT [kg] 7.0
hT [m] 1.7 mR [kg] 3.0
rR [m] 1.0 Fa [N] 0
Ca [Nm] 0 ωR [rad/s] 0
mH [kg] 4.0 bH [m] 0.15
lH [m] 1.5 mM [kg] 3.0
hM [m] 1.9 mS [kg] 3.0
γrel [deg] 0 mB [kg] 20
bB [m] 0.3 hB [m] 0.1
lB [m] 2.0

Tab. 3: Inertia parameters values.

4.4. Imposed movements
To probe the dynamic behaviour of the robot in a systematic and significant way, the desired

workspace is divided into a grid of poses X0 (TCP position: {x0, y0, z0} and platform orienta-
tion: {α0, β0, γ0}). About each of them, a large amplitude sinusoidal movement is independently
imposed on every of the six coordinates Xi of the mobile platform:

Xi(t) = Xi,0 + AXi sin(2π f̄ · t) (20)

with all the others coordinates set to X0. The frequencies and the amplitudes are the maximum
prescribed by the requirements (see Tab. 1).

5. DRIVE SYSTEM

Different systems may be adopted to move the sliders. In this work two possible solutions
are taken into account and compared to each other: (1) toothed belt and (2) ball screw. Complete
units that implement these two types of solution are commercially available in various sizes.
They are called belt-driven units and ball-screw-driven units. The main advantages of their
adoption stand in their high precision and standardized quality.
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5.1. LTU performance check

During the simulations, the three forces components in every joint center Ai are measured and
the maximum values are saved. These values, together with the known sliders motions, allow the
size selection the of i-th linear transmission unit (LTU), whose performances have to satisfy with
an adequate margin: the maximum slider stroke max(qi(t)) − min(qi(t)) + LWSd,x; the maximum
slider velocity max |q̇i(t)| and acceleration max |q̈i(t)|; the maximum thrust force max |FAi,x|; the
maximum reaction forces max |FAi,y| and max |FAi,z|; the maximum reaction moments max |MAi,x|,
max |MAi,y|, and max |MAi,z|. These moments depend on the arms bx, by and bz, of the forces
applied in Ai with respect to the guideway center of the i-th transmission unit. They will be
evaluated after the construction drawing:

MAi,x = by · FAi,z − bz · FAi,y

MAi,y = bz · FAi,x − bx · FAi,z

MAi,z = bx · FAi,y − by · FAi,x

(21)

5.2. Resistant torque

After selecting the candidate units to transmit the motion from the motors to the sliders, the
total resistant torque is computed on each shaft of connection with the motor-reducer unit. Four
different contributions can be recognize:

• the resistant torque due to the force discharged by the robot along the rail (balanced by the
thrust force FAi,x) and to the force for accelerating the slider mass and possibly the belt:
Tr,ithrust = −GLTU · [FAi,x + (mslider + msb · kunit) · q̈i];

• the resistant idle torque due to the friction within the LTU, which is always opposite to
the slider velocity: Tr,i0 = −Tr,0(|ni|) · sign(q̇i), where ni is the number of revolutions per
minute of the rotating element and Tr,0(|ni|) is a given function;

• the resistant torque due to friction between the slider and the respective rail because of the
vertical force. It is always opposite to the slider velocity: Tr,iµ = −GLTU · µ |FAi,z + (mslider +

msb)g| · sign(q̇i), where µ is the coefficient of friction;

• the resistant torque due to the inertia of the rotating masses of the LTU: Tr,irot = Jrot ·
q̈i

GLTU
.

GLTU is the LTU gear ratio. In the case of ball-screw-driven unit: GLTU = ph/2π, msb = mscrew,
kunit = 0, and Jrot = Jscrew. ph is the pitch of the screw thread and mscrew is the mass of the screw.
In the case of belt-driven unit: GLTU = dpul/2, msb = mbelt, kunit = 1, Jrot = Jpulleys. dpul is the pulley
diameter and mbelt is the mass of the belt.

The total resistant torque is obtained as the sum of the four contributions:

T ∗r,i(t) = Tr,ithrust + Tr,i0 + Tr,iµ + Tr,irot (22)

The shaft on which the torque is computed is the screw itself or the output shaft of one of two
pulleys. With the asterisk in superscript, it is common to indicate that the resistant torque already
includes the inertial contributions. In the following, the subscript i, which distinguishes between
the various actuation axes, is omitted.
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5.3. Motor-reducer choice

Calling Tm the motor torque, the electric motor selection is based on the following checks:

1. the maximum instantaneous torque: max |Tm(t)| < Tm,max;
2. the mean square torque (thermal check): Tm,rms < Tm,nom;
3. the maximum instantaneous angular velocity: max |ωr(t)|/G < ωm,max.

where G = ωr/ωm is the gear ratio provided by the reducer, which is assumed to be ideal, without
inertia and with efficiency equal to 1.

