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A Robust Consensus Algorithm for Current Sharing
and Voltage Regulation in DC Microgrids
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and Arjan van der Schaft

Abstract—In this paper a novel distributed control algorithm
for current sharing and voltage regulation in Direct Current (DC)
microgrids is proposed. The DC microgrid is composed of several
Distributed Generation units (DGUs), including Buck converters
and current loads. The considered model permits an arbitrary
network topology and is affected by unknown load demand and
modelling uncertainties. The proposed control strategy exploits a
communication network to achieve proportional current sharing
using a consensus-like algorithm. Voltage regulation is achieved
by constraining the system to a suitable manifold. Two robust
control strategies of Sliding Mode (SM) type are developed
to reach the desired manifold in a finite time. The proposed
control scheme is formally analyzed, proving the achievement
of proportional current sharing, while guaranteeing that the
weighted average voltage of the microgrid is identical to the
weighted average of the voltage references.

Index Terms—DC Microgrids, Sliding mode control, Uncertain
systems, Current sharing, Voltage regulation.

I. INTRODUCTION

IN the last decades, due to economic, technological and
environmental aspects, the main trends in power systems

focused on the modification of the traditional power genera-
tion and transmission systems towards incorporating smaller
Distributed Generation units (DGUs). Moreover, the ever-
increasing energy demand and the concern about the climate
change have encouraged the wide diffusion of Renewable
Energy Sources (RES). The so-called microgrids have been
proposed as conceptual solutions to integrate different types
of RES and to electrify remote areas. Microgrids are low-
voltage electrical distribution networks, composed of clusters
of DGUs, loads and storage systems interconnected through
power lines [2].
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Due to the widespread use of Alternate Current (AC)
electricity in most industrial, commercial and residential appli-
cations, the recent literature on this topic mainly focused on
AC microgrids [3]–[7]. However, several sources and loads
(e.g. photovoltaic panels, batteries, electronic appliances and
electric vehicles) can be directly connected to DC microgrids
by using DC-DC converters. Indeed, several aspects make DC
microgrids more efficient and reliable than AC microgrids [8]:
i) lossy DC-AC and AC-DC conversion stages are reduced, ii)
there is not reactive power, iii) harmonics are not present, iv)
frequency synchronization is overcame, v) the skin effect is
absent. Moreover, a DC microgrid can be connected to an
islanded AC microgrid (even to the main grid) by a DC-
AC bidirectional converter, forming a so-called hybrid micro-
grid [9]. Moreover, the growing need of interconnecting distant
power networks (e.g. off-shore wind farms) has encouraged the
use of High Voltage Direct Current (HVDC) technology [10]–
[12], which is advantageous not only for long distances, but
also for underwater cables, asynchronous networks and grids
running at different frequencies [13]. Finally, DC microgrids
are widely deployed in aircrafts and trains, and recently used
in modern design for ships and large charging facilities for
electric vehicles. For all these reasons, DC microgrids are at-
tracting growing interest and receive much research attention.

A. Literature review
Two main control objectives in DC microgrids are voltage

regulation and current sharing (or, equivalently, load sharing).
Regulating the voltages is required to ensure a proper func-
tioning of connected loads [14]–[17], whereas current sharing
prevents the overstressing of any source. Moreover, since a mi-
crogrid can include DGUs with different generation capacity, it
is often desired in practical cases that the DGUs share the total
current demand proportionally to their generation capacity. In
order to achieve both objectives, hierarchical control schemes
are conventionally adopted [18]. Generally, the requirement
of current sharing does not permit to regulate the voltage
at each node towards the corresponding desired value. Then,
a reasonable alternative is to satisfy the voltage requirement
defined in [19], according to which the average voltage across
the whole microgrid (not a specific node) should be regulated
at the global voltage set point (e.g., the average of the voltage
references). This kind of voltage regulation is called global
voltage regulation or voltage balancing (see for instance [20]–
[24] and the references therein).

In the literature, these control problems in DC microgrids
have been addressed by different control approaches and
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schemes, and we discuss a few of them. To compensate the
voltage steady state error due to primary droop controller,
a distributed secondary controller based on averaging the
total current supplied by the sources is proposed in [25].
Yet, for the stability analysis, fast dynamics are neglected
and only the small-signal model is considered. Distributed
secondary integral control strategies that are able to achieve
proportional load sharing and voltage regulation are formally
analyzed in [26], neglecting inductive lines. In [19] each power
converter is equipped with current and voltage regulators in
order to achieve both proportional load sharing and voltage
regulation. However, the achievement of voltage regulation
requires the use of an observer to estimate the global average
voltage, leading to more complicated controller implementa-
tions. In [24] the authors propose a consensus-based secondary
controller for proportional current sharing and global volt-
age regulation for resistive networks. However, proportional
current sharing is achieved under the restrictive assumptions
that the line resistances are known and the electrical and
communication graphs are identical. A consensus algorithm
that guarantees power sharing in presence of ‘ZIP’ (constant
impedance, constant current, constant power) loads, as well as
preservation of the weighted geometric average of the source
voltages is designed and formally analyzed in [27]. However,
only pure resistive networks are considered and the steady state
voltages strongly depend on the voltage initial conditions.

B. Main contributions

This paper proposes a novel robust control algorithm to
obtain simultaneously proportional current sharing among the
DGUs and a form of voltage regulation in the DC power
network, where the interconnecting lines of the microgrid are
assumed to be resistive-inductive. In order to achieve current
sharing, a communication network is exploited where each
DGU communicates in real-time the value of its generated
current to its neighbouring DGUs. Adding this additional
communication layer to achieve current sharing, leading to
a distributed controller, has been widely adopted and studied
thoroughly. In comparison to the existing results in the liter-
ature, we additionally propose the design of a manifold that
couples the aforementioned objective of current sharing to the
objective of voltage regulation. By doing this, the proposed
control algorithm guarantees that the weighted average voltage
of the microgrid is equal to the weighted average of the
reference voltages, where the weights depend on the DGUs
generation capacities, performing the so called global voltage
regulation or voltage balancing [19], [24]. This is achieved
independently of the initial voltage conditions, facilitating
Plug-and-Play capabilities.

To constrain the state of the system to the designed manifold
in a finite time, we propose robust controllers of Sliding
Mode (SM) type [28], [29]. SM control is appreciated for
its robustness property against a wide class of modelling
uncertainties and external disturbances, commonly present in
DC microgrids. In this paper, we first propose a Second Order
Sliding Mode (SOSM) controller that determines the, possibly
non-constant, switching frequency of the power converter,
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Fig. 1. Electrical scheme of DGU i and line ij.

which might lead increased the power losses. Then, to over-
come this issue, we additionally propose a third order sliding
mode controller (3SM) to obtain a continuous control signal
that can be used as the duty cycle of the power converter.
Furthermore, the proposed control solution is robust with
respect to failed communication. In fact, if the communication
among the DGUs is disabled, then the voltage of each node
converges in a finite time to the corresponding reference
value. For the considered microgrid model, convergence to the
state of current sharing and voltage regulation is theoretically
analyzed, and we show that convergence is achieved globally,
for any initialization of the microgrid.

