




What I cannot create, I do not understand.
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Abstract (English)

Synthetic biology, a discipline born from the interconnection be-
tween biology and engineering, is assuming a pivotal role in the world
scientific panorama due to its ability to rationally modify existing
organisms by improving their biological performances or insert new
functions through the rewriting of their genetic program. The sectors
in which synthetic biology has brought significant technological devel-
opments are disparate, such as: agriculture, cosmetics, therapeutics,
energy. Microorganisms can be adopted to face different problems
in such areas, via the ad hoc design of novel customized biological
functions. Nonetheless, the environmental selectivity of the ecological
niches belonging to the different fields of application mentioned above
generally prevents the model microorganisms used in the laboratory
(e.g., Escherichia coli, Bacillus subtilis) from establishing a symbiotic
bond with the environment, leading to the consequent failure of the
genetic circuit incorporated in these hosts. The environmental hur-
dle has stimulated the scientific community to look for new biological
chassis that are suitable for coming into contact with the ecological
niche considered, sometimes selecting them directly in situ. A major
issue in the use of non-model hosts is that the previously character-
ized libraries of biological parts (e.g., promoters, Ribosome Binding
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Site - RBS, plasmid vectors) used to create gene expression, widely
and successfully tested for laboratory strains, are sometimes incom-
patible with them motivating the need to find new efficient and ratio-
nal methods to control gene expression in any biological chassis. Two
approaches can be adopted to achieve this aim: the first is based on
the characterization of new regulatory parts in new host, which may
require huge investments in terms of time and money, while the sec-
ond is based on the construction of a synthetic circuit architectures
that are able to regulate gene expression regardless of the strength
of the specific regulatory parts used or from environmental sources of
variability. A particular realization of the second approach has been
defined as the holy grail of synthetic biology, as: ”the realization of
a synthetic system which, once transformed, can operate efficiently in
any biological chassis”.

This thesis is centered on the development of genetic and compu-
tational tools, based on control circuits, to facilitate the engineering
of non-standard chassis. In particular, the work is focused on a ge-
netic architecture for controlling the expression of a gene of interest
that stably and robustly rejects the sources of variability that com-
monly affect a genetic circuit when inserted into a new bacterial host
in terms of the variation of its key parameters, such as transcription
rate, translation rate and number of copies of the gene. The designed
architecture has been investigated in silico and in vivo to characterize
its properties and limitations. Furthermore, computational analyses
have been carried out to support the improvement of the control cir-
cuit via a different architecture, and to select regulatory parts that
can increase the portability of the circuits in different host strains.

In Chapter 1, an overview of the various applications of synthetic
biology, with particular attention to the limitations deriving from the
use of model microorganisms has been presented. Furthermore, the
state of the art of portable control circuits for gene expression in dif-
ferent hosts and the biological parts used in them has been described,
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focusing on the CRISPRi technology, used in the development of the
genetic architectures subsequently reported, and followed finally by
the purpose of the thesis.

In Chapter 2, an overview of the mathematical modelling tools
commonly used to describe genetic circuits is carried out. The chapter
is focused on a case study whose purpose is to show possible limita-
tions of traditional Hill-function models and to expand the descriptive
capabilities of models through the addition of new factors such as,
variation in the level of regulatory proteins, variation in the number
of copies of the gene and the cell load exerted by heterologous gene
expression. The descriptive power and the identification of such mod-
els is finally discussed, showing that traditional tools are sometimes
unable to capture experimental measurements.

In Chapter 3, a new circuit design, based on the incoherent feed-
forward-loop (iFFL) control architecture, called Sad-iFFL, has been
presented, whose automatic regulation is based on a new repressor
enzyme: the dead Cas9 from Staphylococcus aureus (SadCas9). The
description of the circuit scheme and its biological implementation
is followed by its analysis of the mathematical model, which is used
to compare the in silico performances of Sad-iFFL with an expres-
sion cassette without control architectures (herein named Open loop
circuit). Subsequently, the in vivo characterization of the SadCas9
enzyme, i.e., the main biological module of the circuit, and the final
Sad-iFFL circuit have been reported.

In Chapter 4, a new circuit design, called U-iFFL, based on in-
coherent feedforward-loop and positive autoregulation has been pre-
sented, aimed to improve the portability performances of the circuit
developed in the previous chapter. The analysis of the circuit scheme
has been carried out analytically and the in silico performances with
the Sad-iFFL and Open loop circuits have been compared. The char-
acterization of the new biological module included in U-iFFL for the
positive autoregulation motif, RNAPT7-PT7, has been presented but,
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unfortunately, its inclusion in the final circuit has not been reported
due to delays in the assembly of the U-iFFL controller due to to the
global pandemic by Sars-CoV-2.

In Chapter 5, a bioinformatics procedure, including two pipelines,
has been developed for the in silico detection of promoter and RBS
sequences in annotated genomes, from genomics and transcriptomics
data. Their dual purpose is of 1) providing new libraries of regulatory
parts to the scientific world for non-model microorganisms; 2) increas-
ing the portability of the previously analyzed circuits by enhancing
the probability that promoters and RBSs are functional in different
hosts.

In Chapter 6, the summary and overall conclusions of this work
have been reported.
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Abstract (Italian)

La biologia sintetica, disciplina sorta dal connubio tra biologia e
ingegneria, sta assumendo un ruolo centrale nel panorama scientifico
mondiale per la sua capacità di modificare razionalmente organismi e-
sistenti, apportandone migliorie o nuove funzioni tramite la riscrittura
del loro programma genetico. I settori nei quali la biologia sintetica ha
apportato notevoli sviluppi tecnologici sono molteplici e molto diversi
tra loro, quali: agricolo, cosmetico, terapeutico, energetico. La selet-
tività ambientale delle nicchie ecologiche appartenenti ai diversi campi
di applicazione sovracitati impedisce, generalmente, a microorganismi
modello utilizzati in laboratorio (e.g., Escherichia coli, Bacillus sub-
tilis) di creare un legame simbionte con l’ambiente, con il conseguente
fallimento del circuito genetico in essi inserito. Tale ostacolo ambien-
tale ha stimolato la comunità scientifica nel cercare nuovi chassis bio-
logici da ingegnerizzare che risultino adatti a entrare in contatto con
la nicchia ecologica considerata, talvolta selezionandoli direttamente
in situ. Ciò nonostante, le librerie di parti biologiche (e.g., promotori,
Ribosome Binding Site - RBS, vettori plasmidici) precedentemente
caratterizzate nella letteratura scientifica, usate per creare cassette di
espressione genica, risultano essere incompatibili con diversi microor-
ganismi non-modello, motivando la necessità di trovare nuovi metodi
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per controllare l’espressione genica in nuovi chassis biologici. Due ap-
procci possono essere adottati per raggiungere questo scopo: il primo
si basa sulla caratterizzazione di nuove parti regolatrici in nuovi host,
il quale richiede ingenti investimenti in termini di tempo e denaro,
mentre il secondo si basa sulla costruzione di circuiti genetici secondo
opportuni schemi di controllo, che riescano a regolare l’espressione
genica indipendentemente dalla forza delle parti regolatorie usate o da
fonti di variabilità ambientali. La realizzazione del secondo approccio
è stata definita come il santo graal della biologia sintetica, ovvero: ”la
realizzazione di un sistema sintetico che, una volta trasformato, possa
operare efficientemente in ogni chassis biologico”.

Il lavoro di questa tesi è centrato nello sviluppo di un’ architettura
genetica per il controllo dell’espressione di un gene di interesse che sia
robusta alle fonti di variabilità che influenzano un circuito genetico
quando viene inserito in un nuovo host batterico, in termini di varia-
zione dei suoi parametri chiave, come velocità di trascrizione, velocità
di traduzione e numero di copie del gene.

Nel capitolo 1 viene esposta una panoramica generale sulle diverse
applicazioni della biologia sintetica ponendo particolare attenzione
alle limitazioni derivate dall’uso di microorganismi modello. Inoltre,
viene descritto lo stato dell’arte dei circuiti di controllo dell’espressione
genica in diversi host e le parti biologiche in essi utilizzate, soffer-
mandosi sulla tecnologia CRISPRi, impiegata nello sviluppo delle ar-
chitetture genetiche successivamente discusse, seguito infine dalla de-
scrizione dello scopo della tesi.

Nel capitolo 2 è illustrata una sintesi sui modelli matematici co-
munemente utilizzati per descrivere il comportamento di circuiti sin-
tetici. In particolare, il capitolo si focalizza su un caso di studio il
cui scopo è di mostrare le limitazioni dei tradizionali modelli di Hill
e come è possibile aumentare le capacità descrittive di tali modelli
tramite l’aggiunta di nuovi fattori in grado di rappresentare la varia-
zione del livello di proteine regolatrici e del numero di copie del gene
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oltre al carico metabolico. Infine, viene discussa la capacità descrittiva
e l’identificabilità di tali modelli, mostrando come gli strumenti model-
listici tradizionali sono talvolta incapaci di descrivere dati sperimentali
misurati da circuiti sintetici in vivo.

Nel capitolo 3 viene presentato un nuovo design circuitale basato
sull’architettura di controllo incoherent feedforward-loop (iFFL), chia-
mato Sad-iFFL, la cui regolazione automatica si basa su un nuovo
enzima repressore, la dead Cas9 di Staphylococcus aureus (SadCas9).
La descrizione dello schema circuitale e della sua rappresentazione bio-
logica è seguita dall’analisi del modello matematico, confrontando le
performance in silico di Sad-iFFL con una cassetta di espressione priva
di architetture di controllo (chiamata circuito Open loop). A seguire, è
riportata la caratterizzazione in vivo dell’enzima SadCas9, il principale
modulo biologico di Sad-iFFL, e del circuito finale Sad-iFFL stesso.

Nel capitolo 4 viene riportato un nuovo design circuitale, chiam-
ato U-iFFL, che si propone di migliorare le performance del modello
sviluppato nel capitolo precedente mediante l’utilizzo di regolazioni
di tipo incoherent feed-forward loop oltre all’autoregolazione positiva.
L’analisi dello schema circuitale è stata effettuata per via analitica e le
performances in silico sono state confrontate con i circuiti Sad-iFFL
e Open loop. La caratterizzazione del nuovo modulo biologico neces-
sario nel circuito U-iFFL per l’autoregolazione positiva, RNAPT7-PT7,
viene presentato nel capitolo ma, sfortunatamente, la sua inclusione
nel circuito finale non è stata riportata a causa dei rallentamenti nei
lavori di assemblaggio del controllore U-iFFL dovuti alla pandemia
globale di Sars-CoV-2.

Nel capitolo 5 è riportata una procedura bioinformatica, basata
su due pipeline, per l’identificazione in silico di sequenze promotrici e
RBS in genomi annotati, a partire da dati di genomica e trascrittom-
ica, con lo scopo duplice di: fornire nuove librerie di parti regolatrici
alla comunità scientifica per microorganismi non modello e aumentare
la portabilità dei circuiti proposti nei capitoli precedenti, aumentando
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la probabilità di funzionamento di promotori ed RBS in diversi organi-
smi; entrambi punti ad elevato interesse nel mondo della biologia sin-
tetica attuale.

Nel capitolo 6 sono riportate le conclusioni generali di questo la-
voro, tenendo in considerazione tutti i risultati ottenuti nei precedenti
capitoli.
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Chapter 1
Background

1.1 Synthetic biology and its application:

a new interest on non-model microor-

ganisms

If synthetic biology could be expressed in one sentence, it would
probably be represented by Richard Feynman’s quote: “What I cannot
create I do not understand”where precisely, the word creation refers to
life. The increasingly knowledge of the manipulation of the informa-
tion contained in DNA has created different perspectives from which
we are able to modify nature. From the creation of the first GMO
mouse (Rudolf Jaenisch, 1974) by insertion of foreign DNA taken from
a retrovirus [1], we have arrived, nowadays, to design complex genetic
circuits that can be chemically synthesized in order to rationally mod-
ify living organisms [2]. The idea behind synthetic biology, deriving
from the engineering approach, is the rational design for which ge-
netic circuits are seen as the interconnection of elementary biological
modules in order to provide one or more new functions to the target
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1. Background

cell [3, 4]. While, at the beginning, the study of genetic circuits and
the characterization of their regulatory components (e.g., promoters,
RBSs, transcriptional factors, etc.) took place in model microorgan-
isms (e.g., Escherichia coli, Bacillus subtilis) to understand how to
control gene expression for a range of applications [5, 6, 7], synthetic
biology is currently going through a transition period. The toolkit
of circuit parts that has been developed for model bacteria must be
expanded to enable reliable engineering and gene expression control in
non-model bacteria to achieve a predictable and stable protein expres-
sion in microorganisms better suited to work in the ecological niche
required in any application [8, 9, 10]. To understand better this issue,
the most representative macro-areas of synthetic biology applications
have been illustred in Fig. 1.1 and, for each of them, representative
examples and the limitations emerged in the use of model bacteria are
reported.

• Biomaterials: Windmaier et al. and, later, Azam et al., en-
gineered the type III secretion system of Salmonella enterica
subsp. Typhimurium for the production of high-value polymers
as: spider silk protein (first study) [11] and pro-resilin, tropo-
elastin (second study) [12]. Although protein secretion was sig-
nificantly higher than control strain, it has been shown that the
engineered bacteria is very sensitive to conformational alteration
of its natural secretion system complex; furthermore, the perfor-
mances in terms of secreted protein level could change signifi-
cantly as new target protein is chosen.

• Cosmetic: A Bacillus subtilis strain has been engineered for
the production of hyaluronic acid by hijacking the endogenous
pathway using CRISPRi technology, but it has been demon-
strated that the production efficiency is limited by the intra-
cellular concentration of the necessary substrates (e.g., UDP-
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1.1. Synthetic biology and its application: a new interest on non-model
microorganisms

LIFESTYLE
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BIOMATERIALS

FOOD & 
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Figure 1.1: Synthetic biology applications. The engineering and ad hoc
manipulation of biological systems has created new alternatives to existing technologies in differ-
ent sectors (e.g., industrial, therapeutical) and generated new ones. The wide set of applications
ranges from the production of molecules (e.g., therapeutics treatment, cosmetics, biofuels) to the
creation of new biomaterials or the bioconversion of pollutants in harmless products.

GlcUA, UDP-GlcNAc) for high production of high molecular-
weight hyaluronic acid [13].

• Industrial & Biofuels: The same strain of Pseudomonas putida
was used by Gonzales et al. and Samuel et al. for the biodegrada-
tion of phenol and p-nitrophenol, respectively, present in waste
water that derived from industrial processes [14, 15]. The re-
sistance of P. putida to these molecules favors its use in the
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industrial scenarios but the dependence on the carbon source in-
troduced into the growth media to allow bacterial growth makes
the overall process not convenient economically [14, 15, 16]. To
overcome this limitation, new soil bacteria have been proposed
(e.g., Cupriavidus pinatubonensis) which used molecules such as
phenol as carbon source for their growth [17]. A further well-
known industrial application is the production of biofuels from
waste or non-edible products such as ligno-cellulosic biomass
(carbon source: xylose, arabinose, galactose, mannose and glu-
cose) and whey permeate (carbon source: lactose) through ge-
netically modified model and non model bacteria in order to
maximize the conversion yield between the sugar present and the
biomolecule produced (e.g., bioethanol, biopropanol, biodiesel)
[18, 19, 20, 21]. In several studies, biological catalysts have been
obtained with high yields compared to wild type strains but, nev-
ertheless, it has been estimated that the monetary revenue from
the enhancement process is significantly influenced by the chem-
ical reagents costs used to control the environmental parameters
(e.g., pH, osmotic pressure, antibiotic for strain selection) within
the bioreactor [22, 23].

• Agriculture: The plants optimization for agriculture purposes,
in terms of growth and productivity, has covered a pivotal role
for centuries. The limit of plants on nitrogen fixation processes
(differently from carbon) increased the used of chemical nitrogen-
enriched fertilizers in the agriculture fields which worsens the
CO2 levels in the atmosphere [24, 25]. An alternative solution
come through the use of genetic modified nitrogen-fixing bacteria
which are able to enstablish a symbiotic relashionship with the
plant. In addition to the known model bacterium B. subtilis,
other microorganisms have been identified for their use (e.g.,
salt tolerance, drought resistance) in the rhizosphere (narrow
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regions of soil influenced directly from plant root secretions),
such as Azospirillum brasilense or Burkholdera cepacia, which
lack a rich toolkit of regulatory parts for gene expression and
thus no synthetic circuits have been made so far [26, 27, 28].