To perform the first two checks it is necessary to express the motor torque in terms of the
resistant one, by writing the power balance referred to the output motor shaft Tm = −G T ∗r +

Jmωr/G, where Jm is the moment of inertia of the motor.
The thermal check, based on the root mean square value of the motor torque, can be written

as:

α > β +

[
T ∗r,rms

(
G
√

Jm

)
− ω̇r,rms

( √
Jm

G

)]2

(23)

where the quantities α and β are introduced, following the theory in [25, 26, 27]. α = T 2
n/Jm is the

so-called accelerating factor. It depends only on the motor and so it characterizes the provided
performances. β = 2

[
ω̇r,rms T ∗r,rms +

(
ω̇r(t) T ∗r (t)

)
average

]
is the so-called load factor. It depends only

by the load and so it characterizes the required performances. Then, the term added to β in the
second member of the Eq. 23 is a mixed term, in which appears the transmission ratio G. As can
be seen, it is always positive and always increases β, so that the required α is surely higher than
β. It is called optimum transmission ratio the value of G for which this mixed term is deleted:
Gopt =

√
Jmω̇r,rms/T ∗r,rms, while, in general, the transmission ratio can vary between a minimum

value and a maximum one:

Gmin,Gmax =
√

Jm

√
α − β + 4 ω̇r,rms T ∗r,rms ±

√
α − β

2 T ∗r,rms
(24)

The third check for selecting the motor concerns with the maximum instantaneous speed
required and can be read in this way: there is an inferior limit for the transmission ratio, under
which the motor is no longer able to generate the required velocity of the load: G > Gmin,ω =

max |ωr(t)|/ωm,max. The maximum angular velocity of the motor ωm,max is often given by the
supply voltage, even before by a mechanical constrain ωm,mech.

Taken into account some catalogues of motors and reducers, after computing βMAX of the robot
on all the movements imposed during the simulations, the sizing method of the motor-reducer
unit prescribes the following steps:

1. computation of α for all the motors available in the catalogue: all those for whom α < βMAX

are discarded;
2. computation of Gmin, Gmax, Gmin,ω: all the motors for whom Gmin,ω > Gmax are discarded;
3. a particular choice is considered feasible if max (Gmin,ω,Gmin) < Ḡ < Gmax, where Ḡ is the

transmission ratio of an available reducer;
4. the maximum available torque is checked to be greater than the required one.
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Fig. 14: Pareto fronts all families except Fam. 5, with τ̄MAX = 20, d̄ = 10cm, and r̄ = 10cm.

6. RESULTS

6.1. Multi-objective optimization

For each architectural family, the optimization process reached the convergence with the
desired tolerance, except for family 5, because its links arrangement always produces individuals
characterized by permanent singularities. Each Pareto-optimal point was analysed and compared
to the other points by mapping the kinetostatic performances on the total oWS. Fig. 14 shows the
Pareto fronts obtained with τ̄MAX = 20, d̄ = 10 cm, and r̄ = 10 cm. These values were chosen with
a trial-and-error approach, proving that with a lower threshold on τMAX or bigger thresholds on d
and r, the Pareto fronts left the most interesting zone in terms of WSd coverage. The same figure,
in light gray color, also shows the Pareto fronts with τ̄MAX = 50, d̄ = 10 cm, and r̄ = 0 cm, which
represent a less restrictive condition. The options of gamultiobj.m were set to: PopSize = 300,
TolFun = 1e−5. The average computation time to obtain one Pareto front was 45 h with Intel i7-
2760QM 2.40 GHz quad-core CPU. This computation was performed using parallel computing,
which allows the 100% CPU usage on multi-core processors.

The best compromise solution was identified as the Pareto point n. 4 belonging to family 1-1
(p.p. 4 Fam. 1-1). Its dimensions, schematics views and 3D total oWS are reported in Fig. 15,
Tab. 4, and Tab. 5. The kinematic and kinetostatic objectives are mapped in Fig. 16, which
shows: the maximum static forces multiplication along the links, Fig. 16(a) and Fig. 16(b); the
link-to-link interference, Fig. 16(c) and Fig. 16(d); the link-to-rail interference, Fig. 16(e) and
Fig. 16(f). To compute the total oWS, two different tilt angles were considered for all the joints:
θ̄max,S i = 40◦, to perform the optimization, and θ̄max,S i = 45◦, as mobility limit.

6.2. Joint centering

In Fig. 17 it is shown the increase of extension in the total oWS because of the joint centering,
using the same tilt angles. As can be seen for this representative case, the effective gain given by
the centering procedure is almost null. Since this is true for all the analysed cases, it means that
the joints are already uniformly saturated with respect to their mobility range, and, therefore,
the home pose was proved to be a good parametrization choice. However, this don’t give us
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(a) 3D total oWS

Total oWS α, β, γ = ±15◦

Joints title angle θ̄max,S i = 45◦

Stroke-1&6 (A0,x) [mm] 2270 (-1377)
Stroke-2&5 (A0,x) [mm] 2060 (8)
Stroke-3&4 (A0,x) [mm] 2247 (-1552)
xy-size [mm] 3620 × 1150

Tab. 4: Stroke and size (p.p. n. 4 Fam. 1-1)

(b) 2D views

Fig. 15: Pareto point n. 4 Fam. 1-1

Parameter Symbol Unit of m. Opt. value Min. Max.
1) links length 1&6 l01 [mm] 1220 500 1600
2) links length 2&5 l02 [mm] 1598 500 1600
3) links length 3&4 l03 [mm] 1338 500 1600
4) rails ∆y 1&6 s01 [mm] 406 100 750
5) rails ∆y 2&5 s02 [mm] 575 100 750
6) rails ∆y 3&4 s03 [mm] 140 100 750
7) half-angle B1Ĉ01B6 β01 [deg] 169.6◦ 10◦ 170◦

8) half-angle B2Ĉ01B5 β02 [deg] 95.1◦ 10◦ 170◦

9) half-angle B3Ĉ01B4 β03 [deg] 146.7◦ 10◦ 170◦

10) radial distance C01B1,6 r01 [mm] 350 50 350
11) radial distance C02B2,5 r02 [mm] 350 50 350
12) radial distance C03B3,4 r03 [mm] 233 50 350
13) vertical distance CC01 t01 [mm] 300 50 300
14) vertical distance CC02 t02 [mm] 51 50 300
15) vertical distance CC03 t03 [mm] 104 50 300
16) desired WS heigth zWSd [mm] 782 700 900
17) home pose heigth zJHP [mm] 813 700 900
18) rails ∆z 1&6 sh,01 [mm] 74 0 200
19) rails ∆z 2&5 sh,01 [mm] 198 0 200

Tab. 5: Geometric parameters: optimized values and ranges (p.p. 4 Fam. 1-1).
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(a) Max. τ with α, β, γ = ±15◦ (b) Max. τ with α, β, γ = 0◦

(c) Min. d (m) with α, β, γ = ±15◦ (d) Min. d (m) with α, β, γ = 0◦

(e) Min. r (m) with α, β, γ = ±15◦ (f) Min. r (m) with α, β, γ = 0◦

Fig. 16: Objectives maps (p.p. 4 Fam. 1-1).
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Fig. 17: Total oWS before and after the joint centering (representative case).

information about the possibility to obtain better solutions without imposing the presence of the
home pose: the JHP families are a subset of those without the JHP, so that an optimization with
30 parameters instead of 19 should provide solutions at least equally good. This is really true
only with an adequate number of individuals, which allows the genetic algorithm to significantly
cover the whole decision space. However, more parameters and more individuals imply a more
than linear increase in the computation time. That’s why the optimization with 30 parameters
wasn’t consider a viable option.

It is worth noting that the joints on the mobile platform are saturated much before than the
joints on the base. Finally, it is noticed that zJHP is always very close to zWSd (see Tab. 5), so that
they might be a single parameter in any future optimization.

6.3. Static and dynamic analysis

The static and dynamic analysis was conducted on several Pareto-optimal individuals, except
on those belonging to family 5, which always have singularity problems because of their partic-
ular linkages arrangement. In Tab. 6 are indicated the computational parameters. In particular,
to minimize the simulation time, the Simulink model was run only for one period T̄ = 1/ f̄ of the
sinusoidal movements of the platform.

For each of the analysed individuals, the velocities, accelerations and forces distributions over
the desired workspace were represented through appropriate maps. By this way, the different
families were easily compared and the individual n. 4, belonging to family 1-1 and obtained
with τ̄MAX = 20, was definitely selected as the best compromise solution. Fig. 18 shows the
distribution maps of the maximum axial forces for the static case, which was proved to be the
worst case among the analysed ones in terms of maximum forces. In this figure three significant
Pareto-optimal individuals are compared: (center) the best one; (left) an individual belonging to
the same family of the best individual, but obtained with a bigger threshold τ̄MAX = 50; (right) an
individual obtained with the same threshold τ̄MAX = 20 of the best individual, but belonging to the
worst family, which is the family 3-2. As can be seen, decreasing the kinetostatic threshold τ̄MAX

in the synthesis phase was proved to be an effective way to decrease the maximum actual static
and dynamic forces. Furthermore, having more architectural families allowed to completely
explore the maximum performances achievable by the HexaFloat kinematic topology, within the
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Robot poses: evaluation grid

Ny → y span: ∆y =
LWSd,y

Ny
17

Nz → z span: ∆z =
LWSd,z

Nz
17

Grid of orientations 27 orientation
Simulink solver: options

Simulation time 1/ f̄ (one period)
Time interval 0.01s
Solver type discrete, fixed-step
“Machine Environment” analisys mode: kinematics

Use of computational (1 individual × 4 cases)
Computation time 6 h
CPU utilization 15 %
RAM utilization 2.30 GB
CPU quad-core 2.40 GHz

Tab. 6: Evaluation grids, Simulink solver options and computational resources.

ranges of the geometric parameters imposed in the optimization phase. Finally, it is noted that,
the axial forces tends always to increase at the bottom of the workspace. This happens because
the lower the TCP position is, the more the links tend to lie horizontal: the robot moves toward
singular configurations and the transmission ratios become unfavourable. This is a characteristic
of the Hexaglide kinematic topology, which is able to reach poses very closed to its fixed base
but at the cost of bigger actuation forces.

6.4. LTUs selection and β maps

The transmission units suitable to realize the linear motions of the sliders were selected in
accordance to the maximal values reported in Tab. 7, where the required performances are com-
pared with the provided ones. Two systems belonging to Thomson-Danaher catalogue [28] were
considered: the screw-driven unit WM80D, and the belt-driven unit WH120. They satisfy with
an adequate margin the most demanding requests. It is noted that for the screw transmission the
maximum available pitch ph = 50 mm is necessary to achieve the required maximum sliders
velocity. Considering that it is twice the screw diameter (d0,screw = 25 mm), this pitch is closed to
the technology limit for screw-ball transmissions.

WM80D WH120 Fam. 1-1
ph = 50 mm ind. 4

vmax [m/s] 2.5 10 2.20
amax [m/s2] 20 40 13.02
FAi ,x (LTU thrust) [N] 5000 5000 2308
FAi ,y (LTU y-reaction) [N] 3000 4980 709
FAi ,z (LTU z-reaction) [N] 3000 9300 764

Tab. 7: LTUs selection: required vs. provided performances.

Then, also the load factor distribution maps was produced. They allowed a further compar-
ison between the families and between the different payloads and movements, but also between
the two types of transmission. In Fig. 19 the maximum βmaps are shown for the most demanding
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Fig. 18: Axial force distributions over the desired workspace, maximum for all the links. Nlink

worst-case: static case with mP = 100 kg.

Fig. 19: Load factor distributions over the desired workspace, maximum for all the actuated
axes. β worst-case: x movement for the wind turbine.
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movement, which was proved to be the motion along x in the case of the wind turbine. In this fig-
ure, three significant Pareto-optimal individuals previously considered are compared again and
analogues considerations can be made. As can be seen, the maximum β is similar for both types
of transmissions, mainly because their inertial contributions are of the same order of magnitude,
as clearly shown in Tab. 8, reducing them to equivalent linear-moving masses. This equivalence
in the use of the selected belt- or screw-driven units, is made possible only because, for the con-
sidered screw-driven unit, a very long pitch is available. It is noted that the inertial contribution
of the linear units is present within two components of the resistant torque: Trthrust and Trrot . In
particular, the second one, which is related to rotating masses, would increase significantly if the
screw pitch decreases, becoming the main contribution to the total resistant torque. This happens
because an increasingly higher angular acceleration of the screw is needed to provide the same
linear acceleration of the slider.

Equivalent linear-moving mass [kg]
Screw-driven unit: WM80D

ph [mm] →
Jscrew

[ph/(2π)]2 + mslider = mWM80D,eq
F1g

max FAi ,x

50 9.2 4.3 13.5 9%
20 57.7 4.3 61.8 43%
10 230.9 4.3 235.2 166%
5 923.8 4.3 928.1 658%

Belt-driven unit: WH120
Jpulleys
(d0/2)2 + mbelt + mslider = mWH120,eq

F1g
max FAi ,x

0.6 1.77 5.50 7.9 6%

Tab. 8: Inertial contributions given by the LTUs, referred to the sliders. F1g is the force to
accelerate mLTU,eq with 1g. max FAi,x = 1384N is the maximum thrust force required to realize an
acceleration q̈i ≈ 1g, in the dynamic case of the wind turbine, for the individual n. 4 family 1-1

τ̄MAX = 20.

6.5. Motor-reducer selection
The motor-reducer selection diagrams are shown in Fig. 20, Fig. 21 and Fig. 22. They were

produced according to the maximum values reported in Tab. 9. The AKM series brushless motors
belonging to Kollmorgen-Danaher catalogue [29] and the ValueTRUE reducers belonging to
Micron-Danaher catalogue [30] were considered. The motors were numbered in ascending order
according to their size and a supply voltage equal to 230 Vac was assumed. Then, Tab. 10 and
Tab. 11 show the first feasible choices of motor-reducer group with respect to the motor size.
They satisfy all the performances checks, even the one on maximum available torque, with an
adequate motor-load inertia ratio 1: Km|l > 0.3.

1In robotics applications, the motor-load inertia ratio Km|l have to be as close as possible to 1 to ensure low acceleration
times and fast control responses (inertia matching). Km|l is computed as:

Km|l =
Jm

Jload,eq
=

Jm

G2
LTU Ḡ2 mload,eq + Jreducer

(25)

in which:

mload,eq = mAi ,eq + mLTU,eq = max
(

FAi (t)
q̈i(t)

)
+ mLTU,eq (26)

mAi ,eq has its maximum value in the case of the wind turbine x movement: 1384N/9.67m/s2 = 143.1kg
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Fig. 20: Load factor β vs. accelerating factor α (AKM Kollmorgen-Danaher motors).
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Fig. 21: Reducer transmission ratio in case of belt-driven unit: required range vs. available Ḡ
(ValueTRUE Micron-Danaher reducers).

WM80D WH120
βMAX [kW/s] 21.3 19.9
T ∗r,rms [Nm] 6.81 52.2
ω̇r,rms [rad/s2] 868 167

Tab. 9: RMS values of the resistant torque and angular acceleration of the load, corresponding
to βMAX detected in the case of the wind turbine x movement.
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Fig. 22: Reducer transmission ratio in case of screw-driven unit: required range vs. available Ḡ
(ValueTRUE Micron-Danaher reducers).

Maximum torque check - belt-driven unit WH120
GLTU =

dpul
2 = 0.041m/rad

Turbine Turbine Statics
y mov. y mov. mP = 100kg

T ∗r [Nm] 91.8 (max) 35.2 170.3
ω̇r [rad/s2] 139.7 348.2 (max) 0

Motor-reducer group: AKM5-3P (n.37) with VT115-010 (Ḡ = 1 : 10)
Jload,eq = 25.5kg·cm2 con Jreducer = 0.90kg·cm2 → Km|l = 0.36

Jm with brake [kg·cm2] 9.3 9.3 −

Tm,maxrequired [Nm] 10.5 6.8 17.0
Tm,maxavailable [Nm] 29.8 29.8 29.8

Tab. 10: Maximum torque check: required vs. available, in the cases of: max resistant torque,
max angular velocity, max static torque.

CONCLUSIONS

This paper presents the task-oriented customization of a 6-DoF parallel robot, designed to
perform HIL dynamic test in the low-speed test section of the Politecnico di Milano wind tunnel.
To satisfy the given requirements, a mechatronic design approach was used. The core of the
work is the kinetostatic synthesis of the machine, obtained through a multi-objective optimization
process, using a genetic algorithm. The emphasis is placed on the developed procedure and its
effectiveness, so that other mechanisms architectures or different requirements may be taken into
account. Further works will include the vibration analysis of the machine in connection with its
positioning task-space error, introducing the flexibility of all the components.
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Maximum torque check - screw-driven unit WM80D
GLTU =

ph
2π = 8.0 · 10−3m/rad
Turbine Turbine Statics
y mov. y mov. mP = 100kg

T ∗r [Nm] 19.9 (max) 9.9 32.8
ω̇r [rad/s2] 726.3 1810 (max) 0

Motor-reducer group: AKM6-4Q (n.51) with “direct drive”
Jload,eq = 97.2kg·cm2 → Km|l = 0.34

Jm con freno [kg·cm2] 32.6 32.6 −

Tm,maxrequired [Nm] 22.3 15.8 32.8
Tm,maxavailable [Nm] 53.2 53.2 53.2

Tab. 11: Maximum torque check: required vs. available, in the cases of: max dynamic resistant
torque, max angular velocity, max static torque.
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