C. Outline

The remainder of this paper is organized as follows. In
Section II the microgrid model is presented, while in Section
III the control problem is formulated. In Section IV the
proposed manifold-based consensus algorithm is designed, and
in Section V sliding mode control strategies are proposed
to reach the desired manifold. In Section VI the stability
properties of the controlled system are analyzed, while in
Section VII the simulation results are illustrated and discussed.
Some conclusions are gathered in Section VIII.

II. DC MICROGRID MODEL

In this work we consider a typical Buck converter-based DC
microgrid of which a schematic electrical diagram is provided
in Figure 1. By applying the Kirchhoff’s current (KCL) and
voltage (KVL) laws, the governing dynamic equations of the
i-th node (DGU) are the following:

Ltiİti = −RtiIti − Vi + ui

CtiV̇i = Iti − ILi −
∑
j∈Ni

Iij , (1)

where Ni is the set of nodes (i.e., the DGUs) connected to
the i-th DGU by distribution lines, while the control input
ui represents the Buck converter output voltage∗. The current
from DGU i to DGU j is denoted by Iij , and its dynamic is
given by

Lij İij = (Vi − Vj)−RijIij . (2)

The symbols used in (1) and (2) are described in Table I.

∗Note that ui in (1) can be expressed as δiVDCi
, where δi is the duty

cycle of the Buck i and VDCi
is the DC voltage source provided by a generic

renewable energy source or a battery at node i.
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TABLE I
DESCRIPTION OF THE USED SYMBOLS

State variables

Iti Generated current
Vi Load voltage
Iij Exchanged current

Parameters

Rti Filter resistance
Lti Filter inductance
Cti Shunt capacitor
Rij Line resistance
Lij Line inductance

Inputs

ui Control input
Iti Unknown current demand

The overall network is represented by a connected and
undirected graph G = (V, E), where the nodes, V = {1, ..., n},
represent the DGUs and the edges, E = {1, ...,m}, represent
the distribution lines interconnecting the DGUs. The network
topology is represented by its corresponding incidence matrix
B ∈ Rn×m. The ends of edge k are arbitrarily labeled with a
+ and a −, and the entries of B are given by

Bik =


+1 if i is the positive end of k
−1 if i is the negative end of k
0 otherwise.

Consequently, the overall microgrid system can be written
compactly for all nodes i ∈ V as

Ltİt = −RtIt − V + u

CtV̇ = It + BI − IL
Lİ = −BTV −RI,

(3)

where It, V, IL, u ∈ Rn, and I ∈ Rm. Moreover, Ct, Lt, Rt ∈
Rn×n and R,L ∈ Rm×m are positive definite diagonal
matrices, e.g. Rt = diag(Rt1 , . . . , Rtn). To permit the con-
troller design in the next sections, the following assumption
is introduced on the available information of the system:

Assumption 1: (Available information) The state variables
Iti and Vi are locally available at the i-th DGU. The network
parameters Rt, Lt, Ct, R, L and the current demand IL are
constant and unknown, but with known bounds.

Remark 1: (Varying parameters and current demand) We
assume that the parameters and the current demand are con-
stant, to allow for a steady state solution and to theoretically
analyze the stability of the microgrid. Yet, the control strategy
that we propose in the next sections is applicable even if this
assumption is removed.

Remark 2: (Kron reduction) Note that in (1), the load
currents are located at the PCC of each DGU (see also
Figure 1). This situation is generally obtained by a Kron
reduction of the original network, yielding an equivalent
representation of the network [26]. It is important to realize
that the network (topology) of the Kron reduced network is
generally unknown and differs from the original network. It is

therefore desirable that a control structure is independent of
the underlying distribution network.

III. CURRENT SHARING AND VOLTAGE BALANCING

In this section we make the considered control objectives
explicit. First, we note that for a given constant control input
u, a steady state solution (It, V , I) to system (3) satisfies

V = −RtIt + u

−BI = It − IL
I = −R−1BTV .

(4)

The second line of (4) implies† that at steady state the total
generated current 1Tn It is equal to the total current demand
1Tn IL. To improve the generation efficiency, it is generally
desired that the total current demand is shared among the var-
ious DGUs proportionally to the generation capacity of their
corresponding energy sources (proportional current sharing).
This desire can be expressed as wiIti = wjItj for all i, j ∈ V ,
where wi relates to the generation capacity of converter i, and
leads to the first objective concerning the desired steady state
value of the generated currents It.

Objective 1: (Proportional Current sharing)

lim
t→∞

It(t) = It = W−11ni
∗
t , (5)

with i∗t = 1Tn IL/(1
T
nW

−11n) ∈ R, W = diag{w1, . . . , wn},
wi > 0, for all i ∈ V .

Note that (5) indeed satisfies 1Tn It = 1TW−11ni
∗
t =

1Tn IL. From the second and third lines of (4) it follows that the
corresponding steady state voltages V satisfy BR−1BTV =
W−11ni

∗
t−IL, that prescribes the value of the required differ-

ences in voltages, BTV , achieving proportional current shar-
ing. This admits the freedom to shift all steady state voltages
with the same constant value, since BTV = BT

(
V + a1n

)
,

with a ∈ R any scalar. To define the optimal steady state
voltages, we assume that for every DGU i, there exists a
desired reference voltage V ?i .

Assumption 2: (Desired voltages) There exists a constant
reference voltage V ?i at the PCC, for all i ∈ V .

Often the values for V ?i are chosen identical for all i ∈ V ,
and are set to the desired voltage level of the overall network.
Generally, the requirement of current sharing does not permit
for V = V ∗, and might cause voltages deviations from the
corresponding reference values. Then, a reasonable alternative
is to keep the weighted average value of the PCC voltages
at the steady state identical to the weighted average value of
the desired reference voltages V ? (voltage balancing) [24].
Particularly, we choose the weights to be 1/wi, for all i ∈ V ,
such that at the converters with a relatively large generation
capacity, there is a relatively small voltage deviation. It is
indeed a standard practise that the sources with the largest
generation capacity determine the grid voltage. Therefore,
given a V ?, we aim at designing a controller that, in addition
to Objective 1, also guarantees voltage balancing, i.e.,

†The incidence matrix B, satisfies 1TnB = 0, where 1n ∈ Rn is the vector
consisting of all ones.
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Objective 2: (Voltage balancing)

lim
t→∞

1TnW
−1V (t) = 1TnW

−1V = 1TnW
−1V ?. (6)

Remark 3: (Equal current sharing) Note that by setting
in (5) and (6) the weights wi, for all i ∈ V , identical, the
total current demand is equally shared among the DGUs and
the arithmetic average of the microgrid voltage is equal to the
arithmetic average of the voltage references.