• Bioremediation: Bacteria have been selected to eliminate toxic
compounds (e.g., anti-inflammatories, insecticides, antibiotics,
etc) from soils, water and surface materials in order to improve
environment bioremediation [29, 30]. The main difficulty in using
bacteria for this purpose is summarized in the sentences reported
from the study of Dvorak et al. “A critical issue will be the choice
and establishment of new chassis organisms better suited to field
biotransformations than the currently available laboratory strains
in terms of resistance to harsh conditions including extreme pH,
temperature, osmotic pressure or fluctuating concentrations of
toxic chemical”. Indeed, the harsh growth conditions of these
environments do not allows the usage of model bacteria directly
in the application fields, highligthing even more the interest from
this research field on new chassis organisms [31, 10, 29].

• Diagnosis: The logic design of the ‘sense-logic-actuate’ behav-
ior of engineered bacteria has made possible to obtain numerous
biosensors which, by interrogating the environment in which they
are placed, are able to detect the presence of the disease by alter-
ing the logical state of the circuit [32, 33]. An example has been
reported in the study of Danino et al. in which the E. coli Nissle
1917 strain has been modified to detect the presence of tumor
inside the liver of a transgenic mouse through a bioluminescent
signal present in the urine [34].

• Therapeutics: One of the emerging fields in which synthetic
biology has devoted much attention is the therapeutic one. The
historical symbiotic interaction between Microbes and Man has
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meant that many pathologies of the human body are attributable
to dysbiosis of the microbiota in certain anatomical areas [35].
In fact, scientific evidence shows a possible correlation between
dysbiosis, most of which can be traced back to the intestinal mi-
crobiota [36], and diseases such as: immune-mediated diseases,
including obesity [37], malnutrition [38], intestinal inflammatory
disease [39], as well as to anti-cancer immunity [40, 41]. These
assumptions have laid the foundations to engineering bacteria
(called probiotics) which, once inserted in the ecological niche
for which they were designed, can provide well-being for the
human host, in terms of treatment from a dysbiotic state or
prevention from a pathological state [42]. Examples are the
studies of Yang et al. and Jacouton et al. which, through the
engineering of Salmonella tyhimurium and Lactococcus lactis, re-
spectively, have created two anti-tumor systems: the first silence
oncogenes expression with shRNA technology [43], while the sec-
ond inhibits tumor growth by IL-17A interleukin secretion [44].
Alternative solutions to drug therapies for Inflammatory Bowel
Disease (IBD) have been proposed by Palmer et al. through the
use of an engineered version of Escherichia coli Nissle 1917 for
the production of a selective bacteriocin against Salmonella ty-
phimurium, a bacteria that can cause intestinal infections [45].
In parallel, Praveschotinunt et al. proposed, a system, based on
the same bacterial chassis of the previous study, that is able to
create an extracellular matrix containing all three trefoil factors
to treat inflammation and help re-build the intestinal epithelium
[46].

The limitation that emerged in the use of a non-optimal model
microorganism related to the context in which it is inserted is a com-
mon factor to all the above-reported applications. A representative
analysis for all scenarios is given below taking as example one of the
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prominent fields for synthetic biology over the last few years: gut mi-
crobiota manipulation via engineered probiotics. The highly dynamic
environment inside the gut prevents us from predicting with reason-
able confidence the effect that an ad hoc engineered microorganism can
lead to the gut bacteria population system in our body [47]. In fact,
the overall contribution of a genetic circuit implementing a function
of interest can be weak or null if the final bacterial concentration, de-
termined by the interaction between bacteria and environment, is not
sufficiently high to guarantee a physiological response in the host [48].
An additional factor, which limits the use of engineered probiotics, is
that the perturbation created by the introduction of a new microor-
ganism can introduce a new state of dysbiosis or aggravate an existing
one [42]. In recent years, therefore, research in this field has focused
on characterizing, and subsequently engineering, bacteria present in
human instestine, so that, once modified and re-introduced into their
natural habitat, they have more chances to establish a stable, safe and
durable connection with the host. Among them, the focus is on the
overrepresented bacteria of the human intestine as belonging to the
genus of Bacteroides (e.g., B. fragilis, B. melaninogenicus, B. thetaio-
taomicron) [49, 50], Bifidobacteria (e.g., B. longum, B. bifidum) [51]
and Enterococci (e.g., E. faecium, E. faecalis) [52]. Unfortunately, the
toolkit of regulatory parts (e.g., promoters, RBSs, plasmid vectors)
to create functional synthetic circuits for the above bacterial strains
is reduced or, sometimes, not available. The expression of new pro-
teins can therefore take place in two ways: the first, through the in
vivo or in silico discovery of large libraries of new regulatory elements
for the fine tuning of predictable gene expression [53] or, in the sec-
ond case, through the use of control circuits, usually inspired by the
engineering world, for the automatic and adaptive production of the
desired proteins using a smaller set of available regulatory parts [54].
Since the first solution requires huge investments in terms of time and
money, aggravated by the difficulty to create in laboratory an environ-
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ment suitable for bacterial growth of microorganisms such as obligate
anaerobic bacteria (e.g., B. fragilis), an intriguing option is to focus
the research in this sector on the second solution, described in more
detail in the next Section.

1.2 Synthetic circuits for the control of

gene expression in bacteria

The central dogma of molecular biology describes the one-way flow
of genetic information whereby the gene, replicating within the DNA,
is initially transcribed into mRNA and subsequently translated into
protein (Fig. 1.2). The numerous sources of intra-(e.g., cell burden)
and extra-(e.g., temperature, pH, osmotic pressure) cellular variabil-
ity [55], which significantly affect the gene expression steps, can result
in the variation of the three processes described in Fig. 1.2 and their
main parameters such as: transcription rate, translation rate and gene
copy number. Controlling the variation of these three processes allows
to control the expression of a gene in a stable and predictable way
[56]. Furthermore, since these are the three sources of variability that
affect the behavior of a pre-characterized circuit when inserted into a
new microorganism, their fine control would achieve one of the most
ambitious goals of synthetic biology: the stable and robust re-usability
of genetic circuit across several bacterial species. In synthetic biology,
the simplest way to express a gene at a predictable level is through
the interconnection of regulatory elements taken from libraries of pre-
viously characterized parts, such as: promoters, ribosome binding sites
(RBSs) and plasmid vectors. In model organisms, such as the well-
characterized E. coli bacterium, the libraries of regulatory parts have
a size suitable to span a large range of strength values and the ex-
pression of the gene is calculated from the combination of the activ-

8



1.2. Synthetic circuits for the control of gene expression in bacteria

Figure 1.2: Central dogma of molecular biology. The flow of genetic
information from DNA to proteins is possibile thorughout three main processes: DNA replication,
DNA transcription into mRNA and mRNA translation into protein [57].

ities of the chosen elements. As mentioned above, such components
are inevitably context-dependent elements, which may show quanti-
tative changes in their activities depending on biological (e.g., circuit
or flanking regions), host (e.g., strain) or environmental (e.g., growth
media) contexts, and the accurate characterization of such context-
dependent variation is one of the main goals in predictable design of
synthetic circuits. For such reasons, these ‘open loop’ regulators have
considerable limitations, such as: cell-cell variability [55], orthogonal-
ity with the enzymatic host machinery is not always guaranteed [58]
and, if the regulatory parts are not chosen appropriately, can generate
metabolic load for the cell. These difficulties are even more important
in the engineering of non-model bacteria due to the poor, or even un-
available, library of regulatory parts [59]. To overcome these limits,
genetic controller schemes have been developed inspired by biological
network embedded in life genomes in order to create synthetic circuits
which finely control the expression of a target gene. The main genetic
networks over-represented in nature are: simple regulation (a gene
influences directly the expression of a second gene), Negative and Pos-
itive AutoRegulation (NAR and PAR) and Feed-Forward Loop (FFL)
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which, in turn can be divided, according to the global effect on the
target gene, into coherent and incoherent FFLs [60, 61]. The charac-
terization of biological networks discovered in microorganisms allowed
the isolation of different actuators (e.g., LuxR from the Lux-circuitry
of Vibrio fischeri, LacI from the Lac-circuitry of E. coli) and re-use
them to create new gene control network.

In the literature, several groups tried to robustly control the ex-
pression of one or multiple genes through a synthetic controller that
could works in different, also phylogenetically distance, species. Kush-
waha et al. created UBER (Universal Bacterial Expression Resource),
a combination of positive-autoregulation and incoherent feedforward
loop networks which use a bacterial-orthogonal RNA polymerase taken
from phage T7 to control the transcriptional process of a target gene
in three different bacteria (E. coli, B. subtilis and P. putida). De-
spite that, the final gene expression was different due to the different
rate of translation or circuit copy number among the aforementioned
species [56]. The orthogonality of the RNAPT7-T7 system in bacteria
leads several groups to use this transcriptional regulator to improve
the production of metabolites such as Deoxychromoviridians pigment
[62]. Ceroni F. et al. implemented an auto-regulatory feedback logic
to avoid intracellular burden that arise from the overexpression of a
metabolic route in bacterial genome through CRISPRi technology [63].
A slightly different scheme, based on the theory of quasi-integral con-
troller, has been realized from Huang HH. et al. to tune the expression
of a target gene independently from the ribosome demand using RNA
interference [64]. Among the various network schemes characterized in
the literature, one theoretically achieving the perfect adaptation of a
gene in response to context-dependent disturbances is the incoherent-
feedforward loop (iFFL) [65, 66]. Segall-Shapiro et al. achieved the
perfect adaptation on copy number variation that affect the expres-
sion of a target gene by implementing the aforementioned schema us-
ing TALE protein and engineered TALE-repressible promoters [65].
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The functionality of iFFL has been also tested in mammalian cells by
Bleris et al. and Jones et al., reaching robust adaptation to variations
of genetic template and cell load [67, 68]. Nonetheless, the robust
adaptation of a gene through the three main sources of gene expres-
sion variation (transcription rate, translation rate and copy number)
has not been achieved yet and new network architecture are needed in
order to control gene expression throughout different bacterial species.

1.3 Synthetic biology tools: focus on CRISPRi

technology

The biological networks mentioned in the previous Section based
their functionality on regulators, generally proteins which modify re-
versibly the expression of target genes. This regulation can occur
in different stages of gene expression, such as: transcriptional, post-
transcriptional, translational or post-translational. Usually, the most
frequently used actuators in synthetic biology are the regulators of
transcriptional processes which, throught DNA binding in a portion
close to the promoter sequence, increase or repress the transcriptional
activity of the downstream gene. These regulators are called respec-
tively: activators or repressors. One of the most widely used transcrip-
tion modulators in the literature is the Cas9-engineered dCas9 pro-
tein (Fig. 1.3) belonging to the CRISPR-Cas immune system proteins
whose original purpose was to recognize exogenous DNA sequences
within the bacteria cell and cleave them [70]. The dCas9 protein is a
catalytically inactive version of Cas9 (‘d’ stands for ‘dead’) obtained by
the de-activation of the active sites responsible for DNA cutting, while
leaving active its DNA binding capability [69]. The target recognition
of dCas9 protein is mediated by single guide RNA (sgRNA). The lat-
ter is the engineered version of the system found in nature, originally
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Figure 1.3: CRISPR interference (CRISPRi) technology. A, The
activated repressor (dCas9:sgRNA) is composed by two single biological modules: the nuclease
null Cas9, called dCas9 (d stands for ‘dead’) and the single guide RNA (sgRNA) [69]. B,
The single guide RNA is an RNA molecule, designed from the natural guide RNA produced in
Streptococcus pyogenes by Qi et al. [69], composed by three parts with indipendetly function:
the base pairing region is responsible to DNA targeting through DNA-RNA complementarity, the
dCas9 handle allows the link with the dCas9 protein to form the dCas9:sgRNA complex and the
sgRNA terminator which blocks the RNA polymerase transcription process. C, dCas9:sgRNA
complex can block transcription process in two ways: obstructing the RNA polymerase in its
elongation phase or D, hiding the promoter sequence and prevent the transcription initiation.

composed of two RNA molecules expressed separately, in a single RNA
molecule so that it can be expressed by a single expression cassette.
The single guide RNA is composed of three parts: the base pairing
region, the dCas9 handle and the transcriptional terminator where
the last two are responsible for binding to dCas9 and for terminating
the transcriptional activity of the guide, respectively. The base pair-
ing region is the most important part of the sgRNA since it mediates
the recognition of the target region from dCas9 protein; the targeted
region can be changed through the modification of an about 20bp se-
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quence of sgRNA. The binding between dCas9:sgRNA complex and
the DNA is possible only if the PAM (Proto-spacer Adjacent Motif)
region is present upstream of the target region, essential to start the
binding event of dCas9 (Fig. 1.3 C and D). The nucleotide composition
region of PAM sequence is specific to Cas9 protein and the specificity
of the latter is intimately linked to it; in fact, from the data reported in
the literature, dCas9 proteins with more specific PAM are less likely to
generate cellular toxicity due to the lowest number of possible genomic
off-targets. The CRISPR technology has been used to develop two
types of actuators, repression and activation, called CRISPRi (inter-
ference) [69] and CRISPRa (activation) [71], respectively. Differently
from activation, the repression based on CRISPR technology has been
thoroughly characterized and several circuits developed in the liter-
ature base their functionality on it. Mainly, dCas9 can repress the
expression of a gene in two ways which are both based on the inter-
ference of the normal functioning of bacterial RNA polymerase. The
first repression mechanism is based on blocking the RNA polymerase
elongation process and truncating the mRNA production of the tar-
get gene (Fig. 1.3C), while, the second prevents the binding between
the RNA polymerase and the bacterial promoter (Fig. 1.3D) [69]. Al-
though CRISPRi-based technology has found considerable success in
the literature, its application in the endogenous metabolic pathways
regulation deserves more accurate design and optimization study. In
fact, although more specific PAMs give less off-target probabilities and
therefore better performances in terms of toxicity and time, the prob-
ability to find a target in a specific portion of the genome decreases
and, usually, it can be difficult to design a functional regulation system
[72]. When the gene regulation pathways are embedded in a plasmid
circuits and, therefore, is possible to design de novo the target se-
quence (as it has been done in this work), dCas9 proteins with more
selective PAM are desirable in order to increase the aforementioned
benefits and the orthogonality with the host, especially if the future
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goal of the project is to expand the portability of the optimized cir-
cuit to different bacterial species [73]. The most widely used CRISPR
(and CRISPRi) systems are based on the Cas9 (and dCas9) protein
of Streptococcus pyogenes, in which the PAM motif has the 5’-NGG-3’
sequence [70]. A more specific PAM motif is found in other CRISPR
systems such as the one of Staphylococcus aureus, used in this work,
and having the 5’-NNGRRT-3’ PAM sequence [74].

1.4 Project idea and bigger picture

Synthetic biology is currently in a period of transition determined
by the fact that applications demand new methodologies for the rapid
and predictable engineering of bacterial chassis suitable for working in
selective ecological niches. Although several groups are working to find
new solutions in terms of characterization of new bacterial hosts, the
in vivo and in silico search for new regulatory parts (e.g., promoters,
RBS, plasmid replication vectors, etc.) and the development of new
gene control architectures, a concrete ending has not yet been reached
and the forecast investments, in terms of money and time, are huge
due to the enormous amount of work required.

The innovative solution that could break this harmful scheme was
explained by Adam BL in his work: “Building genetic toolkits for each
member of the next generation SB chassis panel is an extensive and
laborious undertaking. For this reason, the holy grail of SB remains
a synthetic system that is universal and can be transformed into and
operate efficiently within any chassis” [10].

Based on the concepts illustrated above, the aim of the PhD project
is based on the development of a genetic architecture to control the
expression of a gene of interest and to robustly reject the sources of
variability that affect a genetic circuit when it is moved into a new
host in terms of variation of its key parameters, such as transcription
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rate, translation rate and circuit copy number. At the same time, this
architecture must take into account the knowledge gaps inherent in
the engineering of non-model bacteria. In fact, the design phase is
based on the hypothesis that at least one set of promoter sequence,
RBS and a plasmid vector is known, and the circuit can adapt protein
expression to reach a target level regardless of the activity of these
three components. The actuators that has been used to implement
the automation control of gene expression must be orthogonal (or at
least minimally cross-talking) with the cell machinery throughout all
bacterial species. The genetic architectures developed in this work
are two, called Sad-iFFL and U-iFFL. The first architecture is based
on an architecture well known in the literature (Section 1.2), i.e., the
incoherent-feedforward loop, for which the regulation system has been
optimized according to its portability and orthogonality. The second
circuit is a completely new architecture which, combining more subnet-
works, aims to overcome the limitations of the first and achieve better
performance in terms of output stability, robustness and predictabil-
ity. Both architectures base their automatic output regulation system
on the dCas9 repressor engineered from its wild type Cas9 version,
while the second circuit relies, in addition, on a phage transcription
system (RNAPT7−PT7). The characterization of the two essential bi-
ological modules has been carried out in vivo to test their suitability
in the composition of the designed circuits, based on their regulatory
parameters that have been estimated from experimental data. The
comparison among three architectures (Sad-iFFL, U-iFFL and Open
Loop control) has been analyzed in silico (both at the steady−state
and dynamics), and the performances theoretically investigated based
on robustness and stability in different scenarios (e.g., upon variations
of transcription rate, translation rate and protein target level). The
full theoretical and experimental characterization of Sad-iFFL is re-
ported in Chapter 3. For U-iFFL, only the theoretical characterization
of the circuit has been carried out and reported in Chapter 4, while its
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assembly has been interrupted due to Sars-CoV-2 worldwide pandemic
and the work is still on-going.

The functionality of the automatic controllers explained so far rely
on the availability of regulatory parts (e.g., promoters, RBS) that
drive the genes in the two circuits. Under a set of assumptions, il-
lustrated in detail in Chapter 3 and 4, the circuits are expected to
adjust the target protein level even if transcription, translation and
copy number varies, thereby making the circuits portable modules for
protein expression. To support the rational choice of promoters and
RBSs that may be functional (though with diverse activities) in dif-
ferent bacterial species, in Chapter 5 two bioinformatic pipelines are
discussed for parts (promoters and RBSs) selection based on publicly
available high-throughput expression data and genome sequences. The
same pipelines could also support the generation of new promoter and
RBS libraries that research laboratories can refer to engineering new
bacteria with a considerable range of strengths.
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Chapter 2
Mechanistic models to expand the

predictability of inducible systems in

synthetic biology1

This chapter reports a number of mathematical modelling tools
that will be used throughout the project. They include widely used
equations, such as empirical Michaelis-Menten and Hill functions, as
well as more mechanistic equations that are not commonly used in
mathematical analysis of synthetic circuits. Such more complex equa-
tions are derived and their identifiability discussed to support their
use. Finally, a mathematical model of cell load is illustrated and a
full model jointly describing the effects of variations of protein level,
circuit copy number and cell load is provided. All the chapter adopts
the lux inducible system as a case study, including a regulatory pro-
tein (LuxR) and the cognate promoter (PLux), to demonstrate that all
the studied aspects are crucial to quantitatively capture the transfer

1The content of this chapter is pubblished in the article “Mechanistic Mod-
els of Inducible Synthetic Circuits for Joint Description of DNA Copy Number,
Regulatory Protein Level, and Cell Load” [75].
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function of a synthetic circuit.

2.1 Mathematical modeling of biological

systems

Among the many issues currently limiting model-based approaches
in synthetic biology, several unpredictability sources affect the re-use
of biological parts in different contexts (i.e., strains, growth media,
and even circuits). Cell-to-cell variability, flanking regions-dependent
behavior, and cell load are among the major features causing such
variability [76, 77]. Many of such effects have often been neglected
in mathematical models, thereby limiting their predictive power. In
addition, widely used modeling approaches describe recombinant pro-
tein regulation via empirical Michaelis–Menten or Hill equations [78].
Empirical models are popular tools and have many advantages (e.g.,
low number of parameters, overall good descriptive capability and no
need to know the biomolecular interactions underlying the described
process) [79, 80]. However, they may have poor predictive power on
unseen data when one or more circuit elements are changed [81], like
copy number of DNA or protein regulators that have been reported to
be essential for the biological systems behavior [82]. In specific, trans-
fer functions of inducible devices can be characterized in vivo through
dose–response experiments, in which a constitutively expressed regula-
tor (activator or repressor) is activated or inhibited by an exogenously
added molecule and the complex eventually affects the transcription
of a cognate regulated promoter [83]. While empirical models can be
easily identified from such experimental data, it is not trivial to gen-
eralize them in situations in which molecule copy number changes,
also for the empirical nature of model parameters [81]. This weak
aspect of empirical models might be crucial in practical bottom-up
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design situations, in which circuit parts are interconnected and the
behavior of the system is predicted from the functioning of individ-
ual parts, by using previously estimated parameters [84]. Mechanistic
models are able to overcome some of the issues mentioned above: pa-
rameters usually have biological meaning (e.g., dissociation constants,
copy numbers, etc.) and predictive power is expected to be higher
than empirical models, since circuit changes can be translated into
the variation of specific parameters [81]. However, mechanistic models
usually have a larger number of parameters to be estimated, thereby
raising issues of model identifiability [79, 85]. Since such models re-
quire a deep knowledge of occurring biomolecular interactions in the
biological system under study, they are less popular than empirical
models. Different mechanistic modeling efforts have been undertaken,
describing gene regulation using thermodynamics or law of mass action
[79, 86]. However, the application of these models in bottom-up design
approaches remains low due to the absence of studies on their identi-
fication and lack of broad-range advantages demonstrations over the
empirical ones. In this work, a novel mechanistic steady-state models
of the lux inducible system, used as case study, have been derived and
compared with empirical model equations. Mechanistic models rely on
different assumptions on regulatory protein (LuxR) and cognate pro-
moter (PLux) concentrations, inducer-protein complex formation, and
resource usage limitation. It has been demonstrated that the change of
model assumptions significantly affects the circuit output; preliminary
data are in accordance with the activation curves.
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2.2 Models definition

2.2.1 Inducible system description

The inducible system studied in this work is described in Fig. 2.1.
It includes a constitutively expressed LuxR protein, which acts as
transcriptional activator of the cognate PLux promoter in presence of
N-(3-oxohexanoyl)-L-homoserine lactone (HSL). The LuxR-HSL ac-
tive complex binds to the lux box of the PLux promoter, triggering its
activity in an HSL concentration-dependent fashion, thereby regulat-
ing the transcription of the downstream gene, which is then translated
into protein. We considered a set of reactions affecting the produc-
tion of the (reporter) protein-encoded gene regulated by PLux, similar
to the ones described by Carbonell-Ballestero et al. [81] (Fig. 2.1b).
Specifically, a LuxR protein dimer (R2T ) and HSL (L) form a complex
(Q), which binds the free promoter (P) to form a transcriptionally ac-
tive bound promoter (S). As an alternative reaction scheme, we also
considered a similar set of biomolecular interactions, with complex
formation occurring in two steps (Fig. 2.1c): binding of two steps
(Fig. 2.1c): binding of R2T and L to form Q, and subsequent binding
of L and Q to form the hetero-tetramer Q2. This alternative reaction
set was defined to refine the mechanistic model above, in accordance
with previous investigations, in which a hetero-tetrameric structure
was suggested for the activated complex [87].

In the following part of this section, different models describing the
lux system are illustrated. The essential elements of gene expression
modeling are described in 2.2.3 together with the description of a basic
empirical model for transcription activation. The description of all the
models used in this work is provided in Sections 2.2.3 - 2.2.6. Due
to the complexity of model structure under some assumptions, the
theoretical analysis of the activation function parameters in provided
only for the models described in Section 2.2.2 and 2.2.3.
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Figure 2.1: Description of the lux inducible system. (a) The gene en-
coding the LuxR protein transcriptional regulator is expressed by a constitutive promoter (Pcon);
the LuxR regulator becomes activated upon HSL molecule binding to form a complex which can
bind the Plux promoter in its single lux box sequence, thereby activating the expression of the
gene of interest (GOI), placed downstream of Plux. Curved arrows represent promoters; ovals
represent ribosome binding sites (RBSs); straight arrows represent coding sequences; hexagons
represent transcriptional terminators; circles represent HSL molecules. (b) and (c) Biomolecular
reactions modeled in this work. The LuxR dimer (R2T, blue overlapping circles) is assumed to
be activated upon binding of one (b) or two (c) HSL molecules (L, yellow circles) to form an
activated complex (Q or Q2, respectively), which binds DNA (double helix icon) to enable tran-
scription. In panel (c), Q is the LuxR dimer form bound to one HSL molecule and it is assumed
to be unable to bind DNA. The equilibrium constants are reported for each reaction occurring
in panels (b) and (c).
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2.2.2 Empirical Michaelis-Menten models (M0)

Assumptions

Assuming that no post-transcriptional or post-translational regula-
tions are involved in the circuit, the intracellular dynamics of mRNA
(M), immature protein (X) concentration regulated by Plux and the
mature form of the protein (Y) can be described via Equations (2.1)−(2.3):

dM

dt
= H(L)− γM ·M (2.1)

dX

dt
= ρ ·M − (γX + σ) ·X (2.2)

dY

dt
= σ ·X − γX · Y (2.3)

In Equation (2.1), γM is the mRNA degradation rate and H(L) is
an HSL-dependent activation function describing transcription rate,
expressed in (RNA time−1) units. In Equation (2.2), γX (time−1),
includes the protein degradation and dilution rates, and ρ (time−1) is
the translation rate. If the expressed protein is very stable, is equal to
the rate of cell division. When relevant in terms of dynamics, protein
maturation or folding is also included: Y represents mature protein, σ
(time−1) represents protein maturation rate and protein degradation
rate is assumed to be the same for immature and mature forms. As-
suming the steady-state of all the intracellular processes, the output
commonly considered for such system, i.e., the mature protein synthe-
sis rate per cell (y), which is equal to the synthesis term of Equation
(2.3), is proportional to H(L) (Equation (2.4))

y =
σ · ρ ·H(L)

(γX + σ) · γM
(2.4)
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Another output commonly found in literature is the pre-cell mature
protein (Y), which is proportional to y, thereby enabling to generalize
all the modeling work presented in this study. In many works con-
sidering a constant LuxR production, not changing throughout the
experiments [83, 88], H(L) is modeled via a Hill equation and the
circuit output, y, can be written as in Equation (2.5)

y = δ +
α

1 +
(
κ
L

)η (2.5)

Assuming no cooperativity, Equation (2.5) with η = 1 is equivalent
to a Michaelis–Menten equation with three parameters: δ is the basic
protein synthesis rate when PLux is in its off state; α is the activity
range in the on state; κ is the HSL concentration corresponding to half
of the maximum activation [81]. The δ and α parameters are expressed
as intracellular protein concentration per time. The experimental mea-
surements routinely performed in laboratory to characterize synthetic
circuits usually exploit fluorescent reporter proteins, which are quan-
tified via in vivo assays by means of plate reader or flow-cytometry.
In these cases, per-cell arbitrary units of fluorescence (AU) can be
adopted to express intracellular protein concentration, assuming their
proportionality.

Derivation

When LuxR level is also needed to be described (situation of inter-
est in the present work), another commonly found modeling approach
includes the following equations (Equations (2.6) and (2.7)) [87], de-
scribing the LuxR-HSL complex formation and the subsequent activa-
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tion of protein synthesis by this complex

C =
U

1 +
(
κR
L

)β (2.6)

y = δ̂ +
α̂

1 +
(
κ̂
C

)η̂ (2.7)

In Equation (2.6), C is the intracellular LuxR-HSL complex con-
centration, U is the total LuxR concentration, κR is the concentration
of HSL required for half-activation of LuxR, and β is the Hill co-
efficient. In Equation (2.7), symbols have the same meaning as in
Equation (2.5), with the cap denoting that this Hill function has C
as input. For this reason, κ̂ has the same units as C and U (protein
concentration or AU, as explained above). Assuming no cooperativ-
ity, as before, the Hill coefficients ( β and η̂) can be fixed to 1. The
expressions in Equations (2.6) and (2.7) can be lumped into a single
equation describing y as a function of L (Equation (2.8))

y = δ̂ +
α̂/(1 + κ̂/U)

1 + κR/(1+U/κ̂)
L

(2.8)

which is equivalent to the Michaelis–Menten function in Equation (2.5)
with the following parameters (Equations (2.9)–(2.11))

δ = δ̂ (2.9)

α =
α̂

1 + κ̂
U

(2.10)

κ =
κR

1 + U
κ̂

(2.11)
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Final Expression

Although the parameters of Equation (2.8) have empirical nature, the
copy numbers of PLux (n1) and LuxR (n2) can be included in the

model. Specifically, n1 and n2 can act as known scale factors of δ̂, α̂
and U (Equations (2.12) - (2.14)), thereby enabling the description of
copy number changes among different situations. Following a bottom-
up approach, model parameters (δ̂ or d, α̂ or v, κ̂ and κR ) can be
estimated from experimental data and the parametrized model can be
adopted to predict unseen situations with different n1 and n2

δ̂ = n1 · d (2.12)

α̂ = n1 · v (2.13)

U = n2 · u (2.14)

As before, the system output (y) can be expressed in per-time

intracellular protein concentration or AUtime−1, like δ̂ and α̂. Analo-
gously, U and κ̂ are intracellular protein concentrations that can also
be expressed in AU, while κ̂ has the same units as HSL concentration.
For this reason, the relative copy number changes, instead of the ab-
solute ones, are sufficient to express n1 and n2. Specifically, n1 can be
set according to plasmid copy number and n2 is proportional to the
strength of the promoter expressing LuxR. Finally, the u value (Equa-
tion (2.14)) can be set to 1 without any loss of generality, since U is
always present in ratio with κ̂ (Equation (2.8)). The final empirical
model, called M0, describing the output of the lux inducible system as
a function of HSL and the per- cell copy numbers of PLux and LuxR,
is reported in Equation (2.15)
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y = n1 · d+
n1 · v/(1 + κ̂/(n2 · u))

1 + κ̂/(1+n2·u/κ̂)
L

(2.15)

2.2.3 Mechanistic model with LuxR abundance
assumption (M1)

Assumptions

A mechanistic model of the biomolecular reactions shown in Fig. 2.1b
has been previously reported [81] and is herein briefly illustrated. The
main underlying assumptions are that HSL molecules bound to LuxR
are negligible compared to the total HSL amount, and that P << R.
A difference from the work by Carbonell-Ballestero et al. is that no
binding is assumed between LuxR dimer and PLux, and the low-entity
promoter activation by this unspecific complex is neglected. Previous
experimental work showed that this activity increase is undetectable
in the commonly tested conditions [89].

Derivation

Considering the same equations for transcription, translation and mat-
uration (Equations (2.1) - (2.3)) as in Section 2.2.2, H(L) can be ex-
pressed in a more mechanistic fashion (Equation (2.16))

H(L) = κm0 · P + κmL · S (2.16)

where P and S represent the intracellular concentrations of free and
complex-bound promoter, while κm0 and κmL are the transcription rate
constants in off and on state, respectively. Based on the law of mass
action, the biomolecular interactions in Fig. 2.1b depend on the fol-
lowing equilibrium constants and conservation expressions (Equations
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(2.17) - (2.20))

K1 =
Q

L ·R2

(2.17)

K3 =
S

P ·Q
(2.18)

PT = P + S (2.19)

R2T = R2 +Q+ S (2.20)

Symbols in Equations (2.17) - (2.20) are described in Fig. 2.1b; briefly,
R2T and R2 are the total and free LuxR dimer concentrations, respec-
tively, where R2T ≈ RT/2 (and is the total concentration of LuxR
monomer). Under the assumption that P << R , the bound promoter
S in Equation (2.20) can be neglected: R2T = R2 + Q. Considering
Equations (2.1) - (2.3) and Equations (2.16) - (2.20), the following
expressions for LuxR-HSL complex and circuit output can be written
(Equations (2.21) and (2.22)) [81]

Q =
R2T

1 + 1
K1·L

(2.21)

y = κ̂m0 · PT +
(κ̂mL − κ̂m0) · PT

1 + 1
K3·Q

(2.22)

where κ̂m0 and κ̂mL are κm0 and κmL, respectively, scaled by σ·ρ/((γX+
σ) · γM) (see Equation (2.4)). These equations show that, like in the
empirical model in Equations (2.6) and (2.7), in this mechanistic model
the intracellular complex concentration and circuit output can be both
described by Michaelis–Menten functions. Analogously, circuit output
as a function of HSL is a Michaelis– Menten function (Equation (2.23))
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with coefficients described in Equations (2.24) - (2.26)

y =PT · κ̂m0 +
PT · (κ̂m0 + κ̂mL)

1 + 1/(K2 ·R2T )

· 1

1 + 1/(K1 · (1 +K3 ·R2T ) · L)

(2.23)

δ = PT · κ̂m0 (2.24)

α =
PT · (κ̂m0 + κ̂mL)

1 + 1/(K3 ·R2T )
(2.25)

κ = 1/(K1 · (1 +K3 ·R2T )) (2.26)

In summary, M0 (Equation (2.15)) and M1 (Equation (2.23)) have
the same y(L) function and analogous LuxR-dependent Michaelis –
Menten parameters expressions (Equations (2.9) - (2.11) and Equa-
tions (2.24) - (2.26)). However, the mechanistic nature of M1 gives
the advantages that molecule concentrations are explicitly described
and the link between model parameters and biological mechanism is
not lost. As a result, M1 offers the opportunity to parametrize the
model with biologically meaningful parameters, like intracellular con-
centrations, equilibrium constants, and copy numbers. Nonetheless,
hard-to-measure quantities can still be expressed in AUs instead of
concentrations, as in M0. For instance, while promoter concentration
and DNA copy number are easy to retrieve (e.g., from assumptions
about cell volume and plasmid datasheets or quantitative PCR), pro-
tein concentration requires more resource consuming experiments (e.g.,
Western blot) and depends not only on DNA copy number, but also
on transcription, translation and degradation rates [81]. Nevertheless,
the relative protein level can still be approximated via the strength of
the upstream promoter. For the reasons above, in this work M0 will
not be further analyzed, and only serves as reference for M1 parame-
ters expressions.
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Final Expression

The final expression of M1, explicitly including n1 and n2, is reported
in Equation (2.27)

y = n1 ·PU · κ̂m0 +
n1 · PU · (κ̂m0 + κ̂mL)/(1 + 1/(K3 · n2 · rT ))

1 + 1/(K1 · (1 +K3 · n2 · rT ) · L)
(2.27)

where PU and rT are the intracellular concentrations of one DNA copy
of promoter and LuxR protein, respectively. The n1 and n2 parameters
are, respectively, the PLux copy number, and the scale factor between
one protein monomer and the actual dimer concentration.

2.2.4 Mechanistic model without LuxR abundance
assumption (M2)

Assumptions and Final Expression

Following the same biomolecular reactions and calculation steps as in
M1, it is possible to calculate circuit output without the P << R as-
sumption. In this situation, S cannot be neglected in Equation (2.20).
Circuit output can be computed from Equation (2.28), in which R2

and P are the roots of a second order two-equation system (Equations
(2.29) - (2.30)). In this equation system, only one root has a biologi-
cally acceptable meaning for any value of L (not shown). Analytical
formulas expressing R2 and P are not reported due to their complexity
and, as a result, Equations (2.28) - (2.30) represent the final reported
expression for M2

y = P · (κ̂m0 + κ̂mL ·K1 ·K3 ·R2T · L) (2.28)
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(K1 ·K3 · L) · P 2 + (1 +K1 · L+K1 ·K3 · n2 · rT · L
−K1 ·K3 · n1 · PU · L) · P − (PT +K1 · n1 · PU · L) = 0

(2.29)

(K1 ·K3 · L+K2
1 ·K3 · L2) ·R2

2T + (1 +K1 · L
+K1 ·K3 · n1 · PU · L−K1 ·K3 · n2 · rT · L) ·R2T − n2 · rT = 0

(2.30)

2.2.5 Mechanistic model with LuxR-HSL hetero-
tetramerization (M1T, M2T)

Assumptions

The biomolecular interactions illustrated in Fig. 2.1c can be used to
derive mathematical models in which, differently from Fig. 2.1b, the
activated complex is a hetero-tetramer, formed by two LuxR and two
HSL molecules. In particular, under the P << R assumption, we also
assumed that: i) the LuxR dimer has two binding sites for HSL; ii)
the probability of HSL binding to a free site of R2 and Q is the same
(i.e., there is no cooperative behavior); iii) the probability of HSL un-
binding from an occupied site of R2T and Q is the same.

Derivation

The output can be expressed as in Equation (2.16), the K1 equilib-
rium constant as in Equation (2.17) and the conservation of total, free
and bound promoter as in Equation (2.19). The following expressions
describe equilibrium constants K4 and K5, as well as the LuxR dimer
(free, bound with L, bound with 2L and bound with 2L and the pro-
moter) conservation (Equations (2.31) - (2.33))
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K4 =
Q2

Q · L
(2.31)

K5 =
S

P ·Q2

(2.32)

R2T = R2 +Q+Q2 + S (2.33)

Thanks to the P << R assumption, as in M1 the S concentration
becomes negligible in Equation (2.33), thereby having: R2T = R2 +
Q + Q2. The forward and reverse rate constants in Equation (2.34)
k+ and k−) and Equation (2.35) (k′+ and k′−) describing the two HSL
binding steps, have the following relations: k+ = 2 ·k′+ and k′− = k− ·2:

R2 + L
k+



k−
Q (2.34)

Q+ L
k
′
+



k
′
−

Q2 (2.35)

For the described reasons, a relation between K1 and K4 can be
written (Equation (2.36)),

K4 =
k
′
+

k
′
−

=
k+

4 · k−
=
K1

4
(2.36)

Final Expression

Based on the relations above and following the same mathematical
steps as in M1, the final output for this model (M1T) is reported
in Equation (2.37); the M1T expression in Equation (2.37) does not
resemble a Michaelis – Menten function (differently from M1).
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y =n1 · PU ·
k̂m0 + (k̂m0 ·K1)

1 +K1 · L+ (K2
1/4 +K2

1/4 ·K5 · n2 · rT ) · L2
· L+

n1 · PU ·
(k̂m0 ·K2

1/4 + k̂mL ·K2
1/4 ·K5 · n2 · rT )

1 +K1 · L+ (K2
1/4 +K2

1/4 ·K5 · n2 · rT ) · L2
· L2

(2.37)

Without the P << R assumption, the expressions of circuit output
become more complex. By following the same steps previously done
in Section 2.2.4 for M2, the final model (M2T) is described by the
following expressions (Equations (2.38)-(2.40)).

y = P ·
(
k̂m0 + k̂mL ·

K2
1

4
·K5 ·R2 · L

)
(2.38)



aR2 ·R2
2 + bR2 ·R2 + cR2 = 0

aR2 =

(
K2

1

4
·K5 · L2 +

K3
1

4
· L3 +

K4
1

16
·K5 · L4

)
bR2 =

(
1 +K1 · L+

K2
1

4
· L2 +

K2
1

4
·K5 · n1 · PU · L2 − K2

1

4
·K5 · n2 · rT · L2

)
cR2 = −n2 · rT

(2.39)
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aP · P 2 + bP · P + cP = 0

aP =

(
K2

1

4
·K5 · L2

)
bP =

(
1 +K1 · L+

K2
1

4
· L2 +

K2
1

4
·K5 · n2 · rT · L2 − K2

1

4
·K5 · n1 · PU · L2

)
cP = −n1 · PU ·

(
1 +K1 · L+

K2
1

4
·K5 · L2

)
(2.40)

2.2.6 Modeling Cell Load (M1L, M2L)

Assumptions

Unless differently indicated, in the two-gene circuit considered in this
work (Fig. 2.1a) we assume that only the protein with expression reg-
ulated by PLux is characterized by a relevant resource usage, while
LuxR does not cause relevant burden. Since LuxR is constitutively
expressed, thereby giving constant load, this assumption will not af-
fect any HSL-dependent function, as previously discussed for genes
with constant resource usage acting as background [84].

Derivations

A mechanistic model has been recently proposed to describe the ef-
fects of cell load caused by the expression of proteins with high resource
demand [90, 91]. In such context of transcriptional/translational re-
source limitation, the synthesis rates of all the proteins of a synthetic
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circuits are globally scaled by a factor D (Equation (2.41)).

D = 1 +
c∑
i=1

Ji · si (2.41)

where c indicates the number of expressed proteins in the synthetic
circuit, si represents the synthesis rate of the i-th protein and Ji its
resource usage parameter. Model derivation is extensively discussed in
the original publications [90, 91], while in this study only the expres-
sion with lumped parameters is reported and used (Equation (2.41)).

Final Expression

The final expression of model output in presence of cell load is re-
ported in Equations (2.42)-(2.44)

D(L, n1, n2,b) = 1 + E + J ·
(
σ + γX
σ

)
· y(L, n1, n2,b) (2.42)

n2,b(L, n1, n2,b) =
n2

D(L, n1, n2,b)
(2.43)

yb(L, n1, n2,b) =
y(L, n1, n2,b)

D(n1, n2,b)
(2.44)

where yb and n2,b indicate the model output and the LuxR scale factor
affected by cell load, y is the output of one of the models described
in Sections 2.2.2-2.2.5, n1 and n2 have the same meaning as before,
and J is the resource usage parameter (in min/AU) associated to the
output protein. Finally, the contribution of an external constant load
(E) was studied analogously, with the exception that the value of E
was added to Equation (2.42).
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2.3 Model comparisons on different as-

sumptions

The effect of different model assumptions on the transfer functions
shape was studied via numerical simulations. The considered assump-
tions were on LuxR abundance (Section 2.3.1), cell load (Section 2.3.2)
and LuxR-HSL binding mechanism (Section 2.3.3). We evaluated if
such assumptions exert a relevant contribution to output variation
and, in some cases, if their inclusion contributes to the superior de-
scriptive power of preliminary experimental data.

2.3.1 Effect of LuxR abundance assumption: M1
vs. M2

We compared the simulated outputs of M1 and M2, for different
DNA/protein copy number situations, to evaluate the effect of the
assumption of LuxR concentration abundance over PLux (Fig. 2.2).
As expected from Equations (2.25) and (2.26) and previous works
[81], for different values of R2T (equal to n2 · rT ) the output curves
generated by M1 showed diverse maximum (α) and switch point (κ)
values, increasing and decreasing respectively as a function of R2T

(Fig. 2.2a,c,e). On the other hand, for increasing values of plasmid
copy number (n1), the values of α showed a linear increase and κ
remained constant (Fig. 2.2b,d,f) as expected from Equation (2.24).
In both cases, the Hill coefficient was always equal to 1 as expected
(Fig. 2.2g,h). While the M1 model was able to capture the effects
of LuxR level variation in some experimentally tested model systems,
as previously demonstrated [81], the effect of changes in plasmid copy
number are intuitively non-realistic since M1 assumes that the concen-
tration of LuxR is much higher than the one of the promoter, thereby
resulting in an unlimited increase of protein synthesis rate for high
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DNA copy numbers, with unchanged shape of the curve in terms of
κ and η. Since LuxR may be expressed over a wide range of values
to tune the sensitivity of the inducible device [78], the removal of its
abundance assumption can be of interest and led us to develop M2.

Figure 2.2: Comparison between M1 and M2.Panels (a) and (b) report
the output activation curves of M1 (solid lines) and M2 (dashed lines) for different values of
R2T (panel (a), as indicated in the legend, expressed as nM) and PT (panel (b), as indicated
in the legend, expressed as per cell copy number). The (c)-(d), (e)-(f), and (g)-(h) panel pairs
report the R2T− and PT−dependent trend of α, κ and η, respectively, with solid and dashed
lines representing M1 and M2, respectively. In panels (a),(c),(e),(g) the promoter copy number
value was set to 5, while in panels (b),(d),(f),(h) the LuxR concentration was set to 500 nM.

The M2 model was investigated in the same situations considered
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for M1 (Fig. 2.2). Upon changes of LuxR values, the relationship be-
tween R2T and α or κ were qualitatively analogous to M1. However,
when R2T decreases below the promoter concentration value (about 8
nM) the output of M2 showed both lower α and κ levels compared to
M1, with the decrease of κ showing the highest-entity effect (>2-fold
with the used parameters, Fig. 2.2e). When plasmid copy number
is varied in a range below a constant LuxR concentration value (500
nM), α still showed a linear increase as observed in M1, but, differ-
ently from M1, κ showed a low-entity increase (less than 2-fold). For
concentrations of promoter higher than LuxR, the α value showed sat-
uration, intuitively bacause all the PLux promoters in the cell cannot
be occupied by limiting amount of LuxR, and as a result RFP syn-
thesis cannot increase anymore for higher concentrations of promoter.
Although in this latter condition RFP maximum expression is con-
stant, an increase in plasmid copy number results in a decrease of κ
(about 2-fold). Also, in the M2 model, the Hill coefficient was equal
to 1 upon R2T variation. However, interestingly, it decreased to values
slightly lower than 1 (up to 0.8) upon variations of plasmid copy num-
ber (Fig. 2.2g,h). The illustrated results demonstrate that the removal
of the LuxR abundance assumption can affect all the parameters of a
Hill function, even when R2T and PT are tuned over ranges of values
not violating this assumption.

2.3.2 Effects of cell load

The M1L model was simulated to investigate the effects of cell load,
which was assumed to derive from RFP expression alone, or from both
RP and a constant load outside the inducible circuit, caused by the
expression of another heterologous protein (Fig. 2.3).

If the load was caused by RFP, its expression affected both LuxR
and RFP itself when induction levels became high upon HSL addi-
tion. As expected, the maximum level of RFP expression reached by
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Figure 2.3: Comparison between M1 and M1L.Panels (a) and (b) report
the output activation curves of M1 (solid lines) and M1L (dashed lines) and M1L with external
load, indicated as M1L+E (dotted lines), for different values of R2T (panel (a), as indicated in
the legend, expressed as nM) and PT (panel (b), as indicated in the legend, expressed as per cell
copy number). The (c)-(d), (e)-(f), and (g)-(h) panel pairs report the R2T− and PT−dependent
trend of α, κ and η, respectively, with solid, dashed, and dotted lines representing M1, M1L,
and M1L+E, respectively. In panels (a),(c),(e),(g) the promoter copy number value was set to
5, while in panels (b),(d),(f),(h) the LuxR concentration was set to 500 nM.

M1L was lower than the respective levels reached by M1 (Fig. 2.3c,d)
upon changes of both R2T and plasmid copy number. In particular,
the increase of DNA copy number resulted in a saturated maximum
RFP expression, which was much lower than in the no-burden model
(Fig. 2.3d). The burden effect on κ resulted in a slight decrease com-
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pared with M1 upon R2T variation (Fig. 2.3e), while the decreasing
effect on κ was more relevant upon plasmid copy number increase
(Fig. 2.3f). Assuming that a constant load (E) also affects protein
expression, α showed a further decrease, and κ showed an increase
compared with M1, that is, activation curves showed a systematically
higher switch point than in a situation without load. In all the de-
scribed cases, the Hill coefficient showed values slightly lower than
1 upon plasmid copy number increase and almost unchanged values
(close to 1) in case of R2T variation. We then analyzed the in vivo
data from a previously published experiment, in which the activation
curve of a medium copy plasmid-borne lux inducible device was char-
acterized in absence and presence of a second co-transformed plasmid,
considered as an additional constant load for the host [88]. Trans-
fer functions were measured in four conditions (with/without load,
low/high expression of IPTG-driven LuxR) and a summary of the re-
sulting Hill function parameters is reported in Table 2.1. As the M1L
model predicts, the additional load affects the transfer function pa-
rameters upon both low and high LuxR expression level conditions:
α showed a decrease in presence of E, while κ increased. It is worth
noting that a simpler model including cell load only on RFP expres-
sion (and not on LuxR), as previously adopted to analyze in vivo data
[84], fails to describe the joint increase of α and decrease of κ upon
LuxR overexpression, captured by the M1L model and observed in ex-
perimental data resembling the modeled situation (data not shown).
Analogous results were obtained from the simulations via M2L (data
not shown). The reported simulations showed that cell load can quan-
titatively affect all the Hill parameters of the activation curves, thereby
demonstrating the relevance of model assumptions in the analysis of
dose–response curves of inducible systems.
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Table 2.1: Parameters estimated from in vivo experiments.
Measurements were carried out using MG1655-Z1 as host strain. aPercent expression, relative to
the maximum expression value obtained in the same study; bBioBrickTM construct BBa J107063
in the pSB3K3 medium-copy vector, IPTG-inducible LuxR expression cassette; cAdditional load
provided by the OL1 low-copy plasmid, described in the same paper; dBioBrickTM construct
BBa J107032 in the pSB4C5 low-copy vector, ATc-inducible LuxR expression cassette.

Condition α(%)a κ(nM) η(−) Reference
Medium copyb, no IPTG 47 194.01 1.01 [88]

Medium copy + Ec, no IPTG 27 474.1 0.98 [88]
Medium copy, IPTG = 500 µM 100 0.77 1.54 [88]

Medium copy + E, IPTG = 500 µM 68 0.99 1.29 [88]
Low copyd, no ATc 83 34.29 0.98 This study

Low copy, ATc = 2.5 ng/ml 92 11.32 1 This study
Low copy, ATc = 5 ng/ml 97 3.73 1.15 This study
Low copy, ATc = 50 ng/ml 100 1.52 1.39 This study

2.3.3 Evaluation of LuxR-HSL complex formation
assumptions: M(1-2) vs. M(1-2)T

By assuming that the LuxR dimer has two binding sites for HSL
molecule, we defined models including a hetero-tetramer formation
step (M1T and M2T, depending on the LuxR abundance assumption
as above). We also assumed a non-cooperative behavior for the HSL
ligand binding, i.e., the two successive HSL binding events occur with
the same probability and K4 = K1/4, as described in Equations (2.34)-
(2.36). Considering the Adair equation (Equation (2.45)), describing
the fraction (F) of HSL-bound sites of LuxR over the total number
of sites [92], the resulting Hill coefficient (computed as in Equation
(A.3)) is always 1 under the non-cooperativity assumption, for any
parameter and R2T value

F =
Q+ 2 ·Q2

2 ·R2 + 2 ·Q+ 2 ·Q2

=
1

2
· K1 ·+0.5 ·K2

1 · L2

1 +K1 · L+ 0.25 ·K2
1 · L2

(2.45)
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Differently from Equation (2.45), the expressions of Q2 (which can
be calculated from Equations (2.17), (2.31) and (2.33)) and y show
LuxR level-dependent Hill coefficients. For both Q2 and y, such fea-
tures can be observed in the closed-form expressions which can be
obtained from M1T (Section 2.2.5). In particular, model simulations
of M1T showed that the Hill coefficient increases as a function of R2T ,
which represented the main difference from the respective model with-
out hetero-tetramerization assumption (M1), while the other param-
eters showed analogous trends as above (Fig. 2.4). The simulation of
M2T also showed this feature on the Hill coefficient, together with
the same trends described in Section 2.3.1 due to removal of LuxR
abundance assumption.

Although a number of previous experimental works on the lux sys-
tem showed a Hill coefficient around 1 or slightly lower in the tested
conditions [81, 93], in some works a higher number was reported
[88, 94]. While Hill coefficient values lower than 1 could be due to
burden effects and/or violation of the LuxR abundance assumption, as
described by the models illustrated in Sections 2.3.1 and 2.3.2, higher
values could not be described by those models in any tested case. Us-
ing preliminary data from a previous study [88] and a novel ad hoc
experiment (Table 2.1), we showed that the Hill coefficient increases
upon increase of LuxR level, consistently with the simulations of M1T
and M2T. By also considering cell load in these more detailed mod-
els (obtaining the M1TL and M2TL models), the same trends and
conclusions illustrated in Section 2.3.2 could be observed (data not
shown). Importantly, the resulting Hill coefficient value, as well as the
other parameter values, could be tuned by the joint contribution of
different effects, e.g., cell load, LuxR abundance assumption violation,
and hetero-tetramerization, with the latter exerting an increase of η
for increasing R2T levels, and the other effects causing a decrease of
its value.
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Figure 2.4: Comparison between M1T and M2T.Panels (a) and (b)
report the output activation curves of M1T (solid lines) and M2T (dashed lines) for different
values of R2T (panel (a), as indicated in the legend, expressed as nM) and PT (panel (b), as
indicated in the legend, expressed as per cell copy number). The (c)-(d), (e)-(f), and (g)-(h)
panel pairs report the R2T− and PT−dependent trend of α, κ and η, respectively, with solid and
dashed lines representing M1T and M2T, respectively. In panels (a),(c),(e),(g) the promoter
copy number value was set to 5, while in panels (b),(d),(f),(h) the LuxR concentration was set
to 500 nM.

2.3.4 Model identifiability

The usability of the M1, M2, M1T, and M2T models was evaluated
by studying their structural and practical identifiability, to eventually
understand if their parameters can be reliably estimated and which
experiments are needed for this task.
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2.3. Model comparisons on different assumptions

M1

The M1 model is a priori identifiable: two experiments, in which the
transfer function is measured for different LuxR levels (tuned by n2),
are needed to properly estimate model parameters in Equation (2.23).
In particular, assuming that the Michaelis – Menten function param-
eters defined in Equations (2.24)-(2.26) are known from the fitting of
experimental data, the following expressions can be written (Equations
(2.46)-(2.51))

δ = PU · n1 · k̂m0 (2.46)

α =
PU · n1 · (k̂m0 + k̂mL

1 + 1/(K̂3 · n2)
(2.47)

κ = 1/(K1 · (1 + K̂3 · n2)) (2.48)

δ̇ = PU · n1 · k̂m0 (2.49)

α̇ =
PU · n1 · (k̂m0 + k̂mL)

1 + 1/(K̂3 · n2)
(2.50)

κ̇ =
1

K1 · (1 + K̂3 · n2)
(2.51)

where the single and double bars on Hill function parameters and copy
numbers indicate the parameters of the first and second experiment,
respectively. These expressions demonstrate that LuxR must not be
very low or very high (compared with 1/K̂3) in both experiments to

enable identifiability (n2 << 1/K̂3 or n2 >> 1/K̂3). These expressions
also demonstrate that two or more experiments in which n1 changes
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(while keeping n2 constant) do not lead to a structurally identifiable
model. The a posteriori identifiability was also confirmed by fitting
synthetic data generated from parameters in Table 1 (for n2 = 50
and 500 AU , and rT = 1) and a realistic number of data points. As
expected, this model is practically identifiable since it led to reason-
ably low estimation errors and CV for its four unknown parameters
(Fig. 2.5).

M2

The a priori identifiability of the M2 model could not be studied due
to its complex expression. Only a posteriori identifiability could be
addressed. Since M2 has the same parameters as M1 with the ad-
dition of rT (which cannot be estimated separately from K3 in M1),
its proper estimation in M2 is intuitively possible only when LuxR is
not abundant compared with promoter concentration, otherwise the
M2 expression would become identical to M1. Accordingly, the syn-
thetic experiments were simulated with n2 = 0.005, 0.5 and 5 AU (with
rT = 100nM/AU). The simultaneous estimation of its five parame-
ters did not lead to a structurally identifiable model due to the high
REE (detailed explanation in A.3) and CV, even by considering more
activation curves with different LuxR levels (e.g., n2 = 0.05 which was
added to the ones above - data not shown). For this reason, we in-
vestigated a two-stage procedure in which synthetic data obtained by
setting n2 = 0.5 and 5 AU (corresponding to R2T = 50 and 500nM)
were fitted with M1 (first stage). This fitting is expected to provide
reliable estimates (as shown in Section 2.3.1) because LuxR is highly
abundant and the assumptions of M1 are not violated. Since M1 and
M2 share the same k̂m0, k̂mL and K1 parameters, their estimated val-
ues were fixed in the second stage, in which the M2 model was used
to fit the data with n2 = 0.005 (corresponding to R2T = 0.5nM) and,
as before, 0.5 and 5AU , to estimate K3 and rT , exploiting at least
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one condition in which LuxR is not abundant compared with the PLux
promoter. This procedure led to a structurally identifiable condition
for the M2 model, since it could estimate its parameters with reason-
ably low estimation error and CV, even if it had higher REE compared
with M1 but much lower CV (Fig. 2.5).

M1T

The M1T model is a priori identifiable from only one experiment.
In particular, assuming that the coefficients of the rational function in
Equation (2.37) are known (Equation (2.52)), the Equations (2.53)-
(2.57) system can be solved, with the only constraint that no solution
is obtained for n2 << 1/K5

y =
a′ + b′ · L+ c′ · L2

1 + d′ · L+ e′ · L2
(2.52)

a′ = PU · n1 · k̂m0 (2.53)

b′ = PU · n1 · k̂m0 ·K1 (2.54)

c′ = PU · n1 · k̂m0 ·K2
1/4 + PU · n1 · k̂mL ·K2

1/4 · K̂5 · n2 (2.55)

d′ = K1 (2.56)

e′ = K2
1/4 +K2

1/4 · K̂5 · n2 (2.57)

The a posteriori identifiability was investigated by using only one acti-
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vation curve with n2 = 50AU (with rT = 1). Despite the identifiability
was successfully confirmed, the REE and CV were both higher than
in M1 (Fig. 2.5). We also investigated the availability of a second ac-
tivation curve with n2 = 500AU , as in the case of M1. In this case,
REE and CV (Fig. 2.5) were systematically lower than in M1T with
one LuxR level and also in M1.

M2T

Since the M2T model structure did not enable the study of a priori
identifiability, only the a posteriori one was investigated. Similar con-
sideration to M2 also persist for M2T when different activation curves
were fitted with this model to estimate its five parameters, leading to
an a posteriori non-identifiability (data not shown). For this reason,
the same two-stage identification procedure described in Section 2.3.2
was adopted, with the exception that the first estimation step was
carried out via M1T to estimate its four parameters, and then M2T
was used to estimate K5 and rT from the synthetic data as described
in Section 2.3.2 by fixing the k̂m0, k̂mL, and K1 parameters to the pre-
viously estimated values. Results showed that, following the described
procedure, the model is a posteriori identifiable with low REE and CV
(Fig. 2.5).

2.4 Final considerations

Accurate predictive mathematical models are needed to support
the bottom-up design of complex biological systems in synthetic bi-
ology. In an effort towards the development of computational tools
to overcome this need, different mechanistic models were herein pro-
posed for the lux inducible system. Their mechanistic structure was
expected to increase the details of the described system, thereby mak-
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Figure 2.5: Relative estimation error (REE) and uncertainty of
parameter estimates (CV) in a posteriori identifiability.Panels
(a) and (b) report the distribution of REE (a) and CV (b) among 200 runs starting from
different simulated data, with a 5% proportional error. The model and the number of LuxR
levels included in the fitted data are specified for each boxplot. The red line represents the
median of the distribution. Panels (c) and (d) report the median of the REE (c) and CV (d)
distribution as a function of the proportional error entity, from 0 to 10%. The models and specific
LuxR levels are described in the legend. In all the panels, the dashed horizontal line indicates
the 100% value to facilitate the interpretation of the graphs.

ing the model more generalizable to context variations than traditional
empirical equations. Eight different mechanistic models, based on dif-
ferent assumptions on regulatory protein abundance, ligand binding,
and resource usage (and their combinations), were studied in silico
and compared, with the final goal of understanding the impact of the
underlying assumptions on the transfer function of the circuit. One
of the models was strongly inspired by a previously published work
[81], while the others represent novel computational tools. The differ-
ent assumptions summarized above affected the simulated output of
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the models (i.e., dose–response curve of recombinant protein produc-
tion as a function of inducer concentration), thereby demonstrating
that significant diversity in model output could be generated by dif-
ferent features. The initially considered model (M1) assumed that one
HSL binding event to the LuxR dimer occurred for the activation of
the complex, and that LuxR concentration was much higher than the
one of PLux, with a resulting mathematical expression equivalent to
a Michaelis – Menten function model. When the assumption on the
LuxR abundance was removed (M2), the model gave different outputs
compared with M1 when the assumption was violated. In particu-
lar, the increase of PLux copy number was predicted to result into
a linearly increasing expression by M1, while M2 showed a saturat-
ing trend, thereby demonstrating that the removal of this simplifying
assumption can lead to an intuitively more realistic behavior of the
inducible system upon DNA copy number changes. In this situation
and with the structural parameter values used in our study, the out-
put showed maximum activity variations up to 2.3-fold between M1
and M2 for biologically plausible values of DNA and protein concen-
trations. When a limited resource framework was assumed (M1L), the
expression of LuxR and output protein were globally affected by cell
load due to the expressed output protein (in an HSL-dependent fash-
ion) and/or to a load outside the inducible circuitry. As previously
demonstrated in vivo and in silico, the output of inducible systems
is affected by the resource usage of the expressed proteins [84]. In
the M1L model, we showed that an external load causes a decrease in
maximum output and an increase of the half-maximum HSL concen-
tration. This result could not be predicted by some of the traditionally
used models in which the transcriptional regulator is assumed to be
constant and is not modeled [84, 95]. In this situation and with the
structural parameter values used in our study, the output showed pa-
rameter variations up to 2.5-fold between M1 and M1L for biologically
plausible values of resource usage parameters, and DNA and protein
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concentrations. The predicted effects were consistent with previously
published experimental data of our group, in which the same inducible
system with and without cell load (due to the presence of an additional
co-transformed plasmid) showed the same effect on maximum activity
and activation curve sensitivity [88]. In both M2 and M1L models,
we also showed that the Hill coefficient of the output curve could de-
crease (compared to 1, i.e., the one of M1) up to 0.8 with the param-
eters used in our study. When a different ligand binding reaction was
considered (M1T), i.e., two HSL molecule binding to the LuxR dimer
non-cooperatively, the output expression introduced a power over the
HSL concentration term. As a result, output curves had a Hill coeffi-
cient greater than one, even if the described binding mechanism was
assumed to be non-cooperative. To our knowledge, this is the first
study explicitly highlighting that a Hill coefficient greater than one
could occur in absence of cooperative binding in the transcriptional
activator. This effect was consistent with previously published exper-
imental data from our group [88] and others [94], as well as novel pre-
liminary experimental data explicitly measured in this work: the Hill
coefficient of the output curve increased as a function of LuxR level.
In our M1T model, an increase up to 2-fold was observed for the Hill
coefficient compared to M1, which relied on a different assumption on
HSL binding. The behavior of the remaining models, including com-
binations of the described assumptions (M2L, M2T, M1TL, M2TL),
showed more complex features, but similar conclusions on the effects
of the investigated assumptions could be drawn. The M1, M2, M1T,
and M2T models were also studied in terms of usability, by investigat-
ing their identifiability, to eventually understand if their parameters
could be estimated from experimental data and which experimental
design is recommended. In fact, in addition to simulation, parameter
estimation is a crucial step in model usability that enables the re-use
of well-characterized regulatory components in synthetic biology. All
the models enabled parameter estimation with reasonably low error
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and a few constraints (described in Section 2.3). In general, as ex-
pected, by increasing the random noise affecting experimental data
REE and CV increase. As for the individual models, M1 required
two experiments with different LuxR levels, while M1T required only
one experiment with a single LuxR expression value, despite its pa-
rameters could be estimated much more reliably by adding a second
experiment, like in the M1 case. The M2 and M2T models required an
additional experiment, compared to M1 and M1T, respectively, to be
properly identified, in which a curve obtained with a LuxR level that
is not much higher than PLux concentration had to be measured. Con-
sidering a proportional error model for the generated data (5% CV),
all the models enabled the estimation of structural parameters within
2-fold compared with the true value (considering interquartile ranges
of REE distribution). The M2 model showed the highest estimation
error (>100%, median among 200 runs with different datasets simu-
lated with a 10% proportional error), making it the less robust model
among the tested ones in estimation tasks. The M1T model with
a single LuxR level showed similar drawbacks, which could be over-
come by adding activation curve data with more LuxR levels, while
M2 could not be improved following the same procedure. If used to
fit the data in real experimental works, a major advantage of the M2
and M2T models is that they potentially enable the estimation of the
actual LuxR intracellular concentration, which could not be estimated
with the LuxR abundance assumption (M1 and M1T). However, the
simultaneous estimation of all the parameters of M2 and M2T failed,
thereby leading to the definition of an alternative procedure for the
identification of such models: first, M1 (or M1T) was identified by fit-
ting two activation curves data that conformed to the LuxR abundance
assumption to estimate all model parameters; then, M2 (or M2T) was
identified by fixing three parameters, previously estimated via M1 (or
M1T), and estimating the two remaining ones by fitting the two acti-
vation curves data used in the first stage, together with an additional
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curve obtained for a low LuxR level. Given the same number of exper-
iments, M1T and M2T could be identified with lower estimation error
and parameter uncertainty than M1 and M2, respectively. The iden-
tifiability of models including cell load was not herein addressed, but
their usability with real data was investigated previously [84]; they are
not expected to include additional identifiability issues, since resource
usage parameters could be estimated separately if required [84, 96]
and their identification can rely on a second output of the system, i.e.,
a cell burden monitor which acts as a proxy of cell load. A number
of limitations may affect the usability and predictive performance of
the studied models against in vivo data. In fact, although mechanistic
details have been herein added to traditional models to improve their
generalization performance, other assumptions may still be inaccurate
in capturing the real behavior of a synthetic circuit. Among the poten-
tial crucial aspects, it is worth noting that cell systems are inherently
stochastic and when the reacting molecules are present at small in-
tracellular copy numbers stochasticity can result in large fluctuations
in the behavior of single cells in a population. In addition, the non-
cooperativity of the inducer-regulator binding, herein assumed, should
be further investigated. More in general, despite preliminary data have
been used to confirm some of the transfer function variations found in
this work, a larger-scale experimental validation should be required to
investigate and confirm the described effects. Such effort should ex-
perimentally validate the impact of the individual assumptions. The
different LuxR-HSL binding assumptions will need such validation to
select the one best describing experimental measures. However, the
validation of the other assumptions (LuxR abundance and cell load)
should not lead to the selection of a best-performing model since it is
expected to be application-specific, e.g., a no-burden model may have
high predictive power if all the genes of a circuit have low resource
usage. In summary, we have proposed different usable mechanistic
models that had a significant impact on the predicted output of an in-
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ducible system, and they were also consistent with a set of preliminary
experimental data. In the future, the reported models may support
synthetic circuits output prediction in practical situations with un-
precedented details, also facilitating the bottom-up design of complex
circuits due to their generalization power. In this framework, highly
relevant applications of such models in synthetic biology are, e.g., the
prediction of circuit output as a function of unseen DNA, protein and
inducer concentrations; estimation of protein regulator abundance; in-
vestigation of different binding mechanisms for subsequent model se-
lection. The proposed model definition and analytic procedures may
be used to study other systems different from the LuxR/PLux module,
considered in this work. The underlying binding reactions could be
known, or they might be investigated by testing different model as-
sumptions against experimental data for model parametrization and
mechanistic understanding.

52



Chapter 3
Sad-iFFL: Improved iFFL network based

on the CRISPRi system from

Staphylococcus aureus

The focus of synthetic biology on new microorganisms leads sev-
eral research groups on the rational design of new DNA-encoded con-
trollers in order to achieve stable and predictable protein expressions,
indipendent from the host machinery and thus indipendent from the
three main gene expression process parameters that are affected by
context-dependent variation: transcription rate [56], translation rate
[64] and copy number variations [65]. In order to provide a genetic sys-
tem able to work in any bacteria with high probability, a new circuit
design, herein called Sad-iFFL, has been developed based on the in-
coherent feedforward-loop (iFFL) network (described in Section 3.1),
using a novel repressor enzyme: Staphylococcus aureus dCas9, which
has different advantages compared with current solutions. The biolog-
ical circuit description and the mathematical model subsequently de-
veloped are discussed in Section 3.2; the latter has also been analyzed
to investigate its theoretical working constraints and the rejection ca-
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pability of the three aforementioned parameters has been discussed.
Subsequently, the dynamic and steady-state analysis of the Sad-iFFL
circuitry has been characterized in silico and compared with the open-
loop scheme (detailed in Appendix B) in terms of output stability due
to noise propagation, robustness on parameter variations and settling
time. In order to mimic different hosts scenarios, the designed circuit
has been tested in vivo with different combinations of regulatory parts
and its performances has been discussed in Section 3.3.

3.1 Introduction

The gene networks encoded in bacterial DNA exert gene expres-
sion regulation in two main ways in open-loop, in which regulatory
sequences (e.g., promoter, RBSs, terminators) are solely responsible
for the gene expressions process of each sequence or adopting regula-
tory subnetwork which include ubiquitous network motifs and exert a
robust control of the expression of a defined set of genes. The interest
by Synthetic Biology to create a stable and robust circuit that could
work in the highly variable and dynamic intracellular environment
brought the control theory discipline to attention, in order to apply
such engineering concepts to the gene regulation process [10]. In the
set of network motifs discovered so far, one of the most represented
within the bacterial cell is the feedforward loop. They are subject
to several engineering constraints, including that (i) they are finely-
tuned so that the system returns to the original steady state after a
disturbance occurs (adaptation), (ii) they are typically implemented
in the combination with negative feedback, and (iii) they can greatly
improve the stability and dynamical characteristics of the conjoined
negative feedback loop. On the other hand, in biology, these network
loops can serve many purposes, one of which may be the implementa-
tion of robust control schemes against environmental perturbations or
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cell-to-cell variability [97]. Indeed, as reported in Section 1.2, a version
of feedforward loop (FFL), called incoherent-feedforward loop (iFFL),
has been used to make a gene of interest indipendent from the param-
eter desirable to reject (e.g., copy number variation [65], [67]). The
basic iFFL network is reported in Fig. 3.1A where the signal X regu-
late positively and negatively, through the entity Y, the output Z. The
opposite effect exerted by X on Z gave the suffix ‘incoherent’ to the
FFL network motif. The network presented in this work is based on
the iFFL scheme in order to control the expression of a gene of inter-
est (GOI) rejecting the context-dependent variation on the three main
parameters of the gene expression process: transcription rate, trans-
lation rate and copy number. The logic scheme is shown in Fig. 3.1B.

Transcription rate 𝛼
Translation rate 𝝆
Copy number n

Output 
GOIRepressor

X

ZY

A. B.

Figure 3.1: Incoherent feedforward-loop (iFFL) network.A, Inco-
herent (type I) feedforward network can, under some assumptions on the repressor protein Y,
make the output Z independent from the signal X. B, Desing of iFFL-based network to obtain
the perfect adaptation of a gene of interest (GOI) to: transcription rate α, translation rate ρ and
copy number n variations.

3.2 Sad-iFFL model-based design

3.2.1 Circuit description

The architecture of the iFFL investigated in this work (Sad-iFFL)
includes the GOI and a repressor coding sequence (SadCas9) in dif-
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ferent expression cassettes under the control of identical promoters
and RBSs, and in the same copy number (Fig. 3.2). The SadCas9
protein forms a complex with a sgRNA that is programmed to bind
a DNA region downstream of the GOI promoter, thereby repressing
GOI transcription. Differently from the approach usually followed
for synthetic circuits reported in the literature in which the repressor
complex (dCas9:sgRNA) is programmed to bind the promoter region
[69], in this study the target region has been inserted immediatly next
to the transcription start site (TSS) of the promoter. Indeed, due
to the hypothesis that the promoter sequence is the same for all the
components within the circuit (e.g., SadCas9, GOI, sgRNA), it is pos-
sible to avoid undesirable network regulations (e.g., negative-feedback
loop of SadCas9) that would break the logic of the genetic controller.
For a sufficiently high expression level of the repressor, this system is
expected to be robust against transcription, translation and copy num-
ber variations. For these reasons, this kind of circuit could be able to
achieve a predictable target protein level in different host strains and
under different perturbed environmental conditions and cellular or ge-
netic contexts. As reported in the literature, the perfect adaptation
theoretically occurs only if the cooperativity of the repressor used in
the circuit is equal to 1 [65], characteristic of a regulator for which
only one binding event can occur. This requirement can be met by
design via the dCas9 enzyme that can bind a single DNA sequence in
its target.

In order to increase the portability of the circuit scheme through
different bacterial hosts, a novel CRISPR-family repressor enzyme
(dCas9) from Staphylococcus aureus, called SadCas9, has been chosen.
Compared with the well-known and characterized counterpart from
Streptococcus pyogenes dCas9 (SpydCas9), it has promising charac-
teristics, in terms of gene length and specificity. The main important
feature for which SadCas9 can be superior for working in different
bacterial hosts is the PAM sequence recognition site which, based on
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dCas
𝛼C

𝜌C

sgRNA

𝛼sgRNA

dCas mC

sgRNA

C dCAS

GOI GOI

GOI

GOI

GOI

mG

𝛼G,R 𝛼G

𝜌G

kCG-

kCG+

G

sgRNA

sgRNA

k1+

k1- Cg

Figure 3.2: S. aureus dCas9 incoherent feedforward loop (Sad-
iFFL) biological scheme.Visual representation of the iFFL gene expression control
system. The network functionality is based on the dCas9 (C ) repressor, also called SadCas9
in the text due to its presence in the genome of S. aureus. Once activated by its binding with
the specific sgRNA, the resulting complex can bind the target region (yellow box) and repress
the transcription of the downstream gene of interest (GOI) thereby decreasing the final protein
level (G). The curved arrow, the circles and the T-shaped lines are respectively the promoter,
RBS and terminator parts. The horizontal line inside square brackets represents the DNA while
the wavy one the mRNA.The assosiation/dissociation processes (e.g., k+

1 ,k−1 ,k+
CG,k−CG ) are

represented by bi-directional arrows while the one-way production rates with monodirectional
arrow (e.g., transcription rate αX , translation rate δX , where X is reference to the biological
entity). The biological scheme lacks of the degradation constants (e.g., mRNA degradation rate,
protein degradation rate), which are considered in the associated mathematical model in Section
3.2.1), due to graphical reasons.

its nucleotide composition, is more specific than the one of SpydCas9
(5’-NNGRRT-3’ - SadCas9, 5’-NGG-3’ - SpydCas9) [74]. The higher
specificity reflects a lower probability of off-target binding events in
the genome and thus a faster kinetics due to the fact that the en-
zyme has to ‘search-open-check’ in a smaller set of targets [72]. The
smaller coding sequence (3159 nt compared to 4104 nt of SpyCas9),
apart from making DNA-assemby and verification procedures easier,
also allows to engineer mammalian cells through Adeno-Associated
Viruses (AAV) vector since the latters are able to contain SaCas9 but
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not SpyCas9 [98]; this scenario opens the demand for a quantitiative
characterization of this so far not widely used enzyme repressor which
has been faced in this work by focusing on its use in synthetic circuits.

3.2.2 Mathematical model of Sad-iFFL controller

The biological scheme reported in Fig. 3.2 (Sad-iFFL) has been
modeled considering the law of mass action and the law of conservation
of mass described in Equations (3.1) and (3.2), respectively, to capture
the transcription-, translation- and copy number-dependent effects on
the expression of GOI.

C + sgRNA
k+

1



k−1

Cg

Cg + PG,Free
k+
CG



k−CG

PG,Repressed

(3.1)


DNA : PG,Free + PG,Repressed = n

dCas : C + Cg + PG,Repressed = Ctot

Single guide RNA : sgRNA+ Cg = gtot

(3.2)

In Equations (3.1) - (3.2), C, Cg and PG,repressed are the con-
centrations ([nM ]) of dCas respectively free, coupled with the sin-
gle guide RNA and bounded to the target promoter, while sgRNA
and PFree are the concentrations ([nM ]) of free single guide RNA
and unbounded promoter inside the cell. The kinetics of repressor
complex formation (Cg) and its activity towards the target promoter
(PG,Repressed) are described respectively with the association rate con-
stants k+

1 [nM−1time−1], k+
CG [nM−1time−1] and dissociation rate con-

stants k−1 [time−1], k−CG [time−1] constants (Equation (3.1)). The total
amount of target promoter, dCas and single guide RNA inside the cell

58



3.2. Sad-iFFL model-based design

expressed with the n[nM ], Ctot[nM ] and gtot[nM ] parameters in Equa-
tion (3.2).

Assuming the level of the target promoter negligible compared to
the total dCas9 repressor complex (Hypothesis 1: Cg >> PG,Repressed)
and the latter negligible compared with the total level of single guide
RNA (Hypothesis 2: sgRNA >> Cg), the mathematical model of
Sad-iFFL circuit can be written as:

dC

dt
=
n · ρC · αC
(dmC + µ)

− (dC + µ) · C (3.3)

dG

dt
=

n · ρG
(dmG + µ)

·

(
αG

(1 + Cg
KCG

)

)
− (dG + µ) ·G (3.4)

dsgRNA

dt
= n · αsgRNA − (dsgRNA + µ) · sgRNA (3.5)

Cg =
C

(1 + K1

sgRNA
)

(3.6)

No cooperativity was assumed (Hill coefficient η = 1 − not shown in
the model) for the complex formation from sgRNA binding [99] (Equa-
tion (3.5)) and for the transcriptional repression from the complex Cg
[100] (Equation (3.4)). In Equations (3.3) − (3.5) αX , ρX and δX
describe the transcription, translation and degradation rate [time−1]
of the biological entity X, respectively, while µ is the diluition rate
[time−1] due to cell division. In Equation (3.4) and (3.6), K1[nM ]
and KCG[nM ] are the Michaelis−Menten equilibrium dissociation con-
stants which describe the affinity of the substrates (sgRNA, Cg) for
their ligands (C, PFree) and have the following relations: K1 = k−1 /k

+
1

and KCG = k−CG/k
+
CG.

Assuming (i) sgRNA overabundance (Hypothesis 3: sgRNA >> K1),
(ii) Cg overabundance (Hypothesis 4: Cg >> KCG) and describing
the parameters as reported in Equations (3.7) - (3.10), is possible to
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simplify the model as reported in Equations (3.11) - (3.14).

Transcription: α = αC =
αG
f

=
αsgRNA

s
(3.7)

Translation: ρ = ρC =
ρG
b

(3.8)

Protein Degradation: µ >> dC = dG (3.9)

RNA Degradation: µ << dRNA = dsgRNA = dmC = dmG (3.10)

dC

dt
=
n · ρ · α
dRNA

− µ · C (3.11)

dG

dt
=
n · b · ρ · f · α ·KCG

dRNA · Cg
− µ ·G (3.12)

dsgRNA

dt
= n · s · α− dRNA · sgRNA (3.13)

Cg = C (3.14)

Equations (3.11) - (3.14) represent the ordinary differential equation
(ode) system used to evaluate the time-continuous behaviour of Sad-
iFFL circuit and compared with the open-loop (Section 3.3.4) and
U-iFFL (Section 4.2.3) schemes.
The steady-state representation of the model was obtained by evalu-
ating the Equations (3.11) - (3.14) at their equilibrium, dX/dt = 0,
where X = [C,G, sgRNA]. The resulting system (Equations (3.15)
- (3.18)) has been used in Section 3.3.4 to evaluate in silico the ro-
bustness of the Sad-iFFL circuit against parameter variations and to
simulate the biological noise throughout the circuit in a stochastic con-
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text.

CSS =
n · ρ · α
dRNA · µ

(3.15)

GSS =
n · b · ρ · f · α ·KCG

dRNA · µ · Cg
(3.16)

sgRNASS =
n · s · α
dRNA

(3.17)

CgSS = CSS (3.18)

Finally, substituting Cg expression(Equation (3.15)) in Equation
(3.16) and simplifying the common parameters, the final G protein
level is described as follows:

GSS = b · f ·KCG (3.19)

In Equation (3.19), the G protein level at steady-state is equal to
the Michaelis−Menten equilibrium dissociation constant of SadCas9
(KCG) multiplied by two proportional-scale factor describing the change
of RBS (b) and promoter (f ) activities between C and G. In other
words, if the transcription rate of the two identical promoters in the
circuit was the same and if the translation rate provided by the two
identical RBSs upstream of the two genes was the same, the steady
state protein level would be KCG (from Equations (3.7) and (3.8) it is
possibile to set b = 1 and f = 1); on the other hand, Equation (3.19)
describes a more general situation in which identical components have
different activities. This is especially true for RBSs, which are intrinsi-
cally highly context-dependent parts and the translation efficiency can
significantly change when the same RBS is placed upstream of differ-
ent coding sequences [101]. In particular, the folding of the transcript
RNA can affect the accessibility of RBSs to ribosomes. For these rea-
sons, a biophysical model of RBS efficiency has been studied, including
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different contributions that can elucidate if the designed circuits are
theoretically capable of rejecting variations of RBS efficiency in dif-
ferent hosts. This topic is discussed in more detail in Section (3.3.3).
Promoters, instead, are less prone to change their activities [102, 103],
despite significant variations have been reported in the literature [104].
Finally, the equlibrium constant KCG describes the affinity of the re-
pressor protein with its target DNA and its modulation can change
the reached output level.

3.3 Sad-iFFL results

In this Section, the results about the theoretical investigation of
Sad-iFFL performance (3.3.1-3.3.4) and the in vivo characterization
results (3.3.5-3.3.6) are provided.

3.3.1 Leakage analysis

In the Sad-iFFL model derivation, the assumption that the dCas9
repressor could stop completely the transcription activity of the tar-
get promoter has been made. The scenario in which this assumption
is violated is herein considered and quantified the error affecting the
steady-state level of G is formally quantified. The G expression is
hereby analyzed since it is the only one affected by the dCas9 regu-
lation. The dynamic ordinary equation (Equation (3.4)) describing G
expression over time has been changed as follows:

dG

dt
=

n · ρG · αG
(dRNA + µ)

·

(
δ +

1− δ
(1 + Cg

KCG
)

)
− (dG + µ) ·G (3.20)

In Equation (3.20), δ is the leakage parameter, representing the per-
centage of G synthesis rate in the fully repressed state, occurring due
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to non-perfect dCas9 repression and (1− δ) is the maximum percent-
age of protein synthesis rate that dCas9 could repress. Assuming the
overabundance hypotheses (3)−(4), Equations (3.7) − (3.10) and sub-
stituting the Cg expression in the steady-state equation, it follows
that:

GSS = b · f ·KCG︸ ︷︷ ︸
full−repressed
steady−state

+ b · f ·


[Cg]SS︷ ︸︸ ︷
n · ρ · α
dRNA · µ

−KCG

 · δ
︸ ︷︷ ︸

leakage−dependent

(3.21)

In Equation (3.21) the protein level G at equilibrium depends on two
effects: the steady-state level of G in the full-repressed state (Equa-
tions (3.19)) and a leakage-dependent contribution which increase the
total protein level G by an additive factor proportional to δ. The as-
sumption for which G is equal to the predicted value in Equation (3.19)
is reported in the next Equation (3.22), derived by modeling C (and
Cg) as proportional to its half-maximum constant by a multiplicative
non-dimensional factor z, representing a fold-increase compared with
KCG (Cg = z ·KCG).

1

(z − 1)
>> δ (3.22)

In Equation (3.22) it is shown that, for the contribution of leakage
to be negligible, it is necessary that the inverse of the increase in
the protein repressor Cg compared to KCG, has to be much greater
compared to the leakage parameter δ, expressed as a percentage of the
maximum transcription.

3.3.2 Model constraints

The hypotheses that have been stated in the mathematical model
derivation of Sad-iFFL have been collected below and, subsequently,
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discussed:

• Hypothesis 1: overabundance of Cg compared to its tar-
get. Since the coding sequences of C and G are assumed to be
present at the same copy number, the concentration (n), the
production rate of Cg (Equations (3.15) and (3.18)) repressor
complex has to be greater than its degradation rate.

ρ · α >> dRNA · µ (3.23)

• Hypothesis 2: overabundance of sgRNA compared to
free dCas9 (C ). The production rate of sgRNA (Equation
(3.17)) has to be greater than the diluted production rate of
C (Equation (3.15)). This hypothesis could be violated if a too
weak promoter has been chosen for sgRNA expression.

s >>
ρ

µ
(3.24)

• Hypothesis 3: overabundance of sgRNA compared to its
half-maximum constant (K1). Raper et al. have shown that
the K1 parameter has a value of ≈ 10 [pM ] inferring that the
linkage between C and sgRNA (Equation (3.17)) is fast enough
to be considered instantaneous [105].

n · s · α
dRNA

>> K1 (3.25)

• Hypothesis 4: overabundance of Cg compared to its
half-maximum constant (KCG). Lower concentration limit
of Cg (Equations (3.15) and (3.18)) to achieve transcriptional
repression on G.
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n · ρ · α
dRNA · µ

>> KCG (3.26)

• Hypothesis 5: Cg upper limit due to its repression in-
efficiency. This represents a notable assumption that must be
considered in the design phase of the circuit when the repressor
protein is chosen, in fact, the predictable steady-state protein
level can be reached and mantained stably if the intracellular re-
pressor concentration is high enough to guarantee its overabun-
dance (Hypothesis 4: Cg >> KCG) and lower to a factor depen-
dent on its repression activity and the percentage of leakage due
to its repression inefficiency. Equation (3.22) can be written as
follows:

KCG ·
(
δ + 1

δ

)
>> Cg (3.27)

3.3.3 RBS strength model

The translation efficiency of a coding sequence is strongly depen-
dent on translation initiation rate (TIR), which is the limiting step
of protein synthesis. In this section, a mathematical model of TIR
is studied to investigate the theoretical working constraints of the de-
signed circuit, which includes two identical RBSs upstream of different
coding sequences (SadCas9 and GOI). The portability of a given cir-
cuit across different bacterial species will be discussed to elucidate the
theoretical host-dependent protein level variation. The total amount
of free energy that can be converted into nonmechanical work can be
described by Gibbs free energy via the model represented in Equa-
tion (3.28). Gibbs free energy model describes the amount of energy
present in the mRNA system before and after association of the 30Ss
ribosome subunit with ribosome binding site on the mRNA:
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TIR ∝ e−β·∆Gtotal (3.28)

where: β is the Boltzmann constant and ∆Gtotal is the total vari-
ation of Gibbs free energy. The total variation of free energy can be
written as sum of different energy contributions:

∆Gtotal = ∆Gfinal −∆Ginitial =

(∆GmRNA:rRNA+∆Gstart+∆Gspacing−∆Gstandby)−∆GmRNA (3.29)

where:

• ∆GmRNA:rRNA is the energy released when the last nine nu-
cleotides of the E. coli 16S rRNA hybridizes and co-folds with
the mRNA sub-sequence.

• ∆Gstart is the energy released when the start codon hybridizes
to the initiating tRNA anticodon loop.

• ∆Gspacing is the free energy penalty caused by a nonoptimal
physical distance between the 16S rRNA binding site and the
start codon.

• ∆Gstandby is the work required to unfold any secondary structures
sequestering the standby site (∆Gstandby < 0), upstream of the
RBS, after the 30S complex assembly.

• ∆GmRNA is the work required to unfold the mRNA sub-sequence
when it folds according to its most stable secondary structure,
called the minimum free energy structure.

The main goal of this part was to study the impact of the ribo-
some binding site on the efficiency of a genetic circuit in different host
organisms, to study the effects of transferring a given iFFL architec-
ture from an organism to another without changing the regulatory
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sequences. In specific, since the balance between GOI and repressor
level is the key interaction in an iFFL circuit and (as it will be illus-
trated in the Results section) it affects the steady-state protein level,
it is important to investigate if the balance between the TIR of GOI
and SadCas9 repressor is maintained constant when the same circuit is
transferred in different host strains, for which the translation machin-
ery changes. By design, the RBS sequence is assumed to be identical
in both genes, except for the target binding site of Cg which is present
only on the GOI gene. For any two genes, this balance in every strain
can be expressed as a ratio of their TIR values:

TIR1

TIR2

=
e−β·∆Gtotal1

e−β·∆Gtotal2
(3.30)

In the case of interest, the two genes are SadCas9 and GOI, and
this ratio is the same as the b parameter defined in Equation (3.8).
Using the Gibbs free energy model, we can re-write equation (3.30) as:

TIR1

TIR2

=
e−β·∆GmRNA:rRNA1 · e−β·∆Gstart1 · e−β·∆Gspacing1
e−β·∆GmRNA:rRNA2 · e−β·∆Gstart2 · e−β·∆Gspacing2

·

e+β·∆Gstandby1 · e+β·∆GmRNA1

e+β·∆Gstandby2 · e+β·∆GmRNA2

(3.31)

This model can be simplified as:

TIR1

TIR2

=
e−β·∆GmRNA:rRNA1

e−β·∆GmRNA:rRNA2
· P · S (3.32)

• ∆Gstart is always constant in a host species if the start codons
are assumed to be the same for the two genes, by design. This
leads to complete simplification of the term.

• ∆GmRNA depends on the sequence, which is maintained the
same. As figure of merit is made of the difference of energy
when we change host the term is simplified.
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• P is a constant that remains after simplification of ∆Gspacing

terms as theoretically it depends only on the organism optimal
spacing and thus the difference remains constant when we change
host organism [101, 106, 107, 108].

• S is a constant that remains after simplification of the ∆Gstandby

terms. Due to the presence of the target binding region in the
5’-UTR of the GOI transcript, SadCas9 and GOI have different
standby sites. However, assuming that the mRNA binging region
with ribosomes is relatively constant among different organisms
for a given gene, the sequence of standby site also remains con-
stant.

• ∆GmRNA:rRNA significantly change depending on the affinity with
rRNA. However, this change is expected to occur equally for the
two genes, thereby enabling to treat the ratio between these
terms as a constant

Under the assumptions above, a change in the host strain is expected
to affect the TIR of each of the two genes. However, their ratio is
theoretically constant and equal to the b scale constant, thereby mak-
ing the theory of Sad-iFFL valid when the circuit is moved through
different bacterial species.

3.3.4 In silico comparison with open-loop control
scheme

Steady-state analysis

Steady state analysis shows how a given system performs at its
steady state as a function of perturbation factors like transcription,
translation and copy number variation. This type of test was done for
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Figure 3.3: In silico steady-state and robusteness analysis of
the Sad-iFFL network compared with the open-loop scheme
on different transcription and translation rates and different
theoretical set points (KCG). The predicted GOI protein concentration due to
transcription and translation rate variation in the Sad-iFFL circuit is shown for different KCG
(set point) values: 1 [nM] (A), 100 [nM] (B) and 500 [nM] (C). D, The predicted GOI protein
concentration due to transcription and translation rate variation in the open-loop scheme. E,
Comparison of the robustness performances of the circuits in terms of rejection of transcription
and translation rate variations.

the Sad-iFFL circuit (Fig. 3.3A-C) and compared with the open loop
scheme (the latter reported in Fig. 3.3D) as control of the unregulated
gene expression. The Equation system (3.15)-(3.18), solved at the
steady state, was used for this analysis.Each circuit was investigated
for a range of transcription rates (α [0.05 − 1]mRNA/s), translation
rates (ρ [0.05 − 1]protein/(mRNA ∗ s)) and different desired GOI
concentrations (equal to KCG) [1− 500]nM .

The results in Fig. 3.3A, Fig. 3.3B, Fig. 3.3C show that Sad-iFFL
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has large limitations for specific ranges of parameters, as at low tran-
scription and low translation rate the system is not able to converge
to its set point. This is happening because a key working hypothesis
of Sad-iFFL (SadCas9 >> KCG) is satisfied only for sufficiently high
transcription and translation rates values. Particularly, the Sad-iFFL
expression level is dependent on the microenvironment where the gene
cassette is placed and thus it is highly dependent on the transcription
and translation rates of the host.

Due to the fact that during this test a large range of parameters
was set (through variation of desired GOI set point, translation and
transcription), clearly it is impossible to meet circuit requirements in
every simulation and, for this reason, in Fig. 3.3A, Fig. 3.3B, Fig. 3.3C
Sad-iFFL (represented in red) are unable to converge to the set point
(shown as a yellow surface) at the lowest values of transcription and/or
translation rates, especially for high KCG values, as expected from an-
alytical formulas above. In order to understand how the controller
reject the transcription and translation rate variation, the robustness
analysis of the three model reported in Fig. 3.3E with different val-
ues of the theoretical set point KCG. By fixing a set point value,
the robustness to a parameter variation (e.g. transcription rate) is
calculated as the median of the percentages fold-change distribution
computed by varying the other parameter (e.g., translation rate). The
robustness index synthetized the circuit capacity to mantain the curve
on a strict plane but does not include how the curve is misplaced com-
pared to the set-point plane (yellow surface); the latter infomation is
easily qualitatively estimated from the previous described graphs. In
Fig. 3.3E the circuit robustness on transcriptional and translational
rate variation is negatively correlated with the set point-value, indeed,
an increase of the latter is reflected in a tightening of the repressor
overabundance hypothesis; thus SadCas9 has to be more expressed, in
terms of production parameter (α and ρ) to work as a gene repressor.
In summary, these analyses showed that Sad-iFFL has strong rejection
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capabilities against transcription and translation, but its performance
dramatically decreased when model assumptions are not met.

Propagation of biological noise

The simulation of propagation of uncertainty is an important step
for understanding the behavior of new designed synthetic circuit be-
cause it shows how a population of cells bearing the circuits behave
in terms of heterogeneity, and how noise in gene expression diffuses
throughout the whole system. The source of this noise in biological
experiments derives from the stochasticity of cellular processes and
heterogeneity of molecule abundance within a population of geneti-
cally identical cells [109]. In the analysis of stochastic processes, it
is often beneficial to separate contributions arising from fluctuations
that are inherent in the reactions occurring in the system of interest
(intrinsic noise) from those arising from variability in factors that are
considered to be external or specific of the whole cell (extrinsic noise).
In the phenomenological model of gene expression, intrinsic noise is
defined by the fluctuations generated by stochastic promoter activa-
tion, promoter deactivation, and mRNA and protein production and
decay. Extrinsic noise sources are defined as fluctuations and popu-
lation variability in the rate constants associated with these events,
usually caused by heterogeneity of cellular resources like polymerases
or ribosomes [110].

Moreover, because of differences in gene copy number at different
points in the cell cycle, transcription rates inevitably change as cells
grow and divide [111]. Propagation of uncertainty simulation was
carried out to check how Sad-iFFL perform in the presence of random
biological noise belonging to intrinsic and extrinsic components, using
the simulated cell-to-cell variability in a recombinant population as
output. Open-loop scheme was used as a control as it represents a
traditional protein production cassette without effective control on the
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Figure 3.4: Propagation of biological noise of Sad-iFFL and
Open loop circuits. The graph is represented from two different angular perspectives.
The variation in GOI protein concentration is reported in terms of coefficient of variation (final
CV) as a results of noise propagation, calculated for different transcription and translation rates;
the noise entity is proportional to their coefficient of variation level (initial CV). The Pearson
correlation coefficient of cellular noise (noise) is the representation of dominant noise contribution
inside the system (0 - all intrinsic, 1 - all extrinsic).

gene expression processes. The noise was considered to be composed
of two parts: intrinsic (in cell variation) and extrinsic noise (variation
between several cells). The noise modeling and simulations methos
has been treated in Appendix D.

In Fig. 3.4 the results of the propagation of uncertainty simulation
are represented. Compared with the Open loop configuration, Sad-
iFFL shows a lower variability when the main noise contribution is
extrinsic (>0.5) and a higher variability when the extrinsic component
is <0.5. Biologically plausible values for the two components indicate
that the major noise contribution is extrinsic (0.6-0.8), thereby making
Sad-iFFL design less noisy than Open loop, confirming the previously
characterized advantages of this network motif in terms of cell-to-cell
variability [112].
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Dynamic analysis

The simulation of dynamic evolution of the system is an important
step of synthetic circuit characterization. It describes how does the
systems evolve in time and when they reach their steady state. More-
over, it is one of the ways to evaluate the behavior of all the essential
parts of the system, and how they react depending on different initial
conditions of expressed genes in the cell. The dynamic behavior of the
circuits are analyzed and compared based on the settiling time at 95%
and the memory effect of the system in response to an induction/de-
induction cycle, both illustrated in Fig. 3.5.

Settling time
For this test, Equation system (3.3)-(3.6) was used. The final de-
sired concentration or minimal theoretical limit of GOI was set equal
to 500nM (represented as black dotted line on Fig. 3.5A). The sim-
ulation of the Sad-iFFL circuit shows a converging behavior to the
theoretical set point KCG = 500nM (black dotted line) and a settling
time of ≈ 3.6h, which is higher than the one of the Open-loop circuit
(≈ 2.1h), meaning that the repressor machinery needs more time to
reach enough repressor concentration to guarantee its overabundance
hypothesis (Hypothesis 4: Cg >> KCG) and to reach an equilibrium
of all the circuit dynamics.

Induction/de-induction cycle
The basic idea behind this test is to simulate how the Sad-iFFL system
evolves in time when transcription is triggered but then it is turned
off (e.g., by turning an environmental stimulus off or by washing an
inducer molecule out from the growth medium), assuming that the
transcriptional activity of SadCas9 and GOI is driven by an ideal in-
ducible promoter with no basic activity in the off state. During this
test, the initial conditions of simulations has set to a transcription
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Figure 3.5: Dynamic analysis of Sad-iFFL circuit and com-
parison with Open-loop scheme.(A) The simulations of in-time GOI protein
concentrations for the two systems are shown combined to the settling time calculated when the
protein level reach and remain within an error band of 5%. The settling times are shown through
colored (red - Sad-iFFL, green - Open-Loop) dotted vertical lines while the teoretical set point
(KCG) is represented by black dotted line. (B) The graph represents the system response (above)
to a 20-minute impulse (below) described biologically as the transcription activation of the whole
set of promoters within the Sad-iFFL circuit. The black dotted line represents the theoretical
set point (KCG).

rate value of 1 s−1 and turned off after a time tOFF = 20min, de-
scribing a transcriptional ‘pulse’ in the specified time window. In the
upper graph of Fig. 3.5B the response of the Sad-iFFL model (in red)
is reported following a transcriptional ‘pulse’ highlighted by the blue
vertical box. As before, the theoretical set point KCG is reported with
black dotted line. Sad-iFFL is not capable to maintain its steady state
after turning the transcription off (it goes down to the initial state after
the pulse). This behavior was expected since no memory architecture
is present in the circuit, and the simulations showed the expected time
for a full activation and de-activation cycle of Sad-iFFL.
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3.3.5 In vivo and in silico characterization of in-
dividual modules: S. aureus dCas9

This section, the SadCas9 enzyme has been characterized to elu-
cidate its suitability as a repressor in synthetic circuits such as Sad-
iFFL, a feature that is not studied yet in the literature and depends
on the efficiency and host resource usage parameters of the enzyme.
In order to fully characterize the repressor protein, it is necessary to
understand its quantitative behavior on its target and how it affects
the bacterial host. The characterization process is complete when
the transfer function between the input (e.g., repressor) and the out-
put (e.g., protein to repress) is known for any relevant range of input
values. The process of enzyme characterization is thus reconducible
on the knowledge of the input-output relashionship in different con-
ditions such as transcription, translation and copy number contexts.
The fastest and easiest technique to estimate protein concentration is
using a reporter gene coding for a fluorophore (e.g., Red Fluorescent
Protein - RFP), which fluorescence, in terms of wave lenght emission,
can be detected and quantified upon light excitation. This process is
clearly not available for non-fluorescent protein, like SadCas9, thus its
cannot be estimated directly and has to be correlated to another known
signal as, in this case, the HSL inducer concentration that drives the
LuxR-circuitry. The repression activity of HSL-induced SadCas9 en-
zyme has been monitored on RFP as target gene as reported on the
characterization circuit scheme used to collect experimental (Fig. C.1).
The experimental data collected from the circuits listed in Table C.5
are reported in Fig. 3.6. In all experiments, the target-specific sgRNA
is expressed by the fully-induced (IPTG=200 [µM ]) PLac promoter
thus guaranteering its high abundance as required by circuit working
assumptions. The data have been grouped based on the composition
of the target expression cassette, in terms of promoter-RBS pair of
the target circuit (from left to right: J119-31, J118-34 and J119-34).
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Figure 3.6: Experimental data of steady-state transfer func-
tions of S. aureus dCas9. The three medium-copy plasmids with different
promoter-RBS combinations used in this study are shown in the upper part of the graph (the
IPTG-inducible sgRNA expression cassette is not shown for graphical reasons), below each one
the experimental data where the error bars representing the standard error of the mean (n >= 3
biological replicates for each point) are reported. In all the graphs, each color refers to an RBS
upstream of the SadCas9: blue - B0031, orange - B0032, grey - B0034, yellow - CU1, light blue
- CU2, green - CA1. The thick green line in the first row of graphs represents the growth rate
value of the strains used in this study with no plasmids, used as growth control.

For each of them the RFP and GFP level have been reported that
measure the target expression and cell burden, respectively, and the
cell growth rate value computed from the OD600 (optical density data
at 600 nm) time series. The RBSs upstream of the SadCas9 coding se-
quence that have been used are six (blue - B0031, orange - B0032, grey
- B0034, yellow - CU1, light blue - CU2, green - CA1). All of them
are used with the target circuit denoted by the J118-34 promoter-RBS
combination (second column) since it has a strong output signal (from
1 to 7 RPU) with low cell burden effecting the cell, differently from

76



3.3. Sad-iFFL results

the J119-34 combination (third column) in which the non-repressed
RFP signal overloads the cell, as shown in the growth rate and, more
clearly, in the GFP graphs. Even if the growth rates of all constructs
are not highly different from the growth control (green thick line, cor-
responding to the growth rate of strains without plasmids) cell burden
is present in all the promoter-RBS cases, in different ways. In fact, for
the J119-34 target, cell burden has been shown to mainly derive from
RFP overexpression and the increasing of the SadCas9 concentration
is reflected to a benefit to the cell. Differently, for J118-31 and J118-
34 targets, where no apparent overload due to RFP is observed, the
overexpression of SadCas9 by Lux-circuitry slightly affects the cells
by causing a modest load. According with these observations, for the
J119-34 target, cell burden is expected to be modulated by RFP -
SadCas9 together, despite only the contribution of RFP is easily de-
tectable from experimental data since it is the major burden source for
this combination. As expected, the RFP signal shows different trans-
fer functions for different combinations of RBS upstream of SadCas9:
an increasing in strength variation on SadCas9 RBS results in a left-
shifts of the curve, in fact, more SadCas9 is produced more easily it
reaches the critical threshold for repression, and, as a consequence for
the Sad-iFFL, the overabundance hypothesis is more easily verified.
Full characterization of SadCas9 protein is obtained by the estima-
tion of the parameters describing the system from the experimental
data collected. The system could be modeled at its steady state by
Hill functions and burden-dependent scale factors, as described in the
previous sections of this thesis. Hill equations describe activation or
repression functions, and is composed of four parameters that rep-
resent different properties of a system: minimum (β0) and maximum
(βmax) expression rate values, molecule concentration that is necessary
to reach 50% of its effect (K) and the cooperativity of the activation
or repression also called Hill coefficient that is linked with the number
of binding events between the molecules of interest (η). A deeper de-
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Figure 3.7: Fitting of steady-state transfer functions to charac-
terize S. aureus dCas9 with burden model. A, The three medium-copy
plasmids with different promoter-RBS combinations used in this study are shown in upper part
of the graph (the IPTG-inducible sgRNA expression cassette is not shown for graphical reasons),
below them the model fitting curves (solid lines) and the experimental data (crosses) are reported.
In all the graphs, each color refers to an RBS upstream of the SadCas9: blue - B0031, orange -
B0032, grey - B0034, yellow - CU1, light blue - CU2, green - CA1. B, The data collected from
the characterization of LuxR circuitry has been used to increase the information about SadCas9
production by indirectly measuring a signal related with its protein production rate.

scription of the matematical model used for the fitting procedure has
been reported and discussed in Section D.2 whereas the mathematical
description of cell load has been discussed in Section 2.2.6, and has
been considered including the GFP signal in fitting procedure. The
fitted data have been reported in Fig. 3.7 and the parameters esti-
mated shown in Table 3.1. The curves has been grouped in the same
way as Fig. 3.6 and the cell load modeling procedure has been de-
signed differently among the three constructs, as follows: the J119-31
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3.3. Sad-iFFL results

and J118-34 targets are assumed to be affected only by the cell load
due to SadCas9 (not by RFP), while J119-34 only from RFP (not by
SadCas9). The fitting procedure has been supported by the intro-
duction of a set of data collected from an independent recombinant
strain to carry out the simultaneous estimation of the Lux-circuitry,
shown at the bottom of Fig. 3.7 - green box [113]. All the param-
eters are estimated simoultaneusly on the available experiments and
the biological literature-known parameter has been fixed as the Hill
coefficients for LuxR (ηLux = 1) and SadCas9 (ηC = 1) and the RFP
maturation rate [114]. Cell growth rates have been set to the average
measured value, depending on the construct (µ1 for LuxR-circuitry
characterization, µ2 for SadCas9-RFP experiments Fig. 3.6). All the
KX
C parameters estimated values are in [AU]. The results obtained

from the fitting showed that a joint model describing target protein
expression and cell load was able to capture the main trends in the
experimental data. Apart from the circuit in which B0031 was placed
upstream of SadCas9, all the other characterized RBSs showed a wide
range of SadCas9-dependent repression, from non-repressed values to
near zero expression of the target gene. With the used RBSs, the
SadCas9 enzyme expression did not show relevant cell load per se, al-
though a high level expression of the target protein could contribute
to cell burden. Taken together, these findings suggest that SadCas9 is
a suitable component for synthetic circuits in recombinant E. coli, in
terms of efficiency, tunability and load.

3.3.6 In vivo Sad-iFFL performances

The set of characterization circuits, reported in Table 3.2, is based
on the biological scheme reported in Fig. 3.8; briefly, the fluorescence
protein (RFP) and the repressor complex are expressed by the same
HSL-inducible PLux promoter and the same RBS (B0032, B0034, CU1,
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3.3. Sad-iFFL results

CU2, CA1) in order to increase drive the transcription of both genes
over different levels. Cell load is monitored from the GFP cassette, and
the constitutive expression from the strong promoter J119 in high copy
plasmid was used to produce sgRNA thereby meeting the overabun-
dance requirement off sgRNA over free SadCas9. The full description
of the biological scheme has been reported in Section C.4.1.

GFP

Target cassette

SC 
Target B003x RFPPLux

Low
Copy 

plasmid

LuxR SadCas9B003x

HSL

Burden monitor
SadCas9 HSL-inducible

expression cassette 

PLux

LuxR circuitry

Medium
Copy 

plasmid

High
Copy 

plasmid

J23119 sgRNA

sgRNA constitutive
expression cassette

Figure 3.8: Circuitry scheme for Sad-iFFL in vivo characteri-
zation.The synthetic Sad-iFFL circuits tested in this study are based on three-plasmid sys-
tem. The first plasmid (low copy plasmid) contains two modules responsible, respectively, for
monitoring cell load (burden monitor) and for HSL-inducible expression of SadCas9 protein, the
second (medium copy plasmid) contains the HSL-inducible expression of RFP protein and the
third (high copy plasmid) is responsible for the high constitutive expression of sgRNA which
guarantee the overabundance hypothesis for the SadCas9 functionality.
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Table 3.2: Table of synthetic circuits used for Sad-iFFL char-
acterization.Each circuit reported in the first column is composed of the three plasmids
in the adjacent columns. The final construct name is composed as: ‘iFFL’ - Incoherent Feed-
Forward Loop and the codes combination of the RBSs in the upstream regions of SadCas9 and
RFP. If the two proteins share the same RBS, only one code is reported near ‘iFFL’, otherwise
both of them are listed. The open-loop control circuits are coupled with ‘OL’ suffix at the end
of the name. The RBS codes are highlighted with bold font within the plasmid name.

Construct Low copy Medium copy High copy
name plasmid plasmid plasmid
iFFL32 AE-3A32SadCas9 PLuxSCTarget32RFP J119sgRNA
iFFL34 AE-3A34SadCas9 PLuxSCTarget34RFP J119sgRNA

iFFLCU1 AE-3ACU1SadCas9 PLuxSCTargetCU1RFP J119sgRNA
iFFLCU2 AE-3ACU2SadCas9 PLuxSCTargetCU2RFP J119sgRNA
iFFLCA1 AE-3ACA1SadCas9 PLuxSCTargetCA1RFP J119sgRNA

iFFL32 OL AE-3A PLuxSCTarget32RFP J119sgRNA
iFFL34 OL AE-3A PLuxSCTarget34RFP J119sgRNA

iFFLCU1 OL AE-3A PLuxSCTargetCU1RFP J119sgRNA
iFFLCU2 OL AE-3A PLuxSCTargetCU2RFP J119sgRNA
iFFLCA1 OL AE-3A PLuxSCTargetCA1RFP J119sgRNA

The data obtained from the assembled circuits is reported in Fig. 3.9.
The GFP data shows how the burden generated within the cell is
due to SadCas9 overexpression, in fact, the GFP signal of the open
loop circuits (free RFP expression from PLux promoter, with SadCas9
also expressed but not functional in absence of sgRNA) is not sig-
nificantly different from the ones that emerged from the iFFL-based
controller for which, the RFP expression is low enough not to affect
cell metabolism; the only exception is the open loop circuit expressed
by the strong strength RBS (B0034) which reaches high RFP values
and the GFP value becomes lower than the other constructs. The
comparison among all RFP outputs in Fig. 3.9A highlighted the func-
tionality of the Sad-iFFL controller (the comparisons between Sad-
iFFL and open loop circuits based on one RBS has been reported in
Fig. 3.9D) in terms of key features: all the implemented iFFL circuits
reach a steady state value that is lower than the corresponding open
loop ones, and the reached value is highly stable (< 2-fold change)
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3.3. Sad-iFFL results

against transcriptional activity variations when HSL concentration is
>= 1nM . On the other hand, in the same HSL range, the corre-
sponding open loop circuits showed larger fold-changes. For lower
HSL concentrations, SadCas9 cannot reach a critical threshold to sat-
isfy model assumptions, also consistent with the repression curves in
Fig. 3.8. In disagreement with model prediction, the set point values
differs as the RBS sequence change. This probably happens because
the set point value of Sad-iFFL depends on KCG but also on the scale
parameters for transcription (f ) and translation (b) (discussed in Sec-
tion 3.2.2). Assuming f =1, i.e., transcription is the same between the
two copies of the PLux promoter, the b parameter was investigated to
understand if the variability among all the Sad-iFFL circuits curves
could be explained by this parameter. For this reason, b has been
estimated from the experimental data as follows. Starting from the
definition of b formalized in Section 3.2.2, an estimation of the TIRs
of both SadCas9 and RFP genes is required:

b =
TIRRFP

TIRSadCas9

(3.33)

An estimation of TIRRFP (Equation (3.33)) can be obtained from the
open loop data (Fig. 3.9, right) considering that all these circuits are
identical except for the RBS upstream of RFP, and thereby assuming
that RFP level (RFPOL) is linearly proportional to ρ, as:

TIRRFP = Q · ρRFP ∝ RFPOL (3.34)

where Q is a constant value relating the TIR with the translation
rate. On the other hand, an estimation of TIRSadCas9 value can be
computed from the KX

C , X = [B0032, B0034, CU1, CU2, CA1] values
that has been obtained in SadCas9 in vivo characterization. In fact, in
Equation (D.18) (Appendix D.2) the K parameter has been modeled

as KX
C = K̂/τRBS, X = [B0032, B0034, CU1, CU2, CA1], where τRBS
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3. Sad-iFFL

is proportional to SadCas9 translation rate and, therefore, 1/KX
C can

be used to approximate TIRSadCas9 for every RBS used. Equation
(3.34) can be written as follows:

b =
TIRRFP

TIRSadCas9

∝ Q · ρRFP1
KX
C

= RFPOL ·KX
C , X = RBS (3.35)

The scatter plot between the b estimated parameter and the RFP
output level of Sad-iFFL controller is shown (Fig. 3.9C): the varia-
tion of Sad-iFFL output values is explained by the b scale parame-
ter with a high correlation. This demonstrates that the steady state
value of Sad-iFFL (in the working region in which SadCas9 satisfies
model assumptions) is predictable from the knowledge of b. Even if
the constructs investigated in this work have different RBSs and the
b parameter changes, this scale parameter is expected to be constant
for a given RBS used across different strains, thereby enabling the
engineering of predictable expression in virtually any strain in which
SadCas9 is expressed at a sufficient level, higher than KCG.

3.4 Sad-iFFL overall conclusion

In this chapter, a new iFFL-based architecture has been devel-
oped in order to increase the iFFL portability through different bacte-
rial hosts. First, the mathematical model derived from the biological
scheme has been analyzed to understand the working constraints and
to simulate the steady-state and dynamic characteristics, which were
compared with an Open loop model. The steady-state analysis shows
that the robustness performances of Sad-iFFL are strongly dependent
on the theoretical set-point value KCG, in fact, an increase of the latter
leads to raise the SadCas9 biological demand to work as a repressor.
Stochastic simulations also showed that, for acceptable biological val-
ues of intrinsic and extrinsic noise proportion within a cell system, the
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3.4. Sad-iFFL overall conclusion

iFFL architecture attenuates the cell-to-cell variability in a better way
than Open loop scheme. The functioning of the Sad-iFFL circuit is
based on a promising CRISPR-family dCas9 protein which has been in
vivo and in silico characterized in this study and finally tested in vivo
within the Sad-iFFL circuit. Although the iFFL-regulated output has
a good capability to reject the transcription rate when the SadCas9
concentration is high enough to work as repressor, the set-point value
of the curves differ as the identical RBS sequence upstream of Sad-
Cas9 and GOI changes. This deviation from the expected behavior
of a robust controller was further investigated with the estimation of
the scale factor parameter between the translation initiation rates of
the two genes of the circuits, showing that the variation among all the
curves can be predictable from the knowledge of this factor. Despite
robust and predictable features were demonstrated in silico and in
vivo for Sad-iFFL, the optimal and promising results obtained needs
more refinements to overcome the limits due to hypothesis violation,
enhanced by the fact that the set of regulatory parts in new hosts is
often poor or even not known. Nonetheless, the advantages provided
by the newly characterized dCas9 are expected to be widely beneficial
to engineer highly specific regulations in new host strains, for which a
validation will be carried out in future works.
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Figure 3.9: Sad-iFFL in vivo performances.(A) Analyzed RFP data for
Sad-iFFL and Open loop circuits. Except for (C) all the graphs have HSL [nM] in x-axis and
the fluorescence in y-axis has been reported in RPU units. (B) Analyzed GFP signal for all the
circuits tested. (C) Correlation profile of RFP data of Sad-iFFL compared to an estimation of b
in the open-loop context in order to verify the predictability of the circuit output as a function of
b parameter (TIRRFP /TIRSadCas9). (D) Each output signal of Sad-iFFL circuit is compared
to its relative open loop circuit, paired with the same RBS sequence.
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Chapter 4
Universal-iFFL (U-iFFL): Theoretical

analysis of an alternative design to

improve iFFL network portability

through different bacteria

In the previous chapter, a new circuit controller has been described
and its in silico and in vivo performances shown. Although the circuit
is able to reject the transcription rate variation and its RBS-dependent
effects were predictable, its operability is restricted by several assump-
tions. In particular, the overabundance assumption of dCas9, com-
pared with the dissociation equilibrium constant with its target DNA,
is difficult to achieve when the regulatory parts that drive the repres-
sor are not from a library of well characterized components, that is a
typical situation when dealing with a non-model host strain. In this
chapter, a new synthetic circuitry (named U-iFFL) has been devel-
oped to overcome the above Sad-iFFL limitations, thereby increasing
the circuit portability through different bacterial species. The bio-
logical schema has been reported in Section 4.1 and subsequently the
mathematical model has been studied to analyze, as done previously
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4. U-iFFL

in Chapter 3 for Sad-iFFL network, its operability and limitations
due to model assumptions. The in silico performance metrics of U-
iFFL have been compared with the simulations shown and discussed
in the previous chapter for Sad-iFFL and open-loop schemes to pro-
vide a full comparison among the three configurations. Differently,
the in vivo experiments has not been performed due to laboratory
restriction caused by the Sars-CoV-2 worldwide pandemic. Although
it has not been possible to characterize in vivo the U-iFFL circuit,
its main components, namely the RNAPT7-PT7 transcription system,
have been studied and tested in vivo to evaluate its suitability for being
embedded in the final circuit as trancriptional activator. The results
of RNAPT7− PT7 system characterization are shown and elucidated
in Section 4.2.4, while an overview discussion has been reported in the
conclusive Section 4.3.

4.1 U-iFFL model-based design

To overcome the iFFL limitations that has been discussed in Sec-
tion 3.4, a new iFFL-based architecture has been developed with the
aim to achieve higher robustness, stability and to increase the porta-
bility of the circuit throughout different bacterial host (Fig. 4.1A).
The new design relies on three sub-networks composed by an ampli-
fication module (Fig. 4.1B) and two internal incoherent feedforward
loop (Fig. 4.1C) and (Fig. 4.1D). The amplification module has been
inserted in order to increase the circuit robustness due to the enhance-
ment of the repressor concentrarion, thereby guaranteering its over-
abundance hypothesis (Hypothesis 4: Cg >> KCG, