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Abstract (Italiano) 

 
Secondo l’Organizzazione Mondiale della Sanità, circa metà della 

popolazione mondiale vive nelle grandi città del pianeta, e questa 

proporzione è destinata ad aumentare nei prossimi decenni. Questo 

cambiamento demografico, insieme al sempre più rapido progresso 

tecnologico, sta portando a una variazione nella quantità e tipologia 

di fattori ambientali ai quali siamo esposti nel corso della nostra 

vita, nonché a un cambiamento dei nostri comportamenti e dello 

stile di vita. Diversi studi hanno dimostrato che è in corso un 

aumento della prevalenza di diverse malattie respiratorie e 

cardiovascolari nella maggior parte del mondo urbanizzato, e 

alcuni hanno anche ipotizzato che la causa potesse essere 

identificata in questi cambiamenti. Per facilitare lo studio di questi 

fenomeni, stanno rapidamente emergendo nuovi campi di ricerca, 

come per esempio l’esposomica, ovvero lo studio dell’effetto di 

tutti i fattori interni ed esterni a cui siamo esposti che possono 

influenzare la nostra salute. L’esposomica può essere vista come 

parte del più grande ambito della Public Health (salute pubblica), 

la scienza che si occupa della prevenzione delle patologie e del 

miglioramento del benessere basandosi su uno sforzo congiunto di 

società pubbliche e private e singoli individui. 

In questo contesto, negli ultimi anni sono stati sviluppati diversi 

progetti di salute pubblica, basati sull’utilizzo delle tecnologie più 

innovative per il miglioramento delle strategie di prevenzione 

sanitaria. Uno di questi è il progetto PULSE, finanziato dalla 

Commissione Europea nel 2016, con lo scopo di creare un sistema 

collaborativo multi-tecnologico per la prevenzione di asma, diabete 

di tipo 2 e malattie cardiovascolari nelle grandi città. La scelta di 

limitare lo studio alle grandi città non è casuale: le grandi città 

sono ambienti fortemente eterogenei, in cui le differenze 

demografiche, ambientali e socioeconomiche sono spesso 

pronunciate, e i fattori di esposizione possono variare in modo 
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significativo anche tra aree geografiche molto vicine tra loro. Sono 

inoltre diversi gli studi che hanno dimostrato che le disuguaglianze 

sociali, l’inquinamento atmosferico e lo stile di vita movimentato 

delle grandi città portano a un rischio di sviluppare alcune 

patologie, tra cui quelle studiate all’interno di PULSE , più elevato 

rispetto alle aree non urbanizzate. Lo scopo di PULSE è stato 

quindi quello di costruire un insieme di strumenti per favorire la 

comprensione di questi fenomeni e facilitare l’ideazione di 

interventi volti a migliorare la salute e il benessere. A questo 

scopo, i sistemi sviluppati in PULSE includono varie componenti 

tecnologiche che rendono accessibili i dati relativi alla città sia ai 

cittadini che alle autorità che possono prendere decisioni in campo 

sanitario. Un’attenzione particolare è data alla dimensione spaziale, 

in quanto i dati di salute pubblica non possono prescindere dalla 

componente geografica che li caratterizza nello spazio. Nel caso 

degli ambienti urbani, l’elevata variabilità spaziale dei fattori di 

rischio sanitario impone la necessità di ricorrere a un’elevata 

granularità spaziale, ovvero sia la raccolta dei dati che la loro 

analisi devono essere effettuate utilizzando metodi caratterizzati da 

una risoluzione spaziale molto elevata. Questo concetto è alla base 

di PULSE e dell’attività di ricerca presentata all’interno di questa 

tesi, la quale presenta un insieme di strumenti e ricerche svolte nel 

contesto di PULSE, grazie ai dati raccolti e al sistema sviluppato. 

Nel dettaglio, questa tesi presenta la maggior parte del lavoro 

svolto dall’Università di Pavia, manager della parte tecnica del 

progetto PULSE, con la collaborazione della New York Academy 

of Medicine e delle New York University. Dopo una breve 

introduzione e una descrizione del progetto nel suo complesso, 

vengono presentate alcune applicazioni di metodi innovativi ad alta 

risoluzione spaziale, concentrati principalmente su due argomenti: 

lo studio del panorama sanitario e i fattori di esposizione 

nell’ambiente urbano per la creazione di modelli di salute pubblica 

e la creazione di strumenti interattivi di simulazione per favorire lo 

sviluppo di strategie di intervento che possano migliorare la salute 

e il benessere generali. Nel corso del progetto infatti, alcuni metodi 

di machine learning abilitati spazialmente sono stati utilizzati per 

studiare l’andamento delle ospedalizzazioni per asma nella città di 

New York in relazione a un grande numero di fattori demografici, 

ambientali e socioeconomici, e i risultati di questo studio sono stati 

utilizzati per la creazione di modelli predittivi di simulazione, 

includendo al loro interno anche modelli di sistemi dinamici che 

rappresentano il traffico urbano. Inoltre, è stato condotto uno studio 
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basato sull’applicazione di metodi di deep learning in 

combinazione con algoritmi di clustering per raggruppare diverse 

aree urbane in base alla loro struttura caratterizzante e trovare le 

conseguenti relazioni tra struttura urbana e salute della 

popolazione. Un ulteriore studio è stato poi condotto a Pavia, in 

Italia, per determinare l’eventuale effetto del lockdown istituito per 

contenere l’epidemia di Covid-19 sull’inquinamento atmosferico 

della città, utilizzando una fitta rete di sensori sviluppata 

dall’università. I risultati di tutti questi studi evidenziano 

l’importanza dell’utilizzo di un’elevata risoluzione spaziale nello 

sviluppo di modelli descrittivi, predittivi e di simulazione nel 

contesto della salute pubblica nell’ambiente urbano. 
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Abstract (English) 

According to the World Health Organization, about half of the 

world’s population lives in big cities, and this proportion is 

expected to increase significantly in the nest decades. This 

demographic change, together with the fast technological progress, 

is causing an important variation in the set of environmental factors 

we are all exposed to in the course of our lives, and also a 

consequent change in our behaviors and lifestyle. Several studies 

have shown an increase in the prevalence of some respiratory and 

cardiovascular diseases in most of the urbanized world and 

hypothesized that the cause can be found in these changes. New 

fields of study are rising, such as exposomics, i.e. the study of the 

effects of all the external and internal factors we are exposed to and 

that can influence our health and wellbeing, that can be related to 

public health, i.e. the science of preventing health problems and 

improving quality of life through coordinated efforts by public and 

private organizations and single individuals. 

In this contest, several public health projects have been created in 

the last years to exploit new technological advancements to 

improve the prevention of diseases. One example is the PULSE 

project, funded by the EU Commission in the year 2016 with the 

aim of creating a collaborative multi-technological system to 

prevent asthma, type 2 diabetes and cardiovascular diseases in big 

cities, using technology, big data analytics and geostatistics to 

assist both citizens directly and public health policy makers who 

can organize interventions on the urban territory. Big cities are 

very heterogeneous environments in which demographic, 

environmental and socioeconomic differences are often 

pronounced, and exposure factors can change significantly even 

within areas that are relatively close geographically. Several 

studies have demonstrated that social inequalities, high-pace 

lifestyle and air pollution conditions typical of urban environments 

have influenced the public health scenario causing an increase in 
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prevalence of certain diseases, including the ones treated in 

PULSE, more pronounced than in rural areas. For this reason, 

PULSE aims at providing a set of tools to increase awareness and 

ease the creation of prevention and intervention strategies to help 

mitigate health risk in big cities. To this end, the PULSE systems 

feature various technological components that connect both citizens 

and public health policy makers to the city’s data. Particular 

importance is given to the spatial dimension, as public health data 

cannot be properly described and analyzed without taking into 

account the geographic component. In the case of urban 

environments, the high spatial variability of the risk factors 

requires to study the problematic with a high spatial granularity, 

i.e. both the collection of the data and the consequent analyses have 

to be performed with a high spatial resolution. This concept is at 

the basis of PULSE and of the research presented in this 

dissertation, that presents a set of tools and public health studies 

developed thanks to the data gathered in PULSE and its 

architecture. More in detail, this book presents most of the work 

done by the author of this thesis, that took part in several projects 

with his team at the University of Pavia, that has been the technical 

manager of the project, in collaboration with the New York 

Academy of Medicine and the New York University. After an 

introduction and a brief description of the whole project, some 

applications of high-spatial-resolution innovative methods are 

presented, focusing mainly on two paradigms: the study of public 

health phenomena and exposure factors in the urban environment 

for the creation of health models, and the creation of interactive 

and simulation tools to help designing interventions in the city. 

During the course of the project in fact, highly spatial enabled 

methods have been used to determine how asthma hospitalizations 

in New York City could be related to a high number of 

environmental and socioeconomic factors, and the findings of this 

study were used to create predictive simulation tools, including 

also traffic dynamics. Furthermore, deep learning methods were 

used in combination with clustering algorithms to group city areas 

according to their urban landscape and find relations with the 

health status of the inhabitants. An additional study was then 

carried on in Pavia, Italy, using a dense sensor network to 

determine whether and how much the Covid-19 lockdown had an 

impact on air quality in the different areas of the city. The results 

of all these studies, thoroughly described in this thesis, all 
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enlighten the importance of spatial enablement and high spatial 

resolution in urban public health modeling and simulation.  
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Chapter 1 

1 Thesis Overview 

Public Health is a novel field of study that generates from a 

multidisciplinary and complex concept, i.e. the idea that health, 

concepted as a combination of longevity, quality of life, 

prevention, social and psychological wellbeing, is the result of the 

combination of a large number of personal, social and 

environmental factors. Some define “Public Health” as the science 

of preventing diseases and improving quality of life through 

organized efforts that come from society, public and private 

organizations, individuals, politicians etc. [1]–[3]. 

This concept is strictly correlated to the concept of Exposomics, 

that can be defined as the science that studies the effect of all the 

internal and external factors every human being is exposed to 

during his/her entire life [4], [5]. As scientific, medical and 

technological progress advances, scientists have realized how 

human health is the result of a complex mixture of elements, that 

include environmental factors, genetic predispositions, personal 

choices of behavior, specific external factors. The combination of 

all these elements is able to affect our health status both with a 

psychological and physical impact. 

As the 21st century society advances, due to the fast 

technological advancements, new exposure factors are constantly 

been created (e.g. new pollutants, E.M. waves, climatic changes 

etc.) and the socioeconomic equilibrium of the modern society is 

continuously evolving, resulting in new challenges in the public 

health contest. For example, several studies have demonstrated that 

in many parts of the world the prevalence of some multifactorial 
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diseases such as asthma, diabetes, genetic diseases and 

cardiovascular disorders has shown important trend modifications 

in the last years [6]–[8].  

In this contest, new public health multidisciplinary projects are 

being funded and developed in order to study and solve these new 

problematics. The research work described in this thesis is based 

on one of these projects, named PULSE, that was funded by the 

European Commission and has developed new knowledge and a 

new set of tools to improve the public health status in the world’s 

big urban environments, focusing on several topics such as air 

pollution, lifestyle, asthma, type 2 diabetes and cardiovascular 

diseases. The main purpose of this project was the creation of a 

collaborative multi-technological system to reduce and treat the 

risk of asthma, type 2 diabetes and cardiovascular diseases in the 

big cities, involving both citizens and public health authorities in a 

well-studied data exchange that integrates information coming 

from several sources. 

This data exchange, that flows through several technological 

components that will be briefly described in this thesis, starts from 

the citizens, some of which are also patients of either one or more 

than one of the considered diseases, who can anonymously send 

their own data and geographic position and receive feedbacks and 

advice in return, that are generated by the big data and risk models 

integrated in the system. The other main recipients of information 

is represented by the public health authorities, that are connected to 

the system through the so-called Public Health Observatory 

(PHOs), through which they can visualize, analyze and inspect 

general data about the city and take informed decision with the aid 

of specific simulation and analysis tools. 

Data integration is one of the main bases of this project and of 

the work presented in this thesis, that focuses on the creation of 

some specific innovative tools based on Big Data and geostatistical 

analytics to analyze aggregated data, predict public health 

outcomes and organize proper prevention and intervention 

strategies.  

1.1. Big Data for Public Health 

As already stated at the beginning of this chapter, Public Health is 

a highly multidisciplinary field, as human health is concepted as 
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the combination of a high number of factors. As a consequence, to 

study public health it is necessary to solve complex problems that 

involve the integration and analysis of enormous quantities of data 

characterized by high levels of heterogeneity, i.e. coming from 

different sources and diverse in typology, format, dimensional 

scale, temporal unit. Therefore, Big Data analytics are necessary to 

solve these kinds of problems. 

The term Big Data has gradually become more common in the 

last decades, and yet it does not correspond to a universal 

definition. In spite of this, with this term, scientists usually indicate 

datasets that are so vast to make it impossible to visualize and 

analyze them with conventional methods, as they require dedicated 

algorithms and procedures instead [9]. Big Data are usually 

characterized using a set of terms that can be defined as the 4 Vs 

[10], as there are four different terms, all starting with a V, that are 

proper to describe them. These terms are: 

• Volume – this term refers to the high quantity of data 

that must be analyzed and processed. Some datasets 

can contain millions or billions of observations. 

• Velocity – thanks to the new technological 

advancements in this field, large quantities of data are 

collected in short time, often within seconds. 

• Veracity – in order for them to be useful, big data have 

to be representative of a real phenomenon, so it is 

important to avoid or correct errors of various kind as 

much as possible during the whole process, from the 

collection to the analysis. 

• Variety – this word refers to the implicit heterogeneity 

of these data, since they usually come from different 

sources and represent different phenomena. 

When it comes to studying the human body or the human health, 

all these concepts are particularly emphasized, as the human body 

itself is a complex system that interacts with the external world in 

unforeseeable ways and provides enormous quantities of data 

characterized by high variety. Just to give an example, genetics 

alone is able to provide high quantities of data (gene expression of 

more than 25,000 genes, proteomics, metabolic pathways), that 

usually have to be integrated with clinical data, environmental 
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factors, data characterized with a highly variable dimensional 

scale, that goes from the intracellular to the population scale. 

Public Health makes no exception under this point of view, 

since community health is the result of different levels of health, 

starting from the single person, and strictly depends on the 

Exposome, i.e. the combination of all the internal and external 

factors every person is exposed to in a lifetime. 

1.2. Outline of the Thesis 

This thesis reports a portion of the work performed during the 

PULSE project by the University of Pavia, presenting several tools 

and research projects that show how some of the most innovative 

public health and Exposomics concepts and tools have been 

developed inside the project. The specific role of the PhD 

candidate authoring the work has been to take part both to the 

experimental design and the analysis part of all the studies 

presented in this work, specifically the ones regarding asthma risk 

assessment using a combination of environmental and 

sociodemographic factors and the creation of simulation tools, 

which have been almost entirely designed by the author. The other 

projects reported in the thesis have been carried out by the 

technical team of the University of Pavia, with the active 

participation of the PhD candidate both in the design and the 

development of the methodological parts, and also in the evaluation 

and interpretation of the results. 

The next chapter, chapter 2, presents the research background 

of the project, focusing on the motivations that lead to the creation 

of the project itself and of the tools that are presented in the rest of 

this dissertation. Some related projects are presented as well. 

Chapter 3 presents the PULSE project in a brief but complete 

way, showing how it was created and what is the mail architecture 

and data flow from a practical point of view. Some external 

resources that have been useful for the work presented in the 

following chapters are introduced as well. 

Chapter 4 and chapter 5 are both methodological chapters, that 

present the main methods and algorithms that have been used in the 

projects that are described in this work. In particular, chapter 4 

focuses on the spatial analytics that have been fundamental in the 

creation of spatially enabled algorithms that allow to perform 
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proper visualization, analysis and prediction on health in the urban 

environments with a high spatial resolution, whereas chapter 5 

explains the technology used to perform interactive simulations to 

explore possible public health scenarios, reusing the spatial 

analytics previously introduced. 

Following the same idea, the main projects and applications of 

the proposed methodologies are presented in two chapters, i.e. 

chapter 6 and chapter 7. The first one presents the main 

applications of the spatial analytics introduced in chapter 4, 

showing the results of three different studies where spatial 

enablement has been of fundamental importance to create 

innovative ways to address urban public health; the second one 

shows some example of applications of the simulation tools 

presented in chapter 5, showing how they can be used to perform 

predictions on the health status of the citizens integrating 

environmental, demographic and socioeconomic data. 

Finally, chapter 8 contains a few conclusions and possible 

future developments in the research field this dissertation is 

inserted in. 
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Chapter 2 

2 Background and Objectives 

In the first chapter of this thesis, important concepts such as Public 

Health, Exposomics, Big Data have been introduced and their 

connections explained. In particular, it has been explained how, in 

most cases, studying Public Health problems cannot be properly 

done without the use of Big Data methods. 

In this section, the scientific and social background of the 

research reported in this manuscript will be better explained, 

pointing out important elements that lead to the idea of the PULSE 

project and in particular to the necessity to focus on the 

methodologies and studies reported.  

2.1. Health in the Big Cities 

According to the WHO, about 54% of the world’s population is 

currently living in urban environment, and the tendency to 

concentrate in big cities is expected to continue, as in 2030 big 

cities will probably contain the 60% of the global population and 

this percentage is projected to increase up to 66% in 2050 [11]. Big 

urban sites are notoriously heterogeneous environments, where 

social, economic, demographic and environmental contrasts are 

particularly emphasized, since large differences in all these fields 

can occur in relatively small spaces. For this reason, big cities are 

one of the most interesting sets for Public Health studies, as 

citizens are constantly exposed to a dynamic environment, and 

external factors such as air pollution and lifestyle can have an 

important effect on their health and quality of life. Plus, some 
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factors that have been demonstrated to have an important influence 

on human health and life quality are peculiar of big cities, such as 

noise, garbage collection, safety etc. 

In this context, several recent studies have pointed out a change 

in trend of the prevalence of several respiratory and cardiovascular 

diseases in the industrialized world, particularly asthma [12], 

pulmonary infections and allergic rhinitis [13]. These disorders 

appear to be becoming more common in several areas of the 

industrialized world, and this could be partially a consequence of 

the change in exposure factors that the new lifestyle created by the 

expansion of the urban environments. This is another reason why 

urban public health is gradually becoming an important field of 

study for the scientific community, and public health study projects 

on this topic are being created and developed. PULSE, introduced 

in Chapter 1 and better explained in Chapter 3, is one of these 

projects, and focuses mainly on two problems: the increase of 

asthma related to air pollution and the increase of type 2 diabetes 

and cardiovascular diseases related to lifestyle. These diseases, 

although widely known and studied by the medical community, are 

usually treatable but not always curable, therefore prevention is the 

best strategy to contain their effects. To perform a proper 

prevention strategy, it is important to understand in detail which 

elements are decisive in causing the diseases and how do they 

work. This can be done only collecting and analyzing a large 

amount of data to discover the disease patterns in the different 

areas of the city. For this reason, studies that address the 

mechanisms that are leading to an increasing prevalence of asthma, 

type 2 diabetes and cardiovascular diseases in the urban 

environments are not common, as performing data collection at an 

intra-city level is not always easy and could lead to a lack of a 

sufficient quantity of data to obtain significant results. Therefore, a 

proper prevention strategy can be designed only after the definition 

of an effective data collection paradigm.  

Another important aspect of urban public health is cooperation 

between individuals, as a big city is a heterogeneous environment 

where a lot of people live in a small area, and the lifestyle and 

choices of one person can influence the ones of the others, as every 

individual contributes to creating a peculiar environment which 

every inhabitant is exposed to. For this reason, information and 

communication are other important elements in the creation of a 

proper prevention strategy. The ideas of PULSE can be inserted in 
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this context, as the project aims at creating a paradigm that allows 

to improve data collection and analysis and simultaneously 

promotes information and cooperation between entities. 

In the next sections, the main problematics at the basis of 

PULSE are explained.   

2.1.1. Air Pollution and Asthma 

Asthma is a common condition in which human airways swell 

and sometimes tend to produce extra mucus, occasionally leading 

to difficulties in breathing, cough, and other respiratory 

disturbances [14]. In most cases it is not lethal and it can be 

considered only a minor nuisance, but sometimes it could be a 

more serious problem that interferes with daily activities, and  in 

some people it can have severe complications with attacks that 

require immediate medical assistance and even hospitalization, as 

the condition can become life-threatening [15]. There is not a 

definitive cure for asthma, but symptoms can be treated, and in 

some cases severe attacks can be prevented. Asthma attacks in fact 

can be triggered by specific factors such as dust, cold air, chemical 

substances, pollens and pollution particles [16], so if the trigger is 

known the worsening of the condition can be prevented by 

reducing exposure to it.  

Being a very common disease, even though generally not 

severe, asthma represents a considerable source of costs and 

consumption of resources for the public health systems, and a lot of 

recent studies and projects are studying it in order to reduce the 

prevalence and find new cures. Several studies have demonstrated 

that the prevalence of asthma has been increasing in the last 

decades in several parts of the world [6], and in some areas it 

represents a huge problem. 

The existence of a link between asthma and outdoor air 

pollution has been widely demonstrated [17], as a consequence, an 

increase of air pollution in the urban areas is expected to lead to an 

increase of asthma-related problems in the population. Almost all 

the pollutants have shown a link with asthma, particularly sulfur 

dioxide [18] and particulate matter (PM2.5 and PM10) [19]. 

Pollution can trigger asthma with two different mechanisms, as it 

can cause short-term and log-term effects. Short-term effects are 

mainly referred to asthma attacks and complication related to 
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immediate exposure to high levels of pollution, that cause irritation 

of the airways of susceptible individuals leading to an asthma 

outcome; long-term effects are those due to prolonged exposure to 

pollutants (that can last days, months or even years), that causes a 

progressive deterioration of the airways status that increases the 

probability of asthma attacks and reduces the easiness of recovery 

from asthma complications. 

Although all the mechanisms leading to these processes are not 

entirely known, it is clear that in order to reduce health risk related 

to asthma in cities it is necessary to reduce the presence of asthma 

triggering factors such as air pollution. Several steps have been 

taken in this direction in the last decades throughout the world 

(traffic limitations, laws that regulate emissions of factories, ban of 

diesel cars etc.), but the generalized lack of an organically unified 

response leads to limited benefits and highlights the necessity to 

further intervene. The PULSE project, described in this thesis, 

proposes a new paradigm of intervention based on the direct 

involvement of the population. 

2.1.2. Measuring Air Pollution 

Planning a proper intervention on air pollution is a process that 

starts with an accurate measurement of the concentration of 

pollutants. In order to gain a sufficient quantity of air quality data 

to perform an accurate study on the effects of pollution on personal 

and public health, measurements have to be taken with a high 

spatial and temporal granularity, and errors should be reduced to 

minimum. 

As a consequence, the quality of the sensors or monitoring 

stations used is crucial to obtain proper measurements. Although 

the new sensing technologies allow to easily have high quality 

sensors and share data with high temporal resolution, some issues 

depending on the ratio between cost and accuracy of the sensors are 

still unresolved. As pointed out by some recent studies, the main 

problem in measuring air pollution in urban environments comes 

from the usually relatively small number of monitoring stations 

that are deployed on the territory, that is a consequence of their 

high costs and demands in maintenance. For example, a large city 

like New York, that is developed on an area with 784 km2 of 

surface has only 13 official monitoring stations, and not all of them 
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measure the same pollutants; the city of Pavia, extended on a 62.86 

km2 territory, has only 2. 

A small number of monitoring stations can lead to dangerously 

neglecting local variations of the pollution concentration, that in 

urban environments can be very pronounced, as the conditions 

concerning traffic, emissions, factories etc. can vary significantly 

even in a small environment. To overcome this problem, low-cost 

sensors are becoming more common every day [20], [21]: these 

sensors are usually small, portable and much less expensive if 

compared with the official monitoring stations, they also require 

less maintenance, but the accuracy of their measurements can be 

significantly lower than the one of the more expensive stations, and 

they usually require a proper calibration process. 

Considering all these facts, the best strategy to obtain the best 

measurements in terms of quality and spatial granularity is to find a 

proper trade-off combining the use of high quality monitoring 

stations and low-cost sensors, in a way that maximizes accuracy 

and spatial resolution together. Numerous projects have been 

created to move in this direction [22], [23], and this topic is 

analyzed and applied also by PULSE (see next sections), as 

reported in this dissertation.  

2.1.3. Cardiovascular Diseases 

The term cardiovascular diseases (CVDs) indicates a class of 

diseases of different type that concern the heart and/or the blood 

vessels [24]. This definition includes congenital conditions as well 

as degenerative ones, some examples are coronary heart disease, 

cerebrovascular disease, vein thrombosis, congenital malformations 

leading to risk of heart failure or vascular problems. According to 

the WHO, cardiovascular diseases are the first cause of death 

globally, as people die from them more than from any other cause. 

For example, it has been estimated that in the year 2016 about 17.9 

million people died from CVDs, representing the 31% of all global 

deaths of the year. Among them, 85% were due to heart attacks or 

strokes. The prevalence of these conditions is particularly high in 

the low- and middle-income countries, although high-income areas 

also present a significative burden in hospitalizations and deaths 

due to these diseases. 
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CVDs are widely studied diseases and there is a general 

consensus on the fact that most of them can be prevented acting on 

risk factors that can be both environmental and behavioral, such as 

tobacco use, obesity, lack of physical activity. Some people are 

more at risk of cardiovascular complications than others, especially 

those with genetic predispositions or pre-existent diseases like 

hypertension or diabetes, most of which can be prevented 

themselves reducing exposure to risk factors and with behavioral 

changes. 

Recent research has shown a tendency of several risk factors to 

increase in the last years in several parts of the world, for example 

obesity and hypertension [25]. This increase can be imputed to a 

general change in lifestyle that occurred in the fast-pace society we 

live in, that is particularly noticeable in big cities, were working 

hours and stress often lead to incorrect nutrition patterns and/or 

inconstant physical activity. Plus, in some cases information about 

this topic is not proper diffused among the population. Several 

studies showed that the prevalence of heart and vascular problems 

is higher in low-income areas, and there is a correlation between 

limited economic possibilities and obesity [26], that is probably a 

consequence of the higher cost of healthy food and the lower 

availability of healthy stores or restaurants in the low-income 

areas. For this reason, the reduction of cardiovascular diseases risk 

must be a combination of personal behavioral change and 

community urban planning that can help the citizens to easily 

access services that can help them stay healthy. 

2.1.4. Type 2 Diabetes 

The term diabetes, rather than a specific pathology, indicates a 

class of conditions that lead to an abnormally high blood glucose 

level [27] that can be dangerous for several organs and biological 

functions. In fact, dangerously high glucose concentration peaks 

can lead to a condition called ketoacidosis that can lead to coma 

and be life-threatening, and a prolonged situation of high blood 

glucose can lead to severe complications such as exposure to 

infections, coagulation problems and blood vessels damages that 

can permanently affect some organs such as the limbs and the eyes, 

causing even vision loss or necessity to perform limbs amputations. 
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There are mainly three types of diabetes known to the medical 

community: 

• Type 1 Diabetes: this condition is an autoimmune 

disease [28, p. 1] that occurs when the immune system, 

for causes that are still mostly unknown, attacks and 

destroys the β-cells located in the pancreas, that are 

responsible for the production of insulin, a hormone 

that regulates the glucose level in the blood. This 

condition typically occurs in young patients, although 

it could also hit adults and elderly people, and it causes 

a total lack of insulin, therefore the only way the 

patient can lower his/her glucose levels is by injecting 

insulin inside his/her blood stream. This type of 

diabetes is much less common than diabetes type 2, as 

according to the ADA (American Diabetes 

Association) [29] about 5% of all diabetes diagnoses 

are type 1. The causes of type 1 diabetes are not 

entirely known, it has been recognized that there could 

be a combination of genetic predisposition (the disease 

appears to run in families) and unknown environmental 

factors. 

• Type 2 Diabetes (T2D), differently from type 1 

diabetes, is not an autoimmune disease. T2D happens 

when, due to a combination of genetic predisposition 

and specific risk factors [30], the body develops a 

resistance to insulin, so the cells cannot exploit it 

properly even if the pancreas is able to produce it in a 

sufficient quantity. This condition is usually preceded 

by a transition phase named prediabetes, that defines a 

condition in which the blood glucose levels are not yet 

dangerously high, but there are signs of altered 

concentration control such as peaks slightly higher than 

normal or a basal level that tends to be high [31]. 

When the glucose levels are slightly but not extremely 

high, such as in prediabetes or in an initial stage of 

T2D, the patient does not experience any symptoms, 

creating a dangerous situation as the damaging effects 

to the organs and blood vessels can already start in this 

phase. Therefore, in order to limit complications, 

prevention and screening of T2D are very important. 
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T2D cannot be cured, even though it can be treated by 

some specific drugs or with extra insulin intakes (in 

some cases), so prevention and risk factors limitation 

are the best way to act against it. T2D tends to be more 

common in adult patients, with its prevalence 

increasing with age after 45 years. 

• Gestational Diabetes is a particular kind of diabetes 

that happens specifically in women during pregnancy. 

As in T2D, this condition causes an increase of blood 

sugar levels due to a different sensitivity of the body 

cells, but the condition is generally temporary and 

tends to fade after delivery [32]. Not all the causes of 

this condition are known, but scientists assume that the 

leading cause is a change of the hormonal equilibrium 

in the pregnant woman’s body that somehow interferes 

with the normal glucose metabolism. Risk factors for 

gestational diabetes are mostly similar to the T2D ones 

and include obesity, lack of physical activity, smoking, 

advanced age etc., and taking action on these risk 

factors can prevent gestational diabetes to worsen. 

  

Diabetes is probably one of the most studied diseases of the 

modern times, as it is widely diffused and its complications are 

responsible for widespread conditions that often lead to 

hospitalizations, reduced quality of life and increased mortality. 

Several studies have pointed out that the prevalence of T1D and 

T2D is increasing in most of the developed countries. The reasons 

of this are not entirely understood, but in the case of T2D lifestyle 

changes could play a role in the same way it happens for 

cardiovascular diseases and asthma. This process also concerns the 

big cities, in fact past research has pointed out that two thirds of 

the people having T2D live in big cities [33], and this is thought to 

be the consequence of mainly two factors: with the new century 

prosperity, people tend to live longer than the past, and with the 

lifestyle changes brought by the modern society several risk factors 

such as obesity are increasing, especially in big urban 

environments [34]. Several city councils and local organizations 

are taking actions to face the spread of T2D, with campaigns that 

aim at informing the population or intervene on the urban 

environment in order to encourage physical activity. 
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As it happens for asthma and CVDs, T2D is more common in 

low-income areas, and the probability to have severe T2D 

complications that lead to hospitalizations and irreversible damages 

such as vision loss or amputations  is higher in the same areas [35]. 

This is probably related to the fact that risk factors such as obesity 

and smoking often present positive correlations with poverty. 

Therefore, also in this case some urban areas are more in need of 

interventions than others. 

2.2. Related Projects 

The increasing awareness of the public health problematics 

typical of the urban environments, leading to new challenges in this 

field, has led to the creation of a new set of public health projects 

focused on health and wellbeing of the population in the big cities. 

The PULSE project, which all the work reported in this thesis is 

based on and that is presented in the next chapter, is part of a large 

cluster of projects that constitute a European framework named 

Horizon 2020. This framework includes numerous projects aimed 

at performing technological innovation and research on a lot of 

modern topics such as public health, global warming, food safety, 

water supply, elderly population etc.  

Many of these projects focus on the topic of health and 

wellbeing in the urban areas. For example, the project City4Age 

[36] aims at facing the new challenges deriving from the ageing 

population creating a hospitable urban environment for the elderly, 

when they can have assistance through new technologies through 

which they can detect early risks related to frailty and/or mild 

cognitive impairment and receive personalized interventions to 

improve their quality of life and be encouraged to maintain positive 

behaviors. This project works in close contacts with city councils 

and communities to facilitate the roles of social and health services. 

This project pairs with other European projects, such as GRAGE 

[37], that aims at creating a better social environment for the 

ageing population in the big cities, fostering innovation in themes 

such as green buildings, food delivery, technology, information and 

language. 

Another example of urban public health project aiming at facing 

the new challenges related to demographic changes is Urban 

GreenUP [38], that aims at developing a methodology to support 
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the development of renatured cities in the context of mitigating 

global warming and improving the quality of life of the population, 

as many studies suggest that a city without green areas is related to 

a higher prevalence of depression, mental diseases and diseases 

related to air pollution. 

The topic of urban air pollution is treated by several projects as 

well, for example ICARUS [39] aims at developing innovative tools 

to assess the impact of climate and demographic changes on urban 

air quality and to support new policies to contrast the air pollution 

increase and the consequent damages on the population, taking into 

account also socioeconomic factors and analyzing population 

subgroups. Ina similar way, iSCAPE [40] aims at integrating and 

advancing the control of air pollution in the urban environment 

through the development of sustainable emission reduction 

strategies, policy interventions and behavioral change initiatives. 

These projects are just a few of hundreds of examples that could 

be made of projects treating the difficulties deriving from the 

changing times and the increase of population in the urban areas. 

All these research initiatives are based on performing innovation 

through technology and Big Data analytics, building solid 

infrastructures based on information, policy making and 

collaborations with the communities. 

PULSE is entirely inserted in this context, as it was born with 

the same ideas and to face problematics of the same kind, but 

focusing on slightly different aspects, i.e. the prevention of asthma, 

type 2 diabetes and CVDs. This project is described in detail in 

chapter 3.  

2.3. Limitations in Public Health Studies 
and Objectives of the Thesis 

Although the awareness on the necessity of performing novel 

public health studies related to urban environments has been 

increasing in the last years, even the most recent research suffers 

from several limitations, mainly related to the lack of data to 

perform proper analyses and interventions at a sufficiently high 

spatial resolution. As it will be shown in the methodological 

section of this thesis, the heterogeneity of the environments and the 

population’s characteristics inside big urbanized areas makes it 
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crucial to study public health phenomena at a neighborhood level, 

as the exposure factors can change drastically from one area to the 

other, even within limited geographical distances. Due to a general 

lack of data collected at a high level of spatial granularity, studies 

that address urban public health at a sufficient level of 

geographical detail are still rare, as for the most part the whole city 

or extended areas of it are condensed together, possibly hiding 

important local phenomena. For this reason, one of the main 

concepts at the basis of PULSE, and above all at the basis of the 

research part of PULSE that has been carried out by the author of 

this thesis, is the importance of considering the spatial dimension 

in the definition of visualization, analysis and intervention tools for 

urban public health. Through the application of highly spatially-

enabled methods it is possible to assess all these phases of public 

health problem solving with a high spatial granularity, taking into 

account also local situations that could be neglected with other 

experimental settings. Of course, to make this possible it is 

necessary to possess data collected at a high spatial resolution, 

which still represents the weak point of urban public health. Steps 

forward in this direction are being made in some local realities (e.g. 

in New York City, as it will be shown in the next chapters) and 

thanks to specific projects such as PULSE, that provides also 

innovative data collection methods that aim at solving this 

problem. Therefore, the work described in this thesis shows the 

importance and the opportunities given by the inclusion of spatial 

enablement in the design of urban public health studies, both on the 

analysis side and on the intervention side, providing novel ideas on 

how to face the new challenges raising in urban health working at a 

neighborhood level.  
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Chapter 3 

3 The PULSE Project 

This chapter is dedicated to a detailed presentation of the PULSE 

project, its principles, its rationale and the main technological 

components. 

     PULSE, an acronym that stands for Participatory Urban Living for 

Sustainable Environments, was an international project funded by the 

European Commission under the Horizon 2020 framework [41], it 

started in the year 2016 and ended in 2020. It involved several 

partners, both in the academic world and in the private sector, from all 

the world. Each partner participated with their distinguished expertise, 

forming a highly multidisciplinary environment that allowed to create 

a complex system based on the integration of heterogeneous datasets 

and technologies. 

In details, the partners that took part at the project are: 

• Universidad Politécnica de Madrid (UPM): this 

institute is the largest technological university of 

Spain. Among the research groups, they have a large 

team specialized in consultancy, design, development 

and deployment of eHealth solutions including reliable 

and effective telehealth services, personal systems for 

self-management of health and integrated regional 
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information systems. UPM has been the coordinator of 

the whole project and has been responsible for the 

development of the Pulsair App. 

• Università di Pavia (UNIPV): the University of Pavia 

is an important Italian institute located in northern 

Italy. Inside UNIPV there are a large center of 

bioengineering that includes a data analysis core, and a 

geomatics lab specialized in georeferenced data, 

geostatistics and spatial enablement. UNIPV 

contributed to the project with two different teams, one 

coming from the geomatics lab that has been in charge 

of integrating data in the WebGIS and of spatially 

enabled analyses, the other formed in the biomedical 

informatics lab that has been in charge of data analysis 

and integration for the dashboards and has been the 

coordinator of the technical team of the whole project. 

• Università di Padova (UNIPD): the university of 

Padova is another historical Italian institution. Its 

department of Information Engineering contains a 

bioengineering center that has one of leading groups in 

the field of mathematical modeling of diabetes and its 

complications. UNIPD has been the leader of the risk 

modeling part of the project. 

• European Connected Health Alliance (ECHA): 

ECHA is the trusted connector, facilitating multi-

stakeholder connections around ecosystems, driving 

sustainable change and disruption in the delivery of 

health and social care. The main task of this group has 

been facilitating the dissemination, exploitation of 

results and communication. ECHA has been also in 

charge of organizing meetings and events, attracting 

external partners and encouraging collaborations. 

• The New York Academy of Medicine (NYAM): this 

historical center of research, located in the city of New 

York, is specialized in projects and research that favor 

health and wellbeing in the urban environments of 

NYC and the world. NYAM contributed with its 

Center of Health Innovation coordinating the activities 

of the test site in New York, collecting and providing 

data, statistics and analyses useful for the system, and 
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cooperating with the technical team to develop risk 

models of asthma and diabetes with specific tools. 

• Belit Ltd.: this private company, founded in Belgrade, 

Serbia, is specialized in software development, C# and 

Java coding for enterprise applications, database 

development and treatment, data processing and 

management. Belit has been in charge of the 

development of the database structure and the raw data 

management, plus the development of the dashboard by 

integration of data and external tools developed by 

other partners. 

• Public Health Agency of Barcelona (ASBP): ASBP is 

the main public health provider of the city of 

Barcelona, co-participated by the Barcelona city 

council and in cooperation with the Catalan 

government. The main aim of ASBP is monitoring 

health and wellbeing in the city, designing and 

implementing intervention strategies and policies to 

improve them. ASBP has been responsible of the 

definition of public health indicators and has 

cooperated with the definition of diabetes risk models. 

It has also coordinated the Barcelona test site. 

• GENEGIS: this is an Italian company, with 

headquarters in Milan, that is specialized in 

Geographical Information Systems (GIS), and more 

precisely in the creation of solutions for the integration 

of geographic information in information systems. In 

PULSE, GENEGIS had the main task of implementing 

the spatial information framework and creating and 

maintaining the WebGIS. 

• Birmingham City Council (BCC): BCC is a large local 

authority in charge of creating policies to support the 

vast population of the metropolitan area of 

Birmingham, UK. It includes a new framework named 

Digital Birmingham, that contains policies to invest in 

the use of the new technologies and digitalization to 

ensure benefits to the whole population. In PULSE, 

BCC has been the leader of the Birmingham test site 

and has contributed to the creation of the Public Health 

Observatories. 
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• Institut Mines-Télécom (IMT): IMT is a public 

institute under the authority of the French Ministry of 

Industry and Electronic Communication, focused on 

education, research and innovation in engineering and 

digital technology. The main headquarters are in the 

metropolitan area of Paris, France, but IMT has many 

associated laboratories in other areas of the world, one 

of which is located in Singapore. In the project, IMT 

has been the coordinator of all the test beds and has 

been directly in charge of the Singapore one. It has 

also contributed to the integration of public health 

models and maps thanks to its IT expertise.  

3.1. Main Concept and Purposes 

As already stated in the introduction section, PULSE is a Public 

Health project with the main aim of the creation of a collaborative 

system to prevent and treat asthma, type 2 diabetes and 

cardiovascular diseases in the big cities. This aim is achieved 

through the use of new paradigms of technology exploitation, 

based on the direct participation of the users who the benefits of 

the project are intended for.  

The main pillar of PULSE is data integration, as different 

systems with different purposes and based on different scientific 

backgrounds work together in an advanced data exchange, and 

create an advanced instrument that allows both users and public 

health authorities to cooperate in improving the community health 

encouraging behavioral change and urban planning.  

PULSE can also be defined an Exposomics project, as health 

risk is understood to be a complex combination of personal, 

environmental and socioeconomic factors, with an added role 

played by human behavior. For this reason, an international equipe 

of experts in different fields (engineering, informatics, sociology, 

marketing, psychology etc.) has been reunited to create the PULSE 

concept. 

Among all the elements that concerned the studied diseases, 

there were two main clinical focuses in the project: the link 

between air pollution and asthma [17] and the link between 

physical activity and type 2 diabetes [42]. Although the existence 

of these links is common knowledge nowadays, the increase of 
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prevalence and complications in these two diseases showed the 

necessity to define new intervention strategies to allow for the 

urban areas’ population to assume the right behavior to improve the 

community quality of life through information campaigns, 

assistance in the every-day life and dedicated urban planning 

strategies from the proper authorities. All these elements were 

considered and developed in the different parts of the project. 

Another element that has been pivotal during the definition and 

development of the project has been the importance given to spatial 

dimension, and in particular to the necessity to use a high spatial 

granularity in the definition of the urban public health problems 

and the relative solutions. One of the main gaps of the scientific 

research conducted on urban health in the recent years that was 

found during the project was the general lack of studies that 

address urban health at a spatial resolution sufficient to properly 

spot all the peculiarities of the cities at a local level. One of the 

main characteristics of big cities is the high variability of 

environments and populations that reside in a small space, thus 

studying health considering the whole city as one environment or 

using large spatial subdivisions can be risky, as it can result in 

hiding some important local variations of health or quality of life 

conditions. The problem with this issue is that in most cities data 

are not gathered in a sufficient quantity to perform meaningful 

statistical analysis. Among other things, PULSE proposed a model 

of technological environment that allows to overcome this issue, 

with interventions at different levels: as personalized feedbacks 

help the users singularly, the users provide useful information that 

can be used to better analyze the communitarian health status of the 

city at a neighborhood level, thus providing the health authorities 

with more powerful tools to understand the city’s problematics and 

design the proper intervention strategies.  

After the definition of the project and the technological features, 

the system has been tested in seven cities in three continents: 

Barcelona, Birmingham, Keelung, New York, Paris, Pavia, 

Singapore. Each test site was chosen according to some peculiar 

characteristics interesting for the project such as the prevalence of 

certain diseases (e.g. asthma is very common in New York [43] and 

diabetes is a diffuse clinical problem in Singapore [44]) or known 

environmental problems (e.g. air pollution is a real problem in 

Pavia as in all the Po Valley [45]). In each one of these cities, a 
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large number of users has been recruited in order to proceed with 

the experimentation. 

In the following sections, a detailed description of the 

technological architecture and the main components of the project 

is given, showing how different kinds of data are integrated in 

order to create a comprehensive system that includes useful tools 

both for the users and the public health policy makers. 

3.2. Architecture and Big Data 
Infrastructure 

 
The main elements of the PULSE architecture are: a personal 

App for the users, an innovative WebGIS, a set of dashboards for 

the public health authorities and back-end systems to connect all 

these elements.  

The interface between the system and the users is represented by 

the personal user smartphone App, that is both a data collection 

tool through which citizens’ data are gathered to be analyzed, and a 

receiver for the users that allow them to be connected to a set of 

useful tools and to receive personal notifications and risk scores. 

Another important tool is the WebGIS, that concentrates all the 

most advanced geographical tools and analytics used in the project 

in a powerful visualization tool. On the other end of the system, a 

set of dashboards allow the Public Health authorities to inspect the 

health situation in the city and some active interactive tools support 

them in the decision making process necessary to plan 

interventions and urban modifications.  

It is important to notice that the App is not the only data 

collection tool in the project, as physical activity data is collected 

from the users through a FitBit device and a lot of external sources 

are used to gather health or socioeconomic data useful both for 

visualization and for the analysis used to provide feedbacks and 

information to the users and the policy makers. 

Figure 3.1 represents the structure of the architecture, 

highlighting the data flow and the feedback mechanisms. The data 

flow inside the system is complex and includes a number of 

external elements such as air quality sensors, satellite images, open 

data sources.  
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More in detail, the data flow starts from the user themselves 

through the App. Some importance to the geographic dimension is 

already given at the very beginning, i.e. when the user signs up to 

his/her PULSE account, as the zip code of residence is one of the 

requested fields to fill out. Thanks to this geolocation paradigm, 

the user will be able to visualize maps, air quality records and 

receive personalized feedbacks that take into account the 

geographic environment which the user is immersed into. The user 

can also willingly consent to be tracked through the GPS tracking 

functionality in order to access some extra functionalities, such as 

the personal exposure calculator, that estimates the total air 

pollution intake considering the user’s movements across the city 

and the interpolated air quality data (see section 7.3).  

 

Figure 3.1: representation of the architecture of the PULSE system 

with the data flow between the components. The red arrows 

indicate the feedback mechanisms moving from the back-end to 

the App and from the Public Health authorities to the users.  

The most obviously spatially enabled system in the architecture 

is the WebGIS, as it represents layers of data of different kinds all 

characterized by a specific spatial description. The data represented 
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is all stored in a specific area of the PULSE database into tables 

and structures where every entry is characterized by an element 

that indicates its spatial position in the real world.  

The same spatial reference is maintained in the dashboards, 

where population statistics, maps and satellite images are all shown 

with a spatial reference and interactive tools have contain a spatial 

description or even spatial analytics, as illustrated in the next 

sections. Through the back-end services, the data flow continues 

from the App to the dashboards, generating two different feedback 

mechanisms, visible in figure 3.1: the first one starts from the risk 

models and calculators contained in the back-end services and gets 

to the user carrying risk scores and advice, the second goes from 

the dashboards to the user, representing the intervention and 

communication strategies that the public health policy makers can 

design in order to improve health and wellbeing in the city. All 

these feedback tracks are highly spatially enabled, as risk models 

take in input also variables related to the location the user is in (e.g. 

air pollution), and interventions by the authorities can be organized 

according to the results of spatial analytics that show where are the 

criticalities that need them.  

The external data sources are for the most spatially enabled as 

well, since sensors data come from sensors whose position is 

georeferenced, satellite images are georeferenced as well and open 

data often contain elements that characterize the spatial dimension 

in which they were collected (e.g. zip code of patients whose 

census data is taken, the address of the hospitals where 

hospitalizations are recorded etc.). The next subsections describe 

the most important architecture elements more in detail. 

 

3.2.1. User Personal App 

The User Personal App (UPA), named Pulsair, is an App for 

smartphone created for the recruited users and it serves as their 

interface with the internal part of the projects. The UPA is a data 

collection tool, an information center and an active intervention 

tool at the same time. The recruited user can access the app 

subscribing with a personal account that can be created using an 

access code given by the PULSE administrators. After registration, 

the user signs an informed consent form where he/she is informed 



The PULSE Project 

 

 34 

about data collection and treatment, privacy rules, purposes of the 

project etc. All the collected data are anonymized and nobody 

beside the user can see their own data and recognize the individual 

who they were collected from, in compliance with the GDPR 

European data treatment rules. 

After the login, the user is provided with a set of useful tools 

that interface him/her with the system allowing data collection, 

feedback reception and gathering of information. The main utilities 

of this system are: 

• Health and wellbeing questionnaires: in order to gather 

all the data necessary for the calculation of personal 

health risk and the creation of personalized feedbacks, 

a set of questionnaires (13 including the general user 

information) has been created and integrated in the 

app. These questionnaires concern several topics, such 

as general information (age, sex, basic characteristics 

etc.), specific risk factors for one of the diseases, 

environmental contest of the user’s place of residence, 

wellbeing indicators that include happiness, sense of 

direction, precepted quality of life. All the 

questionnaires are validated and widely used in 

literature for the computation of health indicators or 

risk scores.  

In order not to excessively increase the burden on the 

users, a notification with an invitation to complete one 

of the questionnaires is sent every few days, and the 

user is rewarded with an advancement of category and 

with useful information.  

• FitBit interface: the personal App is not the only way 

data are gathered from the users, as physical activity 

indicators and some health data related to behavior and 

life habits (sleep hours, heartbeat etc.) are collected 

through an interface with a set of FitBit devices, which 

some users are provided with. In order to facilitate data 

visualization also for the users themselves, Pulsair 

features a page with statistics and summary of the data 

gathered during the last week of activity by the FitBit.  

• Information about the city: when the user creates the 

account, he/she is asked to state which is the pilot site 

of residence. In this way, some useful information 
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about the city can be visualized, specifically 

information about air quality and meteorological 

conditions. Informative maps of the city can be 

visualized as well.  

• Information about the project: useful information about 

the project, the aim, the consortium and the scientific 

rationale is given upon registration, but is also 

accessible in a dedicated section of the app, so that 

each user can always be well informed about the 

project he/she is taking part to. 

• Feedbacks and advice: as already stated, the app is not 

only a data collection tool, but also an interface for the 

users with the system through which they can receive 

useful feedbacks and advice to improve their quality of 

life with the right behaviors. After the data have been 

gathered with the questionnaires, a personalized health 

risk score for each one of the diseases is calculated and 

shown in  dedicated page of the app, where the user is 

informed about the level of risk (high, medium, low) of 

developing or worsening asthma, type 2 diabetes and 

cardiovascular diseases. Each level of risk is associated 

with a feedback message containing useful advice 

regarding the behavior to follow in order to lower the 

risk. Health risk is periodically recalculated and 

feedbacks are consequently retuned according to the 

new data gathered with the FitBits and with the 

repetition of the questionnaires.  

• Gamification: in order to help the users to keep 

engaged with the App, besides the rewards coming 

from the useful advice and the consequent health 

improvement, a gamification paradigm has been 

applied, introducing levels of expertise inside the 

system in a way that awards the most active users. A 

rank of the users with the highest levels can be 

visualized in order to introduce a challenge effect that 

has been demonstrated to make users more willing to 

increase their engagement with the App. 

With these systems, the UPA is a simple and intuitive system 

that serves two main purposes: data collection and advice 

deliverance. The layout of the App is also to studied to be pleasant 
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and easy to use. Figure 3.2 and 3.3 contain some screenshots of the 

app, showing the city information page and the health feedbacks 

page respectively. 

 

Figure 3.2: example of the city information that can be visualized 

inside the App. Air quality and weather data can be visualized on a 

general view with some associated feedbacks or on a map. 
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Figure 3.3: Examples of health-related feedbacks on the App. 

3.2.2. The PULSE WebGIS 

The word GIS (Geographic Information System) indicates a 

system designed to store geographic information and tabular data 

together, in order to allow the users to visualize data of different 

kinds with their geographic description [46]. A WebGIS is 

basically a GIS that is accessible online through a web browser. All 

GIS present typical features: the data is usually organized in layers, 

each one representing the information contained in a specific data 

table with its geographic description (usually with maps); layers 

can be switched on and off, overlapped and made transparent in 

order to visualize more phenomena together and how they change 

throughout a specific geographic area, facilitating pattern discovery 

or data analyses. 

One of the main features of PULSE is the collection of a large 

quantity of data regarding the pilot sites, not only from the citizens, 

but also from external sources such as public health repositories, 

satellite images, air quality sensors, users’ GPS tracking. All these 

data have a clear spatial reference, as they are collected in several 

spots throughout the cities’ boundary and can show differences 
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over the territory crucial to proper analyze public health 

criticalities and risk factors distributions. 

Plus, as already mentioned, one of the main paradigms at the 

basis of PULSE is spatial enablement, i.e. the ability to add a 

spatial dimension to the data gathered in a specific contest. Public 

health data are usually implicitly spatially enabled, as data 

regarding prevalence of diseases, distribution of risk factors, 

census of population, socioeconomic factors, air pollution etc. are 

usually collected from specific sources located in a recognizable 

environment. 

For thee reasons, the PULSE WebGIS can be considered one of 

the main features of the PULSE system, as it also presents many 

innovative features. As in the whole project, data integration is one 

of the fundamentals of the WebGIS as well. The data collected in 

the seven pilot sites that can be visualized in the WebGIS concern 

mainly the following categories: 

• Air Quality: air pollution maps are one of the most 

important features of the PULSE WebGIS. Air 

pollution data are usually gathered from fixed air 

quality monitoring stations, some of which were 

acquired by the consortium during the project and used 

in combination with the high-quality official 

monitoring stations to increase the spatial resolution of 

the measurements. Air quality data are visible in 

different ways depending on the pilot site and the 

collection method, as they can be visualized either as 

punctual measurements over a map (where each point 

corresponds to a specific sensor) or as an interpolated 

homogeneous map that estimates the pollution values 

in each spot of the city. Data can also be navigated in 

time, the date of the last available measurement varies 

in the different pilot sites, but in general data are 

gathered in a quasi-real-time way, thanks especially to 

the sensors acquired during the project.  

• Census and demographic: basic demographic data such 

as population in the different neighborhoods, age 

distribution, ethnicity distribution, gender etc. are 

available for most of the pilot sites. This information is 

crucial to create important epidemiological statistics, 

as all the studied diseases have shown to have a 
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different prevalence and severity according to the 

demographic factors of the target population.   

• Socioeconomic: Among the external factors that 

combined create the human exposome, socioeconomic 

factors play an important role, as they can largely 

influence quality of life and human behavior. For this 

reason, the PULSE WebGIS features several layers 

showing socioeconomic data such as poverty rate, 

crime rate, recycling, average income etc. 

• Prevalence and incidence of asthma, type 2 diabetes, 

cardiovascular diseases and other correlated conditions 

are shown in different layers that can be navigated in 

space and time, in order to give a quick snapshot of the 

situation in the pilot sites concerning the diffusion of 

these pathologies, enlightening the most hit areas. 

• Hospitalizations: besides prevalence and incidence, 

hospitalization rates for the different conditions are 

shown as well where available. Hospitalizations are 

another important public health indicator, as they 

reflect the tendency of the diseases to become severe, a 

phenomenon that is not necessarily strictly correlated 

to their prevalence. 

• Various health indicators: for the pilot sites where the 

data is available, other generic health indicators are 

shown. This include specific risk factors, evaluation of 

the general health status of the population, wellbeing 

indicators, life habits. Examples of this kind of 

measures that can be found in the WebGIS are obesity 

rates, smoking rates, results of questionnaires about the 

perceived health status, happiness or depression 

indicators, physical activity etc. 

• Environmental and urban factors: air pollution is not 

the only environmental factor that can have a 

noticeable effect on health and wellbeing. Other 

important factors that were considered in the creation 

of the WebGIS are noise, presence of green areas 

(parks, gardens etc.), percentage of land used for 

commercial or industrial purposes and traffic. 

• Satellite images and maps: other environmental 

variables that are known to have an effect on health are 

monitored and shown in the WebGIS. In particular, 
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climatic conditions that affect air quality are shown 

mainly through two types of maps coming from 

satellite images: LST (Land Surface Temperature) 

images, that monitor heat waves and urban heat islands 

[47], and NDVI (Normalized Difference Vegetation 

Index) index images [48], that study the green 

coverage of the cities and the status of the vegetation, 

that correlates with a lot of factors (pollution, heat 

mitigation, moral status etc.). 

Thanks to all the data represented, the PULSE WebGIS allows 

to have a comprehensive idea of the public health situation in the 

pilot sites, both through visual inspection and also allowing to add 

to the data a spatial description useful to analyze patterns and make 

predictions (as it will be shown in the next chapters). The ability to 

change the transparency of the layers and overcome them allows to 

visualize more indicators together and find possible visual 

correlations (e.g. overlapping air pollution maps and asthma 

hospitalizations maps it could be noticed that the areas where 

pollution is higher are the same where asthma tends to be more 

violent, or if this relation is not observed it could mean that there 

are other factors to consider). To facilitate data visualization and 

exploration even further, the PULSE WebGIS features two 

innovative systems:  

• Side by side visualization of maps, that allows to easily 

compare more phenomenon, especially used in 

combination with the layer overlapping feature already 

described. 

• A timeline that allows to visualize the data coming 

from a past period of time, and, where possible, to 

choose also the temporal resolution (daily, weekly, 

monthly, yearly data). 

Figures 3.4 and 3.5 show two captures of the PULSE WebGIS: 

in the first one an image of New York where pollution and health 

data are combined is shown, with the side by side visualization 

functionality active; the second one shows a screenshot of Paris 

where air quality data from fixed monitoring stations are  

enlightened and the temporal bar is visible. 
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Figure 3.4: a WebGIS capture showing the side-by-side 

visualization feature on the city of New York. On the left, two 

layers are combined, one showing diabetes hospitalizations and 

one showing air quality measurements from the sensors (point 

data). On the right, a layer showing asthma hospitalizations is 

active. 

 

Figure 3.5: a WebGIS capture showing data from Paris. The active 

layer shows PM10 data taken from the punctual monitoring 

stations. The temporal bar that allows to navigate data in time is 

visible on the bottom right.   
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Some important applications of the WebGIS, in particular how 

it has been used for several parallel studies in the course of the 

project, are explained in chapters 4-7. It should be mentioned that 

the WebGIS is publicly accessible both by users and public health 

operators. All the information is aggregated and anonymized, 

sensible information that break the privacy rules of all the 

participating countries is not visible to anybody. 

3.2.3. Back-end Infrastructure 

PULSE has a complex architecture that includes a high variety 

of systems and tools that collect, analyze and visualize large 

quantities of heterogeneous data. One of the main components of 

this architecture is represented by the so-called Back-end systems, 

that represent the main engine of the project, as they store all the 

data collected from external and internal sources while they also 

allow for the integration and communication of all the interfaces 

(App, dashboards, FitBits, sensors, WebGIS). The Back-end 

systems are large and complex, a detailed description will not be 

given inside this dissertation as it is not fundamental to understand 

the aims and the results of the work presented, but the main 

systems can be categorized as follows: 

• PULSE central database: the central database (PULSE 

DB) can be intuitively considered the main core of the 

PULSE system. Being PULSE a Big Data project, the 

necessary storage space for the database is very large. 

The PULSE DB is a relational database that contains 

all sorts of data, organized into several groups and 

categories in order to facilitate the data exchanges 

necessary for the functioning of all the systems. 

PULSE DB stores all the users data, where users are 

anonymized and identified only through an access 

code, and all the personal data are stored in other tables 

where they cannot be related to the account of origin. 

In particular, these data come from answers to 

questionnaires, FitBit integration, risk calculation and 

other App features. The PULSE DB stores also public 

health data, air pollution data collected by specific air 
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quality sensors and geographical information for the 

WebGIS.  

• Health and Wellbeing models: a fundamental role in 

the back-end services and in the project in general is 

played by the risk models, that implement Big Data 

analytics and algorithms to compute risk factors of 

asthma, type 2 diabetes and cardiovascular diseases 

taking as input the data coming from the users (mainly 

from the questionnaires). All the users’ App data are 

collected and stored in a dedicated place in the PULSE 

DB, and then used as input for these models, which are 

used and approved by the scientific community. The 

results of the models are stored as well and sent to the 

users via a set of dedicated Java services. 

• Interface with FitBits and external sensors: another 

main functionality of these systems is the ability to 

interface a large variety of external sources of data, 

such as FitBits and air quality sensors of diverse kind. 

Thanks to an intricated combination of Java services 

and programs, different systems are integrated inside 

PULSE, and the data coming from them are usable for 

all the PULSE interfaces. This process is quite delicate, 

since there is a high level of heterogeneity in the 

hardware and software that has been integrated in the 

project, for example different kinds of air quality 

sensors have been used in the different pilot sites.  

• Integration of external and internal tools: integration is 

at the basis of the PULSE concept, as the collected data 

and the components of the system are highly 

heterogeneous. The back-end systems contain 

important tools, Java methods and services to allow the 

integration of data and data sources. This includes both 

internal integrations, i.e. the data coming from 

different sources (Sensors, FitBits, App etc.) are all 

processed in order to be in the same format inside the 

database, and integration of external system, as some 

tools (e.g. personal exposure calculator and simulation 

tools) are developed in external platforms and the data 

are not retained inside the PULSE DB, but the back-

end infrastructure provides all the necessary 



The PULSE Project 

 

 44 

functionalities that allow these systems and the central 

PULSE engine to communicate.  

The back-end infrastructure has been mainly developed by the 

Serbian company BELIT, where the main servers are. The storage 

space of the PULSE DB is managed by the French company named 

Teralab, associated to the French partner of the project (IMT). 

3.2.4. The PHO Dashboard 

The PHO (Public Health Observatory) dashboard is another 

fundamental system of the PULSE architecture. Together with the 

WebGIS, it could be considered the most innovative and 

representative part, as it contains a lot of interactive features and it 

represents the connection between the citizens’ wellbeing and the 

public health authorities’ role which the idea of PULSE is partially 

based on. Even though it is usually described with the singular 

term, this system is actually made up several different dashboards, 

that together create a combination of tools, visualization portals, 

decision making aids and interactive programs that allow the users 

(represented by the public health authorities in this case) to assess 

the public health situation in the cities of interest and organize 

proper intervention strategies if and where needed. This set of tools 

is named Public Health Observatory (PHO), as it can be 

considered as an observatory that allows to analyze the health and 

wellbeing situation in the city. 

The PHO dashboard contains a lot of different features and 

integrates several external systems, some of which are created 

specifically for a subset of test sites, depending on the data 

available in each city. The main functions can be summed up as 

follows:    

• Visualization: each pilot site has a dedicated dashboard 

where the user can visualize graphs, indicators, trends, 

plots and figures informing about several public health 

indicators related to the city itself. The main 

functionalities include visualization of aggregated 

health data concerning the treated diseases, 

visualization of wellbeing information, visualization of 

maps containing various phenomena and visualization 



The PULSE Project 

 

 45 

of air quality data and maps. No sensitive data 

revealing personal users’ information are shown. With 

these tools, it is possible to have a quick idea of the 

general public health status of the city, concerning 

health, wellbeing and air quality in particular. It should 

be mentioned that, thanks to the spatial granularity of 

the data shown on maps, a neighborhood-level preview 

of the public health landscape is given to the public 

health operators.  

• Analysis: The data that can be found inside the 

dashboard does not correspond uniquely to the data 

collected in the city. Besides knowing where the 

prevalence of asthma is higher or what is the air 

pollution status in the city, a public health operator can 

be interested in more complicated measures, for 

instance the probability of a certain phenomenon 

happening in the future or the percentage of population 

that can be potentially exposed to a specific risk factor. 

Some parallel studies have been performed during the 

curse of the project, most of which had the aim of 

studying correlations and interactions among the 

different data in order to obtain algorithms, predictions 

and procedures that could unveil interesting patterns or 

show measures that are not visible inspecting the raw 

data alone. Some of these studies are presented more in 

detail in the following chapters of this thesis, and they 

all represent an active way of exploiting heterogeneous 

urban data to predict public health outcomes in a 

heterogenous context.  

• Simulation: public health issues in the urban 

environment can be addressed only through action, 

both from the citizens themselves and from the public 

health policy makers. This means that change is 

possible only through a dedicated urban planning 

strategy and active interventions. This process can be 

slow and expensive, therefore all the possible outcomes 

should be evaluated before undertaking it. To help with 

this issue, PULSE does not offer only visualization 

tools and results of analyses, it also applies all the 

knowledge gathered in the city to the creation of 

interactive tools that ease the intervention planning 
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process even further. These tools, named Simulation 

Tools, provide the policy makers with a set of models 

of the city with modifiable parameters that allow to 

simulate hypothetical scenarios and explore trends and 

possible outcomes of interventions. Detailed examples 

of these tools are provided in the course of this 

dissertation.  

In conclusion, the PHO dashboard is an ensemble of tools and 

instruments that represents the connection between the citizens and 

the policy makers; thanks to the features of this system, urban 

public health is more understandable and decision making can be 

easier. 

3.3. External Resources 

 

In line with the definition of human exposome, PULSE contains 

an enormous quantity of data characterized by high variety. 

Although most of them are generated internally thanks to the App 

and the air quality sensors, many external sources of information 

have been involved in the creation of the system, especially to 

collect data regarding statistics about the population and 

socioeconomic landscapes. Furthermore, the involvement of 

external resources has encouraged the creation of parallel studies 

and projects, that addressed some specific public health issues in 

several cities following the trail created by PULSE. 

This section reports a list of external resources used during the 

project, concerning both sources of data and parallel studies, with 

particular reference to a study performed in the city of Pavia, Italy, 

that is related to other topics that are presented in the next chapters 

of this dissertation. 

3.3.1. Data Portals and Collaborations 

There are basically two different kinds of external data that have 

been used in the project: data that can be found in the web and data 

gathered through specific collaborations. More in detail, the data 

on the web are usually categorized depending on whether they can 
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be freely accessed by anybody or they need to be purchased or 

obtained with a permission. Free web data are commonly called 

Open Data, and they are the simplest to obtain. The main advantage 

of open data stands in the possibility to collect them quickly 

without any bureaucratic process and without costs, but they are 

also often linked to some disadvantages concerning accuracy and 

granularity [49]. In particular, the absence of costs is often 

inevitably related to a limited use of resources to perform data 

cleaning and preprocessing, and this leads to a higher probability of 

having mistakes or outliers inside the dataset. Furthermore, open 

data is usually collected over the territory with a low spatial and 

temporal resolution, as data are usually available only for large 

districts and they are averaged over long periods of time (months 

or years), this is due both to the frequent lack of an appropriate 

amount of data to create statistically significant measures with high 

spatiotemporal granularity and to the fact that open data cannot 

contain anything that could potentially reveal sensitive information 

about someone in the city or violate privacy rules. Another 

frequent issue is the temporal lag that characterizes the data that 

can be found online with respect to the collection period, often due 

to long processing times. Despite all these problems, open data are 

becoming much more diffuse than the past in almost every city, as 

their importance to encourage research programs that can aid the 

public health panorama is recognized by the scientific community 

and the public administrations. 

In PULSE, several sources of open data have been used both for 

the creation of maps and the database and for analysis and parallel 

studies. Some sources that are worth mentioning for the purposes 

of this thesis are: 

• NYC Open Data Portal: this data portal [50] can be 

considered one of the largest open data repositories 

concerning only one city that is freely available online. 

It was created as the result of a cooperation between 

the city council, specifically the Mayor’s Office of 

Data Analytics (MODA), and the Department of 

Information Technology and Telecommunication 

(DoITT). The idea behind the project is that open data 

available to everybody can help research projects and 

also inform the community and public or private 

agencies in order for the whole city to benefit from the 
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knowledge contained in it. This portal contains data of 

diverse kinds, spacing from health records 

(prevalences, trends, hospitalizations etc.) to 

environmental phenomena (pollution, green spaces, 

fauna etc.), passing from sociodemographic data such 

as education levels, ethnicity of the population, 

wellbeing indicators and much more. 

• NYC Community Health Survey (CHS): the CHS is a 

telephone survey conducted annually by the Bureau of 

Epidemiological Services in the city of New York [51]. 

The survey is conducted on a random sample of about 

10,000 people aged more than 18 that live across the 

city, and the questions have the aim to create a picture 

of the status of several health indicators in the city, 

concerning chronic diseases, personal behaviors and 

neighborhood status.  

• NYC Data2Go Portal: this portal [52] integrates data 

coming from several different sources showing various 

socioeconomic and demographic variables, besides 

general urban statistics (e.g. safety, political 

tendencies, food habits etc.). The data are visible on a 

dashboard and can be downloaded without restrictions. 

• New York State Department of Environmental 

Conservation: this public entity has a dedicated website 

where data concerning air quality measurements in all 

the official monitoring stations of the State of New 

York are available for download. The data is updated 

constantly, and quasi-real-time measurements are 

usually available, also with a high temporal resolution. 

• 500 Cities Project: the data coming from this project 

has not been integrated in the PULSE database 

directly, but it has been used for a parallel study 

performed in the context of the project. The 500 Cities 

project [53] is a research program created by the CDC 

(Center of Disease Control) to collect a high quantity 

of data concerning health and life habits in the 500 

most important cities of the USA. These data are 

collected with a high spatial subdivision. The dataset is 

better described in chapter 6. 

• ARPA Lombardia air pollution and weather data: 

ARPA Lombardia [54] is a local agency that works for 
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the environmental protection of the region of 

Lombardy, located in northern Italy. This agency owns 

several air quality and meteorological monitors spread 

throughout the region, whose data can be easily 

accessed for research purposes through dedicated 

online portals. 

Many other open data repositories have been used, all 

containing either pollution records or demographic/socioeconomic 

data, but they are not mentioned as they were not used in the work 

described in this dissertation. 

Since the knowledge stored in open data can be limited for the 

aforementioned reasons, some data used in PULSE have been 

gathered thanks to the cooperation with local authorities and 

institutions. The main example is given by hospitalization data: 

hospital data are often sensible information and the open data 

portals tend not to show records with a high level of spatial and 

temporal detail. In PULSE, hospitalization records have been 

gathered and used in several occasions through private agreements, 

for example hospitalization records in New York City were 

obtained through a collaboration between the University of Pavia, 

the New York Academy of Medicine and the New York University 

that allowed to use the data stored in the SPARCS (Statewise 

Planning and Research Cooperative System) [55] dataset, under a 

contract that stated precise utilization rules. These data have been 

uniquely used for research and have not been shared with external 

parties or shown in the WebGIS or dashboards. 

Other data have been collected through sources that are not 

available online, for example demographic and hospitalization data 

in Pavia, Italy, that has been gathered through a cooperation with 

the city municipality and the local health agency (ATS). 

3.3.2. Low-cost Sensors Networks 

As previously mentioned, in order to increase the granularity of 

the air pollution data gathered in the urban areas, several sensors 

have been acquired during the project. In detail, the PULSE 

architecture uses two different models of low-cost sensors: 

DunavNet [56] and Purple Air [57].  
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DunavNet is a Serbian company, founded in 2006, that proposes 

IoT solutions and architectures to create interconnected systems in 

different environments: farming, transportation, food industry, 

elderly care and environmental monitoring. One of the products 

they commercialize is the Ekonet sensor, a low-cost air quality 

monitoring station that measures all the main pollutants (PMs, 

NOx, SO2, CO, CO2) and weather variables such as temperature 

and humidity. These sensors are connected to a cloud system where 

the data are stored and can be easily visualized and analyzed. These 

sensors are relatively light and space-saving, therefore they can 

also be carried around. During the pilot phase of PULSE, some of 

these devices have been acquired, tested and integrated in the 

system in several cities, where they helped with the collection of 

spatially granular air quality data. 

Another sensor model that was used in the project is the Purple 

Air PA-II sensor. This is a low-cost air monitoring device created 

by the American Purple Air company, it measures only PM1, 

PM2.5 and PM10 as pollutants plus temperature and humidity, but 

it has the advantage to be particularly small and easy to use, as it 

can be installed even by private citizens on balconies or external 

walls. The quality of the measurement is high if compared to other 

devices in the same price range. The university of Pavia has been 

the main utilizer of these sensors, as it deployed a high number of 

them over the city territory, thanks to the cooperation of the City 

Council and of private citizens. In detail, as of August 2020, 45 

sensors have been deployed over a 70 km2 territory, adding new 

monitoring stations to the two official ones already functioning and 

managed by the environmental protection agency (ARPA), that 

measure also the other main pollutants beside particulate matter 

(Figure 3.6). Pavia has developed an independent system related to 

this sensor network, as the raw data, although they are shared with 

the PULSE systems, are stored in the UNIPV servers where they 

can be accessed through SQL queries and Java methods. The latest 

measurements can be visualized also directly on the Purple Air 

website, through identification in a dedicated portal. 
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Figure 3.6: map of the air quality sensors currently functioning in 

Pavia. The PurpleAir sensors acquired specifically for the project 

are colored in purple, whereas the ARPA monitoring stations are 

highlighted in green. 

Being the Purple Air PA-II a low-cost sensor (the price range is 

$200-$250 per unit), their reliability is expected to be lower than 

the official monitoring station used by the public agencies. In order 

to compensate, UNIPV has calibrated these sensors through 

calculation of the deviation of their measurements from the ones 

recorded by the ARPA sensors. From the practical point of view, a 

Purple Air sensor is periodically positioned close to an ARPA one 

and the measurements coming from both are compared for a certain 

period of time, and the Purple Air ones are adjusted with a linear 

regression performed with the parameters found by this 

comparison. This operation is better described in section 6.4. In 

general, the Purple Air sensors showed to have a high positive 

correlation with the ARPA ones (range 0.75-0.99), despite a small 

offset, as shown in Figure 3.7. 
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Figure 3.7: comparison of the daily averages measured by one 

PurpleAir sensor and the closest ARPA sensor. Correcting for a 

small offset, the correlation score was very high (0.9228). 

The sensor network in Pavia has been used for different 

purposes: 

• Establishment of a link with a dedicated App that can 

be downloaded and used by the citizens to be 

constantly informed about air quality in the city. The 

App is described in the next section. 

• Correlation studies between air pollution and health 

outcomes, that have been performed thanks to the 

cooperation with the local public health agency (ATS), 

that has provided UNIPV with anonymized 

hospitalization data of the main hospitals in the 

province. 

• Correlation studies between air pollution and climatic 

factors, especially wind speed and temperature. The 

calculation of these correlations has been useful in 

particular to study the effect of the 2020 lockdown 

related to the Covid-19 pandemic on air pollution, as 

reported in section 6.4.  

• Creation of interpolated maps that allow to estimate the 

values of air pollution in every spot of the city. These 

measures have been used especially for the creation of 
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the personal exposure calculator, described in section 

7.3. 

The idea followed in PULSE, and confirmed in several studies, 

is that although low-cost sensors are generally less reliable than the 

expensive official ones, the possibility to buy and deploy them in 

large quantities has the advantage to allow to create better-defined 

air quality maps that consider also local factors. The possible lack 

of accuracy can be compensated using low-cost sensors in 

combination with the official monitoring stations. 

3.3.3. The PULSE@PV App 

One of the most important external resource used in PULSE is 

an App that constitutes the system created by the sensors network 

deployed in Pavia. This App works in parallel with PULSE, as it is 

not directly integrated in the main architecture, but it creates an 

extension of the benefits of the project for the citizens of Pavia, 

thank to special funds that have been granted to UNIPV by the 

local municipality. This App, named PULSE@PV works in a 

simple and intuitive way, and it has the aim to inform the citizens 

about air quality in order for them to be able to plan outdoors 

activities accordingly and be always aware of the risks. The main 

functionalities are: 

• Visualization of the real-time PM10 value measured by 

the nearest sensor. This feature uses the positioning 

functionality of the user’s smartphone, the value can be 

seen directly in the App’s home page.  

• Visualization of a list of sensors that were active 

during the last 30 minutes. Each sensor is marked with 

a feedback icon that indicates whether the measure 

corresponds to a safe air quality condition or it could 

lead to health risks. 

• Visualization of the latest measures of PM10, PM2.5, 

temperature and humidity detected by all the sensors. 

• Visualization of a map of all the sensors deployed 

throughout the city, color-coded according to the 

possible health hazard correspondent to the PM values 

detected. 



The PULSE Project 

 

 54 

Short sentences are provided together with color-coding to 

explain to the users the risks involved in the exposure to the air 

pollution levels measured. An informative page that explains the 

project, the aims and the data use can be accessed by each user. 

This App is more effective if used in combination with the Pulsair 

App, that also gives health-specific feedbacks. As of August 2020, 

PULSE@PV has been downloaded by approximately 200 users, 

using both Android and IOS operative system. Figure 3.8 shows 

some screenshots of the App. 

 

Figure 3.8: Screenshots of the PULSE@PV App. From the left: 

the list of sensors ordered by distance with a feedback icon, a map 

of the sensors, the most recent measurement of the nearest sensor 

with an accompanying sentence that provides the danger level 

associated to the pollution status. 
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Chapter 4 

4 Spatial Analytics 

As it has been written several times in the first chapters of this 

dissertation, the importance of the spatial dimension has been one 

of the pivotal ideas of PULSE, its development and its applications. 

When it comes to studying public health, geography plays a central 

role in all the phases of data management, from collection to 

visualization and analysis. 

In this chapter, a more detailed description of how space has 

been added to several features of the system is given. In particular, 

after an introduction on the main concepts, the description of some 

of the main spatial analytics is reported. 

4.1. Spatial Enablement 

The concept that stands at the basis of the importance of the 

spatial dimension in PULSE is named Spatial Enablement. This 

term indicates the ability to add geographic information to the data 

collected in a certain timeframe and place to improve analytical 

and visualization capabilities for data analysis [58]. The idea of 

including spatial information on the data is not new, as most of 

census, socioeconomic and environmental data have always been 

collected with some kind of spatial reference. For example, census 

data refers to neighborhoods, and hospitalization data refers to 

hospitals that are located by specific geographic coordinates. 

Knowing where a certain phenomenon happened, besides the 

magnitude of it, allows to characterize certain public health 

patterns with more precision, and in some cases location can be 
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considered crucial, for example in epidemiological studies of viral 

diseases, where knowing where the virus is moving is fundamental 

to decide how to intervene on it. 

Although this concept is not new, the past research shows that 

the spatial dimension is still not always exploited in a lot of  urban 

public health studies, in particular, during the activities of creation 

and development of PULSE, the consortium found mainly two 

issues: 

• A lot of importance to space is given when it comes to 

visualizing the data, but not in their analysis: several 

geographic machine learning-based tools have been 

developed in the last decades, but their use in urban 

public health is limited.  

• When the spatial dimension is considered in urban 

public health, the spatial granularity of the studies is 

often insufficient to create significant statistics that 

assess all the issues of a city. Neighborhoods are 

usually grouped together hiding important local data 

that could be informative [59]. 

PULSE tried to give a possible solution to these problems, 

creating a system that increases the spatial granularity of the 

collected data and exploring new ways to apply spatial enablement 

in urban public health. A quick explanation on how this is done is 

given in the next sections. 

4.1.1. Visualization  

The most obvious application of the concept of spatial 

enablement is the ability to visualize geographical patterns and 

spatial details of various phenomena. The PULSE WebGIS is a 

clear example of this, as it allows to visualize maps showing how 

several public health variables are distributed throughout the urban 

environments analyzed in the project. 

Proper visualization of public health phenomena is the first step 

to understanding important elements of the health panorama of a 

certain location, that leads to taking informed action to control the 

spread of dangerous phenomena. The most typical example of this 

is the observation of the propagation of contagious diseases, but 
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this is true also for all the other kinds of public health data. In 

urban health, for instance, a different distribution of incidence of a 

certain disease or an unequal distribution of socioeconomic 

indicators could highlight that some neighborhoods face unhealthy 

conditions more than others, and the comparison of data through 

time could explain whether these conditions tend to be spreading or 

contained in the city. Moreover, visualization of multiple public 

health phenomena can help finding correlations and links, for 

example air pollution and prevalence of respiratory diseases or 

calls to the emergency services. 

To this end, all the innovative features of the PULSE WebGIS 

introduced in chapter 3 contribute to the creation of a proper 

visualization tool that allows to aggregate data and maps to have a 

comprehensive vision of the public health panorama of the city. 

Besides open data and satellite images, also the data gathered 

inside the project itself are spatially enabled, as users agree to 

share their zip code of residence or to be tracked by the GPS 

functionality in their phones, thus geography is always added to the 

collected data. 

4.1.2. Analysis  

Visualization is not the only way in which spatial enablement 

can become useful to understand public health phenomena. The rise 

of awareness on the importance of geographic information in the 

detection and prevention of dangerous phenomena (not limited to 

public health) has brought also to the development of new analysis 

techniques based on spatial integration. All the modern software 

used for GIS creation and treatment nowadays contain a large set of 

data analysis tools that are able to perform operations such as 

clustering, similarity research, mapping, classification, data fusion 

etc. including the spatial dimension as element in the equations that 

define the methods.  

One clear example of this is a class of methods named Spatial 

Clustering [60], that are designed to find groups and patterns of 

similarity in a dataset similarly to the traditional clustering 

methods, with the addition of weights or equations that tend to 

cluster together data that are collected in areas geographically close 

to each other. The same idea can be applied also to supervised 

learning, generating the so-called Spatially Weighted Classification 
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[61], i.e. a set of classification techniques where spatial weights are 

introduced in order to modify the distance metrics used taking into 

account also the geographic distance of the observations. This is 

particularly useful to classify sensors data or to analyze data that 

are significantly dependent on space. 

Spatially enabled analysis tools are used also for observatory 

analyses, with modified statistical methods that perform 

distribution analysis and statistical tests introducing parameters 

that give information about the geographical elements of the 

features, such as geographical mean, centroid and orientation. The 

creation of these methods has led to the raise of a new field of 

research named geostatistics [62], i.e. a set of statistical methods 

used to predict or analyze values associated with spatial or 

spatiotemporal coordinates. These coordinates are introduced in the 

methods themselves. Geostatistics has a very wide range of 

applications, in different fields such as the mining industry (to 

identify the distribution of minerals and materials in order to 

optimize the mining process), environmental sciences (to quantify 

pollutants and predict their distribution), meteorology etc.. 

Applications in public health are relatively new. The main rationale 

behind the idea of geostatistics is that geographical phenomena are 

usually mapped taking samples in distant areas, creating the need 

of data integration and generation of predictions, with the related 

uncertainty measures. 

4.1.3. Georeferencing 

One of the most important actions in the analysis of 

geographical data is georeferencing. This word is referred to the 

situation in which a set of coordinates of a map or an image is 

somehow remapped to a geographic set of coordinates, with an 

identifiable correspondence between the two sets. In other words, 

thanks to georeferencing, the information contained on a map or 

digital image can be associated to its real location in the world. 

This process is pivotal in spatially enabled storage of 

information and analysis, as it allows to make aerial and satellite 

images useful for mapping real phenomena and it explains how 

data relate to the imagery. 

Besides this, georeferencing allows to perform important 

operations to overlap, analyze and integrate information. For 
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example, different images could contain different useful 

information coded in different ways, georeferencing allows to unify 

this information in order to perform analysis or visualization of 

phenomena of the integrated data. Also, information coming from 

punctual locations, such as sensors located in space, or coded in 

different ways as coming from different sources can be easily 

integrated and related to the real world. Also temporal analysis can 

be fostered by georeferencing, as sometimes different images or 

maps could contain data referred to different timeframes, so their 

combination can be revealing of trends and patterns of the studied 

phenomena depending on the temporal dimension. 

There are several ways of georeferencing an image or a set of 

data, most of which nowadays are already integrated in the modern 

GIS tools, through which georeferencing is possible for a set of 

points, lines, polygons, images or even 3D structures. The only 

necessary requirement is that the georeferencing method uses a 

unique identifier that express a correspondence with one location. 

Some data are already georeferenced depending on the way they 

are collected, for example GPS tracking devices record latitude and 

longitude, actually georeferencing the collected points.  

Georeferencing of images can be a more complicated process, 

as some control points with known geographic coordinates have to 

be set, with a pre-set coordinates system and established projection 

parameters [63]. Sometimes images are encoded using specific GIS 

file formats or are accompanied by a world file, i.e. a conventional 

text file format with 6 lines containing information on the 

transformation to be performed to associate a geographical location 

to each pixel of the image. 

4.2. Spatially Enabled Methods 

As explained in section 4.1.2, spatial enablement is frequently 

used to perform data analysis for data with an important geographic 

description. A lot of Machine Learning and statistical techniques 

have been adapted to include the spatial dimension in the analysis, 

usually with the addition of weights and parameters that give a 

crucial importance to the location where the data have been 

collected. In the next two subsections, two spatially enabled 

methods that have been used in the work reported in this thesis are 

explained. 
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4.2.1. Spatial Clustering 

The aim of all clustering techniques is to group together the 

objects of a dataset into a series of subgroups based on their 

similarities [64]. Spatial Clustering algorithms follow the exact 

same principle, grouping together objects in subclasses such that 

similarities between objects in the same group are maximized and 

those with objects in the other groups are minimized, but with 

datasets that have a clear spatial reference that is taken into account 

in the similarity search process. Currently, spatial clustering is 

widely used in the field of spatial data analysis, such as land use 

studies [65], earthquake analysis [66], geographic customer 

segmentation [67] and public health [68]. 

Spatial Clustering algorithms can be roughly divided into seven 

groups: partitioning, hierarchical, graph-based, grid-based, model 

based and combinational algorithms [60]. The choice of using one 

type of algorithm over the other depends strictly on the problem to 

solve, since some provide more precise information on the position 

and shape of the clusters and the geometrical properties of the 

attributes than others. 

The most common spatial clustering algorithms are usually 

available as tools on the main GIS softwares, such as ArcGIS [69]. 

ArcGIS, developed by ESRI [70], is one of the most famous GIS 

analysis and elaboration programs, as it contains several tools for 

the upload and the analysis of GIS layers, orthophotos, raster 

images, etc.  

This software features a large spatial statistics toolbox that 

includes several spatial data analysis algorithms. One of them is the 

Grouping Analysis tool, that performs spatial clustering with 

algorithms and parameters that depend on the settings gave as input 

by the users [71]. 

In particular, when options on the spatial constraints are 

specified, the algorithm employs a connectivity graph to find 

natural groups, otherwise the tool uses a classical K-means 

algorithm. 

This tool takes point, polyline, or polygon Input Features, a 

unique ID field, a path for the Output Feature Class, one or 

more Analysis Fields, an integer value representing the Number of 

Groups to create (if known), and the type of Spatial Constraint -if 

any- that should be applied within the grouping algorithm. The 

output is a new Output Feature Class that contains the fields used I 
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the analysis and a new field indicating the group each feature 

belongs to. 

When the number of groups is not known, the algorithm tries to 

find the optimal number of groups using the Calinski-Harabasz 

pseudo F-statistic, i.e. a ration reflecting the within-group 

similarity and the between-group difference:  

(
𝑅2

𝑛𝑐 − 1
)

(
1 − 𝑅2

𝑛 − 𝑛𝑐
)

 

Where 𝑛  is the number of features, and 𝑛𝑐  the number of 

clusters. The parameter 𝑅2 is a score that reflects how much of the 

variation of the original data was retained after the clustering 

process, and is calculated as: 

𝑅2 =  
𝑆𝑆𝑇 − 𝑆𝑆𝐸

𝑆𝑆𝑇
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Where 𝑛𝑖  is the number of the ith cluster, 𝑛𝑣 the number of variables 

used for the clustering process, 𝑉𝑘̅̅̅̅  the mean value of the kth variable, 

𝑉𝑖
𝑘̅̅ ̅̅  the mean value of the kth variable in the ith cluster and 𝑉𝑖𝑗

𝑘 the 

value of the kth variable of the jth feature of the ith cluster. Summing 

up, SST is the total sum of squares of the differences between the 

mean value of each variable of each feature and the mean value of 

each variables, and therefore it represents the between-clusters 

differences, whereas SSE is computed in the same way but using 

the mean of each variable for each cluster, and therefore represents 

the within-cluster similarity. For this reason, the higher R2, the 
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better the discrimination among features with the selected number 

of clusters. 

If the spatial constraint option is activated, the Grouping Tool 

clusters together only polygons that share an edge or a vertex, in 

alternative the user can input a weights matrix that assigns an 

initial score to cluster together areas that are known to have 

similarities a priori.   

The algorithm which the spatial clustering is based on is the 

minimum spanning tree [72], i.e. when the spatial constraint is 

activated, the algorithm designs a graph that maps the relationships 

among the features in the neighbor areas: each feature becomes a 

node in the tree that is connected to other nodes by weighted edges, 

where weights are proportional to the similarity between the 

objects. The tree is then pruned in a way that minimizes the 

dissimilarity in the resulting groups, obtaining a final minimum 

spanning tree. 

4.2.2. Geographically Weighted Regression 

Spatially enabled data analysis methods, besides clustering, also 

include a set of supervised learning methods and other statistical 

analysis tools, such as geographically weighted classification [73] 

and geographically weighted regression (GWR) [74]. This last 

method has been used in a study reported in this thesis in chapter 6, 

therefore it is presented in this section. 

The concept that stands at the basis of GWR is the same of 

regular regression. Linear regression is usually represented in the 

form: 

𝒀 =  𝜷𝑿 +  𝜺 

Where Y represents the vector with the measurements of the 

dependent variable, X the vector with those of the independent 

variables, β the coefficients and ε the error terms. The aim of the 

regression is to find a relationship considering each couple of 

points (xi,yi) such that the variable Y can be predicted knowing the 

values of X. In mathematical terms, this is done by estimating the 

coefficients in a way that minimizes the error between the observed 

values of Y and those obtained with the model 𝐘(𝛃) = 𝐗𝛃. This 

could be written with the formula: 
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𝜷̂ ≔ 𝑚𝑖𝑛 ∑(𝑦𝑖 − (𝑿𝜷)𝑖)
2 

That indicates how the coefficients are estimated 

minimizing the squared norm of the difference between the 

observed values and the ones calculated by the model. A 

weight could be introduced in this formula to give a different 

relevance to each observation, modifying the equation as 

follows: 

𝜷̂ ≔ 𝑚𝑖𝑛 ∑ 𝑤𝑖(𝑦𝑖 − (𝑿𝜷)𝑖)
2 

GWR works in this way, calculating a weighted linear 

regression with weights that give more relevance to observations 

that are geographically close to each other. In the case of the GWR 

algorithm we used, we created a grid of regular spaced dots that 

overlapped the GIS layers we had (see chapter 6 for details), and 

we computed a different linear regression for each dot. Our GIS 

layers were described in polygons, so we localized the values of 

each observations related to each polygon in its centroid. This 

allowed to compute a set of linear regressions, one for each dot, 

where the values of the observations related to the polygons where 

the same, but the weights changed. In our case, we created the 

weights as follows:  

𝑤𝑖 = 𝑒
−

𝑑𝑖𝑗
2

𝑠2  

Where 𝑑𝑖𝑗 represents the distance between the ith dot and the jth 

centroid, and 𝑠  is an arbitrary selected threshold. As reported in 

chapter 6, our threshold was set to 5 km and the dots were spaced 

all 1 km from each other. 
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4.3. Convolutional Neural Networks 

4.3.1. The Main Idea 

The word Artificial Neural Networks refers to a class of 

algorithms based on the connection of multiple nodes (artificial 

neurons), inspired to the anatomy of the brain, composed by 

several synapses connected together [75]. Each artificial neuron 

takes one or more inputs from other neurons or external sources 

and transmits an output, deriving from an elaboration of the inputs, 

to the other neurons it is connected to. The transmission is usually 

regulated by a non-linear function and by weights. Neurons are 

usually organized into layers. The layer with the neurons that 

receive external data is named input layer, and it is connected to 

the output layer, i.e. the layer producing the output of the analysis 

through a set of hidden layers. The neurons of each layer are 

connected exclusively to the ones of the preceding layer, from 

which they receive the inputs, and to the ones of the subsequent 

layer, to which they transmit their output. Figure 4.1 shows a 

representation of a typical architecture of an artificial neural 

network. 

 

Figure 4.1: example of the architecture of an artificial neural 

network. 
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Among the main elements of a neural network, one of the most 

characteristic is the propagation function, that computes the input 

of a neuron as a weighted sum of the outputs of its predecessors. In 

this phase, backpropagation [76] (i.e. an algorithm used to adjust 

the weights of the network based on the error detected during the 

learning process) plays an important role in improving the accuracy 

of the learning results. Another element that could be present is 

represented by the hyperparameters, i.e. a set of fixed parameters 

that are set at the beginning of the learning process and remains 

constant during the process (e.g. number of hidden layers, learning 

rate etc.). Artificial neural networks have many applications, they 

are usually applied to machine learning problems both supervised 

and unsupervised, since they can learn information from examples 

thanks to the propagation of information within their neurons. 

Other applications include systems control, video gaming, pattern 

recognition, face identification, translation and many others. 

An important class of neural networks, that is gaining more 

importance in the last years, is the so-called Convolutional Neural 

Networks. This is a class of neural networks belonging to the deep 

learning paradigm [77], as the networks are formed by a high 

number of layers. These layers are usually fully connected, i.e. 

each neuron in one layer is connected to all neurons of the 

following layers. The word “convolutional” derives from the 

convolution operation [78], that is performed in most layers and 

stands at the basis of the network, as it transforms an image into a 

feature map. Another important characteristic of most CNNs is the 

presence of pooling layers, that reduce the dimensions of the data 

combining clusters of neurons together. 

4.3.2. Image Analysis 

CNNs are very versatile algorithms that can be tuned for 

numerous different problems, as all neural networks, but they are 

typically used to perform the analysis of images and 2D objects, 

including videos. They are mostly applied in pattern recognition 

and image classification, leading to a large spectrum of possible 

applications, from medical analysis (e.g. support to the diagnosis 

through analysis of medical images) to forensics (e.g. face 

recognition) and automated driving (sign recognition). 
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Several applications of these algorithms have been reported also 

regarding satellite images analysis and geographic/geomatics 

applications. For instance, CNNs can be used to monitor land cover 

changes, useful in environmental planning or disaster mitigation 

[79], or even to identify possible environmental hazards such as oil 

spills [80]. Applications in the urban environment can be found as 

well, for example Cao et al. [81] proposed a pipeline based on 

CNNs to classify aerial and street view images of New York City 

for urban planning and management. 

The main problem of CNNs is that their training usually 

requires vast datasets with numerous examples, that are not always 

easily available. One solution to this issue is to use pre-trained 

networks to create feature maps of images different from the kind 

of images used for the training. This operation is based on the 

concept named transfer learning, i.e. the attempt to solve a 

problem using a method originally created to solve a different, 

even if similar, problem. The study reported in section 6.3 for 

example shows the application of a pre-trained CNN used to 

classify artwork for the creation of feature maps of satellite images 

of urban areas. 
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Chapter 5 

5 Interactive Simulation Tools 

Improving public health in an urban environment can be a difficult 

challenge that involves public health authorities and city 

municipalities, besides citizens themselves. Spatial analytics such 

as the ones presented in chapter 4 can help analyzing the health 

problematics of the city, finding the neighborhoods that mostly 

need interventions and designing the best plans to improve the 

public health panorama of those neighborhoods, but interventions 

on factors such as urban structure and education of the citizens 

require time-consuming and expensive processes. For this reason, 

the use of other technological tools that allow to better predict the 

effects of urban planning strategies, in addition to the ones 

presented on chapter 4, can help making the intervention processes 

easier and safer. 

To face this issue, the PULSE dashboard features a set of 

simulation tools built to respond to urban planning related 

questions and predict possible scenarios deriving from specific 

actions. 

In this chapter, the methods used to create these tools are briefly 

described. 

5.1. Agent-Based Models 

PULSE’s simulation tools are based mainly on the modeling 

paradigm known as Agent-Based Modeling. Agent-based Models 

(ABMs) are a class of very versatile tools that can be used to model 

a vast variety of phenomena, based on the simulation of the 
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interactions of several entities located in a shared environment. As 

in other scientific environments, the term model contained in the 

ABM definition refers to an abstraction or representation of a given 

reality [82]. A simulation model refers to the algorithms, 

mathematical expressions and equations that encapsulate the 

behavior and performance of a system in the real world scenarios, 

as defined by Abar et al. [83]. 

In this subchapter, after a more detailed presentation of agent-

based paradigm, some scientific applications are reported, followed 

by their extension to public health and the subsequent integration 

into the PULSE system. 

5.1.1. Simulation of agents’ interactions 

The key to the ABM simulations stands in the concept of Agent. 

An agent can be thought as something similar to the informatics 

concept of object, i.e. an element that incapsulates attributes, 

methods and operations of a software module, but it presents some 

crucial features that make it a different entity. Differently from an 

object, the agent is not expressed as a container of attributes and 

methods, as it contains a higher level of abstraction that allows it to 

be expressed in terms of its intended actions [83]. An agent is an 

autonomous and independent element, capable of performing 

actions by itself. In the definition of an ABM, the user sets a 

number of variables and mathematical relations that define the 

characteristics of a shared environment in which the agents operate 

and the interactions the agents can have among themselves and the 

surrounding environment. Agents are intuitive, they have the 

ability of perceiving all the changes in the surrounding domain and 

autonomously respond to them [84]. Summing up, it could be said 

that an agent is an independent entity that acts in relation to its own 

beliefs and behavioral characteristics, reacting to the surrounding 

world and to other agents. 

The ensemble of a high number of agents in a shared 

environment that creates an abstraction of a real-world 

phenomenon, either observed or created, generates the Agent-based 

simulation paradigm. From a practical point of view, an ABM can 

be considered a computational model based on a set of action-

reaction protocols and mathematical relations that create a dynamic 

environment in which agents operate, in order to observe deriving 
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insights on the emerging behaviors or possible changes in the 

environment. The most diffuse use of this paradigm is the 

simulation of realistic scenarios with a set of self-governing agents 

that represent living entities that act with behaviors and beliefs 

similar to those of the real-world entities they represent. Agents 

can represent all sorts of real-world entities, either animated or 

inanimate, such as people, animals, plants, objects, vehicles etc., as 

long as they possess intrinsic behavioral tendencies and are able to 

actively interact with the environment. In most ABMs, there are 

different categories of agents, each one with different 

characteristics and behaviors, that interact with each other. 

Sometimes agents within the same model represent the same real-

world entities, but they are subdivided into subcategories, named 

breeds, according to some peculiar features (e.g. whether they are 

sick or healthy). 

ABMs can be programmed using specific software, such as 

NetLogo [85], or using dedicated toolboxes of existing 

programming languages, for example the Python package MESA 

[86].  

5.1.2. Applications 

Considering that agents can model a large variety of entities, 

ABMs are extremely versatile and can be used in a large variety of 

science fields, such as epidemiology, social sciences, biology, 

economics, finance, meteorology etc. 

The field of application depends solely on what the agents 

represent, for example in an epidemiological model agents can be 

people (possibly divided into sick/contagious and healthy) or 

viruses, whereas in a biological model they can be an abstraction of 

cells or microorganisms. 

In general, ABMs can be used to study phenomena where there 

is an important cause-effect mechanism, such as in epidemiology 

[87]. In this field, ABMs are a useful tool to simulate the outbreak 

of a disease or the progression of a contagious pathology that can 

be passed from one agent to the others. Many ABMs that simulate 

the outbreak or the progression of influenza clusters have been 

created in order to find new perspective for prevention or 

intervention and to study the effect of vaccination campaigns [88]–

[90]. The applications of these study vary from understanding the 
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burden of a certain disease in hospital systems to studying the 

social implications of the epidemics, or even understanding the 

most important vectors of disease transmission, as it was done by 

Cooley et al. [91], who studied the role of subway travel in the 

spread of an influenza epidemic in New York City and concluded 

that only about 4% of the contagions happened in the subway, thus 

concentrating the interventions on the transportation system could 

be a relatively ineffective strategy. 

ABMs can be applied also in fields where people are not 

directly involved, such as biology, for example Gorochowski et al. 

[92] used ABMs to model bacterial populations, using agents as an 

abstraction of bacteria rather than people. 

Agents can also be inanimate objects, as long as they possess 

autonomy and specific behaviors. For example, there are ABMs 

that study air traffic where agents are the abstraction of airplanes 

[93] or ABMs that study the chemistry-related self-organization 

properties of some substances where agents are molecules [94]. 

These examples are only a glimpse of the enormous range of 

phenomena and dynamic systems that can be studied using this 

technology.  

5.1.3. Extension to Public Health 

 Being a multidisciplinary field, Public Health offers a large 

spectrum of possibilities of applications for ABM technology. 

Among other things, public health is also about interventions, 

problem solving and active actions, all elements that are at the 

basis of an ABM. ABMs in public health can be used to simulate 

health-related scenarios, answer to “what-if” questions and plan 

interventions to mitigate health risk or increase wellbeing in a 

certain environment. Although the application of ABMs to public 

health is relatively new (the first studies appeared within the last 10 

years), one could say that all the ABMs developed to study 

epidemiology, economics, climate etc. are somehow related to 

public health, as solving problems in these fields contributes to the 

global health and wellbeing status of the population.  

Historically, ABMs in public health have always been used to 

create epidemiological models of infectious diseases [95], as it 

seemed to be their most natural application. With time, they started 

to be used also to study health-related human behavior, for example 
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some models were developed to study the prevalence of smoking in 

the population, for example by investigating the influence of social 

factors on smoking [96] or the effect of the introduction of e-

cigarettes on the smoking behavior [97]. Smoking is not the only 

behavior that has been simulated with public health ABMs, for 

example Yang et al. [98] investigated the population’s tendency to 

walk in an urban environment related both to external factors (i.e. 

the status of the neighborhood) and to their personal 

characteristics, including ability to walk, experience, age etc. Other 

behavioral studies have been performed with ABMs, for example 

Auchincloss et al. [99] studied the impact of social segregation to 

different dietary habits that can lead to an increased risk of obesity 

or certain illnesses. 

Fundamentally, ABMs in public health can be a powerful tool to 

explain or predict health outcomes, providing insights on the cause-

effect mechanisms at the basis of the rise of health-related 

problematics and behaviors. Following the same idea, they can also 

be used to conduct virtual experiments of interventions and policies 

to reduce the burden of certain diseases, as pointed out by Tracy et 

al. [95].  

Unfortunately, the use of ABMs in public health presents some 

limitations as well, that can be mostly identified in three points: 

finding the best trade-off between model simplicity and model 

realism, the possible effect of confounders in the definition of the 

relations between the modeled objects, and the lack of simulation 

of the steps of the interventions. In detail, these problematics can 

be explained as follows:   

• When building a model, one of the main rules to follow 

is to try to keep it as simple as possible [100], but the 

simulation of a public health interventions scenario 

requires a certain level of detail in the representation of 

the real-world system, in order to generate meaningful 

results on the possible impact of the health 

intervention. The balance between these two elements 

is not always so easy to find, and trial-error strategies 

are often used to tune the model properly. 

• Sometimes it could be difficult to model all the 

relations that are needed to create a reliable abstraction 

of the real-world system represented by the model. 

This difficulty is usually a direct consequence of the 
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lack of empiric data to model a certain phenomenon. 

When empiric data are actually available, sometimes 

they could be taken from observational studies 

performed on populations with different characteristics 

and casual patterns than the modeled one, thus 

introducing confounders in the model [101], [102]. 

Furthermore, validation can sometimes be impossible 

as it would need other data taken independently from 

the ones used for the creation of the model. This is a 

known problem in Public Health Agent-based 

Modeling, but on the other hand even an imprecise 

ABM can provide useful insights on the mechanisms at 

the basis of the development of a health situation. 

• The simulation of interventions is usually performed 

under the assumption that specific actions could lead to 

a certain percentage of success, but the steps that 

would be required to obtain this success are rarely 

considered. For example, a classical public health 

ABM could simulate the effect of a 10% or 20% 

reduction in the obesity rate of a city on the prevalence 

of diabetes, but it’s usually difficult to gather enough 

data or to build a model complex enough to simulate 

all the steps that would be really necessary to come to 

such reduction. 

In spite of these limitations, if properly used by taking into 

account their potential together with their limitations, ABMs are 

powerful tools for public health, as they are useful to model a wide 

variety of interactions, behaviors, cause-effect paradigms and 

environmental and social phenomena.  

Geography can represent an important addition to these kinds of 

models, ABMs are in fact usually created a simulated generic 

environment, as they focus on the agent’s interactions rather that 

the real-world setting of the scene. In several public health 

scenarios however, the location of the studied phenomena can be of 

crucial importance, especially in urban planning. With time, 

several tools to integrate GIS data inside the Agent-based world 

have been developed and used [103], [104].   
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5.1.4. Integration in PULSE 

 The PULSE dashboard, presented in section 3.2.4, includes a 

collection of observational and interactive tools for the public 

health policy makers through which they can explore the city data, 

observe phenomena, study health related problems and find tools to 

ease the intervention planning process. Some of these tools are 

simulation tools developed using the Agent-based paradigm. 

During the design of the project, ABMs were identified as a 

proper technology to develop innovative simulation tools to model 

public health-related scenarios using the large quantity of data 

gathered in the context of the project. In PULSE, ABMs are 

concepted as a tool mainly to simulate “what-if” scenarios, to study 

the impact of the possible changes in some variables of the public 

health panorama of the city and to generate insights on the possible 

effects of intervention strategies. 

ABMs in PULSE are implemented creating state-of-the-art 

public health models, that integrate data observed in different 

studies and incapsulate GIS technology to make the simulation 

environment real. The models are developed using the software 

NetLogo, specifically designed to create ABMs, and are integrated 

inside the PULSE dashboard, using a Java-based embedding 

feature that NetLogo provides.  

So far, two simulation models have been created to study two 

different phenomena, both related to PULSE and the data gathered 

inside it: the influence of air pollution and socioeconomic factors 

on the asthma hospitalizations rate in New York and the effect of 

traffic and wind speed on the air pollutants concentration in Pavia, 

Italy. These models are described in detail in chapter 7, 

subchapters 7.1.1 and 7.1.2. It should be mentioned that both these 

models integrate GIS technology in order to perform the 

simulations over a real-world environment made of streets, 

sidewalks, parks, buildings etc., and  to give the observer a more 

realistic idea of what could be the effects of a variable change in 

the health panorama of the city. 
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5.2. Multi-layer urban traffic modeling 

One of the most typical problematics of every urban 

environment is notoriously traffic. Elevated traffic levels can 

influence health and wellbeing in several ways [105], for example 

increasing pollution and noise and affecting also mental health of 

the population [106]. Traffic is a widely studied and modeled topic, 

as there are numerous studies that have traffic modeling as first 

aim, with the global idea of  finding a way to reduce the probability 

of traffic jams and congestions that can be dangerous at several 

levels. Traffic modeling is of primary importance also for public 

health, especially in the urban environment, not only for its strict 

correlations with pollution- or mental health-related outcomes, but 

also because it is a phenomenon that can be observed and 

intervened on relatively easily, although traffic modeling is known 

to be difficult. 

Among all the tools that have been used to model traffic, ABMs 

appear in several occasions [107], [108], as they have been 

identified as a proper instrument to simulate how traffic flow 

would change if some interventions were applied, for example 

closing roads, reducing the amount of cars, changing the traffic 

lights patterns etc. 

In an urban public health project such as PULSE, traffic cannot 

be neglected among the public health variables that were chosen in 

the models developed. During the project, the technical team of the 

Laboratory of Biomedical Informatics M. Stefanelli of the 

University of Pavia started a collaboration with the Laboratory of 

Dynamic Systems of the same university, that includes a team 

specialized in traffic modeling. Although traffic has been widely 

studied in the world of simulation tools, as it has been the relation 

between pollution and health, comprehensive simulation models 

able to determine the health status of the population in dependence 

of a large variety of factors are generally rare even in the public 

health environment. For this reason, in PULSE we decided to unify 

different competences and create a large simulation model that 

incapsulate both the dynamic system-based traffic modeling and 

the spatially enabled health analytics, creating a large Agent-Based 

simulation tool where agents, representing people, are exposed to a 

complex combination of factors (environmental, socioeconomic 

and demographic) whose their health depend on. This model is 
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described in chapter 7, section 7.2, but the underlying traffic 

analytics are described in this paragraph.  

Generally speaking, there are three kinds of approaches in urban 

traffic simulation modeling: the macroscopic approach, the 

microscopic approach and the mesoscopic approach [109]. In short, 

the term macroscopic refers to models that represent traffic flows 

in an aggregate way whereas the term microscopic refers to models 

where the interactions of individual vehicles are considered. 

Mesoscopic models are a sort of middle ground, as they share 

properties from both models [110]. 

Unfortunately, extensive traffic data could not be gathered 

during the PULSE project, as their availability as open data is 

extremely limited and they are often difficult to obtain even by 

purchasing them. For this reason, we opted for a macroscopic 

approach, modeling traffic in an aggregated way in the different 

neighborhoods of the city, and adding its effects to the health risk 

of the population computed with spatially enabled models such as 

the GWR. In particular, our reference model is the one adopted and 

presented by Menelaou et al. [111], that built a regional-level 

model that combines route guidance with demand management, 

based on the origin and the intended destination of the vehicle 

flows inside the network. Basically, the city is divided into regions, 

and the traffic flow of each region is described using the Network 

Fundamental Diagram (NFD), that describe in a relatively simple 

way the macroscopic relations between the three main mobility 

patterns, i.e. speed, flow and density [112]. This diagram is 

composed by two different regimes, i.e. the free-flow traffic 

regimes where traffic flows at maximum speed and the congested 

regime, that occurs when there is a congestion due to traffic 

reaching a certain density inside the considered region. Figure 5.1 

reports an example of such diagram. 
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Figure 5.1: Example of a triangular Network Fundamental 

Diagram. Source: Ma et al., “Emission modeling and pricing on 

single-destination dynamic traffic networks”. 

The model implemented is defined by a set of different 

parameters. First of all, let the urban area be divided into 𝑅 

different regions denoted by 𝑟 ∈ 𝑅 = {1, … , 𝑅}. The traffic flow in 

each region can be described by a triangular NFD. Let also 𝑂 ⊆ 𝑅 

and 𝐷 ⊆ 𝑅  be the regions considered as origins and destinations 

respectively, and 𝐽𝑟
− ⊆ 𝑅  the set of neighboring regions to 𝑟 ∈ 𝑅 . 

Similarly, 𝐽𝑟
+ =  𝐽𝑟

− ∪ {𝑟}is defined such that: 

𝐽𝑟 = {
𝐽

𝑟
+ , 𝑖𝑓 𝑟 ∈ 𝐷

𝐽
𝑟
−  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Also, let 𝑑𝑜𝑑(𝑘) be the number of new vehicles that request to 

enter the region 𝑜 ∈ 𝑂 to go to the region 𝑑 ∈ 𝐷 at the time step 𝑘, 

i.e. the so-called external demand. The admitted external demand, 

i.e. the vehicles that actually enter inside the region is indicated 

with 𝑑̃𝑜𝑑(𝑘) , and is determined by the physical limits of the 

regions, the maximum possible demand that can enter a region at a 

certain time step, denoted by 𝐷𝑜𝑑
𝑀𝐴𝑋 and demand management rules 

that allow only a portion of the vehicles that request to enter the 

region to actually access it. The remaining flow that request to 

enter a certain region at a certain time step can be defined as: 
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𝐷𝑜𝑑(𝑘 + 1) = 𝐷𝑜𝑑(𝑘) − 𝑑̃𝑜𝑑(𝑘) + 𝑑𝑜𝑑(𝑘), 𝑘 = 1,2 …, 

At this point, we can define the variable 𝜌𝑟(𝑘) as the density, 

expressed in vehicles/km, of a region 𝑟 ∈ 𝑅 at the time step 𝑘, and 

𝜌𝑟𝑑(𝑘) the portion of this density that is destined to the destination 

𝑑 ∈ 𝐷 as follows:  

𝜌𝑟(𝑘)  = ∑ 𝜌𝑟𝑑(𝑘) 

𝑑∈𝐷

 

𝜌𝑟𝑑(𝑘)  = ∑ 𝜌𝑟𝑗𝑑(𝑘) 

𝑗∈𝐽𝑟

 

Where 𝜌𝑟𝑗𝑑(𝑘)  denotes the portion of density moving from 

region 𝑟 to region 𝑑 through the neighboring region 𝑗 ∈ 𝐽𝑟. 

With these elements it is possible to define the intended outflow 

of each region, defined through the fundamental equations of the 

triangular NFD, based on the function 𝑞𝑟(𝜌𝑟(𝑘)), that represents 

the intended outflow and is measured in vehicles/hour. The NFD is 

mathematically expressed as follows: 

𝑞𝑟(𝜌𝑟(𝑘)) = {

𝑞𝑟
𝐶

𝜌𝑟
𝐶

𝜌𝑟(𝑘), 𝑖𝑓0 ≤ 𝜌𝑟(𝑘) ≤ 𝜌𝑟
𝐶

𝑤𝑟 (𝜌𝑟
𝐽 − 𝜌𝑟(𝑘)) , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Where 𝑞𝑟
𝐶 indicates the capacity where the region operates at its 

maximum outflow is equal to 𝑞𝑟
𝐶 = 𝜌𝑟

𝐶𝑢𝑟
𝑓

, where 𝑢𝑟
𝑓

 indicates the 

free-flow speed (km/h) at the determined time step, and 𝜌𝑟
𝐶 is the 

so-called critical density, i.e. the density when the intendent 

outflow equals the maximum outflow. Furthermore, 𝜌𝑟
𝐽
 indicates 

the jam density, i.e. the density when both speed and outflow equal 

0, and 𝑤𝑟 = 𝑞𝑟
𝐶/(𝜌𝑟

𝐽 − 𝜌𝑟
𝐶) is the backward congestion propagation 

speed. 

Similar to the intended outflow, two variables can be defined: 

𝑞𝑟𝑑(𝑘)  and 𝑞𝑟𝑗𝑑(𝑘) , indicating the intended transfer flow from 

region 𝑟 to region 𝑑 and the corresponding flow that passes through 

the neighboring region 𝑗, respectively. 



Interactive Simulation Tools 

 

 78 

𝑞𝑟𝑑(𝑘)  = ∑ 𝑞𝑟𝑗𝑑(𝑘) 

𝑗∈𝐽𝑟

 

𝑞𝑟𝑗𝑑(𝑘)  =
𝜌

𝑟𝑗𝑑
(𝑘)

𝜌
𝑟
(𝑘)

𝑞𝑟(𝜌
𝑟
(𝑘)) 

 The word intended in these variables indicates that the 

observed densities and quantities would transfer from a certain 

region towards another one and passing from the neighboring 

regions if there were not any capacity restrictions, but the intended 

transfer flow from a region 𝑟 to a region 𝑗 is actually restricted by 

the inter-boundary capacity 𝐶𝑟𝑗(𝜌𝑗(𝑘)), that is the maximum flow 

that can pass through two neighboring regions, due to physical 

limits [111]. Therefore, the actual transfer flow can be defined as: 

𝑞̃𝑟𝑗𝑑(𝑘)  = min (𝑞𝑟𝑗𝑑
(𝑘), 𝐶𝑟𝑗(𝜌

𝑗
(𝑘))

𝑞𝑟𝑗𝑑(𝑘)

∑ 𝑞𝑟𝑗𝑦(𝑘)𝑦∈𝐷
) 

Finally, taking all these factors into account, the dynamics of 

the vehicles transferring from the region 𝑟  to region 𝑑  can be 

described by the following equation: 

𝜌𝑟𝑑(𝑘 + 1) = 𝜌𝑟𝑑(𝑘) +
1

𝐿𝑟
𝑑̃𝑟𝑑(k) +

𝑇𝑠

𝐿𝑟
∑(𝑞̃𝑗𝑟𝑑(𝑘) − 𝑞̃𝑟𝑗𝑑(𝑘))

𝑗∈𝐽𝑟

  

Where 𝑇𝑠 (min) denotes the simulation time step that regulates 

the evolution of the regional dynamics and 𝐿𝑟  (km) is the total 

length of the roads in the region. 

In words, the density of vehicles moving towards a certain 

destination from a selected region at a fixed time step is determined 

by the same density at the previous time step, plus the actual 

external demand and the difference between the quantity of 

vehicles entering the region from the neighboring regions to head 

towards the same destination and the quantity of vehicles leaving 

the region to pass through the neighboring regions. 

This relatively simple NFD-based model has been used to create 

a vast multilayer simulation tool for the traffic dynamics in 

Manhattan, New York City, which is described in section 7.2. 
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Chapter 6 

6 Spatial Analytics: applications 

As explained in chapter 4, spatial enablement, i.e. the ability to 

add spatial information to data gathered in a certain spatiotemporal 

timeframe and to data analysis and visualization methodologies, 

has been a central concept throughout the design and the 

development of the PULSE project. 

In this chapter, the main applications of this concept and of the 

analysis algorithms presented in chapter 4 are reported. In 

particular, after a brief presentation of the data integrated in the 

WebGIS, three works related to the PULSE project that apply 

spatial analytics to create new ways of analyzing public health and 

design interventions will be presented. These projects have been 

developed as part of the PhD work presented in this thesis and 

inserted in the PULSE framework. Their aim is to experiment new 

ways to apply spatial enablement to provide instruments to treat 

urban public health problems with the highest possible spatial 

resolution. 

6.1. Data Integration in the WebGIS 

The most visible integration of spatially enabled data has been 

performed in the WebGIS, that can be considered the best example 

of spatial enablement for data visualization, even if it features some 

interactive tools that are explained in chapter 3. As explained in 

section 3.2.2, the WebGIS collects a lot of data coming from 

different sources and of different kinds, namely health-related, 

demographic, socioeconomic, climatic and satellite images. 
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Most of the tabular data were already available in GIS-specific 

shapefile format (with the city usually subdivided in polygons 

representing different neighborhoods) with a clear spatial reference 

that allowed them to be overlapped to the other data. Other data 

were not already available in GIS format, but they contained a 

reference to the geographic position of the place where they were 

collected that allowed to add an identifier to make them 

representable in the polygons the city were divided into. 

This has led to the necessity of a hard effort for the integration 

of heterogeneous data accompanied by several difficulties related 

to the spatial enabled features. Satellite images and raster images 

were already georeferenced, even if sometimes with different 

standards, and sensors data were usually provided with a 

geographic reference of the sensors’ location, making it easy to 

integrate them inside the GIS maps. However, the integration of 

open data has been more complicated due to the lack of standards 

and harmonization procedures in the open data that can be found 

online. With the advancements of the current data collection 

technologies, there has been an increase in the capability to quickly 

collect and analyze large quantities of data, but unfortunately this 

is happening without a proper regularization and awareness from 

the public health authorities, leading to an increasing quantity of 

unorganized and chaotic data, difficult to import and integrate 

without a thorough supervision [113]. 

This lack of protocols and order hits data integration at different 

levels, as some effects are visible in the fact that different cities 

store and represent data with different standards, making it difficult 

to integrate them in a system that incapsulates more than one city 

such as the PULSE WebGIS, but even within the same city there 

are often problems to solve. For example, within PULSE the data 

integration had many unexpected delays and difficulties related 

basically to the following issues:  

• Conventional spatial subdivisions: this problem has 

been encountered mainly for the city of New York 

(NYC), but the issue is not specific for this city. NYC 

has a very large amount of open data available, 

creating the potential for a lot of urban public health 

studies, but data are collected with reference to several 

different spatial subdivisions. The main ones are: 
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o Boroughs: 5 polygons correspondent to the 

main districts of the city (Bronx, Brooklyn, 

Queens, Manhattan, Staten Island); 

o UHF 34 and UHF 42: two subdivisions 
correspondent to hospital districts (United 

Hospital Fund), with 34 and 42 polygons 

respectively; 

o CD 55, CD 59 and CD 71, where CD stands for 

Community Districts: three different subdivisions 

with 55, 59 and 71 polygons; 

o PUMA (Public Use Microdata Areas): 55 

polygons different from the CD 55 subdivision; 

o NTA (Neighborhood Tabulation Areas): 195 

polygons; 

o ZIP codes: 262 polygons. 

None of these subdivisions has vertices or edges that 

can be easily overlapped to vertices or edges of other 

subdivisions, so two or more phenomena that are 

measured with different spatial descriptions cannot be 

easily integrated without the application of extra 

spatial analytics. 

• Geometric inconsistency: in several cases, even when 

the information was already available in GIS 

shapefiles, contained inconsistencies that required 

longer processing times. For example, areas that in one 

shapefile where indicated as identified polygons, in 

other shapefiles with the same spatial subdivision they 

were marked as holes with no data (Figure 6.1). Offsets 

in the shape of the polygons of different shapefiles 

were noticed as well, requiring hand work to fix them. 



Spatial Analytics: applications 

 

 82 

 

Figure 6.1: example of geometric inconsistency. Even if they are 

supposed to represent the same spatial subdivision, he polygons of 

the red layer do not match the polygons of the blue layer, that 

contains several islands that are inexistent in the red layer.  

• Tabular data problems: even tabular data is not 

impervious to these kinds of problems, as numerous 

issues were encountered also in the integration of 

tabular data into the shapefiles of the GIS. Examples of 

this are the ambiguity of IDs and codes in the table and 

in the use of separators. Figure 6.2 shows an example 

of this related to the city of New York, where the code 

“1” is used both as a reference of the whole city and of 

the borough of the Bronx, and the comma is 

simultaneously used as the thousand separator and a 

field separator. 
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Figure 6.2: example of tabular problem in a csv file relative to 

NYC data. 

This work enlightened the necessity to increase awareness of the 

importance of spatial enablement from the data collection process, 

in order to create standards that ease the elaboration and integration 

of spatial information. In spite of this difficulties, a large wealth of 

data was integrated in the WebGIS, as described in section 3.2.2. 
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6.2. Spatial Enablement to study 
asthma hospitalizations in New York 
City 

Thanks to the data integration performed in the PULSE system 

and to the exploration of the spatial analytic methods explained in 

chapter 4, it was possible to investigate more deeply the link 

between the exposome and health-related outcomes. In particular, 

this section reports a study concerning the link between 

environmental, socioeconomic and demographic factors and the 

hospitalization rate for asthma in New York City (NYC) [59]. 

Asthma is known to be a multifactorial disease, whose 

manifestation and exacerbation is related to a combination of 

genetic, social and environmental factors, Some of which are 

known to the scientific community [114], for instance the relation 

between air pollution and asthma complications [115] or the 

connection between asthma prevalence and demographic or 

socioeconomics conditions such as race, education, sex, and 

income [116]. In spite of this, there is a general lack of studies that 

address the problem at an intra-city level. Clustering 

neighborhoods and population according to their risk level could 

allow policy makers to better target their interventions. 

A few studies focusing specifically on urban areas have been 

conducted, but they usually consider a coarse spatial subdivision 

which often corresponds to the whole city [117] or macroscopic 

grid-like subdivisions in the order of 10 × 10 km [118]. This is 

often a consequence of the scarce availability of well-integrated 

data regarding health and environmental exposure at a sufficient 

level of granularity to enable meaningful statistical analyses [59]. 

The study reported in this section shows an initial exploration of 

some of the high spatial resolution methods presented in chapter 4 

and used to analyze the large heterogeneous data gathered in 

PULSE, demonstrating their necessity and usefulness. The study 

was performed on the urban area of NYC and its results confirmed 

that the hospitalization rate is related to a number of environmental 

and socioeconomic factors whose level of influence changes in the 

different areas of the city, enlightening, among other things, the 

importance of allying high-resolution spatial methods to study this 

sort of public health phenomena.  
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6.2.1. The asthma issue in New York 

 Asthma is one of the most diffuse respiratory problems in the 

world, and its prevalence, as shown in chapter 2, does not appear to 

be declining in most places. For this reason, asthma was chosen as 

one of the main target diseases in PULSE, as its incidence appears 

to be particularly high in urban areas. Among the test sites, New 

York has been facing an important asthma problem for many years. 

According to the Center of Disease Control (CDC), about 10% of 

all adults in New York City are asthmatic, with this prevalence 

rising to 17% in some corners of the South Bronx [119]. This 

percentage is higher than the 9.3% of the rest of the State, which is 

also higher than the nationwide prevalence of the whole United 

States, which is about 7.5%. The healthcare system of the State of 

New York spends 1.3 Billion dollars per year for asthma (second 

highest in the US). 

The problem appears to be particularly present in some 

neighborhoods in the Bronx. 

According to the community health profiles [120] published by 

the New York City Department of Health in 2015, 0.3% of children 

aged 5 to 14 were hospitalized for asthma in New York City in 

2013, 0.7% were hospitalized in the Bronx, and 1.2% in the South 

Bronx neighborhoods of Mott Haven and Melrose. In the same 

year, the percentages of adults hospitalized were 0.2% globally in 

New York City, 0.5% in the Bronx, and 0.7% Mott Haven and 

Melrose. According to public schools records used by the NYC 

Department of Health, the percentage of asthmatic children ages 5-

14 years has increased from 2.4% to 3.5% from 2010 to 2014, and 

asthma appears to hit harder the African American and Latino 

populations, for reasons that are still partially unknown. 

6.2.2. Data Sources and Pre-processing 

 Several sources of data have been used to carry out the analyses 

reported in this section. Some of the data were gathered from open 

repositories (NYC is one the cities with the largest availability of 

recent data), other were provided to the PULSE consortium by the 

New York Academy of Medicine. The data to be collected were 

chosen based on the elements that appeared to be most related to 

asthma exacerbation according to previous evidence in literature. 
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Several variables, listed and described in Table 6.1, have been 

chosen for this study. For air pollution, we chose the PM2.5 and 

ozone concentrations, as among all the pollutants they appear to be 

particularly relevant in asthma exacerbation [17], [121] and open 

data about their monitoring in NYC is easily available. We then 

chose a set of other environmental data related to asthma (e.g., 

industrial land use) and some socioeconomic factors that appeared 

to be relevant in previous research [115], [118, p.].  

 

 

Table 6.1: description of the data used in our study with the 

correspondent data sources. 

Type Description Source Year Sample Size 

Health-related Hospitalization rate: 

number of people 

hospitalized for asthma 

over total population 

SPARCS, 

NYC Data 

Portal 

2014 42 observations (one 

for each UHF42)  

Environmental PM2.5 yearly average  NYC Data 

Portal 

2014 42 observations (one 

for each UHF42) 

Environmental Ozone summer average 

(from June to September)  

NYC Data 

Portal 

2014 42 observations (one 

for each UHF42) 

Environmental Percentage of land used for 

industrial activities 

Data2go.nyc 2017 59 observations (one 

for each CD59) – 42 

after interpolation 

Environmental Recycling rate Data2go.nyc 2010 59 observations (one 

for each CD59) – 42 

after interpolation 

Demographic Age: percentage of 

population aged <18, 

average age at 

hospitalization and 

percentage of population 

aged >65 

SPARCS 2014 174 observations (one 

for each zip code) for 

average age – 42 (one 

for each UHF42) after 

interpolation. 42 

observations for the 

percentages 

Demographic Race: percentage of people 

identifying as Black, 

Hispanic, Asian, White, 

Other/Unknown 

NTA 2014 195 observations (one 

for each NTA) – 42 

(one for each UHF42) 

after interpolation 

Socioeconomic Poverty rate NTA 2014 195 observations (one 

for each NTA) – 42 

(one for each UHF42) 

after interpolation 

Socioeconomic Medicaid coverage NTA 2014 195 observations (one 

for each NTA) – 42 

(one for each UHF42) 

after interpolation 
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The socioeconomic data used in this paper are freely available 

in the NYC Neighborhood Health Atlas website [122], the PM2.5 

historical data have been downloaded from the NYC 

Environmental & Health Data Portal [123]. The data regarding the 

percentage of land used for industrial purposes, the obesity rate and 

the recycling rate were taken from the data2go.nyc website [52]. 

The information regarding age and race of hospitalized people has 

been acquired from the SPARCS [55] limited 2014 dataset, which 

is not freely available and has been provided by the New York 

Academy of Medicine. 

Some preprocessing operations had to be carried out in order to 

uniform the spatial description of the data, as different datasets 

were described using a different spatial subdivision, among the 

ones presented in section 6.1. In particular, we decided to adopt the 

UHF42 subdivision to visualize the results, as most of the data 

considered is natively available for it. Since the different 

subdivisions used in NYC do not share vertices and edges if 

overlapped, we applied a simple data harmonization algorithm as 

follows: let's consider a polygonal subdivision for which a certain 

variant is available, for each polygon Pi, the variant value vi is 

known. If we consider another polygon P0, belonging a different 

subdivision, in general it won't coincide with any Pi and, instead, 

will overlap to several of them. The estimated v0 can be obtained 

by the weighted sum: 

𝑣0 =
∑ 𝑣𝑖𝐴𝑖𝑖

∑ 𝐴𝑖𝑖
 

 

Where 𝐴𝑖  is the area of intersection between Pi and P0 if the 

intersection is non-empty. In words, the value of a phenomenon or 

indicator in any spatial subdivision is reported in the UHF42 

subdivision constructing the polygons as the sum of the values in 

the polygons of the other subdivisions, weighted for the 

overlapping areas.  
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6.2.3. Spatial Clustering analysis 

 The first step of our exploratory analyses consisted in a set of 

spatially-enabled clustering analyses. Firstly, we tried to assess the 

relationship between air pollution and asthma hospitalizations 

using the spatial clustering method explained in section 4.3.1, 

considering the rate of asthma hospitalizations and the yearly 

PM2.5 concentration as features. We performed the clustering 

multiple times, each one considering the data of a specific year 

from 2012 to 2014, obtaining systematically the same clusters as 

those shown in Figure 6.3a, showing 2014 data. Some interesting 

phenomena can be noticed in the clustering results: 

• In 7 out of 10 clusters, low PM2.5 concentrations 

correspond to low asthma hospitalization rates. 

• The remaining 3 clusters, all correspondent to areas 

located in the borough of Manhattan, are in contrast 

with the rest of the clusters, as they show high 

pollution levels and low hospitalization rates; 

• The Bronx, East Harlem and some neighborhoods in 

North/Central Brooklyn crossed by important highways 

(e.g., Brooklyn-Queens Expressway, Long Island 

Expressway) have the highest hospitalization rates of 

and the highest pollution levels of all the 

neighborhoods excluding the wealthiest areas of 

Manhattan. 
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Figure 6.3: Results of the spatial clustering considering (a) the 

average 2014 PM2.5 concentration and the asthma hospitalization 

rate and (b) the poverty rate. On the left, a color-coded map of the 

clusters and on the right a parallel box plot that shows the relation 

between the parameters’ distributions. 

These results suggest that although there is clear and 

documented relation between air pollution and asthma, also other 

factors, probably socio-economic, can play an important role. This 

is demonstrated by the Manhattan case, as in our results Manhattan, 

known to be the wealthiest borough of the city, has for the most the 

highest pollution concentrations and the lowest hospitalization 

rates. To further explore this point, we performed another spatial 

clustering operation in which we focused on the link between child 

asthma hospitalizations and poverty. Figure 6.3b presents the 

results from the spatial clustering analysis using asthma 

hospitalizations and poverty rate. Apart from some neighborhoods 

in West Brooklyn, there seems to be an association between high 
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poverty rates and high hospitalization rates, as in the same areas 

where the hospitalization rate is high (i.e., south Bronx and 

north/central Brooklyn), the poverty rate also appears to be higher 

than the rest of the city.  

6.2.4. Geographically Weighted Regression to unveil 
relations between asthma hospitalizations and 
environmental and socioeconomic factors. 

 Given the initial insights shown by the spatial clustering 

results, we performed a more thorough analysis to better assess the 

relations between asthma hospitalizations and many other factors, 

not only related to pollution. 

First of all, we performed a univariate standard linear regression 

using 2014 asthma hospitalizations as dependent variable and the 

average yearly PM2.5 concentration for the same year as covariate. 

Our results confirm the same phenomena pointed out by the spatial 

clustering: PM levels do not have a significant impact on the 

hospitalization rate (P-value 0.985, Correlation Coefficient 0.003). 

Considering the spatial clustering results, in which it's clear that in 

midtown Manhattan the relationship between air quality and 

hospitalizations is different than the rest of the city, we carried out 

the same linear regression excluding all the neighborhoods of 

Manhattan but East Harlem, Central Harlem and Washington 

Heights (since they don't share the same contrast between high 

pollution and low hospitalization rate), and we obtained a 

significant relationship between air pollution and hospitalizations 

with a moderate positive correlation (P-Value 9.62 × 10−4, 

Correlation Coefficient 0.534).  

We then repeated the analysis using the 2014 poverty rate as 

covariate to predict the asthma hospitalizations, results show a very 

strong correlation (P-Value 5.93 × 10−13, Correlation Coefficient 

0.855). From these results it could be assumed that the average 

yearly value of PM2.5 is not a good measure to study the effects of 

air quality on asthma, as local and brief but potentially dangerous 

peaks are not visible. Furthermore, these results confirm that, even 

if air quality plays a role in determining the number of asthma 

hospitalizations in several areas of the city, it appears that 

socioeconomic factors are much more decisive when all the city is 
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considered. Hence, the spatial dimension cannot be neglected in 

studying the hospitalization rates in a city as NYC, in which there 

are pronounced socioeconomic and environmental differences 

among the neighborhoods. For these reasons, further analyses 

employing the Geographically Weighted Regression (GWR) 

method explained in section 4.2.2 were performed in order to 

correct for the local effect of socioeconomic factors in the different 

areas of the city. We applied our algorithm several times using a 

regular spaced grid of points distant 1 km from each other and 

setting 5 km as threshold, and tested different covariates singularly, 

specifically: PM2.5 and ozone concentration in the same year 

(2014), poverty rate, percentage of the population identifying as 

Black, obesity rate, percentage of population aged under 18 or over 

65, recycling rate. After these tests, we also created a multivariate 

model to explore the usefulness of this method also in the analysis 

of multiple covariates. Figure 6.4 shows how the GWR was applied 

to obtain a set of spatially enabled regressions, one for each dot of 

the gird overlapped on the city GIS maps, starting from data 

represented in the UHF42 subdivision. 

 

Figure 6.4: graphical representation of how GWR works to 

compute a linear regression for every dot overlapped to the GIS 

map of the city. The weights are calculated based on the distance 

between each dot and the centroids of the polygons, where the 

measured values are conventionally located. 
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6.2.4.1. Air Pollution 

According to our Spatial Clustering results air pollution, in 

particular PM2.5 concentration, doesn't seem to have a 

significative impact on the asthma hospitalization rate in the whole 

city. Our results from the GWR confirm this hypothesis, since R2 is 

low in most of the city, and in Manhattan β1 is even negative, 

indicating the contrast between the high pollution level and the low 

hospitalization rate. To investigate also other pollutants, we applied 

the GWR also to the average concentration of Ozone, selecting as 

dependent variable a subset of hospitalizations occurred from June 

to September 2014, since the open data about ozone available is 

only referred to summer months. Results are not reliable, since in 

most of the city R2 is low, and β1 is generally negative. The overall 

correlation is −0.2186 and the P-Value is 0.164. This could be due 

to (i) higher influence of socioeconomic conditions than air 

pollution in the hospitalizations rate, (ii) low significance of 

averaged pollution data of a long period, that hides peaks and daily 

variations that can have an important effect on asthma. The GWR 

results regarding this part are shown in Figure 6.5. 

 

Figure 6.5: Results of the GWR using the average yearly PM2.5 

concentration as covariate. The yearly value is not a good predictor 

in most of the city. 
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6.2.4.2. Race 

Previous research [124] suggested that race and ethnicity can be 

related to asthma risk and development. Table 6.2 shows the 

results of a first explorative analysis on the hospitalization rates per 

race in the five boroughs: each value is calculated as the number of 

hospitalizations divided by the number of people identifying as the 

specific race considered. This table shows that in the Bronx, 

Brooklyn and Queens, where the overall asthma rate is the highest, 

the hospitalization rate is higher for Black people. Previous studies 

[125], [126] suggested that in several areas of the USA Black 

people and Latinos are more easily exposed to damaging pollutants 

since they usually live in areas close to industrial facilities or large 

highways. Figure 6.6 shows that the higher concentration of Black 

people in NYC is in the same areas where the higher 

hospitalization rates are. This phenomenon is mostly confirmed by 

the results of the GWR applied with the percentage of Black people 

as covariate, the results of which are also visible in Figure 6.6 

(c,d). The overall P-Value is 4.94 × 10−4 and the correlation is 

0.5143. 

 

 

 

Table 6.2: percentage of people belonging to each race group that 

were hospitalized in 2014 in each borough. 

Borough Black Hispanic White Asian Other 

Bronx 0.0213 0.0015 0.0011 0.0008 0.031 

Brooklyn 0.5951 0.1520 0.5606 0.1043 0.6203 

Manhattan 0.0149 0.01 0.0144 0.0017 0.0515 

Queens 1.3909 0.3003 0.6689 0.0287 0.4692 

Staten Island 0.069 0.006 0.0026 0.001 0.0211 

 



Spatial Analytics: applications 

 

 94 

 

Figure 6.6: (a) Percentage of black people in the 42 districts in 

NYC. The highest numbers can be seen in the Bronx, in Harlem 

and East Harlem, South-East Queens and East Brooklyn, especially 

Crown Heights, Flatbush and Brownsville. Most of these areas are 

the same in which the hospitalization rate is high, visible in (b). 

(c)(d) GWR results using the percentage of people identifying as 

black as covariate. The correlation is positive and reliable in most 

of the city, especially all Manhattan, the Brooklyn-Queens border, 

Staten Island and South Bronx. 

6.2.4.3. Poverty Rate 

The Spatial Clustering analysis suggested a relation between 

poverty and asthma in the city, confirmed by the a-spatial linear 

regression. To investigate if and how this correlation varies 

throughout the city, we applied GWR also to the 2014 poverty rate 

in all the neighborhoods. Figure 6.7 shows the β1 and R2 parameters 

in the different areas of the city. It is noticeable that in most of the 

city β1 is positive and R2 has values > 0.5. This means that in most 
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of the city the probability of observing asthma attacks increases 

with the poverty rate. In contrast with this, an area between south-

west Brooklyn and east Staten Island shows values of R2 close to 0, 

meaning that in those neighborhoods the relation found is not 

reliable, and further analyses on those neighborhoods are required.   

 

Figure 6.7: GWR results using the poverty rate as covariate. The 

relation is strongly positive and reliable in most of the city, the 

only exception is an area between South-west Brooklyn and East 

Staten Island. 

6.2.4.4. The effect of age 

It has been previously demonstrated that children and teenagers 

are more prone to asthma than adults [127]. Following the uneven 

distribution of services and cost of living, the population age 

distribution changes among the different neighborhoods in NYC: as 

shown in Figure 6.8 and 6.9, population aged under 18 tends to 

concentrate in the central areas of the Bronx and east 

Brooklyn/west Queens, whereas the highest rates of population 

aged more than 65 can be found in Manhattan, east Queens, 

peripheral areas of the Bronx and south-west Brooklyn. 

Furthermore, we found that the age distribution of patients 

hospitalized for asthma in 2014 has the same shape in all 

neighborhoods, with a bimodal shape that shows a primary peak in 

young age and a secondary peak after the age of 40 [59]. Running a 

one-way ANOVA test, we found that age at hospitalization is 

significantly lower in the Bronx than in all the other boroughs, as it 

is lower in Brooklyn and Queens if compared to Manhattan and 
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Staten Island (the average age data are reported in Table 6.3). This 

is an interesting finding considering that the age-adjusted asthma 

prevalence per 100 individuals is 6.2 in the Bronx, 3.8 in Brooklyn, 

4.6 in Manhattan, 3.7 in Queens and 5.7 in Staten Island [128] 

(data of the year 2002), therefore the areas with the higher 

prevalence are not the same with the higher hospitalization rates. 

Table 6.3: age at the moment of admission to the hospital for 

asthma in each borough. 

Borough Average Age Standard 

Deviation 

Observations 

Bronx 30.85 28.24 4289 

Brooklyn 39.88 30.14 3927 

Manhattan 44.92 29.39 1832 

Queens 41.45 32.22 1954 

Staten Island 48.55 24.92 397 

All 38.03 30.09 12399 

 

Figure 6.8 (c,d), shows that GWR applied to percentage of 

people aged under 18 (Correlation 0.6389, P-Value 5.27 × 10−6) 

shows that in the areas with the higher prevalence and 

hospitalizations rate (i.e., the Bronx and east Brooklyn/west 

Queens), β1 is positive and R2 is high, this happens also in central 

Staten Island; using the percentage of population over 65 as 

covariate (Correlation −0.5342, P-Value 2.69 × 10−4) it can be 

noticed that in the same areas β1 is negative, therefore high rates of 

older people prevent hospitalization rates from rising (Figure 6.9). 
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Figure 6.8: (a) Percentage of population aged under 18, most of it 

is concentrated in the Bronx and central-east Brooklyn, where also 

the asthma hospitalization rate is higher, as visible in (b). (c) (d) 

Results of GWR using the percentage of population aged under 18 

as covariate. The correlation is positive and reliable in most of the 

areas with higher hospitalization rate. 
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Figure 6.9: (a) Percentage of population aged over 65, most of it is 

concentrated in Manhattan, Staten island, East Queens and South-

west Brooklyn, where the asthma hospitalization rate is lower, as 

visible in (b). (c) (d) Results of GWR using the percentage of 

population aged over 65 as covariate. The correlation is negative 

and reliable in most of the areas with low hospitalization rate. 

6.2.4.5. Other socioeconomic variables 

A lot of other socioeconomic variables were tested using GWR, 

most of which showed interesting results. One of this was health 

insurance coverage, as several studies demonstrated that people 

with no insurance or with public insurances such as Medicaid and 

Medicare tend to visit the ED more often that people with private 

insurance [129], [130]. Our analysis confirmed that even insurance 

coverage can be a predictor for asthma hospitalizations in the high-

rate areas of NYC: with a global correlation coefficient of 
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0.7138 (P-Value 11.1 × 10−7), our results showed that the areas 

with the higher hospitalizations rate are the same with the higher 

Medicaid coverage, and also those with the higher β1 and R2 [59]. 

Another factor that has been identified as related to asthma in 

previous studies is obesity [131]. Figure 6.10 shows that the higher 

obesity rates in NYC are between the Bronx, Upper Manhattan and 

East Harlem, south-east Brooklyn and north Staten Island. 

According to the GWR results, also visible in Figure 6.10, there is 

a positive relation between obesity and hospitalizations in all the 

city, with high significance value in Upper Manhattan (especially 

East Harlem), Queens/east Brooklyn and north-west Staten Island. 

The overall correlation coefficient is 0.679 and the F-Statistic P-

Value is 7.69 × 10−7. 
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Figure 6.10: (a) Obesity rate in NYC, it is noticeable that the 

higher rates are in the same areas in which the asthma 

hospitalization rate is higher (b). (c)(d) GWR results using obesity 

as a covariate. The relation is generally positive. 

Another environmental factor that appears to be related to 

asthma is the percentage of land used for industrial activities, as 

our results, shown in Figure 6.11, reveal that there is a positive 

significant relation in the Bronx, where the hospitalization rate is 

higher, and in some other spots in Brooklyn and Queens. This 

could lead to the assumption that even if in a long-term 

measurement air pollution is higher in other neighborhoods, like in 

Manhattan, the presence of a lot of industrial sites could provoke 

brief local pollution peaks that could be a threat for people with 

asthma, this topic requires further investigation. 

Also the garbage recycling rate appears to have an influence, as 

in most of the city there is a moderate negative relation that 
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indicates that a high recycling rate corresponds to lower asthma 

hospitalization occurrences. 

 

Figure 6.11: (a)(b) GWR results using the percentage of land used 

for industrial or commercial activities as covariate. The relation is 

quite strong and positive in the Bronx. (c)(d) GWR results using 

the percentage of recycled garbage as covariate. Excluding some 

areas in East Queens, the relation is quite strong and negative 

throughout the city. 

6.2.4.6. Multivariate Analysis 

GWR can be also performed testing several covariates at the 

same time, creating a multivariate model. Since the univariate 

results, as well as several studies published in literature, 

highlighted how poverty rate and race play an important role in 

increasing the probability to get hospitalized for asthma, we 

created an example of multivariate GWR that combines poverty 

rate and percentage of people identifying as Black and Hispanic. 
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The underlying model can be described by the following equation, 

valid for each point where the GWR is performed: 

𝐻𝑜𝑠𝑝 = 𝛽0 + 𝛽1 · 𝑃𝑜𝑣𝑒𝑟𝑡𝑦 + 𝛽2 · %𝐵𝑙𝑎𝑐𝑘 + 𝛽3 · %𝐻𝑖𝑠𝑝𝑎𝑛𝑖𝑐 

Where Hosp represents the hospitalization rate. Results are 

visible in Figure 6.12. On the left side of the image, maps of the β 

coefficients are shown, whereas panels in the right side show the 

correspondent significance maps based on the t-statistic values. In 

detail, we created 3 significance levels: Non-Significant (NS), 

Partially Significant (PS), Significant (S). The correspondent t -

statistic threshold values are 1.96 (5% confidence level) and 2.58 

(1% confidence level). Figure 6.13 shows the percentage of 

Hispanic people in the different neighborhoods on the left side 

(useful for the analysis reported below in this section) and the 

global R2 of the model. Several interesting phenomena can be 

noticed in these figures: 

• R2 is extremely high in all the region, therefore the 

linear model is globally reliable. 

• Considering poverty and percentage of Black 

population, the correspondent β are always positive, 

indicating a positive correlation between either of these 

factors and the hospitalization rate. 

• In general, the higher the β, the higher the level of 

significance. Therefore, in the neighborhoods in which 

we found that high variables' levels lead to high 

hospitalization rates, the found relations are 

significant. 

• Low significance levels could be due to other 

confounding variables and to a smaller quantity of data 

available. For instance, Figure 6.12, left side, shows 

the values of the variable associated to β3, i.e., 

percentage of Hispanic people. It can be noticed that 

most of the Hispanic population is concentrated in the 

Bronx, Upper Manhattan (Harlem, East Harlem and 

Washington Heights), in central and west Queens and 

some areas of east Brooklyn (Bushwick and south of 

Highland Park), plus some isolated spots in west 

Brooklyn (Sunset Park) and north Staten Island. Apart 

from these last isolated spots, in the same areas in 
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which the concentration is higher, also the significance 

of the correspondent beta is high. Hence lower 

significance corresponds to higher scarcity of data. 

These results show that even multivariate geographical analysis 

can be helpful to describe and visualize important public health 

phenomena and discover the relations among different factors. 

 

Figure 6.12: Coefficients (left side) and their significance level 

(right side) for the multivariate model  
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Hosp =  β0 + β1 ∗ Poverty + β2 ∗ %Black + β3 ∗ %Hispanic 

 

Figure 6.13: On the left: percentage of Hispanics over the total 

population. On the right: global R2 of the model. 

6.2.5. Main findings 

Past research has already demonstrated the existence of a link 

between asthma hospitalizations and PM2.5 concentration [132], 

and also the relation between asthma and socioeconomic factors 

has already been investigated. Nevertheless, asthma remains an 

extremely complicated multifactorial disease, and past studies that 

have been conducted on urban areas usually focused on large 

geographical areas, if not the whole city. Studying the problem 

with a higher spatial resolution can help to inform policy makers 

and citizen themselves on the situation in the different 

neighborhoods, in order to organize targeted interventions and 

prevent new hospitalizations from happening as much as possible. 

The PULSE project was founded on this principle and aimed at 

spreading it to all the world's biggest cities. 

The results of this study showed that socioeconomic factors 

have an extremely important impact on asthma hospitalization: a 

higher risk of asthma is associated with poverty, race/ethnicity, age 

(risk increases in younger patients), obesity, proximity to industrial 

areas, proximity to low recycling areas. We found that poor people 

and people without insurance or covered by Medicaid are more 
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likely to visit the hospital for asthma, in accordance with previous 

studies that showed a different use of the hospitals from people 

with different kinds of insurance, demonstrating that people 

without insurance or with public programs such as Medicaid are 

more likely to visit ERs. We then found that the age at 

hospitalizations is lower in the Bronx compared to the other areas 

of the city, most of the highest peaks of hospitalization rate are in 

this borough too, as well as a generally higher poverty rate. In a 

limited part of the city that includes south-West Brooklyn and East 

Staten Island, some factors such as poverty, obesity and insurance 

coverage have little or no effect on the hospitalizations rate. 

Deepening the analysis, we are able to hypothesize that this is due 

to particular conditions of the environment (i.e., pollution is low, 

there are no factories, garbage disposal is adequate) and of the 

population (medium income and generally adult) that prevent 

hospitalizations from happening. Further investigation in these 

areas is indeed required, nevertheless this demonstrates that spatial 

enablement is necessary to aid public health in big cities, providing 

useful tools both for visualization and discovery. 

Concerning pollution, we analyzed the effects on asthma 

hospitalizations due to PM2.5 and Ozone, obtaining a bland 

relation in 4 out of 5 boroughs for PM2.5, and unreliable results for 

Ozone. It should be noted that further investigation on this topic 

might be required, as yearly averaged data could be unsuitable to 

estimate the real effect of pollution, since it could hide temporary 

peaks that could affect the health of asthmatic people causing 

short-term exposure effects. As explained in section 2.1.2, the lack 

of pollution data with high granularity in space and time is a 

common problem in a lot of cities, for example NYC has only 13 

official monitoring stations on a 784 km2 area. 

From a practical point of view, it cannot be neglected that some 

of the factors that have been addressed in this study are 

manageable more easily than others by public health authorities, 

for example traffic reduction and car improvements laws can limit 

air pollution, delocalization of industrial activities from the city, 

combined with an increase of the number and the extension of 

green areas can improve the environment, food policies and 

sensibilization campaigns can reduce obesity etc. On the other 

hand, it is quite difficult for a local authority to intervene on factors 

such as poverty and insurance, that are related to central health 

policies and rules. Nevertheless, our findings demonstrate the 
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utility of our approach and provide an example of the importance 

of gathering data with a high spatial resolution and using highly 

spatially enabled techniques to address health problems in urban 

environments. 

6.3. Transfer Learning for urban image 
clustering 

As a tool studied to help health policy makers in the 

intervention planning, the PULSE dashboard incapsulates a set of 

tools that are meant to provide assistance in all the possible 

challenges of the process that starts with detecting the public health 

problems and culminates with designing a solution based on proper 

analyses ad critical evaluations. One of the problems that has to be 

addressed is efficiency in the study and application of urban 

planning strategies. This section reports a study performed in this 

contest, published on the journal Sensors [133], where we created 

an analysis pipeline based on a deep learning strategy that allows to 

cluster urban areas together and find similarities in the health of the 

inhabitants, creating a quick categorization of the city that can 

speed up the intervention design process. 

6.3.1. The urban planning challenges 

The study reported in section 6.2 highlights the necessity to 

study public health at a neighborhood level in a big city, given the 

high heterogeneity of the environment and the socioeconomic 

panorama. Following this idea, also public health interventions 

should be based on data with high spatial granularity and should 

address problems related to small areas, in order to contribute to 

the creation of a better environment in the whole city. Although 

spatial enablement, georeferencing of information and advanced 

spatial analytics facilitate the data gathering and analysis process, 

the intervention design process could still be a long and difficult 

process. In a big city with hundreds of neighborhoods, planning 

interventions on each neighborhood means repeating hundreds of 

times the same process, requiring long times and high costs to 

reach measurable results. 
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For this reasons, it can be of interest to healthcare planners and 

city decision-makers to have instruments able to find clusters of 

city areas that share similar urban structures and to analyze some 

behavioral indexes of their residents, in particular to see potential 

correlations and to plan similar interventions in the different 

clusters, even if such clusters refer to areas that are geographically 

far away. This would lead to a notable contraction of time and 

expenses. The research question that motivated the study reported 

in this section was whether there is a way to cluster neighborhoods 

together based on their urban landscape in a way that also their 

public health situation is similar. 

Recent advances in machine learning and deep learning enable 

the design and implementation of novel data analysis pipelines that 

allow fusing heterogeneous data sources to extract novel insights 

and predictive patterns [134], [135]. These approaches seem 

particularly suitable to increase our insights in the relationships 

between the urban landscape of cities and the behavior of their 

residents, with particular focus on well-being and healthcare 

indexes. 

The link between urban structure and health has already been 

investigated in the past, for instance Krefis et al. wrote a systematic 

review in 2018 [136], showing that the link between green areas 

and health have been addressed by several studies, but also 

pointing out a lack of interdisciplinary studies that approach the 

complexity of urban structure, its dynamics and links with 

wellbeing. Some socio-technical studies have been performed as 

well, such as the one conducted by Tavano Blessi et al. in Milan, 

Italy [137], in which they analyzed survey data to determine the 

influence of urban green areas in the precepted wellbeing of the 

population. In addition, deep learning has been already used in a 

number of studies on these topics, like for example the one by 

Helbich et al. [138], where they used deep learning on street view 

images to determine whether there was an association between the 

presence of green/blue areas and geriatric depression. Their results 

support this hypothesis, even though causal relationships were not 

fully investigated. 

These studies are either very general (i.e., they focus on general 

wellbeing) or very specific, since they investigate the links 

between a specific environmental factor and a specific condition. In 

our study, we present an analysis pipeline to try to answer the same 

research questions, but investigating the influence of urban 
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structures in a series of preventable health complications, 

prevention strategies and behavioral health risk factors that mirror 

the association between the social structure of the city and the 

physical urban environment. To this end, we resorted to the 

capability of deep neural models to process images and to correlate 

them with outcome measurements, such as health indexes. 

Deep neural models provide flexible instruments to perform the 

non-linear approximation of a variety of multivariate functions and 

to extract latent variables from a data set. In dependence of the 

nature of the input data set, different architectures can be exploited, 

ranging from the combination of many convolutional layers in the 

case of images, to the use of long-term/short-term networks in the 

case of time series and speech/text data. 

Recently, an increasing number of papers are using deep 

learning to examine the relationships between the urban landscape 

and some environmental data, as well as with citizens’ behavioral 

data [139]–[141]. 

One of the main limits of deep learning models is related to the 

large data sets needed to reliably estimate their parameters. In fact, 

in order to be able to gain the advantage of their capability of 

encoding even the finest details that can be important to map input 

data, large data sets are necessary in order to avoid getting trapped 

into noise resulting in overfitting and poor parameters estimates. 

In order to deal with this problem, it is possible to resort to an 

increasing set of pre-trained deep learning models that can be used 

for the task of transfer learning [142], i.e., models that are able to 

represent the input space into a set of latent variables on the basis 

of a mapping mechanism, usually a deep neural network, learned 

on a large (external and independent) data set, so that the 

relationships between such latent variables and the outcomes can 

be later learned on a specific and smaller data set. 

6.3.2. Data Sources 

Our analysis is based on two data sources: NYC high resolution 

images and healthcare data coming from the 500 cities project (see 

chapter 3). NYC images have been collected by the “The National 

Agriculture Imagery Program” (NAIP) that acquires aerial imagery 

during the agricultural growing seasons in the continental United 

States. In particular, we have downloaded an image of NYC having 
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an original resolution of 0.5 m and have downsampled it to 2 m 

which allows to have a fine-grained representation of the aerial 

urban landscape (see Figure 6.14). 

As it will be explained in the following, the reason for the 

downsampling is that the original large image has been subdivided 

into tiles and the neural network adopted can accept images having 

maximum size of 299 pixel; we had to tune the ground resolution 

in order to have meaningful tiles, embracing a sufficiently-sized 

area. 

 

Figure 6.14: NAIP image of New York City. 

Healthcare data have been extracted from the repository made 

available by the 500 Cities project, introduced in chapter 3. “500 

cities” is a collaboration between CDC, the Robert Wood Johnson 

Foundation, and the CDC Foundation 1 . The project provides 

estimates for chronic disease risk factors (unhealthy behaviors), 

health outcomes, and clinical preventive service use for the largest 

 
1 https://www.cdc.gov/500cities/index.htm 
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500 cities in the United States. Such estimates are provided for 

each census tract of a city. 

Each American state is divided into counties, and the area of 

each county is further organized into census tracts. Census tracts 

are conventional geographical entities within the US counties [143] 

defined for census operations, and they represent the smallest 

territorial entity for which population data is available [144]. 

The last census in the United States was organized in 2010 and 

the number of census tracts which the American territory is divided 

into is 74,134. Generally, each of them is different from the other 

with respect to several features such as the population (between 

1,200 and 8,000 people) and the spatial dimension, which depends 

on the area density [145]. 

Figure 6.15 represents the city of New York divided into its 

census tracts, that, to be precise, are 2,166. 

 

Figure 6.15: NYC subdivided into its census tracts. 

The 24 chronic diseases measures provided by the project are 

listed in Table 6.4. They include major risk behaviors that lead to 
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illness, suffering, and early death related to chronic diseases and 

conditions, as well as the conditions and diseases that are the most 

common, costly, and preventable of all health problems. 

Table 6.4: 500 Cities measures grouped by category. The 24 

measurements include 13 health outcomes, 9 prevention practices 

and 5 unhealthy behaviors. 

Category Measure 

Health outcomes 
Current asthma among adults aged >=18 years 

High blood pressure among adults aged >=18 years 

Cancer among adults aged ≥18 years 

High cholesterol among adults aged >=18 years who have been screened in the 

past 5 years 

Chronic kidney disease among adults aged ≥18 years 

Chronic obstructive pulmonary disease among adults aged >=18 years 

Coronary heart disease among adults aged ≥18 years 

Diagnosed diabetes among adults aged >=18 years 

Mental health not good for >=14 days among adults aged >=18 years 

Physical health not good for >=14 days among adults aged >=18 years 

All teeth lost among adults aged >=65 years 

Stroke among adults aged >=18 years 

Prevention 

 

Visits to doctor for routine checkup within the past year among adults aged ≥18 

years 

Visits to dentist or dental clinic among adults aged ≥18 years 

Taking medicine for high blood pressure control among adults aged ≥18 years 

with high blood pressure 

Cholesterol screening among adults aged ≥18 years  

Mammography use among women aged 50-74 years 

Papanicolaou smear use among adult women aged 21-65 years 

Fecal occult blood test, sigmoidoscopy, or colonoscopy among adults aged 50–

75 years 

Older adults aged ≥65 years who are up to date on a core set of clinical 

preventive services by age and sex 

Unhealthy behaviors  
Current smoking among adults aged >=18 years 

No leisure-time physical activity among adults aged >=18 years  

Obesity among adults aged >=18 years 

Sleeping less than 7 hours among adults aged >=18 years  
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6.3.3. Analysis pipeline and Transfer Learning 
algorithm 

The pipeline implemented in our work is described in Figure 

6.16. The NAIP NYC image has been subdivided into image square 

blocks having size of 256x256 pixels, corresponding to a 512 

meters edge. It was therefore possible to estimate the value of each 

of the 24 variables collected by “500 Cities” in each block. During 

this process, blocks out of the tracts or over the sea have been 

excluded, thus reducing the dataset. The images have been then 

processed by a pre-trained deep model, thus extracting the final 

features for each image. Images are clustered by resorting to k-

means clustering, and the clusters (also interpreted with visual 

inspection) have been associated to the healthcare indexes by 

statistical analysis.   

 

Figure 6.16: The data analysis pipeline created in the study. 

After the subdivision of the NAIP image, we obtained 8836 

images with dimension 256×256×3 (where 3 indicated the RGB 

levels), named tiles, and we saved all of them in a sequential order 

starting from the top left corner of the NAIP image. The original 

image is georeferenced with a world file (see section 4.2), and this 

georeferencing was kept in the tiles. 

Some of the so-obtained tiles had white areas corresponding to 

unmapped zones, i.e. zones outside of the city boundary, including 

the ocean and the rivers. Due to the availability of the vector map 

of the borders of NYC, we have been able to quantify, for each tile, 



Spatial Analytics: applications 

 

 113 

the amount of its surface lying inside the borders of the city; we 

then filtered the original tile set and maintained only those having a 

minimal overlapping of 90%. After these operations, our final 

dataset was composed by 2512 images. 

The healthcare indexes of the 500 Cities database were then 

associated to each tile. In order to carry out our analysis, we had to 

determine the value of the considered variables for each image 

block, considering that the health variables were taken using the 

2166 census tracts as spatial reference, meaning that a given tile 

overlaps, in general, several tracts. Therefore, we had to implement 

a simple estimator of the healthcare index of the block, as:  

ℎ𝑐𝑖(𝑏𝑙𝑜𝑐𝑘) =
∑ 𝑤𝑗ℎ𝑐𝑖𝑗𝑗

∑ 𝑤𝑗𝑗
 

where hci(j) is the value of the generic health care index for the 

jth census tract and wj is the percentage of the image block covered 

by the mentioned tract. An example is shown in Figures 6.17 and 

6.18. 

 

Figure 6.17: Example of the quantification of a healthcare index 

value (SLEEP = percentage of people that declares to be sleeping 

at least 7 hours per night on average) of a block. 
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Figure 6.18: Original Census Tracts with the 500 Cities SLEEP 

index (left hand side) and derived quantification of the healthcare 

index values for SLEEP variable (right hand side). 

Once all these pre-processing operations were terminated, we 

analyzed the obtained images with a deep learning method, 

applying the transfer learning concept. As a deep neural network 

model used for transfer learning, we have selected the network 

developed for the 2016 Painters by number competition [146]. In 

such competition the goal was to learn how to discriminate the 

authors of paintings between 1584 unique painters and starting 

from a training set of 79433 images; the test set was composed of 

23817 images. In this case, a deep neural network model was 

learned, with 23 layers, mostly convolutional layers with some max 

pooling layer. The Painters network computes a layer of 2048 

latent variables before the final discrimination layer implemented 

with a soft-max non-linear function. Those latent variables can be 

used to embed generic images in the latent space. Therefore, using 

the software Orange (https://orange.biolab.si) and its Python 

pipeline, we have processed all image blocks with the Painters 

model, thus obtaining a final data matrix of 2512 examples with 

2048 features. 

This neural network was selected after testing all those made 

available by Orange (6 different CNNs with different structures, 

i.e. Inception v3 [147], VGG-16 [148], VGG-19 [149], Painters, 

DeepLoc [150], Openface [151]), using the t-SNE algorithm. This 

algorithm performs a dimensionality reduction projecting 

multidimensional data into a 2D space, grouping the observation 

based on their possible similarities in the original space [152]. We 

tested each neural network and measured their capability of 

grouping together images with a high percentage of green color, 
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and the results show that the Painters network was the best 

performing one. In particular, the features generated by the 

different deep learning models were mapped onto a bidimensional 

map using the t-SNE algorithm. Then, the samples with the largest 

percentage of green color have been selected and the centroid of 

these samples in the t-SNE space have been computed. Finally, the 

sum of squared Euclidean distances (SSE) of those samples with 

the centroid have been computed, and the deep network 

architecture with the lowest SSE has been thus selected. It should 

be noted that the information about the percentage of green color of 

each tile was used only to compare deep learning architectures, it 

was not used in the following steps of the analysis, as our aim was 

not to study health in dependence of the number of green areas in 

the neighborhoods.  

6.3.4. Correlation and statistical analysis 

The embedding process resulted in a dataset of 2512 images 

described with 2048 features, correspondent to the laten variables 

of the CNN. These features have been used to cluster the image 

blocks by resorting to the well-known K-means clustering 

algorithm with Euclidean distance. The value of K has been 

derived with a grid search between 2 and 6 and taking the value 

that maximize the Silhouette coefficient. 

The algorithm found that the images could be divided into 4 

clusters that, with visual inspection, seemed to well correspond to 

different urban landscapes. In detail, Cluster C1 corresponds to 

green areas, Cluster C2 to residential areas with small houses, 

Cluster C3 to industrial areas and larger buildings, Cluster C4 to 

residential with larger buildings. Some examples are shown in 

Figure 6.19. Cluster analysis clearly shows that the deep neural 

network model is able to map images in the latent space that share 

the intuitive notion of similarity that humans may use when they 

have to classify urban landscape. The method is thus able to 

automatically cluster similar areas where similar interventions can 

be planned. 
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Figure 6.19: A pair of sample images for each cluster that was 

found. 

Once the 4 clusters were found, we performed a few statistical 

analyses to investigate whether they could be correlated with the 

health indexes of the 500 Cities database. First, we performed a 

Chi-squared test over all the 25 variables in order to verify whether 

they were related to the clusters in a statistically significant way. In 

order to perform this test, which works on categorical variables, all 

the continuous variables of the 25 indicators were discretized with 

the following procedure: each variable was subdivided into 3 

categories so that each category contains 1/3 of the total number of 

observations; after that, a contingency table with dimension 4×3 

was created (where 4 is number of clusters and 3 are the 

categories), indicating for each cluster the number of observations 

that are within the ranges defined by the thresholds obtained with 

the discretization of the variables. Figure 6.20 shows a 

representation of this procedure.   
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Figure 6.20: Graphical representation of how the variables were 

discretized in order to create contingency tables to perform the 

Chi-squared test. 

For all the 25 variables, the null hypothesis of independence 

between the clusters and the distribution of the health indexes 

could be rejected with a P-value lower than 0.05, thus confirming a 

statistical association between the clusters and the health 

indicators.  

The contingency tables obtained before the Chi-squared tests 

can also be visually represented as in Figure 6.21, where the 

distribution of the observations in each category for each cluster is 

represented with colors for the variable CHOLSCREEN, i.e. the 

percentage of adults older than 18 that have been screened for high 

cholesterol levels. In this image, it appears that the propensity of 

adults to get screened is higher in the green and residential areas 

than in the industrialized or highly urbanized ones. 
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Figure 6.21: The different distributions of Cholesterol screening 

among adults aged ≥18 years in the different clusters. Inhabitants 

of cluster C1 have much higher propensity towards screening than 

those who live in Cluster C4. 

Further tests were performed using a set of multinomial logistic 

regression models treating the four clusters as classes. Two 

different strategies were used: first, a univariate logistic regression 

model was fitted for each variable, then a multivariate approach 

was used to identify the most informative subset of variables with 

respect to the class taking into account their cross-dependencies.         

Of course, being the logistic regression a binomial model, a 

model built on four classes is actually the result of three sub-

models that compare the classes in pairs using one level as 

baseline. In the context of the analyses presented, Cluster 1 (C1) 

was considered the baseline class value, while Cluster 2 (C2), 

Cluster 3 (C3) and Cluster 4 (C4) as the references. 

Results from univariate multinomial logistic regression on 

continuous variables are reported in Table 6.5 and show that all 

variables tested were significantly associated with at least one 

cluster (the P-values express the probability to observe “by chance” 

a difference in terms of variables’ distribution between the 

reference classes compared to the baseline value greater than the 

effect estimated from data. The null hypothesis is that variables’ 

distribution is the same in each reference cluster compared to the 

baseline.). The 10 variables showing the strongest statistical 

association with at least 1 cluster were COREW_Crud, 

CHOLSCREEN, COREM_Crud, CANCER_Cru, DENTAL_Cru, 

ACCESS2_Cr, MHLTH_Crud, PAPTEST_Cr, LPA_CrudeP and 
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COLON_SCRE. Of these, COREW_Crud, CHOLSCREEN, 

COREM_Crud, CANCER_Cru, DENTAL_Cru, PAPTEST_Cr and 

COLON_SCRE were characterized by significantly lower values in 

C2, C3 and C4 compared to C1. Individuals with high values of 

these variables were less likely to belong to C2, C3 and C4, 

considering C1 as baseline (OR < 1, p-value < 0.01). On the 

opposite, subjects with high values of ACCESS2_Cr, 

MHLTH_Crud and LPA_CrudeP were more likely to belong to C2, 

C3 and C4 compared to C1 (OR > 1, p-value < 0.001). 

A multivariate multinomial logistic regression with a backward 

stepwise features’ selection procedure was then applied to identify 

the most informative set of variables jointly modulating the 

probability to belong to the clusters. In this case, 20 variables have 

been selected (Table 6.6). Of those, five variables have been found 

to be significant (p < 0.01) in all sub-regressions performed by the 

multinomial model: Colon screening (Fecal occult blood test, 

sigmoidoscopy, or colonoscopy among adults aged 50–75 years), 

Chronic obstructive pulmonary disease among adults aged ≥ 18 

years, High cholesterol among adults aged ≥ 18 years who have 

been screened in the past 5 years, Chronic kidney disease among 

adults aged ≥ 18 years and finally Stroke among adults aged ≥ 18 

years. Compared to subjects in C1, individuals within C2, C3 and 

C4 were characterized by significantly higher values of colon 

screening, higher cholesterol and stroke levels (OR > 2, p-value < 

0.001) while lower values of Chronic obstructive pulmonary 

disease and chronic kidney disease (OR < 0.25, p-value < 0.01). 

In general, cluster C1, which is the one that groups green areas, 

has consistently better prevention and health indicators, but worse 

sleeping indexes and leisure time. Overall, there is a gradient with 

all indexes moving from cluster C1, to C2, to C3 and finally to C4, 

which are the residential areas with large buildings. 
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Table 6.5: Results from univariate multinomial logistic regression 

using continuous variables. Variable = variable included in the 

model; OR = odds ratio expressing the risk to belong to each 

reference cluster compared to the risk to belong to the baseline 

cluster C1 by 1 unit increase of each variable; SE = standard error; 

p = p-value.  

 C2 vs. C1 C3 vs. C1 C4 vs. C1 

Variable OR (SE) p OR (SE) P OR (SE) p 

ACCESS2_Cr 1.07 (0.01) <0.001 1.15 (0.01) <0.001 1.17 (0.01) <0.001 

BINGE_Crud 0.81 (0.02) <0.001 0.91 (0.02) <0.001 1.01 (0.02) 0.577 

BPHIGH_Cru 1.06 (0.01) <0.001 1.04 (0.01) 0.004 0.98 (0.01) 0.092 

BPMED_Crud 1.09 (0.02) <0.001 0.91 (0.02) <0.001 0.87 (0.02) <0.001 

CANCER_Cru 0.86 (0.04) <0.001 0.6 (0.05) <0.001 0.47 (0.05) <0.001 

CASTHMA_Cr 1.35 (0.05) <0.001 1.61 (0.05) <0.001 1.77 (0.05) <0.001 

CHD_CrudeP 1.04 (0.04) 0.374 0.98 (0.05) 0.660 0.88 (0.05) 0.005 

CHECKUP_Cr 1.08 (0.02) <0.001 0.94 (0.02) 0.001 0.8 (0.02) <0.001 

CHOLSCREEN 0.95 (0.02) 0.001 0.82 (0.02) <0.001 0.74 (0.02) <0.001 

COLON_SCRE 0.97 (0.01) 0.002 0.9 (0.01) <0.001 0.88 (0.01) <0.001 

COPD_Crude 1.17 (0.04) <0.001 1.25 (0.05) <0.001 1.18 (0.04) <0.001 

COREM_Crud 0.88 (0.02) <0.001 0.81 (0.02) <0.001 0.77 (0.02) <0.001 

COREW_Crud 0.88 (0.01) <0.001 0.82 (0.01) <0.001 0.77 (0.01) <0.001 

CSMOKING_C 1.06 (0.02) 0.001 1.18 (0.02) <0.001 1.18 (0.02) <0.001 

DENTAL_Cru 0.94 (0.01) <0.001 0.9 (0.01) <0.001 0.9 (0.01) <0.001 

DIABETES_C 1.18 (0.02) <0.001 1.25 (0.03) <0.001 1.24 (0.02) <0.001 

HIGHCHOL_C 1.02 (0.02) 0.306 0.92 (0.02) <0.001 0.86 (0.02) <0.001 

KIDNEY_Cru 2.18 (0.14) <0.001 2.82 (0.16) <0.001 2.96 (0.15) <0.001 

X.LPA_CrudeP 1.09 (0.01) <0.001 1.14 (0.01) <0.001 1.14 (0.01) <0.001 

MAMMOUSE_C 0.98 (0.02) 0.185 0.9 (0.02) <0.001 0.83 (0.02) <0.001 

MHLTH_Crud 1.19 (0.03) <0.001 1.41 (0.03) <0.001 1.47 (0.03) <0.001 

OBESITY_Cr 1 (0.01) 0.636 1.06 (0.01) <0.001 1.02 (0.01) 0.084 

PAPTEST_Cr 0.85 (0.02) <0.001 0.84 (0.02) <0.001 0.81 (0.02) <0.001 

PHLTH_Crud 1.15 (0.02) <0.001 1.28 (0.02) <0.001 1.31 (0.02) <0.001 

SLEEP_Crud 1.15 (0.01) <0.001 1.2 (0.02) <0.001 1.19 (0.02) <0.001 

STROKE_Cru 1.51 (0.07) <0.001 1.64 (0.08) <0.001 1.61 (0.08) <0.001 

TEETHLOST 1.09 (0.01) <0.001 1.15 (0.01) <0.001 1.18 (0.01) <0.001 

Green 1 (0) <0.001 1 (0) <0.001 1 (0) <0.001 
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Table 6.6: Results from multivariate multinomial logistic 

regression using continuous variables. Variable = variable included 

in the model; OR = odds ratio; SE = standard error; p = p-value 

from multivariate multinomial logistic regression. 

 C2 vs. C1 C3 vs. C1 C4 vs. C1 

Variable OR (SE) p OR (SE) p OR (SE) P 

BPMED_Crud 1.08 (0.12) 0.524 0.65 (0.11) <0.001 0.81 (0.11) 0.046 

CANCER_Cru 0.29 (0.4) 0.002 0.83 (0.41) 0.658 0.84 (0.4) 0.664 

CASTHMA_Cr 0.3 (0.48) 0.012 0.58 (0.46) 0.232 7.3 (0.46) <0.001 

CHD_CrudeP 15.53 (0.61) <0.001 1.18 (0.63) 0.788 1.21 (0.63) 0.764 

CHECKUP_Cr 0.73 (0.19) 0.095 0.72 (0.19) 0.083 0.38 (0.17) <0.001 

COLON_SCRE 1.89 (0.1) <0.001 1.89 (0.1) <0.001 2.1 (0.12) <0.001 

COPD_Crude 0.12 (0.53) <0.001 0.21 (0.5) 0.002 0.02 (0.53) <0.001 

COREM_Crud 0.93 (0.12) 0.582 1.34 (0.13) 0.026 1.08 (0.14) 0.574 

COREW_Crud 1.1 (0.11) 0.414 0.74 (0.12) 0.012 0.54 (0.13) <0.001 

CSMOKING_C 0.42 (0.24) <0.001 0.91 (0.22) 0.662 0.7 (0.23) 0.124 

HIGHCHOL_C 2.8 (0.17) <0.001 2.2 (0.19) <0.001 3.24 (0.2) <0.001 

KIDNEY_Cru 0 (0.76) <0.001 0.09 (0.75) 0.001 0 (0.77) <0.001 

X.LPA_CrudeP 1.2 (0.12) 0.116 1.37 (0.11) 0.006 0.99 (0.11) 0.925 

MAMMOUSE_C 0.91 (0.11) 0.396 0.65 (0.11) <0.001 0.57 (0.11) <0.001 

MHLTH_Crud 95.21 (0.52) <0.001 5.03 (0.48) 0.001 1.94 (0.51) 0.195 

OBESITY_Cr 0.87 (0.05) 0.004 1.01 (0.05) 0.854 0.81 (0.05) <0.001 

PHLTH_Crud 0.08 (0.52) <0.001 0.29 (0.47) 0.008 0.62 (0.48) 0.324 

SLEEP_Crud 1.59 (0.16) 0.004 1.43 (0.17) 0.031 1.32 (0.16) 0.079 

STROKE_Cru 6.86 (0.59) 0.001 42.51 (0.57) <0.001 384.21 (0.61) <0.001 

TEETHLOST 1.93 (0.15) <0.001 1.13 (0.15) 0.428 1.56 (0.15) 0.004 

 

6.3.5. Clusters validation 

In order to further test the reliability of the found clusters in 

terms of human interpretation, we performed an additional test 

based on the human-machine agreement. This concept is widely 

used in artificial intelligence as a measure of reliability of an 
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automated classification, following the idea that, in a certain 

application, the automated process should be able to perform at 

least as well as a human being, but in a much smaller time. In our 

case, we pooled the judgement of six people and asked them to rate 

a few hundreds of images presented to them one by one. These 

images were taken from the set of tiles that had already been 

classified by our algorithm, but the result of the classification was 

unknown to the human raters. Each rater was asked to associate to 

each image a number ranging from 1 to 5, indicating: 

1. Green areas (parks, gardens, nature); 

2. Residential areas with small houses; 

3. Industrial areas with factories, storage buildings and 

construction sites; 

4. Highly urbanized areas with large buildings;  

5. None. 

Of the 2512 images classified by the algorithm, 1158 were 

classified also by our raters, so our comparison was performed on 

approximately 46% of the entire dataset. Figure 6.22 shows the 

confusion matrix resulting from this test. In the main diagonal of 

the matrix it is possible to visualize how many clusters were 

identified in the same way by both human raters (rows) and the 

algorithm (columns), on the right side of this matrix two columns 

reporting the true positive rates (left column) and the false negative 

rates (right column) are represented, whereas on the bottom the 

positive predictive value (upper row) and the false discovery rate 

(lower row) are reported. Looking at these results, we can see that 

the human-machine agreement is generally moderately high, except 

for cluster 3, representing the industrial areas. In this case, human 

raters identified as industrial zones only 43.9% of the images 

identified in the same way by the algorithm, but, in spite of this, 

91.6% of these images were identified as industrial areas also by 

the algorithm. This result is not unexpected, since industrial areas 

can be easily mistaken for highly urbanized residential areas, as we 

can see that most of the human raters classified those images as 

belonging to this category. Another possible explanation is that the 

cluster 3 found by the algorithm could not represent specifically 

industrial areas, but a sort of buffer zone between residential areas 

and highly urbanized ones, where health indicators tend to worsen 
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compared to the first ones, but still do not enter in the cluster 4 

range of values. 

Finally, we analyzed the results using Cohen’s Kappa 

coefficient [153], a metric that measures agreement between two 

raters taking into consideration also the possibility of the 

agreement to be occurring by chance. In our case, we obtained 

Kappa = 0.58, that can be interpreted as moderate agreement, 

although very close to the substantial agreement threshold, 

conventionally considered to be 0.6. In particular, it was estimated 

a random agreement of 0.29 and a maximum possible Kappa of 

0.855. Hypothesis testing over the confidence interval of Kappa 

confirmed these results, rejecting the null hypothesis of random 

agreement by the two raters with a P-value lower than 1×10-4. 

 

Figure 6.22: confusion matrix of the results of the human-machine 

comparison. 

The found clusters were then represented in the original map of 

the city, confirming the qualitative evaluation. Figure 6.23 reports 
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this representation. It is possible to notice that the algorithms 

clusters together areas that are not necessarily close geographically. 

It should be noted that there are some areas there were not 

clustered, this is due to the fact that Some areas in the city are not 

taken into consideration in the census procedures, since they are 

mostly uninhabited. Specifically, these areas include the industrial 

docks, JFK and La Guardia airports, cemeteries and national parks. 

 

Figure 6.23: the clusters remapped over the original NYC map. 

6.3.6. The link between urban landscape and health 

The application described in this section is motivated by the 

assumption that even in a large heterogeneous environment like a 

big city it could be hypothesized that areas with similar urban 

structure share also a similar health status, since it is known that 

the socioeconomic status of a neighborhood is somehow connected 

to health [59], [154], [155] and mirrored by the urban structure at 

some point. If that is the case, this information could be used to 

design intervention strategies even more quickly, since 

interventions on a specific neighborhood are expected to have 
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similar effects in other neighborhoods that have the same 

characteristics. 

In this study, we provided proof that correlations between urban 

structure and health outcomes can be spotted even using something 

as simple as a satellite image, and we provided an analysis pipeline 

to find such correlations. We found that in NYC, indubitably one 

of the most heterogeneous cities in the world, the link between 

urban landscape and health indicators is particularly strong, and the 

local presence of green areas such as parks, gardens and nature has 

an impact on population’s health status. 

Looking at the detailed results, it is possible to draw the 

conclusion that areas with the highest percentage of green are also 

those in which the population tends to have less health 

complications because prevention is performed more correctly, and 

people have healthier habits. It should be noted that this apparently 

simple link may hide a large number of social implications that are 

the result of several peculiarities of the US social system, where 

generally speaking health, education and prevention are highly 

correlated to income and social class, as demonstrated also in the 

study reported in section 6.2. 

Of course, these results do not necessarily show that green areas 

don’t need any kind of interventions, since looking at each single 

factor some specific criticalities could be spot even in the areas 

where the general health status is good. For instance, concerning 

the sleep indicator, which reports the percentage of people that 

declares to sleep at least 7 hours per night, it is possible to see that 

in the green areas people tend to be more sleep deprived. This 

could be the result of longer commute times to go to work or even 

of a more stressful life caused by mentally demanding jobs. It then 

seems clear that the interventions should be focused on specific 

variables for specific areas. 

Our work has several implications.  

First of all, it shows that deep neural networks designed to 

encode image data can be successfully reused within transfer 

learning approaches. Their application to represent urban landscape 

seems highly effective. 

Secondly, in the context of the PULSE project, the capability of 

finding clusters of similar urban landscape may allow to profile 

city areas, in which healthcare decision makers may plan similar 

interventions. 
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Finally, the combination of urban landscape and healthcare 

indicators is not only useful to hypothesize the intertwining of 

these two dimensions, but also to further profile urban areas by 

finding similar areas with similar behaviors of their inhabitants, 

thus allowing also lifestyle interventions and more precise and 

personalized health care policies. 

Of course, the analysis has some limitations. First of all, the 

quantification of the health care indexes in the city blocks have 

been performed by a weighted averaging of the indexes of the 

census tracts included in the blocks. The weights are computed 

taking into account only the spatial overlap and not the actual 

number of inhabitants of the blocks. Although this issue has 

already partially dealt with, since census tracts are conventionally 

designed in order to have similar population densities, and tend to 

be smaller in highly populated areas, some more precise ways to 

weigh the results on the population of each areas can be tested. 

Secondly, the results obtained are probably “proxies” of the wealth 

of the people living in the different areas. For this reason, results 

may be representative of specific cities and not generalizable to 

other ones. 

6.4. An extra study: the impact of the 
Covid-19 Lockdown on air pollution in 
Pavia, Italy. 

Most of the studies related to PULSE that are presented here in 

this dissertation consider the effect of air pollution on human 

health, among other things. From the point of view of public 

health, understanding air pollution gives the possibility to design 

more effective interventions, and among all the things that need to 

be understood there are the mechanisms that lead to the production 

of the most damaging pollutants. The only way to limit the effects 

of air pollution is limiting the pollution itself, controlling its 

sources. This is already done in several areas of the planet, for 

example in the northern Italian region named Po Valley. This area 

is known to be one of the most polluted areas in Europe [156], with 

several air pollutants, in particular particulate matter, which often 

rise to dangerous levels. This is due to an unfortunate combination 
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of factors such as high population density, high industrial activity 

and geographic position, as the plain is closed on three sides by the 

mountains and air tends to stagnate for long periods, especially in 

the winter months. Traffic limitations are often in place during the 

most polluted days, but the effectiveness of these interventions has 

been questioned on several occasions.  

While public health organizations, together with nonprofit 

associations and governments are struggling to apply green 

solutions to contain the increase in pollution levels, a sudden 

reduction of air pollutant concentration was seen in many countries 

between the end of the year 2019 and the year 2020, when most of 

the productive activities throughout the world had to come to an 

unexpected stop due to the pandemic caused by the new 

coronavirus named Covid-19. This virus generated most likely in 

Wuhan, China, and quickly spread causing a high number of 

intense flu-like syndromes and cases of atypical pneumonia. The 

first studies conducted on this unknown pathogen demonstrated 

that it had an abnormally high contagious strength and that the 

percentage of cases that needed hospitalization, artificial 

ventilation or eventually led to death were significantly higher than 

the other known influenza viruses [157], thus the virus had to be 

contained in order to avoid an overload of the healthcare systems. 

Despite the initial efforts to contain the disease, the virus spread in 

several Asian countries outside of China, and at the end of 

February 2020 the first European case unrelated to the Asian 

outbreak, thus providing evidence of a local transmission, was 

found in northern Italy, in the city of Codogno. In the following 

weeks, Italy had a disastrous increase in cases that forced the 

government to take drastic actions, and Italy was the first western 

country to apply severe draconian measures and start a general 

lockdown, with most of the population confined at home and a 

shutdown of all nonessential productive activities and services. 

This unexpected situation created the chance to study how 

vehicular traffic and factories impact on air pollution on a normal 

situation, as for several weeks traffic was limited to essential 

transportation only and factories not producing essential services 

were closed, but being march a highly variable period weather-

wise, results of many studies were controversial [158]. This is true 

also because air pollution in the Po Valley is a problem typical of 

the winter months [45], when cold dense air tends to stagnate in the 

lower layers of the atmosphere, the phenomenon is less frequent in 
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the warm season as air is less dense and local breezes are more 

frequent. 

Taken the opportunity, we analyzed PM10 and PM2.5 data 

coming from our sensors network deployed in Pavia, Italy, with a 

high spatial and temporal resolution, and compared the 

measurements of a period that goes from the end of February to the 

beginning of April of 2020 to the same period of 2019 in order to 

check if the lockdown had an impact on the urban PM pollution, 

considering the possible effects of confounders such as 

meteorological conditions. 

6.4.1. Data preparation and exploratory analyses 

Even if our sensors measure all kinds of particulate matter 

(PM1, PM2.5 and PM10), only PM10 and PM2.5 have been 

considered in our analysis, since they are well agreed indexes of air 

pollution. We considered hourly pollution data in two periods of 

time: all the hours from February 24th, 2019 at 00:00 CET to April 

2nd, 2019 00:00 CEST and the same period in the year 2020, 

corresponding to the days after the first Covid-19 cases were found 

in northern Italy, causing the lockdown initiation. Concerning 

meteorological data, all measurements of average wind speed, 

maximum wind gusts and air temperature were collected with the 

same hourly temporal granularity from the official ARPA portal 

[159]. Out of the 45 sensors at our disposal in Pavia, only 28 were 

used for this study since some of them were not active yet in 2019. 

All the data measure by our sensors were calibrated using the 

official ARPA data as reference, using a simple linear regression 

model: 

𝑦 = 𝑎 · 𝑥 + 𝑏 

Where y indicates the data coming from our sensor and x those 

coming from the ARPA monitoring station. Using several 

measurements with the same temporal granularity, we calculated 

separate values of the parameters a and b for PM2.5 and PM10. Our 

sensor showed a moderately high correlation with the ARPA one, 

specifically the correlation coefficient was 0.83 for PM2.5 and 0.7976 

for PM10. Ones the parameters were estimated, we corrected all the 

measurements of our sensors with the inverse formula of the equation 
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above. Specifically, calling PM2.5’ and PM10’ the crude values 

measured by our sensors, they were scaled as follows: 

• PM2.5 = (PM2.5’ + 2.4421) / 1.7964 

• PM10 = (PM10’ + 7.9712) / 1.1499 

Once the preprocessing was terminated, we performed an 

exploratory analysis of how the pollution trends have changed in 

the different time periods and how weather conditions have 

influenced this change. Looking at the absolute quantities, a very 

irregular trend in pollution measurements can be seen during both 

years (Figure 6.24), suggesting that external factors can modify 

these measurements. Some of these external factors that are known 

to influence pollution are wind and temperature. Figure 6.24 shows 

the average wind speed measured in the same dates when the 

PM2.5 concentration was detected in the two years (it should be 

noted that all measurements performed on February 29th 2020 were 

excluded from this graph). Looking at the two plots, it is notable 

also through visual inspection that high peaks of wind speed 

correspond to lower concentrations of PM2.5. The same happens 

for PM10 (data not shown). 
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Figure 6.24: PM2.5 concentration and Wind Speed in the two 

considered periods in 2019 (upper plot) and 2020 (lower plot).  

Our preliminary analysis showed that there is a moderate 

negative correlation between pollution and wind and a weak one 

between pollution and temperature. Table 6.7 reports the Spearman 

correlation coefficients and their correspondent 95% confidence 

intervals. 

Table 6.7: Spearman correlation coefficients and 95% confidence 

interval (95% CI) between particulate matters and wind and 

temperature. 

Pollutant Correlation with wind (95% CI) Correlation with temperature (95% CI) 

PM10 -0.4222 (-0.4321 : -0.4122) -0.2408 (-0.2522 : -0.2294) 

PM2.5 -0.3627 (-0.3732 : -0.3521) -0.2091 (-0.2207 : -0.1957) 

 

Performing a quality check on all the sensors' measurements, we 

noticed that a few sensors presented anomalous readings such as 

PM2.5 equal to 0 and high values of PM10 detected in the same 
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timestamp. Although these anomalous measures were taken on 

isolated moments and thus did not severely affect the distribution 

of the measurements, those sensors could not be trusted, so data 

from sensors characterized by at least one (not calibrated) 

measurement equal to 0 for PM2.5 or PM10 and absolute 

difference between PM2.5 and PM10 ≥ 9.32 (95th percentile of the 

absolute difference distribution) were excluded from further 

analyses due to potential technical issues. The total number of 

measures available after this quality control criterion was 33,244 

deriving from 25 sensors. 

Since PM2.5 and PM10 distributions were right-skewed, they 

were gaussianized by log10 transformation. 

6.4.2. Analyses 

The relationship between potential confounding factors 

represented by wind speed (m/s), temperature (°C) and pollutants’ 

concentration was assessed by visual inspection of the scatterplots 

reported in Figure 6.25. 

Plots in Figure 6.25a and Figure 6.25b highlight a negative 

correlation between wind speed and both log10 PM2.5 and log10 

PM10 levels, especially for higher wind speed values. High wind 

speed values could reduce pollutants concentration, representing a 

potential confounder when comparing PM levels between 2019 and 

2020. Temperature showed no evidence of correlation with 

pollutants concentration as shown in Figure 6.25c and Figure 

6.25d. 

Multivariate regression trees were fitted including wind speed 

and temperature as predictors while Log10 PM2.5 and Log10 

PM10 as dependent variable. By visual inspection of the cross-

validation results of the unpruned trees it was possible to observe 

that the first split reduced the relative error of about 14% for both 

pollutants while further splits caused minor reductions. Thus, by 

imposing a single split to the regression tree algorithm, a wind 

speed of 2.45 m/s was identified as the most informative threshold 

to stratify both Log10 PM2.5 and Log10 PM10 levels.  

Pollutants concentration measured when the wind speed was ≥ 

2.45 m/s were significantly lower compared to those performed 

when the wind speed was below the threshold (p < 0.0001). It was 

then decided to focus on a subset of 28,213 measures performed 
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when the wind speed was below this threshold to avoid its 

confounding effect. 

 

Figure 6.25: Correlation between wind speed, temperature, sensors 

elevation upon the sea level and pollutants concentration. The 

vertical dashed line in red indicates the threshold identified by the 

regression tree. 

PM measures were then matched between 2019 and 2020 by 

sensor, month, day and hour to further reduce the potential impact 

of confounders when assessing pollutants levels variation between 

years. A total number of 8,802 paired measures from 20 sensors 

(year 2019: 4,401, year 2020: 4,401) were included in the analyses 

based on the matching criteria. 
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Basic statistical analyses on the mean PM concentrations 

showed no significant differences between 2019 and 2020. A 

multivariate linear mixed effects models regression was then fitted 

to quantify the variation in terms of log10 PM2.5 and log10 PM10 

between 2019 and 2020 adjusting by potential confounders 

represented by wind speed, temperature, weekend/working days 

during both years and sensors elevation upon the sea level (fixed 

effect factors). The random effect term was represented by a 

variable resuming sensor ID and measurement year, month, day 

and hour. 

Results are reported in Table 6.8 and show no statistically 

significant variation in terms of log10 PM2.5 and log10 PM10 

between 2019 and 2020 (p > 0.05) accounting for potential 

confounders. 

Table 6.8: Variation in terms of PM2.5 and PM10 between 2019 

and 2020 accounting for confounders. Estimate (95% CI) = 

regression coefficient and 95% CI; p = p-value. Estimates indicate 

the variation in terms of log10 PM2.5 and log10 PM10. 

 Log 10 PM2.5 Log 10 PM10 

Variable Estimate (95% CI) p Estimate (95% CI) p 

(Intercept) 1.5 (1.43:1.58) <0.0001 1.72 (1.67:1.78) <0.0001 

Year = 2020 0.01 (0:0.02) 0.0510 0.01 (0:0.02) 0.1168 

Working day 

= yes 0.07 (0.05:0.08) <0.0001 0.06 (0.05:0.07) <0.0001 

Average 

wind speed 

(m/s) -0.12 (-0.13:-0.11) <0.0001 -0.09 (-0.1:-0.09) <0.0001 

Temperature 

(°C) 0.01 (0:0.01) <0.0001 0.01 (0:0.01) <0.0001 

Sensors’ 

elevation (m) 0 (0:0) 0.0678 0 (0:0) 0.0977 

 

It was then tested for statistically significant variations in terms 

of Log10 PM2.5 and Log10 PM10 between 2019 and 2020 by daily 

hours adjusting by confounders. Results are reported in Table 6.9 

and evidenced that, compared to the variation in terms of Log10 

PM2.5 and Log10 PM10 between 2019 and 2020 observed during 

from 0:00 am to 6:00 am, pollutants concentration was 

significantly reduced during the remaining daily hours, except from 
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8:00 am to 10:00 am when no statistically significant difference 

was observed. 

Interaction analyses were then repeated by sensors characterized 

by at least 10 measurements, adjusting by confounders. The 

estimated adjusted variations in the whole sample and by sensor 

and daily hour are reported in Table 6.9, that shows the results for 

PM2.5. PM10 results are not reported for brevity, as they showed 

the same behavior. In particular, results show a general reduction 

in terms of Log10 PM2.5 and Log10 PM10 between 2019 and 2020 

during daily hours (from 10:00 am to 8:00 pm) opposed to an 

increase during evening, night and early morning (from 8:00 pm to 

10:00 am). 

The same phenomenon was observed in the median value of 

PM2.5 and PM10 distribution in the whole sample and by sensor 

and daily hour. 

All the statistical analyses reported were performed by the R 

statistical software tool. Numeric variables distribution was 

described by median and interquartile range and by mean and 

standard deviation. The two tailed t-test for paired samples was 

applied to test for statistically significant variation between 2019 

and 2020. Regression trees were applied by the function rpart 

implemented in the “rpart” package. Linear mixed effects models 

were applied by the function lmer implemented in the R package 

called “lme4”, 95% confidence intervals were estimated by the 

Wald method. The significance level was set to α = 0.05. 
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Table 6.8: Interaction between year and daily hours in modulating 

PM2.5 and PM10 variation. Estimate (95% CI) = regression 

coefficient and 95% CI; p = p-value. Estimates indicate the 

variation in terms of log10 PM2.5 and log10 PM10. 

 Log10 PM2.5 Log10 PM10 

Variable Estimate (95% CI) p Estimate (95% CI) p 

(Intercept) 1.42 (1.34:1.49) <0.0000 1.67 (1.61:1.72) 

<0.000

1 

Year = 2020 0.08 (0.06:0.1) <0.0001 0.05 (0.04:0.07) 

<0.000

1 

hour (6,8] 0.05 (0.02:0.08) 0.0006 0.03 (0:0.05) 0.0173 

hour (8,10] 0.03 (-0.01:0.06) 0.1318 0.01 (-0.02:0.03) 0.7018 

hour (10,12] 0.02 (-0.02:0.06) 0.2462 0 (-0.03:0.03) 0.9337 

hour (12,14] -0.03 (-0.07:0.01) 0.1826 -0.04 (-0.07:0) 0.0250 

hour (14,16] -0.13 (-0.17:-0.08) <0.0001 -0.12 (-0.16:-0.09) 

<0.000

1 

hour (16,18] -0.15 (-0.19:-0.1) <0.0001 -0.12 (-0.16:-0.09) 

<0.000

1 

hour (18,20] -0.08 (-0.12:-0.05) <0.0001 -0.08 (-0.11:-0.05) 

<0.000

1 

hour (20,24] -0.04 (-0.07:-0.01) 0.0050 -0.05 (-0.07:-0.02) 0.0001 

Working day = yes 0.09 (0.08:0.11) <0.0001 0.08 (0.07:0.09) 

<0.000

1 

Average wind 

speed (m/s) -0.13 (-0.14:-0.12) <0.0001 -0.1 (-0.11:-0.09) 

<0.000

1 

Temperature (°C) 0.02 (0.01:0.02) <0.0001 0.01 (0.01:0.01) 

<0.000

1 

Sensors’ elevation 

upon the sea level 

(m) 0 (0:0) 0.0637 0 (0:0) 0.0895 

year = 2020:hour 

(6,8] -0.07 (-0.1:-0.03) 0.0003 -0.04 (-0.07:-0.02) 0.0011 

year = 2020:hour 

(8,10] -0.02 (-0.06:0.03) 0.4274 0 (-0.03:0.04) 0.8267 

year = 2020:hour 

(10,12] -0.17 (-0.22:-0.12) <0.0001 -0.12 (-0.16:-0.08) 

<0.000

1 

year = 2020:hour 

(12,14] -0.23 (-0.29:-0.18) <0.0001 -0.17 (-0.21:-0.13) 

<0.000

1 

year = 2020:hour 

(14,16] -0.12 (-0.17:-0.07) <0.0001 -0.09 (-0.13:-0.05) 

<0.000

1 

year = 2020:hour 

(16,18] -0.08 (-0.13:-0.03) 0.0021 -0.07 (-0.1:-0.03) 0.0013 

year = 2020:hour 

(18,20] -0.12 (-0.16:-0.08) <0.0001 -0.09 (-0.12:-0.06) 

<0.000

1 

year = 2020:hour 

(20,24] -0.05 (-0.09:-0.01) 0.0109 -0.03 (-0.06:0) 0.0510 
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Table 6.9: Adjusted mean variation in terms of Log10 PM2.5 

between 2019 and 2020 by sensor and daily hours. In green: 

reductions in terms of pollutants between 2019 and 2020; in red: 

increase in terms of pollutants between 2019 and 2020. 

 Log10 PM2.5 mean variation by daily hour 

Sensor (0,6] (6,8] (8,10] (10,12] (12,14] (14,16] (16,18] (18,20] (20,24] 

Overall 0.077 0.012 0.059 -0.089 -0.157 -0.042 -0.005 -0.044 0.029 

Asilo Rodari 0.067 0.041 0.089 -0.053 -0.149 0.035 0.016 -0.073 0.048 

CREA 0.124 0.050 0.098 -0.059 -0.119 0.030 0.132 0.014 0.044 

DICAr 0.088 -0.005 0.070 -0.071 -0.151 -0.063 -0.008 -0.056 0.022 

DICAr3 0.118 0.034 0.092 -0.047 -0.134 -0.068 -0.012 -0.031 0.042 

EX Palatreves -0.581 -0.416 -0.675 -0.602 -0.252  -0.019 -0.046 -0.551 

Leona house 0.085 0.007 0.035 -0.089 -0.150 -0.039 0.039 -0.035 0.032 

P.za Marelli 0.076 0.014 0.070 -0.079 -0.165 -0.047 -0.034 -0.051 0.034 

Quartiere Borgo 0.059 0.008 0.063 -0.058 -0.087 -0.007 0.010 -0.009 0.036 

Quartiere Nord Est -0.415 -0.540 -0.866 -0.426 -0.127 0.192 0.148 -0.037 -0.384 

Quartiere Ovest 0.099 0.027 0.095 -0.045 -0.139 -0.104 -0.020 -0.011 0.021 

Quartiere Scala 0.080 0.003 0.076 -0.070 -0.148 -0.050 -0.009 -0.029 0.028 

Sala Broletto 0.072 0.042 0.101 -0.382 -0.224 -0.133 0.041 0.029 -0.031 

Scuola Berchet 0.097 0.006 0.027 -0.060 -0.084 -0.010 0.007 -0.069 0.078 

Scuola Canna 0.076 -0.003 0.050 -0.098 -0.158 -0.062 -0.035 -0.041 0.042 

Via Allende 0.148 0.091 0.122 -0.054 -0.175 -0.043 0.022 -0.030 0.041 

Via Corridoni -0.149 -0.165 -0.218 -0.161 -0.166 -0.109 -0.009 -0.093 -0.002 

Via Olevano 0.141 0.065 0.166 -0.174 -0.202 -0.092 -0.009 -0.071 0.030 

Via S.Giovannino 0.074 0.029 0.048 -0.075 -0.169 -0.014 -0.013 -0.053 0.054 

Via S.Spirito 0.046 -0.016 0.009 -0.124 -0.201 -0.076 -0.066 -0.090 -0.009 

Via Tavazzani 0.092 0.022 0.053 -0.083 -0.155 -0.030 0.018 -0.048 0.021 

 

6.4.3. General comments 

Reduction of exposure to air pollution is the best prevention 

strategy that can be applied to reduce the risk of developing 

respiratory diseases linked to bad air quality. The National Health 

Ministry of Italy estimated that living in the Po Valley, a large 

plain region in the north of the country, leads to a significant 
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reduction of life expectancy [160]. In order to reduce pollution, 

every year the administrations in the regions and the cities affected 

take several measures like traffic limitations or regulations on the 

use of house heating, but the results are often not sufficient, as the 

sources of pollution are numerous and the combined effects of the 

produced pollutants is difficult to predict. One of the things that 

has been clearly observed and that we confirmed in this paper, is 

that weather has an important impact in this area, as wind, that 

blows quite rarely and is hardly ever strong in this region, usually 

reduces pollution, while cold air increases it. 

With the new Covid-19 pandemic, that initially had its European 

epicenter in northern Italy at the end of winter 2020, an important 

lockdown was imposed throughout the country, creating the 

opportunity to study and observe the real impact of these sources 

on the total air pollution situation. Unlike other areas of the world, 

a severe reduction of all the pollutants during the lockdown in the 

Po Valley was not observed, indicating that traffic may not have a 

huge impact on pollution and that meteorological conditions 

probably play a role even more important than what was usually 

thought. This situation created to chance to analyze the case study 

of Pavia, a city in the middle of the Po Valley.  

The results of this study show mainly two things: first, the 

influence of climatic factors on PM levels is extremely high, 

second, considering this difference, there has not been a significant 

reduction in PM levels in 2020 during the lockdown, so pollution 

levels remained high even without traffic and most productive 

activities, suggesting that in this particular geographical area, most 

of the relevant pollution sources are the heating systems in private 

houses and commercial traffic, and even with only essential 

services active, the peculiar climatic conditions are able to create 

dangerous levels of pollution. This enlightens the necessity of wide 

interventions to mitigate the health risks related to air quality in 

northern Italy. Our results also showed another interesting 

phenomenon, i.e. a change in the daily pollution patterns during the 

lockdown, with a higher level of pollutants during the night 

opposed to a lower concentration in the day hours. This 

phenomenon could be related to the increased use of house heating 

deriving from the fact that people stayed more at home in the 

considered period in 2020, as the night hours are the coldest ones. 

Nevertheless, pollution is a very complex phenomenon determined 

by many other confounders somewhat hard to identify.  
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Chapter 7 

7 Interactive Simulation Tools: 
applications 

Chapter 5 introduces the concept of Agent-based Modeling and 

simulation tools, explaining how they were chosen to be integrated 

in the PULSE dashboard. In this chapter, some sample simulation 

models that have been developed using the PULSE data and 

following its rationale are described. 

In detail, two simple models were developed as examples of 

public health simulation tools, following the spatially enabled 

studies performed during the project and reported in chapter 6. One 

of these models was extended including also traffic dynamics in 

order to create a vast multilayer model that simulates individual 

risk taking into account the traffic flows in the different 

neighborhoods of the city and their effects on urban air pollution 

from a macroscopic point of view, and adding personal risk factors 

considered at a microscopic point of view to them. 

At the end of the chapter, another interactive tool is briefly 

described, although it does not properly match the features of a 

simulation tool, it represents another important interactive tool that 

uses geospatial information to face health problems. In detail, this 

tool is an air pollution personal exposure calculator. 

7.1. Interactive Simulation Tools 

In the final part of the pilot phase of the PULSE project, UNIPV 

developed a few prototypes of ABMs to be integrated in the 
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PULSE dashboards. These prototypes simulate real-life urban 

situations and are meant to be a tool for the public health policy 

makers to explore the effect of possible changes of some variables 

in the public health panorama of the urban environment. Through 

these tools, urban planners can answer to “what-if” questions and 

have an idea of the possible effects of targeted interventions or 

possible phenomena that could change the public health 

equilibrium. It should be noted, as said in chapter 5, that ABMs 

often simulate scenarios using data gathered in a specific contest, 

thus using limited knowledge that could lead to results that are not 

always correspondent to what would really happen if the simulated 

scenario occurred for real. Nevertheless, agent-based simulation 

often focuses on looking at the trends rather than quantifying the 

specific results. 

Two models are presented in this section, the first model 

simulates the impact of several environmental and socioeconomic 

conditions on the asthma hospitalizations rate in East Harlem, New 

York City, whereas the second model simulates traffic-caused air 

pollution in Pavia, Italy. Both models are developed using the 

NetLogo software, specifically designed to build interactive agent-

based models. 

7.1.1. Simulation of asthma hospitalizations in East 
Harlem 

The first and main ABM that has been developed and then 

integrated into the PULSE dashboard simulates the trend of asthma 

hospitalizations in East Harlem, i.e. a neighborhood located in the 

upper part of Manhattan, in New York City. According to our 

results of the spatial enablement study presented in section 6.2, this 

neighborhood is one of the most affected by asthma 

hospitalizations, together with the confining south Bronx area, so it 

was selected as a test site for the implementation of this ABM 

example, also because the square road network of upper Manhattan 

is easy to visualize. 

This model is based on the asthma hospitalizations study 

presented in section 6.2, where the Geographically Weighted 

Regression (GWR) algorithm was used to explore the relation 

between asthma hospitalizations and a number of environmental, 
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socioeconomic and demographic factors in the different areas of 

the city. 

More precisely, our ABM (Figure 7.1) is based on real GIS data 

referred to part of East Harlem, with the following boundaries: 

Malcolm X Boulevard on the West, Tito Puente Way (E 100 th 

Street) on the South, the FDR Drive on the East and E 126 th Street 

on the North. The background of the model is created using GIS 

shapefiles that have been directly integrated into NetLogo and 

contain streets centerlines, sidewalks, buildings and parks. The 

observer, i.e. the utilizer of the model, can determine the initial 

population and the traffic density, in order to simulate how a 

variation of them could influence pollution and exposure to it.  The 

population is expressed in absolute numbers, whereas the traffic 

density is expressed as the number of vehicles places in a segment 

between two nodes. The roads are in fact modeled as graphs made 

of nodes and links, that allow to place the agents representing cars 

spread throughout the environment and simulate their movement 

making them move towards the nodes running along the links. The 

number of nodes that are used to discretize the roads can be chosen 

using the “node-precision” slider, that divides the roads in a high 

number of nodes if it is set on a high value and vice versa. It should 

be noted that a high number of nodes corresponds to a more precise 

modeling of the real-world roads distribution, but it always leads to 

longer computational times for the simulation. 

The interface features then some sliders where the observer can 

increase or decrease the percentage of land used for industrial 

activities, the recycling rate and the obesity rate, in order to 

simulate the impact of interventions on land use, public services 

and food policies. All these variables were taken into consideration 

as covariates for the GWR model presented in section 6.2, together 

with other demographic and socioeconomic factors that have been 

excluded from the simulation tools as they are not realistically 

controllable by a local public health authority. The observer can 

also set the initial mean and standard deviation of the population’s 

age, a specific age will be given to all people according to a normal 

distribution. The risk of hospitalizations changes with age (i.e. 

people under 18 and over 60 are more at risk), plus there is a 

probability of death that increases dramatically after 75 years of 

age. Each tick of the model corresponds to 6 months, allowing also 

to simulate the time needed to see the effects of a possible 

intervention. Once the observer hits the “Go” button, cars are free 
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to move on the streets and pollute the area, and people walk in the 

sidewalks and get exposed to pollution. A plot and some monitors 

show the current number of hospitalized people, based on the 

probability computed by the regression model and a 99% discharge 

rate, derived by the SPARCS data used to build the GWR, as it was 

seen that most asthma hospitalizations last for a few days and it is 

very rare for an asthma patient to stay hospitalized for months. The 

initialized quantities can be changed during the simulation to see 

the subsequent changes in the hospitalizations trend. 

Figure 7.1 shows a capture of the interface of the model. In the 

central part, the GIS background is displayed with the different 

layers colored with different colors and where the cars are moving 

in the streets. The sliders and the monitors are spread all around the 

graphical representation of the model. 

 

Figure 7.1: Screenshot of the ABM prototype developed to study 

asthma hospitalizations in East Harlem. 

The main underlying model that generates the hospitalizations 

outcome is a simple linear regression that can be written as 

follows: 

𝐻𝑜𝑠𝑝 = 𝛽0 + 𝛽1 · 𝑝𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛(𝑡) +  𝛽2 · 𝑙𝑎𝑛𝑑 𝑢𝑠𝑒(𝑡) + 

+𝛽3 · 𝑜𝑏𝑒𝑠𝑖𝑡𝑦(𝑡) + 𝛽4 · 𝑟𝑒𝑐𝑦𝑐𝑙𝑖𝑛𝑔(𝑡) + 𝛽5 · 𝑎𝑔𝑒(𝑡) 

 



Interactive Simulation Tools: applications 

 

 142 

Where the coefficients are already weighted with the weights 

found in the GWR study and t represents the current time instant 

(tick) of the simulation. Air pollution depends on traffic density 

through a simple linear relation, as it is determined by a linear 

combination of traffic density and average speed variation of the 

cars: 

𝑃𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛 =  𝑐1 · 𝑡𝑟𝑎𝑓𝑓𝑖𝑐 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 + 𝑐2 · 𝑠𝑝𝑒𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛   

Both the relation and the values of the constants are entirely 

arbitrary, as at the time of the creation of the prototype there were 

not enough data to quantify the real impact of vehicular traffic on 

air pollution in NYC. Nonetheless, as already said, the main 

purpose of this kind of simulation is the visualization of trends 

rather than the real quantification of the variables. 

When the model runs, pollution spreads from the roads 

following a normal distribution centered in the street centerline that 

depends on the number of vehicles on the road and the distance 

from the centerline. 

7.1.2. Simulation of the pollution trends in Pavia  

A second ABM prototype was developed in PULSE and 

simulated the effect of traffic-related pollution in Pavia, Italy 

taking into account also climatic factors. As explained in section 

6.4, air pollution is a serious issue in Pavia and in all its 

geographical area.  

In this model, some shapefiles were gathered and loaded into 

NetLogo, following the idea of the NYC model presented in 

section 7.1.1. As the NYC model, these shapefiles represent roads, 

green areas, buildings and pedestrian areas. The agents are vehicles 

that are placed on the roads and can move through them when the 

simulation is active (figure 7.2). When the cars are moving, 

pollution spreads from the roads following the same law it had in 

the NYC model, and its spreading can be visualized as a red cloud 

generating from the roads. The observer can define the traffic 

density and the speed of the wind. Furthermore, a specific patch 

can be selected, in order to visualize the level of pollution in a 

precise point of the environment. Each tick corresponds to one 

hour. 
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Running the model and changing the variables, the observer can 

see how pollution increases with traffic density and tends to 

decrease when the wind speed is high (figure 7.3). The relation 

between traffic density and pollution is qualitative and arbitrary 

also in this case due to a lack of sufficient data on the cause-effect 

relations between traffic and pollution. Pollution tends to decrease 

exponentially with the increase of wind. 

 

Figure 7.2: Simulation environment of the air quality model 

prototype of Pavia. 

 

Figure 7.3: Visualization of the model running, with the pollution 

spreading from the streets and a plot showing its trend during the 

simulation. 
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The two prototypes described in this section and the previous 

one show how ABMs can be a promising tool for public health, as 

they can be used to simulate several different scenarios and explore 

the possibility of performing targeted interventions, even if the 

results can be imprecise from a quantitative point of view. 

7.2. A multilayer simulation model for 
asthma hospitalizations in New York 

As explained in chapter 5, traffic modeling can be performed in 

three ways: creating macroscopic models that consider the effect of 

aggregated traffic dynamics in one region, creating microscopic 

models that consider each single vehicle and creating mesoscopic 

models, that represent a mix of the two. Traffic is an important 

public health variable as it influences a lot of different health 

outcomes and it is relatively simple to control with targeted 

interventions. Not having at our disposal enough data to create an 

accurate microscopic model, we decided to adopt the macroscopic 

one presented in section 5.2 to create an innovative simulation tool 

based on a multilayer approach, that combines traffic dynamics 

with personal exposure elements to simulate the probability of 

asthma hospitalizations according to a combination of factors as we 

did with the GWR, but introducing also more realistic traffic 

control dynamics. 

The model presented here has been developed with reference to 

the borough of Manhattan, New York City, but the approach can be 

easily replicated for other boroughs and/or cities. Manhattan has 

been identified as the proper environment for experimenting this 

new model, as being an island, it is relatively easy to model the 

external demand as there is a limited number of access points 

through bridges and tunnels. Despite being only a part of the city, it 

has an area of 59.1 km2 and more than 1.6 million inhabitants, so it 

can be considered comparable to a city by itself.  
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7.2.1. Integration of traffic simulation models 

The first layer of the model is represented by the macroscopic 

regional traffic model introduced in section 5.2, that simulates the 

flow of vehicles through several regions considering the intended 

flow, the regions that need to be crossed in order to reach the 

destinations and the external demand, i.e. vehicles entering the 

regions from outside the simulation space. 

The first operation that we performed was dividing Manhattan 

into zones, this was done arbitrarily trying to reach a trade-off 

between territorial and traffic homogeneity and health status of the 

population. Looking at the results of the GWR in section 6.2, it is 

clear that the asthma hospitalization rate is generally well 

distributed across the island, with the exception of the upper-east 

part, correspondent to the neighborhood of East Harlem, that 

presents peculiar criticalities.  

Looking at a map provided by the NYC Department of 

Transportation that represents the average number of cars passing 

through the main roads of the city on an average day, visible in 

Figure 7.4, traffic appears heavy on the FDR (the belt road that 

runs on the perimeter of the borough), on the access points and 

generally on the southern part of the city, between the financial 

district (Downtown) to and the midtown end of Central Park. 
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Figure 7.4: a map representing the average daily traffic in New 

York. It can be noticed that the main highways, the bridges/tunnels 

and the southern half of Manhattan are the most occupied areas. 

Looking at these averaged dynamics and considering the 

population and health characteristics of the borough, we decided to 

divide Manhattan into 9 areas mostly homogeneous with respect to 

road density and population. These areas are shown in Figure 7.5, 

they have been all numbered and are all described with a 

characteristic Macroscopic Fundamental Diagram (MFD), defined 

with a triangular function equivalent to the NFDs defined in section 

5.2. The numbered areas have been equivalently defined with the 

names of the neighborhoods they represent, as follows: 1- 

Downtown, 2- The Village, 3- Chelsea-Gramercy, 4- Midtown, 5- 

Upper West Side, 6- Upper East Side, 7- Harlem, 8- East Harlem, 

9- Washington Heights. It is notable that the area 8 (East Harlem) 

is much smaller than the others, since its peculiar health situation 

makes it interesting to observe singularly even if the road density 

homogeneity criterion is not encountered. 
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Figure 7.5: on the left side, the map of Manhattan with the 

subdivisions applied. On the right side, a diagram representing the 

subdivisions and the areas where the external demand is present.  

The peculiar shape of the island makes it relatively easy to 

model the borders of adjacent zones and to find where the external 

demand occurs, that is in our case in zones 1, 4, 8 and 9, as they 

contain bridges or tunnels that connect the island to the other 

boroughs or to New Jersey. 

At this point, the model was implemented in MATLAB and 

initialized. The main parameter that regulates the directions of the 

flow inside the network is the Origin-Destination Matrix (ODM), 

i.e. a square matrix with number of rows and columns equal to the 

number of zones that defines the proportion of vehicles leaving 

from each zone to head towards the other zones. In detail, the value 

in the position (𝑜, 𝑑)  of the matrix indicates the proportion of 

vehicles exiting the 𝑜𝑡ℎ  zone to go to the 𝑑𝑡ℎ destination. As a 

consequence, the sum of each row is equal to one. 

Once set the values of the ODM and the initial quantities of 

vehicles that are located in each zone, the intended flows are 

defined, but, as shown in the equations of the model in section 5.2, 

the flows are regulated also by the fact that vehicles that intend to 

reach a zone non adjacent to the origin one must go through other 

zones, therefore another parameter to be defined is the paths that 

vehicles would take to reach their destination. For instance, to go to 
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zone 2 to zone 4, it is mandatory to pass through zone 3. To define 

this, the subdivision of the city has been transformed into a graph, 

visible in Figure 7.6, and we made the assumption that a vehicle 

that intends to go from one zone to another would take the shortest 

path possible, i.e. we analyzed the graph and created a set of all the 

paths that vehicles would take to go from each zone to the others 

following the shortest road possible. 

  

Figure 7.6: graph representation of the zone subdivision of 

Manhattan. The red dots indicate the areas for which an external 

demand is defined. 

For example, the best path to go from zone 1 to zone 5 is 

[1,2,3,4,5], whereas the best path to go from zone 1 to zone 6 is 

[1,2,3,4,6], and the best path to go from zone 7 to zone 4 is [7,5,4]. 

So for each value of 𝑂𝐷𝑀(𝑜, 𝑚) , one submatrix was defined 

containing the proportion of the vehicles that left the zone 𝑜 

towards zone 𝑑  that intend to cross the zones adjacent to 𝑜 , 

defining for each time step 𝑘  the parameter 𝜌𝑟𝑗𝑑(𝑘)  defined in 

section 5.2, i.e. the density of vehicles moving from the region 𝑟 to 

region 𝑑 passing through the adjacent region 𝑗. 
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After defining the ODM, the simulation time and the initial 

parameters that regulate the variables to be observed (more details 

in section 7.2.3), the last parameter that needs to be set is the 

external demand. In our model, the external demand is defined only 

for zones 1, 4, 8 and 9, where there are bridges and/or tunnels that 

connect Manhattan to the rest of land. We defined the “intended” 

external demand (i.e. the flow that would enter the zone in the 

absence of capacity constraints) as a linear function defined as 

follows: let 𝐷𝑖(0) be the number of cars that are supposed to be 

already entering the zone 𝑖 at the time stamp 𝑘 = 0 and 𝐷𝑖
𝑀𝐴𝑋 the 

absolute quantity of vehicles that can be admitted in the zone 

during the whole simulation period 𝑇, then for each time stamp: 

𝐷𝑖(𝑘) =
𝐷𝑖

𝑀𝐴𝑋 − (𝐷𝐼𝑁(𝑘) + 𝐷𝑖(0))

𝑇 − (𝑘 − 1)
 

Where 𝐷𝐼𝑁(𝑘) indicates the quantity of vehicles that has already 

entered the zone from the beginning of the simulation. In words, 

the quantity of vehicles entering the zone from outside is constant 

in each time stamp until the maximum quantity is reached at the 

end of the simulation. 

7.2.2. Integration of health models 

Once the traffic simulation dynamics are defined, on top of the 

vehicles’ movements throughout the network, health risk dynamics 

are added. In particular, in this model the health risk dynamics 

implemented is the combination of factors that lead to the risk of 

asthma hospitalizations as found in the GWR model illustrated in 

section 6.2. The idea is that starting from the macroscopic 

simulation of traffic, the utilizer of the simulation tool can focus on 

the population of a single area and study how the asthma risk of an 

inhabitant exposed to certain factors can change through time with 

the changes in pollution caused by the traffic variations. 

To this end, the first thing to analyze is the relation between 

traffic and pollution. This is not an easy task since it involves the 

necessity of a quantitative measure that allows to calculate the 

quantity of pollutants produced by each vehicle, which is not trivial 

as the factors that need to be taken into account are very numerous 

(type and size of the vehicle, combustion type, speed etc.). In our 
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model, we referred to the EU emission standards [161], and 

assumed for simplicity that all vehicles had gasoline engines, since 

diesel cars became very rare in the US in the last decades. Having 

done these considerations, we associated to each vehicle the 

production of 0.005 g of PM2.5 per every km made, neglecting its 

speed. Since in each zone there are thousands of vehicles that 

transit every time stamp and the measure we are interested in is the 

PM2.5 concentration in µg/m3, we estimated this quantity for each 

area calculating the total length of the roads and the surface of the 

zone and considering an air column of 100 m. The concentration of 

pollutant is therefore estimated as follows: 

𝐶𝑃𝑀2.5 = 𝑄𝑃𝑀2.5 ∙ 𝐿𝑟 𝑆 ∙ 100⁄   

Where 𝐶𝑃𝑀2.5 (µg/m3) is the concentration of PM2.5 in the area, 

𝑄𝑃𝑀2.5  (µg) is the quantity of pollution produced by all the 

vehicles, 𝐿𝑟 (m) is the total length of the roads in the area, 𝑆 (m2) is 

the total surface of the area and 100 denotes the 100 m air column 

that was arbitrarily chosen. The measures of 𝐿𝑟 and 𝑆 used for the 

nine areas are reported in Table 7.1. 

Once the quantity of pollution is estimated, the effect on asthma 

risk is computed using the coefficients obtained with the GWR 

algorithm, together with the effect of other factors such as age, 

ethnicity, percentage of land used for industrial activity, obesity, 

poverty and recycling rate of the neighborhood. According to the 

algorithm presented in section 6.2, all these factors have an 

important influence on asthma hospitalizations and the way they 

influence them changes throughout the city, so it was possible to 

define different coefficients for the different zones according to the 

weights found by the algorithm. The asthma risk is then computed 

as the linear combination of the eight variables listed in Table 7.2 

multiplied by the coefficients shown in the same table, that are 

calculated with respect to the weights found with the algorithm in 

section 6.2. During the simulation, the pollution value changes due 

to the traffic flows, leading to a fluctuation of the asthma risk in 

the course of the simulation as well. 
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Table 7.1: Road length and surface of each one of the nine areas, 

used to estimate the pollution level. 

Zone Total Road Length (Lr) Total Surface (S) 

1 - Downtown 70.57 km 6.38 km2 

2 - Village 84.66 km 3.78 km2 

3 – Chelsea-Gramercy 83.98 km 5.032 km2 

4 - Midtown 112.16 km 6.43 km2 

5 – Upper West Side 112.22 km 6.063 km2 

6 – Upper East Side 81.66 km 4.64 km2 

7 - Harlem 94.97 km 5.015 km2 

8 – East Harlem 44.60 km 2.083 km2 

9 – Washington Heights 113.85 km 7.33 km2 

 

Table 7.2: Coefficients resulting from the GWR algorithm for each 

considered variable and each zone. 
 

Zone 

1 

Zone 

2 

Zone 

3 

Zone 

4 

Zone 

5 

Zone 

6 

Zone 7 Zone 8 Zone 

9 

Intercept 49.29 35.94 33.05 1.52 -51.87 -74.32 -102.65 -97.33 16.84 

PM2.5 -3.45 -2.51 -2.22 -0.67 2.18 3.86 4.68 5.41 -0.99 

Age 

under 18 

-1.61 -1.65 -1.55 -1.38 -0.85 -0.74 0.15 0.20 0.64 

Hispanic 0.54 0.42 0.41 0.42 0.29 0.30 -0.12 -0.06 -0.42 

Black 0.53 0.55 0.55 0.48 0.20 0.16 -0.07 -0.02 -0.10 

Poverty  0.24 0.39 0.34 0.63 1.01 1.14 1.19 1.06 0.63 

Industrial 

land use 

-0.09 -0.12 -0.11 -0.16 -0.18 -0.27 -0.05 -0.08 0.53 

Recycling 

rate 

0.26 0.29 0.22 0.54 0.81 0.83 0.88 0.43 -1.09 

Obesity 0.27 0.53 0.56 0.78 1.38 1.47 2.18 1.90 1.03 
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7.2.3. Simulation 

As the traffic and GWR models are both implemented in 

MATLAB, the simulation runs in the same environment. The main 

simulation engine is contained in a function that takes as input a 

parameters’ list where the user can define the time stamp and the 

temporal granularity of the simulation, the number of vehicles in 

each area when 𝑘 = 0, the values of the socio-economic covariates 

(e.g. how old is the patient, whether he/she is black or Hispanic, 

what is the recycling rate of the zone etc.). With the default 

settings, each time stamp corresponds to one minute and a 

simulation lasts one hour, but the main function is built in a way 

that combines eleven simulations in order to simulate the traffic 

and asthma risk trends in a working day from 8:00 AM to 7:00 PM. 

For each hour, a different ODM is adopted and the external demand 

can change as well, in particular there are three main scenarios: 

• For the first three simulations, i.e. from 8:00 AM to 

11:00 AM, the ODM is defined in a way that leads 

most cars to the areas from 1 to 4, where most offices 

and tourist attractions are. The external demand is 

linear as explained in section 7.2.2 and with a positive 

sign, i.e. the vehicles that wish to enter Manhattan 

outnumber the ones that intend to exit the borough. 

• During the central hours, from 11:00 AM to 4:00 PM, 

the ODM is defined randomly, meaning that there is 

not a clear tendency of the vehicles to move to certain 

zones rather than others. The external demand is equal 

to zero, i.e. the number of vehicles that enter 

Manhattan is balanced by the number of the ones 

exiting the area. 

• The last simulations, corresponding to the day hours 

from 4:00 PM to 7:00 PM, the ODM is defined in a 

way that brings most vehicles from the central areas to 

the zones presenting bridges and tunnels, i.e. most 

vehicles intend to leave town and go back to the 

residential areas of the suburbs. The external demand is 

inverted as the vehicles exiting Manhattan outnumber 

the number of the ones entering. 
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Shortly, it could be said that the default parameters allow to 

perform a simulation of an average working day when traffic tends 

to be directed towards the heart of the city during the morning and 

tends to flow away in the evening. The observer can simulate the 

change of risk of a person with certain characteristics in a specific 

zone or see how his/her risk would vary depending on the zones. 

Besides traffic, also the other parameters of the GWR can be 

changed in order to inspect the consequent variation in the asthma 

risk. Figure 7.7 shows an example of how the risk varies in all the 

zones in four different scenarios considering citizens that can be of 

white or black ethnicity and in a status of poverty. 

 

Figure 7.7: Hourly risk in the nine zones in 4 different scenarios: 

black ethnicity and poverty status (upper left), white ethnicity and 

poverty status (lower left), black ethnicity without poverty (upper 

right), white ethnicity without poverty (lower right). 

In the example reported in Figure 7.7 it could be noticed that 

East Harlem has the highest risk in all situations and that the risk is 

higher during the central hours of the day, when traffic is more 

intense and leads to an increase in pollution. 

The results can indeed be improved with the integration of more 

detailed real-world traffic data, nevertheless these results show that 

the model can work as a representation of a real trend of short-term 
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effects of pollution in the urban area, taking into account also 

spatial differences.  

7.3. Personal Exposure Calculator 

Although it cannot be defined a simulation tool per se, another 

interactive tool developed in the contest of the advanced spatial 

analytics for collaborative systems explored during PULSE that is 

worth mentioning is the personal exposure calculator. This tool is 

based on two main instruments: the dense sensor network deployed 

in Pavia (described in section 3.3.2) and the GPS tracking 

functionality of the user’s smartphone. The aim of this system is to 

estimate the exact air pollutants intake of a citizen that moves 

around in the city in a certain time span, taking into account the 

local variability of the pollutants’ concentration. 

Data gathered from the PurpleAir sensors in Pavia showed that 

both the temporal intra-day variability and the spatial intra-city 

variability can be significant [162], therefore a high spatial and 

temporal granularity is necessary to determine the real exposure to 

pollution of an individual, that could have repercussions on his/her 

health. 

The basis of this system is an interpolated map of the dense 

sensor network in place in Pavia, that allows to estimate the value 

of pollution in each point of the city, creating continuous maps 

from discrete measurements. The methodology used for this 

operation is the Gaussian Kernel Interpolation [163]. This method 

is based on weighted average: the unknown pollution value 𝑧 

located at the location (𝑥, 𝑦, 𝑧, 𝑡), a point belonging to the 4D space, 

as time is added to the three spatial coordinates, is calculated as: 

𝑧 =
∑ ∑ 𝑧𝑖𝑗

𝑛
𝑖=1 𝑤𝑖

𝑠𝑤𝑗
𝑡𝑚

𝑗

∑ ∑ 𝑤𝑖
𝑠𝑤𝑗

𝑡𝑛
𝑖=1

𝑚
𝑗

 

where 𝑧𝑖𝑗 is the pollution level measured by the i-th monitor at 

the j-th epoch (time stamp when a measurement is taken); usually a 

certain number of epochs are considered around the selected time: 

in our case a time window having a semi-width of 2 hours was 

selected. 𝑚 is the number of the considered epochs and 𝑛  is the 

number of sensors. As the formula highlights, the weight is the 



Interactive Simulation Tools: applications 

 

 155 

product of the factors 𝑤𝑖
𝑠and 𝑤𝑗

𝑡. Both weight functions are based 

on a gaussian kernel. The first one is related to space-distance: 

𝑤𝑖
𝑠 = 𝑒

−
(𝑑𝑠)𝑖

2

2𝜎𝑠
2

 

where 𝑑𝑠  is the spatial distance between the estimation point 

and the location of the i-th monitor; the function decreases when 𝑑𝑠 

increases; the 𝜎𝑠  parameter controls how quickly the weight 

decays. The second weight function is related to time-distance and 

can be written as follows: 

𝑤𝑗
𝑡 = 𝑒

−
(𝑑𝑡)𝑗

2

2𝜎𝑡
2

 

where 𝑑𝑡 is the time span between the time of the estimation 

point (𝑥, 𝑦, 𝑧, 𝑡) and the time of the j-th measurement considered. 

Figures 7.8 and 7.9 show an example of raw measurements of 

PM10 and the correspondent interpolated continuous map 

respectively. 

 

Figure 7.8: measurements of PM10 from all the sensors at a 

specific timestamp. The colors enlighten a notable local variability. 
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Figure 7.9: interpolated continuous map correspondent to the 

measurements shown in Figure 7.8. 

The users that accept to use this service are tracked by the GPS 

tracking feature integrated in the Pulsair App, that records their 

position at regular intervals of 5 seconds. 

In order to better estimate the real quantity of pollutants inhaled, 

physical activity is taken into account as well, as physical exercise 

leads to an increased intake of air. In order to perform this 

estimation, speed is determined considering the ration between the 

user’s movement and the distance covered in the unit of time. 

Following a research in literature [164], different air intake 

volumes were defined according to the physical activity most likely 

performed, as shown in Table 7.3 

Table 7.3: the breathing model used to estimate the air intake 

starting from the user’s velocity. 

Speed 

[km/h] 
Status 

# breaths per 

minute 

Air volume per 

breath [liter] 

< 2 At rest 15 0.6 

2 - 6 Walking 28 1.8 

6 - 15 Running 40 2.5 

> 15 Driving  15 0.6 
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Thanks to this model, the cumulative pollution intake of a user 

can be precisely estimated. Figures 7.10 and 7.11 show an example 

of a user tracked during a selected day, in particular the first Figure 

shows the speed detected during his movements, whereas the 

second one shows the estimated PM10 intake based on the 

measured air quality and the physical activity performed. This 

system has been integrated inside the PULSE system, so that tracks 

and personal exposure estimations can be visualized both from the 

App and the WebGIS. The tracks are visible exclusively to the user 

who produced them and not to other users, public health officials or 

anyone inside the project consortium. 

 

Figure 7.10: cumulative track of a selected user in a specified 

period, color-coded by speed. 
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Figure 7.11: Estimated exposure in each point of the track 

according to the pollution levels computed and the estimated 

physical activity. 
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Chapter 8 

8 Conclusions and Future 
Developments 

The recent fast advancements in technology have led to 

considerable changes in our lifestyle and the consequent worldwide 

public health panorama. Big cities have become the host of the 

majority of the world’s population and this process appears to have 

just started, our life habits and the environment are changing 

causing the rise of new exposure factors we all are exposed to 

throughout our life, with several repercussions on our health. 

These problems are being faced by the scientific community 

with the establishment of several public health studies and projects 

that try to assess the entity of the exposures, to better understand 

the mechanisms that lead to specific health issues and to design 

possible solutions. Big cities represent the most suitable 

environment for these kinds of studies and innovations, since they 

present the highest population and environmental heterogeneity.  

The work presented in this dissertation is almost entirely based 

on one of the latest innovative public health projects that was 

funded in the last years, named PULSE. PULSE proposes a new 

approach to face some of the public health issues that are currently 

rising in the big urban environments, i.e. those mostly connected to 

air pollution and lifestyle. This approach is based on different 

levels of intervention: awareness, citizens’ behavior and active 

intervention. The idea is that in order to create a suitable 

environment for all the citizens, the whole city should cooperate as 

a system, with awareness of the citizens themselves about the 

problem and how they could contribute, encouraging them to 

assume proper behaviors that can aid their health while providing 
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to the public health policy makers tools to better inspect the 

situation in the city and organize interventions. To this aim, 

PULSE created an integrated system that assists all the protagonists 

of this paradigm, from the App that increases awareness and fosters 

proper behavior for the citizens, to the dashboards that contain a 

large set of tools to ease the policy makers’ tasks.  

Air pollution, for example, is a widely studied topic in medicine 

and public health, as its negative effect on human health and 

climate change is well documented. For instance, it has been 

demonstrated that exposure to most air pollutants has a damaging 

effect on the airways that lead to a higher risk of respiratory 

diseases such as asthma. Despite this awareness, there are still 

several difficulties in finding the best approach to solve these 

problems, which is mostly diffuse in urban environments, as the 

problem is often treated without the proper spatial resolution. Most 

cities have a small number of air monitoring stations and fail to 

consider some local situations that can generate health issues that 

are invisible due to the spatial approximation. For this reason, one 

of the main pillars of PULSE is the increase of spatial granularity 

in studying and treating these issues. The creation of dense sensor 

networks such as the one deployed in Pavia allows to find every 

local criticality and organize more targeted interventions and 

studies, even during an unexpected situation as the one created by 

the global Covid-19 pandemic. 

The importance of increasing spatial granularity has been one of 

the fundamentals of the work performed by the author if this thesis 

and the team from the University of Pavia that worked at the 

projects that have been presented in this book. 

Spatial granularity is not only important for air pollution, but 

also for all the other exposures that influence our health. This has 

been demonstrated studying asthma hospitalizations in New York 

City, where we found that socioeconomic variables can influence 

the asthma outcomes even more than environmental factors, with 

their type and level of influence that vary notably across the urban 

territory, enlightening the necessity to face these issues on a highly 

local level. 

Of course, after studying a problem, also organizing an 

intervention on it can be a tricky task, especially when the process 

is long, costly and with unknown outcomes. PULSE provides 

possible solutions also to this, proposing pipelines to speed up the 

intervention design procedures clustering urban areas together and 
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generating simulation tools that allow to explore the possibility of 

variations in the current urban variables with their effects on 

health. This has been the second main theme of this book, in which 

some basic public health simulation tools have been presented and 

their usefulness for the topic has been widely shown. 

Indubitably, the studies presented in this dissertation have some 

limitations, and the PULSE approach itself presents a number of 

limitations that require more research and open the road to many 

future developments. The biggest issue that came out during this 

project is interoperability: all the projects presented in this thesis 

are quite city-specific, as they are tuned on the specific social and 

health environment of the city they are built for. The cause of this 

issue is partially not resolvable with the current methods, as 

different cities will always have different populations and 

environmental contexts, on the other hand part of this problem is 

due to the lack of standards in the collection and representation of 

public health data, as different cities and public health authorities 

collect different data with different standards, and standards 

sometimes change even within the same city depending on the 

dataset. This issue has been particularly hard to be dealt with 

during the creation of the WebGIS, as data from many sources 

were integrated for seven different cities, but not all the cities were 

able to provide the same data and formats, spatial and temporal 

granularity were highly inhomogeneous. Some steps forward in 

trying to reduce the fragmentation of public health data worldwide 

should be taken to ease the data integration and analysis processes. 

One more important future development for the work presented 

in this thesis is about the inclusion of human behavior in the health 

simulation tools developed. It has been demonstrated on several 

occasions that also mood, happiness, sense of realization etc. can 

have an important influence on human health, besides wellbeing. 

PULSE considers all these variables in the risk models used to tune 

the feedbacks to send to the users, but these topics are not yet 

treated properly in the projects regarding the dashboard. A proper 

analysis or simulation tool for a public health policy maker should 

include also insights on human behavior, to understand also 

possible reactions to some interventions or changes in wellbeing 

due to environmental changes in the city. This requires an extra 

effort, as wellbeing and behavioral models are complex and need 

the inclusion of many extra studies, nevertheless they could make 
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an important and useful addition to the tools developed for the 

PULSE dashboard for the improvement of urban public health. 

Besides these limitations, the results of the studies reported in 

the PhD work presented in this thesis show promising insights on 

the application of highly spatially enabled methods both to the 

analysis of health outcomes and to the creation of interactive 

simulation tools to increase the effectiveness and the velocity of 

the intervention design process. 
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