By substituting (5) and (6), in (4), one can easily verify that
achieving Objective 1 and Objective 2 prescribes the (optimal)
steady state output voltages of the Buck converters, u = uopt.

Lemma 1: (Optimal feedforward input) If system (3), at
steady state, achieves Objective 1 and Objective 2, then the
control input u to system (3) is given by

uopt = −
(
BR−1BT −Ψ

)−1(
ΨV ∗ + IL

)
, (7)

with

Ψ =
(In + BR−1BTRt)W−11n1TnW−1

1TnW
−1RtW−11n

, (8)

and In ∈ Rn×n the identity matrix.
Proof: When Objective 1 and Objective 2 hold, the steady

state of (3) necessarily satisfies

0 = −RtW−11ni∗t − V + uopt

0 = W−11ni
∗
t − BR−1BTV − IL

0 = 1TnW
−1V − 1TnW−1V ∗,

(9)

with i∗t = 1Tn IL/(1
T
nW

−11n) ∈ R. A tedious, but straight-
forward, calculation permits to solve (9) for uopt, yielding (7).

In order to determine (7), exact knowledge of almost all
network parameters, as well as the current demand IL, is
required. Since this information is not available (see also
Assumption 1), we propose in the next sections distributed
controllers that, provably, achieve voltage balancing using
only local measurements of Vi, and that achieve proportional
current sharing by exchanging information on Iti among
neighbours over a communication network. In the remainder
of this section we further elaborate on the steady state voltages
imposed by the control objectives.

A. Steady state voltages

First, we notice that it follows from (5) and (9) that the
steady state voltages V satisfy

V = −RtW
−11n1

T
n IL

1TnW
−11n

+ uopt. (10)

From (7) and (10) it is evident that the steady state values
of the voltages at each node depend on the loads IL and the
voltage references V ?. Since V ? is free to design, it can be
potentially chosen in such a way that too low or too high
voltages are avoided. To help the design of V ?, we show that
the the steady state voltages V i, for all i ∈ V , are shifted by
the same quantity, when V ? is altered.

Lemma 2: (Voltage shifting property) Let Objective 1 and
Objective 2 hold, and let V (1) ∈ Rn denote the steady state

voltage value associated to the voltage reference V ?(1) ∈ Rn.
Consider the new voltage reference V ?(2) ∈ Rn and the
corresponding steady state voltage value V (2) ∈ Rn. Then,
∆V = V (2) − V (1) satisfies

∆V = 1n
1TnW

−1∆V ?

1TnW
−11n

, (11)

with ∆V ? = V ?(2) − V
?
(1).

Proof: When Objective 2 holds, we have

1TnW
−1(V (1) + ∆V ) = 1TnW

−1(V ?(1) + ∆V ?), (12)

which implies 1TnW
−1∆V = 1TnW

−1∆V ?. Bearing in mind
that the voltage differences between any node of the microgrid
are prescribed by the achievement of current sharing (see the
paragraph below Objective 1), we have BTV (1) = BTV (2),
implying ∆V = 1nν, with ν = 1TnW

−1∆V ?/1TnW
−11n,

i.e., all the voltages are shifted by the same quantity.
Consequently, any node i in the network can lower or

increase its steady state voltage V i, by adjusting its own
reference V ?i . Although, the design and the analysis of a
voltage reference generator is postponed to a future research,
the property proven in Lemma 2 could be exploited to tune the
references in order to avoid that the voltages at some nodes
are lower or higher than some given thresholds.

IV. A MANIFOLD-BASED CONSENSUS ALGORITHM

In this section we introduce the key aspects of the proposed
solution to simultaneously achieve Objective 1 and Objec-
tive 2, consisting of a consensus algorithm and the design of a
manifold to where the solutions to the system should converge.
First, we augment system (3) with additional state variables
(distributed integrators) θi, i ∈ V , with dynamics given by

θ̇i = −
∑
j∈N c

i

γij(wiIti − wjItj), (13)

where N c
i is the set of the DGUs that communicate with the

i-th DGU, γij = γji ∈ R>0 are additional gain constants, and
wi, wj ∈ R>0 are constant weights depending on the DGUs
generation capacity. Let Lc denote the (weighted) Laplacian
matrix associated with the communication graph, which can be
different from the topology of the (reduced) microgrid. Then,
the dynamics in (13) can be expressed compactly for all nodes
i ∈ V as

θ̇ = −LcWIt, (14)

that indeed has the form of a consensus protocol, permitting a
steady state where WIt ∈ im(1n) (see also Objective 1). We
impose the following restrictions on (14):

Assumption 3: (Controller structure) For all i ∈ V , the
integrators states θi are initialized such that 1Tnθ(0) = 0.
Furthermore, the graph corresponding to the topology of the
communication network is undirected and connected.

The most straightforward choice of initialization of the state
θi(0), that satisfies Assumption 3, is to initialize all θi to zero,
i.e. θ(0) = 0. Whereas connectedness of the communication
graph is needed to ensure current sharing among all DGUs,
the consequence of the required initialization of θ is that the
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average value of the entries of θ is preserved and identical to
zero for all t ≥ 0, as proved in the following lemma:

Lemma 3: (Preservation of 1Tnθ) Let Assumption 3 hold.
Given system (14), the average value 1

n

∑
i∈V θi is preserved,

i.e.,
1

n
1Tnθ(t) =

1

n
1Tnθ(0) for all t ≥ 0. (15)

Proof: Pre-multiplying both sides of (14) by 1Tn yields

1Tn θ̇ = −1TnLcWIt = 0, (16)

where 1TnLc = 0, follows from Lc being the Laplacian matrix
associated with an undirected graph.

The fact that 1Tnθ(t) = 0, is essential to the second aspect
of the proposed solution, the design of a manifold. Bearing in
mind Objective 2, we propose the following desired manifold:

{(It, V, I, θ) : W−1(V − V ?)− θ = 0}. (17)

Indeed, exploiting the preservation of 1Tnθ, we have on the
desired manifold (17), 1TnW

−1V = 1Tn (θ + W−1V ?) =
1TnW

−1V ?. Constraining the solutions to a system to a
specific manifold is typical for sliding mode based controllers,
and we will discuss some suitable controller designs in the next
section.

