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““Curiouser and curiouser!” cried Alice (she was so much surprised, that for the moment
she quite forgot how to speak good English).”

Lewis Carroll, Alice’s Adventures in Wonderland
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Abstract

The design and optimization of engineering products demand faster development
and better results at lower costs. These challenging objectives can be achieved by
readily evaluating multiple design options at the very early stages of the engineer-
ing design process. To this end, accurate and cost-efficient computational modeling
techniques for solids and fluids offer a reliable support and enable a better under-
standing of the underlying complex physical phenomena. Additionally, computer
simulations can ultimately reduce the necessity for experimental tests, which of-
ten turn out to be time-consuming, expensive, and very difficult to carry out. The
present work focuses on the development of advanced computational tools in the
context of Isogeometric Analysis (IgA), trying to exploit its higher-order continu-
ity properties and typically excellent accuracy-to-computational-effort ratio. More
specifically, we also investigate isogeometric collocation (IgC), which can be re-
garded as a fast strong-form method and an alternative to standard isogeometric
Galerkin (IgG) approaches. IgC can achieve high-order convergence rates coupled
with a significantly reduced computational cost. However, IgG methods are usually
more accurate than IgC with respect to the number of degrees of freedom. There-
fore, new IgC approaches are usually benchmarked against an IgG formulation for
the same problem.

Here, we first focus on constructing an accurate computational strategy to model
laminated composite structures in an attempt to address the unmet demand of cost-
efficient simulation techniques for laminates, especially when they are made of a
significant number of plies. Our modeling strategy relies on the aforementioned
computational advantages of IgA and an equilibrium-based interlaminar stress re-
covery. In brief, we first calculate an efficient and accurate approximation of the
displacement fields (and their derivatives) using a single-element through the thick-
ness of the laminate in combination with either a layer-by-layer integration rule or
a homogenized approach. While this relatively inexpensive calculation renders an
excellent approximation of the in-plane stresses in the laminate, the resulting out-
of-plane stress components are poorly approximated and violate equilibrium con-
straints. Thus, to recover these interlaminar stresses, we propose a cost-effective
pointwise post-processing technique that is based on the direct integration of the
equilibrium equations in strong form, involving the straightforward computation
of high-order derivatives of the displacement field. This procedure fundamentally
requires high regularity in the approximation of the displacement fields, which is
fully granted by the properties of IgA shape functions. To test our computational
strategy, we first study solid laminated composite plates exclusively resolved via a
homogenized IgC scheme. Then, we extend our modeling technique to bivariate
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laminated Kirchhoff plates, considering both homogenized IgC and IgG formula-
tions. To model this type of structure we use the classical laminate plate theory
(CLPT), which provides the lowest computational cost among known strategies in
the literature and features a high-order partial differential equation that can be easily
handled by the high smoothness of IgA functions. According to CLPT, interlaminar
stresses are identically zero when computed using the constitutive equations. There-
fore, our stress recovery technique produces a unique, primal approximation of the
out-of-plane stress within the CLPT framework. Additionally, we extend our com-
putational strategy for laminate composites to solid shells. The first challenge for
this type of structures is that stresses cannot longer be associated to in-plane and
out-of-plane components in the global reference system. Thus, we introduce a lo-
cal description at every point of the structure for which the out-of-plane through-
the-thickness stress is going to be recovered. This grants that no additional cou-
pled terms appear in the equilibrium, allowing for a direct reconstruction of the
interlaminar stresses without the need to solve the full balance of linear momen-
tum equation. In this work, we resolve solid shells using homogenized IgC and
IgG formulations, with the latter further featuring a layer-specific quadrature rule.
Moreover, we explore alternative stress recovery techniques that grant lower con-
tinuity requirements by exploiting the stress-strain relation within the out-of-plane
balance of linear momentum. The proposed stress recovery method proves to be
particularly effective to capture the out-of-plane behavior of slender structures with
a high number of plies. The IgC formulations achieve comparable accuracy with re-
spect to a renown validation benchmark in the field of composites or an overkill IgG
layerwise approach, even when considering a very coarse mesh in some cases. The
proposed modeling techniques enable to calculate the full stress state in every lo-
cation within the plate, including the boundaries, where edge effects usually cause
inaccuracy of the solution with other modeling frameworks, and at the interfaces
between the layers, where it is crucial to determine an accurate out-of-plane stress
field to avoid failure modes like delamination. Additionally, a preliminary study
shows that the alternative low-continuity formulations exhibit remarkable accuracy
compared to the general stress recovery strategy proposed in this thesis.

In an attempt to possibly include delamination effects into composite structure
simulations, we further develop a novel solution technique for phase-field modeling
of crack propagation using IgA. This modeling paradigm can naturally handle frac-
ture phenomena with arbitrarily complex crack topologies and has attracted high
attention both in the physics and the engineering communities. One of the key fea-
tures of a crack evolution process is that a fracture cannot heal and, therefore, it is a
non-reversible process. Thus, we propose a novel approach for a rigorous enforce-
ment of the irreversibility constraint, which grants non-negative damage increments
under prescribed displacements and may be efficiently resolved further providing
a reduction of the computational time with respect to standard methods to solve
phase-field brittle fracture. Our solution strategy proves to significantly reduce the
elapsed time of the execution of the phase-field subroutine for two well-known frac-
ture benchmarks with respect to a state-of-the-art penalty approach, directly impos-
ing the irreversibility constraint and without introducing new variables or modify-
ing the original problem, which is required in penalization methods. Preliminary
results using C1 quadratic B-spline shape functions confirm that the proposed solu-
tion scheme can also be used for higher-order discretizations. However, indepen-
dently of the adopted order, the problem-dependent internal length of the damage
phase field is the primary feature that needs to be precisely resolved with the chosen
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computational method to obtain accurate results.

Finally, we explore new IgC formulations in the context of fluid-structure in-
teraction (FSI). Computational fluid dynamics (CFD) problems usually require the
parametrization of complex 3D domains, which can be extremely challenging us-
ing closed volume splines within a standard IgG approach. To overcome this issue,
boundary-conforming finite elements can be a viable alternative and lead to a geo-
metrically compatible coupling fluid-structure interface for FSI problems. Thus, we
propose to adopt a common spline description of the interface, combining IgC on the
structural side and boundary-conforming finite elements (like the so-called NURBS-
enhanced finite elements) on the fluid side. Hence, the computational advantages
of IgC are available to solve FSI problems. Additionally, IgC provides a unique cou-
pling capability to transfer stresses across interfaces, as it has been proven in contact
mechanics problems. In particular, the coupling of the structural and the fluid solu-
tion is granted by means of a partitioned approach. Preliminary results for a known
FSI benchmark confirm that the spatiotemporal coupling of the fluid and structural
problems is achieved and that the necessary projection methods to exchange infor-
mation from one problem to the other simplify due to the matching geometry at the
fluid-structure interface.
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Chapter 1

Introduction

1.1 Motivation and Objectives

The development of accurate and efficient modeling techniques for solids and fluids
offers a reliable support for the design and optimization of engineering products and
allows for a better understanding of complex physical phenomena. Additionally, the
derivation of increasingly sophisticated numerical simulation tools helps to reduce
the necessity for experimental tests, which often result to be expensive and time-
consuming, or very difficult to carry out.

A clear example of the need for more efficient modeling techniques resides in
the field of composite materials. This kind of materials can be defined as combina-
tions of two or more constituents that present enhanced properties that could not
be acquired using any of the original units alone (see, e.g., [80, 102, 159, 187] and
references therein). Composite materials exhibit many appealing mechanical prop-
erties, such as superior strength and stiffness while being lightweight, as well as
improved corrosion and wear resistance. Thus, the interest for composite structures
in the engineering community has continuously been growing in recent years, es-
pecially in the aerospace and automotive industries. As a result, the global market
size of composites is projected to grow from USD 74.0 billion in 2020 to USD 112.8
billion by 2025 [48]. Recent examples of the extensive usage of composite materials
comprise a new generation of commercial aircrafts such as Boeing B787 Dreamliner
(see Figure 1.1(a)). Also, over 70% of Airbus A350XWB (see Figure 1.1(b)) is made
with advanced materials, including 53% composites. As a result, these aircrafts are
lighter, as well as corrosion- and fatigue-free, thereby optimizing maintenance costs
and helping to reduce fuel consumption and emissions by 25% [1].

In particular, laminated composite structures are generally formed by a collec-
tion of laminae stacked and subsequently glued together (see Figure 1.2) to achieve
improved mechanical properties (see, e.g., [86, 159]). Each lamina is commonly com-
posed of a matrix that surrounds and holds a set of fibers in place. The matrix
material acts as a load-transfer medium between fibers (a process that takes place
through shear stresses) and protects those elements from being exposed to the envi-
ronment, while the resistance properties of laminated composites are given by the
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(a) Composite usage in Boeing B787 Dreamliner airplane [47].

(b) Composite usage in Airbus A350XWB airplane [1].

FIGURE 1.1: Examples of composite usage in the aerospace industry.

FIGURE 1.2: Composite laminate scheme [99].

fibers, which are stiffer and create a high-strength direction according to their orien-
tation. These fibers can be oriented in multiple directions in each layer, hence giving
designers the flexibility to tailor laminate stiffness and strength while still maintain-
ing a reduced weight and matching even demanding structural requirements. Nev-
ertheless, it is a well-known fact that laminated composites are prone to damage
(even under simple loading conditions) due to comparatively poorer strength in the
out-of-plane direction. As a result, an interface crack might grow between two adja-
cent plies leading to a failure mode referred to as delamination [169] (see Figure 1.3).
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The most common sources of delamination are material and structural discontinu-
ities that give rise to relevant interlaminar stresses [136]. In general, the interlaminar
stress level is strongly dependent on the composite stacking sequence [146, 147] and
the mismatch of engineering properties between adjacent plies [102].

Despite the accelerated diffusion of laminated composites in a wide variety of
markets, the design of those materials is often restrained by the lack of cost-efficient
modeling techniques. The standard approaches are two-dimensional theories and
layerwise (LW) theories [119, 120, 159]. In particular, LW theories typically show
a comparatively higher computational cost, especially for a high number of plies.
More importantly, the existing strategies allowing for cheap simulations usually fail
to directly capture out-of-plane through-the-thickness stresses, which prove to be
typically responsible of failure modes such as delamination. Therefore, to properly
design or assess the structural response of laminated structures, an accurate evalua-
tion of the stresses through the thickness is of paramount importance [136, 169].

To address the unmet demand for accurate and cost-efficient modeling tech-
niques for laminated composite structures, in this thesis we propose a new numer-
ical strategy that exploits the high continuity properties and excellent accuracy-to-
efficiency ratio of isogeometric analysis (IgA) [51, 64, 91, 109, 156, 185] to construct
displacement-based methods coupled with a post-processing stress recovery tech-
nique (see, e.g., [65, 154, 183]), which allows to restore the out-of-plane through-
the-thickness stress state by directly imposing the equilibrium equations. The con-
sidered stress recovery approach generally involves higher-order derivatives, which
can be computed relying on IgA shape function properties. To this end, we de-
part from the preliminary work in [62] and develop these new methods for three
key types of composite laminated structures: solid plates, bivariate Kirchhoff plates,
and solid shells. We will focus on isogeometric collocation (IgC) formulations (see,
e.g., [16]) for our displacement-based methods because these approaches are usually
more cost-efficient than standard isogeometric Galerkin (IgG) schemes, in particular
when higher-order approximation degrees are adopted [162]. However, for a fixed
number of degrees of freedom (DOFs), this advantage of IgC may come at the cost of
losing accuracy with respect to IgG. Thus, we will also compare the performance of
IgC methods against an analytical benchmark case and IgG approaches to precisely
determine the level of accuracy of our IgC formulations for the three structural types
listed above.

Towards the possible inclusion of delamination effects into composite structure
simulations, this thesis also investigates the phase-field modeling of brittle fracture
in an IgA context. In this modeling paradigm, the damage process developing in the
crack tip region is described by means of a phase field, i.e., an additional continu-
ous variable depending on a material characteristic length that properly accounts for
the effect of the strain localization occurring in the process zone in the material re-
sponse. One of the key features of a crack evolution process is that a fracture cannot
heal and, therefore, it is a non-reversible process. To account for this feature, sev-
eral different approaches have been proposed in the literature for the solution of the
phase-field problem under fixed displacements. In [134], the constraint is enforced
by defining a further variable, the so-called history variable, which can be interpreted
as the monotonically growing driving force of the phase field. Instead, in [79] a
penalty functional is introduced into the formulation to replace the irreversibility
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FIGURE 1.3: Cross-sectional images from impacted 2D and 3D woven composites [2].

constraint. Although this penalization is conceived as problem-independent, it al-
ters the structure of the original problem and the penalty parameter strongly needs
to be tuned depending on the nature of the considered problem. Therefore, inspired
by the work of [45], we propose a novel approach for a rigorous enforcement of
the irreversibility constraint, which grants non-negative damage increments under
prescribed displacements and may be efficiently resolved further granting a reduc-
tion of the computational time with respect to standard methods to solve phase-field
brittle fracture.

Finally, to further illustrate the promising potential of IgC approaches to meet the
challenging demands of complex engineering applications accurately and efficiently,
this thesis also investigates a novel combination of boundary-fitted finite elements
and IgC formulations to resolve fluid-structure interaction (FSI) problems. In gen-
eral, computational fluid dynamics (CFD) problems usually require the parametriza-
tion of complex 3D domains, which can be extremely challenging using closed vol-
ume splines within a standard IgA approach. Boundary-conforming finite elements
can be a viable alternative and lead to a geometrically compatible coupling inter-
face for FSI problems, thereby enabling to use IgA formulations in the structural
domain. For instance, using a partitioned method, the work in [89] exploited this
idea and demonstrated that the necessary projection methods between the fluid and
the structural problems simplify due to the matching geometry, while the accuracy
of the flow solution increases at the same time. Therefore, we propose to capital-
ize on this idea and further develop it by combining boundary-conforming finite
elements on the fluid side with IgC on the structural side using a common spline
description of the interface. While IgG formulations have been integrated into FSI
analysis almost from the beginning of IgA, IgC has been used only for immersed
FSI and there has been no application yet to boundary-fitted FSI to the best of our
knowledge. Here, we aim to exploit the advantages of IgC and, in particular, its
coupling capability in terms of transferring stresses across interfaces, as it has been
proven in contact mechanics problems [55]. The coupling of the structural and the
fluid solution is greatly facilitated by the common spline interface and granted by
means of a partitioned approach, whereby the fluid and the structure are treated
as individual fields and solved separately. In particular, the necessary information
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is exchanged between structure and fluid using a Neumann/Dirichlet load trans-
fer approach, namely forces resulting from the fluid boundary stresses are projected
onto the structure as a Neumann boundary condition, while the structural deforma-
tions are transferred to the fluid as a Dirichlet boundary condition. In the future,
we believe that this hybrid method to address FSI problems could be seamlessly
integrated with our post-processing stress recovery technique for 3D curved lami-
nated composite structures, thereby facilitating an accurate and cost-efficient design
of complex geometries to serve fluid dynamics requirements in engineering appli-
cations.

1.2 Organization of the thesis

The rest of this thesis is organized as follows. In Chapter 2, we present the scien-
tific background for this thesis. We begin by introducing the fundamentals of IgA,
IgG approaches, and IgC methods. Then, we provide an overview of several ap-
plications of IgG and IgC methods with a focus on structural problems. Addition-
ally, we describe the main techniques to model composite 3D solid plates, bivari-
ate plates, 3D curved geometries, and shells. Then, we present an overview of the
existing literature on equilibrium-based stress recovery theories and outline stan-
dard solution schemes for the phase-field modeling of brittle fracture. We conclude
Chapter 2 by introducing FSI problems and focusing on the spatial coupling of non-
matching interface discretizations on the fluid and structural sides. In Chapter 3,
we propose an accurate equilibium-based interlaminar stress recovery for solid lam-
inated composite plates, which are modeled via a homogenized single-element IgC
method. This grants an accurate and cost-efficient in-plane solution, while the out-
of-plane stress state is recovered by directly imposing the equilibrium equations. In
Chapter 4, this procedure is successfully extended from 3D solid plates to bivariate
laminated Kirchhoff plates, considering both homogenized IgC and IgG formula-
tions. In Chapter 5, we proceed to further extend our modeling technique to solid
shells. Due to the increasing geometry complexity, stresses referred to the global
reference system cannot longer be associated to in-plane and out-of-plane compo-
nents. Therefore, we introduce a local description at every point of the structure for
which the out-of-plane stress is going to be recovered, thereby enabling to locally
apply the equilibrium-based stress recovery technique. This grants that no addi-
tional coupled terms appear in the equilibrium, allowing for a direct reconstruction
without the need to further iterate to resolve the balance of linear momentum equa-
tion. Additionally, we present very promising preliminary results obtained via an
alternative post-processing step that enables to lower the recovery high-order con-
tinuity requirements. Then, in Chapter 6, we focus on the phase-field modeling of
brittle fracture and present a novel approach for the rigorous enforcement of the
irreversibility constraint during crack propagation along with an efficient computa-
tional approach to implement this modeling strategy. Additionally, in Chapter 7, we
investigate the use of the advantageous computational properties of IgC approaches
to address FSI problems and propose a novel IgA modeling strategy that combines
boundary-conforming finite elements on the fluid side with IgC on the structural
side. Finally, in Chapter 8, we draw our conclusions and discuss future perspectives
of the work presented in this thesis.

Furthermore, to acknowledge all main sources of help, I hereby state that:
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- Chapter 3 is based on the article “A. Patton, J.-E. Dufour, P. Antolín, A. Reali.
Fast and accurate elastic analysis of laminated composite plates via isogeomet-
ric collocation and an equilibrium-based stress recovery approach. Composite
Structures, 225: 111026, 2019.”

- Chapter 4 is based on the article “A. Patton, P. Antolín, J.-E. Dufour, J. Kiendl,
A. Reali. Accurate equilibrium-based interlaminar stress recovery for isogeo-
metric laminated composite Kirchhoff plates. Composite Structures, 256: 112976,
2021.”

- Chapter 5 is based on the article “A. Patton, P. Antolín, J. Kiendl, A. Reali. Ef-
ficient equilibrium-based stress recovery for isogeometric laminated curved
structures” (status: under review - submitted for publication to Composite
Structures).

- Chapter 6 is based on the manuscript in preparation “A. Marengo, A. Patton,
M. Negri, U. Perego, A. Reali. An explicit algorithm for irreversibility enforce-
ment in phase-field modeling of crack propagation”.

- Chapter 7 is based on the manuscript in preparation “N. Hosters, A. Patton, N.
Kubicki, A. Reali, S. Elgeti, M. Behr. Combining boundary-conforming finite
elements and isogeometric collocation in the context of fluid-structure interac-
tion”.
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Chapter 2

Scientific background

In this chapter, we introduce IgA, with a focus on the fundamentals of the standard
basis functions as well as their geometry and derivatives and we discuss IgA refine-
ment operations. Additionally, we provide details on the approximation of a stan-
dard 3D linear elasticity problem for an isotropic homogeneous material with an IgG
formulation and we introduce the IgG multipatch approach. Then, we describe IgC
and present an overview of existing literature on several applications of IgC with a
focus on structural problems. Starting from the linear elasticity problem introduced
to illustrate the IgG approach, we build the corresponding strong form IgC approxi-
mation, interpreting IgC in a variational sense and we provide a brief description of
the IgC multipatch technique. Additionally, we outline a standard Newton-Raphson
algorithm to solve nonlinear problems in IgA. Then, we describe modeling tech-
niques for composite plates and shells as well as equilibrium-based stress recovery
theories. Finally, we briefly outline the main computational approaches to resolve
phase-field models of brittle fracture and introduce FSI problems, with a focus on
the spatial coupling of non-matching interface discretizations.

2.1 Isogeometric analysis

2.1.1 Introduction

IgA aims at bridging the gap between Finite Elements Analysis (FEA) and Computer
Aided Design (CAD) and, thus, it aspires to tightly connect design and analysis [50].
Adopting an historical perspective, CAD designers generated files that needed to be
translated into analysis-suitable geometries, meshed, and input to large-scale FEA
codes. Any mesh refinement operation required interaction with CAD geometry.
From a quantitative point of view, this modeling task is estimated to take over the
80% of the overall analysis time, and engineering designs are becoming increasingly
more complex (see Figure 2.1).

In order to accomplish a full analysis, there are many preparatory steps involved,
which do not only require modeling but other phases as well (see Figure 2.2). For
example, at Sandia National Laboratories mesh generation operations are estimated
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FIGURE 2.1: Increasing complexity in engineering design in terms of manufacturing time
(Courtesy of General Dynamics/Electric Boat Corporation) [50].

FIGURE 2.2: Estimation of the relative time costs of each component of the model generation
and analysis process at Sandia National Laboratories. Note that the process of building the
model completely dominates over the time spent performing analysis (Courtesy of Michael

Hardwick and Robert Clay, Sandia National Laboratories) [50].

to take about 20% of overall analysis time, whereas creation of the analysis-suitable
geometry requires about 60%, and only 20% of overall time is actually devoted to
analysis itself. Indeed the 80/20 modeling/analysis ratio seems to be a very com-
mon industrial experience. The concept of IgA, introduced by Hughes et al. in 2005
[91], may be viewed as a logical extension of the FEA. IgA adopts the isoparametric
paradigm and, hence, exploits the same basis functions both for the representation
of the geometric computational domains and the problem solution variables. This
is accomplished by employing typical smooth CAD functions, such as B-splines and
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Non-Uniform Rational B-splines (NURBS). These functions present higher continu-
ity properties than classical FEA shape functions, allowing for an exact represen-
tation of complex, curved geometries, while typically leading to improved conver-
gence and a cost-saving simplification of the usually expensive mesh generation and
refinement processes required by standard FEA.

Relying on the high-regularity properties of its basis functions, IgA has shown a
better accuracy per DOF and an enhanced robustness with respect to standard FEA
in a wide variety of solid and structural problems including – as pioneer works in
the field – structural vibrations [52, 156], structural dynamics and wave propagation
[95], eigenvalue problems [92], nearly incompressible linear and non-linear elasticity
as well as plasticity [18, 64], refinement [51] and mesh distortion [121] studies, and
phase-field modeling [33, 59], leading also to the development of optimized codes,
e.g., [71]. Specifically, with regard to the modeling of plates, we remark the con-
tributions of [185]. Among the landmark studies in the context of shell structures,
we highlight [29, 40, 61, 109], while recent works comprise formulations allowing
for large-strain plastic deformation [9], the analysis of geometrically nonlinear elas-
tic shells [118], novel approaches for alleviating shear and membrane locking phe-
nomena in solid shells [13], and new strategies to resolve the computational chal-
lenges arising when trimmed surfaces are directly employed for isogeometric Kirch-
hoff–Love shells [49].

Additionally, we remark other notable applications of IgA to other fields of sci-
ence and engineering, such as fluids (see, e.g., [4, 23, 24, 35, 82, 123]), FSI (see,
e.g., [21, 22, 90]), and biomedical applications [125, 140]. IgA also opens the door
to geometrically flexible discretizations of higher-order partial differential equations
(PDEs) in primal form (see, e.g., [19, 81, 109])

2.1.2 Fundamentals of Isogeometric analysis

In this section, we aim at introducing the basic mathematical concepts of standard
IgA employing B-splines and NURBS as basis functions. For further details, readers
may refer to [51, 91, 153], and references therein.

2.1.2.1 B-splines

B-splines are piecewise polynomial curves whose components are defined as the
linear combination of B-spline basis functions and the coordinates of certain points
in the physical space Ω, referred to as control points. The collection of control points
that define a B-spline curve is called the control mesh. Once we fix the order of the
B-spline (i.e., the polynomial degree), to construct the basis functions we have to
define the so-called knot vector.

2.1.2.1.1 Knot vector A knot vector, in one dimension, is a non-decreasing set of
coordinates in the parameter space Ω̂

Ξ =
{

ξ1, ξ2, ..., ξn+p+1
}

, (2.1)



10 Scientific background

where ξi ∈ R is the i-th knot, i is the knot index (i = 1, 2, ..., n + p + 1), p is the
polynomial order, and n is the number of basis functions used to construct the B-
spline curve, which is equal to the number of control points that define the control
mesh. Knots are defined in the parameter space, which they partition into knot spans.
They can also be repeated, that is, more that one knot may take on the same value.
The multiplicities of the knot values have important implications for the properties
of the basis, as we will discuss further on. As knots can be repeated, some knot
spans may have zero length in one dimension. Thus, for an analogy with classical
FEA, the isogeometric elements are usually defined as the knot spans with non-zero
length (see Figures 2.3, 2.4, and 2.5). A knot vector is called uniform if its knots are
equally spaced and non-uniform otherwise. In all numerical examples of this thesis,
we will use open knot vectors, i.e., knot vectors whose first and last control points
are repeated p + 1 times. As a consequence, basis functions formed from open knot
vectors are interpolatory at the ends of the parameter space interval [ξ1, ξn+p+1] in
one dimension.

2.1.2.1.2 Basis functions B-spline basis functions are defined recursively via the
Cox-de Boor formula [31], starting from piecewise constants (p = 0):

Ni,0(ξ) =

{
1 i f ξi ≤ ξ < ξi+1

0 otherwise
, (2.2)

while for p = 1, 2, 3, ..., they read

Ni,p(ξ) =
ξ − ξi

ξi+p − ξi
Ni,p−1(ξ) +

ξi+p+1 − ξ

ξi+p+1 − ξi+1
Ni+1,p−1(ξ) , (2.3)

where the convention 0/0 = 0 is assumed. In Figure 2.3, we display constant,
linear, and quadratic B-spline functions obtained with a uniform knot vector Ξ =
{0, 1, 2, 3, 4, ...}.

Among the properties of B-spline shape functions, we remark that:

• the basis constitutes a partition of unity, that is ∑n
i=1 Ni,p(ξ) = 1, ∀ξ ∈ Ω̂ ;

• each basis function is pointwise non-negative Ni,p(ξ) ≥ 0, ∀ξ ∈ Ω̂ ;

• basis functions of order p are Cp−1-continuous across knot spans if the internal
knots are not repeated;

• the support of the basis functions of order p is always p + 1 knot spans;

• if a knot ξi has multiplicity ki, the basis functions are Cp−ki -continuous at that
knot (in particular, when a knot has multiplicity p, the basis functions are C0

and interpolatory at that location).

Figure 2.4 shows quartic shape functions with differing levels of continuity at every
element boundary. At the first internal element boundary, ξ = 1, the knot value
appears only once in the knot vector, and so we have the maximum level of continu-
ity possible: Cp−1 = C3. At each subsequent internal knot value, the multiplicity is
increased by one, and so the number of continuous derivatives is decreased by one.
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FIGURE 2.3: Basis functions of order 0, 1, and 2 for a uniform knot vector Ξ = {0, 1, 2, 3, 4, ...}
[50].

FIGURE 2.4: Quartic (p = 4) basis functions for an open, non-uniform knot vector
Ξ = {0, 0, 0, 0, 0, 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5}. The continuity across an interior element
boundary is a direct result of the polynomial order and the multiplicity of the corresponding

knot value [50].

In this case at ξ = 4, the C0 basis is interpolatory. The basis is also interpolatory at
the boundary of the domain, where the open knot vector demands the first and last
knot value to be repeated p + 1 times. The result is C−1-continuity, that is, the basis
is fully discontinuous, naturally terminating the domain.

2.1.2.1.3 Derivatives of B-spline basis functions The derivatives of B-spline ba-
sis functions are efficiently represented in terms of B-spline lower-order bases. For
a given polynomial order and knot vector, the derivative of the i-th basis function is
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FIGURE 2.5: B-spline quadratic curve defined in the physical space Ω ⊂ R2. Control point
locations are denoted by •. The knots, which define a mesh by partitioning the curve into
elements, are denoted by �. Basis functions and knot vector are reported on the parametric

space Ω̂ at the bottom [51].

given by

d
dξ

Ni,p(ξ) =
p

ξi+p − ξi
Ni,p−1(ξ)−

p
ξi+p+1 − ξi+1

Ni+1,p−1(ξ) . (2.4)

The previous result can be generalized as follows

dk

dkξ
Ni,p(ξ) =

p
ξi+p − ξi

(
dk−1

dk−1ξ
Ni,p−1(ξ)

)
− p

ξi+p+1 − ξi+1

(
dk−1

dk−1ξ
Ni+1,p−1(ξ)

)
,

(2.5)
and after expanding we obtain

dk

dkξ
Ni,p(ξ) =

p!
(p− k)!

k

∑
j=0

αk,jNi+j,p−k(ξ) , (2.6)

with

α0,0 = 1 ,

αk,0 =
αk−1,0

ξi+p−k+1 − ξi
,

αk,j =
αk−1,j − αk−1,j−1

ξi+p+j−k+1 − ξi+j
j = 1, ..., k− 1 ,

αk,k =
−αk−1,k−1

ξi+p+1 − ξi+k
.

The denominator of several of these coefficients can be zero in the presence of re-
peated knots. Whenever this happens, the coefficient is defined to be zero. Efficient
algorithms for these calculations can be found in [153].
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2.1.2.2 B-spline curves

Given a knot vector Ξ = [ξ1, ..., ξn+p+1], we can build n B-spline basis functions Ni,p

of polynomial degree p. If we further define a set of n control points in Rd, we can
construct a piecewise polynomial B-spline curve C(ξ) of order p by taking the linear
combination of the basis functions weighted by the components of control points, as
follows

C(ξ) =
n

∑
i=1

Ni,p(ξ)Bi , (2.7)

where Bi is the i-th control point. The piecewise linear interpolation of the control
points is called control polygon. In Figure 2.5, we show an example of a quadratic
B-spline curve in R2.

2.1.2.3 B-spline surfaces

Performing a tensor product operation, B-spline surfaces can be constructed starting
from a set of nxm control points Bi,j (i = 1, 2, ..., n; j = 1, 2, ...m), which form the
so-called control net. If we define two knot vectors Ξ = [ξ1, ..., ξn+p+1] and H =
[η1, ..., ηm+q+1], where p and q are the polynomial orders, we can construct the 1D
basis functions Ni,p and Mj,q, such that we can define the B-spline surface as

S(ξ, η) =
n

∑
i=1

m

∑
j=1

Ni,p(ξ)Mj,q(η)Bi,j . (2.8)

2.1.2.4 B-spline solids

B-spline solids are defined in an analogous fashion to B-spline surfaces. Given now
a control lattice Bi,j,k (i = 1, 2, ..., n; j = 1, 2, ..., m; k = 1, 2, ..., l), the polynomial orders
p, q, and r, and the knot vectors Ξ = [ξ1, ..., ξn+p+1], H = [η1, ..., ηm+q+1] and Z =
[ζ1, ..., ζl+r+1], the B-spline solid can be defined as:

S(ξ, η, ζ) =
n

∑
i=1

m

∑
j=1

l

∑
k=1

Ni,p(ξ)Mj,q(η)Lk,r(ζ)Bi,j,k , (2.9)

where Ni,p, Mj,q, and Lk,r are the corresponding 1D B-spline basis functions along
each parametric direction.

2.1.2.5 Refinement

In contrast to FEA, which essentially features h-refinement and p-refinement to en-
rich the approximation properties of the basis, IgA possesses three different refine-
ment approaches: knot insertion, order elevation, and k-refinement.
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FIGURE 2.6: Example of knot insertion refinement using the curve introduced in Figure 2.5
[51].

2.1.2.5.1 Knot insertion The basis can be enriched using knot insertion, which is
the IgA counterpart of FEA h-refinement because, as new knots are inserted, the num-
ber of knot spans is increased. Indeed, knots may be inserted without changing a
curve geometrically or parametrically. Given a knot vector Ξ = [ξ1, ..., ξn+p+1] we
can “extend it” to Ξ = [ξ1 = ξ1, ξ2..., ξn+p+1 = ξn+p+1] such that the old knot vector
is contained in the new one. The new n + m basis functions can be derived from
Cox-de Boor recursion formula in Equations (2.2) and (2.3), which also apply to the
enriched knot vector. Additionally, n + m new control points B are formed from
linear combination of the old ones B by

B = TpB , (2.10)

where

T0
ij =

{
1 ξ i ∈ [ξ j, ξ j+1)

0 otherwise
(2.11)

and

Tq+1
ij =

ξ i+q − ξ j

ξ j+q − ξ j
Tq

ij +
ξ j+q+1 − ξ i+q

ξ j+q+1 − ξ j+1
Tq

ij+1 for q = 0, 1, 2, ..., p− 1 . (2.12)

A knot insertion example is presented in Figure 2.6.

2.1.2.5.2 Order elevation Order elevation involves raising the polynomial order of
the basis functions. Recalling that the basis has p− ki continuous derivatives across
element boundaries, it is clear that when p is increased, ki must also be increased if
we want to preserve the original continuity of the basis functions. Therefore, dur-
ing order elevation, the multiplicity of each knot value is increased by one, but no
new knot values are added. As with knot insertion, neither the geometry nor the
parametrization are changed. The process for order elevation begins by replicating
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FIGURE 2.7: Example of order elevation using the curve introduced in Figure 2.5 [51].

existing knots until their multiplicity is equal to the polynomial order. This results
in each element of the parametric space supporting a local basis that is interpolatory
at the boundaries of each element, as in standard FEA. The next step is to elevate
the polynomial order on each element. Lastly, excess knots are removed to recover
the original continuity across element boundaries. Notice that as we increase the
knot vector, we also need to define new control points for the newly added basis
functions. Several efficient algorithms combine the mentioned steps to minimize the
computational cost of the process [153]. In Figure 2.7, we show an example of order
elevation.

2.1.2.5.3 k-refinement If a new, unique knot value is inserted between two dis-
tinct knot values in a curve of order p, the number of continuous derivatives of the
basis functions at the original and inserted knot values is p− 1. If we subsequently
elevate the order to q, the multiplicity of every distinct knot value (including the
knot just inserted) is increased, so that discontinuities in the p-th derivative of the
basis are preserved. That is, the basis still has p − 1 continuous derivatives at the
original and inserted knot values, although the polynomial order is now q. If, in-
stead, we elevate the order of the original, coarsest curve to q and only then insert
the unique knot value, the basis will have q− 1 continuous derivatives at the orig-
inal and newly added knot values. This last strategy is called k-refinement. Thus,
knot insertion and order elevation are not commutative. In Figure 2.8, we compare
classical p-refinement and k-refinement to highlight differences between these two
refinement strategies.

2.1.2.6 Non-uniform rational B-splines

A NURBS in Rd is the projection into a d-dimensional physical space of a non-
rational (polynomial) B-spline defined in a (d + 1)-dimensional homogeneous co-
ordinate space. NURBS enable to construct a great variety of geometric entities and,
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(a) Ξ = {0, 0, 1, 1}, p = 1.

(b) Ξ = {0, 0, 0, 1/3, 1/3, 2/3, 2/3, 1, 1, 1}, p = 2.

(c) Ξ = {0, 0, 0, 1/3, 2/3, 1, 1, 1}, p = 2.

FIGURE 2.8: Classical p-refinement versus k-refinment. (a) Initial case of one linear element.
(b) Classical p-refinement approach: knot insertion is performed first to create many low
order elements. Subsequent order elevation will preserve the C0-continuity across element
boundaries. (c) New k-refinement approach: order elevation is performed on the coarsest

discretization and then new knots are inserted [51].

in particular, conic sections can be exactly represented. To define a NURBS curve in
Rd, we have to start from a knot vector Ξ = [ξ1, ..., ξn+p+1] and a set Bw

i (i = 1, ..., n)
of control points (projective points) for a B-spline curve in Rd+1. Then, the control
points for the NURBS curve are:

(Bi)j = (Bw
i )j/wi j = 1, ..., d , (2.13)

with
wi = (Bw

i )d+1 , (2.14)

where (Bi)j is the j-th component of the control point Bi and wi is referred to as the
i-th weight. Hence, notice that dividing the projective control points by the weights
is equivalent to applying the projective transformation to them. Likewise, NURBS
basis functions of order p are defined as:

Rp
i (ξ) =

Ni,p(ξ)wi

W(ξ)
=

Ni,p(ξ)wi

∑n
î=1 Nî,p(ξ)wî

, (2.15)

where W(ξ) is the so-called weighting function.
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The first and second derivatives of univariate NURBS basis functions of order p
are calculated as

d
dξ

Rp
i (ξ) = wi

W(ξ)N′i,p(ξ)−W ′(ξ)Ni,p(ξ)

(W(ξ))2 , (2.16)

d2

dξ2 Rp
i (ξ) =

N′′i,p(ξ)wi

W(ξ)
+

2Ni,p(ξ)wi(W ′(ξ))2

(W(ξ))3 +

−
2N′i,p(ξ)wiW ′(ξ) + Ni,p(ξ)wiW ′′(ξ)

(W(ξ))2 ,

(2.17)

where N′i,p(ξ) =
d

dξ
Ni,p(ξ), W ′(ξ) = ∑n

î=1 N′
î,p
(ξ)wî, and W ′′(ξ) = ∑n

î=1 N′′
î,p
(ξ)wî.

A NURBS curve C(ξ) can be constructed as the linear combination of the basis
functions weighted by the components of control points and reads

C(ξ) =
n

∑
i=1

Rp
i (ξ)Bi . (2.18)

Rational surfaces and solids are defined in an analogous way based on a tensor-
product structure in terms of bivariate and trivariate NURBS basis functions, which
are respectively defined as

Rp,q
i,j (ξ, η) =

Ni,p(ξ)Mj,q(η)wi,j

∑n
î=1 ∑m

ĵ=1 Nî,p(ξ)M ĵ,q(η)wî, ĵ
(2.19)

and

Rp,q,r
i,j,k (ξ, η, ζ) =

Ni,p(ξ)Mj,q(η)Lk,r(ζ)wi,j,k

∑n
î=1 ∑m

ĵ=1 ∑l
k̂=1 Nî,p(ξ)M ĵ,q(η)Lk̂,r(ζ)wî, ĵ,k̂

, (2.20)

where Ni,p, Mj,q, and Lk,r are univariate B-spline functions defined from the corre-
sponding knot vectors Ξ = [ξ1, ..., ξn+p+1], H = [η1, ..., ηm+q+1], Z = [ζ1, ..., ζl+r+1]
along each direction of the parametric space. We remark that if the weights are all
equal, the NURBS basis functions simplify to B-spline basis functions due to the
application of the property of partition of unity to the weighting function. Thus,
B-splines are a particular case of NURBS.

2.1.2.7 Generalized notation for multivariate B-splines and NURBS

We introduce a more general and compact notation for the definition of multivariate
B-splines and NURBS, which will be used to approximate the numerical formula-
tions in this thesis. Multivariate B-splines are generated through the tensor product
of univariate B-splines. We denote with dp the dimension of the parameter space.
Then, the dp univariate knot vectors can be written as

Ξd = {ξd
1 , ..., ξd

md+pd+1} d = 1, ..., dp , (2.21)

where pd represents the polynomial degree in the parametric direction d, while md
is the associated number of basis functions. In the numerical examples for solid
shells shown in this thesis, we will also denote the in-plane polynomial orders by
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p1 = p and p2 = q, while we will refer to the out-of-plane degree of approximation
by p3 = r. A univariate B-spline basis function Nd

id,pd
(ξd) associated to each paramet-

ric coordinate ξd can be then constructed for each id position in the tensor product
structure, using the Cox-de Boor recursion formula (see Section 2.1.2.1.2).

Given the univariate basis functions Nd
id,pd

associated to each parametric direction
ξd, the multivariate basis functions Bi,p(ξ) are redefined as:

Bi,p(ξ) =
dp

∏
d=1

Nid,pd(ξ
d) , (2.22)

where i = {i1, ..., idp} is a multi-index describing the position of the multivariate
basis function in the tensor-product structure, p = {p1, ..., pd} is the vector of poly-
nomial degrees, and ξ = {ξ1, ..., ξdp} is the vector of the parametric coordinates in
each parametric direction d. B-spline multidimensional geometries are built from a
linear combination of multivariate B-spline basis functions as

S(ξ) = ∑
i

Bi,p(ξ)Pi , (2.23)

where Pi ∈ Rds are the control points, ds is the dimension of the physical space, and
the summation is extended to all combinations of the multi-index i.

As NURBS geometries in Rds are instead obtained from a projective transforma-
tion of their B-spline counterparts in Rds+1, using the generalized notation in this
section, we can redefine multivariate NURBS basis functions as

Ri,p(ξ) =
Bi,p(ξ)wi

∑j Bj,p(ξ)wj
, (2.24)

where wi represents the NURBS weight associated to each control point according
to the multi-index i. NURBS multidimensional geometries are then built combining
multivariate NURBS basis functions and control points:

S(ξ) = ∑
i

Ri,p(ξ)Pi . (2.25)

2.1.2.8 An Isogeometric Galerkin approach for linear isotropic elastostatics

Let Ω ⊂ Rds represent an isotropic, homogeneous, linear elastic body subjected to
body forces b, to prescribed displacements g on a portion of the boundary ΓD, and
to prescribed tractions t on the remaining portion ΓN , such that ΓN ∪ ΓD = Γ and
ΓN ∩ ΓD = ∅. We set ds=3 and consider the simplest possible case, assuming small
strains and displacements, such that

σ = C : ∇su , (2.26)

where σ is the stress tensor, C is the fourth-order linear elasticity material tensor [63],
∇s is the symmetric gradient operator, and u is the displacement field that solves the
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elastostatic problem given by

∇ · (C : ∇su) + b = 0 in Ω , (2.27a)

(C : ∇us) · n = t on ΓN , (2.27b)

u = g on ΓD . (2.27c)

Using the principle of virtual work [63], we can obtain the variational form of the
problem by multiplying Equation (2.27) by test functions δu ∈ [H1(Ω)]3 satisfying
homogeneous Dirichlet boundary condition on ΓD and, then, integrating by parts.
These operations lead to

∫

Ω
(C : ∇su) : ∇sδu dΩ =

∫

Ω
b · δu dΩ +

∫

ΓN

t · δu dΓ . (2.28)

In the context of the principle of virtual work, the test functions δu are usually called
virtual displacements. Adopting the isoparametric approach, we can approximate the
displacements and the virtual displacements as

u ≈ uh = ∑
i

Ri,p(ξ) ûi , (2.29)

δu ≈ δuh = ∑
i

Ri,p(ξ) δûi , (2.30)

where h denotes a discretized variable. In Equations (2.29) and (2.30), ûi and δûi are
the so-called control variables, which enable the spline approximation of the displace-
ments and the virtual displacements in this elastostatic problem, respectively. Sub-
stituting Equations (2.29) and (2.30) into (2.28), we proceed to discretize the problem
and obtain

∫

Ω
(C : ∇suh) : ∇sδuh dΩ =

∫

Ω
b · δuh dΩ +

∫

ΓN

t · δuh dΓ . (2.31)

We notice that, after the substitution of Equations (2.29) and (2.30) into (2.28), the
resulting equation must be satisfied by any arbitrary choice of δûi, leading to the
linear system that is usually written as

K û = F , (2.32)

where û is the vector of the unknown displacements, K is the global stiffness matrix,
and F is the global force vector, whose components are straightforwardly derived
from Equations (2.31) and (2.32). To obtain the components of K and F, the standard
approach consists of an element-wise calculation leveraging Gauss quadrature. The
result of the element-wise calculations lead to the definition of an element (local)
stiffness matrix and an element (local) force vector, which are then assembled into
their global counterparts in Equation (2.32) using connectivity matrices that relate
the local DOFs to the global DOFs. For a more detailed derivation of the IgG formu-
lation of this and other problems, the reader is referred to [50].
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FIGURE 2.9: Example of a two-patch geometry. On the coarsest mesh, the control points
on the common interface are in one-to-one correspondence, trivially enforcing C0 continuity

[51].

2.1.2.9 Multiple patches

To model more complex geometrical features it is often required to adopt a multi-
patch approach (see [51]), which allows for local refinement operations. The usual
situation is the case where the geometric domain of the problem topologically differs
from a cube, such that the tensor product structure of the parameter space of a sin-
gle patch allows for a poor representation of complex, multiply connected domains.
Moreover, if the considered problem presents parts of the geometry comprising dif-
ferent materials it may also be convenient to describe these subdomains by different
patches. For the sake of simplicity and without loss of generality, we consider the
case of two patches that meet on a common interface, as in Figure 2.9. We further
assume that the control points and knot vectors in the plane of the face are identical
on both patches, thus ensuring that the patches match geometrically and paramet-
rically on that shared face. Superscripts 1 and 2 identify the patch numbers, while
with subscripts f and n we denote control points belonging to the common face and
control points not on the shared face, respectively. Thus, we can partition the control
points for patches 1 and 2 as

B1 =

[
B1

n

B1
f

]
and B2 =

[
B2

n

B2
f

]
, (2.33)

such that B2
f = B1

f . To take into account for the possibility to locally refine patch 2
by knot insertion (see 2.1.2.5.1), we rewrite B2 as

B̃2
= T̃ f B2 =

[
T̃ f 0

0 T̃ f

] [
B2

n

B2
f

]
, (2.34)

where B̃2 are the new set of control points for patch 2 and T̃ f is the multi-dimensional
generalization of the extension operator defined in Equation (2.12). Combining B2

f =

B1
f and Equation (2.34), we note that C0-continuity of the geometry is preserved by

B̃2
f = T̃ f B1

f . (2.35)
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We enforce the same continuity constraints for the control variables as

û1
i =

[
(û1

i )n

(û1
i ) f

]
and û2

i =

[
(û2

i )n

(ũ2
i ) f

]
, (2.36)

where (ũ2
i ) f = T̃ f (û

1
i ) f . Adopting an implementational point of view, we rewrite

Equation (2.32) for a two-patch case, obtaining two subproblems

K1 û1
i = F1 , (2.37a)

K2 û2
i = F2 , (2.37b)

where the stiffness matrices for each patch are partitioned as

K1 =

[
K1

nn K1
n f

K1
f n K1

f f

]
and K2 =

[
K2

nn K2
n f

K2
f n K2

f f

]
. (2.38)

Thus, we expand Equation (2.37a) and substitute the partitioning of K1, obtaining

K1
nn(û

1
i )n + K1

n f (û
1
i ) f = F1

n (2.39)

and
K1

f n(û
1
i )n + K1

f f (û
1
i ) f = F1

f . (2.40)

Enforcing that (ũ2
i ) f = T̃ f (û

1
i ) f , we repeat the same operations for patch 2

K2
nn(û

2
i )n + K2

n f T̃ f (û
1
i ) f = F2

n (2.41)

and
K2

f n(û
2
i )n + K2

f f T̃ f (û
1
i ) f = F2

f . (2.42)

Then, we premultiply (2.42) by T̃T
f to constraint the weighting functions and reduce

the number of equations to match that of (2.40) as

T̃T
f K2

f n(û
2
i )n + T̃T

f K2
f f T̃ f (û

1
i ) f = T̃T

f F2
f . (2.43)

Finally, adding Equation (2.40) and (2.43) together and considering Equations (2.39)
and (2.41), we can rewrite the global complete problem (i.e., the union of the 2 local
subproblems in Equation (2.37)) for the 2 patches as

K Ûi = F , (2.44)

where

K =




K1
nn K1

n f 0

K1
f n (K1

f f + T̃T
f K2

f f T̃ f ) T̃T
f K2

f n

0 K2
n f T̃ f K2

nn


 , (2.45a)

Ûi =




(û1
i )n

(û1
i ) f

(û2
i )n


 , and (2.45b)
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F =




F1
n

F1
f + T̃T

f F2
f

F2
n


 . (2.45c)

2.1.3 Isogeometric collocation

2.1.3.1 Introduction

Collocation methods have been introduced within IgA as an attempt to address a
well-known important issue of early IgG formulations, related to the development
of efficient integration rules for higher-order approximations (see, e.g., [14, 69, 96,
161]). In fact, element-wise Gauss quadrature, typically used in FEA and originally
adopted for IgG approaches, does not properly take into account the inter-element
higher continuity of IgA basis functions. This limitation leads to sub-optimal array
formation and assembly costs, significantly affecting the performance of IgG meth-
ods. Several ad hoc quadrature rules have been introduced, but the development of
a general and effective solution for IgG methods is still an open problem [161].

IgC overcomes this problem by taking full advantage of the geometrical flexibil-
ity and analytical accuracy of IgA while minimizing computational costs. IgC was
originally proposed in [16] and can be seen as a Petrov-Galerkin method where the
test functions are smoothed Dirac delta functions defined at the so-called collocation
points (converging to the Dirac delta distributions as the smoothing parameter tends
to zero). Therefore, IgC can also be regarded as a sort of stable one-point quadrature
Galerkin method that ultimately gives raise to a strong-form method. In fact, the
main idea in IgC, in contrast to IgG formulations, consists of the discretization of
the governing PDEs in strong form, which is then evaluated at suitable collocation
points. The isoparametric paradigm is adopted, such that the same basis functions
are used to describe both the geometry and the problem solution, as in a typical IgG
context, by means of linear combinations of IgA basis functions and control points
and variables, respectively.

As reported in [16], a delicate issue for IgC is the determination of suitable col-
location points, since this choice affects optimal convergence for IgC (i.e., of order
p − 1) in the W2,∞-norm (or, equivalently, in the H2-norm). Such a proof is valid
only in 1D and has not been extended to higher dimensions. However, extensive
numerical testing has shown that the convergence rates obtained in 1D are attained
also in higher dimensions. Moreover, optimal convergence rates are not recovered
in the L∞- and W1,∞-norms (or, equivalently, in the L2- and H1-norms), where it has
been numerically shown that orders of convergence p and p − 1 for even and odd
degrees, respectively, are attained for IgC methods. It is important to note that, de-
spite not being optimal in the L2- and H1-norms, the obtained orders of convergence
for IgC are increasing with p, whereas the cost of collocation is much lower than that
of IgG approaches of the same order, especially as p increases. This makes IgC very
competitive with respect to IgG in terms of accuracy-to-computational-cost ratio, es-
pecially when higher-order approximation degrees are adopted (see, e.g., [162]). In
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FIGURE 2.10: Comparison of collocation and Gauss integration points required respectively
for standard IgC and IgG methods. This 2D case considers 4 elements and a degree of ap-

proximation equal to 6 for each parametric direction.

particular, IgC has gained increasing popularity in those situations where evaluation
and assembly costs are dominant [15, 67].

The simplest and most widespread approach in the engineering literature is to
collocate the governing strong-form equations at the images of Greville abscissae
(see, e.g., [101]) and this is the strategy also adopted in this thesis. For alternative
choices of collocation points, the reader is referred to [30, 57]. Along each parametric
direction d, the Greville abscissae consist of a set of md points, obtained from the knot
vector components, ξd

i , as

τd
i =

ξd
i+1 + ξd

i+2 + ... + ξd
i+pd

pd
i = 1, ..., md , (2.46)

where pd is the polynomial order for the d-th parametric direction.

Since the discretization is performed through direct collocation of the differential
equations, no integrals need to be computed and, consequently, IgC results in a very
fast method with respect to IgG. Figure 2.10 shows a comparison between the num-
ber of collocation and Gauss quadrature points required respectively by IgC and IgG
standard methods for a 2D example featuring 4 elements and basis functions with
polynomial order 6 in each parametric direction.

IgC has been particularly successful in the context of structural elements and
has proven to be especially stable with regard to mixed methods. In particular,
Bernoulli-Euler beam and Kirchhoff plate elements have been proposed within an
IgC framework in [157]. Mixed formulations for Timoshenko initially-straight pla-
nar beams [186], non-prismatic beams [20], and for curved spatial rods [17] have also
been introduced, studied, and then effectively extended to the geometrically nonlin-
ear case [107, 129, 130, 131, 190, 191]. Moreover, IgC has been successfully applied to
the solution of Reissner-Mindlin plate problems [108]. New formulations for shear-
deformable beams [106, 107], as well as shells [110, 133] have also been solved via
IgC. Since its introduction, many promising works on IgC methods have also been
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published in other fields, including nearly incompressible elasticity and elastoplas-
ticity [70], phase-field modeling [83], contact [55, 115, 189], and poromechanics [139].
In the context of multifield problems, IgC has been used to study the evolution in
ferroelectric materials [74]. Additionally, combinations with different spline spaces
(e.g., hierarchical splines, generalized B-splines, and T-splines) have been success-
fully tested in [41, 128, 162], while alternative effective selection strategies for IgC
points have been proposed in [11, 83, 138].

2.1.3.2 Isogeometric collocation for elastostatics

Following [15, 55, 162], we can interpret the collocation method in a variational
sense. Thus, we recall the elasticity problem in variational form, based on the princi-
ple of virtual work and stated in Equation (2.28), and we integrate by parts, obtain-
ing

∫

Ω
[∇ · (C : ∇su) + b ] · δudΩ−

∫

ΓN

[ (C : ∇su) · n− t ] · δu dΓ = 0 , (2.47)

where ∇· is the divergence operator. Adopting the isoparametric approach, we ap-
proximate again the displacements and virtual displacements via Equations (2.29)
and (2.30), obtaining

∫

Ω
[∇ · (C : ∇suh) + b ] · δuhdΩ−

∫

ΓN

[ (C : ∇suh) · n− t ] · δuh dΓ = 0 . (2.48)

The approximated virtual displacements δuh are then set as the Dirac delta function
δ (see [15]), which fulfills, for every function fΩ(x), fΓ(x) continuous about the point
xi ∈ Ω, xi ∈ Γ, respectively, the so-called sifting property

∫

Ω
fΩ(x)δ(x− xi)dΩ = fΩ(xi) ,

∫

Γ
fΓ(x)δ(x− xi)dΓ = fΓ(xi) . (2.49)

We consider ds = 2 and nnp = m1m2 control points. Thus, we need 2nnp scalar
equations to determine the unknown control variables for the displacements in each
direction of the physical space. In the considered collocation scheme, we choose nnp

Greville points, which we denote here by τd
i (see Equation (2.46)). In the interior of

the problem domain Ω, we write 2(m1 − 2)(m2 − 2) scalar equations by choosing
as test functions the Dirac delta functions centered at the interior collocation points.
With reference to Neumann boundary conditions, we distinguish between the col-
location points located at the edges, and those located at the corners of the domain.
The resulting equations read

[∇ · (C : ∇suh) + b ](τd
i ) = 0 ∀τd

i ∈ Ω , (2.50a)

[ (C : ∇suh) · n− t ](τd
i ) = 0 ∀τd

i ∈ edge ⊂ ΓN ,
(2.50b)

[ (C : ∇suh) · n′ − t′ ](τd
i ) + [ (C : ∇suh) · n′′ − t′′ ](τd

i ) = 0 ∀τd
i ≡ corner ⊂ ΓN ,

(2.50c)

uh(τ
d
i ) = g(τd

i ) ∀τd
i ∈ ΓD , (2.50d)
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where n′ and n′′ are the outward unit normals of the edges meeting at the corner,
and t′ and t′′ are the respective imposed tractions.

2.1.3.3 Enhanced collocation

The use of the IgC approach may lead to unsatisfactory accuracy of the results in
the presence of Neumann boundary conditions. In those cases, the enhanced col-
location (EC) approach is usually introduced to mimic the superior results of the
hybrid collocation strategy (see [55, 67]) while maintaining the same computational
cost as IgC. In the case of EC, Neumann boundary conditions for ds = 2 are written
considering a combination of internal and edge terms, as follows

[∇ · (C : ∇suh) + b ](τd
i )−

C∗

h
[ (C : ∇suh) · n− t ](τd

i ) = 0 ∀τd
i ∈ edge ⊂ ΓN ,

(2.51)

where h is the collocation mesh size in the direction perpendicular to the edge, com-
puted as the distance between the first two collocation points encountered starting
from the edge and considering the parametric direction perpendicular to the edge.
The determination of C∗ is not trivial and we refer readers to [55] for a complete
discussion on this matter. In this thesis, we assume C∗ = 4, which can be considered
an appropriate choice for all interpolation degrees.

2.1.3.4 Multipatch collocation

Let us consider the case with two bidimensional patches that share a common edge.
We assume identical control points and knot vectors on the shared edge for each
patch, thereby ensuring that the patches form a geometrically conforming multi-
patch structure. Therefore, the whole body Ω̄ ⊂ R2 is given by the union of the two
patches as

Ω̄ =
⋃

k=1,2

Ω̄k , (2.52)

where Ω̄k is the k-th patch. We indicate with Ω the interior part of the multipatch
structure and assume that ΓD and ΓN are made of a finite union of connected and
regular components. Furthermore, we assume that the traction t is piecewise con-
tinuous. For the sake of simplicity, we extend the function t by zero on

⋃
k=1,2 Ω̄k.

Thus, t represents a vector function living on
⋃

k=1,2 Ω̄k whose support is con-
tained in ΓN . Regarding the boundary conditions on ΓD, we consider a function
g ∈ [C0(ΓD)]

2. The internal part of the whole body Ω is also subjected to a volume
loading b ∈ [L∞(Ω)]2 such that b|Ωk ∈ [C0(Ωk)]

2 for k = 1, 2. We denote again with
C the fourth-order material elasticity tensor and define Ck := C|Ωk with all their
components being in C1(Ωk), while we allow C to have jumps from one patch Ω̄k to
another. Using Equation (2.46), we compute a set of Greville abscissae for each k-th
patch τd

i,k (d = 1, 2 and k = 1, 2). Now, we focus on the rules to collocate equations
on the boundary of the patch:

• if τd
i,k ∈ ΓD, we impose uh(τ

d
i,k) = g(τd

i,k);
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• if τd
i,k ∈ ΓN , we adapt Equations (2.50b) and (2.50c) accordingly;

• the remaining τd
i,k ∈ ∂Ωk belong to the inter-patch boundary.

The final system of equations for the considered case reads

[∇ · (Ck : ∇suh) + b ](τd
i,k) = 0 ∀τd

i,k ∈ Ωk , (2.53a)

[ (Ck : ∇suh) · n− t ](τd
i,k) = 0 ∀τd

i,k ∈ edge ⊂ ΓN , (2.53b)

[ (Ck : ∇suh) · n′k − t′k ](τ
d
i,k)

+ [ (Ck : ∇suh) · n′′k − t′′k ](τd
i,k) = 0

∀τd
i,k ≡ corner ⊂ ΓN , (2.53c)

2

∑
k=1

[ (Ck : ∇suh) · nk ](τ
d
i,k) = 0 ∀τd

i,k ∈ ∂Ωk, τd
i,k /∈ ΓD, τd

i,k /∈ ΓN ,

(2.53d)

uh(τ
d
i,k) = g(τd

i,k) ∀τd
i,k ∈ ΓD , (2.53e)

where, for the k-th patch, n′k and n′′k are the outward unit normals of the edges meet-
ing at the corner, and t′k and t′′k are the respective imposed tractions. While for the
IgG formulation discussed in Section 2.1.2.9 we imposed a C0 displacement continu-
ity condition, for the IgC multipatch method we need to enforce a stress continuity
condition at the inter-patch boundary via Equation (2.53d), for which nk is the out-
ward normal of the k-th patch. Finally, we recall that t = 0 in Ω̄ \ ΓN .

2.1.4 Standard resolution of nonlinear problems in IgA

The Newton-Raphson method is an established algorithm in computational mechan-
ics to solve nonlinear problems of the form

R(u) = 0 , (2.54)

where R is the so-called residual of the nonlinear problem and it is constituted by
the variational equations of the weak form of the problem, while u is the vector
of solutions. These type of nonlinear equations are solved for u by applying an
iterative process, whereby given a solution estimate uk at iteration step k, a new
value uk+1 = uk + ∆u is obtained in terms of an increment ∆u establishing the linear
approximation [77]

R(uk+1) ≈ R(uk) + DR(uk)∆u = 0 , (2.55)

where the linearization step can be accomplished using the so-called Gateaux deriva-
tive as follows

DR(uk)∆u =
d
dε

∣∣∣
ε=0

R(uk + ε∆u) (2.56)

= K(uk)∆u . (2.57)
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In Equation (2.56), K(uk) denotes the consistent tangent stiffness matrix with entries
defined by

Kij(uk) =
∂Ri

∂uj

∣∣∣
uk

. (2.58)

We obtain a linear set of equations for ∆u to be solved at each Newton-Raphson
iteration step

K(uk)∆u = −R(uk) , uk+1 = uk + ∆u . (2.59)

Finally, the iteration process stops if the current solution uk+1 does not differ signifi-
cantly from the solution uk of the previous iteration step, i.e., |uk+1 − uk| < ε, with ε
corresponding to a user-defined tolerance [77].

2.2 Main modeling strategies for composite structures

Over the past decades, various theories have been proposed to model laminated
composite plates and shells. These can be classified into three major categories:
three-dimensional elasticity, equivalent single-layer (ESL), and LW theories [38, 119,
120, 159]. Three-dimensional elasticity theories consider the laminated composite
structure as a solid without any special treatment of the stacking sequence. This
approach is highly accurate, but it requires very heavy simulations. In an attempt
to reduce the computational effort, ESL theories treat the 3D laminate as an equiva-
lent single ply adopting suitable kinematic assumptions, such that the number of
unknowns is independent of the number of layers. The major drawback of the
ESL approach is the assumption that displacements are continuous functions of
the thickness coordinate. This assumption leads to continuous transverse strains,
which, together with ply-wise different material properties, necessarily leads to dis-
continuous through-the-thickness out-of-plane stresses, which violate equilibrium
constraints. Nevertheless, in addition to inherent simplicity and low computational
cost, ESL theories can provide a sufficiently accurate description of the global re-
sponse in terms of the distribution of interlaminar stresses for thin plates and shells,
at least in regions sufficiently far from edges and cut-out boundaries. Numerous
theories based on the ESL concept have been proposed [105, 114, 159]. In particu-
lar, ESL-based methods include the classical laminate plate theory (CLPT), which may
be viewed as the extension of the Kirchhoff plate theory to laminated composite
plates and assumes that it is possible to neglect the strains acting through the lam-
inate thickness. Instead, the first-order shear deformation theory (FSDT) considers the
transverse shear strain to be constant with respect to the thickness coordinate and
therefore requires shear correction factors, which are difficult to determine for ar-
bitrarily laminated composite plate structures. In an attempt to address this issue,
second- and higher-order ESL theories have been proposed [124, 158], which rely on
higher-order polynomials in the expansion of the displacement components through
the thickness of the laminate. Nevertheless, despite the fact that they do not need
correction factors, higher-order theories introduce additional unknowns that do not
often have a clear physical meaning and increase the overall computational demand
[159].

To overcome the limitations of ESL and 3D elasticity methods, LW theories
can be considered as a viable option. LW approaches further distinguish between
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displacement-based strategies, for which the displacement field is the primal vari-
able, and mixed theories, which leverage both displacements and transverse stresses
as unknowns. Displacement-based LW theories consider an independent displace-
ment field in every single ply (i.e., ply-wise expansions for all three primal variable
components) and impose C0-continuity at the layer interfaces, thereby decreasing
the number of unknowns [122, 159]. Hence, LW theories naturally fulfill the require-
ments that grant a good approximation of the out-of-plane response through the
thickness directly from the constitutive equations. On the other hand, mixed LW
methods satisfy the interlaminar continuity of transverse stresses a priori. The main
limitation of the LW theories is that the number of DOFs is directly proportional to
the number of layers, unavoidably leading to high computational costs, especially
in the case of laminates made of a significant amount of plies. For further theo-
ries to model laminated composite structures, such as the Carrera Unified Formulation
(CUF), the reader is referred to, e.g., [37] and references therein.

IgA has already been used to solve composite and sandwich plates and, in partic-
ular, has been shown to provide good results when combined with the LW concept
(see, e.g., [62, 84, 85, 176]), benefiting from IgA numerical advantages while keeping
a significantly low computational cost. In the context of composite modeling, 2D IgG
approaches have also been proposed in the literature [103, 142], with some of them
employing enhanced shell and plate theories [3, 155, 160]. In [5], a combination of
IgA and CUF has been considered too. Moreover, IgA formulations for higher-order
shear deformation theories have been proposed for composite beams [166], plates
[177, 178], and shells [39, 72, 180], as well as for several examples of functionally
graded (FG) plates (see, e.g., [73, 152, 179] and references therein). With regard to
FG shell analysis using IgA, investigations are limited to a few studies including
first- [141] and higher-order shear deformation theories [60]. Finally, there is limited
literature on the use of IgC for composite structures and we could only identify a
recent numerical formulation to study Reissner-Mindlin laminated plates [151].

2.3 Stress recovery theory

The stress recovery theory consists of the direct integration of the equilibrium equa-
tions to compute the out-of-plane stress components from the in-plane stresses di-
rectly derived from a displacement solution. This idea was first applied in the con-
text of laminated solid plates solved within an IgA formulation in [62]. Stress recov-
ery theory examples in the context of plates solved via FEA can be found in original
works such as [154], which proposes high-order elements and advocates for a gen-
eralization of the process that would include a separate angle of rotation for each
layer in the laminate. However, this approach assumes an average rotation of the
mid-plane through the entire thickness of the plate, which requires shear coefficients
depending on the section shape, and the recovery of the out-of-plane normal stress
component is not discussed. Alternatively, the element formulation proposed in [65]
comprises different interpolation schemes for different unknowns, which compli-
cates the implementation of the stress recovery procedure. Furthermore, this work
emphasizes that a reduced numerical integration is strongly recommended, espe-
cially in the case of thin geometries. However, in practice, only the transverse shear
components were integrated with reduced order, which may affect the physical be-
havior of the element by introducing spurious zero energy modes. Instead, another
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approach [56, 183] recovers stresses by minimizing the complementary energy func-
tional associated to a separate patch system, on which finite element displacements
are prescribed along the boundaries, over a set of stress fields that satisfy a priori
interior equilibrium within the patch. This hybrid stress approach has been tested
for one- and two-dimensional isotropic elasticity problems and has been further an-
alyzed in the context of FSDT laminated plates in [53]. Recently, the equilibrium-
based stress recovery has been successfully applied by leveraging radial basis func-
tions as well [44].

2.4 Computational methods to solve phase-field models of
brittle fracture

The phase-field modeling of brittle fracture in elastic solids has been the subject of
extensive theoretical and computational investigations since the late 1990s [8]. In or-
der to model problems characterized by sharp interfaces, the phase-field approach
incorporates a continuous field variable, which may be regarded as a smooth regu-
larization of multiple physical phases characterizing the system. Thus, in brittle frac-
ture problems, the phase field usually identifies non-damaged and damaged mate-
rial, such that the phase field enables to adapt the material response in the vicinity of
the crack. The phase field features a smooth transition between damaged and non-
damaged regions of the material and it is characterized by a problem-dependent
internal length parameter. One of the major limitation of the phase-field technique
resides in its expensive computational cost, especially for engineering-size applica-
tions [126], due to the necessity for very fine meshes around crack paths to resolve
the internal length parameter. Thus, the development of novel and efficient solu-
tion algorithms is of paramount importance to investigate large-size problems for
industrial applications.

From an algorithmic point of view, phase-field approaches may be implemented
either with monolithic or with staggered schemes. Monolithic approaches, com-
pute the displacement and the phase-field variables simultaneously, while staggered
schemes alternatively minimize the two fields. Monolithic techniques are more effi-
cient since they solve the coupled system in terms of displacements and phase-field
in one loop of iterations (i.e., as in a Newton-Raphson loop). However, due to the
loss of convexity of the problem, convergence is difficult to obtain, although it may
be improved via further numerical treatments (see e.g., [193]). Conversely, staggered
implementations have proven to be more robust [137].

Another delicate issue in the phase-field modeling of brittle fracture consist of
how to enforce the irreversibility condition, which requires the damage to be a
non-decreasing function during any transformation in a consistent thermodynamic
formulation. As a result, the irreversibility turns the phase-field approach into a
constrained minimization problem in the form of a variational inequality. Different
methods to impose the irreversibility can significantly affect the computational cost
of the phase-field solution. Miehe et al. [134], introduced a monotonically increas-
ing history field energy function in the phase-field equation to replace the original
loading-induced reference energy. Nevertheless, the introduction of the history field
makes the phase-field solution differ from the original variational framework and
its equivalence to the original minimization problem cannot be proven [79]. On the
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other hand, penalty methods such as [79] rely on equality-based formulations and
allow to keep the variational nature of the original problem. Nevertheless, penalty
methods depend upon the so-called penalty coefficient, which needs to be tuned ac-
cording to the problem under exam. This represents a non-trivial task, since exces-
sively small values of the penalty parameter lead to an inaccurate enforcement of the
constraint, while overly large values of this parameter may cause ill-conditioning of
the problem.

2.5 Introduction to FSI problems

A fluid exerts forces on any body it flows around. This may lead to significant de-
formations, changing the flow field around the body again. This builds to an FSI
problem, a surface coupled problem formed by the unique interface separating the
fluid and the solid domain. Typical examples are aeroelastic effects in aerospace en-
gineering, the movement of artificial heart valves in biomedical engineering, and the
behavior of storage tanks in civil engineering. Even if FSI solvers are widely used,
the need for accurate but fast numerical methods is still crucial in industrial practice.

2.5.1 Standard strategies to solve FSI problems

The main solution strategies can be divided into two approaches [76]. Assem-
bling and solving the discretized problem relations into one system of equations
results in a monolithic approach, which gives the most robust solver. But monolithic
systems need a high computational effort in terms of implementation and mainte-
nance. Hence, the partitioned solution strategy – emerging by combining two exist-
ing solvers that sequentially solve the fluid and the structure sub-problems – is the
most common way to address FSI problems. The effort needed for implementation
is limited to the temporal coupling of the staggered solvers, which can be divided
into strong and weak. While in the case of a weak coupling interface information
is exchanged only up to a limited number of iterations, a strong coupling requires
information exchange at all iterations until convergence.

To increase the efficiency of an FSI solver, a problem-dependent discretization is
crucial to reduce the number of DOFs, regardless of the applied solution strategy.
However, due to the different physical properties of the participating fluids and
solids, a problem-oriented discretization of each single field usually leads to a non-
matching interface discretization in FSI problems. As a consequence, the need for
numerical methods to treat non-matching interfaces arises.

2.5.2 On the need for boundary-conforming methods

Three-dimensional fluid problems usually require a volumetric discretization, which
may become extremely complex in FSI problems due to the joint evolution of
the fluid-solid interface. The solution of volumetric problems with boundary-
conforming IgA methods is currently limited to rather simple geometries. The so-
lution of volume problems is currently possible for simple geometries only, where
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(a) SFEM-SFEM coupling. (b) SFEM-IgG coupling.

(c) NEFEM-IgG coupling.

FIGURE 2.11: Spatial coupling strategies for non-matching interface discretizations.

the generation of the spline volume can be realized either manually or with simple
effort. Despite the progress in relation to generation of volumetric splines, e.g., [132],
the application to complex fluid problems is still limited. Instead, boundary-
conforming finite elements can be used to integrate the exact initial geometry of
the boundary, which is represented by a spline. One example are elements using
blending functions to integrate a curved boundary into a mapping [172]. Another
method is the NURBS-enhanced Finite Element method (NEFEM) [36, 164], whereby
at least parts of the spline-based geometry can be utilized to include the spline only
in the discretization of the elements touching the spline-based boundary. The NE-
FEM strategy is possible even in complex cases. Numerical advantages of this meth-
ods were demonstrated, e.g., for electromagnetic scattering problems [165], incom-
pressible Navier-Stokes with free-surfaces [170], and linear elasticity [163]. Inspired
by NEFEM, a boundary-conforming mapping including the spline-based descrip-
tion of the boundary was derived to be combined with IgA for FSI in [89].

2.5.3 Spatial coupling of non-matching interface discretizations

The standard FEA for FSI usually rely on linear polynomial basis functions, that,
used on both sides of the FSI problem, lead to the setup presented in Figure 2.11(a):
elements can cut each other, causing gaps and overlaps generation, and the approx-
imated interfaces are matching only at few points. For the spatial coupling of stan-
dard finite element methods (SFEM), there are several strategies, e.g., finite interpo-
lation elements [25], weighted residual methods [42] or dual mortar formulations
[111]. A method for similar situations with high-order finite elements is discussed
in [113]. If a spline-based method is used just on one side of the problem, the situa-
tion does not change much [21]: even if the interface is discretized in a geometrically
exact manner, e.g., an IgG approach, cuts and gaps at the interface still exist due to
the linear approximation on the other side, as sketched in Fig. 2.11(b). Modified ver-
sions of the methods mentioned before are capable to allow for a spatial coupling
[21]. If IgA methods are used on both sides of the problem, the situation changes
only if the interface discretization is represented by the same approximation space.



32 Scientific background

However, by combining boundary-conforming finite elements (e.g., NEFEM) with
an IgG approach, the situation is different. Since the spline-based interface is in-
cluded in the integration on the fluid elements, a matching interface representation
is guaranteed, although the discretization at the interface is still not matching (see
Figure 2.11(c)). Using the same interfaces, the spatial coupling is simplified, as dis-
cussed in [89]. For example, within a Dirichlet-Neumann scheme consistent nodal
forces can be integrated on the fluid side to the right-hand side of the solid problem,
while the deformation of the interface can be directly transferred to the fluid mesh,
in particular, to the elements on the boundary.
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Chapter 3

Fast and accurate elastic analysis of
laminated composite plates via
isogeometric collocation and an
equilibrium-based stress recovery
approach

In this chapter we present a fast and accurate approach that combines single-patch
3D IgC and an equilibrium-based stress recovery technique to analyze laminated
composite solid plates, which are herein conveniently modeled considering only
one element through the thickness with homogenized material properties (see Fig-
ure 3.1(b)). This guarantees accurate results in terms of displacements and in-plane
stress components. To recover an accurate out-of-plane stress state, equilibrium is
imposed in strong form as a post-processing correction step, which requires the
shape functions to be highly continuous. This continuity demand is fully granted
by IgA properties. Several numerical results, obtained using a minimal number of
collocation points per direction, assess the good performance of this approach, par-
ticularly for increasing values of length-to-thickness plate ratio and number of lay-
ers. We remark that the LW concept can also be combined with IgC adopting a mul-
tipatch approach (see Section 2.1.3.4), which models each layer as a patch (see Fig-
ure 3.1(a)) and enforces normal stress continuity at the inter-patch boundaries [15].
In any case, the proposed IgC method coupled with the equilibrium-based tech-
nique is significantly less expensive compared to a LW approach since it employs a
considerably lower number of DOFs.

The structure of this chapter is organized as follows. In Section 3.1, we define our
3D IgC strategy to study composite laminated plates. In Section 3.2, we present our
reference test case and provide results for the single-element approach. Several nu-
merical benchmarks are displayed, which show a significant improvement between
non-treated and post-processed out-of-plane stress components. Then, we provide
some mesh sensitivity tests considering an increasing length-to-thickness ratio and
numbers of layers to show the effectiveness of the method. Finally, we draw our
conclusions in Section 3.3.
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metric collocation and an equilibrium-based stress recovery approach

Material layer 1

Material layer 2

Material layer 3

(a) Multipatch approach.

Homogenized material

(b) Homogenized single-element approach.

FIGURE 3.1: LW approach and homogenized single-element example of IgA shape functions
for a degree of approximation equal to 4.

3.1 An IgC approach to model solid composite plates

3.1.1 IgC formulation for orthotropic elasticity

First, let us recall the classical elasticity problem in strong form considering a small
strain regime and detail equilibrium equations using Einstein’s summation conven-
tion. The following notations are used: Ω ⊂ R3 is an open bounded domain, rep-
resenting an elastic three-dimensional body, while ΓN and ΓD are defined as bound-
ary portions respectively subjected to Neumann and Dirichlet conditions such that
ΓN ∪ ΓD = ∂Ω and ΓN ∩ ΓD = ∅. Accordingly, the equilibrium equations and the
corresponding boundary conditions are:

σij,j + bi = 0 in Ω , (3.1a)

σijnj = ti on ΓN , (3.1b)

ui = gi on ΓD , (3.1c)

where σij and ui represent, respectively, the Cauchy stress tensor and displacement
field, bi and ti the volume and traction forces, nj the outward normal unit vector, and
gi the prescribed displacements. The elasticity problem is finally completed by the
kinematic relations in small strains

ε ij =
ui,j + uj,i

2
, (3.2)

as well as by the constitutive equations

σij = Cijklεkl , (3.3)

where Cijkl are the components of the fourth-order linear elasticity tensor of material
properties.

As we described in Chapter 1, the basic building block of a laminate is a lamina,
i.e., a flat arrangement of unidirectional fibers (considering the simplest case) em-
bedded in a matrix. In order to increase the composite resistance properties, cross-
ply laminates can be employed, i.e., all the plies used to form the composite stacking
sequence are piled alternating different fiber layers orientations. In this case, all
unidirectional layers are individually orthotropic. Since the proposed collocation
approach uses one element through the thickness to model the composite plate as
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a homogenized single building block, we focus on the collocation formulation for
a plate formed by only one orthotropic elastic lamina in this section. Considering
three mutually orthogonal planes of material symmetry for each ply, the number of
elastic coefficients of the fourth-order elasticity tensor Cijkl is reduced to 9 in Voigt’s
notation, which can be expressed in terms of engineering constants as

C =




C11 C12 C13 0 0 0

C22 C23 0 0 0

C33 0 0 0

symm. C44 0 0

C55 0

C66




=




1
E1

−ν12

E1
−ν13

E1
0 0 0

1
E2

−ν23

E2
0 0 0

1
E3

0 0 0

symm.
1

G23
0 0

1
G13

0

1
G12




−1

. (3.4)

The displacement field components u = u1, v = u2, and w = u3 are then approxi-
mated as a linear combination of NURBS multivariate shape functions Ri,p(ξ) (de-
fined in Equation (2.24)) and control variables ûi, v̂i, and ŵi as follows

uh = ∑
i

Ri,p(ξ)ûi , (3.5a)

vh = ∑
i

Ri,p(ξ)v̂i , (3.5b)

wh = ∑
i

Ri,p(ξ)ŵi . (3.5c)

Having defined τ as the multidimensional array of collocation points (see Equation
(2.46)), such that for each i-th point and d-th parametric dimension

τd
i =

∑
pd
l=1 ξi+l

pd
, (3.6)

with i = 1, ..., md, we insert the approximations (3.5) into the kinematics Equa-
tions (3.2) and we combine the obtained expressions with the constitutive rela-
tions (3.3). Finally, we substitute this result into the equilibrium Equations (3.1a)
obtaining




K11(τ) K12(τ) K13(τ)
K22(τ) K23(τ)

symm. K33(τ)


 ·



ûi
v̂i
ŵi


 = −b(τ) ∀τd

i ∈ Ω , (3.7)

where Kij(τ) cofficients can be expressed as

K11(τ) = C11
∂2Ri,p(τ)

∂x1
2 + C66

∂2Ri,p(τ)

∂x22 + C55
∂2Ri,p(τ)

∂x32 , (3.7a)

K22(τ) = C66
∂2Ri,p(τ)

∂x1
2 + C22

∂2Ri,p(τ)

∂x22 + C44
∂2Ri,p(τ)

∂x32 , (3.7b)
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K33(τ) = C55
∂2Ri,p(τ)

∂x1
2 + C44

∂2Ri,p(τ)

∂x22 + C33
∂2Ri,p(τ)

∂x32 , (3.7c)

K23(τ) = (C23 + C44)
∂2Ri,p(τ)

∂x2∂x3
, (3.7d)

K13(τ) = (C13 + C55)
∂2Ri,p(τ)

∂x1∂x3
, (3.7e)

K12(τ) = (C12 + C66)
∂2Ri,p(τ)

∂x1∂x2
, (3.7f)

and substituting in (3.1b) we obtain:



K̃11(τ) K̃12(τ) K̃13(τ)
K̃22(τ) K̃23(τ)

symm. K̃33(τ)


 ·



ûi
v̂i
ŵi


 = t(τ) ∀τd

i ∈ ΓN , (3.8)

with K̃ij(τ) components having the following form

K̃11(τ) = C11
∂Ri,p(τ)

∂x1
n1 + C66

∂Ri,p(τ)

∂x2
n2 + C55

∂Ri,p(τ)

∂x3
n3 , (3.8a)

K̃22(τ) = C66
∂Ri,p(τ)

∂x1
n1 + C22

∂Ri,p(τ)

∂x2
n2 + C44

∂Ri,p(τ)

∂x3
n3 , (3.8b)

K̃33(τ) = C55
∂Ri,p(τ)

∂x1
n1 + C44

∂Ri,p(τ)

∂x2
n2 + C33

∂Ri,p(τ)

∂x3
n3 , (3.8c)

K̃23(τ) = C23
∂Ri,p(τ)

∂x3
n2 + C44

∂Ri,p(τ)

∂x2
n3 , (3.8d)

K̃13(τ) = C13
∂Ri,p(τ)

∂x3
n1 + C55

∂Ri,p(τ)

∂x1
n3 , (3.8e)

K̃12(τ) = C12
∂Ri,p(τ)

∂x2
n1 + C66

∂Ri,p(τ)

∂x1
n2 . (3.8f)

As we can see from Equations (3.8), Neumann boundary conditions are directly im-
posed as strong-form equations at the collocation points belonging to the boundary
surface ΓN (see Section 2.1.3.2 and references [15, 55]), with the usual physical mean-
ing of prescribed boundary tractions.

3.1.2 Single-element approach

The single-element approach considers the plate discretized by a single element
through the thickness, which strongly reduces the number of DOFs with respect
to LW methods [84, 85, 119, 120]. The material matrix is therefore homogenized to
account for the presence of the layers as described in Figure 3.1(b).

Remark 3.1. Considering a single-element homogenized approach is effective only for
through-the-thickness symmetric layer distributions, as for non-symmetric ply stacking se-
quences the plate mid-plane is not balanced. In the case of non-symmetric layer distributions
this technique is still applicable when the stacking sequence can be split into two symmetric
piles, using one element per homogenized stack with a C0 interface.
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This method provides accurate results only in terms of displacements and in-
plane stress components. In order to recover a proper out-of-plane stress state, we
propose to couple the single-element method with a post-processing technique fol-
lowing the approach in [62]. To characterize the variation of the material properties
from layer to layer, we homogenize the constitutive behavior to create an equiva-
lent single-layer laminate. Following [171], the explicit expressions for the effective
elastic constants of the equivalent laminate (originally made of N plies) are given as

C11 =
N

∑
k=1

tkC
(k)
11 +

N

∑
k=2

(C
(k)
13 −C13)tk

(C
(1)
13 −C

(k)
13 )

C
(k)
33

, (3.9a)

C12 =
N

∑
k=1

tkC
(k)
12 +

N

∑
k=2

(C
(k)
13 −C13)tk

(C
(1)
23 −C

(k)
23 )

C
(k)
33

, (3.9b)

C13 =
N

∑
k=1

tkC
(k)
13 +

N

∑
k=2

(C
(k)
33 −C33)tk

(C
(1)
13 −C

(k)
13 )

C
(k)
33

, (3.9c)

C22 =
N

∑
k=1

tkC
(k)
22 +

N

∑
k=2

(C
(k)
23 −C23)tk

(C
(1)
23 −C

(k)
23 )

C
(k)
33

, (3.9d)

C23 =
N

∑
k=1

tkC
(k)
23 +

N

∑
k=2

(C
(k)
33 −C33)tk

(C
(1)
23 −C

(k)
23 )

C
(k)
33

, (3.9e)

C33 =
1

(
∑N

k=1
tk

C
(k)
33

) , (3.9f)

C44 =

(
∑N

k=1
tk

C
(k)
44

∆k

)

∆
∆ =

( N

∑
k=1

tkC
(k)
44

∆k

)( N

∑
k=1

tkC
(k)
55

∆k

)
, (3.9g)

C55 =

(
∑N

k=1
tk

C
(k)
55

∆k

)

∆
∆k = Ck

44Ck
55 , (3.9h)

C66 =
N

∑
k=1

tkC
(k)
66 , (3.9i)

where C
(k)
ij represents the ij-th component of the fourth-order elasticity tensor in

Voigt’s notation (3.4) for the k-th layer and tk =
tk

t
stands for the volume fraction of

the k-th lamina, t being the total thickness of the laminate and tk the thickness of the
k-th ply.

3.1.3 Post-processing step: reconstruction from equilibrium

As interlaminar delamination and other fracture processes rely mostly on out-of-
plane components, a proper through-the-thickness stress description is required.
In order to recover a more accurate stress state, we perform a post-processing step
based on the equilibrium equations, relying on the higher regularity granted by IgA
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shape functions. This procedure, which takes its roots in [56, 65, 154, 183] (see Sec-
tion 2.3), has already been proven to be successful for IgG [62]. Inside the plate, the
stresses should satisfy the equilibrium Equation (3.1a), which can be expanded as

σ11,1 + σ12,2 + σ13,3 = −b1 , (3.10a)
σ12,1 + σ22,2 + σ23,3 = −b2 , (3.10b)
σ13,1 + σ23,2 + σ33,3 = −b3 . (3.10c)

Assuming the in-plane stress components to approximate the laminate behavior well
(as it will be shown in Section 3.2), we can integrate Equations 3.10a and 3.10b along
the thickness, recovering the out-of-plane shear stresses as

σ13(x3) = −
∫ x3

x̄3

(σ11,1(ζ) + σ12,2(ζ) + b1(ζ))dζ + σ13(x̄3) , (3.11a)

σ23(x3) = −
∫ x3

x̄3

(σ12,1(ζ) + σ22,2(ζ) + b2(ζ))dζ + σ23(x̄3) , (3.11b)

where ζ represents the coordinate along the thickness direction.

Finally, we can insert Equations (3.11a) and (3.11b) into (3.10c), recovering the
σ33 component as

σ33(x3) = −
∫ x3

x̄3

(σ13,1(ζ) + σ23,2(ζ) + b3(ζ))dζ + σ33(x̄3) . (3.12)

Following [62], the integral constants are chosen to fulfill the boundary conditions
at the top or bottom surfaces of the plate.

Recalling that, from Equations (3.2) and (3.3),

σij,k = Cijmn
um,nk + un,mk

2
, (3.13)

where the homogenized tensor C is constant, the necessity of a highly regular dis-
placement solution in order to recover a proper stress state becomes clear. Such a
condition can be easily achieved using IgC with a reduced computational cost. We
also remark that the proposed method strongly relies on the possibility to obtain an
accurate description (with a relatively coarse mesh) of the in-plane stress state.

Furthermore, we highlight that integrals (3.11) and (3.12) are computed numeri-
cally using a composite trapezoidal quadrature rule. Namely, we integrate along the
thickness direction starting from the bottom to the top of the laminate and vice versa,
and then average the obtained numerical approximations.

3.2 Numerical tests

In this section, to assess whether the proposed method can effectively reproduce the
behavior of solid composite plates, we consider a classical benchmark problem [145]
and we address different aspects such as the effectiveness of the proposed post-
processing step, the sensitivity of the method to parameters of interest (i.e., number
of layers and length-to-thickness ratio), and its convergence.
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FIGURE 3.2: Pagano test case [145]. Problem geometry and boundary conditions.

3.2.1 Reference solution: the Pagano layered plate

A square laminated composite plate of total thickness t and made of N orthotropic
layers is considered. This structure is simply supported and a normal sinusoidal
traction is applied on the upper surface, while the lower surface is traction-free, as
shown in Figure 3.21. In the proposed numerical tests, we consider different num-
bers of layers, namely 3, 11, and 33. The thickness of every single layer is set to 1 mm,
and the edge length, L, is chosen to be S times larger than the total thickness t of the
laminate. Different choices of length-to-thickness ratio are considered (i.e., S = 20,
30, 40, and 50), which allow to draw interesting considerations about the laminate
behavior in the proposed convergence tests. For all examples we consider the same
loading conditions proposed by Pagano, i.e., a double sinus with periodicity equal
to twice the length of the plate.

The Neumann boundary conditions on the plate surfaces x3 = 0 and x3 = t are

σ13(x1, x2, 0) = σ13(x1, x2, t) = 0 ,

σ23(x1, x2, 0) = σ23(x1, x2, t) = 0 ,
(3.14a)

σ33(x1, x2, 0) = 0 , (3.14b)

σ33(x1, x2, t) = q(x1, x2) = σ0 sin(
πx1

St
) sin(

πx2

St
) , (3.14c)

where σ0 = 1 MPa.
1We remark that we modified Pagano’s original test case in terms of placement of the reference

system {x1, x2, x3}. In our case, the x1x2-plane does not coincide with the geometrical mid-plane of
the laminate, but with the bottom surface of the plate (see Figure 3.2). This shift of the reference
system allows for a simple and straightforward comparison between the analytical solution and the
post-processed IgC solution, since for the latter method the numerical integrals are computed starting
either from the bottom plate surface to the top one or vice versa.
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The simply supported edge conditions are taken as

u1(x1, 0, x3) = u1(x1, L, x3) = 0 , (3.15a)

u2(0, x2, x3) = u2(L, x2, x3) = 0 , (3.15b)

u3(0, x2, x3) = u3(L, x2, x3) = u3(x1, 0, x3) = u3(x1, L, x3) = 0 , (3.15c)

σ11(0, x2, x3) = σ11(L, x2, x3) = 0 , (3.15d)

σ22(x1, 0, x3) = σ22(x1, L, x3) = 0 . (3.15e)

As depicted in Figure 3.2, the laminated plate is composed of layers organized in
an alternated distribution of orthotropic plies (i.e., a 90°/0° stacking sequence in our
case). Layer material parameters considered in the numerical tests are summarized
in Table 3.1 for 0°-oriented plies.

TABLE 3.1: Material properties for 0°-oriented layers employed in the numerical tests.

E1 E2 E3 G23 G13 G12 ν23 ν13 ν12

[GPa] [GPa] [GPa] [GPa] [GPa] [GPa] [-] [-] [-]

25000 1000 1000 200 500 500 0.25 0.25 0.25

Additionally, all results are then expressed in terms of the following normalized
stress components

σij =
σij

σ0S2 i, j = 1, 2 , (3.16a)

σi3 =
σi3

σ0S
i = 1, 2 , (3.16b)

σ33 =
σ33

σ0
. (3.16c)

For a detailed derivation on the analytical solution to the Pagano’s problem con-
sidered here, the interested reader is referred to Appendix 3.A.

3.2.2 Post-processed out-of-plane stresses

In this section, we present and discuss the results obtained using the proposed IgC
approach, as compared with Pagano’s analytical solution [145]. To give an idea of
the improvement granted by the post-processing of out-of-plane stress components,
in Figures 3.3 and 3.4 we compare the reference solution with non-treated and post-
processed results for the cases of solid laminated plates made of 3 and 11 layers,
considering a length-to-thickness ratio S = 20. All numerical simulations are carried
out using an in-plane degree of approximation p = q = 6 and 10x10 collocation
points, corresponding to 4 elements for each in-plane parametric direction, while we
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FIGURE 3.3: Through-the-thickness stress solutions for the 3D Pagano’s problem [145] eval-
uated at x1 = x2 = 0.25L. Case: plate with 3 layers and length-to-thickness ratio S = 20,
such that L = St = 60 mm ( Pagano’s solution, homogenized IgC solution without
post-processing obtained with 10x10x5 collocation points corresponding to 4 in-plane ele-
ments and one out-of-plane element, and p = q = 6 and r = 4 degrees of approximation,
post-processed homogenized IgC solution computed with 10x10x5 collocation points corre-

sponding to 4 in-plane elements and one out-of-plane element, and p = q = 6 and r = 4).
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FIGURE 3.4: Through-the-thickness stress solutions for the 3D Pagano’s problem [145] eval-
uated at x1 = x2 = 0.25L. Case: plate with 11 layers and length-to-thickness ratio S = 20,
such that L = St = 220 mm ( Pagano’s solution, homogenized IgC solution without
post-processing obtained with 10x10x5 collocation points corresponding to 4 in-plane ele-
ments and one out-of-plane element, and p = q = 6 and r = 4 degrees of approximation,
post-processed homogenized IgC solution computed with 10x10x5 collocation points corre-

sponding to 4 in-plane elements and one out-of-plane element, and p = q = 6 and r = 4).
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use an approximation degree r = 4 and one element through the thickness (i.e., r + 1
collocation points). The sampling point where we show results is located at x1 =
x2 = 0.25L. As expected, for both considered cases the in-plane stresses show a
good behavior, while the out-of-plane stress components, without a post-processing
treatment, are erroneously discontinuous. The proposed results clearly show the
improvement granted by the post-processing of out-of-plane components. To show
the effect of post-processing at different locations of the plate, in Figures 3.5-3.7 the
out-of-plane stress state profile is recovered sampling the laminae every quarter of
length in both in-plane directions for the case of a length-to-thickness ratio equal to
20 and 11 layers.

3.2.3 Convergence behavior and parametric study on length-to-thickness
ratio

In order to validate the proposed stress recovery approach in a wider variety of
cases, computations with a different ratio between the thickness of the plate and its
length are performed respectively for 3, 11, and 33 layers, considering an increas-
ing number of in-plane elements (i.e., 1, 2, 4, and 8). Adopting the following error
definition

e(σi3) =
max(|σanalytic

i3 − σrecovered
i3 |)

max(|σanalytic
i3 |)

, i = 1, 2, 3 , (3.17)

Figures 3.8 and 3.9 assess the validity of our methodology for varying length-to-
thickness ratios. Note that Equation (3.17) is used only to estimate the error in-
side the domain to avoid indeterminate forms. Different combinations of degree of
approximations have also been considered. A poorer out-of-plane stress approxi-
mation is obtained using a degree equal to 4 in every direction. In addition, with
this choice locking phenomena may occur for increasing values of the length-to-
thickness ratio. Based on the results shown in Figures 3.8 and 3.9, we conclude that
using an in-plane degree of approximation equal to 6 and equal to 4 through the
thickness seems to be a reasonable choice to correctly reproduce the 3D stress state.
Using instead uniform approximation degrees p = q = r = 6 does not seem to sig-
nificantly improve the results (see Figures 3.8, 3.9, and Table 3.2). Additionally, we
observe that the post-processing method provides better results for increasing val-
ues of length-to-thickness ratio; and therefore proves to be particularly convenient
for very large and thin plates. The post-processed results are also better for a high
number of layers, which is clear since a laminae with a large number of thin layers
resembles a plate with average properties. An outstanding result of our mesh sen-
sitivity analysis is that collocation perfectly captures the behavior of the plates not
only using one element through the thickness but also employing only one element
in the plane of the plate. A single element of degrees p = q = 6 and r = 4, compris-
ing a total of 7x7x5 collocation points, is able to provide maximum percentage errors
of 5% or lower in the 3-layer test for S ≥ 30 and of ≤ 1% in the cases with 11 and 33
layers.

Quantitative results are presented in Table 3.2 for various plate cases, considering
a number of layers equal to 11 and 10 collocation points for each in-plane parametric
direction. Different number of layers (i.e., 3 and 33) are instead investigated in Ap-
pendix 3.B, where increasing length-to-thickness ratios (S = 20, 30, 40, and 50) are
considered and the maximum relative error results are reported for a reference point
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FIGURE 3.5: Through-the-thickness out-of-plane σ̄13 profiles for the 11-layer case for in-plane
sampling points situated at every quarter of length in both in-plane directions x1 and x2. For
each subplot, the horizontal axis shows the values of σ̄13 and the vertical axis the through-
the-thickness coordinate x3. L represents the total length of the plate, which for this case
is L = 220 mm (L = St with t = 11 mm and S = 20), while the number of layers is 11 (

post-processed solution, analytical solution [145]).

located at x1 = x2 = 0.25L. Different degrees of approximation are also investigated
in Appendix 3.B. These additional results further support that using an out-of-plane
degree of approximation equal to 4 leads to a sufficiently accurate stress state. Fur-
thermore, the out-of-plane stress profile reconstruction results in Appendix 3.B show
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FIGURE 3.6: Through-the-thickness out-of-plane σ̄23 profiles for the 11-layer case for in-plane
sampling points situated at every quarter of length in both in-plane directions x1 and x2. For
each subplot, the horizontal axis shows the values of σ̄23 and the vertical axis the through-
the-thickness coordinate x3. L represents the total length of the plate, which for this case
is L = 220 mm (L = St with t = 11 mm and S = 20), while the number of layers is 11 (

post-processed solution, analytical solution [145]).

a remarkable improvement for increasing values of the number of layers and slen-
derness parameter S.
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FIGURE 3.7: Through-the-thickness out-of-plane σ̄33 profiles for the 11-layer case for in-plane
sampling points situated at every quarter of length in both in-plane directions x1 and x2. For
each subplot, the horizontal axis shows the values of σ̄33 and the vertical axis the through-
the-thickness coordinate x3. L represents the total length of the plate, which for this case
is L = 220 mm (L = St with t = 11 mm and S = 20), while the number of layers is 11 (

post-processed solution, analytical solution [145]).

Laminated composites often exhibit inter-laminar normal and shear stress con-
centrations near material and geometric discontinuities leading to the so-called free
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FIGURE 3.8: Maximum relative percentage error evaluation at x1 = x2 = 0.25L for in-plane
degrees of approximation equal to 6 and out-of-plane degree of approximation equal to 4.
Different length-to-thickness ratios S are investigated for a number of layers equal to 3, 11,

and 33 ( 1 element, 2 elements, 4 elements, 8 elements).

edge effect [169]. To illustrate the ability of the proposed method to describe three-
dimensional effects also at plate boundaries, we report in Figure 3.10 color maps
of the analytical and the reconstructed stress components, along with the absolute
value of their difference, at x3 locations where such a difference is maximum. It is
possible to observe that even in the worst case scenarios, stress errors are relatively
small. These results are obtained considering a plate with length-to-thickness ratio



48
Fast and accurate elastic analysis of laminated composite plates via isogeo-
metric collocation and an equilibrium-based stress recovery approach

20 30 40 50 −
2

−
1

0
1

S

lo
g 1

0(
e(

σ 1
3)
[%

])

(a) 3 layers

20 30 40 50 −
1
−
0.
5

0
0.
5

1

S

lo
g 1

0(
e(

σ 2
3)
[%

])

(b) 3 layers

20 30 40 50

−
2

−
1

0

S

lo
g 1

0(
e(

σ 3
3)
[%

])

(c) 3 layers

20 30 40 50 −
2

−
1

0
1

S

lo
g 1

0(
e(

σ 1
3)
[%

])

(d) 11 layers

20 30 40 50 −
1
−
0.
5

0
0.
5

1

S

lo
g 1

0(
e(

σ 2
3)
[%

])

(e) 11 layers

20 30 40 50

−
2

−
1

0

S
lo
g 1

0(
e(

σ 3
3)
[%

])

(f) 11 layers

20 30 40 50 −
2

−
1

0
1

S

lo
g 1

0(
e(

σ 1
3)
[%

])

(g) 33 layers

20 30 40 50

−
1

0
1

S

lo
g 1

0(
e(

σ 2
3)
[%

])

(h) 33 layers

20 30 40 50

−
2

−
1

0

S

lo
g 1

0(
e(

σ 3
3)
[%

])

(i) 33 layers

FIGURE 3.9: Maximum relative percentage error evaluation at x1 = x2 = 0.25L for degrees
of approximation equal to 6 in all directions. Different length-to-thickness ratios S are inves-
tigated for a number of layers equal to 3, 11, and 33 ( 1 element, 2 elements, 4

elements, 8 elements).

equal to 20, 11 layers, and 10 collocation points per in-plane direction.
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FIGURE 3.10: Analysis of the free-edge effect. Left column: analytical distribution of σa
i3 (i =

1, 2, 3). Middle column: reconstructed distribution of σr
i3 (i = 1, 2, 3) computed with 10x10x5

collocation points corresponding to 4 in-plane elements and one out-of-plane element, a
degree of approximation equal to 6 per in-plane direction, and an out-of-plane degree of
approximation equal to 4. Right column: absolute value of the difference σa

i3 − σr
i3. The plot

for each out-of-plane stress σi3 corresponds to the x3 location where the value of |σa
i3− σr

i3| is
maximum. A length-to-thickness ratio S equal to 20 and 11 layers are considered.
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TABLE 3.2: Simply supported composite plate under sinusoidal load with a number of
layers equal to 11. Maximum relative error of the out-of-plane stress state with respect to
Pagano’s solution [145] at x1 = x2 = 0.25L. We compare IgC before and after the application
of the post-processing technique (post-processed IgC) for different approximation degrees
(p, q, r) and length-to-thickness ratios (S), while we use 4 elements in each in-plane direction

(i.e., 10x10 collocation points in the plane of the plate).

Degrees of approximation p = q = 6, r = 4 p = q = r = 6

S Method
e(σ13) e(σ23) e(σ33) e(σ13) e(σ23) e(σ33)

[%] [%] [%] [%] [%] [%]

20
IgC 97.6 56.7 6.34 96.6 56.1 6.31

post-processed IgC 0.31 2.94 0.90 1.97 1.20 0.05

30
IgC 98.7 55.6 6.36 98.3 55.4 6.34

post-processed IgC 0.16 1.34 0.47 0.91 0.57 0.08

40
IgC 99.2 55.3 6.37 98.9 55.2 6.36

post-processed IgC 0.07 0.78 0.34 0.50 0.35 0.12

50
IgC 99.4 55.1 6.38 99.2 55.1 6.38

post-processed IgC 0.03 0.52 0.29 0.30 0.25 0.15

3.3 Conclusions

In this chapter we present a new efficient approach to simulate solid laminated
plates characterized by a symmetric distribution of plies. This technique combines a
3D IgC approach with a post-processing step procedure based on equilibrium equa-
tions. Since we adopt a single-element approach, to take into account variation of the
material properties through the plate thickness, we average the constitutive behavior
of each layer considering a homogenized response. Following this simple approach,
we showed that acceptable results can be obtained only in terms of displacements
and in-plain stresses. Therefore, we propose to perform a post-processing step to
recover the out-of-plane stress state, which requires the shape functions to be highly
continuous. This continuity demand is fully granted by typical IgA shape functions.
After the post-processing correction is applied, good results are recovered also in
terms of out-of-plane stresses, even for very coarse meshes. The post-processing
stress recovery technique is only based on the integration of equilibrium equations
through the thickness, and all the required components can be easily computed by
differentiating the displacement solution. Several numerical tests are carried out to
assess the sensitivity of the proposed technique to different length-to-thickness ra-
tios and number of layers. Regardless of the number of layers, the method gives
better results the more slender the composites are. Multiple numbers of alternated
layers and sequences of stacks (both even and odd) have been studied in our ap-
plications. Nevertheless, only tests that consider an odd number of layers or an
odd disposition of an even number of stacks show good results. This was expected
because considering a homogenized response of the material is effective only for
symmetric distributions of plies (see Remark 3.1). Further research topics currently
under investigation focus on the extension of this approach to more complex prob-
lems involving large deformations.



Analytical solution to Pagano’s problem 51

Appendix 3.A: Analytical solution to Pagano’s problem

The reference solution to Pagano’s layered plate introduced in Section 3.2.1 is de-
rived starting from the Equation (3.3), which is valid for any layer and can be written
using (3.4) as 


σ11
σ22
σ33


 =




C11 C12 C13
C21 C22 C23
C31 C32 C33






ε11
ε22
ε33


 (3.A.1)

and

τ23 = C442ε23 , (3.A.2)
τ13 = C552ε13 , (3.A.3)
τ12 = C662ε12 , (3.A.4)

while the governing field equations can be written in terms of displacement compo-
nents u, v, and w as

C11u,11 + C66u,22 + C55u,33 + (C12 + C66)v,12 + (C13 + C55)w,13 = 0 , (3.A.5a)
(C12 + C66)u,12 + C66v11 + C22v,22 + C44v,33 + (C23 + C44)w,23 = 0 , (3.A.5b)
(C13 + C55)u,13 + (C23 + C44)v,23 + C55w,11 + C44w,22 + C33w,33 = 0 . (3.A.5c)

Thus, the laminate response is defined by the solution of the boundary value prob-
lem satisfying the balance of linear momentum Equation (3.A.5) within each layer,
the boundary conditions expressed by (3.14) and (3.15), and the interface continu-
ity conditions, which impose the equality of displacements (u, v, and w) as well as
out-of-plane stresses (τ13, τ23, and σ33) belonging to adjacent layers at each interface.

Starting from these consideration, here we report the analytical solution of the
problem for one layer [145]. A trial displacement form is given by

u = U(x3) cos(p(n)x1) sin(q(m)x2) , (3.A.6a)
v = V(x3) sin(p(n)x1) cos(q(m)x2) , (3.A.6b)
w = W(x3) sin(p(n)x1) sin(q(m)x2) , (3.A.6c)

where the dependence upon x3 coordinate is described only by U, V, and W func-
tions and

p(n) =
nπ

a
, (3.A.7a)

q(m) =
mπ

b
, (3.A.7b)

with n, m ∈ N, and where a and b are the lengths of the plate sides. In our case

m = n = 1, i.e., p = q =
π

St
2.

2The notation in this appendix is somewhat independent from the rest of the chapter unless other-
wise stated. In particular, we note that p, q, p(n), and q(m) are merely part of the parametrization of the
analytical solution to Pagano’s problem and are not related to the in-plane degrees of approximation
used in the main text of this chapter. The same applies for Gj, Rj, Sj, and mj in the next pages.
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Assuming that
(U, V, W) = (U∗, V∗, W∗) exp(sz) , (3.A.8)

where U∗, V∗, and W∗ are constants, we substitute Equations (3.A.6) and (3.A.8)
in the internal equilibrium Equations (3.A.5), which leads to an algebraic system to
calculate U∗, V∗, and W∗ (see [145] for further details). Non-trivial solutions of this
system exist only if the determinant of the coefficient matrix vanishes, which leads
to the following equation

− As6 + Bs4 + Cs2 + D = 0 , (3.A.9)

where

A = C33C44C55 ,

B = p2[C44(C11C33 −C2
13) + C55(C33C66 − 2C13C44)]+

+ q2[C55(C22C33 −C2
23) + C44(C33C66 − 2C23C55)] ,

C = −p4[C66(C11C33 −C2
13) + C55(C11C44 − 2C13C66)]+

+ p2q2[−C11(C22C33 −C2
23)− 2(C12 + C66)(C13 + C55)(C23 + C44)−

+ 2C44C55C66 + 2C11C23C44 + C12C33(C12 + 2C66) + C13C22(C13 + 2C55)]+

− q4[C66(C22C33 −C2
23) + C44(C22C55 − 2C23C66)] ,

D = p6C11C55C66 + p4q2[C55(C11C22 −C2
12) + C66(C11C44 − 2C12C55)]+

+ p2q4[C44(C11C22 −C2
12) + C66(C22C55 − 2C12C44)] + q6C22C44C66 .

Thus, we rewrite Equation (3.A.9) in terms of γ by making the replacement γ =

s2 − B
3A

, obtaining

γ3 + dγ + f = 0 . (3.A.10)

In Equation (3.A.10) the terms d and f read

d =
(3CA + B2)

(−3A2)
,

f =
(2B3 + 9ABC + 27DA2)

(−27A3)
.

(3.A.11)

Once the roots of Equation (3.A.10) are obtained (in our case via MATLAB® com-
mand roots), a general solution can be written for U, V, W as

U(x3) =
3

∑
j=1

Uj(x3) , (3.A.12a)

V(x3) =
3

∑
j=1

LjUj(x3) , (3.A.12b)

W(x3) =
3

∑
j=1

RjWj(x3) , (3.A.12c)

where, for j = 1, 2, 3 ,

Uj(x3) = FjCj(x3) + GjSj(x3) (3.A.13a)
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Wj(x3) = GjCj(x3) + αjFjSj(x3) , (3.A.13b)

with

Lj =
pq
Jj
{αjm2

j [C33(C12 + C66)− (C23 + C44)(C13 + C55)]+

− (C12 + C66)(C55 p2 + C44q2)} ,

Rj =
pmj

Jj
[αjm2

j C44(C13 + C55)− (C13 + C55)(C66 p2 + C22q2)+

+ q2(C23 + C44)(C12 + C66)] ,

Jj =C33C44m4
j + αjm2

j [−p2(C44C55 + C33C66) + q2(C2
23 −C22C33 + 2C23C44)]+

+ (C66 p2 + C22q2)(C55 p2 + C44q2) .

In Equation (3.A.13), Fj and Gj are constants to be determined imposing the bound-
ary conditions in Equation (3.14) for a single layer. For multilayered plates instead,
the 6 boundary conditions (3.14) are increased by 6(N − 1) interface continuity con-

ditions of the out-of-plane stresses. Moreover, according to the sign of
(

γj +
B

3A

)
,

Cj(x3) and Sj(x3) terms take the form of

Cj(x3) = cosh(mjx3), Sj(x3) = sinh(mjx3), αj = 1, if
(

γj +
B

3A

)
> 0 , (3.A.14a)

Cj(x3) = cos(mjx3), Sj(x3) = sin(mjx3), αj = −1, if
(

γj +
B

3A

)
< 0 , (3.A.14b)

with

mj =

√∣∣∣∣γj +
B

3A

∣∣∣∣ . (3.A.15)

Finally, using the strain-displacement relations of linear elasticity (3.A.1)-(3.A.4)
in conjunction with Equation (3.A.12), we find that the stress components are given
by

σii = sin(px1) sin(qx2)
3

∑
j=1

MijUj(x3) i = 1, 2, 3 , (3.A.16a)

τ23 = C44 sin(px1) cos(qx2)
3

∑
j=1

(mjLj + qRj)Wj(x3) , (3.A.16b)

τ13 = C55 cos(px1) sin(qx2)
3

∑
j=1

(mj + pRj)Wj(x3) , (3.A.16c)

τ12 = C66 cos(px1) cos(qx2)
3

∑
j=1

(q + pLj)Uj(x3) , (3.A.16d)

where

Mij = −pC1i − qC2iLj + αjmjRjC3i i, j = 1, 2, 3 . (3.A.17)
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Appendix 3.B: Additional results

Results in terms of maximum relative error considering a plate with a number of
layers equal to 3 and 33 are herein presented in Table 3.B.1 for a reference point
located at x1 = x2 = 0.25L. Increasing length-to-thickness ratios (S = 20, 30, 40,
and 50) are investigated for different degrees of approximations (i.e., p = q = 6
and r = 4, and p = q = r = 6), using 10x10x5 collocation points corresponding
to 4 elements for each in-plane parametric direction and one element through-the-
thickness.

TABLE 3.B.1: Simply supported composite plate under sinusoidal load. Maximum relative
error of the out-of-plane stress state with respect to Pagano’s solution [145] at x1 = x2 =
0.25L. We compare IgC before and after the application of the post-processing technique
(post-processed IgC) for different approximation degrees (p, q, r) and length-to-thickness ra-
tios (S), while we use 4 elements in each in-plane direction (i.e., 10x10 collocation points in

the plane of the plate).

(a) Plate case with a number of layers equal to 3.

Degrees of approximation p = q = 6, r = 4 p = q = r = 6

S Method
e(σ13) e(σ23) e(σ33) e(σ13) e(σ23) e(σ33)

[%] [%] [%] [%] [%] [%]

20
IgC 292 57.2 5.80 291 57.2 5.79

post-processed IgC 10.4 3.16 0.54 11.9 1.41 0.33

30
IgC 311 57.5 5.77 311 57.5 5.77

post-processed IgC 5.05 1.40 0.28 5.75 0.63 0.11

40
IgC 319 57.6 5.76 319 57.6 5.76

post-processed IgC 2.91 0.81 0.21 3.32 0.38 0.02

50
IgC 323 57.6 5.76 322 57.6 5.76

post-processed IgC 1.87 0.54 0.20 2.14 0.26 0.07

(b) Plate case with a number of layers equal to 33.

Degrees of approximation p = q = 6, r = 4 p = q = r = 6

S Method
e(σ13) e(σ23) e(σ33) e(σ13) e(σ23) e(σ33)

[%] [%] [%] [%] [%] [%]

20
IgC 81.6 69.7 6.33 80.7 68.9 6.33

post-processed IgC 1.16 2.21 0.93 0.54 0.50 0.07

30
IgC 81.5 69.0 6.34 81.2 68.7 6.34

post-processed IgC 0.53 1.01 0.48 0.23 0.25 0.09

40
IgC 81.5 68.7 6.35 81.3 68.6 6.34

post-processed IgC 0.32 0.59 0.34 0.11 0.16 0.12

50
IgC 81.6 68.6 6.35 81.4 68.5 6.35

post-processed IgC 0.23 0.40 0.30 0.05 0.13 0.16
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Chapter 4

Accurate equilibrium-based
interlaminar stress recovery for
isogeometric laminated composite
Kirchhoff plates

In this chapter, we extend the stress recovery strategy, introduced in Chapter 3,
to model the out-of-plane behavior of Kirchhoff laminated plates and present a
displacement-based CLPT approach, which provides the lowest computational cost
among known literature strategies, within an IgA framework. According to this
plate theory, interlaminar stresses are identically zero when computed using the
constitutive equations. However, these stresses do exist in reality, and they can
be responsible for failures in composite laminates because of the difference in the
material properties between the layers. Therefore, the proposed modeling strategy
is coupled with a post-processing technique that directly relies on equilibrium and
grants a highly accurate prediction of the out-of-plane stress state even from a very
coarse 2D displacement solution (e.g., using one high-order element to model the
plate mid-plane for rectangular laminates). More specifically, the obtained displace-
ment solution is used to compute the necessary in-plane derivatives to recover the
out-of-plane stresses directly imposing equilibrium in strong form. Since this a pos-
teriori step relies on high-order in-plane continuity requirements, IgA represents a
natural simulation framework due to its accuracy and higher continuity proper-
ties. Both IgG and IgC formulations are herein considered. The effectiveness of
the proposed approach is proven by extensive numerical tests. The adopted post-
processing technique, as introduced in Section 2.3, takes its origin in [53, 65, 154]
and has already been proven to provide good results for 3D solid plates in the con-
text of IgG approaches [62], IgC [149] (see Chapter 3), and methods based on radial
basis functions [44]). Therefore, the effectiveness of the proposed approach relies on
the capability to obtain accurate in-plane results with only one element through the
thickness and on the possibility to compute accurate stresses and stress derivatives
from the obtained displacement field, thanks to the higher-order continuity proper-
ties of the in-plane IgA shape functions.
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The structure of this chapter is as follows. In Section 4.1, we focus on CLPT ba-
sics, considering Kirchhoff plates under bending with multiple specially orthotropic
layers. The proposed numerical IgA formulations for laminated composite plates are
presented in Section 4.2. Displacement-based ESL modeling strategies do not allow
for an immediate assessment of the out-of-plane stress distributions, which can be
recovered using an equilibrium-based post-processing technique, as detailed in Sec-
tion 4.3. In Section 4.4, several numerical benchmarks are considered, showing the
ability of the proposed approach to obtain accurate in-plane and out-of-plane stress
states. Furthermore, we test the behavior of different meshes for increasing length-
to-thickness ratios and numbers of layers to show the effectiveness of the method.
We also investigate the behavior of our approach at the plate boundary, where stress
concentrations might occur in laminates due to different material distributions in
each ply. Finally, conclusions are drawn in Section 4.5.

4.1 Kirchhoff laminated plates

In this section we focus on plates with multiple specially orthotropic layers, i.e., lam-
inates characterized by multiple plies for which the bending-stretching coupling co-
efficients and bending-twisting contributions are zero. This leads to a great simpli-
fication of the analysis because the bending deformation is uncoupled from the ex-
tensional deformation [159]. Therefore, focusing on the bending case, we acknowl-
edge that the proposed approach is rigorous only for plates characterized by sym-
metric ply stacking sequences, as the coupling phenomenon between bending and
stretching is in general not negligible for layer arrangements that are non-symmetric
about the mid-plane. Nevertheless, we will numerically prove in Section 4.4 that the
presented technique is able to provide reasonable approximations to more complex
laminates, such as antisymmetric cross-ply laminates, which are composite plates char-
acterized by an even number of layers of equal thickness and the same material
properties with alternating 0° and 90° fiber orientations.

Under these premises, we recall that the bending case according to the CLPT is
based on the following displacement field

u1(x1, x2, x3) = −x3w,1 , (4.1a)
u2(x1, x2, x3) = −x3w,2 , (4.1b)
u3(x1, x2) = w , (4.1c)

where (u1, u2, u3) are the displacement components along the cartesian coordinate
directions (x1, x2, x3) of a point belonging to the plate mid-plane (for which x3 is
the out-of-plane coordinate) and w is the transverse deflection. The displacement field
(4.1) implies that straight fibers, normal to the x1x2-plane before deformation, re-
main straight and normal to the mid-surface after deformation. In the Equation (4.1)
and hereinafter we adopt the convention that the portion of a subscript prior to a
comma indicates components, while the portion after the comma refers to partial

derivatives; for example, σ12,13 =
∂2σ12

∂x1∂x3
. We further assume small deformations

and small strains.
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4.1.1 Constitutive relations

Assuming the displacement field (4.1), the Kirchhoff plate model neglects both trans-
verse shears and transverse normal effects, while the non-zero corresponding strains
ε11, ε22, and ε12 cause σ11, σ22, and σ12 stresses.

Hereinafter, Einstein’s notation on repeated indices is used, as well as the con-
vention for which indices in Latin letters take values {1,2,3} whereas indices in Greek
letters take values {1,2}. Accordingly, in-plane strains are defined as

εγδ = −x3w,γδ = −x3κγδ , (4.2)

where κγδ = w,γδ are the curvatures of the deflected mid-surface and the stress-strain
relations for a linear elastic Kirchhoff plate are given by

σαβ = Cαβγδεγδ . (4.3)

In Chapter 1, we have introduced laminated composite plates as structures made
of variously oriented orthotropic elastic plies. For the sake of simplicity, but without
loss of generality, we focus here on specially orthotropic layers, for which the prin-
cipal material coordinates coincide with those of the plate. Therefore, the number of
elastic coefficients of the fourth order elasticity tensor Cijkl reduces to nine, which, in
Voigt’s notation, can be expressed in terms of engineering constants as in Equation
(3.4). We remark that the orthotropic elasticity tensor C is not necessarily constant
for each ply. Therefore, with C(x3) we denote its through-the-thickness dependency,
which is a key aspect in the description of quantities referred to the plate mid-plane.

We introduce the bending moments M11, M22, and M12 which are stress resul-
tants with the dimension of moments per unit length

Mαβ =
∫ t/2

−t/2
x3σαβdx3 , (4.4)

and, substituting Equation (4.2) into (4.3), we combine the obtained expressions with
the bending moment relations (4.4) obtaining

Mαβ = −
∫ t/2

−t/2
x2

3Cαβγδ(x3)κγδdx3 , (4.5)

where t is the total plate thickness.

Finally, recalling that κγδ does not depend on the out-of-plane coordinate, we can
rewrite (4.5) as

Mαβ = −Dαβγδκγδ , (4.6)

where Dαβγδ is the bending material stiffness, defined as

Dαβγδ =
∫ t/2

−t/2
x2

3Cαβγδ(x3)dx3 . (4.7)
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4.1.2 Boundary-value problem

The boundary-value problem associated with an elastic Kirchhoff plate under bend-
ing can be formulated as follows. Let Ω be an open subset of R2, subjected to a
transversal load q : Ω 7→ R (i.e., normal to the plate mid-plane). We assume that
Ω has a sufficiently smooth boundary Γ with a well-defined normal n. Γ can be
decomposed as Γ = Γw ∪ ΓQ and Γ = Γϕ ∪ ΓM with Γw 6= ∅ and Γw ∩ ΓQ = ∅,
Γϕ ∩ ΓM = ∅. Given the distributed load q, and the boundary condition functions
wΓ : Γw 7→ R, ϕΓ : Γϕ 7→ R, QΓ : ΓQ 7→ R, MΓ : ΓM 7→ R, we look for the transverse
deflection w : Ω 7→ R such that

Mαβ,αβ = q in Ω , (4.8a)

Mαβ = −Dαβγδ(x3)κγδ = −Dαβγδ(x3)w,γδ in Ω , (4.8b)

w = wΓ on Γw , (4.8c)
w,αnα = ϕΓ on Γϕ , (4.8d)
(Mαβ,β + Mαδ,δ)nα = QΓ with δ 6= α on ΓQ , (4.8e)

nα Mαβnβ = MΓ on ΓM , (4.8f)

where wΓ, ϕΓ, and MΓ represent, respectively, the prescribed normal out-of-plane
displacement, rotation, and moment. Instead, QΓ stands for the normal component
of the so-called effective shear (see [75, 157, 188]), classically defined by the combina-
tion of the effect of the transverse shear forces (i.e., Mαβ,βnα) and shear forces ema-
nating from the twisting moments (i.e., Mαδ,δnα) on the boundary.

4.1.3 Weak form

In a variational approach, the governing equations are obtained with the principle
of virtual displacements. A given mechanical system can take many possible con-
figurations in accordance with its geometric constraints. Of all the admissible con-
figurations (i.e., the set of configurations that satisfy the geometric constraints), only
one also satisfies equilibrium. These configurations can be regarded as infinitesimal
variations, during which the compatibility constraints of the system are not violated.
Such variations are called virtual displacements and do not have any relation to the
actual displacements that might occur due to a change in the applied loads [159].
Thus, for a plate occupying a region Ω ⊂ R2 and subjected to pure bending, the
only contribution to the internal virtual work (in the primal field virtual transverse
displacement, δw) is given by the in-plane bending moments, Mαβ, and their relative
virtual work conjugate curvatures, δκαβ, as

δWint[δw] =
∫

Ω
MαβδκαβdΩ . (4.9)

The external virtual work is given instead by the sum of three components [75].
These are respectively due to applied transverse loads, δWext,q, applied edge mo-
ments and transverse shears, δWext,B, and to corner loads, δWext,C, i.e.,

δWext[δw] = δWext,q[δw] + δWext,B[δw] + δWext,C[δw] . (4.10)
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The first two terms read
δWext,q[δw] =

∫

Ω
q δw dΩ , (4.11)

and
δWext,B[δw] =

∫

Γ
(QΓδwΓ + MΓδφΓ)dΓ . (4.12)

Finally, if the plate has nc corners at which the displacement wj, with j = 1, 2, ..., nc,
is not prescribed, the term δWext,C comes into play considering the so-called corner
forces, i.e., jumps in the corresponding twisting moments. For the sake of simplicity,
in this work we assume that the transverse displacement of a corner is always pre-
scribed, which grants that the contribution of that corner to the external virtual work
vanishes because its corresponding displacement variation is zero. This assumption
does not constitute any limitation to the purpose of the present work.

4.2 Numerical formulations

In this section we detail the numerical IgA formulations to approximate the problem
variables and thus the equations governing the laminated Kirchhoff plate.

4.2.1 Homogenized constitutive relations

To capture the laminated composite through-the-thickness behavior, we need to ac-
count for the proper material distribution layer by layer even though the Kirch-
hoff theory assumes that a mid-surface plane can be used to represent the three-
dimensional solid plate in a two-dimensional form. In order to include the complete
ply stacking sequence contribution, we consider the required 3D material tensor (3.4)
components for each k-th layer and, to create an equivalent single bivariate plate, we
homogenize the material properties according to [171] by means of the following re-
lations

Cab =
N

∑
k=1

tkC
(k)
ab +

N

∑
k=2

(C
(k)
a3 −Ca3)tk

(C
(1)
b3 −C

(k)
b3 )

C
(k)
33

a, b = 1, 2 , (4.13a)

C66 =
N

∑
k=1

tkC
(k)
66 , (4.13b)

where N is the number of layers, tk =
tk

t
represents the volume fraction of the k-th

lamina, t being the total plate thickness, and tk the k-th ply thickness.
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At this point C 1 is independent of the x3 coordinate and we can recover the
homogenized bending material stiffness 2 from Equation (4.7) as

D =




D11 D12 0
D22 0

symm. D66


 =

t3

12




C11 C12 0
C22 0

symm. C66


 . (4.14)

4.2.2 Isogeometric collocation method

Having defined τ as the matrix of collocation points (see Equation (2.46)), such that

each i-th entry is τd
i =

∑
pd
l=1 ξi+l

pd
, with d = 1, 2 and i = 1, ..., md, we approximate the

displacement field w as a linear combination of bivariate shape functions Bi,p(ξ) and
control variables ŵi as

w(τ) = ∑
i

Bi,p(τ)ŵi . (4.15)

Following [157], without loss of generality, we describe our collocation strategy for
the case of a simply supported plate, that is, Γw = ΓM = Γ.

In Voigt’s notation, we can rewrite Equation (4.6) as

M = −Dκ , (4.16)

where the bending moment vector is equal to

M =
[
M11 M22 M12

]T (4.17)

and the curvature vector κ is defined as

κ =
[
κ11 κ22 2κ12

]T
=
[
w,11 w,22 2w,12

]T . (4.18)

We then insert the approximate displacements (4.15) into the bending moment Equa-
tions (4.16) and we further substitute the result into equilibrium Equations (4.8a),
obtaining

−K(τ)ŵi = q(τ) ∀τd
i ∈ Ω , (4.19)

where K(τ) can be expressed as

K(τ) = D11
∂4Bi,p(τ)

∂x1
4 + 2

(
D12 + 2D66

)
∂4Bi,p(τ)

∂x1
2∂x22 + D22

∂4Bi,p(τ)

∂x24 , (4.20)

while, substituting in (4.8f), we obtain instead

− K̃(τ)ŵi = MΓ(τ) ∀τd
i ∈ ΓM , (4.21)

1We note that in order to obtain C the out-of-plane shear moduli are not considered in accordance
with the homogenization rule in [171] adapted for a bivariate case.

2We would like to underline that all the presented numerical strategies and results in this chapter
refer to the obtained homogenized bending material stiffness D.
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with K̃(τ) having the following form

K̃(τ) = D11
∂2Bi,p(τ)

∂x1
2 n2

1 + D12

(
∂2Bi,p(τ)

∂x22 n2
1 +

∂2Bi,p(τ)

∂x1
2 n2

2

)

+ D22
∂2Bi,p(τ)

∂x22 n2
2 + 4D66

∂2Bi,p(τ)

∂x1∂x2
n1n2 .

(4.22)

Regarding the imposition of boundary conditions, the strategy is exactly the same
as thoroughly discussed by Reali and Gomez for an isotropic plate, and we therefore
refer interested readers to [157] for further details.

4.2.3 Isogeometric Galerkin method

For an IgG approach, the variation of the energy functional in a system can be re-
garded as the sum of all its element-wise variations, thus

δWint =
Ne

∑
e

δW(e)
int , (4.23)

δWext =
Ne

∑
e

δW(e)
ext , (4.24)

where Ne denotes the number of elements in the plate domain and the superscript
(e) is the element index. Then, approximating the displacement fields as a linear
combination of bivariate shape functions and control variables as

w(e)(ξ̄) = B(e)
i,p (ξ̄)ŵ

(e)
i , (4.25a)

δw(e)(ξ̄) = B(e)
i,p (ξ̄)δŵ(e)

i , (4.25b)

we substitute (4.25) into (4.23) obtaining the approximate element internal energy
variation

δW(e)
int = (δŵ(e)

i )T
∫

Ωe

(B
(e)
i,p)

T D B
(e)
j,p dΩe ŵ(e)

j ≈ (δŵ(e)
i )TK

(e)
ij ŵ(e)

j , (4.26)

where K
(e)
ij is the ij-th contribution of the element stiffness matrix computed by ap-

proximating the integral with a quadrature rule. In this work, we consider standard
Gauss integration. In Equation (4.26), B

(e)
i,p is defined as

B
(e)
i,p =




∂2B(e)
i,p (ξ̄)

∂x1
2

∂2B(e)
i,p (ξ̄)

∂x22

2
∂2B(e)

i,p (ξ̄)

∂x1∂x2




, (4.27)

where ξ̄ is the matrix of the quadrature point positions.
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4.3 Stress recovery procedure

Since Kirchhoff theory is intrinsically two-dimensional, assessments of out-of-plane
stress distributions are not immediately possible. Thus, the strategies proposed in
Sections 4.2.2 and 4.2.3 are not suitable by themselves for the calculation of interlami-
nar stresses. However, these strategies can be easily coupled with an a posteriori step
based on equilibrium to recover the out-of-plane stresses, following the approach
in Chapter 3 and references [62, 149]. We remark that this stress recovery already
proved to allow a rigorous layer-by-layer reconstruction of out-of-plane stresses for
laminated solid plates in the context of both IgG [62] and IgC (see Chapter 3 and
reference [149]).

As in Chapter 3, the starting point is the fact that stresses must satisfy the equi-
librium equations

∇ · σ + b = 0 (4.28)

at every point, where ∇· represents the divergence operator. Equilibrium equa-
tions (4.28) can be expressed componentwise as in Equation (3.10). Integrating Equa-
tions (3.10a) and (3.10b) along the thickness, we can recover the out-of-plane shear
stresses as Equations (3.11a) and (3.11b). In this chapter, all integrals along the plate
thickness direction ζ are computed using a composite trapezoidal quadrature rule.

Once we substitute the appropriate derivatives of the out-of-plane shear stresses
(3.11) into Equation (3.10c), integrating along the thickness, we can recover also σ33
as:

σ33(x3) =
∫ x3

x̄3

[∫ ζ

x̄3

(σ11,11(ξ) + σ22,22(ξ) + 2σ12,12(ξ) + b1,1(ξ) + b2,2(ξ))dξ

]
dζ

−
∫ x3

x̄3

b3(ζ)dζ − (x3 − x̄3)(σ13,1(x̄3) + σ23,2(x̄3)) + σ33(x̄3) ,

(4.29)
where the integral constants should be chosen to fulfill the boundary conditions at
the top or bottom surfaces x̄3 [62].

The derivatives of the in-plane stress components that are necessary for the pro-
posed post-processing step are computed as

σαβ,γ = Cαβζη(x3)(−x3κζη,γ) = Cαβζη(x3)(−x3w,ζηγ) , (4.30a)

σαβ,γδ = Cαβζη(x3)(−x3κζη,γδ) = Cαβζη(x3)(−x3w,ζηγδ) . (4.30b)

From Equations (4.30a) and (4.30b) it is clear that the proposed post-processing step
requires the shape functions to be highly continuous (i.e., C3-continuous), which can
be easily achieved by means of IgA. In the following section, we show convincing
numerical experiments proving that such a post-processing technique works nicely
in the context of both IgG and IgC. We remark that these derivatives can be obtained
even from a very coarse displacement solution.

In Figure 4.1, we present a flowchart that summarizes the proposed modeling
approach for laminated composite Kirchhoff plates, from the computation of the
displacement field (either obtained using the introduced IgG or IgC method) to the
a posteriori out-of-plane stress recovery.
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compute the ho-
mogenized bending
material stiffness D

set pd ≥ 4 (pd
polynomial degree

in the paramet-
ric direction d)

IgC: solve Eq. (4.8)
via Eqs. (4.19), (4.21)

IgG: solve Eqs. (4.9),
(4.10) via Eq. (4.26)

displacement field
at control points ŵi

compute σαβ,γ and
σαβ,γδ (α, β, γ, δ = 1, 2)

integrate Eqs. (3.11),
(4.29) to ob-

tain σ13, σ23, σ33

Displacement-based approach

Stress recovery

FIGURE 4.1: Two-step modeling approach for laminated composite Kirchhoff plates: from
the computation of the displacement field (either obtained using the introduced IgG or IgC

method) to the a posteriori out-of-plane stress recovery.

4.4 Numerical results

In this section, we present several examples for the static analysis of composite lam-
inated Kirchhoff plates under bending. To this end, we first present a set of tests
featuring rectangular laminate plates to validate our stress recovery method against
Pagano’s analytical solution [145], and hence showcase the accuracy of the proposed
post-processing technique in reconstructing the out-of-plane stress field. We also as-
sess the sensitivity of the method with respect to parameters of interest, namely the
number of layers and the length-to-thickness ratio. Furthermore, we consider a more
complex benchmark to showcase the effectiveness of the proposed technique in the
case of non-trivial geometries.

4.4.1 The Pagano test case: benchmark adaptation to bivariate plates

The Pagano test case considers a solid cross-ply plate of total thickness t, made of
N orthotropic layers (see Section 3.2.1 for further details). The structure is simply
supported on all edges and subjected to a transverse sinusoidal loading q(x1, x2), on
the top surface, while the bottom one is traction-free. The thickness of every single
layer is set to 1 mm, and the edge length, L, is chosen to be S times larger than the
total thickness of the laminate. We approximate Pagano’s solid benchmark with a
bivariate plate as in Figure 4.2. The material parameters taken into account for all
numerical tests are summarized in Table 4.1 for 0°-oriented plies, while we consider
the same loading pressure q(x1, x2) as in Equation 3.14c, now applied at the plate
mid-plane.
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L=S·t

L=S·t

t

x1

x2

x3

q(x1,x2)

FIGURE 4.2: The Pagano test case [145]. Problem geometry.

TABLE 4.1: Adopted material properties for 0°-oriented layers.

E1 E2 E3 G23 G13 G12 ν23 ν13 ν12

[GPa] [GPa] [GPa] [GPa] [GPa] [GPa] [-] [-] [-]

25000 1000 1000 200 500 500 0.25 0.25 0.25

With reference to Equations (4.8f) and (4.8c), the simply-supported edge condi-
tions are taken as

MΓ = 0 and wΓ = 0 on Γw = ΓM = Γ . (4.31)

We remark that the boundary condition MΓ = 0 is strongly imposed for IgC, while
it is naturally satisfied in IgG.

Finally, all results reported in this chapter are expressed in terms of normalized
stress components as

σ̄ij =
σij

σ0S2 i, j = 1, 2 , (4.32a)

σ̄i3 =
σi3

σ0S
i = 1, 2 , (4.32b)

σ̄33 =
σ33

σ0
. (4.32c)

The interested reader is referred to Appendix 3.A for further details in the deriva-
tion of the analytical solution of the Pagano’s problem considered herein.
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4.4.1.1 Validation of the stress recovery method

We present and comment several numerical examples considering a cross-ply dis-
tribution of layers, namely a 90°/0° stacking sequence from the bottom to the top
of the plate. All numerical simulations are carried out using an in-plane degree of
approximation p = q = 6, which fulfills the continuity requirements described in
Section 4.3, and a very coarse grid comprising of 7x7 control points, or equivalently
DOFs, which corresponds to only one element (which has been verified to grant
good results for this problem, see Section 3.2.3).

As an example, in Figure 4.3 we present the solution profiles of the in-plane
stresses for a sampling point located at x1 = x2 = L/4 and computed with both ap-
proaches described in Section 4.2.2 and 4.2.3. We observe that the recovered stresses
prove to be accurate even for a rather small length-to-thickness plate ratio (S = 20).

For the same sampling point and plate geometry, in Figure 4.4 we readily re-
construct an accurate out-of-plane stress state by applying the post-processing steps
based on equilibrium presented in Section 4.3. We highlight that this procedure
can be regarded as inexpensive in comparison to a full 3D analysis and can be per-
formed pointwise only at locations of interest. We remark that using the CLPT to
rigorously model non-symmetric cross-ply laminates, we would need to account for
bending-stretching contributions. However, for these type of laminates the bending-
stretching coefficient matrix is not full and, in addition, the coupling effect decreases
as the number of layers is increased [159, 192]. Also, the presented numerical re-
sults are compared to Pagano’s analytical solution, which is sufficiently general
to describe the exact elastic response of rectangular, simply-supported laminates
consisting of any number of orthotropic layers [145]. Therefore, we can regard
these bending-stretching coupling effects to be negligible and assume the proposed
modeling approach to be an effective tool in understanding the behavior of non-
symmetric cross-ply laminates.

Remark 4.1. In Chapter 3 and reference [149], we combined IgC and the presented
equilibrium-based stress recovery procedure with a homogenized through-the-thickness
single-element approach to describe the structural response of solid laminates. However, this
strategy is only applicable for symmetric cross-ply distributions, as in non-symmetric cases
the plate mid-plane would not be balanced. Conversely, homogenizing the material proper-
ties and using the CLPT together with IgC and the proposed post-processing technique, we
are able to accurately capture the behavior of both symmetric and non-symmetric cross-ply
laminated plates (despite neglecting bending-stretching coupling effects), and hence directly
reconstruct the out-of-plane stresses from 2D displacement-based computations.

In Figures 4.5-4.10, the out-of-plane stress state profile is recovered sampling the
composite plate every quarter of length in both in-plane directions, to show the post-
processing effect at different locations of the plate for both a symmetric and a non-
symmetric ply distribution of 11 and 34 layers, respectively (see Remark 4.1). Across
all sampled points, the proposed approach accurately captures the 3D stresses in
every single layer when compared to Pagano’s solution. Also, the model remains
accurate at the boundaries, where solution inaccuracy is typically expected [136],
and satisfies the traction-free conditions for transverse shear stresses at the top and
bottom surfaces of the laminate.
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FIGURE 4.3: Through-the-thickness in-plane stress solution for the Pagano’s problem [145]
evaluated at x1 = x2 = L/4. Plate cases with length-to-thickness ratio S = 20: Left column
- 11 layers, i.e., L = St = 220 mm; Right column - 34 layers, i.e., L = St = 680 mm (
Pagano’s analytical solution versus post-processed numerical solutions obtained with degree
of approximation p = q = 6 and 7x7 control points corresponding to 1 in-plane element:

IgG, IgC).
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FIGURE 4.4: Through-the-thickness recovered out-of-plane stress solution for the Pagano’s
problem [145] evaluated at x1 = x2 = L/4. Plate cases with length-to-thickness ratio S = 20:
Left column - 11 layers, i.e., L = St = 220 mm; Right column - 34 layers, i.e., L = St = 680
mm ( Pagano’s analytical solution versus post-processed numerical solutions obtained
with degree of approximation p = q = 6 and 7x7 control points corresponding to 1 in-plane

element: IgG, IgC).
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FIGURE 4.5: Through-the-thickness out-of-plane σ̄13 profiles for the 11-layer case for in-plane
sampling points situated at every quarter of length in both in-plane directions x1 and x2. For
each subplot, the horizontal axis shows the values of σ̄13 and the vertical axis the through-
the-thickness coordinate x3. L represents the total length of the plate, which for this case is
L = 220 mm (L = St with t = 11 mm and S = 20), while the number of layers is 11 (
Pagano’s analytical solution [145] versus recovered numerical solutions obtained with degree
of approximation p = q = 6 and 7x7 control points corresponding to 1 in-plane element:

IgG, IgC).



Numerical results 69

x1 = 0 x1 = L/4 x1 = L/2 x1 = 3 L/4 x1 = L

x 2
=

L
x 2

=
3
L/

4
x 2

=
L/

2
x 2

=
L/

4
x 2

=
0

−0.2 0 0.2
−5.5

0

5.5

−0.2 0 0.2
−5.5

0

5.5

−0.2 0 0.2
−5.5

0

5.5

−0.2 0 0.2
−5.5

0

5.5

−0.2 0 0.2
−5.5

0

5.5

−0.2 0 0.2
−5.5

0

5.5

−0.2 0 0.2
−5.5

0

5.5

−0.2 0 0.2
−5.5

0

5.5

−0.2 0 0.2
−5.5

0

5.5

−0.2 0 0.2
−5.5

0

5.5

−0.2 0 0.2
−5.5

0

5.5

−0.2 0 0.2
−5.5

0

5.5

−0.2 0 0.2
−5.5

0

5.5

−0.2 0 0.2
−5.5

0

5.5

−0.2 0 0.2
−5.5

0

5.5

−0.2 0 0.2
−5.5

0

5.5

−0.2 0 0.2
−5.5

0

5.5

−0.2 0 0.2
−5.5

0

5.5

−0.2 0 0.2
−5.5

0

5.5

−0.2 0 0.2
−5.5

0

5.5

−0.2 0 0.2
−5.5

0

5.5

−0.2 0 0.2
−5.5

0

5.5

−0.2 0 0.2
−5.5

0

5.5

−0.2 0 0.2
−5.5

0

5.5

−0.2 0 0.2
−5.5

0

5.5

FIGURE 4.6: Through-the-thickness out-of-plane σ̄23 profiles for the 11-layer case for in-plane
sampling points situated at every quarter of length in both in-plane directions x1 and x2. For
each subplot, the horizontal axis shows the values of σ̄23 and the vertical axis the through-
the-thickness coordinate x3. L represents the total length of the plate, which for this case is
L = 220 mm (L = St with t = 11 mm and S = 20), while the number of layers is 11 (
Pagano’s analytical solution [145] versus recovered numerical solutions obtained with degree
of approximation p = q = 6 and 7x7 control points corresponding to 1 in-plane element:

IgG, IgC).
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FIGURE 4.7: Through-the-thickness out-of-plane σ̄33 profiles for the 11-layer case for in-plane
sampling points situated at every quarter of length in both in-plane directions x1 and x2. For
each subplot, the horizontal axis shows the values of σ̄33 and the vertical axis the through-
the-thickness coordinate x3. L represents the total length of the plate, which for this case is
L = 220 mm (L = St with t = 11 mm and S = 20), while the number of layers is 11 (
Pagano’s analytical solution [145] versus recovered numerical solutions obtained with degree
of approximation p = q = 6 and 7x7 control points corresponding to 1 in-plane element:

IgG, IgC).
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FIGURE 4.8: Through-the-thickness out-of-plane σ̄13 profiles for the 34-layer case for in-plane
sampling points situated at every quarter of length in both in-plane directions x1 and x2. For
each subplot, the horizontal axis shows the values of σ̄13 and the vertical axis the through-
the-thickness coordinate x3. L represents the total length of the plate, which for this case is
L = 680 mm (L = St with t = 34 mm and S = 20), while the number of layers is 34 (
Pagano’s analytical solution [145] versus recovered numerical solutions obtained with degree
of approximation p = q = 6 and 7x7 control points corresponding to 1 in-plane element:

IgG, IgC).
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FIGURE 4.9: Through-the-thickness out-of-plane σ̄23 profiles for the 34-layer case for in-plane
sampling points situated at every quarter of length in both in-plane directions x1 and x2. For
each subplot, the horizontal axis shows the values of σ̄23 and the vertical axis the through-
the-thickness coordinate x3. L represents the total length of the plate, which for this case is
L = 680 mm (L = St with t = 34 mm and S = 20), while the number of layers is 34 (
Pagano’s analytical solution [145] versus recovered numerical solutions obtained with degree
of approximation p = q = 6 and 7x7 control points corresponding to 1 in-plane element:

IgG, IgC).
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FIGURE 4.10: Through-the-thickness out-of-plane σ̄33 profiles for the 34-layer case for in-
plane sampling points situated at every quarter of length in both in-plane directions x1 and
x2. For each subplot, the horizontal axis shows the values of σ̄33 and the vertical axis the
through-the-thickness coordinate x3. L represents the total length of the plate, which for
this case is L = 680 mm (L = St with t = 34 mm and S = 20), while the number of layers
is 34 ( Pagano’s analytical solution [145] versus recovered numerical solutions obtained
with degree of approximation p = q = 6 and 7x7 control points corresponding to 1 in-plane

element: IgG, IgC).
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4.4.1.2 Parametric study on length-to-thickness ratio

In order to further investigate the proposed stress recovery approach, we per-
form a series of tests considering multiple length-to-thickness ratios (S =
20, 30, 40, and 50) for the plates with 11 and 34 layers and examining an increasing
number of DOFs (namely 7, 14, and 21 per in-plane direction).

In Figure 4.11, we assess the performance of both IgG and IgC approaches cou-
pled with the presented post-processing technique at x1 = x2 = L/4, adopting the
following L2 error definition

ẽ(σi3) =

√√√√√
∫

x3
(σ

analytic
i3 (x̄1, x̄2, x3)− σrecovered

i3 (x̄1, x̄2, x3))2 dx3
∫

x3
(σ

analytic
i3 (x̄1, x̄2, x3))2 dx3

i = 1, 2, 3 . (4.33)

Figure 4.11 shows that the post-processing approach seems to be particularly suit-
able for plates characterized by a significant number of layers. Moreover, we observe
that the modeling error, given by the a posteriori step, dominates over the approxi-
mation error. Thus, further mesh refinement operations do not seem to provide a
significant benefit for the considered numerical tests. We want to highlight, how-
ever, that errors are typically in the 1.5% range or lower in the simulation results
shown in Figure 4.11.

We would like to remark that further tests have been carried out for a lower-
degree displacement field approximation (i.e., 4 ≤ p = q < 6), which led to a less
accurate out-of-plane stress reconstruction in particular for IgC. In our experience,
adopting a degree of approximation equal to 6 seems to be a reasonable choice to cor-
rectly reproduce the complete 3D stress state for CLPT approximated either via IgG
or IgC and combined with the equilibrium-based stress recovery. Also, using only
one element of degree 6 to approximate the plate mid-plane (i.e., 7x7 control points)
is sufficient to provide good results in the considered example, which is character-
ized by a simple geometry.

4.4.1.3 Behavior at the plate boundary

Interlaminar stresses in laminates subjected to transverse loadings may become im-
portant near the structure edges. For example, in the case of cross-ply laminates,
out-of-plane stresses usually face weaker material strength properties according to
the stacking sequence. This leads to stress concentrations in the proximity of mate-
rial discontinuities, which may result, in premature failure of the structure due to
delamination [136].

Thus, we further test the proposed post-processing technique at the plate bound-
ary, studying both symmetric and non-symmetric cross-ply plate cases (i.e., stacking
sequences made of 11 and 34 layers). To this end, we consider an increasing length-
to-thickness ratio (i.e., S = 20, 30, 40, and 50) for fixed degrees of approximation
p = q = 6 using 7x7 control points. We report in Tables 4.2-4.13 the pointwise out-of-
plane stress relative difference at a fixed point (x̄1, x̄2, x̄3) in the plate domain, which
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ẽ(
σ 3

3)
[%

]

(c) IgG, 11 layers

20 30 40 50

0
1

2

S

ẽ(
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ẽ(
σ 2

3)
[%

]

(e) IgG, 34 layers

20 30 40 50

0
0.
1

0.
2

0.
3

S
ẽ(
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ẽ(
σ 1

3)
[%

]

(g) IgC, 11 layers

20 30 40 50

0
1

2

S

ẽ(
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FIGURE 4.11: L2 relative percentage error evaluation at x1 = x2 = L/4 using an in-plane
degree of approximation equal to 6. Different length-to-thickness ratios S are investigated for
a number of layers equal to 11 and 34 (IgG - number of control points per in-plane direction:
7 , 14 , 21 . IgC - number of control points per in-plane direction: 7 , 14 ,
21 ). Solutions obtained using 14 and 21 control points are virtually indistinguishable

for both IgG and IgC cases.
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is defined as

∆(σi3) =
|σanalytic

i3 (x̄1, x̄2, x̄3)− σrecovered
i3 (x̄1, x̄2, x̄3)|

|σanalytic
i3 (x̄1, x̄2, x̄3)|

i = 1, 2, 3 . (4.34)

In Tables 4.2-4.13, we consider a set of points of interest on the plate border and in
the interior of the plate to provide a comprehensive assessment of our numerical
methods across the whole plate geometry. Because σ

analytic
i3 = 0 in some of those

points, in those locations we focus on the absolute difference between analytic and
recovered stresses instead, computed as

∆(σi3) = |σanalytic
i3 (x̄1, x̄2, x̄3)− σrecovered

i3 (x̄1, x̄2, x̄3)| i = 1, 2, 3 . (4.35)

In Tables 4.2-4.13, we have noted if this latter definition has been employed by using
the asterisk (*) next to the reported values.

The results in Tables 4.2-4.13 show that, for a plate made of 11 layers, a single in-
plane element with 7x7 DOFs is able to provide maximum differences of 4% or lower
(3% or lower for a 34-layer plate) on the boundary and of 2.5% or lower (less than 1%
for a 34-layer case) inside the domain for the considered IgG method coupled with
the proposed post-processing stress recovery. Under the same modeling conditions,
IgC combined with the equilibrium-based stress recovery strategy allows to obtain
maximum differences of 8% or lower (6.5% or lower for a 34-layer plate) on the
border and of 3% or lower (1.5% or lower for a 34-layer case) inside the plate. Finally,
relative differences for normal out-of-plane σ33 are, on average, one order magnitude
less than those that correspond to the shear stress (i.e., σ13 and σ23).

TABLE 4.2: Simply-supported composite plate under a sinusoidal load with 11 layers. Out-
of-plane stress state difference with respect to Pagano’s solution [145] at x = (0, L/2, 0). We
compare post-processed IgG and post-processed IgC for a degree of approximation p = q =
6 and 7x7 control points. Values marked with the asterisk (*) are computed via Equation

(4.35).

S Method
σ13(0, L/2, 0) σ23(0, L/2, 0) σ33(0, L/2, 0) ∆(σ13) ∆(σ23) ∆(σ33)

[MPa] [MPa] [MPa] [%] [%] [%]

20
analytical 4.0728 0.0000 0.0000 - - -

post-processed IgG 3.9290 0.0000 0.0001 3.5295 0.0000* 0.0055*

post-processed IgC 3.7848 0.0000 0.0001 7.0706 0.0000* 0.0100*

30
analytical 6.0598 0.0000 0.0000 - - -

post-processed IgG 5.8935 0.0000 0.0001 2.7445 0.0000* 0.0055*

post-processed IgC 5.6772 0.0000 0.0001 6.3145 0.0000* 0.0100*

40
analytical 8.0545 0.0000 0.0000 - - -

post-processed IgG 7.8580 0.0000 0.0001 2.4395 0.0000* 0.0055*

post-processed IgC 7.5696 0.0000 0.0001 6.0206 0.0000* 0.0100*

50
analytical 10.0530 0.0000 0.0000 - - -

post-processed IgG 9.8225 0.0000 -0.0001 2.2923 0.0000* 0.0055*

post-processed IgC 9.4620 0.0000 0.0001 5.8789 0.0000* 0.0100*
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TABLE 4.3: Simply-supported composite plate under a sinusoidal load with 11 layers. Out-
of-plane stress state difference with respect to Pagano’s solution [145] at x = (0, L/2, h/4).
We compare post-processed IgG and post-processed IgC for a degree of approximation p =
q = 6 and 7x7 control points. Values marked with the asterisk (*) are computed via Equation

(4.35).

S Method
σ13(0, L/2, h/4) σ23(0, L/2, h/4) σ33(0, L/2, h/4) ∆(σ13) ∆(σ23) ∆(σ33)

[MPa] [MPa] [MPa] [%] [%] [%]

20
analytical 2.7527 0.0000 0.0000 - - -

post-processed IgG 2.6394 0.0000 -0.0045 4.1167 0.0000* 0.4464*

post-processed IgC 2.5433 0.0000 -0.0082 7.6056 0.0000* 0.8161*

30
analytical 4.0817 0.0000 0.0000 - - -

post-processed IgG 3.9590 0.0000 -0.0045 3.0059 0.0000* 0.4464*

post-processed IgC 3.8150 0.0000 -0.0082 6.5352 0.0000* 0.8161*

40
analytical 5.4188 0.0000 0.0000 - - -

post-processed IgG 5.2787 0.0000 -0.0045 2.5849 0.0000* 0.4464*

post-processed IgC 5.0866 0.0000 -0.0082 6.1295 0.0000* 0.8161*

50
analytical 6.7595 0.0000 0.0000 - - -

post-processed IgG 6.5984 0.0000 -0.0045 2.3838 0.0000* 0.4464*

post-processed IgC 6.3583 0.0000 -0.0082 5.9357 0.0000* 0.8161*

TABLE 4.4: Simply-supported composite plate under a sinusoidal load with 11 layers. Out-
of-plane stress state difference with respect to Pagano’s solution [145] at x = (L/4, L/4, 0).
We compare post-processed IgG and post-processed IgC for a degree of approximation p =
q = 6 and 7x7 control points. Values marked with the asterisk (*) are computed via Equation

(4.35).

S Method
σ13 (L/4, L/4, 0) σ23 (L/4, L/4, 0) σ33 (L/4, L/4, 0) ∆(σ13) ∆(σ23) ∆(σ33)

[MPa] [MPa] [MPa] [%] [%] [%]

20
analytical 2.0364 2.7220 0.2483 - - -

post-processed IgG 1.9974 2.7240 0.2483 1.9166 0.0751 0.0026

post-processed IgC 1.9919 2.7183 0.2483 2.1852 0.1340 0.0080

30
analytical 3.0299 4.1212 0.2483 - - -

post-processed IgG 2.9960 4.0860 0.2483 1.1185 0.8526 0.0000

post-processed IgC 2.9878 4.0775 0.2483 1.3893 1.0598 0.0054

40
analytical 4.0273 5.5138 0.2483 - - -

post-processed IgG 3.9947 5.4481 0.2483 0.8083 1.1926 0.0003

post-processed IgC 3.9838 5.4367 0.2483 1.0800 1.3991 0.0051

50
analytical 5.0265 6.9035 0.2483 - - -

post-processed IgG 4.9934 6.8101 0.2483 0.6588 1.3529 0.0004

post-processed IgC 4.9797 6.7958 0.2483 0.9308 1.5591 0.0051
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TABLE 4.5: Simply-supported composite plate under a sinusoidal load with 11 layers. Out-
of-plane stress state difference with respect to Pagano’s solution [145] at x = (L/4, L/4, h/4).
We compare post-processed IgG and post-processed IgC for a degree of approximation p =
q = 6 and 7x7 control points. Values marked with the asterisk (*) are computed via Equation

(4.35).

S Method
σ13 (L/4, L/4, h/4) σ23 (L/4, L/4, h/4) σ33 (L/4, L/4, h/4) ∆(σ13) ∆(σ23) ∆(σ33)

[MPa] [MPa] [MPa] [%] [%] [%]

20
analytical 1.3763 2.2187 0.4209 - - -

post-processed IgG 1.3415 2.2104 0.4213 2.5348 0.3720 0.0931

post-processed IgC 1.3375 2.2060 0.4202 2.8209 0.5713 0.1711

30
analytical 2.0409 3.3489 0.4211 - - -

post-processed IgG 2.0122 3.3156 0.4213 1.4056 0.9939 0.0485

post-processed IgC 2.0063 3.3090 0.4202 1.6951 1.1921 0.2156

40
analytical 2.7094 4.4758 0.4212 - - -

post-processed IgG 2.6829 4.4208 0.4213 0.9777 1.2278 0.0334

post-processed IgC 2.6750 4.4120 0.4202 1.2684 1.4255 0.2306

50
analytical 3.3798 5.6010 0.4212 - - -

post-processed IgG 3.3536 5.5260 0.4213 0.7733 1.3392 0.0265

post-processed IgC 3.3438 5.5150 0.4202 1.0646 1.5366 0.2375

TABLE 4.6: Simply-supported composite plate under a sinusoidal load with 11 layers. Out-
of-plane stress state difference with respect to Pagano’s solution [145] at x = (L/2, 0, 0). We
compare post-processed IgG and post-processed IgC for a degree of approximation p = q =
6 and 7x7 control points. Values marked with the asterisk (*) are computed via Equation

(4.35).

S Method
σ13(L/2, 0, 0) σ23(L/2, 0, 0) σ33(L/2, 0, 0) ∆(σ13) ∆(σ23) ∆(σ33)

[MPa] [MPa] [MPa] [%] [%] [%]

20
analytical 0.0000 5.4440 0.0000 - - -

post-processed IgG 0.0000 5.3558 0.0001 0.0000* 1.6191 0.0057*

post-processed IgC 0.0000 5.1533 0.0001 0.0000* 5.3394 0.0106*

30
analytical 0.0000 8.2424 0.0000 - - -

post-processed IgG 0.0000 8.0337 0.0001 0.0000* 2.5310 0.0057*

post-processed IgC 0.0000 7.7299 0.0001 0.0000* 6.2169 0.0106*

40
analytical 0.0000 11.0276 0.0000 - - -

post-processed IgG 0.0000 10.7117 0.0001 0.0000* 2.8653 0.0057*

post-processed IgC 0.0000 10.3066 0.0001 0.0000* 6.5386 0.0106*

50
Analytical 0.0000 13.8069 0.0000 - - -

post-processed IgG 0.0000 13.3896 0.0001 0.0000* 3.0229 0.0057*

post-processed IgC 0.0000 12.8832 0.0001 0.0000* 6.6902 0.0106*
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TABLE 4.7: Simply-supported composite plate under a sinusoidal load with 11 layers. Out-
of-plane stress state difference with respect to Pagano’s solution [145] at x = (L/2, 0, h/4).
We compare post-processed IgG and post-processed IgC for a degree of approximation p =
q = 6 and 7x7 control points. Values marked with the asterisk (*) are computed via Equation

(4.35).

S Method
σ13(L/2, 0, h/4) σ23(L/2, 0, h/4) σ33(L/2, 0, h/4) ∆(σ13) ∆(σ23) ∆(σ33)

[MPa] [MPa] [MPa] [%] [%] [%]

20
analytical 0.0000 4.4373 0.0000 - - -

post-processed IgG 0.0000 4.3456 -0.0047 0.0000* 2.0680 0.4720*

post-processed IgC 0.0000 4.1806 -0.0087 0.0000* 5.7856 0.8691*

30
analytical 0.0000 6.6978 0.0000 - - -

post-processed IgG 0.0000 6.5183 -0.0047 0.0000* 2.6794 0.4720*

post-processed IgC 0.0000 6.2709 -0.0087 0.0000* 6.3738 0.8691*

40
analytical 0.0000 8.9516 0.0000 - - -

post-processed IgG 0.0000 8.6911 -0.0047 0.0000* 2.9094 0.4720*

post-processed IgC 0.0000 8.3612 -0.0087 0.0000* 6.5950 0.8691*

50
analytical 0.0000 11.2021 0.0000 - - -

post-processed IgG 0.0000 10.8639 -0.0047 0.0000* 3.0188 0.4720*

post-processed IgC 0.0000 10.4515 -0.0087 0.0000* 6.7003 0.8691*

TABLE 4.8: Simply-supported composite plate under a sinusoidal load with 34 layers. Out-
of-plane stress state difference with respect to Pagano’s solution [145] at x = (0, L/2, 0). We
compare post-processed IgG and post-processed IgC for a degree of approximation p = q =
6 and 7x7 control points. Values marked with the asterisk (*) are computed via Equation

(4.35).

S Method
σ13(0, L/2, 0) σ23(0, L/2, 0) σ33(0, L/2, 0) ∆(σ13) ∆(σ23) ∆(σ33)

[MPa] [MPa] [MPa] [%] [%] [%]

20
analytical 4.7476 0.0000 0.0000 - - -

post-processed IgG 4.6422 0.0000 0.0000 2.2199 0.0000* 0.0019*

post-processed IgC 4.4689 0.0000 0.0000 5.8699 0.0000* 0.0034*

30
analytical 7.1411 0.0000 0.0000 - - -

post-processed IgG 6.9633 0.0000 0.0000 2.4890 0.0000* 0.0019*

post-processed IgC 6.7034 0.0000 0.0000 6.1289 0.0000* 0.0034*

40
analytical 9.5307 0.0000 0.0000 - - -

post-processed IgG 9.2844 0.0000 0.0000 2.5839 0.0000* 0.0019*

post-processed IgC 8.9378 0.0000 0.0000 6.2203 0.0000* 0.0034*

50
Analytical 11.9187 0.0000 0.0000 - - -

post-processed IgG 11.6055 0.0000 0.0000 2.6280 0.0000* 0.0019*

post-processed IgC 11.1723 0.0000 0.0000 6.2627 0.0000* 0.0034*
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TABLE 4.9: Simply-supported composite plate under a sinusoidal load with 34 layers. Out-
of-plane stress state difference with respect to Pagano’s solution [145] at x = (0, L/2, h/4).
We compare post-processed IgG and post-processed IgC for a degree of approximation p =
q = 6 and 7x7 control points. Values marked with the asterisk (*) are computed via Equation

(4.35).

S Method
σ13(0, L/2, h/4) σ23(0, L/2, h/4) σ33(0, L/2, h/4) ∆(σ13) ∆(σ23) ∆(σ33)

[MPa] [MPa] [MPa] [%] [%] [%]

20
analytical 3.7058 0.0000 0.0000 - - -

post-processed IgG 3.5969 0.0000 -0.0046 2.9384 0.0000* 0.4610*

post-processed IgC 3.4624 0.0000 -0.0085 6.5684 0.0000* 0.8461*

30
analytical 5.5563 0.0000 0.0000 - - -

post-processed IgG 5.3954 0.0000 -0.0046 2.8963 0.0000* 0.4610*

post-processed IgC 5.1936 0.0000 -0.0085 6.5279 0.0000* 0.8461*

40
analytical 7.4073 0.0000 0.0000 - - -

post-processed IgG 7.1938 0.0000 -0.0046 2.8821 0.0000* 0.4610*

post-processed IgC 6.9248 0.0000 -0.0085 6.5143 0.0000* 0.8461*

50
analytical 9.2585 0.0000 0.0000 - - -

post-processed IgG 8.9923 0.0000 -0.0046 2.8757 0.0000* 0.4610*

post-processed IgC 8.6560 0.0000 -0.0085 6.5081 0.0000* 0.8461*

TABLE 4.10: Simply-supported composite plate under a sinusoidal load with 34 layers. Out-
of-plane stress state difference with respect to Pagano’s solution [145] at x = (L/4, L/4, 0).
We compare post-processed IgG and post-processed IgC for a degree of approximation p =
q = 6 and 7x7 control points. Values marked with the asterisk (*) are computed via Equation

(4.35).

S Method
σ13 (L/4, L/4, 0) σ23 (L/4, L/4, 0) σ33 (L/4, L/4, 0) ∆(σ13) ∆(σ23) ∆(σ33)

[MPa] [MPa] [MPa] [%] [%] [%]

20
analytical 2.3738 2.3746 0.2494 - - -

post-processed IgG 2.3606 2.3609 0.2494 0.5570 0.5767 0.0029

post-processed IgC 2.3550 2.3553 0.2495 0.7930 0.8127 0.0046

30
analytical 3.5705 3.5713 0.2494 - - -

post-processed IgG 3.5409 3.5413 0.2494 0.8307 0.8404 0.0001

post-processed IgC 3.5325 3.5329 0.2495 1.0660 1.0757 0.0019

40
analytical 4.7653 4.7663 0.2494 - - -

post-processed IgG 4.7212 4.7218 0.2494 0.9272 0.9332 0.0002

post-processed IgC 4.7099 4.7106 0.2495 1.1623 1.1683 0.0015

50
analytical 5.9594 5.9604 0.2494 - - -

post-processed IgG 5.9014 5.9022 0.2494 0.9720 0.9763 0.0003

post-processed IgC 5.8874 5.8882 0.2495 1.2071 1.2113 0.0014
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TABLE 4.11: Simply-supported composite plate under a sinusoidal load with 34 layers. Out-
of-plane stress state difference with respect to Pagano’s solution [145] at x = (L/4, L/4, h/4).
We compare post-processed IgG and post-processed IgC for a degree of approximation p =
q = 6 and 7x7 control points. Values marked with the asterisk (*) are computed via Equation

(4.35).

S Method
σ13 (L/4, L/4, h/4) σ23 (L/4, L/4, h/4) σ33 (L/4, L/4, h/4) ∆(σ13) ∆(σ23) ∆(σ33)

[MPa] [MPa] [MPa] [%] [%] [%]

20
analytical 1.8529 1.7370 0.4212 - - -

post-processed IgG 1.8291 1.7154 0.4217 1.2830 1.2387 0.1167

post-processed IgC 1.8249 1.7113 0.4206 1.5130 1.4777 0.1476

30
analytical 2.7782 2.6027 0.4215 - - -

post-processed IgG 2.7437 2.5732 0.4217 1.2402 1.1343 0.0481

post-processed IgC 2.7373 2.5669 0.4206 1.4703 1.3735 0.2160

40
analytical 3.7037 3.4690 0.4216 - - -

post-processed IgG 3.6583 3.4309 0.4217 1.2258 1.0978 0.0241

post-processed IgC 3.6497 3.4226 0.4206 1.4559 1.3371 0.2399

50
analytical 4.6293 4.3355 0.4217 - - -

post-processed IgG 4.5728 4.2886 0.4217 1.2192 1.0809 0.0130

post-processed IgC 4.5622 4.2782 0.4206 1.4494 1.3203 0.2510

TABLE 4.12: Simply-supported composite plate under a sinusoidal load with 34 layers. Out-
of-plane stress state difference with respect to Pagano’s solution [145] at x = (L/2, 0, 0). We
compare post-processed IgG and post-processed IgC for a degree of approximation p = q =
6 and 7x7 control points. Values marked with the asterisk (*) are computed via Equation

(4.35).

S Method
σ13(L/2, 0, 0) σ23(L/2, 0, 0) σ33(L/2, 0, 0) ∆(σ13) ∆(σ23) ∆(σ33)

[MPa] [MPa] [MPa] [%] [%] [%]

20
analytical 0.0000 4.7492 0.0000 - - -

post-processed IgG 0.0000 4.6428 0.0000 0.0000* 2.2394 0.0018*

post-processed IgC 0.0000 4.4695 0.0000 0.0000* 5.8886 0.0032*

30
analytical 0.0000 7.1427 0.0000 - - -

post-processed IgG 0.0000 6.9642 0.0000 0.0000* 2.4986 0.0018*

post-processed IgC 0.0000 6.7043 0.0000 0.0000* 6.1382 0.0032*

40
analytical 0.0000 9.5325 0.0000 - - -

post-processed IgG 0.0000 9.2856 0.0000 0.0000* 2.5899 0.0018*

post-processed IgC 0.0000 8.9390 0.0000 0.0000* 6.2260 0.0032*

50
analytical 0.0000 11.9208 0.0000 - - -

post-processed IgG 0.0000 11.6070 0.0000 0.0000* 2.6322 0.0018*

post-processed IgC 0.0000 11.1738 0.0000 0.0000* 6.2668 0.0032*
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TABLE 4.13: Simply-supported composite plate under a sinusoidal load with 34 layers. Out-
of-plane stress state difference with respect to Pagano’s solution [145] at x = (L/2, 0, h/4).
We compare post-processed IgG and post-processed IgC for a degree of approximation p =
q = 6 and 7x7 control points. Values marked with the asterisk (*) are computed via Equation

(4.35).

S Method
σ13(L/2, 0, h/4) σ23(L/2, 0, h/4) σ33(L/2, 0, h/4) ∆(σ13) ∆(σ23) ∆(σ33)

[MPa] [MPa] [MPa] [%] [%] [%]

20
analytical 0.0000 3.4739 0.0000 - - -

post-processed IgG 0.0000 3.3737 -0.0046 0.0000* 2.8853 0.4583*

post-processed IgC 0.0000 3.2480 -0.0084 0.0000* 6.5031 0.8413*

30
analytical 0.0000 5.2054 0.0000 - - -

post-processed IgG 0.0000 5.0605 -0.0046 0.0000* 2.7826 0.4583*

post-processed IgC 0.0000 4.8720 -0.0084 0.0000* 6.4042 0.8413*

40
analytical 0.0000 6.9380 0.0000 - - -

post-processed IgG 0.0000 6.7474 -0.0046 0.0000* 2.7468 0.4583*

post-processed IgC 0.0000 6.4960 -0.0084 0.0000* 6.3697 0.8413*

50
analytical 0.0000 8.6710 0.0000 - - -

post-processed IgG 0.0000 8.4342 -0.0046 0.0000* 2.7302 0.4583*

post-processed IgC 0.0000 8.1200 -0.0084 0.0000* 6.3537 0.8413*

4.4.2 Simply-supported circular plate

As a last benchmark, we consider a multilayered simply-supported circular plate,
defined over a domain of radius R = St = 220 mm, where S represents here the
radius-to-thickness ratio and t is the total thickness of the laminate. We consider
S = 20 and a cross-ply distribution of 11 layers, namely a 90°/0° stacking sequence
from the bottom to the top of the plate. The plate is subject to a uniformly distributed
load p(x1, x2) = 1 MPa, we use the material properties reported in Table 4.1, and the
reference system x1Ox2 is located at the center of the circular plate.

Following [68], in Figure 4.12 we compare the reconstructed out-of-plane results
obtained with IgG and IgC (degrees of approximation p = q = 6 and 14x14 control
points) with those from an overkill 3D solid Abaqus Unified FEA solution (version
Abaqus/CAE 2017) comprising 466,136 C3D20R elements (i.e., 20-node quadratic
brick elements with reduced integration). We acknowledge that this commercial
software provides other cheaper modeling possibilities in terms of shell approaches.
Nevertheless, to the best of our knowledge they do not provide σ33 component re-
sults. Studying the plate via C3D20R finite elements allows to obtain the through-
the-thickness profiles for all out-of-plane stresses paying a high computational cost.
In fact, this modeling strategy represents a full 3D analysis and requires at last two
elements per layer to have a suitable through-the-thickness description [68]. Further-
more, we notice that, according to [68], the quadratic C3D20R element might not pro-
duce a highly accurate estimation of the transverse shear components (e.g., for the
σ23 component in the particular case analyzed in [68]). In Figure 4.12, we also notice
some differences between the shear components computed by Abaqus Unified FEA
and those predicted by our method. Further reasons for such differences might be re-
lated to the fact that our modeling strategy recovers the out-of-plane stresses starting
from a displacement field obtained considering a homogenized plate model, while
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FIGURE 4.12: Through-the-thickness recovered out-of-plane stress solution for the simply-
supported multilayered circular plate at x1 = −x2 = 89.3 mm. Plate case with 11 layers
and mean radius-to-thickness ratio S = 20 ( overkill Abaqus Unified FEA solution with
466,136 C3D20R finite elements versus post-processed numerical solutions obtained with

degree of approximation p = q = 6, and 14x14 control points: IgG, IgC).

the reference Abaqus Unified FEA solution is computed for a 3D solid with full rep-
resentation of each layer. However, we may conclude that the proposed equilibrium-
based stress recovery approach successfully approximates the stress state for the
circular plate given by Abaqus Unified FEA, even when post-processing an IgC or
an IgG solution obtained from a very coarse mesh of 14x14 control points. Finally,
we also highlight that the high continuity granted by IgA shape functions may be
of key importance for dealing with problems characterized by complex geometrical
features, like the one under investigation in this section.

4.5 Conclusions

Moving from the equilibrium-based post-processing technique that we have pro-
posed in Chapter 3 for 3D solid plates approximated by IgG [62] or IgC [149] meth-
ods, in this chapter, we have considered the application of such an approach for
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the accurate and inexpensive recovery of interlaminar stresses in Kirchhoff plates
resolved via IgA. The adopted equilibrium-based stress recovery strategy has been
shown to be particularly effective in this framework for both IgG and IgC meth-
ods. While our post-processing approach to recover out-of-plane stresses in 3D solid
plates is only applicable for laminates with an odd number of layers or an oddly dis-
tributed even number of layers (see Remark 4.1), the extension of our equilibrium-
based stress recovery method to Kirchhoff plates can also handle laminates with an
even number of non-symmetric layers, with no limitation in terms of computational
accuracy or efficiency. The fundamental ingredients to obtain such good results for
Kirchhoff plates in this chapter are again the high accuracy and regularity granted by
high-order IgA methods (even with coarse meshes). Our numerical tests for a sim-
ple geometry like the rectangular plate involved in Pagano’s test case have shown
that even a mesh constituted by a single sixth-order element is able to provide very
good results in terms of in-plane and out-of-plane stresses, for both IgG and IgC dis-
cretizations. Extensive numerical experiments have confirmed the high efficiency of
the proposed equilibrium-based stress recovery approach in the context of Kirchhoff
plates. Finally, the application of this procedure to nonlinear problems will be the
subject of future research.
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Chapter 5

Efficient equilibrium-based stress
recovery for isogeometric
laminated curved structures

In this chapter, we focus on modeling the interlaminar stresses of laminated com-
posite solid shells in the framework of higher-order and higher-continuity NURBS-
based IgA by extending the procedure presented in Chapters 3 and 4 for solid and
Kirchhoff plates, respectively [62, 148, 149]. The effectiveness of the isogeomet-
ric paradigm in the modeling of laminated composite solid shells is demonstrated
through several numerical examples that feature a 3D cylindrical shell under bend-
ing. The proposed strategy can be regarded as a two-step procedure: first, the
structure is modeled using only one element through the thickness and a highly
continuous displacement field is obtained via (coarse) solid isogeometric computa-
tions, which rely either on a layer-by-layer integration rule or a homogenized ap-
proach; then, the interlaminar stresses are recovered from the resulting isogeometric
displacement solutions by imposing equilibrium in strong form and exploiting the
high-continuity properties of IgA to calculate the necessary high-order derivatives
in the equilibrium equations. The ability to compute the interlaminar shear stresses
also allows to successfully recover the normal out-of-plane stress component. Notice
that, while the displacement field is obtained in a global framework, the interlami-
nar stresses are recovered locally, which grants that no further coupled terms arise in
the equilibrium equations. This allows to handle the higher geometric complexity of
the solid shell case without the need to iteratively resolve the balance of linear mo-
mentum system. In addition, IgA provides superior geometric modeling features for
curved geometries, such as the possibility to exactly represent conic sections. Thus,
we present several numerical results that confirm the good performance of our stress
recovery strategy for laminated solid shells, especially for composite stacks with sig-
nificant radius-to-thickness ratio and number of plies. In particular, our method is
a very appealing technology for the latter case, where a LW approach employing a
number of DOFs directly proportional to the number of plies would be much more
computationally demanding.

The structure of this chapter is detailed as follows. The governing equations for
the 3D orthotropic elastic case are outlined in Section 5.1, after introducing a global
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FIGURE 5.1: Global and local reference cartesian systems associated to the curved structure.

and a local description of the needed kinematics and constitutive relations. We re-
fer readers to Appendix 5.A for a possible choice of an appropriate pointwise local
basis and further details on the evaluation of the local derivatives of the stress com-
ponents. In Section 5.2, we present the extension of our equilibrium-based stress
recovery strategy for laminated solid shells. To this end, we depart from an approx-
imated global displacement field, which is obtained using a 3D IgA single-element
approach based on either a calibrated layer-by-layer integration rule or a homog-
enized approach that we introduce in Section 5.3. In Section 5.4, we present sev-
eral benchmarks comprising different mean radius-to-thickness ratios and number
of layers to showcase the effectiveness of the method. Additionally, Appendix 5.B in-
cludes preliminary results with a novel strategy that aims at lowering the high-order
continuity requirements of the stress recovery. We finally draw our conclusions in
Section 5.5.

5.1 Governing equations for the orthotropic elastic case

In this section, we study the equations that govern the 3D orthotropic elasticity prob-
lem. For this purpose, we introduce a global and a local cartesian reference system,
as well as the associated kinematic quantities and constitutive relations needed to
address the curved geometry problem. The reason why we underline this global-
local dual description of engineering quantities lies in our double-step stress recov-
ery approach: first, we calculate a global displacement solution and, then, we post-
process it locally to recover the out-of-plane stress components from the in-plane
stress field calculated from the global displacement solution. Finally, we detail the
governing equations for the orthotropic solid case both in strong and weak form.

5.1.1 Kinematics: a global and local perspective

Let us consider an open bounded domain Ω ⊂ R3 representing an elastic three-
dimensional body, defined as a spline parametrization, such that Ω is the image of a
unit cube Ω̂ = [0, 1]3 through the map F : (ξ1, ξ2, ξ3) ∈ Ω̂→ X ∈ Ω, i.e., Ω = F(Ω̂).
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Let us also introduce a global reference cartesian system {X1, X2, X3} and its as-
sociated orthonormal global basis {E1, E2, E3}, as well as a local orthornormal basis
{a1, a2, a3}, defined for every point of the body (see Figure 5.1). This local basis
is described according to the structure’s mid-surface (represented in gray color in
Figure 5.1), such that vectors a1 and a2 define the in-plane directions of the struc-
ture and a3 is aligned with the out-of-plane direction. Thus, the same local basis
{a1, a2, a3} is associated to all the points along the thickness that have the same
in-plane parametric coordinates (ξ1, ξ2). Apart from these requirements, the basis
{a1, a2, a3} can be chosen freely. In Appendix 5.A, we propose a particular choice
based on an orthonormalization of the covariant basis of F.

The out-of-plane stress components will be recovered starting from the in-plane
ones at selected points. Once a point is set, and therefore defined by its in-plane
coordinates (ξ1, ξ2), we post-process a precise stress description along the third co-
ordinate ξ3. Thus, for a given point of interest P we introduce a fixed local carte-
sian reference system {x1, x2, x3} and its associated orthonormal basis {e1, e2, e3}
(see Figure 5.1). This fixed local system is an auxiliary reference system that will
be used during the calculations involved in the recovery of the stress at P. The ba-
sis {e1, e2, e3} is just a static snapshot of the moving basis {a1, a2, a3} evaluated at
P. Thus, due to the fact that {e1, e2, e3} is fixed, its derivatives with respect to both
reference systems vanish:

deα

dXi
= 0 ,

deα

dxβ
= 0 (5.1)

and the same applies to its subsequent derivatives. Nevertheless, this is not true, in
general, for the moving local basis {a1, a2, a3}.

In the expression above, and the rest of this section, Latin indices are used for
quantities expressed in the basis {E1, E2, E3}, whereas the Greek indices refer to
quantities expressed in the local bases {e1, e2, e3} and {a1, a2, a3}. In addition, all
indices span from 1 to 3 and we adopt Einstein’s notation, i.e., repeated indices im-
ply the summation of the involved components unless otherwise stated. For the sake
of conciseness, henceforward, the global and local reference systems and bases are
denoted, respectively, as {Xi}, {xα}, {Ei}, {eα}, and {aα}.

The global basis {Ei} can be expressed in terms of the basis {eα}, and vice versa,
as:

Ei = Ciα eα , (5.2a)
eα = Ciα Ei , (5.2b)

where the basis change operator Ciα is defined as:

Ciα =
dXi

dxα
=

dxα

dXi
= Ei · eα . (5.3)

Due to the fact that {Ei} and {eα} are orthonormal bases, the change of basis oper-
ator is orthogonal. It is worth noting that, as both reference systems {Xi} and {xα}
are fixed, Ciα is constant, i.e.:

dCiα

dXj
= 0 ,

dCiα

dxβ
= 0 , (5.4)
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and the same applies to subsequent derivatives.

Likewise, the global basis {Ei} can be expressed in terms of the local moving
basis {aα} as:

Ei = Diα aα , (5.5)

where the basis change operator Diα is defined as:

Diα = Ei · aα . (5.6)

In general, Diα is not constant, and therefore its derivatives with respect to {Xi} or
{xα} do not vanish.

5.1.2 Constitutive relations

Considering the global basis {Ei} introduced above, we can express the 3D elastic
displacement field as u = ũi Ei, where with (.̃) we refer to quantities expressed in
the global basis {Ei}. We shall now assume small strains and small displacements,
such that strains are given by the tensor ε = ∇su, whose components in the global
basis are ε = ε̃ ij Ei ⊗ Ej, where:

ε̃ ij =
1
2

(
dũi

dXj
+

dũj

dXi

)
. (5.7)

The displacement and strain fields can be expressed as well in the local basis {eα}
as u = uαeα and ε = εαβeα ⊗ eβ, respectively. Applying the change of basis defined
in Equation (5.2), the components uα and εαβ are computed as:

uα = ũi Ciα , (5.8)
εαβ = ε̃ ij Ciα Cjβ . (5.9)

In the case of linear elasticity, we introduce the stress field as

σ = C : ε , (5.10)

where C is the fourth-order material elasticity tensor, that can be expressed at every
point using the global {Ei} or local {aα} bases as:

C = C̃ijkl Ei ⊗ Ej ⊗ Ek ⊗ El = Cαβγδ aα ⊗ aβ ⊗ aγ ⊗ aδ , (5.11)

whose components are related through the change of basis operator (5.6) as:

C̃ijkl = Diα Djβ Dkγ Dlδ Cαβγδ . (5.12)

Focusing on the linear orthotropic elasticity case, C may be expressed in a more
convenient way using the local basis {ai}. In fact, in the case that ply fiber direc-
tions locally coincide with the basis {ai}, the number of elastic coefficients of Cαβγδ
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reduces to nine. In Voigt’s notation, C can be expressed in terms of engineering
constants as in Equation (3.4).

Like the displacement or the strain, also the stress can be expressed either in the
global basis as σ = σ̃ij Ei ⊗ Ej or the local one as σ = σαβ eα ⊗ eβ, where:

σ̃ij = C̃ijkl ε̃kl , (5.13a)

σαβ = σ̃ijCiα Cjβ . (5.13b)

5.1.3 Strong form

The considered elastic three-dimensional body is subjected to volume forces b, pre-
scribed displacements g on the Dirichlet portion of the boundary ΓD, and prescribed
tractions t acting on the remaining Neumann portion ΓN , such that ΓN ∪ ΓD = ∂Ω
and ΓN ∩ ΓD = ∅.

We recall the balance of linear momentum equation in strong form and the cor-
responding boundary conditions for the linear elasticity problem:

∇ · σ + b = 0 in Ω , (5.14a)
σ · n = t on ΓN , (5.14b)
u = g on ΓD , (5.14c)

where ∇· represents the divergence operator computed with respect to the global
cartesian reference system {Xi} and n is the outward normal unit vector. The stress
tensor σ = σ̃ij Ei ⊗ Ej has its components defined as in Equation (5.13a), while b =

b̃i Ei, t = t̃i Ei, and g = g̃i Ei, with b̃i, t̃i, and g̃i being, respectively, the body force,
traction, and imposed displacement components in the basis {Ei}.

Considering the system of Equations (5.14), the term ∇ · σ needs to be further
detailed in terms of the global reference system {Xi}. Therefore, we need to develop
Equation (5.14a) expressing the stress tensor in terms of the constitutive relation in
Equation (5.10)

∇ · σ = (∇ ·C) : ε + C ..
. ∇ε , (5.15)

where ..
.

represents the triple contraction operator and

∇ · σ = σ̃ij,j Ei . (5.16)

Finally, σ̃ij,j is computed as:

σ̃ij,j =
dσ̃ij

dXj
= Ei · (∇ · σ) = Ei · [(∇ ·C) : ε] + Ei · (C ..

. ∇ε) . (5.17)

We refer readers to Appendix 5.A for further details on the evaluation of these com-
ponents.



90 Efficient equilibrium-based stress recovery for isogeometric laminated
curved structures

5.1.4 Principle of virtual work

The balance of linear momentum Equation (5.14a) can be imposed in a weak sense
relying on the principle of virtual work, which states that the sum of the system
virtual internal, δWint, and external, δWext, work is zero in an equilibrium state:

δWint + δWext = 0 . (5.18)

Therefore, the linear elasticity problem in variational form, reads
∫

Ω
σ : δε dΩ−

∫

Ω
b · δu dΩ−

∫

ΓN

t · δu dΓ = 0 , (5.19)

where δu and δε, respectively, are the virtual displacement field and the virtual strain
field defined in the global reference system {Xi}.

5.2 Stress recovery for curved laminated composite
structures

In this section we describe the proposed post-processing strategy for curved lami-
nated composite structures, which is general and, provided the sufficient continuity,
allows to recover the out-of-plane stresses independently of the designated numeri-
cal method to approximate the displacement field.

In an equilibrium state, stresses inside the material should satisfy at every point
the equilibrium equation (5.14a), which, using the global reference system {Xi}, can
be further detailed componentwise as:

σ̃11,1 + σ̃12,2 + σ̃13,3 + b̃1 = 0 , (5.20a)

σ̃12,1 + σ̃22,2 + σ̃23,3 + b̃2 = 0 , (5.20b)

σ̃13,1 + σ̃23,2 + σ̃33,3 + b̃3 = 0 . (5.20c)

In an analogous way, the equilibrium equations can be written with respect to the
local cartesian reference system {xα}, such that x1, x2, and x3 are taken as the fibre,
matrix, and normal directions, respectively, as:

σ11,1 + σ12,2 + σ13,3 + b1 = 0 , (5.21a)
σ12,1 + σ22,2 + σ23,3 + b2 = 0 , (5.21b)
σ13,1 + σ23,2 + σ33,3 + b3 = 0 , (5.21c)

where bα = b̃i Ciα and σαβ,µ are the stress derivatives:

σαβ,µ =
dσαβ

dxµ
. (5.22)

The advantage of using the local system {xα} (see Figure 5.2) lies in the fact that
the stress components σ11, σ22, and σ12 are now the in-plane components, which
are well-known from the global displacement field ũi using Equation (5.13), while
σ13, σ23, and σ33 represent the out-of-plane stresses, which are instead not correctly
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FIGURE 5.2: Local reference cartesian system at a point (ξ̄1, ξ̄2) for the stress recovery.

captured (as it has already been investigated in Chapter 3 and references [62, 149] for
the 3D plate case and as it will be shown in Figures 5.6 and 5.7 of Section 5.4). Our
goal is to obtain a good description of the out-of-plane stress components along the
composite thickness direction, extending the procedure detailed in [62] and Chapter
3 for the 3D plate case. It is important to remark that due to the fact that the stress
divergence is computed with respect to {xα}, which is a fixed cartesian reference
system, no additional terms appear in Equation (5.21) as it would be the case for
Equation (5.20).

Remark 5.1. Another possibility would be to express σ in its curvilinear components (either
covariant or contravariant) and to develop the equation ∇ · σ + b = 0 using one of those
bases. However, using curvilinear coordinates, new terms would arise in the componentwise
equilibrium equations and, most importantly, these new terms would couple together the
in-plane and out-of-plane stress components, making impossible to apply the stress recovery
procedure proposed in Chapter 3 and reference [62] in a straightforward manner.

Thus, integrating Equations (5.21a) and (5.21b) along the thickness direction x3,
the shear out-of-plane stress components can be computed as:

σ13(x3) = −
∫ x3

x3

(
σ11,1(ζ) + σ12,2(ζ) + b1(ζ)

)
dζ + σ13(x3) , (5.23a)

σ23(x3) = −
∫ x3

x3

(
σ12,1(ζ) + σ22,2(ζ) + b2(ζ)

)
dζ + σ23(x3) , (5.23b)

where x3 indicates the value of x3 at the bottom of the solid structure (see Figure 5.2).

To recover the out-of-plane normal stress profile σ33, we focus on each k-th layer
and substitute the appropriate derivatives of the out-of-plane shear stresses (5.23)
into Equation (5.21c):

σ
(k)
33,3(x(k)3 ) =

∫ x(k)3

x(k)3

(
σ11,11(ζ) + σ22,22(ζ) + 2σ12,12(ζ) + b1,1(ζ) + b2,2(ζ)

)
dζ

−
(
σ13,1(x(k)3 ) + σ23,2(x(k)3 )

)
− b3(x(k)3 ) ,

(5.24)

where x(k)3 ≤ x(k)3 ≤ x̄(k)3 , with x(k)3 and x̄(k)3 being, respectively, the values of the
out-of-plane coordinate at the bottom and the top of the k-th layer, while σαβ,µν is the
stress second derivative:

σαβ,µν =
d2σαβ

dxµdxν
. (5.25)
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Finally, we further integrate Equation (5.24) along the thickness obtaining

σ33(x3) =
∫ x3

x3

σ33,3(ξ)dξ + σ33(x3) . (5.26)

The stress derivatives σαβ,µ and σαβ,µν involved in Equations (5.23) and (5.24) are
detailed in Appendix 5.A.

Remark 5.2. It should be noted that integrals (5.23), (5.24), and (5.26) are computed numer-
ically using a composite trapezoidal quadrature rule. Also, new stress boundary conditions
(namely, σ13,1(x(k)3 ) and σ23,2(x(k)3 )) arise in Equation (5.24) for each k-th layer. The ability
to compute those constants is of paramount importance to grant an optimal reconstruction
of the normal out-of-plane stress profiles. In fact, while σ33 is continuous through the thick-
ness by equilibrium, its derivative with respect to x3 is not. Thus, neglecting σ13,1(x(k)3 ) and
σ23,2(x(k)3 ) contributions in the evaluation of σ33,3(x3) leads to a continuous layerwise pro-
file of this term and, after integration, to an inaccurate normal out-of-plane stress component
distribution.

With reference to Equations (5.23), (5.24), and (5.26), it is clear that, to apply
the proposed post-processing technique, a highly regular displacement solution is
needed. More specifically, the required in-plane derivatives σαβ,µ and σαβ,µν (detailed
respectively in the Appendix 5.A in Equations (5.A.9a) and (5.A.9b)) need to be com-
puted from a C2-continuous in-plane displacement solution, which can be achieved
within an IgA framework.

Additionally, in Appendix 5.B we introduce a novel strategy that aims at low-
ering the high-order continuity requirements of the stress recovery. We present the
main ideas and some preliminary results, but further investigations need to be car-
ried out to explore and assess this approach.

5.3 IgA strategies for 3D laminated curved geometries made
of multiple orthotropic layers

In Section 5.2, we described our stress recovery technique, which can be applied
regardless the numerical approximation method as long as it is able to provide the
required continuity. Due to its high-order continuity properties, IgA proves to be
a natural choice for the proposed approach, while other techniques, such as FEA,
would require a hybrid a posteriori interpolation via, e.g., splines or radial basis func-
tions. Thus, we hereby detail the proposed displacement-based IgG and IgC strate-
gies to analyze laminated composite solid shells.

The considered modeling strategies can be regarded as three-dimensional ESL
approaches, which model the 3D laminate employing only one element through the
thickness. Besides the intrinsic difference between IgG and IgC methods in terms
of how the balance of linear momentum equation is approximated (either at the
weak or strong form level, respectively), the two approaches also differ in the way
material properties are considered. For an IgG method, constitutive features can
be taken into account through the thickness using either a calibrated layer-by-layer
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integration rule or a homogenized approach, whereas the latter represents the most
direct ESL strategy for IgC to the authors’ knowledge.

5.3.1 Isogeometric Galerkin method

Addressing the element point of view and adopting a standard Gauss quadrature,
the global displacement u and virtual displacement field δu are approximated as a
linear combination of local multivariate shape functions R(e)

i,p(ξ̄) (defined in Equa-

tion (2.24)) and local control variables û(e)i and δû
(e)
i as

u(e)
h (ξ̄) = ∑

i
R
(e)
i,p(ξ̄) û

(e)
i , (5.27a)

δu(e)
h (ξ̄) = ∑

i
R
(e)
i,p(ξ̄) δû

(e)
i , (5.27b)

where the superscript (e) is the element index (e = 1, ..., Ne, with Ne being the total
number of elements), while with h we denote any approximated field. The i-th con-
tribution of the multivariate shape function element matrix R

(e)
i,p(ξ̄) is instead defined

as

R
(e)
i,p(ξ̄) =




R(e)
i,p(ξ̄) 0 0

0 R(e)
i,p(ξ̄) 0

0 0 R(e)
i,p(ξ̄)


 , (5.28)

where ξ̄ is the multidimensional array of the quadrature point positions that are of
relevance for the considered element e.

Thus, we discretize the virtual internal work in Equation (5.19) starting from the
approximated element internal energy variation as

δWint =
Ne

∑
e=1

∫

Ωe

(C(k) : ∇su(e)
h (ξ̄)) : ∇sδu(e)

h (ξ̄)dΩe . (5.29)

Laminated composites often exhibit material properties which may vary layer by
layer even when they are pointwisely referred to the principal material coordi-
nates. Using a special plywise integration rule consisting of r + 1 Gauss points
per layer (as displayed in Figure 5.3), the IgG method provides a natural approach
to account for this through-the-thickness dependency. In fact, we remark that C(k)

(i.e., C(k) = C̃
(k)
ijkl Ei ⊗ Ej ⊗ Ek ⊗ El , with C̃

(k)
ijkl defined in Equation (5.12)) represents

the global material property tensor for the k-th layer, which can be traced during the
elementwise assembly relying on the out-of-plane Gauss point number, allowing to
significantly improve the overall post-processing quality in Section 5.4.

Remark 5.3. Using a layer-by-layer integration rule allows to correctly capture the behavior
of composites for any stacking sequence (e.g., both an even and odd number of variously
oriented layers can be accounted for), or consider more general constitutive models, such as
plasticity. Furthermore, we highlight that, based on our numerical experiments, considering
r + 1 quadrature points per layer leads to basically the same accuracy as using r − 1, in
accordance with the solid plate case modeled via IgG (see [62]).
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FIGURE 5.3: Single-element approach for the IgG method with special through-the-thickness
integration rule (i.e., r + 1 Gauss points per layer). Example of shape functions for an out-of-
plane degree of approximation r = 3. The blue bullets represent the position of the quadra-

ture points along the thickness.

An alternative to the proposed integration method would be to split the assembly of stiff-
ness matrices into their in-plane and out-of-plane contributions as in [12], thereby reducing
the assembly cost significantly.

5.3.2 Isogeometric collocation method

In this section we describe our 3D IgC strategy to model laminated composite solid
shells. Following Chapter 3 and [149], we propose a homogenized single-element
approach, which takes into account layerwise variations of orthotropic material
properties, homogenizing the constitutive behavior to form an equivalent single-
layer laminate as in Figure 5.4. While this approach represents an obvious choice in
the context of IgC, it can be regarded instead as a less accurate but cheaper alterna-
tive for the IgG method proposed in Section 5.3.1. In fact, to compute the displace-
ment solution needed for the post-processing, the homogenized approach requires
r + 1 integration points regardless the number of layers, while, using the previously
introduced special integration rule, r + 1 Gauss points are employed for each ply.

Under these premises, for IgC, we homogenize the material properties according
to [171] and using the relations introduced in Section 3.1.2 (see Equation (3.9)) in a
more compact form as

Cζη =
N

∑
k=1

tkC
(k)
ζη +

N

∑
k=2

(C
(k)
ζ3 −Cζ3)tk

(C
(1)
η3 −C

(k)
η3 )

C
(k)
33

ζ = 1, 2
η = 1, 2, 3 ,

(5.30a)

C33 =
1

(
∑N

k=1
tk

C
(k)
33

) , (5.30b)

Cθθ =

(
∑N

k=1
tkC

(k)
θθ

∆k

)

∆
θ = 4, 5 , (5.30c)
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C66 =
N

∑
k=1

tkC
(k)
66 , (5.30d)

with ∆ = ∏5
θθ=4

(
∑N

k=1
tkC

(k)
θθ

∆k

)
and ∆k = ∏5

θθ=4 Ck
θθ .

In Equation (5.30), N is the number of layers, C
(k)
ζη represents the ζη-th local com-

ponent of the fourth-order elasticity tensor in Voigt’s notation (3.4) for the k-th layer,
and tk = tk/t stands for the volume fraction of the k-th lamina, t being the total
thickness and tk the k-th thickness. In order to be used in the global framework
(see Equation (5.17)), the homogenized material tensor C = Cαβγδ aα⊗ aβ⊗ aγ⊗ aδ,
mapped from Voigt’s to its full representation in indicial notation, is transformed
according to the basis change operator Diα, analogously to Equation (5.12), as

C̃ijkl = Diα Djβ Dkγ Dlδ Cαβγδ . (5.31)

Remark 5.4. Considering a local reference system allows to define whether the ply stacking
sequence is symmetric or not with respect to the solid geometrical mid-surface. Adopting this
pointwise perspective, we remark that the homogenized single-element approach is immedi-
ately effective only for symmetric ply distributions as, for non-symmetric ones, the laminate
geometric and material mid-surface do not coincide. In any case, symmetric stacking se-
quences typically cover the most common cases in practice and, in the need for laminates
made of non-symmetric layer distributions, this technique finds still application when the
stacking sequence can be split into two symmetric piles, using one element per homogenized
stack with a C0 interface (see Chapter 3 and reference [149]).

Having defined how material properties are tuned for the homogenized single-
element approach, we proceed to detail our IgC strategy. We recall that colloca-
tion methods (see [16] and Section 2.1.3 for further details) directly discretize in
strong form the differential equations governing the problem evaluated at colloca-
tion points. Once again, we adopt the simplest and most widespread approach in

FIGURE 5.4: Homogenized single-element approach for IgC (r + 1 evaluation points inde-
pendently on the number of layers). Example of shape functions for an out-of-plane degree
of approximation r = 4. The black bullets represent the position of the quadrature points

along the thickness.
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the engineering literature (see [30, 57] for alternative choices) and collocate at the
images of Greville abscissae (see Equation (2.46)).

Having defined τ as the multidimensional array of collocation points, the global
displacement field u is approximated as a linear combination of NURBS multivariate
shape functions Ri,p(τ) and control variables ûi as

u ≈ uh(τ) = ∑
i
R̃i,p(τ) ûi , (5.32)

where we recall that τ has been defined such that, for each i-th point and d-th para-

metric dimension, τd
i =

∑
pd
l=1 ξi+l

pd
with i = 1, ..., md. Then, the i-th contribution of

the multivariate shape functions matrix R̃i,p(τ) is characterized as follows

R̃i,p(τ) =




Ri,p(τ) 0 0
0 Ri,p(τ) 0
0 0 Ri,p(τ)


 . (5.33)

Finally, the approximation of system (5.14) reads as

[(∇ ·C) : ∇suh](τ
d
i ) + [C ..

. ∇(∇suh)](τ
d
i ) + bh(τ

d
i ) = 0 ∀τd

i ∈ Ω , (5.34a)

[(C : ∇suh) · n](τd
i ) = th(τ

d
i ) ∀τd

i ∈ ΓN , (5.34b)

uh(τ
d
i ) = gh(τ

d
i ) ∀τd

i ∈ ΓD , (5.34c)

where all quantities are evaluated in the global reference system as detailed in Sec-
tion 5.1.

5.4 Numerical tests

In this section, we propose several benchmarks to showcase the effectiveness of the
presented equilibrium-based stress recovery. To this extent, we consider a hollow
cross-ply cylindrical solid shell under bending and we validate the obtained results
against an overkill C0 LW solution, addressing the main differences with respect
to the proposed through-the-thickness integration IgG and homogenized IgC ap-
proaches, as well as the sensitivity of the method to two parameters of interest:
i.e., number of layers and thickness-to-mean radius ratio.

5.4.1 Composite solid cylinder under bending

A hollow cross-ply cylindrical solid shell of total thickness t and made of N or-
thotropic layers is considered as in [184]. The structure, as detailed in Figure 5.5,
is simply supported at both ends and subjected to a transverse sinusoidal loading,
q(X1, X2, X3) on the inner surface, while the outer surface is traction-free. The thick-
ness of every single layer is set to 1 mm and the edge length L is chosen to be equal
to the mean radius R̄, such that R̄ is S times larger than the total thickness of the
laminate, S = R̄/t = L/t. Thus, S represents the inverse of the slender parameter or
thickness-to-mean radius ratio.
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L = StR̄

t

θ

X1

X2

X3

FIGURE 5.5: Quarter of composite cylindrical solid shell: problem geometry.

TABLE 5.1: Numerical tests material properties for 0°-oriented layers.

E1 E2 E3 G23 G13 G12 ν23 ν13 ν12

[MPa] [MPa] [MPa] [MPa] [MPa] [MPa] [-] [-] [-]

25 1 1 0.2 0.5 0.5 0.25 0.25 0.25

Layer material parameters taken into account for all the proposed numerical tests
are summarized in Table 5.1 for 0°-oriented plies, while the considered loading pres-
sure is equal to

q(X1, X2, X3) = σ0 cos(4θ) sin(
πX1

St
) , (5.35)

where σ0 = -1 MPa and θ = θ(X2, X3) ∈ [0, θ̄] = [0, π/2] is oriented anticlockwise
as depicted in Figure 5.5. The inner and the outer surface radii are, respectively,

ri = R̄− t
2

and ro = R̄ +
t
2

.

The simply supported edge conditions are taken as

σ̃11 = 0 and ũ2 = ũ3 = 0 at X1 = 0 and X1 = L , (5.36)

while Neumann boundary conditions on the tube inner and outer surfaces are

σ̃13 = σ̃23 = 0 and σ̃33 = q(X1, X2, X3) at
√

X2
2 + X2

3 = ri , (5.37a)

σ̃13 = σ̃23 = σ̃33 = 0 at
√

X2
2 + X2

3 = ro . (5.37b)
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Taking advantage of the problem’s symmetry, we model only a quarter of cylinder,
adding the following constraints

σ̃23 = σ̃12 = 0 and ũ2 = 0 at X2 = 0 , (5.38a)
σ̃23 = σ̃13 = 0 and ũ3 = 0 at X3 = 0 . (5.38b)

All results in the local reference system are then normalized1 as

σij =
σij

|σ0|
i, j = 1, 2, 3 . (5.39)

5.4.2 Single-element approach results: the post-processing effect

In this section, we present and comment several numerical results that consider a
quarter of composite cylinder with S = 20 and a cross-ply distribution of 11 layers,
namely a 0°/90° stacking sequence. LW methods allow to capture the mechanical
state inside the laminate more accurately. Therefore, the stress profiles, either ob-
tained via the appropriate constitutive law or recovered through the equilibrium im-
position, are validated against an overkill IgG LW solution, computed according to
[62], which uses degrees of approximation p = q = 6, r = 4 and a number of control
points equal to 36x36x5xN (where N is the number of layers). More specifically, this
LW reference solution is computed by modeling each material layer of the laminate
by one patch through the thickness and keeping C0 continuity at each ply interface.
This technique allows to obtain a continuous out-of-plane stress profile through the
thickness, but it is also computationally demanding because it requires a number of
unknowns directly proportional to the number of layers.

5.4.2.1 IgG method with an ad hoc through-the-thickness integration rule

The numerical simulations in this section are post-processed starting from a single-
element IgG approximation of the global displacements with an ad hoc integration
rule that uses r + 1 Gauss points per layer. This simulation was performed by em-
ploying 22x22x4 control points, an in-plane degree of approximation p = q = 4, and
an out-of plane degree of approximation r = 3.

As a first example, in Figure 5.6, we present solution profiles for a sampling
point located at (X1 = L/3, θ = θ̄/3) in the left column, which prove the ability of
the proposed approach to grant accurate in-plane results. Also, the right column in
Figure 5.6 compares the out-of-plane stress state for the same sampling point with
and without applying the presented post-processing step (see Section 5.2). These
results show a remarkable improvement in the solution profiles of the out-of-plane
stresses, which, after recovery, are continuous through-the-thickness as required by
equilibrium. To provide a better contrast with respect to the untreated out-of-plane
stresses in Figure 5.6, we recall that the use of a single element through the thickness
with C∞ shape functions leads to continuous through-the-thickness displacements

1We note that the results in Chapter 5 account for a different normalization with respect to Chapter
3 and 4, due to the fact that the Young’s moduli as well as the shear elastic moduli considered in Section
5.4 are 6 order of magnitude less than the values used in Sections 3.2 and 4.4.



Numerical tests 99

and, hence, strains. Then, if these strains are multiplied by layerwise discontinuous
material properties, as in the case of cross-ply laminates, this results in a numeri-
cal approximation of the stresses that is discontinuous through the thickness, and
therefore contravening equilibrium for out-of-plane stress components.
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FIGURE 5.6: Through-the-thickness stress profiles evaluated at (X1 = L/3, θ = θ̄/3) for IgG
(degrees of approximation p = q = 4, r = 3, and 22x22x4 control points). Case: hollow
cross-ply cylindrical solid shell with mean radius-to-thickness ratio S = 20, 11 layers, and
L = R̄ ( overkill IgG LW solution, single-element approach solution without post-

processing, post-processed solution).
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FIGURE 5.7: Through-the-thickness stress profiles evaluated at (X1 = L/3, θ = θ̄/3) for IgC
(degrees of approximation p = q = 6, r = 4, and 22x22x5 control points). Case: hollow
cross-ply cylindrical solid shell with mean radius-to-thickness ratio S = 20, 11 layers, and
L = R̄ ( overkill IgG LW solution, single-element approach solution without post-

processing, post-processed solution).
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5.4.2.2 Homogenized IgC approach results

In this section we report and discuss the stress recovery results derived from a global
displacement field calculated with IgC and the homogenized single element through
the thickness (see Section 5.3.2) at the same sampling point (X1 = L/3, θ = θ̄/3) as
in Figure 5.6. For IgC we consider degrees of approximation p = q = 6, r = 4
and 22x22x5 control points. In Figure 5.7, we show the in-plane stress results in the
left column, which prove to be in good agreement with the reference IgG LW solu-
tion. In the right column, we depict out-of-plane stresses either obtained from the
appropriate constitutive law or recovered from equilibrium equations. The overall
solution, both for in-plane and out-of-plane stresses is comparable to the reference
solution, although it is also less precise than the stress fields calculated using IgG
with the special integration rule. Further numerical tests using IgG coupled with
a homogenized single element through the thickness show the same kind of stress
profiles as provided by IgC in Figure 5.7. Thus, we believe that this behavior is most
probably due to the material through-the-thickness homogenization. In any case,
this approach leads to a less accurate but still very good solution, especially for the
σ23 component, which represents the prominent out-of-plane stress for this type of
benchmark.

In Figures 5.8-5.10, we compare recovered out-of-plane stress profiles, either ob-
tained via a displacement-based IgG or IgC solution, against the considered refer-
ence results obtained with the overkill IgG LW method. To this end, the composite
solid cylinder is sampled every quarter of length in both in-plane directions, show-
ing the effectiveness of the presented post-processing all over the solid shell. In par-
ticular, this approach accurately captures the behavior of the cylindrical solid shell
at the boundaries, namely satisfies Neumann boundary conditions for transverse
shear stresses at the inner and outer surfaces of the laminate as in Equation (5.37)
and the symmetry conditions with respect to σ13 and σ23 as in Equation (5.38).

5.4.2.3 Parametric study on mean radius-to-thickness cylinder ratio

The proposed stress recovery approach is further tested considering different bench-
marks with a varying slenderness parameter (i.e., S = 20, 30, 40, and 50) for 11 and
33 layers as well as an increasing number of in-plane control points.

As a measure to assess the performance of the proposed stress recovery we in-
troduce the following relative maximum error definition along the thickness

e(σi3) =
max|σLW

i3 (x̄1, x̄2, x3)− σrecovered
i3 (x̄1, x̄2, x3)|

max|σLW
i3 (x̄1, x̄2, x3)|

i = 1, 2, 3 , (5.40)

for which in the case of a zero stress profile we just compute the absolute maxi-
mum error to avoid 0/0 division. Additionally, the term σLW

i3 (x̄1, x̄2, x3) (i = 1, 2, 3)
in Equation (5.40) represents the out-of-plane stress patterns from the reference so-
lution obtained via an overkill IgG LW approach that comprises again a degree of
approximation p = q = 6, r = 4 and a number of control points equal to 36x36x5xN
N (where N is the number of layers).
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FIGURE 5.8: Through-the-thickness out-of-plane σ̄13 profiles for the 11-layer case for in-plane
sampling points situated at every quarter of length in both in-plane directions θ and X1.
For each subplot, the horizontal axis shows the values of σ̄13 and the vertical axis the local
coordinate x3. L represents the total length of the plate, which for this case is L = 220 mm
(L = St with t = 11 mm and S = 20), while the number of layers is 11. IgG post-processed
solution (p = q = 4, r = 3, and 22x22x4 control points), IgC post-processed solution
(p = q = 6, r = 4, and 22x22x5 control points), overkill IgG LW solution (p = q = 6,

r = 4, and 36x36x55 control points).
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FIGURE 5.9: Through-the-thickness out-of-plane σ̄23 profiles for the 11-layer case for in-plane
sampling points situated at every quarter of length in both in-plane directions θ and X1.
For each subplot, the horizontal axis shows the values of σ̄23 and the vertical axis the local
coordinate x3. L represents the total length of the plate, which for this case is L = 220 mm
(L = St with t = 11 mm and S = 20), while the number of layers is 11. IgG post-processed
solution (p = q = 4, r = 3, and 22x22x4 control points), IgC post-processed solution
(p = q = 6, r = 4, and 22x22x5 control points), overkill IgG LW solution (p = q = 6,

r = 4, and 36x36x55 control points).
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FIGURE 5.10: Through-the-thickness out-of-plane σ̄33 profiles for the 11-layer case for in-
plane sampling points situated at every quarter of length in both in-plane directions θ and
X1. For each subplot, the horizontal axis shows the values of σ̄33 and the vertical axis the local
coordinate x3. L represents the total length of the plate, which for this case is L = 220 mm
(L = St with t = 11 mm and S = 20), while the number of layers is 11. IgG post-processed
solution (p = q = 4, r = 3, and 22x22x4 control points), IgC post-processed solution
(p = q = 6, r = 4, and 22x22x5 control points), overkill IgG LW solution (p = q = 6,

r = 4, and 36x36x55 control points).
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In Figure 5.11, we assess the performance of both the IgG approach and the ho-
mogenized IgC method coupled with the presented post-processing technique at
(X1 = L/3, θ = θ̄/3).

The stress recovery approach seems to be particularly suitable to describe the
behavior of slender laminates characterized by a significant number of layers, lead-
ing to errors that are typically in the 10% range or lower at convergence despite the
chosen displacement-based approach. More specifically, IgG provides errors in the
order of 2% and 1% in average for the analyzed 11- and 33-layer cases, respectively,
while IgC allows to obtain errors in the range of 5%-10% or lower, whenever S ≥ 30.
Furthermore, IgC proves to be more sensitive to variations of the slenderness pa-
rameter S with respect to the proposed IgG approach. This is due to the fact that
a slender laminate made of a significant number of layers is closer to a structure
with average material properties. We would like to remark that the degrees of ap-
proximation adopted for the considered example are taken accordingly to Chapter 3
and references [62, 149], which proved to be suitable choices to model less complex
geometries.

In Figure 5.11, we also observe that considering a mesh comprising 22x22 in-
plane control points allows to obtain a sufficiently accurate stress solution and fur-
ther in-plane refinement operations do not seem to significantly improve the quality
of the overall solution. This is due to the fact that the modeling error, given by the
equilibrium-based direct integration, dominates over the approximation error.

Finally, to highlight the quantitative gain given by the proposed stress recovery
application, we report in Table 5.2 the relative maximum error at (X1 = L/3, θ =
θ̄/3) obtained considering out-of-plane stress components either directly computed
via the appropriate constitutive law or reconstructed.

TABLE 5.2: Simply-supported hollow cross-ply cylindrical solid shell under sinusoidal load
with a number of layers equal to 11. Out-of-plane stress maximum relative error along the
thickness with respect to an overkill IgG LW solution (degrees of approximation p = q = 6,
r = 4 and number of control points equal to 36x36x55) at (X1 = L/3, θ = θ̄/3). Assessment
of IgG and IgC before and after the application of the proposed post-processing technique
to recover out-of-plane stresses for different approximation degrees and a fixed mesh com-

prising 22x22 in-plane control points.

Method IgG IgC

Degrees of approximation p = q = 4, r = 3 p = q = 6, r = 4

S Out-of-plane maximum relative error e(σ13) e(σ23) e(σ33) e(σ13) e(σ23) e(σ33)

at (X1 = L/3, θ = θ̄/3) [%] [%] [%] [%] [%] [%]

20
before post-processing 46.6 47.8 18.7 71.2 105 23.1

after post-processing 2.25 1.72 1.38 10.4 6.54 5.41

30
before post-processing 46.8 47.6 19.8 67.0 103 27.4

after post-processing 2.28 1.77 1.18 6.39 4.37 4.63

40
before post-processing 47.0 47.7 22.6 65.4 100 30.5

after post-processing 2.36 1.83 1.22 4.76 2.79 4.40

50
before post-processing 47.3 47.8 25.2 64.9 97.9 33.1

after post-processing 2.43 1.88 1.23 3.98 1.76 4.37
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FIGURE 5.11: Simply-supported hollow cross-ply cylindrical solid shell under sinusoidal
load: maximum relative percentage error evaluation at (X1 = L/3, θ = θ̄/3) of the post-
processed single-element approach, with respect to an overkill IgG LW solution (degrees of
approximation p = q = 6, r = 4 and number of control points equal to 36x36x55). Different
mean radius-to-thickness ratios S are investigated for a number of layers equal to 11 and 33
(IgG - degrees of approximation p = q = 4, r = 3 and number of in-plane control points
per parametric direction: 11, 22, 44; IgC - degrees of approximation p = q = 6,
r = 4 and number of control points per in-plane direction: 11 , 22 , 44 ). Solutions
obtained using 22 and 44 control points are virtually indistinguishable in most cases for both

IgG and IgC cases.
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5.5 Conclusions

In this chapter we propose an efficient two-step single-element displacement-based
approach to model the stress field in laminated solid shells. This technique com-
bines coarse 3D isogeometric computations, either using a calibrated layer-by-layer
integration rule or a homogenized approach, with an a posteriori step where equilib-
rium is directly imposed in strong form. Both IgG and IgC methods are successfully
investigated. Homogenization is immediately effective only for symmetric ply dis-
tributions, which cover most common cases in practice. While this approach repre-
sents a natural choice for IgC, it can be regarded as a less accurate but cost-effective
alternative for the proposed IgG method, requiring only r + 1 quadrature points
through the thickness. However, despite being more computationally demanding,
the proposed layer-by-layer integration rule (i.e., r + 1 Gauss points per ply) for the
IgG approach allows to correctly capture the behavior of composites for any stacking
sequence and to investigate more complex constitutive models.

Using only one element through the thickness with highly continuous shape
functions provides a good in-plane solution, but the out-of-plane stress profiles vi-
olate the continuity requirements prescribed by equilibrium. Adopting a local sys-
tem, which grants that no additional terms appear in the balance of linear momen-
tum equations, an accurate solution is attainable also in terms of out-of-plane stress
components after the post-processing step.

The proposed stress recovery method results in a straightforward approach in
terms of implementation since it is only based on the numerical integration of equi-
librium equations through the thickness and all the required components can be
easily computed by differentiating the global displacement fields. The a posteriori
step requires the shape functions to be highly continuous (as fully granted by IgA),
is direct, and can be easily performed at locations of interest, resulting in a very in-
teresting alternative to LW techniques. Several benchmarks confirm the excellent
behavior of the proposed approach also on the laminate boundary and have as-
sessed the sensitivity of the stress recovery to different parameters, namely the mean
radius-to-thickness ratio and number of layers. Our results show that the proposed
post-processing technique is especially accurate in the case of slender composites
made of a significant number of layers.

Future research topics consist of the extension of our equilibrium-based stress
recovery approach to bivariate shells and the inclusion of large deformations. Also,
more efficient through-the-thickness integration strategies will be considered in
forthcoming studies. Finally, in Appendix 5.B we have also investigated a strategy
to recover the out-of-plane normal stress component using only first-order deriva-
tives of the shear interlaminar stresses with respect to the in-plane coordinates in
the context of solid composite structures. This study, even though at a preliminary
stage, lowers the high-order continuity requirements of the recovery. Further inves-
tigations need to be carried out to explore this approach as well.
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Appendix 5.A: Components of the stress derivatives

5.A.1 Stress derivatives with respect to the local reference system

In Section 5.2, the stress recovery procedure proposed in Chapter 3 and reference
[62, 149] is extended to the case of curved laminated structures. In this regard, we
need to compute the first and second derivatives of the stress tensor in the chosen
local reference system {xα}. Therefore, starting from the displacement field in the
global cartesian system {Xi}, dσ/dxµ and d2σ/dxµdxν have to be calculated.

From Equation (5.10), the stress derivatives can be computed as

dσ

dxµ
=

dC

dxµ
: ε + C :

dε

dxµ
, (5.A.1)

d2σ

dxµdxν
=

d2C

dxµdxν
: ε +

dC

dxµ
:

dε

dxν
+

dC

dxν
:

dε

dxµ
+ C :

d2ε

dxµdxν
, (5.A.2)

which need to be further detailed in terms of explicit expressions for the first and
second derivatives of C and ε.

The strain and its derivatives can be easily obtained with respect to the local
system {xα} as:

ε = εαβeα ⊗ eβ , (5.A.3a)
dε

dxµ
= εαβ,µeα ⊗ eβ , (5.A.3b)

d2ε

dxµdxν
= εαβ,µνeα ⊗ eβ . (5.A.3c)

From Equation (5.7), and applying the chain rule, the components εαβ, εαβ,µ, and
εαβ,µν are computed as:

εαβ = ε̃ ijCiαCjβ =
1
2
(
ũi,j + ũj,i

)
CiαCjβ , (5.A.4a)

εαβ,µ =
dεαβ

dxµ
=

dεαβ

dXk

dXk

dxµ
=

1
2
(
ũi,jk + ũj,ik

)
CiαCjβCkµ , (5.A.4b)

εαβ,µν =
d2εαβ

dxµdxν
=

εαβ,µ

dXl

dXl

dxν
=

1
2
(
ũi,jkl + ũj,ikl

)
CiαCjβCkµClν , (5.A.4c)

where we applied the definition (5.3) and the property (5.4). The displacement
derivatives ũi,j, ũi,jk, and ũi,jkl are simply computed as:

ũi,j =
dũi

dXj
, (5.A.5a)

ũi,jk =
d2ũi

dXjdXk
, (5.A.5b)

ũi,jkl =
d3ũi

dXjdXkdXl
. (5.A.5c)
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Furthermore, we would like to remark that the derivatives ũi,j, ũi,jk, and ũi,jkl are
evaluated starting from the global components of the solution ũi in a straightforward
manner. In fact, relying on high-order continuity properties, IgA allows to easily
perform the necessary computations.

In the same way, the derivatives of C, defined starting from Equation (5.11), are
computed as

dC

dxµ
= Cαβγδ,µaα ⊗ aβ ⊗ aγ ⊗ aδ + Cαβγδ

d
dxµ

(
aα ⊗ aβ ⊗ aγ ⊗ aδ

)
, (5.A.6a)

d2C

dxµdxν
= Cαβγδ,µνaα ⊗ aβ ⊗ aγ ⊗ aδ + Cαβγδ,µ

d
dxν

(
aα ⊗ aβ ⊗ aγ ⊗ aδ

)

+Cαβγδ,ν
d

dxµ

(
aα ⊗ aβ ⊗ aγ ⊗ aδ

)
+ Cαβγδ

d2

dxµdxν

(
aα ⊗ aβ ⊗ aγ ⊗ aδ

)
,

(5.A.6b)

where

Cαβγδ,µ =
dCαβγδ

dxµ
, (5.A.7a)

Cαβγδ,µν =
d2Cαβγδ

dxµdxν
. (5.A.7b)

In Equation (5.A.6), the derivatives daα/dxµ and d2aα/dxµdxν do not vanish in gen-
eral, as already discussed in Section 5.1.1. For heterogeneous materials, in which the
material coefficients may change from point to point, the terms Cαβγδ,µ and Cαβγδ,µν

may be also different from zero.

Remark 5.A.1. For the case of homogeneous anisotropic materials (including orthotropic
ones) in which the fibers have a constant orientation with respect to the local basis {aα},
the terms Cαβγδ,µ and Cαβγδ,µν vanish. This is the case, e.g., of multi-layered structures
in which stacks of materials with different orientations are used: within each layer (k) the
material coefficients C

(k)
αβγδ are constant for the chosen basis {aα}.

Finally, the stress derivative terms σαβ,µ and σαβ,µν required by the recovery inte-
grals (5.23) and (5.24) are computed as:

σαβ,µ =
(
eα ⊗ eβ

)
:

dC

dxµ
: ε +

(
eα ⊗ eβ

)
: C :

dε

dxµ
, (5.A.8a)

σαβ,µν =
(
eα ⊗ eβ

)
:

d2C

dxµdxν
: ε +

(
eα ⊗ eβ

)
:

dC

dxµ
:

dε

dxν

+
(
eα ⊗ eβ

)
:

dC

dxν
:

dε

dxµ
+
(
eα ⊗ eβ

)
: C :

d2ε

dxµdxν
.

(5.A.8b)
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Thus, considering Equations (5.A.6), the terms σαβ,µ and σαβ,µν can be written as:

σαβ,µ =
(

Cαβγδ,µ + Cψβγδ Aψαµ + Cαψγδ Aψβµ + Cαβψδ Aψγµ

+ Cαβγψ Aψδµ

)
εγδ + Cαβγδεγδ,µ ,

(5.A.9a)

σαβ,µν =
(

Cαβγδ,µν

+ Cψβγδ,µ Aψαν + Cαψγδ,µ Aψβν + Cαβψδ,µ Aψγν + Cαβγψ,µ Aψδν

+ Cψβγδ,ν Aψαµ + Cαψγδ,ν Aψβµ + Cαβψδ,ν Aψγµ + Cαβγψ,ν Aψδµ

+ CψβγδBψαµν + Cψωγδ Aψαµ Aωβν + Cψβωδ Aψαµ Aωγν + Cψβγω Aψαµ Aωδν

+ Cωψγδ Aψβµ Aωαν + CαψγδBψβµν + Cδµψωδ Aψβµ Aωγν + Cδµψγω Aψβµ Aωδν

+ Cωβψδ Aψγµ Aωαν + Cαωψδ Aψγµ Aωβν + CαβψδBψγµν + Cαβψω Aψγµ Aωδν

+ Cωβγψ Aψδµ Aωαν + Cαωγψ Aψδµ Aωβν + Cαβωψ Aψδµ Aωγν + CαβγψBψδµν

)
εγδ

+
(
Cαβγδ,µ + Cψβγδ Aψαµ + Cαψγδ Aψβµ + Cαβψδ Aψγµ + Cαβγψ Aψδµ

)
εγδ,ν

+
(
Cαβγδ,ν + Cψβγδ Aψαν + Cαψγδ Aψβν + Cαβψδ Aψγν + Cαβγψ Aψδν

)
εγδ,µ

+ Cαβγδεγδ,µν ,
(5.A.9b)

where εγδ, εγδ,µ, and εγδ,µν are defined in (5.A.4), while Aψαµ and Bψαµν are:

Aψαµ =
daψ

dxµ
· eα , (5.A.10a)

Bψαµν =
d2aψ

dxµdxν
· eα . (5.A.10b)

In the case that the basis {aα} depends on the parametric coordinates (ξ1, ξ2, ξ3), its
derivatives with respect to the coordinates {xα} can be computed by applying the
chain rule. Thus, we first evaluate daα/dξθ and d2aα/dξθdξφ, and from that, the
quantities daα/dxµ and d2aα/dxµdxν are obtained as

daα

dξθ
=

daα

dxµ

dxµ

dXi

dXi

dξθ
, (5.A.11a)

d2aα

dξθdξφ
=

(
d2aα

dxµdxν

dxµ

dXi

dxν

dXj
+

daα

dxµ

d2xµ

dXidXj

)
dXi

dξθ

dXj

dξφ

+
daα

dxρ

dxρ

dXk

d2Xk

dξθdξφ
.

(5.A.11b)

Therefore, the derivatives daα/dxµ and d2aα/dxµdxν are computed as:

daα

dxµ
=

daα

dξθ

dξθ

dXi
Ciµ , (5.A.12a)

d2aα

dxµdxν
=

(
d2aα

dξθdξφ
− daα

dxρ
Ckρ

d2Xk

dξθξφ

)
dξθ

dXi

dξφ

dXj
CiµCjν , (5.A.12b)
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where the term d2xµ/dXidXj vanished according to Equations (5.3) and (5.4) and
dξθ/dXi corresponds to the inverse of the derivative of the geometric mapping, i.e.:

dXi

dξθ
=

dF
dξθ
· Ei , (5.A.13)

where F is the geometrical mapping that defines the physical domain Ω (previously
introduced in Section 5.1.1). Thus, the vectors {dF/dξ1, dF/dξ2, dF/dξ3} consti-
tute the covariant basis of F. In the same way, d2Xi/dξθdξφ are related to the second
derivative of F as follows:

d2Xi

dξθdξφ
=

d2F
dξθdξφ

· Ei . (5.A.14)

Finally, the derivatives daα/dξθ and d2aα/dξθdξφ, that appear in Equa-
tion (5.A.12), are detailed in Section 5.A.3 for a particular choice of the basis {aα}.

5.A.2 Divergence of the stress tensor with respect to the global reference
system

To fully address the system of Equations (5.14) in the global reference system {Xi},
we detail the components of the divergence of the stress tensor (5.17) as

σ̃ij,j =
dσ̃ij

dXj
=
(

Diα Djβ Dkγ Dlδ
dCαβγδ

dXj

+ Ãiαj Djβ Dkγ Dlδ Cαβγδ + Diα Ãjβj Dkγ Dlδ Cαβγδ + Diα Djβ Ãkγj Dlδ Cαβγδ

+ Diα Djβ Dkγ Ãlδj Cαβγδ

)
ε̃kl + C̃ijkl ε̃kl,j ,

(5.A.15)
where Ãiαj is defined as:

Ãiαj =
dDiα

dXj
=

daα

dXj
· Ei =

daα

dxµ
· Ei Cjµ . (5.A.16)

The computation of daα/dxµ was already defined in Equation (5.A.12a). Finally,
applying the chain rule, the term dCαβγδ/dXj can be computed from dCαβγδ/dxµ

as:

dCαβγδ

dXj
=

dCαβγδ

dxµ
Cjµ . (5.A.17)

5.A.3 A pointwise local basis for anisotropic materials

In order to define the orientation of the fibers for anisotropic materials (including
orthotropic ones), an appropriate local basis {aα} needs to be set. A particular choice
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for this basis is an ortho-normalized version of the covariant basis such that:

a1 =
g1

‖g1‖
, (5.A.18a)

a2 = a3 × a1 , (5.A.18b)

a3 =
g1 × g2

‖g1 × g2‖
, (5.A.18c)

where {g1, g2, g3} is the covariant basis, i.e.:

gθ =
dF
dξθ

. (5.A.19)

Then, the first derivatives of the basis {aα} with respect to the parametric coordi-
nates are:

da1

dξθ
=

1
‖g1‖

(I − a1 ⊗ a1)
dg1

dξθ
, (5.A.20a)

da2

dξθ
=

da3

dξθ
× a1 + a3 ×

da1

dξθ
, (5.A.20b)

da3

dξθ
=

1
‖g1 × g2‖

(I − a3 ⊗ a3)

(
dg1

dξθ
× g2 + g1 ×

dg2

dξθ

)
, (5.A.20c)

where I is the identity tensor. Finally, the second derivatives are computed as:

d2a1

dξθdξφ
=

1
‖g1‖

[
−
(

da1

dξφ
⊗ a1 + a1 ⊗

da1

dξφ

)
dg1

dξθ

+ (I − a1 ⊗ a1)
d2g1

dξθdξφ
−
(

a1 ·
dg1

dξφ

)
da1

dξθ

]
,

(5.A.21a)

d2a2

dξθdξφ
=

d2a3

dξθdξφ
× a1 +

da3

dξθ
× da1

dξφ
+

da3

dξφ
× da1

dξθ
+ a3 ×

d2a1

dξθdξφ
, (5.A.21b)

d2a3

dξθdξφ
=

1
‖g1 × g2‖

[
−
(

da3

dξφ
⊗ a3 + a3 ⊗

da3

dξφ

)(
dg1

dξθ
× g2 + g1 ×

dg2

dξθ

)

+ (I − a3 ⊗ a3)

(
d2g1

dξθdξφ
× g2 +

dg1

dξθ
× dg2

dξφ
+

dg1

dξφ
× dg2

dξθ
+ g1 ×

d2g2

dξθdξφ

)

−
(

a3 ·
(

dg1

dξφ
× g2 + g1 ×

dg2

dξφ

))
da3

dξθ

]
.

(5.A.21c)
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Appendix 5.B: Fast application of the stress recovery for solid
structures

With reference to the equilibrium equation detailed in the local framework (5.21),
we express the derivative of the normal out-of-plane stress component with respect
to the thickness direction x3 in terms of the in-plane derivatives of the interlaminar
shear stresses and we integrate along the out-of-plane coordinate as

σ33(x3) = −
∫ x3

x3

(
σ13,1(ζ) + σ23,2(ζ) + b3(ζ)

)
dζ + σ33(x3) , (5.B.1)

where b3 = b̃i Ci3 and σ13,1, σ23,2 are the local shear stress derivatives, which we
described in Section 5.A.1. More specifically, in Equation (5.B.1) we directly substi-
tute the derivatives of the interlaminar shear stresses with respect to the indicated
in-plane components obtained via Equation (5.A.9a). Recall that in the equilibrium-
based stress recovery introduced in Section 5.2, we also need to compute the second-
order local derivatives as in Equation (5.A.9b). The lower regularity requirements
for the a posteriori step described in this Appendix using Equation (5.B.1) lead to a
general simplification of the stress recovery technique detailed in Section 5.2. These
regularity requirements further simplify because, to compute σ33 in Equation (5.B.1),
we need to calculate a single integral numerically, instead of the double integral re-
quired by the method described in Section 5.2 (see Equations (5.24) and (5.26)).

To further investigate the reduction in regularity requirements for the stress re-
covery equations, we turn to the simplest possible case in terms of constitutive rela-
tions: we consider each layer to be isotropic and elastic. Therefore, we can rewrite
the local stress components for every ply in terms of Lamé parameters µ and λ as

σ11 = (2µ + λ)u1,1 + λ(u2,2 + u3,3) , (5.B.2a)
σ22 = (2µ + λ)u2,2 + λ(u1,1 + u3,3) , (5.B.2b)
σ12 = µ(u1,2 + u2,1) , (5.B.2c)
σα3 = µ(uα,3 + u3,α) α = 1, 2 , (5.B.2d)
σ33 = (2µ + λ)u3,3 + λ(u1,1 + u2,2) . (5.B.2e)

Substituting Equations (5.B.2) into relations (5.23) and (5.B.1), we obtain

σ13(x3) =−
∫ x3

x3

[
(2µ(ζ) + λ(ζ))u1,11(ζ) + λ(ζ)(u2,21(ζ) + u3,31(ζ))

+ µ(ζ)(u1,22(ζ) + u2,12(ζ)) + b1(ζ)
]
dζ + σ13(x3)

=−
∫ x3

x3

[
(2µ(ζ) + λ(ζ))u1,11(ζ) + λ(ζ)u2,21(ζ)

+ µ(ζ)(u1,22(ζ) + u2,12(ζ)) + b1(ζ)
]
dζ + λ(x3)u3,1(x3)

+ σ13(x3) ,

(5.B.3a)
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σ23(x3) =−
∫ x3

x3

[
(2µ(ζ) + λ(ζ))u2,22(ζ) + λ(ζ)(u1,12(ζ) + u3,32(ζ))

+ µ(ζ)(u2,11(ζ) + u1,21(ζ)) + b2(ζ)
]
dζ + σ23(x3)

=−
∫ x3

x3

[
(2µ(ζ) + λ(ζ))u2,22(ζ) + λ(ζ)u1,12(ζ)

+ µ(ζ)(u2,11(ζ) + u1,21(ζ)) + b2(ζ)
]
dζ + λ(x3)u3,2(x3)

+ σ23(x3) ,

(5.B.3b)

σ33(x3) =−
∫ x3

x3

[
µ(ζ)(u1,31(ζ) + u3,11(ζ)

+ u2,32(ζ) + u3,22(ζ)) + b3(ζ)
]
dζ + σ33(x3)

=−
∫ x3

x3

[
µ(ζ)(u3,11(ζ) + u3,22(ζ)) + b3(ζ)

]
dζ

+ µ(x3)(u1,1(x3) + u2,2(x3)) + σ33(x3) .

(5.B.3c)

We observe that in Equation (5.B.3c) the derivatives with respect to x3 simplify, while
we can still rely on IgA high-order regularity properties of the in-plane shape func-
tions to compute the necessary in-plane derivatives. Moreover, with reference to
Equation (5.B.3c), the integrand function can be regarded as the product of a con-
tinuous function and discontinuous term through the laminate thickness (i.e., the
shear modulus µ(ζ)). This product turns, once again, into a discontinuous quantity.
Then, if the integrand is bounded and piecewise-continuous in the closed interval
over which integration is to be performed, we can still approximate the integral as a
series of Cauchy-Riemann sums.

Using the new stress recovery strategy described in this Appendix, we investi-
gate the same solid hollow cross-ply cylindrical shell studied in Section 5.4.1, con-
sidering an 11-ply and a 33-ply case with S = 20 and S = 50 and recover the nor-
mal out-of-plane stress profile. In Figure 5.B.1, we compare σ33 solution profiles de-
rived from a global displacement field obtained with IgG (see Section 5.3.1), before
and after the stress recovery application introduced in this Appendix in Equation
(5.B.1), with respect to an overkill IgG LW solution, for a sampling point located at
(X1 = L/3, θ = θ̄/3). The approximated displacement field results are obtained em-
ploying 22x22x4 control points, in-plane degrees of approximation p = q = 4, and
an out-of plane degree of approximation r = 3, while we compute the overkill IgG
LW solution using degrees p = q = 6, r = 4 and 36x36x55 control points.
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FIGURE 5.B.1: Through-the-thickness normalized σ33 profiles evaluated at (X1 = L/3,
θ = θ̄/3) for different IgG approaches (degrees of approximation p = q = 4, r = 3, and
22x22x4 control points). Case: hollow cross-ply cylindrical shell with 11 and 33 layers,
L = R̄, and mean radius-to-thickness ratio S = 20, 50 ( overkill IgG LW solution ob-
tained with degrees of approximation p = q = 6, r = 4 and 36x36x55 control points,
single-element approach solution without post-processing, post-processed solution using

Equation (5.B.1)).
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Moreover, in Table 5.B.1 we compare the interlaminar normal stress maximum
relative error at (X1 = L/3, θ = θ̄/3), obtained either using the post-processing
technique already presented in Section 5.2 via Equations (5.24) and (5.26) or the new
approach based on Equation (5.B.1). We highlight the similar accuracy of the re-
covery method presented in this Appendix with respect to the approach in Section
5.2. Given that the stress recovery method described in this Appendix provides the
same degree of accuracy as the approach in Section 5.2, in the future we plan to ex-
plore alternative IgA strategies exploiting the lower regularity of the method in this
Appendix, which may prove to be more cost-efficient.

TABLE 5.B.1: Simply-supported hollow cross-ply cylindrical shell under sinusoidal load
with a number of layers equal to 11 and 33. Maximum relative error of the out-of-plane
normal stress along the thickness with respect to an overkill IgG LW solution (degrees of
approximation p = q = 6, r = 4 and number of control points equal to 36x36x55) at (X1 =
L/3, θ = θ̄/3). Assessment of the proposed IgG strategies before and after the application of
the two post-processing techniques for approximation degrees p = q = 4, r = 3 and a fixed
mesh comprising 22x22 in-plane control points. One stress recovery technique is based on

Equations (5.24), (5.26), while the new one on Equation (5.B.1).

Method IgG

Degrees of approximation p = q = 4, r = 3

11 layers S [-] 20 30 40 50

e(σ33) before post-processing 18.7 19.8 22.6 25.2

[%] after post-processing via Eqs. (5.24), (5.26) 1.38 1.18 1.22 1.23

after post-processing via Eq. (5.B.3c) 1.41 1.20 1.24 1.24

33 layers S [-] 20 30 40 50

e(σ33) before post-processing 15.56 16.92 18.87 21.14

[%] after post-processing via Eqs. (5.24), (5.26) 0.99 0.73 0.56 0.44

after post-processing via Eq. (5.B.3c) 0.99 0.74 0.56 0.44
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Chapter 6

An explicit algorithm for
irreversibility enforcement in
phase-field modeling of crack
propagation

In this chapter, we focus on the phase-field approach for quasi-brittle fracture in elas-
tic solids, considering the displacement and the phase field as primal variables. The
phase field can be regarded as a variable that physically models the damage process
zone developing in the crack tip region and may be interpreted as a mathematical
regularization of a sharp crack in brittle fracture [135] depending on a material char-
acteristic length, which properly accounts for the strain localization occurring in the
process zone.

In Section 6.1, we consider a thermodynamically consistent phase-field model,
which accounts for a different damaging behavior in tension and compression as in
[10, 46]. More specifically, damage is allowed to act only on the positive volumet-
ric and deviatoric part of the elastic energy. The use of a phase field, in this case
coinciding with the damage field, allows for the formulation of the crack propaga-
tion problem through an elastic medium as a sequence of minimization problems,
as detailed in Section 6.2, in which the system energy is minimized separately with
respect to displacement and damage increments. Thermodynamic consistency re-
quires the damage increment to monotonically grow during any transformation of
the body. This irreversible nature of the phenomenon transforms the energy mini-
mization into a variational inequality, where the stationarity with respect to displace-
ments returns the usual balance of linear momentum, while the minimization with
respect to the phase field, under the condition of non-decreasing damage, leads to
a symmetric linear complementarity problem (SLCP). The spatial discretization of these
two subproblems is detailed in Section 6.3. In our case, the coupled displacement-
damage problem is solved by means of a staggered iterative scheme, whereby the
displacement problem is solved under fixed damage, while the SLCP in the un-
known damage increment is solved under fixed displacements.

Different approaches have been proposed in the literature for the solution of the
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phase-field problem under fixed displacements. In [134], the constraint is enforced
by defining a monotonically growing driving force of the phase field (the so-called
history variable), while in [79] a penalty functional is introduced into the formula-
tion to replace the constraint, altering the structure of the original formulation. As
a result, the energy minimization problem turns from a variational inequality into
a variational equality. Inspired by the work in [45], we use the Projected Successive
Over-Relaxation (PSOR) algorithm [127] in the present context of phase-field mod-
eling of brittle fracture to formulate a robust and explicit iterative scheme for the
solution of the SLCP, as detailed in Section 6.4. This represents a novel approach for
a rigorous enforcement of the irreversibility constraint, which yields non-negative
damage increments under prescribed displacements.

In Section 6.5, we perform several numerical simulations under the hypotheses
of small displacements and quasistatics to assess the performance of the proposed
solution algorithm with respect to the penalty formulation introduced in [79]. Fi-
nally, we draw our conclusions in Section 6.6.

6.1 Phase-field variational formulation of brittle fracture

6.1.1 State variables and constitutive law

We assume that the reference configuration is an open bounded domain Ω ⊂ R3.
Dirichlet boundary conditions g are applied on ∂ΩD while Neumann boundary con-
ditions are applied on ∂ΩN , with ∂ΩD ∪ ∂ΩN = ∂Ω and ∂ΩD ∩ ∂ΩN = ∅. Admissi-
ble deformations u : Ω→ R3 belong to the space

Uu := {u ∈ H1(Ω; R3) : u = g on ∂ΩD} , (6.1)

while the phase-field function d belongs to the space

Ud := H1(Ω; [0,+∞)) = {d ∈ H1(Ω) : d ≥ 0} . (6.2)

From the mathematical point of view, here it is convenient to choose a large set for
d, even if the phase field d will actually take values in [0, 1].

Given u ∈ Uu, we assume small deformations and strains, thereby denoting the
linearized strain by ε = ε(u) and the volumetric strain by εv := tr ε = ε : I, where I
denotes the identity matrix. We further introduce the tensile and compressive volu-
metric strains, respectively, ε+v = 〈εv〉+ and ε−v = 〈εv〉−, for which the notation 〈·〉±
denotes the positive and negative parts. Accordingly, the volumetric and deviatoric
components of the strain, εv and εd, can be written as

εv := 1
3 εv I = 1

3 (ε
+
v + ε−v )I , (6.3a)

εd := ε− εv . (6.3b)

We denote by λ > 0 and µ > 0 the Lamé parameters, from which we compute
the bulk modulus κ = 2

3 µ + λ. Additionally, we consider a degradation function ω
given by ω(d) = (1− d)2 + η, where 0 < η � 1 is a small positive parameter that
circumvents the full degradation of the energy by leaving the artificial elastic rest
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energy density, thereby allowing to prevent numerical difficulties in the late stage
of the phase-field evolution when d approaches the limit value 1. Following [10,
46], we assume that damage (or fracture) affects only deviatoric and tensile strains.
Therefore, we define the stress tensor in terms of the phase field as

σ := ω(d)
(
2µ εd + κε+v I

)
+ κ ε−v I. (6.4)

6.1.2 Energy functionals

The elastic energy functional is given by

E(u, d) :=
∫

Ω
ψ(ε, d)dΩ , (6.5)

where the elastic energy density ψ is defined as

ψ(ε, d) := ω(ψD + ψ+
V ) + ψ−V , (6.6)

with ψD = µ|εd|2 and ψ±V = 1
2 κ (ε±v )

2. The phase-field energy takes the form

D(d) :=
∫

Ω
φ(d,∇d)dΩ , (6.7)

where
φ(d,∇d) := 1

2 (l
−1
0 d2 + l0|∇d|2) , (6.8)

∇ is the gradient operator, and 0 < l0 � 1 is the internal (phase-field) length.
Finally, denoting the critical fracture energy by Gc, the total energy is given by

Π(u, d) := E(u, d) + GcD(d)−W(u) , (6.9)

beingW(u) the work of the external forces defined as

W(u) :=
∫

Ω
b · u dΩ +

∫

∂ΩN

t · u dΓ , (6.10)

where b are the volume forces, and t are the tractions acting on ∂ΩN . In Equation
(6.9), the term GcD(d) accounts for the energy dissipated in the phase field. For
this reason, D will be referred to as specific dissipation. It is important to remark
that the energy Π is separately convex (and quadratic), i.e., given d the functional
u 7→ Π(u, d) is convex (and quadratic) and, vice versa, given u, the functional d 7→
Π(u, d) is convex (and quadratic). However, Π it is not convex (and not quadratic)
as a function of the couple (u, d). We provide an illustrative example of a separately
quadratic non-convex function in Appendix 6.C.

In fracture mechanics, the phase-field approach may be interpreted as a regular-
ization of the sharp crack approach: the crack is geometrically represented by the
level set {d = 1} and the total energy Π is an approximation of the potential energy
of a brittle material. This relationship is made rigorous in terms of Γ-convergence
[43]. In brief, for l0 → 0 and η = o(l0) the energy Π converges to a brittle energy in
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the form of

F (u, K) :=
∫

Ω\K

(
µ|ε|2 + 1

2 λ|trε|2
)

dΩ + GcH2(K)

−
∫

Ω
b · u dΩ−

∫

∂ΩN

t · u dΓ ,
(6.11)

where K denotes the fracture set, H2(K) is its surface area, and the displacement u
satisfies the (infinitesimal) non-interpenetration condition

(u+ − u−) · nK ≥ 0 on K. (6.12)

In Equation (6.12), u± denote the displacement in the “upper” and “lower” faces
of the crack K and nK is the unit vector normal to K, pointing from the lower to
the upper face of K. The displacement u appearing in the functional F in Equation
(6.11) is discontinuous across the crack and K itself is the set of discontinuity points
of u. Finally, we remark that the non-interpenetration condition in Equation (6.12)
follows right from the volumetric-deviatoric splitting of the constitutive law.

6.1.3 Variations and equilibria

Taking into account the Dirichlet boundary conditions, the space of admissible vari-
ations for the displacement field is given by

Vu := {δu ∈ H1(Ω; R3) : δu = 0 on ∂ΩD} . (6.13)

For u ∈ Uu, the linear balance momentum equation is equivalent to ∂uΠ(u, d) = 0,
which constitutes the first variation of the total energy Π with respect to u, meaning
that ∂uΠ(u, d)[δu] = 0 for every δu ∈ Vu, i.e.,

∫

Ω
σ(u, d) : ε(δu)dΩ =

∫

Ω
b · δu dΩ +

∫

∂ΩN

t · δu dΓ ∀δu ∈ Vu . (6.14)

In turn, the variational Equation (6.14) is equivalent to the following strong form
problem 




−∇ · σ(u, d) = b in Ω ,
σ(u, d) · n = t on ∂ΩN ,
u = g on ∂ΩD ,

(6.15)

where ∇· is the usual divergence operator and n is the outward unit vector normal
to the free boundary ∂ΩN .

Let us now consider a generic variation δd of the form δd = d′ − d, ∀d′ ∈ Ud.
Then, the partial derivative of the energy Π in (u, d) with respect to the variation δd
is given by

∂dΠ(u, d)[δd] =
∫

Ω
∂dψ(ε, d) δd dΩ + Gc

∫

Ω

(
l−1
0 d δd + l0∇d ·∇(δd)

)
dΩ . (6.16)

In order to define the energy release rate for a given configuration d ∈ Ud, taking
into account the irreversible nature of fracture, admissible variations δd should be of
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the form δd = d′ − d for d′ ≥ d, i.e., δd should belong to the convex set1

Vd := {δd ∈ H1(Ω) : δd ≥ 0} . (6.17)

Then, the unilateral equilibrium condition for the phase-field configuration d is
given by the variational inequality ∂dΠ(u, d) ≥ 0, which means ∂dΠ(u, d)[δd] ≥
0, ∀δd ∈ Vd, i.e.,
∫

Ω
∂dψ(ε, d) δd dΩ + Gc

∫

Ω

(
l−1
0 d δd + l0∇d ·∇(δd)

)
dΩ ≥ 0 ∀δd ∈ Vd . (6.18)

Finally, given d ∈ Ud and letting ud be the (unique) displacement field that solves
(6.14), we define the released energy functional as

G(d)[δd] := −∂dE(ud, d)[δd] for δd ∈ Vd . (6.19)

With this notation, the unilateral equilibrium condition for the phase field takes the
form

−∂dΠ(ud, d)[δd] = −∂dE(ud, d)[δd]− Gc∂dD(d)[δd]

=
(
G(d)− Gc∂dD(d)

)
[δd] ≤ 0 ∀δd ∈ Vd . (6.20)

6.1.4 Phase-field evolution law

The discussion in the previous subsection concerns the solution of the given bound-
ary value problem for a prescribed value of external forces and boundary conditions.
However, due to the irreversibility of the fracture phenomena, the problem is path-
dependent and its solution requires following the full history of loading, enforcing
the irreversibility condition ḋ ≥ 0 at all instants. The equilibrium conditions (6.15)
and (6.20) are therefore necessary but not sufficient to define the problem solution
for a given history of loading. To completely define the problem, we consider a time
interval [0, T] and time dependent external forces and boundary conditions. For the
sake of clarity in terms of exposition, we drop the dependence on time of b, t, and g.
Given the initial conditions u0 ∈ Uu and d0 ∈ H1(Ω, [0, 1]), we look for an evolution
t 7→ (u(t), d(t)) ∈ Uu ×Ud that solves, for every time t, the following system:





−∇ · σ(u, d) = b in Ω ,
σ(u, d) · n = t on ∂ΩN ,
u = g on ∂ΩD ,

(6.21)

(
G(d)− Gc∂dD(d)

)
[ḋ] = 0 ,

(
G(d)− Gc∂dD(d)

)
≤ 0 ,

0 ≤ d ≤ 1, ḋ ≥ 0 ,
(6.22)

GcḊ(d) = Gc∂dD(d)[ḋ] ≥ 0 . (6.23)

Equation (6.21) provides the equilibrium of the displacement field. Equation (6.22)
gives a phase-field activation condition, which can be interpreted as a counterpart

1Note that here, mathematically, it is more convenient to employ the large set Ud = H1(Ω; [0,+∞))
for the phase-field. Using instead H1(Ω; [0, 1]) the admissible unilateral variations would still depend
on d, being of the form δd = d′ − d for every d′ ∈ H1(Ω; [0, 1]) with d′ ≥ d.
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of Griffith’s criterion for brittle fracture, where the monotonicity constraint ḋ ≥ 0
models irreversibility. Finally, Equation (6.23) is a thermodynamic condition, requir-
ing that the amount of energy dissipated by the crack does not decrease in time.
We highlight that Equations (6.22) and (6.23) in variational form do not specify any
essential boundary conditions for the phase field d. However, natural boundary con-
ditions for d do appear when the conditions implied by (6.22) and (6.23) are written
in strong form. Furthermore, we remark that, in general, the irreversibility condition
ḋ ≥ 0 is not enough, by itself, to guarantee that ∂dD(d)[ḋ] ≥ 0, because

∂dD(d)[ḋ] =
∫

Ω

(
l−1
0 dḋ + l0∇d ·∇ḋ

)
dΩ , (6.24)

where the term ∇d ·∇ḋ could in principle be negative.

The System (6.21)-(6.23) is satisfied by the solutions u ∈ Uu and d ∈ Ud of the
following (rate-independent) system:

{
∂uΠ(u, d) = 0

∂dΠ(u, d)[ḋ] = 0, ∂dΠ(u, d) ≥ 0, 0 ≤ d ≤ 1, ḋ ≥ 0 .
(6.25)

In the System (6.25), the first equation is clearly equivalent to the momentum bal-
ance (6.21), as discussed in Section 6.1.3. In particular, if u = ud, then ∂dΠ(u, d) =
∂dΠ(ud, d) takes the form of (6.20), i.e.,

∂dΠ(u, d) = −G(d) + Gc∂dD(d) . (6.26)

As a consequence, the second equation in the System (6.25) gives exactly the phase-
field equivalent of Griffith’s criterion (6.22).

Then, we verify that (6.25) implies the thermodynamic condition (6.23). Indeed,
we can write

0 = ∂dΠ(u, d)[ḋ] = ∂dE(u, d)[ḋ] + Gc∂dD(d)[ḋ] , (6.27)

where

∂dE(u, d)[ḋ] =
∫

Ω
∂dψ(ε, dn) ḋ dΩ =

∫

Ω
(d− 1) (2µ|εd|2 + κ|ε+v |2) ḋ dΩ . (6.28)

Since (d− 1) ≤ 0, (2µ|εd|2 + κ|ε+v |2) ≥ 0, and ḋ ≥ 0, we get ∂dE(u, d)[ḋ] ≤ 0. As a

result, (6.27) implies (6.23).

At this point, it is also important to remark that solutions (u(t), d(t)) of the Sys-
tem (6.25) may be discontinuous in time [7, 112], due to the occurrence of snap-back
instabilities in the structural response, i.e., when the problem stability cannot be
guaranteed either under load or displacement control. In fact, this is a common is-
sue in statics in the case of rate-independent systems featuring non-convex energies.
From the mathematical point of view, it is still possible [7, 112] to define a notion of
solution that solves (6.25) away from time discontinuities and that satisfies a further
set of equations in the discontinuity points. The latter, with the aid of a suitable arc-
length parametrization, describes the transition of the system between (u(t−), d(t−))
and (u(t+), d(t+)) in the discontinuity point t. A rigorous mathematical presenta-
tion of these aspects is outside the scope of this work and, for the sake of simplicity,
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we will exclude snap-back instabilities and we will refer to problems with solutions
obeying the System (6.25).

6.2 Time discretization and staggered evolution

Given a time increment τ > 0 we consider the finite time sequence tn = nτ for n =
0, ..., N. The evolution is defined by the following incremental problem. Known un
and dn at time tn, we introduce the auxiliary sequences ui and di defined recursively
by the following staggered scheme [34]: u0 = un , d0 = dn and

{
ui+1 ∈ argmin{Πn+1(u, di) : u ∈ Uu}
di+1 ∈ argmin{Πn+1(ui+1, d) : d ∈ Ud with d ≥ dn = d0} ,

(6.29)

where Πn+1 denotes the energy functional with boundary and loading conditions
prescribed at time tn+1. Note that, even if the minimization takes place in the whole
set Ud = H1(Ω; [0,+∞)), by a simple truncation argument, see e.g. [112], and by the
irreversibility constraint d ≥ d0, it turns out that the minimizer di+1 takes values in
[0, 1]. Ideally, the above scheme introduces infinite sequences ui and di for i ∈ N

and thus we may define un+1 = limi→+∞ ui and dn+1 = limi→+∞ di (technically, up
to sub-sequences). In practice the scheme ends when a certain stopping criterion on
the phase field is met, e.g., at the staggered iteration i = I. In this case, we would set
un+1 = uI and dn+1 = dI . For ease of presentation, let us stick with the former case,
so that the limit configuration (un+1, dn+1) solves the following system (formally
passing to the limit in (6.29) as i→ +∞)

{
un+1 ∈ argmin{Πn+1(u, dn+1) : u ∈ Uu}
dn+1 ∈ argmin{Πn+1(un+1, d) : d ∈ Ud with d ≥ dn} .

(6.30)

In other terms the couple (un+1, dn+1) is a separate minimizer of the energy. We
remark that, being Π non-convex, (un+1, dn+1) is not necessarily a global minimizer
of Πn+1, i.e., it may happen that

(un+1, dn+1) 6∈ argmin{Πn+1(u, d) : u ∈ Uu , d ∈ Ud with d ≥ dn} . (6.31)

However, computing a global minimizer of the non-convex energy Πn+1 is not con-
venient, from the computational point of view, and not necessary, in view of solving
(6.21)-(6.23). Indeed, the system (6.30) is equivalent to the following variational sys-
tem





∂uΠn+1(un+1, dn+1)[δu] = 0 ∀δu ∈ Vu ,

∂dΠn+1(un+1, dn+1)[δd] ≥ 0 ∀δd of the form δd = d′ − dn+1
with d′ ∈ Ud and d′ ≥ dn .

(6.32)

Adopting a backward-difference time integration of the phase-field rate, i.e., ḋn+1 :=
(dn+1 − dn)/τ = ∆dn+1/τ, and noting that, according to the definition in (6.32),
δd = ∆d′ −∆dn+1, with ∆d′ := d′ − dn, is not sign-constrained, the above variational
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system can be written in complementarity form as 2

{
∂uΠn+1(un+1, dn+1) = 0
∂dΠn+1(un+1, dn+1)[∆dn+1] = 0 , ∂dΠn+1(un+1, dn+1) ≥ 0 , ∆dn+1 ≥ 0 ,

(6.33)

which represents the time discretization of (6.25). In conclusion, the staggered
scheme provides a sequence (ui, di) converging to the configuration (un+1, dn+1) that
solves (6.33). The strong form counterpart of Equation (6.33) is introduced as





−∇ · σ(un+1, dn+1) = bn+1 in Ω,
σ(un+1, dn+1)n = tn+1 on ∂ΩN ,
un+1 = gn+1 on ∂ΩD ,

(6.34)

(
G(dn+1)− Gc∂dD(dn+1)

)
[∆dn+1] = 0 ,

(
G(dn+1)− Gc∂dD(dn+1)

)
≤ 0 , ∆dn+1 ≥ 0 ,

(6.35)

∂dD(dn+1)[∆dn+1] ≥ 0 , (6.36)

which is a time discretization of (6.21)-(6.23).

If the staggered scheme ends after a finite number I of steps, then (6.32) is re-
placed by





∂uΠn+1(uI , dI−1)[δu] = 0 ∀δu ∈ Vu ,

∂dΠn+1(uI , dI)[δd] ≥ 0 ∀δd of the form δd = d′ − dI−1

with d′ ∈ Ud and d′ ≥ dn .

(6.37)

Therefore, taking care of the shifted indices, it is still possible to perform the above
calculations leading again to a discretization of the evolution law (6.25) and of the
system (6.21)-(6.23).

The choice of the convergence criterion to stop the staggered iteration scheme
is not unique [8, 78]. The most common possibilities used in the literature check
the variation between two subsequent iterations of either the total energy functional
Πn+1 or the phase-field variable. The latter option is equivalent to control the dis-
sipated energy GcDn+1, since it provides a global measure of the damage inside the
domain. A third choice would be to employ the first variation of the total energy,
either with respect to the displacement variable or with respect to the phase field.
The distinction is then made according to how the staggered scheme is structured,
i.e., whether the algorithm starts to solve the balance of linear momentum equation
first or rather the complementarity problem. In our case, the staggered algorithm
is arrested when the out-of-balance work Resstag (see Algorithm 6.1) is smaller than

2First, note that any δd ≥ 0 is admissible in (6.32), therefore we have

∂dΠn+1(un+1, dn+1) ≥ 0.

Choosing ∆d′ = 0 and ∆d′ = 2∆dn+1 we get respectively δd = −∆dn+1 and δd = ∆dn+1. Hence, by
(6.32) we have both

0 ≤ −∂dΠn+1(un+1, dn+1)[∆dn+1] and 0 ≤ ∂dΠn+1(un+1, dn+1)[∆dn+1] ,

which imply ∂dΠn+1(un+1, dn+1)[∆dn+1] = 0.
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the assigned tolerance TOLstag

Resstag =
∣∣∣∂uΠn+1(ui, di)[∆ui]

∣∣∣ ≤ TOLstag. (6.38)

Algorithm 6.1 Staggered iteration algorithm.

input : load solution (un, dn) from step n and boundary conditions gn+1, tn+1
at current step n + 1

initialize i = 0

set (u0, d0) := (un, dn)

while Resstag ≥ TOLstag do

i→ i + 1

given di−1, find ui solving ∂uΠ(ui, di−1) = 0

given ui, find di solving ∂dΠ(ui, di)[∆di] = 0 with ∂dΠn+1(ui, di) ≥ 0, ∆di ≥ 0

compute Resstag = ∂uΠ(ui, di)

(un+1, dn+1)→ (ui, di)

output: solution (un+1, dn+1)

6.3 Space discretization

Adopting an IgG approach, we detail the discretized balance of linear momentum
equation and phase-field evolution as a SLCP, focusing on the implementation point
of view. To this extent, we will restrict the description of the discretized quantities to
model only plain strain problems since in Section 6.5 the tests we implement follow
this hypothesis.

6.3.1 IgG approximation at the element level

Adopting an IgG approach and dropping the dependence of the solution upon the
time discretization for the sake of clarity, we consider the same spatial discretization
for the displacement u, the phase field d, the virtual displacement δu, and the virtual
phase field δd. Thus, we approximate these variables as a linear combination of
NURBS shape functions Ri,p(ξ) and the corresponding control variables û, d̂, δû,
and δd̂, obtaining

uh = Nuû , (6.39a)
δuh = Nuδû , (6.39b)

dh = Ndd̂ , (6.39c)

δdh = Ndδd̂ . (6.39d)
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For clarity in the exposition, in Equation (6.39) we also choose to drop the explicit
dependence of Ri,p upon ξ, the vector of the degrees of approximation p, and the
multi-index vector i (see Section 2.1.2.7). Then, adopting the element point of view,
each global vector of the displacement control variables and the shape function ma-
trix Nu are obtained using the usual assembly operator ∑Ne

e , such that

uh = Nuû =
Ne

∑
e

N(e)
u û(e) , (6.40a)

δuh = Nuδû =
Ne

∑
e

N(e)
u δû(e) . (6.40b)

In Equation (6.40), Ne is the number of elements used in the discretization of the
domain, the superscript (e) is the element index (i.e., e = 1, ..., Ne), and the i-th block
of the element shape functions matrix N(e)

u := [N(e)
u,{1,1}, ..., N(e)

u,i , ..., N(e)
u,{p+1,q+1}] (with

degrees of approximation p, q) reads

N(e)
u,i =

[
R(e)

i,p 0

0 R(e)
i,p

]
. (6.41)

Adopting Voigt’s notation, the strain vector can also be introduced elementwise as

εh =
Ne

∑
e

B(e)
u û(e) , (6.42)

where the element matrix of the derivatives of the shape functions for the displace-
ment field B(e)

u := [Bu,{1,1}, ..., Bu,i, ..., Bu,{p+1,q+1}] has the i-th block defined by

Bu,i =




∂R(e)
i,p

∂x1
0

0
∂R(e)

i,p

∂x2

∂R(e)
i,p

∂x2

∂R(e)
i,p

∂x1




. (6.43)

We denote by N(e)
d := [R(e)

{1,1},p, ..., R(e)
i,p , ..., R(e)

{p+1,q+1},p] the element shape function
row vector of the phase field, thereby rewriting the phase-field variable and virtual
phase-field variable discretizations as

dh = Ndd̂ =
Ne

∑
e

N(e)
d d̂

(e)
, (6.44a)

δdh = Ndδd̂ =
Ne

∑
e

N(e)
d δd̂

(e)
, (6.44b)
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while the approximation of the phase-field and virtual phase-field gradients reads

∇dh =
Ne

∑
e

B(e)
d d̂

(e)
, (6.45a)

∇δdh =
Ne

∑
e

B(e)
d δd̂

(e)
, (6.45b)

where the element matrix of the shape function derivatives for the phase field is
defined as B(e)

d := [B(e)
d,{1,1}, ..., B(e)

d,i , ..., B(e)
d,{p+1,q+1}], with the i-th block provided by

B(e)
d,i =




∂R(e)
i,p

∂x1

∂R(e)
i,p

∂x2




. (6.46)

Hereinafter, all element vectors and matrices are assumed to be assembled into their
corresponding global forms.

6.3.2 Discretization of the balance of linear momentum equation

Before presenting the discrete form of the balance of linear momentum equation, we
introduce the definition of the element volumetric strain in 2D:

ε
(e)
V =

1
2

ε
(e)
V 1 =

1
2

(
ε(e) · 1

)
1 =

1
2

(
(B(e)

u û(e)) · 1
)

1 , (6.47)

where 1 = [1 1 0]T corresponds to the identity vector in Voigt’s notation in plain
strain problems. The deviatoric part of the strain vector inside an element reads

ε
(e)
D = ε(e) − ε

(e)
V . (6.48)

To finalize the discrete split of the considered phase-field model, we introduce the
volumetric operator

PV =




1 1 0
1 1 0
0 0 0


 (6.49)

and the deviatoric operator

PD =
1
2




1 −1 0
−1 1 0
0 0 1


 . (6.50)

Then, we approximate the first variation of the energy functional with respect to the

displacement ∂uΠ(û, d̂
i−1

), which is equivalent to the balance of linear momentum
equation, as

K(û, d̂
i−1

) û− F =

(∫

Ω
BT

u D(û, d̂
i−1

)Bu dΩ
)

û− F = 0 , (6.51)
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where Bu is the global matrix of the derivatives of the shape functions for the dis-

placement field, D(û, d̂
i−1

) the matrix of damaged elastic moduli at iteration i − 1,
which implicitly accounts for the positive-negative split of the volumetric and de-
viatoric part of the elastic energy density functional ψ (see Equation (6.6)), and F is
the global vector of the external forces, which we do not discretize since it will not
be used in the considered examples in Section 6.5. Furthermore, in Equation (6.51)
we denote evolving quantities within the Algorithm 6.1 with no superscript (.)i−1

for a fixed solution of phase field at the control points d̂
i−1

. Adopting once again the
element point of view, the stiffness matrix K may be decomposed as

K(û, d̂
i−1

) =
Ne

∑
e

K(e)(û(e), (d̂
(e)
)i−1) =

Ne

∑
e

∫

Ωe

(B(e)
u )T D(e)(û(e), (d̂

(e)
)i−1)B(e)

u dΩe .

(6.52)
Finally, in Equation (6.52), the local element material matrix D(e)(û(e), (d̂

(e)
)i−1)3 can

be defined as

D(e)(û(e), (d̂
(e)
)i−1) =

(
(1−N(e)

d (d̂
(e)
)i−1)2 + η

) [
(D+

V )
(e)(ε

(e)
V ) + D

(e)
D

]

+ (D−V )
(e)(ε

(e)
V )

=
(
(1−N(e)

d (d̂
(e)
)i−1)2 + η

) [
κ f+(ε(e)V )PV + 2µ PD

]

+ κ f−(ε(e)V )PV ,

(6.53)

where D
(e)
D and (D±V )

(e)(ε
(e)
V ) are the local damaged elastic moduli matrices account-

ing for the fact that we split the strain in deviatoric and volumetric contributions
and, additionally, for the latter we further detail positive/negative parts, where

f±(x) is defined as f±(x) =
1± sign(x)

2
. Additionally, we highlight that κ = λ + µ

for plane strain problems.

With reference to Algorithm 6.1, we remark that both the first variation of the
total energy with respect to the displacement variable and the phase-field variable
are nonlinear. The non-linearity of ∂uΠ is due to the assumption that damage af-
fects only deviatoric and tensile strains, whereas for ∂dΠ it is caused by the nature of
the constraint minimization problem itself. Therefore, to solve ∂uΠ we use a New-
ton–Raphson procedure (see Section 2.1.4) to iteratively compute ui for a fixed dam-
age variable di−1. To control the convergence of this algorithm, we verify that the
L2-norm of the out-of-balance forces at the control-points, defined as

ResNR,u := ‖Kû− F ‖L2 , (6.54)

is smaller than a prescribed tolerance TOLNR,u = 10−9 kJ4. The strategy to solve the
phase-field problem will be instead thoroughly discussed in Section 6.4.

3We have tested the necessity of setting parameter η in our formulation numerically and we have
also found its inclusion to be unnecessary. In fact, all results presented in Section 6.5 set η = 0.

4Note that this tolerance does depend on the adopted units and therefore a special care is needed
in fixing its value. We refer interested readers to [79] for more details in terms of a suitable choice of
the tolerance value.
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6.3.3 Discretized phase-field evolution as a symmetric linear
complementarity problem

Since we are using separately quadratic energies, given ûi we can rewrite the en-
ergy Πn+1(û

i, d̂) in incremental form highlighting the dependence upon the current
phase-field increment ∆d̂ and the phase-field at the previous load step d̂n as

Πn+1(û
i, d̂) =

1
2

∆d̂
T
Qi∆d̂ + ∆d̂

T
qi + Πn+1(û

i, d̂n) , (6.55)

with ∆d̂ = d̂− d̂n. In Equation (6.55), Qi and qi are obtained as

Qi := Ψ(ûi) + GcΦ , qi := Qid̂n −ψ(ûi) , (6.56)

where the element dissipation matrix Φ(e) comes from the spatial discretization of
the phase-field energy in Equation (6.7) and is defined at the element level as

Φ(e) :=
∫

Ωe

(
l−1
0 (N(e)

d )T N(e)
d + l0 (B

(e)
d )T B(e)

d

)
dΩe . (6.57)

Additionally, we highlight that Φ(e) does not depend upon the phase-field variable
and is therefore constant. On the other hand, the element free energy matrix Ψ(e) and
vector ψ(e), respectively, are obtained from the spatial discretization of the elastic
energy (6.5) and are defined as

Ψ(e)((û(e))i) :=
∫

Ωe

2
(

ψ+
V ((û

(e))i) + ψD((û
(e))i)

)
(N(e)

d )T N(e)
d dΩe , (6.58)

and

ψ(e)((û(e))i) :=
∫

Ωe

2
(

ψ+
V ((û

(e))i) + ψD((û
(e))i)

)
(N(e)

d )T dΩe , (6.59)

where

ψ+
V ((û

(e))i) =
1
2
(B(e)

u (û(e))i)T κ f+(ε(e)V )PVB(e)
u (û(e))i , (6.60)

and

ψD((û
(e))i) =

1
2
(B(e)

u (û(e))i)T 2µ PDB(e)
u (û(e))i . (6.61)

Given d̂n and ûi, the unilateral minimization with respect to the phase-field vari-
able can be written in incremental form as

∆d̂ ∈ argmin

{
1
2

∆d̂
T
Qi∆d̂ + ∆d̂

T
qi : ∆d̂ ≥ 0

}
. (6.62)

In turn, this unilateral quadratic minimization problem is equivalent to the follow-
ing SLCP:

(Qi∆d̂ + qi) · ∆d̂ = 0 , (6.63a)

− (Qi∆d̂ + qi) ≤ 0 , (6.63b)

∆d̂ ≥ 0 . (6.63c)
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The first equality in Equation (6.63) defines the discretized form of the phase-field
activation condition. The second equality describes the region of the linear elastic
regime, while the last inequality enforces the irreversibility condition. Symmetry of
the SLCP (6.63) stems from the constitutive matrix Q and from the nature of the trial
functions. Linearity comes from the linear dependence of the activation function
upon ∆d̂ and is a consequence of the phase-field functional being a quadratic form
in the phase field and its gradient.

6.3.4 Further definitions for numerical tests

Herein, we give the definition of some fundamental global quantities at the discrete
spatiotemporal level which will be helpful to understand the results displayed in
Section 6.5. For each time instant tn we introduce the imposed displacement un, the
magnitude of the reaction force Rn, the internal stored energy En, and the fracture
energy GcDn. The reaction force Rn is computed as the integral of the forces at the
control points corresponding to the constrained DOFs where the displacement is
imposed. The total energy functional for the spatially discretized model is defined
as

Πn := En + GcDn −Wn , (6.64)

with

En :=
1
2
ûT

nKn ûn , (6.65a)

GcDn := Gc
1
2

d̂
T
nΦ d̂n , (6.65b)

Wn := ûT
nFn , (6.65c)

where, for completeness, the external energy is also reported in (6.65c), even though
the external applied forces are zero in the considered cases of Section 6.5. Addition-
ally, since the alternate minimization algorithm starts solving the balance of linear
momentum equation first, in the numerical tests our convergence criterion controls
the discretized counterpart of the out-of-balance work (6.38), defined as

Resstag = |∆ûn · (Kn ûn − Fn)| . (6.66)

Following [79], unless otherwise noted, a tolerance TOLstag = 10−7 kJ is set for the
residual Resstag (see Algorithm 6.1).

Finally, we remark that in this work, we consider standard Gauss integration.

6.4 Solution strategy of the phase-field problem

Adopting a staggered algorithm for the finite-step problem (6.29) implies solving the
SLCP (6.63) at each iteration. In this work, the SLCP (6.63) is directly handled using
the explicit iterative scheme referred to as the PSOR algorithm [127]. Furthermore,
we consider the penalty approach proposed in [79], whereby the irreversibility con-
straint is enforced in an approximate manner, by adding a penalization term to the
functional. The results provided by this latter technique will be used as a reference
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solution in the numerical tests in Section 6.5, to assess the validity of the proposed
PSOR method.

6.4.1 Penalization of the irreversibility constraint

Herein, we briefly describe, in the discrete setting, the penalty approach employed
in [79] to solve the unilateral incremental problem for the phase field d.

The idea is to replace the constrained minimization (6.62) with the following
unconstrained problem

∆d̂ ∈ argmin

{
1
2

∆d̂
T
Qi∆d̂ + ∆d̂

T
qi + p

(
Nd∆d̂

)}
. (6.67)

In Equation (6.67), the non-linear penalty term p
(

Nd∆d̂
)

provides the discretization
of the functional

1
2 γ
∫

Ω
〈d− dn〉2− dΩ , (6.68)

where 〈·〉− is the negative Macaulay bracket. The main purpose of the penalization
is to introduce an extra energy term in the total energy that diverges when the ir-
reversibility condition is violated, i.e., when d − dn < 0. Clearly, when γ → +∞
we recover the unilateral constraint d ≥ dn and its discretized counterpart ∆d̂ ≥ 0.
It is worthwhile to notice that the penalization coefficient γ is a dimensional quan-
tity depending on the Gc/l0 ratio and a wrong choice of its value may lead to ill-
conditioning of the system associated to (6.67). A detailed analysis of the computa-
tional performance of this approach and a criterion for the choice of the coefficient γ
are available in [79].

The minimization of the penalized total energy functional with respect to the
phase-field variable provides the following non-linear equation in the phase-field
finite increment:

Qi∆d̂ + qi + p(Nd∆d̂) = 0 . (6.69)

The element penalization vector p(e) can be computed as follows:

p(e)(N(e)
d ∆d̂

(e)
) =

∫

Ωe

γ 〈N(e)
d ∆d̂

(e)〉− (N(e)
d )T dΩe . (6.70)

The solution of (6.69) requires a Newton-Raphson iterative scheme in view of the
nonlinearity entailed by the presence of the Macaulay bracket. The residual is de-
fined as rd(∆d̂) := Qi∆d̂ + qi + p(Nd∆d̂). The penalty contribution to the element
consistent tangent matrix reads:

∂p(e)

∂∆d̂
(e)
(N(e)

d ∆d̂
(e)
) =

∫

Ωe

γ H−
(

N(e)
d ∆d̂

(e)
)

(N(e)
d )T N(e)

d dΩe , (6.71)

where H−
(

N(e)
d ∆d̂

(e)
)

is the negative Heaviside function evaluated at the linear
combination of the element shape functions and solution of the phase field at the
control points. Here, the importance of the penalty coefficient for the numerical
stability of the solver is clear. At every Newton-Raphson iteration different entries
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of the tangent matrix have an additional contribution of the order of magnitude of
γ.

The convergence criterion used in the iterative scheme is a suitable measure,
i.e., the L∞ norm of the difference between two subsequent phase-field increment
solutions, namely:

ResNR,d :=
∥∥∥ ∆d̂

k − ∆d̂
k−1

∥∥∥
L∞

, (6.72)

where k is the iteration number. Finally, we set the tolerance for the Newton-
Raphson scheme to solve the penalty approach as TOLNR,d = 10−4. The choice of
relaxing TOLNR,d with respect to the value proposed in [79] is due to the fact that we
control the maximum variation of two subsequent phase-field solutions, which are
non-dimensional quantities ranging from 0 to 1.

6.4.2 Projected successive over-relaxation algorithm

In this thesis, we propose to solve the SLCP defined in Equation (6.63) using the
PSOR algorithm [127] at each staggered iteration. According to the PSOR algorithm,
the matrix Q is additively decomposed as Q = L + D + LT, where L is the strictly
lower triangular part, D is the diagonal, and LT its strictly upper triangular part of
matrix Q. To simplify the notation, we drop the index i within the staggered scheme
in Algorithm 6.1 as well as the (.̂) symbol in the solution vector of the phase-field
at the control points. The rc-th component of the matrix is denoted as Qrc, where r
represents the row-index and c the column-index. The algorithm is iterative and the
r-th component of the solution at the k-th PSOR iteration reads:

∆dk
r =

〈
∆dk−1

r − D−1
rr

[
Qrc ∆dk−1

c + qr + Lrc (∆dk
c − ∆dk−1

c )
] 〉

+
, (6.73)

where r > c, Lrc := Qr>c, Drc := Qr=c, and 〈·〉+ denotes the positive part of the
argument. We highlight that irreversibility is enforced componentwise in strong
form via the Macaulay bracket operator, while the explicit nature of the algorithm is
guaranteed by the the strictly lower triangular format of matrix L. This aspect can be
noticed looking at the first three components of the solution vector at the k-th PSOR
iteration:

∆dk
1 =

〈
∆dk−1

1 −Q−1
11

[
Q1c ∆dk−1

c + q1

] 〉
+

∆dk
2 =

〈
∆dk−1

2 −Q−1
22

[
Q2c ∆dk−1

c + q1 + Q21 (∆dk
1 − ∆dk−1

1 )
] 〉

+

∆dk
3 =

〈
∆dk−1

3 −Q−1
33

[
Q3c ∆dk−1

c + q3 + Q31 (∆dk
1 − ∆dk−1

1 ) + Q32 (∆dk
2 − ∆dk−1

2 )
] 〉

+

. . .

The symmetric matrix Q of the SLCP is also a sparse matrix because of the finite sup-
port of the shape functions of the spatial discretization. This feature, together with
the explicit nature of the algorithm, allows for a particularly compact and effective
implementation of the PSOR algorithm, which is illustrated in detail in Appendix
6.A.

By Corollary 2.2 in [127] the sequence ∆dk defined above converges to the unique
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minimizer of problem (6.62). The solution of the SLCP involves the fulfillment of the
three condtions as in Equation (6.63). Different possibilities to control the solution
are described to ensure the convergence of the PSOR algorithm. The irreversibility
constraint on the phase-field variable (6.63c) is automatically satisfied by the pres-
ence of the Macaulay bracket in (6.73). Therefore, the first possible criterion controls
the variation of the phase-field increment between two subsequent iterations only.
Specifically, we evaluate the infinity norm of the latter quantity as:

ResPSOR :=
∥∥∥ ∆dk − ∆dk−1

∥∥∥
L∞

. (6.75)

Since the phase field is non-dimensional and ranges from 0 to 1, the previous mea-
sure is seen as already normalized with respect the reference value d = 1. The max-
imum increment that would be experienced in a single load step cannot be more
than the unit. Therefore, a reasonable tolerance seems to be TOLPSOR = 10−4, which
also allows to compare results with respect to the penalty approach introduced in
Section 6.4.1. We highlight that the criterion that controls ResPSOR in Equation (6.75)
is the one we actually use in the numerical examples of Section 6.5. In Appendix 6.B,
we discuss other two alternative possible criteria involving condition (6.63b), which
allows to control the PSOR algorithm.

6.5 Numerical results

In this section, we assess the performance of the proposed PSOR solution strategy in
comparison with the penalty approach described in [79]. To this extent, we assume
small displacements and quasi-statics and consider two well-known benchmarks
in the phase-field literature: the single-edge notched (SEN) specimen under shear
and the L-shaped specimen. In both cases, we assume a plane strain regime and
a loading-unloading history under displacement control. The material parameters
for both tests are reported in Table 6.1, while the geometry, the mesh, and the time
history are described in the relevant subsections.

TABLE 6.1: Material properties.

Material type
E ν Gc l0

GPa - N/mm mm

1 210.00 0.30 2.700 0.01

2 25.85 0.18 0.095 5.00

Furthermore, with reference to the staggered scheme in Algorithm 6.1, we recall
that, unless otherwise noted, we set the corresponding tolerance TOL

(1)
stag = 10−7 kJ

following [79], while our convergence criterion controls Equation (6.38) since the al-
ternate minimization algorithm starts first to solve the balance of linear momentum
equation. Nevertheless, for the sake of completeness, the evolutions of the discrete
total energy functional Πn and of the fracture energy GcDn are also reported in the
results. Additionally, we set the PSOR algorithm and the penalty method tolerances
to TOL

(1)
PSOR = TOL

(1)
NR,d = 10−4 (see Section 6.4). We further tested both algorithms

with TOL
(2)
PSOR = TOL

(2)
NR,d = 10−6 to assess their performance under a more severe



134
An explicit algorithm for irreversibility enforcement in phase-field model-
ing of crack propagation

u = (ūn, 0)
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FIGURE 6.1: SEN specimen under shear loading. Geometry and boundary conditions.

convergence criterion. Moreover, we recall that the tolerance for the enforcement of
the balance of linear momentum has been set to TOLNR,u = 10−9 kJ.

6.5.1 Single edge notched specimen (SEN) under shear

The SEN example, originally considered in Bourdin et al. [34], consists of a crack
propagation problem in a shear-loaded square plate with a pre-existing crack mod-
eled by a physical geometrical discontinuity (see Figure 6.1). The material param-
eters are those of material type 1 of Table 6.1. The initial crack length is a, while
the square specimen has width 2a = 1 mm and the specimen thickness is assumed
equal to 1 mm. The geometry is spatially discretized adopting a multipatch ap-
proach (see Section 2.1.2.9), which allows to account for the initial physical discon-
tinuity. Namely, we consider 2 patches defined by the subdomains: (−a, a)× (0, a)
and (−a, a)× (−a, 0), such that the notch lies in the patch interface. Each patch is
discretized using C0 linear shape functions and features a uniform mesh of 401x201
control points corresponding to 400x200 elements, such that we consider 4 elements
resolving the critical length l0. The specimen is subject to Dirichlet boundary con-
ditions on the bottom, where it is clamped, and on the top, where it undergoes a
horizontal imposed displacement of magnitude un with prevented vertical displace-
ment. The load history is subdivided in time steps denoted with n. The reference
displacement increment is ∆un = 3 · 10−4 mm. Since the first part of the response
is linear elastic, a refined time step is not needed and, therefore, the initial displace-
ment is set to u1 = 6 · 10−3 mm. Then, for n = 2, ..., 21 the loading branch is char-
acterized by un+1 = un + ∆un, while in the unloading part of the load history, for
n = 22, ..., 34, the imposed displacement is un+1 = un − 3∆un.

In Figure 6.2, we investigate the global response in terms of reaction force Rn,
internal energy En, and fracture energy GcDn as a function of the imposed displace-
ment un for both the PSOR algorithm and the considered penalty method. The re-
sponse is nearly linear elastic until the peak corresponding to step 13. Note that the
initial part of the elastic energy curve in Figure 6.2(b) should be almost quadratic,
even though it does not appear to be so due to the very coarse time step used in
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(a) Reaction force. (b) Internal and fracture energies.

FIGURE 6.2: SEN specimen under shear loading. Global response with PSOR and penalty
methods in terms of reaction force Rn, internal energy En, and fracture energy GcDn versus
imposed displacement un. Solid marks denote three relevant steps of the time history: step
14, at the start of the softening branch, step 17, intermediate between peak and unloading

branch, and step 34 corresponding to the end of the time history.

the initial part of the analysis. At the end of step 13, the stress concentration at the
notch tip drives the growth of the phase-field variable until the crack onset, after
which the specimen response enters the softening branch. As expected, the unload-
ing path is linear elastic with no further growth of the phase field. Here, the reaction
force is linear with reduced (degraded) stiffness, the internal energy is quadratic,
and the dissipation remains constant. It is interesting to note that the fracture en-
ergy GcDn grows monotonically during the sequence of staggered iterations and,
as a consequence, the total energy decreases. During shear loading, the failure pat-
tern deviates from the symmetry axis, as it can be noticed in Figure 6.3. This result
stems from the anisotropic degradation of the elastic free energy (i.e., damage only
affects the tensile part of the volumetric strain and the deviatoric strain) according
to the unilateral contact model [10]. We further highlight that in Figure 6.2 the PSOR
algorithm and the penalty method produce virtually the same results.

The convergence of the staggered algorithm is shown in Figure 6.4 for the criti-
cal load increment 14, corresponding to the crack onset. We recall that the stopping
criterion in our staggered algorithm involves the discretized counterpart of the out-
of-balance work, as stated in Equation (6.66). In Figure 6.4, we also plot other two
quantities: the total energy Πn calculated via Equation (6.64) and the fracture energy
GcDn calculated via Equation (6.65b). Both of them could also be used to define alter-
native convergence criteria. The choice of a suitable stopping criterion is a delicate
point of the staggered scheme. This can be appreciated in Figure 6.5, where con-
tour plots of the phase-field variable are shown at different staggered iterations. All
of them qualitatively seem reasonable solutions for the crack propagation problem,
but they actually correspond to out-of-balance states between internal and external
forces. We further remark that while the results of Figures 6.4 and 6.5 correspond to
the PSOR algorithm, the same results are observed with the penalty method.

Finally, the computing performances of the PSOR method are compared to those
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(a) Step 14. (b) Step 17. (c) Step 34.

FIGURE 6.3: SEN specimen under shear loading. The phase-field problem is solved via the
PSOR algorithm and we consider the phase-field evolution at three different steps: steps 14
and 17 correspond to the loading branch, while step 34 is at the end of the unloading branch.

During the unloading phase, from step 22 to step 34, the phase field does not evolve.

(a) Staggered residual. (b) Fracture energy. (c) Total energy.

FIGURE 6.4: SEN specimen under shear loading. Convergence of the staggered algorithm
using the PSOR method at load step 14 in terms of staggered residual Resstag, fracture energy

GcDn, and total energy functional Πn versus the number of staggered iterations.

of the penalty method. The overall execution time of both methods (measured via
MATLAB® command tic-toc) in each n-th load step is depicted in Figure 6.6. Due
to the explicit nature of the PSOR algorithm, we notice the non-negligible reduc-
tion in the analysis time with respect to the penalty approach [79]. Furthermore,
we remark that, in the unloading steps n = 22, ..., 34, the PSOR method does not
iterate, while the penalty method requires at least a couple of Newton-Raphson it-
erations. For the sake of completeness, the time required for the execution of the
phase-field subroutine in the staggered iterations of loading step 14 is reported
in Figure 6.7, which shows the stability of the PSOR method in terms of number
of iterations and, consequently, of the required computational time to reach con-
vergence. The same stable trend is achieved by the penalty method. It should
be mentioned, however, that these results are strictly related to the choice of the
tolerance in the two methods. More specifically, for the considered benchmarks
we observed that the two approaches have a different behavior close to the solu-
tion. The PSOR method needs a significant number of iterations to meet a more



Numerical results 137

(a) Iteration 10. (b) Iteration 100. (c) Iteration 200.

(d) Iteration 300. (e) Iteration 400. (f) Iteration 500.

FIGURE 6.5: SEN specimen under shear loading. Phase-field evolution during the staggered
iterations (iterations 10, 100, 200, 300, 400, and 500) at load step 14 for the PSOR method.

severe stopping criterion. Conversely, the Newton-Raphson method achieves the
usual quadratic convergence rate, both for severe and reduced tolerances. However,
for the two tolerances of the PSOR and penalty methods considered in this work
(namely TOL

(1)
PSOR = TOL

(1)
NR,d = 10−4 and TOL

(2)
PSOR = TOL

(2)
NR,d = 10−6) we observe

that, for the SEN specimen benchmark, the PSOR method provides a significant re-
duction in terms of elapsed time of the execution of the phase-field subroutine with
respect to the penalty approach.

6.5.1.1 Preliminary C1 quadratic results

The aim of this section is to show that the PSOR algorithm can be efficiently used
also with higher-order, higher-continuity methods and is therefore suitable to be
adopted in the IgA context. To this end, we further test the PSOR algorithm using a
C1 quadratic B-spline discretization of the SEN specimen and the same multipatch
scheme as before. In particular, we investigate meshes with an increasing number of
elements to assess whether the high regularity of IgA shape functions can lead to a
reduction in terms of mesh size, which translates into faster calculations. To this end,
we depart from a mesh with 201x202 C1 quadratic elements, which we h-refine to
obtain another two meshes with 271x342 elements and 401x402 elements. We further
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FIGURE 6.6: SEN specimen under shear loading. Total elapsed time to execute the phase-
field subroutine at each load step. Comparison between PSOR and penalty methods.

FIGURE 6.7: SEN specimen under shear loading. Total elapsed time to execute the phase-
field subroutine at load step 14. Comparison between PSOR and penalty methods.

consider two different tolerances for the staggered method: TOL(1)stag = 10−7 kJ and

TOL
(2)
stag = 10−10 kJ, while for the PSOR method and the Newton-Raphson algorithm

we set TOL(1)PSOR = TOL
(1)
NR,d = 10−4. Additionally, we use the solution obtained with

the penalty method and linear B-spline discretization featuring 400x400 elements
as a reference benchmark. However, we use the same number of Gauss points for
each method regardless of the polynomial degree of approximation in the spatial
discretization.

Figure 6.8 shows the global response of the reaction force Rn during the loading-
unloading history of the SEN specimen test obtained with the PSOR method com-
bined with a C1 quadratic discretization and the benchmark calculated with the
penalty method and a linear B-spline element mesh. For the coarsest mesh, with
201x202 C1 quadratic elements, we observe that increasing TOLstag does not yield
a significant improvement in terms of solution accuracy for Rn with respect to the
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FIGURE 6.8: SEN specimen under shear loading. Comparison of the reaction force obtained
with the PSOR method and a C1 quadratic B-spline discretization versus the penalty method
and a linear B-spline discretization ( PSOR 201x202 elements TOL

(1)
stag = 10−7 kJ,

PSOR 201x202 elements TOL(2)stag = 10−10 kJ, PSOR 271x342 elements TOL(1)stag = 10−7 kJ,

PSOR 401x402 elements TOL(1)stag = 10−7, Penalty 400x400 elements TOL(1)stag = 10−7)
kJ.

considered benchmark. Additionally, none of the considered tolerances leads to a
reaction curve close to the reference solution during the propagation of the crack.
This issue results from an insufficient number of elements to resolve the internal
length l0, which is only 2 for the 201x202 mesh. Maintaining TOL

(1)
stag = 10−7 kJ

and investigating the PSOR solution over the finer C1 quadratic meshes, which fea-
ture an increased number of elements to represent l0 (3 for the 271x342 mesh and 4
for the 401x402 mesh), we observe that the resulting reaction force Rn approaches
the penalty solution as we progressively refine the mesh. Therefore, in the cases
analyzed here we observe that the mesh resolution of the internal length (i.e., the
number of elements supporting this length) is more relevant than the regularity of
B-spline approximation. Nevertheless, we remark that the results shown in Figure
6.8 are preliminary and we intend to pursue further numerical tests featuring alter-
native IgA meshes (see Section 8).

6.5.2 L-shaped specimen test

The L-shaped specimen test, as described in [194], does not consider a pre-existing
crack and involves fracture nucleation as well as propagation, resulting in a more
elaborate test. The problem setup, comprising the geometry and the boundary con-
ditions, is shown in Figure 6.9, where a = 250 mm, while the specimen thickness is
t = 100 mm. The material parameters are assumed to be those of material type 2
in Table 6.1. The zoomed detail in Figure 6.9 shows the trapezoidal reinforcement,
glued on the lower wing of the L-shape panel to avoid localized stress singulari-
ties inside the specimen. A vertical displacement un is applied to the shorter base
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FIGURE 6.9: L-shaped specimen test. Geometry and boundary conditions.

of this ancillary item, while its horizontal degrees of freedom are restrained. The
L-shaped structure is also completely clamped at y = −a. A loading-unloading dis-
placement history is applied under plane strain conditions: starting from u1 = 0.01
mm and considering ∆un = 0.01 mm, 35 loading steps are applied (from 2 to 36),
followed by 11 unloading steps (from 37 to 47). The unloading steps are obtained
employing a loading decrement 3∆un. For the adopted IgA discretization, the do-
main is subdivided into 4 patches (see Section 2.1.2.9), glued together such that C0

continuity is granted at the interfaces. These patches are defined by the subdomains:
(−a, 0) × (−a, 0), (−a, 0) × (0, a), (0, a) × (0, a), and the trapezoidal reinforcement
and are discretized by 200x400, 320x200, 80x200, and 80x10 elements, respectively.
We consider C0 linear shape functions and the minimum mesh size is equal to 0.59
mm, fulfilling the spatial resolution requirements set by the assumed internal length
l0 according to [79], where the minimum element size is considered to be hmin = 1

4 l0.

In Figure 6.10, we show the global response for the L-shaped specimen in terms
of reaction force Rn, internal energy En, and fracture energy GcDn, at each imposed
vertical displacement un. Three different behaviors of the considered sample can be
identified. Until step 23, corresponding to the peak, no propagation occurs and the
response is nearly elastic. From step 24 to 36, crack nucleation (see Figure 6.11(a))
and propagation (see, e.g., Figure 6.11(b)) take place, defining the softening part of
the curve in Figure 6.10(a) and leading to a significant increase of fracture energy
and to a corresponding reduction of elastic energy, noticeable in Figure 6.10(b). Fi-
nally, we highlight that during the elastic unloading stage starting after step 36, the
level of dissipation remains constant and the crack no longer propagates (see Figure
6.11(c)), satisfying the irreversibility constraint. Furthermore, we remark that for
the L-shaped panel test, the penalty method seems to be less accurate, producing a
slightly non-constant dissipation in the unloading stage, as one can notice from the
slight downward slope for decreasing un in the final part of the GcDn − un curve. In
Figure 6.12, we present the convergence of the staggered algorithm at loading step
24, at the beginning of crack propagation. In particular, we consider the staggered
residual (see Figure 6.12(a)), the total energy (see Figure 6.12(c)), and the fracture en-
ergy (see Figure 6.12(b)). We notice that for the L-shaped benchmark the discretized
counterpart of the out-of-balance work seems to represent a conservative choice, due
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(a) Reaction force. (b) Internal and fracture energies.

FIGURE 6.10: L-shaped specimen test. Global response with PSOR and penalty methods
in terms of reaction force Rn, internal energy En, and fracture energy GcDn versus imposed
displacement un. Solid marks denote three relevant steps of the time history: step 24 corre-
sponds to the first step after the beginning of the softening branch, step 31 is an intermediate
step between the peak (step 23) and the beginning of the unloading branch, and step 47 is

the end of the time history.

(a) Step 24. (b) Step 31. (c) Step 47.

FIGURE 6.11: L-shaped specimen test. The phase-field problem is solved via the PSOR al-
gorithm and we consider the phase-field evolution at three different steps: steps 24 and 31
correspond to the loading branch, while step 47 is at the end of the unloading branch. Dur-

ing the unloading phase, from step 37 to step 47, the phase field does not evolve.

to the fact that both the total energy and the fracture energy GcDn at iteration 250
(see Figure 6.12(c) and 6.12(b)) appear to be minimized, while Resstag suggests the
need to further iterate. Moreover, Figure 6.13 confirms that there is no remarkable
difference in terms of the phase-field solution obtained between iteration 300 and
500 of loading step 24. Furthermore, we remark that results presented in Figures
6.11, 6.12, and 6.13 are obtained using the PSOR method and lead to virtually indis-
tinguishable solutions with respect to the penalty method.
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(a) Staggered residual. (b) Fracture energy. (c) Total energy.

FIGURE 6.12: L-shaped specimen test. Convergence of the staggered algorithm using the
PSOR method at load step 24 in terms of staggered residual Resstag, fracture energy GcDn,

and total energy functional Πn versus the number of staggered iterations.

(a) Iteration 10. (b) Iteration 100. (c) Iteration 200.

(d) Iteration 300. (e) Iteration 400. (f) Iteration 500.

FIGURE 6.13: L-shaped specimen test. Phase-field evolution during the staggered iterations
(iterations 10, 100, 200, 300, 400, and 500) at load step 24 for the PSOR method.

A comparison between the total time required for the execution of the phase-
field subroutine via the PSOR and penalty methods is shown in Figure 6.15, while
in Figure 6.14, we assess instead the performance of the PSOR and penalty algo-
rithms in terms of computing time at each staggered iteration of step 24. The explicit
nature of the PSOR algorithm leads to a time-saving performance, especially at the
computationally more demanding step 24, during which the crack field nucleates.



Numerical results 143

FIGURE 6.14: L-shaped specimen test. Total elapsed time to execute the phase-field subrou-
tine at load step 24. Comparison between PSOR and penalty method.

FIGURE 6.15: L-shaped specimen test. Total elapsed time to execute the phase-field subrou-
tine at each load step. Comparison between PSOR and penalty methods.

Figures 6.15 and 6.14 show a similar behavior of the PSOR and penalty method as
we reported for the SEN specimen in Section 6.5.1.

Finally, we remark that, to assess the PSOR algorithm we tested two tolerances
(i.e., TOL(1)PSOR = TOL

(1)
NR,d = 10−4 and TOL

(2)
PSOR = TOL

(2)
NR,d = 10−6 ) also for the L-

shaped specimen test. While for the SEN specimen example, a dramatic reduction of
TOLPSOR value leads to the same results in terms of time performance with respect to
the penalty method, this is not the case for the L-shaped panel test, which proved to
be more computationally demanding for the PSOR method when a tolerance equal
to 10−6 is considered. Conversely, the performance of the penalty method in terms
of required elapsed total subroutine time is less sensitive to the chosen tolerance.
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6.6 Conclusions

In this chapter, we present a novel solution technique for the phase-field modeling
of brittle fracture in elastic solids using IgA. In particular, we consider a thermo-
dynamically consistent phase-field model, which accounts for a different damaging
behavior in tension and compression as in [10]. We alternatively minimize the dis-
placement and damage fields via a staggered approach and we propose to use the
PSOR algorithm to solve the minimization of the total energy of the system with
respect to the phase-field variable. The chosen solution technique directly enforces
the irreversibility constraint, cutting negative values of the phase-field increments at
the control points. We assess the performance of the PSOR algorithm and we notice
a significant reduction of the execution elapsed time of the phase-field subroutine
with respect to the penalty approach in [79]. This is related to the explicit nature of
the PSOR technique, while the penalty method needs to assemble new matrix and
vector terms to minimize the first variation of the penalized total energy function
with respect to the phase-field variable for every Newton-Raphson iteration. It will
be interesting in the future to compare the PSOR and penalty approaches consider-
ing real industrial problems dealing with large systems of equations.

To study the PSOR algorithm we could accurately resolve two standard bench-
marks: a SEN specimen and an L-shaped panel both discretized via an IgG multi-
patch approach that features linear shape functions. For both considered cases we
test two tolerances (i.e., TOL(1)PSOR = TOL

(1)
NR,d = 10−4 and TOL

(2)
PSOR = TOL

(2)
NR,d = 10−6)

and we observed that using TOL
(1)
PSOR = TOL

(1)
NR,d = 10−4, the PSOR algorithm al-

lowed for a faster resolution of the problem with respect to the penalty method in
both benchmark tests. While for the SEN specimen example, a dramatic reduction of
the tolerance leads to the same results in terms of time performance with respect to
the penalty method, this is not the case for the L-shaped panel test, which proved to
be more computationally demanding for the PSOR method when a tolerance equal
to 10−6 is considered. Conversely, the performance of the penalty method in terms
of required time is less sensitive to the chosen tolerance. We believe that this issue
is related to the tuning of the penalty parameter γ, which strongly depends on the
toughness-internal length ratio. In fact, the value of γ for the L-shaped panel test
is much smaller with respect to its counterpart for the SEN specimen benchmark,
thereby representing a more relaxed constraint. On the other hand, it is worth noting
that the application of the PSOR method is limited to linear and symmetric formula-
tions of the phase-field problem. In this respect, the penalty approach appears to be
of a more general applicability, though conditioned by a proper choice of the penalty
parameter. Additionally, we discuss the choice of a suitable stopping criterion for the
staggered scheme. Among possible criteria, we identify the control of the variation
between two subsequent iterations of either the total energy functional or the phase-
field variable. The latter option is equivalent to control the dissipated energy, since
it provides a global measure of the damage inside the domain. However, in this
study the considered convergence criterion uses the discretized counterpart of the
out-of-balance work, which seems to grant the desired control over the staggered
scheme.

We also present preliminary results comprising the modeling of the SEN speci-
men benchmark via C1 quadratic B-splines shape functions, leading to the considera-
tion that the internal length resolution seems to be more relevant than the regularity
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of the approximation. It might be the case that using C1 functions to approximate a
physical discontinuity, such as the pre-existing crack in the SEN specimen, does not
bring any further benefit. Further immediate studies could explore different approx-
imations for each field in the problem, e.g., the phase field could be described by C0

linear functions while the displacement could be modeled via C0 quadratic B-splines,
such that the both fields share the same number of control points. In any case, we
believe that our preliminary results pave the way for future studies on higher-order
discretizations [32].

Appendix 6.A: Implementation of the PSOR algorithm for
sparse matrices

In Algorithm 6.A.1, we describe the implementation of the PSOR method for a sym-
metric sparse square matrix of dimension nnp xnnp (nnp = m1m2 is the number of
control points) and nnz non-zero entries, according to the compressed column stor-
age (CCS) representation. The input data are the matrix of the values PA, the matrix
of the row indices IR, the array JC containing all the pointers to entries of the IR
array, and the driving vector q that here is treated as an array q.

In Algorithm 6.A.1, the While loop iterates until the chosen convergence criterion,
i.e., the infinite norm of the solution variation between two subsequent iterations, is
satisfied.

The outer For loop runs over the sparse matrix columns jcol (i.e., over the com-
ponent of the solution array ∆dk(jcol)). Here, the explicit nature of the algorithm is
clear, since the solution at every k-th iteration is obtained component-wise and the
jcol-th component depends on all its previous components (from 1 to jcol − 1). The
scheme exploits the fact that L is a strict lower triangular matrix. According to the
CCS representation, the For loop runs over the columns of the sparse matrix.

The inner For loop runs over the sparse matrix h-th row of the jcol-th column.
The matrix-to-vector products are performed according to the standard description
of sparse matrices. For fixed r-th index, the product Qrc ∆dk−1

c of Equation (6.73)
returns a scalar, which is stored into the quantity Q∆d.

The first If statement (irow == jcol) extracts the diagonal term, compute its in-
verse, and stores it into the scalar variable D−1. The second If statement (irow < jcol)
computes the product Qr>c (∆dk

c − ∆dk−1
c ) of Equation (6.73). It is the scalar product

between the r-th row of the matrix LT and the vector (∆dk
c − ∆dk−1

c ). Since LT is the
strict upper triangular part of the sparse matrix, the If statement reads irow < jcol .
The result of the scalar product Qr<c (∆dk

c −∆dk−1
c ) is stored into the quantity L∆∆d,

where ∆∆d refers to the variation of the solution between two subsequent iterations
k− 1 and k.



146
An explicit algorithm for irreversibility enforcement in phase-field model-
ing of crack propagation

Algorithm 6.A.1 PSOR algorithm for sparse matrices.
input : PA(nnz, 1), IR(nnz, 1), JC(n + 1, 1), q(n, 1)
∆d0(n, 1) = 0
while ResPSOR > TOLPSOR do

∆dk−1 = ∆dk

for jcol ← 1 to nnp do

Q∆d = 0
L∆∆d = 0
for h← JC(jcol) to JC(jcol + 1)− 1 do

irow = IR(h)
Q∆d = Q∆d + PA(h)∆dk−1(irow)
if (irow == jcol) then

D−1 = [PA(k)]−1

if (irow < jcol) then

L∆∆d = L∆∆d + PA(h)
[
∆dk(irow)− ∆dk−1(irow)

]

∆dk(jcol) =
〈

∆dk−1(jcol)− D−1
[

Q∆d + q(jcol) + L∆∆d
] 〉

+

ResPSOR =
∥∥∆dk − ∆dk−1

∥∥
∞

output: ∆dk(nnp, 1)

Appendix 6.B: Alternative stopping criteria of the PSOR algo-
rithm

Other two possible criteria involve the activation condition (6.63b). For every k-th
iteration of the PSOR algorithm, let us define the set of control points (i.e., nnp =
m1m2 is the maximum number of control points) where the phase-field increment

solution ∆dk
r is positive C(k)

+ :=
{

r ∈
[
1, nnp

]
: ∆dk

r > 0
}

and the set where

∆dk
r is zero C(k)

0 :=
{

r ∈
[
1, nnp

]
: ∆dk

r = 0
}

. Thus, for every r ∈ C(k)
+ the

activation condition satisfies Qrc∆dk
c + qr = 0, while for every r ∈ C(k)

0 it should
be valid Qrc∆dk

c + qr > 0. In the following, we introduce the other two possible
residuals as

Res(k)d+ := max
r ∈ C(k)

+

∣∣∣Qrc∆dk
c + qr

∣∣∣ , (6.B.1a)

Res(k)d0 := − min
r ∈ C(k)

0

〈Qrc∆dk
c + qr〉− . (6.B.1b)

In the first case (6.B.1a), the criterion checks whether the activation function is differ-
ent from zero in absolute value. Conversely, in the second case (6.B.1b) the criterion
verifies whether the positiveness of the activation function is violated. The residuals
in Equation (6.B.1) are problem-dependent since they are dimensional. Therefore,
we propose to study very strict tolerances, namely TOLd+ = 10−9 and TOLd0 = 10−9.
It has been observed that Res(k)d0 ≤ TOLd0 criterion is usually satisfied in all iterations,



A separately quadratic non-convex function 147

while the control of Res(k)d+ ≤ TOLd+ seems to be the most strict requirement. Thus,
the complementarity condition (6.63a) converges faster to zero since it comes from
the product of (6.63b) and (6.63c).

Appendix 6.C: A separately quadratic non-convex function

We provide a simple example of a separately quadratic function which is not jointly
convex. For η > 0 let f : R2 → R defined by

f (x, y) = 1
2 (x2 + η) y2 + 1

2 (1− x)2 . (6.C.1)

Accordingly, its Hessian matrix reads

∇2 f (x, y) =
(

y2 + 1 2xy
2xy x2 + η

)
. (6.C.2)

In particular, ∇2 f (x, y) is not positive definite for y = x when x, y� 1.

Then, we define F(x) and G(y) as evaluation of Equation (6.C.1) for fixed values
of y (i.e., ȳ) and x (i.e., x̄), respectively, as

F(x) = 1
2 (x2 + η) ȳ2 + 1

2 (1− x)2 , (6.C.3)

G(y) = 1
2 (x̄2 + η) y2 + 1

2 (1− x̄)2 . (6.C.4)

We compute again the second derivatives of F(x) and G(y):

∂2F(x)
∂x2 = ȳ2 + 1 , (6.C.5)

∂2G(y)
∂y2 = x̄2 + η , (6.C.6)

highlighting that function F(x) and G(y) are quadratic and convex.
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Chapter 7

Combining boundary-conforming
finite elements and isogeometric
collocation in the context of
fluid-structure interaction

While IgG methods have been integrated into FSI analysis almost from the beginning
of IgA [21], IgC so far has been only used for immersed FSI [41] and to the authors
best knowledge there has been no application yet to boundary-fitted FSI. Therefore,
in this chapter we discuss the spatial coupling between boundary-conforming fi-
nite elements (i.e., NEFEM) and IgC, where the coupling conditions only need to be
fulfilled at the collocation points (see Figure 7.1). In Section 7.1, we introduce the
FSI problem, focusing on the fluid mechanics, the elastodynamics equations of the
structure, as well as the FSI conditions. Then, the considered numerical methods
are detailed in Section 7.2 that focuses on the boundary-conforming mapping and
IgC for nonlinear elastostatics and its extension to elastodynamics. In Section 7.3,
several preliminary numerical tests prove the promising potential of the proposed
numerical approach. Finally, conclusions are drawn in Section 7.4.

FIGURE 7.1: NEFEM-IgC coupling.
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7.1 FSI problem definition

The FSI problem is defined in the following as a surface-coupled problem based on
the fundamental laws of continuum mechanics. First, both single-field boundary-
value problems are introduced. Even though the two fields only differ in terms
of their constitutive relations, they will be detailed in their respective viewpoints,
i.e., Eulerian for the fluid and Lagrangian for the structure. Finally, the way the
fields interact with each other is defined introducing the coupling conditions on the
common interface connecting the fluid and solid domains.

7.1.1 Fluid mechanics

Following an Eulerian viewpoint, the balance laws of the mass and linear momen-
tum for an incompressible material occupying the current domain Ωx at each instant
in time t ∈ [0, T] can be stated as

∇ · v = 0 in Ωx ∀t ∈ [0, T] , (7.1)

ρ f
(

∂v
∂t

+ v ·∇v− f
)
−∇ · T = 0 in Ωx ∀ t ∈ [0, T] , (7.2)

where v(x, t) is the fluid velocity, ρ f is the fluid density, T is the total stress tensor,
and f is the vector of external body forces per unit mass of the fluid. Due to the
incompressibility constraint, the energy equation is decoupled and not considered
here. Thus, the Navier-Stokes equations are closed by leveraging Stokes law, which
reflects the main property of a fluid to be unable to sustain shear stress. In the New-
tonian case, the total stress tensor T for incompressible fluids is defined as

T(v, p) = −pI + 2µ f D(v) , (7.3)

with

D(v) =
1
2

(
∇v + (∇v)T

)
. (7.4)

In Equation (7.3), µ f denotes the dynamic viscosity, while p(x, t) represents the pres-
sure.

A well-posed system is obtained by imposing boundary conditions on the ex-
ternal boundary of Ωx, denoted as Γx. Here, we distinguish between Dirichlet and
Neumann boundary conditions given by

v = h on (Γx)D , (7.5)
T · n = t on (Γx)N , (7.6)

where n is the outward normal unit vector, h and t are the velocity and traction
values respectively prescribed on (Γx)D and (Γx)N , which denote the Dirichlet and
Neumann parts of the boundary such that (Γx)N ∪ (Γx)D = Γx and (Γx)N ∩ (Γx)D =
∅.
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In the transient case, a divergence-free velocity field for the whole computational
domain is needed as an initial condition:

v(x, 0) = v0(x) in Ωx at t = 0 . (7.7)

7.1.2 Elastodynamics of the structure

The elastodynamic problem of the structure can be defined adopting the Lagrangian
viewpoint. For an isothermal and compressible material occupying the reference
domain ΩX with boundary ΓX at t = 0, the balance law of the linear momentum can
be stated as

ρs d2u
dt2 = ∇X · (FS) + B in ΩX ∀t ∈ [0, T] . (7.8)

In Equation (7.8), the response of a body to an external load is described by the
displacement field u (X, t) – the change between the current configuration x and the
initial configuration X – and the second Piola-Kirchhoff stress tensor S. Furthermore,
ρs indicates the density of the solid, B the prescribed body forces per unit of volume
in the initial configuration, and F the deformation gradient defined as

F =
∂x
∂X

. (7.9)

A constitutive law has to be introduced to close the system of equations and
specify the properties of the considered solid. In this work, we choose a linear stress-
strain relation between the second Piola-Kirchhoff stress tensor S and the Green-
Lagrange strain tensor E :

E =
1
2

(
FTF− I

)
, (7.10)

S = C : E , (7.11)

where C is the constant fourth-order linear elasticity tensor. Due to major and minor
symmetry properties of C, it is possible to reduce the full elasticity tensor to two
constants in the case of a homogeneous isotropic material, such that Equation (7.11)
can be written in the form

S = λstr(E)I + 2µsE . (7.12)

The two constants λs and µs are termed Lamé parameters. In the literature, the ma-
terial detailed in Equation (7.12) is known as Saint Venant-Kirchhoff model. It can be
used to describe classes of problems where large displacements occur. However, it is
restricted to small strains and elastic deformations. Thus, combining Equations (7.8)
and (7.12) leads to the balance momentum of geometrically nonlinear and materially
linear elastodynamics [77].

As for the fluid, a well-posed system is obtained by imposing boundary condi-
tions on the boundary ΓX. We again distinguish between Dirichlet and Neumann
boundary conditions, defined as in Section 7.1.1 and given by

u = g on (ΓX)D , (7.13)
(FS) ·N = t on (ΓX)N , (7.14)
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where g and t are prescribed displacements and tractions. In Equation (7.14), N
denotes the outward normal unit vector on ΓX.

Furthermore, we define the initial conditions for the displacement and velocity
as

u (X, 0) = u0 in ΩX at t = 0 , (7.15)
du (X, 0)

dt
= v0 in ΩX at t = 0 . (7.16)

7.1.3 Coupling conditions at the fluid-structure interface

A fluid-structure interaction problem is defined on a fluid domain Ω f
x and a solid

domain Ωs
x, such that

Ω f
x ∪Ωs

x = Ωx and Ω f
x ∩Ωs

x = ∅ , (7.17)

and both subdomains are separated by a unique interface Γ f si
x , i.e.,

Ω f
x ∩Ωs

x = Γ f si
x , (7.18)

where, in Equations (7.17) and (7.18), Ω f
x and Ωs

x denote the closure of Ω f
x and Ωs

x,
respectively.

The related coupling conditions to be satisfied on Γ f si
x can be stated as:

x f = xs , (7.19)

v f = vs , (7.20)

T · n f = σ · ns . (7.21)

To transfer stresses between the Eulerian and Lagrangian viewpoints in the solid
domain, i.e., the current and reference configurations, the following relationship be-
tween the total stress tensor T and second Piola-Kirchhoff stress tensor S holds on
Γ f si

x
S = det(F)F−1T F-T . (7.22)

7.2 Numerical methods

In this section, we propose a partitioned approach to solve the full FSI problem. To
this end, we introduce the coupling between NEFEM to solve the fluid problem and
IgC to resolve the solid problem. The key feature to couple both methods is the def-
inition of a common spline-based representation of the interface between the solid
and fluid subdomains. This is achieved on the fluid side by a boundary-conforming
mapping for the elements in the vicinity of the wall involving the spline used on



Numerical methods 153

Ωn

Ωn+1

Γn+1

Γn

Pn

Qe
n

t−n+1

t+n

x

y

t

FIGURE 7.2: Example of a discretized space-time slab Qh
n for the time span [tn, tn+1].

the solid side. Additionally, we consider a staggered Dirichlet-Neumann coupling,
which combines a space-time finite element method and the NEFEM-based bound-
ary mapping on the fluid side with IgC on the solid side. In the following, we first
introduce the numerical methods to solve the fluid and the solid problem and, then,
we proceed to present the computational strategy for their coupling.

7.2.1 Fluid solver

We use a space-time discretization for the fluid, as shown in Figure 7.2. The key idea
is to discretize the space-time continuum Q – assembled by all spatial domains for
a given time-span – at once. In this work, we conduct this discretization by apply-
ing the most common approach in the literature, which consists of a discontinuous
Galerkin formulation in time. However, this discretization can be carried out in al-
ternative ways, e.g., with n-simplices [26, 54, 104]. Initially derived to solve elastody-
namic problems [94], the chosen space-time discretization was transferred to incom-
pressible Euler and Navier-Stokes equations on rigid domains [167] and extended as
the deforming-spatial-domain/stabilized space-time method to deforming domains [174,
175]. A brief introduction of the applied space-time finite element method is given
below, followed by a description of the adopted boundary-conforming mapping,
which represents the basis for the coupling with the solid solver. We refer readers
to [89] for more details.

7.2.1.1 Deforming-spatial-domain/stabilized space-time method

To discretize the space-time domain, we utilize the property of physical time-
dependent problems that information flows in the direction of positive time only
[94]. The time interval [0, T] is subdivided into subintervals In = (tn, tn+1), with tn
and tn+1 representing an ordered series of time levels 0 = t0 < t1 < t2 < ... < tN =
T. We can define the time slab Qn by defining its bounds Ωn = Ωtn , Ωn+1 = Ωtn+1 ,
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and the surface Pn, which is based on the time varying boundary Γt for In (see Fig-
ure 7.2). The problem is solved sequentially for each space-time slab, starting with:

(vh)
+
0 = v0 . (7.23)

Each space-time slab is discretized by extruding a spatial triangulation in the time
direction using a single element in time for each element in space (i.e., Qe

n, see Figure
7.2). Hence, a suitable finite-dimensional interpolation of the space-time domain can
be constructed by means of a tensor-product structure, i.e., using shape functions
defined as

Nα
a = TαNa , (7.24)

where Tα represents the interpolation function in time and Na the interpolation func-
tion in space. Thus, we introduce the adopted finite-dimensional spaces:

(V h
δv)n = {δvh | δvh ∈ [H1(Qh

n)]
ds , δvh = 0 on (Ph

n )D} , (7.25)

(Sh
v)n = {vh | vh ∈ [H1(Qh

n)]
ds , vh = h on (Ph

n )D} , (7.26)

(Sh
p)n = (V h

p)n = {ph | ph ∈ H1(Qh
n)} . (7.27)

In the following, linear shape functions in time are combined with either lin-
ear Lagrangian elements [94, 174, 175] in the interior domain or the boundary-
conforming elements introduced in Section 7.2.1.2 in space. Other combinations like
spline-based methods in the form of space-time IgG formulations are presented in
[173].

Based on the mathematical definitions presented so far, we further introduce the
following notation:

(vh)
±
n = lim

ε→0
v(tn ± ε) , (7.28)

∫

Qh
n

. . . dQ =
∫

In

∫

Ωh
t

. . . dΩ dt , (7.29)
∫

Ph
n

. . . dP =
∫

In

∫

Γh
t

. . . dΓ dt . (7.30)

Then, the stabilized space-time formulation of the incompressible Navier-Stokes
equations on deforming domains can be stated as: given (vh)

−
n , find vh ∈ (Sh

v)n
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and ph ∈ (Sh
p)n such that ∀δvh ∈ (V h

δv)n, ∀qh ∈ (V h
p)n:

∫

Qh
n

(
δvh · ρ f

(
∂vh

∂t
+ vh ·∇vh − f

)
+ D(δvh) : T(ph, vh)

)
dQ +

∫

Qh
n

qh(∇ · vh)dQ

+
∫

Ωh
n

(δvh)
+
n · ρ f ((vh)

+
n − (vh)

−
n
)

dΩ

+
Ne

∑
e=1

∫

Qe
n

τ1

[
ρ f
(

∂δvh

∂t
+ vh ·∇δvh

)
−∇ · T(qh, δvh)

]

·
[

ρ f
(

∂vh

∂t
+ vh ·∇vh − f

)
−∇ · T(ph, vh)

]
dQ

+
Ne

∑
e=1

∫

Qe
n

τ2(∇ · δvh)(∇ · vh)dQ

=
∫

Ph
n

δvh · t dP .

(7.31)

The first two terms in Equation (7.31) are the weak form of Equation (7.1)-(7.2), inte-
grated over the discretized time slab Qh

n. The third term – called jump term – results
from applying a discontinuous Galerkin approach in time [94, 100], whereby the
continuity of the unknown velocity is enforced in a weak sense between the time
slabs. The last two terms on the left-hand side are the stabilization terms for the
momentum equation and the velocity field. Following the GLS/SUPG stabilization,
these terms (highlighted in blue) enhance the stability of the Galerkin method with-
out degrading accuracy [93] and allow to use equal order interpolation functions
for the velocity and pressure, while the Ladyzhenskaya-Babuška-Brezzi condition is
circumvented. A detailed analysis for the stabilized Navier-Stokes equations involv-
ing viscous stress, velocity, and pressure primary variables is presented in [28]. In
the case of linear space-time Lagrangian finite elements, the second order derivative
in the viscous term would disappear. To ensure consistency and enhance the con-
vergence, this term is reconstructed following the approach in [98]. Moreover, for
the last two terms on the left-hand side in Equation (7.31) the residual form of the
momentum equation and the incompressibility condition ensure consistency. The
parameters τ1 and τ2,

τ1 = τMOM
1
ρ f and τ2 = τCONTρ f , (7.32)

are locally defined stabilization parameters, which need to be designed by error esti-
mation, convergence, and dimensional analysis [167]. Further details on the method
and its parameters τMOM and τCONT can be found in [27, 150].

7.2.1.2 Boundary-conforming mapping

The fluid problem is solved relying on the deforming-spatial-domain/stabilized
space-time method with the GLS/SUPG stabilization introduced before. While the
solution is approximated with linear Lagrangian shape functions Na, we consider a
standard finite element mesh to only model the interior of the domain. Before dis-
cussing how the boundary elements make use of the NURBS boundary, let us first
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FIGURE 7.3: The Triangle-Rectangle-Triangle (TRT) mapping. The shape function definition
is performed on the reference element that is transformed into the global element using a

non-linear mapping ΦTRT, which includes the NURBS definition.

define a NURBS curve C(θ) = ∑n
i=1 Rp

i (θ)Bi of degree p (with n being the considered
number of control points Bi and Rp

i (θ) the NURBS shape functions for any θ knot-
vector parametric coordinate). Then, the elements on the boundary can be integrated
following the idea of NEFEM [165] by means of a Triangle-Rectangle-Triangle (TRT)
mapping [89] (see Figure 7.3) for curved triangles in 2D:

ΦTRT = Θ−1 ◦Ψ : Ωre f −→ Ωe

(
η̂, ξ̂
)
7−→ ΦTRT(η̂, ξ̂) = (1− η̂ − ξ̂)x2 + (η̂ + ξ̂)C

(
θ1 η̂ + θ3 ξ̂

η̂ + ξ̂

)
.

(7.33)

In Equation (7.33), η̂ and ξ̂ denote the parametric coordinates of the triangular ref-
erence element, x2 is the physical coordinate of the interior node, and θ1, θ3 are the
parametric coordinates of the NURBS curve at which the element boundary nodes
are located.

7.2.2 Isogeometric collocation

In this section, we derive the spatial discretization of the nonlinear elastostatics prob-
lem considering a 2D solid domain and employing an IgC scheme following [116].
To this extent, we restrict the description to model 2D problems since in Section 7.3
the tests we implement are bi-dimensional benchmarks. Afterwards, the application
of IgC is extended to the nonlinear elastodynamics model.
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7.2.2.1 Isogeometric collocation for nonlinear elastostatics

Considering the balance equations of elastodynamics (7.8) with boundary conditions
(7.13) and (7.14), a 2D nonlinear elastostatics problem, neglecting body forces, reads:
find u : ΩX → R2 such that





∇X · (FS) = 0 in ΩX ,

u = g on (ΓX)D ,

(FS) ·N = t on (ΓX)N .

(7.34a)

(7.34b)

(7.34c)

Following the work of Kruse et al. [115], the discretized collocated strong form of
(7.34) is derived based on its weak form, which can be expressed by

∫

ΩX

[∇X · (FS)] · δu dΩX −
∫

ΓX

[(FS) ·N− t] · δu dΓ = 0 , (7.35)

for every test function δu ∈ [H1(ΩX)]
ds satisfying homogeneous Dirichlet boundary

conditions, i.e.,
δu = 0 on (ΓX)D . (7.36)

Following IgC (see Section 2.1.3.2), the geometry X, the unknown displacements
u, and the virtual displacements δu are approximated by Equations (2.29) and (2.30),
obtaining

∫

ΩX

[∇X · (FhSh)] · δuh dΩX −
∫

ΓX

[(FhSh) ·N− t] · δuh dΓ = 0 , (7.37)

where the deformation gradient Fh and the stress tensor Sh are approximated due
to their dependence on the displacements uh. As in Equation (2.46), we compute a

set of collocation points τd
i =

∑
pd
l=1 ξi+l

pd
, with d = 1, 2 and i = 1, ..., md. Thus, it

is necessary to distinguish between collocation points located in the interior of the
domain, on the Dirichlet boundary, and on Neumann boundary. To this end, we
define different sets of indices

ηinterior := {i ∈ {1, ..., md} : τd
i ∈ ΩX} , (7.38)

ηD := {i ∈ {1, ..., md} : τd
i ∈ (ΓX)D} , (7.39)

ηN := {i ∈ {1, ..., md} : τd
i ∈ (ΓX)N} . (7.40)

Thus, approximating relations in (7.34), the collocated strong form of the equation
in the interior ΩX reads as

[∇X · (FhSh)]
(
τd

i
)
= 0 ∀i ∈ ηinterior . (7.41)

It becomes apparent that an alternative interpretation of IgC is the strict enforce-
ment of the respective balance law (7.34a) at fixed discrete points, i.e., at the colloca-
tion points. For the enforcement of the Neumann boundary conditions in Equation



158 Combining boundary-conforming finite elements and isogeometric colloca-
tion in the context of fluid-structure interaction

(7.34c) (see Section 2.1.3.2), we distinguish between collocation points that are lo-
cated at the edges or corners of (ΓX)N , yielding:

[(FhSh) ·N− t]
(
τd

i
)
= 0 ∀i ∈ ηN on edges , (7.42)

[(FhSh) · (N′ + N′′)− (t′ + t′′)]
(
τd

i
)
= 0 ∀i ∈ ηN on corners . (7.43)

In Equation (7.43), N′ and N′′ are the outward normals of the two Neumann bound-
aries meeting at the considered corner and t′ and t′′ are the corresponding im-
posed tractions. To avoid any issue related to inaccurate imposition of the Neu-
mann boundary conditions, we alternatively consider an EC technique, imposing
Neumann boundary conditions on edges as

[∇X · (FhSh)]
(
τd

i
)
− C∗

h
[(FhSh) ·N− t]

(
τd

i
)
= 0 ∀i ∈ ηN on edges , (7.44)

where we refer to Section 2.1.3.3 for the meaning of h and the chosen value of C∗.
At the corners we still apply the same approach as denoted in Equation (7.43) [67].
Instead, on the Dirichlet boundary (ΓX)D we can directly impose

uh
(
τd

i
)
= g

(
τd

i
)
∀i ∈ ηD . (7.45)

Thus, we obtain a system of nonlinear equations, which we want to solve for the
unknown displacement control variables ûi. To this end, we utilize the Newton-
Raphson method, which is an common approach based on the linearization of the
residual of the governing system of equations [77]. In the following, we proceed to
describe the linearization of the collocated Equations (7.41)-(7.44) according to the
approach described by Kruse et al. in [115]. For convenience, the subscript h and the
evaluation at the collocation points τd

i are omitted in the equations.

Thus, we start with Equation (7.41), which can be written in residual form as

R = ∇X · (FS) = 0 . (7.46)

Using the tensor relations ∇X · (FS) = F (∇X · S) +∇XF : S and ∇X · S = tr(C :
∇XE), Equation (7.46) can be transformed into

R = F tr(C : ∇XE) +∇XF : S = 0 , (7.47)
Ri = FikCkjlmElm,j + Fik,jSkj i, j, k, l, m = 1, 2 . (7.48)

In Equations (7.47) and (7.48), the stress tensor S and the elasticity tensor C are kept
general and depend on the chosen constitutive law. Linearization of Equation (7.47)
leads to the definition of the consistent tangent stiffness matrix K(uk) needed for the
Newton-Raphson method (see Section 2.1.4). Here, with the symbol ∆ we indicate
the results of the tensor Gateaux derivative and therefore

∆R = ∆F tr(C : ∇XE) + F tr[(D : ∆E) : ∇XE + C : ∇X∆E] (7.49)
+∇X∆F : S +∇XF : (C : ∆E) ,

with
D = ∂C/∂E . (7.50)
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As we are using a Saint Venant-Kirchhoff material (see Section 7.1.2), the elasticity
tensor C is constant and thus D = 0. Therefore, equation (7.49) reduces to

∆R = ∆F tr(C : ∇XE) + F tr(C : ∇X∆E) +∇X∆F : S +∇XF : (C : ∆E) ,
∆Ri = ∆FikCkjlmElm,j + FikCkjlm∆Elm,j + ∆Fik,jSkj + Fik,jCkjlm∆Elm . (7.51)

Linearization has to be applied also for the resulting equations on the Neumann
boundary, as they are also nonlinear. Considering the basic version of IgC and a
collocation point located on an edge, Equation (7.42) can be written in residual form
as

RN = (FS) ·N− t , (7.52)
RNi = FijSjkNk − ti . (7.53)

Linearization of the Equations (7.52) and (7.53) leads to

∆RN = (∆FS) ·N + (F∆S) ·N− ∆t . (7.54)

Assuming a deformation-independent applied pressure (i.e., ∆t = 0) and consider-
ing that ∆S = C : ∆E, Equation (7.54) reduces to

∆RN = (∆FS) ·N + [F(C : ∆E)] ·N , (7.55)
∆RNi = ∆FijSjkNk + FijCjklm∆ElmNk . (7.56)

In an analogous way, the residual form and its linearization can be derived for Neu-
mann collocation points located in corners as well as for EC. Notice that, within the
partitioned solution proposed herein, the structural solver obtains the total stress
tensor T from the flow solver, which has to be incorporated into the structural
boundary conditions by means of Equation (7.22). Combining the residuals (7.46)
and (7.52) and stiffness matrices (7.51) and (7.55) for the interior and Neumann
boundary together with Equation (7.45) for the Dirichlet boundary, a solvable lin-
ear system for the increment ∆u is obtained (see Section 2.1.4 for more details on the
solving algorithm). The definition of all tensors occurring in the above equations is
provided in Appendix 7.B (see [87, 115] for further references).

7.2.2.2 Extension to nonlinear Elastodynamics

In the transient case, we consider the balance equations of geometrically nonlin-
ear and materially linear elastodynamics stated in Equation (7.8) (neglecting body
forces) with corresponding boundary and initial conditions (see Section 7.1.2). Ap-
plying the EC method, as indicated in Section 7.2.2.1, the resulting semi-discrete
problem reads [67]: find uh such that
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ρ
d2uh(τ

d
i , t)

dt2 = [∇X · (FhSh)]
(
τd

i , t
)
∀i ∈ ηinterior, ∀t ∈ [0, T] ,

uh(τd
i , t
)
= g

(
τd

i , t
)

∀i ∈ ηD, ∀t ∈ [0, T] ,

ρ
d2uh(τ

d
i , t)

dt2 = [∇X · (FhSh)]
(
τd

i , t
)

−C∗

h
[(FhSh) ·N)− t]

(
τd

i , t
)
∀i ∈ ηN , ∀t ∈ [0, T] ,

uh(τ
d
i , 0) = u0(τ

d
i ) ∀i ∈ {1, ..., md} ,

duh(τ
d
i , 0)

dt
= v0(τ

d
i ) ∀i ∈ {1, ..., md} .

(7.57a)

(7.57b)

(7.57c)

(7.57d)

(7.57e)

It is now possible to rewrite the isogeometric semi-discrete problem (7.57) in the
form

M
d2uh(t)

dt2 + fint(uh(t)) = fext(t) , (7.58)

with initial conditions (7.57d) and (7.57e). In Equation (7.58), M is the mass matrix,
fint(uh(t)) is the vector of nonlinear internal forces, and fext(t) represents the vector
containing external forces. To solve the resulting nonlinear system of ordinary dif-
ferential equations, we have to apply a time integration algorithm to (7.58). In this
work, the so-called generalized-α method is implemented, which is commonly used in
computational mechanics [97].

For convenience, the acceleration
d2uh(t)

dt2 and the velocity
duh(t)

dt
are abbreviated

by a and v and the subscript h is omitted. Let n denote the current time step. Then,
applying the generalized-α method to Equation (7.58) leads to the residual form of
the nonlinear elastodynamics problem defined by

R(uk
n+1) =

(1− αm)

β∆t2 Muk
n+1 + fint

n+1−α f
− fext

n+1−α f
−Mφn , (7.59)

with
φn =

(1− αm

β∆t2 (un + ∆tvn) +
1− αm − 2β

2β
an
)

. (7.60)

The parameters α f , αm, β, and γ have an influence on the overall stability of the al-
gorithm. Appropriate values can be taken from the literature [97]. Regarding the
nonlinear internal and external forces, we assume that they are approximated fol-
lowing the same approach as in [66], i.e.,

fint
n+1−α f

= fint(un+1−α f ) = (1− α f )fint(un+1) + α f fint(un) , (7.61)

fext
n+1−α f

= fext(tn+1−α f ) = (1− α f )fext(tn+1) + α f fext(tn) . (7.62)

The consistent tangent stiffness matrix is then defined by

∆R(uk
n+1) =

(1− αm)

β∆t2 M + (1− α f )
∂fint(uk

n+1)

∂uk
n+1

. (7.63)



Numerical methods 161

The expressions of fint
n+1−α f

,
∂fint(uk

n+1)

∂uk
n+1

, and fext
n+1−α f

can be inferred from the semidis-

crete elastodynamics problem (see Equations (7.57) and (7.58)). Finally, the resulting
linear system can be solved by means of standard iterative methods to obtain the
update of the displacement field ∆u and, hence, the displacement field in the next
time step.

7.2.3 Coupling

If the NURBS representing the geometry in IgC for the solid problem is taken into ac-
count by the curved-boundary mapping (7.33) on the fluid side, a matching interface
representation is obtained, even though the discretization is still non-matching (see
Figure 7.1). The coupling conditions to be satisfied along the common spline rep-
resenting Γ f si

x are given by Equations (7.19)-(7.21), where due to the shared spline
representation of the fluid-solid interface n f = ns. To solve the full FSI problem, we
propose a partitioned approach that relies on a Dirichlet-Neumann coupling. Due
to the fact that the same spline geometry is used to define the fluid-solid interface,
the fluid grid can be deformed according to the discretized solution at each control
point ûs

i of the solid solver, i.e.,

u f
j =

n f si

∑
i=1

Ri(ξ j)û
s
i on Γ f si

x , (7.64)

where n f si are the control points belonging to the fluid-solid interface Γ f si
x , Ri(ξ j)

denotes the NURBS shape functions evaluated at a certain parametric coordinate
ξ j ∈ Γ f si

x , and u f
j is the resulting interpolated deformation of the fluid. Therefore,

the Dirichlet step simplifies to applying the interface velocity – determined by the
varying deformation of the solid domain in time – on the FSI interface as Dirichlet
boundary conditions for the fluid problem.

For the Neumann step, the non-matching discretizations need to be incorpo-
rated. The related boundary condition can be derived with the weak form of the
dynamic coupling condition in Equation (7.21), i.e.,

∫

Γ f si
x

δu · [(σ − T) · n]dΓ = 0 . (7.65)

Using the sifting property (2.49), a collocation form of the dynamic coupling condi-
tion can be stated as

∫

Γ f si
δ(x− τd

i )[(σ(x)− T(x)) · n(x)]dΓ = σ(τd
i )− T(τd

i ) = 0 , (7.66)

which only has to be fulfilled at the collocation points τd
i on Γ f si

x , i.e.,

σ(τd
i ) = T(τd

i ) on Γ f si
x . (7.67)
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Evaluating the stresses at the collocation points along the spline boundary of the
finite element grid on the fluid side, we obtain

Ti = T(τd
i ) =

n f

∑
j=1

Rj(τ
d
i )Tj on Γ f si

x , (7.68)

where n f is the number of fluid nodes on the interface and τd
i is a certain colloca-

tion point on Γ f si
x . Taking into account the relationship between the Eulerian and

Lagrangian viewpoints in Equation (7.22), the Neumann step can be introduced in
terms of the fluid-induced tractions on the solid given by

ts = (FS) ·N = det(F)(TF−T) ·N on Γ f si . (7.69)

Then, within IgC, the Neumann step is introduced in the solid problem either by
(7.42)–(7.43) or (7.44).

Based on the Dirichlet and Neumann steps that we have just introduced in this
section, the iterative procedure applied in the present work to solve the FSI problem
in a partitioned manner for tn+1 can be summarized for k = 1, ... until convergence
as

1. Prediction step: Prescribe (us
1)

n+1 based on the total stress tensor Tn at the pre-
vious time step tn.

2. Dirichlet step: Deform the fluid grid according to (us
k)

n+1, solve the fluid prob-
lem for (vk)

n+1, (pk)
n+1 and compute the total stress (Tk)

n+1.

3. Neumann step: Solve the solid problem for (us
k+1)

n+1 by imposing the tractions
coming from the fluid problem via Equation (7.69).

4. Check convergence: if
∣∣∣∣(us

k+1)
n+1 − (us

k)
n+1
∣∣∣∣ < ε proceed to the next time step,

otherwise continue iterating with k = k + 1 and go to step 2.

7.3 Numerical results

In this section we present a series of numerical results, which allow to have a prelim-
inary validation of the proposed computational approach described in Section 7.2,
combining a boundary-conforming finite element method (i.e., NEFEM) on the fluid
side with the IgC nonlinear elastodynamics solver [116] on the structural side and
leveraging a common spline representation of the fluid-structure interface. We con-
sider the Turek-Hron benchmark [182]. This FSI test problem describes the laminar
flow of an incompressible Newtonian fluid around a fixed cylinder with an elastic
beam attached to its right side (see Figure 7.4) and allows to investigate both the
steady and unsteady regime according to the inlet velocity. The setting of the prob-
lem along with the interaction of the flow and the elastic beam causes self-induced
oscillations of the latter, which undergoes a quasi-steady periodic wave-like defor-
mation. If we consider an unsteady regime, over time, this flow-structure interaction
effect induces large amplitude oscillations in the elastic beam.
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FIGURE 7.4: Sketch of the Turek-Hron moving flag benchmark [116].

In order to assess our spatiotemporal coupling, we first validate only the struc-
tural solver by means of a simple stand-alone test, for which a constant load is ap-
plied on the bottom edge of the deformable beam. We present a refinement study in
Figure 7.5, investigating both a linear and a nonlinear case. In these plots, we show
the relative error computed at the lower right corner of the beam using an increasing
number of control points: 17x5, 33x9, 65x17, and 129x33 (i.e., |u− ure f |/|ure f |, where
ure f is the IgG solution obtained for the finest mesh). As expected, we note that IgG
converges faster with respect to IgC for a fixed number of DOFs. In fact, if we con-
sider each subplot of Figure 7.5, IgC needs 3 further levels of mesh refinement to
reach the same level of accuracy of the IgG solution with 17x5 control points.

Then, we analyze the steady regime in the Turek-Hron benchmark [182] consid-
ering the values for the geometric and physical parameters specified in Tables 7.A.1
and 7.A.2. A parabolic velocity profile is set at the inlet and no-slip conditions are
applied to the upper and lower walls, as well as to the cylinder and the flag, while
a free-flow boundary condition is applied to the outlet (see [117] for additional de-
tails). In order to further validate our partitioned approach for FSI problems, we
compare the results obtained with NEFEM on the fluid side coupled with the IgC
method described in Section 7.2.2 on the structural side (NEFEM-IgC) with the re-
sults computed leveraging an IgG method on the structural side (NEFEM-IgG) (see
[88]), which showed very good agreement with the reference value in the literature
[182]. Thus, we run a full FSI steady simulation for the nonlinear beam and in Fig-
ure 7.6, we display a new proof of convergence to validate the steady FSI solver and
the NEFEM-IgC coupling. In the literature, a typical reference value quantity for the
comparison of numerical approaches is the amplitude of the vertical displacement
of point A, located at the tail of the flag (see Figure 7.4). Figure 7.6 compares the
relative error of the vertical displacement computed at point A of the beam for the
NEFEM-IgC and the NEFEM-IgG methods. The relative error is evaluated using the
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FIGURE 7.5: Convergence study for linear and nonlinear implementation during the struc-
tural stand-alone test. Relative error of the horizontal (u) and vertical (v) displacements
computed at the lower right corner of the beam for 17x5, 33x9, 65x17, and 129x33 control
points versus the square root of the total number of DOFs for each considered mesh: IgC

, IgG .
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FIGURE 7.6: Convergence study for the steady FSI Turek benchmark. Relative error of the
vertical displacement computed at point A of the beam (v; see Figure 7.4) for 17x5, 33x9,
65x17, and 129x33 control points versus the square root of the total number of DOFs for each

considered mesh: IgC , IgG .

same definition and meshes (i.e., 17x5, 33x9, 65x17, and 129x33 control points) as in
Figure 7.5, for which the reference value vre f once again is the IgG solution obtained
for the finest mesh of 129x33 control points. We highlight that also in the case of an
FSI steady test IgG converges faster with respect to IgC for a fixed number of DOFs
and to reach the same level of accuracy of the IgG solution with 17x5 control points,
IgC needs 129x33 collocation points.
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FIGURE 7.7: Turek-Hron benchmark: snapshot of the velocity of the flow field and flag
movement taken at t = 7.4 s.

Finally, we run an unsteady analysis of the Turek-Hron benchmark considering
the physical parameters described in Table 7.A.3. We discretize the geometry of
the elastic beam with 25x25 control points using C1 quadratic B-splines, while for
the fluid grid we consider 14288 linear triangular finite elements. In particular, the
NEFEM interface modeling the boundary of the beam features 147 elements: 71 at
the top and bottom of the beam and 5 at the right edge, while the time step size is
∆t = 0.002 s. Figure 7.7 shows a snapshot of the simulated flow field and beam
deformation at t = 7.4 s using our partitioned algorithm. It is clearly visible that
the beam has deformed due to external forces exerted by the fluid flow. After an
initial response phase, the beam oscillates with a constant frequency and amplitude.
Our simulations qualitatively agreed with the previous results for this benchmark
[88], thereby showing a preliminary good performance of the partioned approach to
solve FSI problems presented in Section 7.2.

Additionally, Figure 7.8 shows the displacement in y-direction of point A (see
Figure 7.4) over time for the two computational approaches (i.e., NEFEM-IgC and
NEFEM-IgG). For the simulation using NEFEM-IgC and NEFEM-IgG, we consider
the same discretization as before as well as the same time step. In Figure 7.8, both
plots qualitatively agree, but they exhibit relevant quantitative differences. In fact,
in the case of the NEFEM-IgC approach, the beam oscillates with a larger amplitude
than for the simulation with the NEFEM-IgG method. Moreover, there is a non-
negligible temporal offset between the oscillations obtained with each method.
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FIGURE 7.8: Response of the vertical displacement for point A (vA; see Figure 7.4) for a sam-
pled time interval t ∈ [6 s, 7.8 s]: comparison between the coupled structural solver based on

IgG and IgC .

7.4 Conclusions

This chapter presents a novel coupling scheme for FSI problems, which is based
on the use of boundary-conforming finite elements (NEFEM) on the fluid side, IgC
on the structural side, and a common spline representation of the fluid-solid inter-
face. The coupling of the structural and the fluid solution, greatly facilitated by the
common spline interface, is granted by means of a partitioned approach. In par-
ticular the necessary information is exchanged between the structure and the fluid
using a Neumann/Dirichlet load transfer approach. Our simulations consider the
Turek-Hron benchmark and preliminary convergence tests prove that the coupling
is working in the case of steady FSI simulations. Nevertheless, further investigations
need to be carried out in terms of transient FSI configurations, although very promis-
ing preliminary results for unsteady flow confirm that the spatiotemporal coupling
is achieved. In any case, the results in terms of convergence are promising and we
expect to improve them, for example, by refining the discretization of the beam in y-
direction, as new tests highlighted that the discretization of the beam in y-direction
had a significant influence on the stability and quality of the computations. In fact,
if the number of collocation points was scarce, the solution diverged. Addition-
ally, we could investigate whether increasing the degrees of approximation on the
solid side might be beneficial to improve the performance of IgC. Furthermore, the
required computational time for a complete simulation should be reduced, since, es-
pecially for the unsteady nonlinear case, computations take several days depending
on the discretization. Therefore, parallelization should be explored for the nonlinear
solver.
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Appendix 7.A: Geometric and physical parameters of Turek-
Hron FSI benchmark

TABLE 7.A.1: Definition of the geometric parameters for the Turek-Hron FSI benchmark
[117].

Geometry parameters Abbreviations Value [m]

Channel length L 2.5
Channel width H 0.41
Structure length l 0.35
Structure thickness h 0.02
Cylinder radius r 0.05
Cylinder center position C (0.2,0.2)
Reference point (at t = 0) A (0.6,0.2)

TABLE 7.A.2: Definition of the physical parameters for the Turek-Hron FSI benchmark for
the steady regime [117].

Physical parameters (fluid) Abbreviations Value Unit

Density ρ f 103 kg/m3

Viscosity ν f 10−3 m2/s
Mean inflow velocity Ū 0.2 m/s
Reynolds number Re 20 -

Physical parameters (solid) Abbreviations Value

Density ρs 103 kg/m3

Poisson Ratio νs 0.4 -
Young’s modulus E 1.4 · 106 kg/ms2

TABLE 7.A.3: Definition of the physical parameters for the Turek-Hron FSI benchmark for
the unsteady regime [117].

Physical parameters (fluid) Abbreviations Value Unit

Density ρ f 103 kg/m3

Viscosity ν f 10−3 m2/s
Mean inflow velocity Ū 1 m/s
Reynolds number Re 100 -

Physical parameters (solid) Abbreviations Value

Density ρs 104 kg/m3

Poisson Ratio νs 0.4 -
Young’s modulus E 1.4 · 106 kg/ms2
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Appendix 7.B: Tensor definitions

TABLE 7.B.1: Tensor and index notation for tensors occurring in the linearized nonlinear
elastostatic equations (see Section 7.2.2.1).

Tensors Tensor notation Index notation

Deformation gradient F = I +∇Xu Fij = δij + ui,j

Gradient of deformation
gradient

∇XF Fij,k = ui,jk

Right Cauchy-Green tensor C = FTF Cij = δkiδkj + ui,j + uj,i + uk,iuk,j

Green-Lagrange strain E =
1
2
(FTF− I) Eij =

1
2
(ui,j + uj,i + uk,iuk,j)

Gradient of Green-Lagrange
strain

∇XE Eij,k =
1
2
(ui,jk + uj,ik + un,ikun,j +

un,iun,jk)

Second Piola-Kirchhoff
stress tensor

S = λtr(E)I + 2µE Sij = λEkkδij + 2µEij

fourth-order elasticity ten-
sor

C = ∂S/∂E Cijkl = λδijδkl + µ(δikδjl + δilδjk)

Linearized Tensors Tensor notation Index notation

Deformation gradient ∆F = ∇X∆u ∆Fij = ∆ui,j

Gradient of Deformation
gradient

∇X∆F ∆Fij,k = ∆ui,jk

Green-Lagrange strain ∆E = sym(FT∇X∆u) ∆Eij =
1
2
(∆ui,j + ∆uj,i +

uk,j∆uk,i + uk,i∆uk,j)

Gradient of Green-Lagrange
strain

∇X∆E ∆Eij,k =
1
2
(∆ui,jk + ∆uj,ik +

un,jk∆un,i + un,j∆un,ik +
un,ik∆un,j + un,i∆un,jk)
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Chapter 8

Conclusions and Future
perspectives

In this work, we have developed advanced computational methods in the context
of IgA with the aim of providing a reliable support for the design and optimization
of engineering products. These computational technologies have the potential to
allow for a better understanding of the complex underlying physical phenomena in
engineering applications and ultimately reduce the necessity of experimental tests,
which are often expensive and time-consuming. In particular, our main focus has
been on IgC methods and we have explored formulations allowing for cost-efficient
simulations that render highly accurate results in comparison to renown validation
benchmarks or fine IgG solutions.

Accordingly, in Chapter 3 we propose a novel approach to simulate solid lami-
nated plates characterized by a symmetric distribution of plies. This technique com-
bines a 3D displacement-based method solved via IgC with an equilibrium-based
procedure to appropriately reconstruct the interlaminar stresses. First, we discretize
the plate using a single element through the thickness of the laminate and solve me-
chanical equilibrium with an IgC formulation. To account for the variation of the
material properties through the thickness of the plate, we average the constitutive
behavior of each layer considering a homogenized response. We examine a vali-
dation benchmark, which is well known in the composites literature and provides
an analytical solution. Our simulations show that our IgC approach can render
comparable results in terms of displacements and in-plane stresses. However, the
resulting out-of-plane through-the-thickness stress contravenes mechanical equilib-
rium. To recover accurate interlaminar stresses, we propose to perform an a posteriori
step consisting of a direct integration of the equilibrium equations along the lami-
nate out-of-plane coordinate. This post-processing step requires the integration of
higher-order derivatives of the previously computed displacement field. Therefore,
the shape functions used in their approximation must be highly continuous, but
this demand is fully granted by the usual functional spaces employed in IgA. Our
results prove that this stress recovery approach is effective even for very coarse in-
plane meshes and, regardless of the number of layers, gives better results the more
slender the composites are. Additionally, the approximation improves for stacking
sequences made of a significant number of plies, since a stack with a large number
of thin layers is indeed closer to a plate with averaged properties. Furthermore, we
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remark that simulations with a single high-order in-plane element (in-plane degrees
of approximation p = q = 6 and out-of-plane degree of approximation r = 4) ex-
hibit maximum percentage errors of 1% or lower in plates with 11 and 33 layers
and length-to-thickness ratio S ≥ 30. Nevertheless, a homogenized approach with
a single-element through the thickness is directly effective only for symmetric layer
distributions along the thickness of the plate, as for non-symmetric ply stacking se-
quences the middle plane of the plate is not balanced. In the case of non-symmetric
layer distributions, the stacking sequence can typically be split into two symmetric
piles, using one element per homogenized stack with a C0 interface.

In Chapter 4, we extend our modeling strategy for laminated composites from
3D plates to bivariate Kirchhoff plates, considering both IgG and IgC formulations.
To this end, we leverage CLPT to model laminated Kirchhoff plates beacuse this
paradigm provides the lowest computational cost among known literature strate-
gies for laminates. The CLPT features high-order PDEs. Additionally, in the case of
laminated composite Kirchhoff plates, the in-plane continuity requirements to apply
the equilibrium-based stress recovery are higher with respect to the solid plate case
(i.e., C3-continuity due to Kirchhoff’s hypothesis versus C2-continuity in the solid
plates in Chapter 3). However, these challenges can be fully addressed thanks to the
highly continuous functional spaces usually employed in IgA. This highlights once
again the flexibility of IgA to easily pave the way to new modeling techniques with
respect to standard FEA. Furthermore, according to CLPT, interlaminar stresses are
identically zero when computed using the constitutive equations. Therefore, our
stress recovery technique produces a unique, primal approximation of the out-of-
plane stress within the CLPT framework. Our simulations show that the coupling of
homogenized single-element IgC and IgG formulations with our equilibrium-based
stress recovery technique produces highly accurate results when compared to the
same analytical benchmark as in Chapter 3. In particular, CLPT enables to analyze
laminated plates with both an even and an odd number of layers with a single ele-
ment through the thickness (i.e., featuring both symmetric and non-symmetric ply
distributions). Our simulations show that the proposed methodology successfully
recovers the out-of-plane stress state in both cases. Moreover, we remark that the
proposed IgG and IgC modeling techniques provide excellent results in simply sup-
ported rectangular plates even using a coarse mesh composed of a single sixth-order
element. In fact, for the considered plate cases, a single in-plane element with 7x7
DOFs is able to provide maximum differences of 4% or lower on the boundary and of
2.5% or lower inside the plate domain for the IgG method coupled with the proposed
stress recovery technique, while the IgC approach combined with the equilibrium-
based stress recovery strategy allows to obtain maximum differences of 8% or lower
on the border and of 3% or lower inside the plate. For more complex geometries,
like simply-supported circular plates, our preliminary numerical tests show that the
high continuity across elements granted by IgA shape functions is a pivotal asset to
obtain highly accurate cost-efficient results.

The extension of our modeling strategy from solid plates to solid shells is also
successfully investigated in Chapter 5 for both IgG and IgC methods. For these 3D
curved structures, we cannot longer refer to in-plane and out-of-plane stresses with
respect a global reference system, as we previously did in Chapters 3 and 4. Thus,
we adopt a pointwise local geometrical description of the solid shell, which allows
to identify in-plane and out-of-plane stress components. Hence, this convenient de-
scription of the problem grants a direct and inexpensive stress recovery, which can
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be performed only at locations of interest. Conversely, the use of curvilinear coor-
dinates to express equilibrium would couple together the in-plane and out-of-plane
components, which would require the numerical resolution of a system of equations
to appropriately recover the interlaminar stresses. We consider again the homoge-
nized single-element IgC and IgG formulation, but, for the latter, we further propose
a layer-by-layer integration rule comprising r − 1 quadrature points per ply. This
numerical scheme allows to correctly capture the behavior of laminated compos-
ites for any stacking sequence (e.g., with an even or and odd number of variously
oriented layers) and to consider more general constitutive models (e.g., plasticity).
Our simulations show that considering r − 1 quadrature points per layer leads to
the same accuracy as using r + 1 integration points, which is a more common choice
in standard IgG approaches. For the considered solid curved geometries, the stress
recovery approach leads to errors that are typically in the 10% range or lower at con-
vergence despite the chosen displacement-based approach. More specifically, the
IgG method provides errors in the order of 2% in average for the analyzed cases,
while IgC allows to obtain errors in the range of 5%-10% or lower for slender struc-
tures (i.e., S ≥ 30). Additionally, in this Chapter we draft a new equilibrium-based
post-processing approach that grants lower continuity requirements for the recovery
of the out-of-plane stresses. This technique only uses first-order derivatives of the
shear interlaminar stresses with respect to in-plane coordinates to obtain the out-
of-plane normal stress component, whereas the general stress recovery technique
requires second-order derivatives of the in-plane stresses. We present a preliminary
study showcasing that, for the same number of DOFs, the alternative low-continuity
formulation to reconstruct interlaminar stresses exhibits remarkable accuracy com-
pared to the general stress recovery strategy proposed in this thesis, so we plan to
further investigate this low-continuity approach in forthcoming studies.

We believe that the methodologies to model laminated composite plates pre-
sented in this thesis constitute a promising step towards the construction of cost-
effective, highly accurate computational tools to calculate the mechanical behavior
of complex engineering designs featuring these materials (e.g., aircrafts). There-
fore, among the future research topics, we highlight the extension of our model-
ing approach to more complex structures, such as bivariate shells. Additionally,
more efficient through-the-thickness integration strategies as well as the inclusion of
large deformations and material nonlinearities will be considered in future studies.
In particular, the extension of the out-of-plane stress recovery to include material
nonlinearities could consider J2-flow theory as a starting point. We have recently
started exploring this strategy by leveraging an IgG method built for an elasto-
plastic framework. In brief, we update the state variables in time by means of
the Newton-Raphson method, requiring a consistent tangent derivation. At every
Newton-Raphson iteration, the out-of-plane stress state needs to be post-processed
for every Gauss point starting from the in-plane components to retrieve the con-
straint imposed by the equilibrium equations (i.e., as we did in Chapters 3-5). This
adjustment represents an additional computational cost, which can be reasonably
estimated to be small due to the stated accuracy-cost ratio of the stress recovery for
the linear cases explored in this thesis. While this research is still ongoing, we plan to
ultimately assess and compare the accuracy and computational efficiency of this pro-
cedure to those granted by other methods (see [62]). So far, we have identified two
delicate issues, concerning the type of yield surface as well as the choice of projec-
tion algorithm (see [168]). We have investigated alternative methods for integrating
general classes of inelastic constitutive equations and we have ultimately focused on
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the so-called cutting-plane algorithm [143] for small-deformation rate-independent
inelastic materials. Regarding the limit function to be adopted, we believe that two
possible strategies could be considered: one based on the Ottosen type yield func-
tion [144] and the other on the Tsai-Wu yield surface [181].

In the future, we also plan to explore the extension of our modeling approaches
for laminated composites to include delamination, which is a common mode of fail-
ure for these materials and is driven by an excessive interlaminar stress. To this
end, in this thesis we take a first step and explore a novel IgA solution technique for
the phase-field modeling of brittle fracture in elastic solids, considering a thermo-
dynamically consistent phase-field model, which accounts for a different damaging
behavior in tension and compression as in [10, 46], i.e., damage is allowed to act only
on the positive volumetric and deviatoric part of the elastic energy. In Chapter 6, we
consider a staggered scheme to alternatively minimize the displacement and dam-
age fields and we propose to use the PSOR algorithm to solve the minimization of
the total energy of the system with respect to the phase-field variable, thereby allow-
ing for a direct and rigorous enforcement of the irreversibility constraint by cutting
negative values of the phase-field increments at the control points and, hence, yield-
ing either zero or positive increments of the phase-field variable. The explicit nature
of the chosen solution technique allows to significantly reduce the elapsed time of
the execution of the phase-field subroutine with respect to state-of-the art methods,
such as the penalty approach in [79]. Furthermore, as our method directly enforces
the irreversibility constraint, it does not require to iteratively resolve a system when
an unloading stage is eventually considered (in contrast to the penalty method from
[79]).

To study the PSOR algorithm we test a SEN specimen and an L-shaped panel
both discretized via an IgG multipatch approach leveraging linear shape functions
and using two tolerances (i.e., TOL(1)PSOR = 10−4 and TOL

(2)
PSOR = 10−6). We further

compare the performance of our computational approach with respect to a renown
penalty method [79]. While for the SEN specimen, a dramatic reduction of the tol-
erance leads to the same results in terms of time performance with respect to the
penalty method, this is not the case for the L-shaped panel test, which proved to
be more computationally demanding for the PSOR method when a tolerance equal
to 10−6 is considered. Conversely, the performance of the penalty method in terms
of required time is less sensitive to the chosen tolerance. We believe that this issue
is related to the tuning of the penalty parameter γ, which strongly depends on the
toughness-internal length ratio. In fact, the value of γ for the L-shaped panel test
is much smaller with respect to its counterpart for the SEN specimen benchmark,
thereby representing a more relaxed constraint in the former benchmark test.

Additionally, we discuss the choice of a suitable stopping criterion for the stag-
gered scheme. In this study, the considered convergence criterion uses the dis-
cretized counterpart of the out-of-balance work, which seems to grant the desired
control over the alternated minimization algorithm. Other possible criteria control
the variation between two subsequent iterations of either the total energy functional
or the phase-field variable. The latter option is equivalent to control the dissipated
energy, since it provides a global measure of the damage inside the domain. Finally,
we present preliminary results of the modeling of the SEN specimen benchmark via
quadratic C1 B-spline shape functions, which show that the resolution of the inter-
nal length seems to be more relevant than the regularity of the IgA approximation.
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We hypothesize that the use of C1 functions to approximate a physical discontinu-
ity, such as the pre-existing crack in the SEN specimen, might not bring any further
benefit. Thus, future immediate studies could address the modeling of the displace-
ment and the phase fields using different approximations, e.g., respectively using
C0 quadratic and linear B-spline basis functions and such that the two fields share
the same number of control points. Alternatively, the preliminary results shown in
Chapter 6 also pave the way to explore high-order models of fracture [32]. In an
attempt to develop a more sophisticated software to simulate delamination in com-
posite structures, future research studies should address the inclusion of plasticity as
well as delamination within our phase-field model of brittle fracture. For instance,
we could consider the elasto-plasticity model in [6] to directly exploit the PSOR al-
gorithm. The authors also use a staggered approach, with which they first minimize
the system energy with respect to the displacements and plastic strains and, then,
with respect to the damage field. More specifically, the minimization step with re-
spect to the displacement is equivalent to solve a linear elasticity problem, while
the minimization step with respect to the plastic strain is equivalent to a linear lo-
cal projection, because of the perfect-plasticity framework. The minimization step
with respect to the phase field is to be performed for a fixed value of displacement
and plastic strain, thereby allowing for a direct application of the PSOR algorithm.
With regard to the inclusion of delamination effects, we plan to investigate more so-
phisticated phase-field damage models for orthotropic materials. For example, the
fracture energy in [58] is assumed to depend on a structure tensor and the model is
capable of capturing cracks growing within and between the laminae, which is of
key importance in modeling transitions between intra- and interlaminar failure.

Finally, we have also explored new IgA formulations in the context of FSI prob-
lems, which are usually present in advanced engineering applications and tend to
be very demanding computationally. In Chapter 7, we propose a novel coupling
scheme that combines a boundary-conforming finite-element formulation (i.e., NE-
FEM) on the fluid side with IgC on the structural side using a spline description
of the fluid-structure interface. More specifically, the necessary information is ex-
changed between the structure and the fluid using a Neumann/Dirichlet load trans-
fer approach, namely forces resulting from the fluid boundary stresses are projected
onto the structure as a Neumann boundary condition, while the structural deforma-
tions are transferred to the fluid as a Dirichlet boundary condition. This projection is
greatly facilitated by the common spline description of the interface. In order to test
this strategy, we leverage a partitioned algorithm to solve the FSI problem, relying
on a space-time discretization strategy previously proposed in [89] and extending
our structural solver to address nonlinear elastodynamic cases. The preliminary
results presented in Chapter 7 show a promising potential for our computational
strategy, also confirming the spatiotemporal coupling in terms of the solution of the
problem. Additionally, further convergence tests prove that the proposed coupling
between the fluid and structural formulations is working in the case of steady FSI
tests. Future investigations should explore more sophisticated transient FSI prob-
lems that are closer to demanding engineering applications. To this end, we think
it is essential to reduce the computational time for a complete simulation, as the
unsteady nonlinear case considered in Chapter 7 can take several days to complete.
Therefore, we could investigate whether increasing the degrees of approximation on
the solid side might be beneficial to improve the performance of IgC. Additionally,
parallelization should be explored for the nonlinear solver, which would also enable
an insightful assessment of the computational cost and accuracy of the IgC method
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for the structural part of the FSI problem. In the future, we believe that our hy-
brid method to address FSI problems could be seamlessly integrated with our post-
processing stress recovery technique for 3D curved laminated composite structures,
thereby facilitating an accurate and cost-efficient design of complex geometries to
serve fluid dynamics requirements in engineering applications.
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