Remark 4: (Plug-and-Play) The main results in this work
assume a constant network topology. Nevertheless, an interest-
ing extension is to consider the plugging in or out of various
converters. The analysis of the corresponding switched/hybrid
system is outside the scope of this work. Here, we merely
describe how the required initialization θi should be extended
towards the setting of changing topologies, in order to preserve
the crucial property 1Tnθ = 0. First, if a new DGU (say
DGUn+1) wants to join the network, its integrator state is
initialized to zero, i.e., θn+1(tnew) = 0, tnew being the time
instant when DGUn+1 is plugged-in. Second, if a DGU
(say DGU i) is unplugged at the time instant tout, we let
θi(t) = θi(tout) for all t > tout, without re-setting any
integrator. If DGU i wants to join again the network at the
time instant tin > tout, the dynamic of θi is described again
by (13) for all t > tin. Since θi(tin) = θi(tout), also the plug-
in operation occurs without re-setting any integrator state.

V. SLIDING MODE CONTROLLERS

We now propose a Distributed Second Order Sliding Mode
(D-SOSM) control law, and a Distributed Third Order Sliding
Mode (D-3SM) control law, to steer, in a finite time, the state
of system (3), augmented with (14), to the desired manifold
(17). As will be discussed in the coming subsections, the
choice of the particular control law, D-SOSM or D-3SM,
depends on the desired implementation.

First, to facilitate the upcoming discussion, we recall the
following definitions that are essential to sliding mode control:

Definition 1: (Sliding function) Consider system

ẋ = ζ(x, u), (18)

with state x ∈ Rn, and input u ∈ Rm. The sliding function
σ(x) : Rn → Rm is a sufficiently smooth output function of
system (18).

Definition 2: (r–sliding manifold) The r–sliding manifold‡

is given by

{x ∈ Rn, u ∈ Rm : σ = Lζσ = · · · = L
(r−1)
ζ σ = 0}, (19)

where L(r−1)
ζ σ(x) is the (r−1)-th order Lie derivative of σ(x)

along the vector field ζ(x, u). With a slight abuse of notation
we also write Lζσ(x) = σ̇(x), and L(2)

ζ σ(x) = σ̈(x).
Definition 3: (r–order sliding mode (controller)) A r–

order sliding mode is enforced from t = Tr ≥ 0, when,
starting from an initial condition, the state of (18) reaches
the r–sliding manifold, and remains there for all t ≥ Tr. The
order of a sliding mode controller is identical to the order of
the sliding mode that it is aimed at enforcing.

Bearing in mind the definitions above and the desired
manifold (17), we consider the following sliding function
σ ∈ Rn:

σ(V, θ) = W−1(V − V ?)− θ. (20)

A. Second order SM control: variable switching frequency

Regarding the sliding function (20) as the output function of
system (3), (14), it appears that the relative degree§ is two. This
implies that a second order sliding mode (SOSM) controller
can be naturally applied in order to make the state of the
controlled system reach, in a finite time, the sliding manifold
{(It, V, I, θ) : σ = σ̇ = 0}. According to the SOSM control
theory, the auxiliary variables ξ1 = σ and ξ2 = σ̇ have to be
defined, resulting in the so-called auxiliary system

ξ̇1 = ξ2

ξ̇2 = b(It, V, I, u) +Gdu.
(21)

Taking into account the expressions for σ and σ̇, a straight-
forward calculation shows that, in the auxiliary system (21),
the expression for b ∈ Rn is given by

b =−
(
W−1C−1t + LcW

)
L−1t RtIt

−
((
W−1C−1t + LcW

)
L−1t +W−1C−1t BL−1BT

)
V

−W−1C−1t BL−1RI −Gau,
(22)

and Gd, Ga ∈ Rn×n are

Gd = (W−1C−1t +DcW )L−1t ,

Ga = AcWL−1t .
(23)

Here, Dc and Ac are the degree matrix and the adjacency
matrix of the communication graph, respectively, i.e. Lc =
Dc−Ac. We assume that the entries of b and Gd have known
bounds for all i ∈ V:

|bi| ≤ bmaxi

Gmini
≤ Gdii ≤ Gmaxi

,
(24)

with bmaxi
, Gmini

and Gmaxi
being positive constants. Ac-

cording to the theory underlying the so-called Suboptimal

‡For the sake of simplicity, the order r of the sliding manifold is omitted
in the remainder of this paper.
§ The relative degree is the minimum order ρ of the time derivative

σ
(ρ)
i , i ∈ V , of the sliding variable associated with the i-th node in which

the control ui, i ∈ V explicitly appears.
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SOSM (SSOSM) control algorithm [30], the i-th SOSM
control law, that can be used to steer ξ1i and ξ2i , to zero
in a finite time, even in presence of uncertainties, is given by

ui = −µiUmaxi
sgn

(
ξ1i − 1

2ξ
max
1i

)
, (25)

with

Umaxi
> max

(
bmaxi

µ∗iGmini

;
4bmaxi

3Gmini
− µ∗iGmaxi

)
, (26)

µ∗i ∈ (0, 1] ∩
(

0,
3Gmini

Gmaxi

)
, (27)

µi switching between µ∗i and 1, according to [30, Algo-
rithm 1]. The extremal value ξmax

1i in (25) can be detected
by implementing for instance a peak detector as in [31]. Note
that only the value of ξ1i , i.e., wi(Vi − V ?i )− θi, is required
to generate the control signal ui.

Remark 5: (Switching frequency) The discontinuous con-
trol signal (25) can be directly used in practice to open and
close the switch of the Buck converter. As a result, the In-
sulated Gate Bipolar Transistors (IGBTs) switching frequency
cannot be a-priori fixed and the power losses could be high.
Usually, in order to achieve a constant IGBTs switching
frequency, Buck converters are controlled by implementing
the so-called Pulse Width Modulation (PWM) technique. To
do this, a continuous control signal, that represents the so-
called duty cycle of the Buck converter, is required.

B. Third Order SM control: duty cycle

To ensure a continuous control input (duty cycle), we
adopt the procedure suggested in [30] and first integrate the
(discontinuous) control signal generated by a sliding mode
controller, yielding for system (3) augmented with (14)

Ltİt = −RtIt − V + u

CtV̇ = It + BI − IL
Lİ = −BTV −RI
θ̇ = −LcWIt

u̇ = v,

(28)

where v is the new (discontinuous) control input. Note that the
input signal to the converter, u(t) =

∫ t
0
v(τ)dτ , is continuous,

so that ui can be used as duty cycle for the switch of the
i-th Buck converter. A consequence is that the system relative
degree (with respect to the new control input v) is now equal
to three, so that we need to rely on a third order sliding
mode (3SM) control strategy to reach the sliding manifold
{(It, V, I, θ) : σ = σ̇ = σ̈ = 0} in a finite time. To do so, we
define the auxiliary variables ξ1 = σ, ξ2 = σ̇ and ξ3 = σ̈, and
build the auxiliary system as follows

ξ̇1 = ξ2

ξ̇2 = ξ3

ξ̇3 = ḃ(It, V, I, u) +Gdv

u̇ = v,

(29)

with b as in (22), and Gd, Ga as in (23). Then, we assume
that the entries of ḃ can be bounded as

|ḃi(·)| ≤ βmaxi ∀i ∈ V, (30)

where βmaxi
is a known positive constant.

Remark 6: (Uncertainty of b, ḃ and Gd) The mappings
b, ḃ and matrix Gd are uncertain due to the presence of
the unmeasurable current demand IL and possible network
parameter uncertainties. However, relying on Assumption 1
and observing that b and ḃ depend on the electric signals
related to the finite power of the microgrid, b, ḃ and Gd are
in practice bounded. Generally, the bounds of the unknown
quantities can be determined by data analysis and engineering
understanding.

Now, the 3SM control law proposed in [32] can be used to
steer ξ1i , ξ2i and ξ3i , i ∈ V , to zero in a finite time. It is given
by

vi = −αi


v1i = sgn(σ̈i) σi ∈M1i/M0i

v2i = sgn
(
σ̇i +

σ̈2
i v1i
2αri

)
σi ∈M2i/M1i

v3i = sgn(si(σi)) otherwise,
(31)

where σi = [σi, σ̇i, σ̈i]
T and

si(σi) = σi +
σ̈3
i

3α2
ri

+ v2i

[
1
√
αri

(
v2i σ̇i +

σ̈2
i

2αri

) 3
2

+
σ̇iσ̈i
αri

]
,

with
αri = αiGmini

− βmaxi
> 0. (32)

Then, given the bounds Gmini
and βmaxi

, the control ampli-
tude αi is chosen such that αri is positive. The manifolds
M1i , M2i , M3i in (31) are defined as

M0i =
{
σi ∈ R3 : σi = σ̇i = σ̈i = 0

}
M1i =

{
σi ∈ R3 : σi −

σ̈3
i

6α2
ri

= 0, σ̇i +
σ̈i|σ̈i|
2αri

= 0
}

M2i =
{
σi ∈ R3 : si(σi) = 0

}
.

From (31), one can observe that the controller of DGU i
requires not only σi, but also σ̇i and σ̈i. Yet, according to
Assumption 1, only Iti and Vi are measurable at the i-th DGU.
Then, one can rely on Levant’s second-order differentiator [33]
to retrieve σ̇i and σ̈i in a finite time. Consequently, for
system (29), the estimators are given by

˙̂
ξ1i = −λ0i

∣∣∣ξ̂1i − ξ1i∣∣∣ 23 sgn
(
ξ̂1i − ξ1i

)
+ ξ̂2i

˙̂
ξ2i = −λ1i

∣∣∣ξ̂2i − ˙̂
ξ1i

∣∣∣ 12 sgn
(
ξ̂2i −

˙̂
ξ1i

)
+ ξ̂3i

˙̂
ξ3i = −λ2i sgn

(
ξ̂3i −

˙̂
ξ2i

)
,

(33)

where ξ̂1i = σ̂i, ξ̂2i = ˙̂σi and ξ̂3i = ¨̂σi are the estimated
values of ξ1i = σi, ξ2i = σ̇i and ξ3i = σ̈i, respectively.
The estimates obtained via (33) can be used in (31), replac-
ing the original variables. The other parameters are λ0i =

3Λ
1/3
i , λ1i = 1.5Λ

1/2
i , λ2i = 1.1Λi, Λi > 0, as suggested

in [33].
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Remark 7: (Scalability and distributed control) Since
the selected sliding function (20) is designed by using the
additional state θ in (14), the overall control scheme is indeed
distributed, and only information on generated currents It
needs to be shared. More precisely, the controller of the i-th
DGU needs information only from the DGUs that communi-
cate with it. Note that the design of the local controller for each
DGU is not based on the knowledge of the whole microgrid,
so that the complexity of the control synthesis does not depend
on the microgrid size.

Remark 8: (Alternative SM controllers) In this work we
rely on the SOSM control algorithm proposed in [30] and the
3SM control law proposed in [32]. However, the results in
this paper are obtained independent of the particular choice of
sliding mode controller.

VI. STABILITY ANALYSIS

In this section we first show that the states of the controlled
microgrid are constrained, after a finite time, to the manifold
σ = 0, where Objective 2 is achieved. Thereafter, we prove
that the solutions to the system, once the sliding manifold is
attained, converge exponentially to a constant point, achieving
additionally Objective 1.

A. Equivalent reduced order system

As a first step, we study the convergence to the sliding
manifold when the SSOSM or the 3SM control law is applied
to the system.

Lemma 4: (Convergence to the sliding manifold: SSOSM)
Let Assumption 1 hold. The solutions to system (3) augmented
with (14), controlled via the SSOSM control law (25), con-
verge in a finite time Tr, to the sliding manifold {(It, V, I, θ) :
σ = σ̇ = 0}, with σ given by (20).

Proof: Following [30], the application of (25) to each
converter guarantees that σ = σ̇ = 0, for all t ≥ Tr.

Lemma 5: (Convergence to the sliding manifold: 3SM)
Let Assumption 1 hold. The solutions to system (3) aug-
mented with (14), controlled via 3SM control algorithm (29)-
(33), converge in a finite time Tr, to the sliding manifold
{(It, V, I, θ) : σ = σ̇ = σ̈ = 0}, with σ given by (20).

Proof: By implementing the Levant’s differentiator (33)
in each node, the values of ξ1, ξ2, ξ3, are estimated in a finite
time TLd ≥ 0 [33]. Then, following [32], the application
of (31) to each converter guarantees that σ = σ̇ = σ̈ = 0,
for all t ≥ Tr ≥ TLd.

As we will show in the proof of Theorem 2 in the
next subsection, converging to the sliding manifold where
σ = 0, is sufficient to conclude that Objective 2 (voltage
balancing) is achieved. We postpone the analysis, in order
to show additionally convergence to a constant voltage. For
the analysis of the system, when the solutions are constrained
to the sliding manifold, it is convenient to exploit the so-
called system order reduction property, typical of sliding mode
control methodology. Indeed, when the state of system (3)
augmented with (14) is constrained to the sliding manifold
{(It, V, I, θ) : σ = σ̇ = 0}, with σ given by (20), the con-
trolled system is described by 3n+m differential equations and

2n algebraic equations. Then, it is possible to obtain 2n state
variables depending on the other n + m ones. The resulting
system of order n + m represents the reduced order system
equivalent to the system controlled with a discontinuous law,
with the initial condition (It(Tr), V (Tr), I(Tr), θ(Tr)), when
σ = σ̇ = 0.

Lemma 6: (Equivalent reduced order system) For all
t ≥ Tr, the dynamics of the controlled system (3) augmented
with (14) are given by the following equivalent system of
reduced order

CtV̇ =
(
In − (In + CtWLcW )

−1
)
BI

−
(
In − (In + CtWLcW )

−1
)
IL

Lİ =− BTV −RI,

(34)

together with the following algebraic relations

θ = W−1 (V − V ?) (35)

It = (In + CtWLcW )
−1

(−BI + IL) . (36)

Proof: Given the sliding function (20), by virtue of
Lemma 4 and Lemma 5, the state of system (3) augmented
with (14) is constrained to the manifold {(It, V, I, θ) : σ =
σ̇ = 0}, where θ = W−1 (V − V ?) and V̇ = Wθ̇. From the
latter, one can straightforwardly obtain (36). After substituting
expression (36) for It in (3), the dynamics of the voltage V
become as in (34).

B. Exponential convergence and objectives attainment

In the pervious subsection, we established that after a
finite time Tr, the dynamics of the controlled microgrid are
described by the equivalent system (34). In this subsection we
study the convergence properties of this equivalent system. To
do so, we rely on the concept of semistability [34], of which
we recall the definition for convenience.

Definition 4: (Semistability) Consider the autonomous sys-
tem

ẋ(t) = Ax(t), (37)

where t ≥ 0, x ∈ Rn and A ∈ Rn×n. System (37) is
semistable if limt→∞ x(t) exists for all initial conditions x(0).

Furthermore, the following lemma turns out to be useful in
the upcoming analysis:

Lemma 7: Given a positive definite matrix P ∈ Rn×n and
a positive semidefinite matrix Q ∈ Rn×n, then

P −
(
P−1 +Q

)−1 � 0. (38)

Proof: Let Q̃ = P
1
2QP

1
2 . Clearly, Q̃ � 0, and In + Q̃ �

0. Then,

P −
(
P−1 +Q

)−1
= P

1
2

[
In −

(
In + Q̃

)−1]
P

1
2 (39)

is a positive semidefinite matrix if and only if In − (In +
Q̃)−1 = Q̃(In + Q̃)−1 � 0. Observing that (In + Q̃)−1 � 0,
it yields

Q̃(In + Q̃)−1 v (In + Q̃)−
1
2 Q̃(In + Q̃)−

1
2 � 0, (40)

which completes the proof.
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Next, we show that the line currents I converge to a constant
value.

Lemma 8: (Convergence of I) Let Assumptions 1 and
2 hold. Given the equivalent reduced order system (34),
limt→∞ I(t) exists for all initial conditions I(Tr).

Proof: Let Ṽ = V − V and Ĩ = I − I be the error
given by the difference between the state of system (34) and
a steady state value. Then, the dynamics of the corresponding
error system are given by

Ct
˙̃V =

(
In − (In + CtWLcW )

−1
)
BĨ

L ˙̃I =− BT Ṽ −RĨ,
(41)

From (41), we obtain
˙̃V = C−1t

(
In − (In + CtWLcW )

−1
)
BĨ

=
(
C−1t − (Ct + CtWLcWCt)

−1
)
BĨ ,

(42)

and
L ¨̃I +R ˙̃I + BT ˙̃V = 0. (43)

Substituting expression (42) for ˙̃V in (43) leads to

L ¨̃I +R ˙̃I + BT
(
C−1t − (Ct + CtWLcWCt)

−1
)
B︸ ︷︷ ︸

K

Ĩ = 0.

(44)
Since, by virtue of Lemma 7 (with P = C−1t , Q =
CtWLcWCt), C−1t − (Ct + CtWLcWCt)

−1 � 0, then we
also have K = BT (C−1t − (Ct + CtWLcWCt)

−1)B � 0.
According to [34, Corollary 2], system (44) is semistable (see
Definition 4) if and only if

rank


R

R(L−1K)
R(L−1K)2

...
R(L−1K)m−1

 = m. (45)

Since R is a positive definite m × m diagonal matrix it
can be readily confirmed that condition (45) holds, such that
system (44) is indeed semistable. Since I is a constant vector,
it immediately follows that limt→∞ I(t) exists.

Lemma 8 established that limt→∞ I(t) exists for all initial
conditions I(Tr). This result can now be exploited to show
that also the voltages converge to constant values.

Lemma 9: (Convergence of V ) Let Assumptions 1–3 hold.
Given the equivalent reduced order system (34), limt→∞ V (t)
exists for all initial conditions V (Tr).

Proof: Exploiting the convergence of I to a constant
vector (see Lemma 8), from (43) we have

lim
t→∞

BT V̇ (t) = 0, (46)

implying that
lim
t→∞

V̇ (t) = 1nκ, (47)

with κ ∈ R. By virtue of Lemma 3 and Lemma 4 or Lemma 5,
for all t ≥ Tr, we also have

1TnW
−1V = 1Tn (θ +W−1V ?) = 1Tnθ(0) + 1TnW

−1V ?.
(48)

Taking the derivative with respect to time on both sides of (48),
it follows that 1TnW

−1V̇ (t) = 0 for all t ≥ Tr. Exploiting
(47), we obtain

lim
t→∞

1TnW
−1V̇ (t) = 1TnW

−1 lim
t→∞

V̇ (t)

= 1TnW
−11nκ

= 0,

(49)

which implies κ = 0 and consequently that limt→∞ V (t)
exists for all initial conditions V (Tr).

We are now ready to establish the first main result of this
paper.

Theorem 1: (Achieving current sharing) Let Assump-
tions 1–3 hold. Consider system (3), (14), controlled with
the proposed distributed SSOSM (Subsection V-A) or 3SM
(Subsection V-B) control scheme. Then, the generated cur-
rents It(t) converge, after a finite time, exponentially to
W−11n1

T
n IL/(1

T
nW

−11n), achieving proportional current
sharing.

Proof: According to Lemma 6, for all t ≥ Tr, the
dynamics of the controlled system (3), (14) are given by the
autonomous system (34) together with the algebraic equations
(35) and (36). Bearing in mind the results proved in Lemma 8
and Lemma 9, the dynamics of the line current I and the
voltage V are semistable. From the algebraic equations (35)
and (36), it follows that limt→∞ θ(t) and limt→∞ It(t) exist as
well. Since (34) is linear and ker(Lc) = im(1n), (14) implies
that the vector It(t), with initial condition It(Tr), converges
exponentially to a constant vector, achieving proportional
current sharing.

We now proceed with establishing the second main result
of this paper.

Theorem 2: (Achieving voltage balancing) Let Assump-
tions 1–3 hold. Consider system (3), (14), controlled with
the proposed distributed SSOSM (Subsection V-A) or 3SM
(Subsection V-B) control scheme. Then, given a desired ref-
erences vector V ?, the voltages V (t) satisfy 1TnW

−1V (t) =
1TnW

−1V ? for all t ≥ Tr, with Tr a finite time.
Proof: Following Lemma 4 or Lemma 5, for all

t ≥ Tr, the equality W−1V (t) = W−1V ? + θ(t) holds.
Pre-multiplying both sides by 1Tn yields 1TnW

−1V (t) =
1TnW

−1V ? + 1Tnθ(t). Due to Assumption 3 and by virtue
of Lemma 3, one has that 1Tnθ(t) = 1Tnθ(0) = 0. Then, one
can conclude that voltage balancing is achieved for all t ≥ Tr.

Remark 9: (Robustness to failed communication) The
proposed control scheme is distributed and as such requires a
communication network to share information on the generated
currents. However, note that the integrators θ in (14) are not
needed to regulate the voltages in the microgrid to their desired
values, but are only required to achieve current sharing and
voltage balancing. In fact, by omitting the variable θ in the
analysis, the controlled microgrid converges, in a finite time,
to the manifold σ = 0, where V = V ?, as shown in [14].
Moreover, considering constant value of θi (e.g. after the plug-
out of the DGU i), the controlled DGU i converges, in a finite
time, to the manifold σi = 0, where Vi = V ?i + wiθi.
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V1 V4

V2 V3

L12

R12

L14 R14

R34

L34

R23 L23

DGU 1︷ ︸︸ ︷
It1 − IL1

It2 − IL2

It4 − IL4

It3 − IL3

γ12
γ23

γ34

Fig. 2. Scheme of the considered (Kron reduced) microgrid with 4 power
converters. The dashed lines represent the communication network.

TABLE II
MICROGRID PARAMETERS AND CURRENT DEMAND

DGU 1 2 3 4

Rti (Ω) 0.2 0.3 0.5 0.1
Lti (mH) 1.8 2.0 3.0 2.2
Cti (mF) 2.2 1.9 2.5 1.7
wi (–) 0.4−1 0.2−1 0.15−1 0.25−1

V ?i (V) 380.0 380.0 380.0 380.0
ILi(0) (A) 30.0 15.0 30.0 26.0
∆ILi (A) 10.0 7.0 −10.0 5.0

TABLE III
LINE PARAMETERS

Line {1,2} {2,3} {3,4} {1,4}

Rij (mΩ) 70 50 80 60
Lij (µH) 2.1 2.3 2.0 1.8

Remark 10: (Perturbations in the controller states) In
case Assumption 3 is violated, we have 1Tnθ(t) = 1Tnθ(0),
and consequently 1TnW

−1V (t) = 1TnW
−1V ?+1Tnθ(0) on the

sliding manifold, implying that the weighted average voltage
of the microgrid is shifted by 1Tnθ(0). However, the presented
stability analysis is still valid such that the stability of the
whole microgrid and the achievement of proportional current
sharing is still guaranteed.

VII. SIMULATION RESULTS

In this section, the proposed manifold-based consensus algo-
rithm is assessed in simulation by implementing the third order
sliding mode control strategy discussed in Subsection V-B. We
consider a microgrid composed of 4 DGUs interconnected as
shown in Figure 2, where also the communication network is
depicted. The parameters of each DGU, including the current
demand, and the line parameters are reported in Tables II and
III, respectively. The weights associated with the edges of the
communication graph are γ12 = γ23 = γ34 = 10. For all the
DGUs the controller parameter αi in (31) is set to 2.4× 103. In
order to investigate the performance of the proposed control
approach within a low voltage DC microgrid, four different
scenarios are implemented (see Fig. 3).

A. Scenario 1: proportional current sharing

The system is initially at the steady state. Then, consider a
current demand variation ∆ILi at the time instant t = 1 s (see
Table II). The PCC voltages and the generated currents are
illustrated in Figure 4. One can appreciate that the weighted

average of the PCC voltages (denoted by Vav) is always
equal to the weighted average of the corresponding references
(see Objective 2), and the current generated by each DGU
converges to the desired value, achieving proportional current
sharing (see Objective 1). Moreover, in Figure 5 the currents
shared among the DGUs are reported together with the control
signals generated by the 3SM control algorithm (31). Note that
the 3SM controllers, which require only local measurements
of Vi and information on It from neighbours over the com-
munication network, generate control signals that are equal to
the optimal feedforward input (7), without exact knowledge
on the network parameters and the current demand IL.

B. Scenario 2: opening of a distribution line

In the second scenario, we investigate the performance of
the proposed controllers when a distribution line is opened
(e.g. due to an electric fault). The system is initially at the
steady state, and at the time instant t = 0.4 s, the distribution
line interconnecting the DGUs 1 and 4 is opened. Then,
consider a current demand variation as in Scenario 1. The
PCC voltages and the generated currents are illustrated in
Figure 6. One can appreciate that the weighted average of the
PCC voltages (denoted by Vav) is always equal to the weighted
average of the corresponding references (see Objective 2), and
the current generated by each DGU converges to the desired
value, achieving proportional current sharing (see Objective 1).
Moreover, in Figure 7 the currents shared among the DGUs
are reported together with the control signals generated by the
3SM control algorithm (31).

C. Scenario 3: plug-out and plug-in of a DGU

In the third scenario, we investigate the Plug-and-Play (PnP)
capabilities of the proposed controllers. For the sake of clarity,
in this scenario and the next one we consider equal current
sharing among the DGUs. The system is initially at the
steady state, and at the time instant t = 0.4 s, the DGU 4
is disconnected from the considered DC network (in this
configuration the impedance of the line interconnecting DGU 1
and DGU 3 is equal to the sum of the line impedances Z14

and Z34). After a current demand variation as in Scenario 1,
at the time instant t = 1.4 s, the DGU 4 is reconnected to the
DC network. The PCC voltages and the generated currents are
illustrated in Figure 8. One can appreciate that the arithmetic
average of the PCC voltages (denoted by Vav) is equal to
the arithmetic average of the corresponding references, even
after disconnecting the DGU 4. Moreover, when the DGU 4
operates isolated from the considered DC network, equal
current sharing is achieved only among the DGUs 1, 2 and
3, while the DGU 4 supplies its local load. However, when
the DGU 4 is reconnected to the DC network, current sharing
among all the DGUs is again reestablished. Moreover, in
Figure 9 the currents shared among the DGUs are reported
together with the control signals generated by the 3SM control
algorithm (31). Note that, when the DGU 4 is isolated from the
network, the comparison between u4 and the corresponding
optimal feedforward input loses its meaning.
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Fig. 3. From the left: the configurations of the considered microgrid implemented in Scenario 1, Scenario 2, Scenario 3 and Scenario 4, respectively.
Zij denotes the resistive-inductive impedance of the distribution line interconnecting DGU i with DGU j. Components that are failing/removed during the
simulation are colored red.
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Fig. 4. Scenario 1. From the top: voltage at the PCC of each DGU together
with its weighted average value (dashed line); generated currents together with
the corresponding values (dashed lines) that allow to achieve proportional
current sharing.

0 0.5 1 1.5 2

time (s)

-10

0

10

20

I
ij
(A

)

I12 I23 I34 I14

0 0.5 1 1.5 2

time (s)

382

384

386

388

390

392

u
(V

)

u1 u2 u3 u4 ū
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Fig. 5. Scenario 1. From the top: currents shared among the DGUs through
the lines; control inputs ui(t) =

∫ t
0 vi(τ)dτ , vi as in (31), together with the

optimal feedforward inputs (7) indicated by the dashed lines.
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Fig. 6. Scenario 2. From the top: voltage at the PCC of each DGU together
with its weighted average value (dashed line); generated currents together with
the corresponding values (dashed lines) that allow to achieve proportional
current sharing.
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Fig. 7. Scenario 2. From the top: currents shared among the DGUs through
the lines; control inputs ui(t) =

∫ t
0 vi(τ)dτ , vi as in (31), together with the

optimal feedforward inputs (7) indicated by the dashed lines.
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Fig. 8. Scenario 3. From the top: voltage at the PCC of each DGU together
with its average value (dashed line); generated currents in case of equal current
sharing, which is achieved by DGUs 1, 2, 3 for all the simulation time interval,
and by DGU 4 only when it is connected to the microgrid.
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Fig. 9. Scenario 3. From the top: currents shared among the DGUs through
the lines; control inputs ui(t) =

∫ t
0 vi(τ)dτ , vi as in (31), together with the

optimal feedforward inputs (7) indicated by the dashed lines.

D. Scenario 4: failing of a communication link

In the last scenario, we investigate the robustness of the
proposed controllers to failed communication. The system is
initially at the steady state, and at the time instant t = 0.4 s,
the communication between DGU 3 and DGU 4 is interrupted.
We observe that as long as the demand does not change,
current sharing among all the DGUs in mainteined. The PCC
voltages and the generated currents are illustrated in Figure 10.
One can note that after a current demand variation (see Table
II), equal current sharing is achieved only among the DGUs
1, 2 and 3, while the DGU 4 generates a current such that
the voltage at node 4 is kept constant. One can appreciate
that the arithmetic average of the PCC voltages (denoted by
Vav) is equal to the arithmetic average of the corresponding
references, even after interrupting the communication between
DGU 3 and DGU 4. Moreover, in Figure 11 the currents shared
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Fig. 10. Scenario 4. From the top: voltage at the PCC of each DGU together
with its average value (dashed line); generated currents in case of equal current
sharing, which is achieved by DGUs 1, 2, 3 for all the simulation time interval,
and by DGU 4 only before the failing of the communication link.
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Fig. 11. Scenario 4. From the top: currents shared among the DGUs through
the lines; control inputs ui(t) =

∫ t
0 vi(τ)dτ , vi as in (31), together with the

optimal feedforward inputs (7) indicated by the dashed lines.

among the DGUs are reported together with the control signals
generated by the 3SM control algorithm (31). Note that, when
the communication with DGU 4 fails, the comparison between
u4 and the corresponding optimal feedforward input loses its
meaning.

Even if IEEE Standards or guidlines for DC power distribu-
tion networks do not exist yet (to the best of our knowledge), it
is usually required in practical cases that the voltage deviations
are within the 5 % of the desired value (see for instance [24]).
In all the previous scenarios, the voltage at the PCC of each
DGU is within the range 380±1 V, implying that the voltage
deviations are less than the 0.3 % of the nominal value V ? =
380 V, even during transients and critical conditions.
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VIII. CONCLUSIONS

In this paper we design a distributed control algorithm,
obtaining proportional current sharing and voltage regulation
in DC microgrids. Its convergence properties are analytically
investigated. The proposed control scheme exploits a com-
munication network to achieve proportional current sharing
using a consensus-like algorithm. Another useful feature of
the proposed control scheme is that the weighted average
voltage of the microgrid converges to the weighted average
of the voltage references, independently of the initial voltage
conditions. The latter is achieved by constraining the system
to a suitable manifold. To ensure that the desired manifold
is reached in a finite time, even in presence of modelling
uncertainties, two sliding mode control strategies are proposed,
that provide the switching frequencies or the duty cycle of
the power converters. An extensive simulation analysis is
also provided, considering different and realistic scenarios.
The proposed controllers show satisfactory closed-loop per-
formance and Plug-and-Play capabilities, even in presence of
uncertainties, topology changes and communication failings.
Interesting future research includes the design of distributed
controllers aimed at guaranteeing power sharing and studying
the stability analysis of the resulting nonlinear system.

REFERENCES

[1] S. Trip, M. Cucuzzella, C. De Persis, X. Cheng, and A. Ferrara, “Sliding
modes for voltage regulation and current sharing in DC microgrids,” in
Proc. American Control Conference, Milwaukee, WI, USA, 2018.

[2] R. Lasseter and P. Paigi, “Microgrid: a conceptual solution,” in Proc.
35th IEEE Power Electronics Specialists Conf., vol. 6, Aachen, Ger-
many, June 2004, pp. 4285–4290.

[3] M. S. Sadabadi, Q. Shafiee, and A. Karimi, “Plug-and-play voltage sta-
bilization in inverter-interfaced microgrids via a robust control strategy,”
IEEE Transactions on Control Systems Technology, vol. 25, no. 3, pp.
781–791, May 2017.

[4] S. Trip, M. Bürger, and C. De Persis, “An internal model approach
to frequency regulation in inverter-based microgrids with time-varying
voltages,” in Proc. of the 53rd IEEE Conference on Decision and Control
(CDC), Dec. 2014, pp. 223–228.

[5] M. Cucuzzella, G. P. Incremona, and A. Ferrara, “Decentralized sliding
mode control of islanded ac microgrids with arbitrary topology,” IEEE
Transactions on Industrial Electronics, vol. 64, no. 8, pp. 6706–6713,
Apr. 2017.

[6] C. De Persis and N. Monshizadeh, “Bregman storage functions for
microgrid control,” IEEE Transactions on Automatic Control, vol. 63,
no. 1, pp. 53–68, Jan. 2018.

[7] J. M. Guerrero, P. C. Loh, T. L. Lee, and M. Chandorkar, “Advanced
control architectures for intelligent microgrids - part II: Power quality,
energy storage, and AC/DC microgrids,” IEEE Transactions on Indus-
trial Electronics, vol. 60, no. 4, pp. 1263–1270, Apr. 2013.

[8] J. J. Justo, F. Mwasilu, J. Lee, and J.-W. Jung, “AC-microgrids versus
DC-microgrids with distributed energy resources: A review,” Renewable
Sustain. Energy Rev., vol. 24, pp. 387–405, Aug. 2013.

[9] X. Liu, P. Wang, and P. C. Loh, “A hybrid AC/DC microgrid and its
coordination control,” IEEE Transactions on Smart Grid, vol. 2, no. 2,
pp. 278–286, June 2011.

[10] E. Benedito, D. del Puerto-Flores, A. Dòria-Cerezo, O. van der Feltz, and
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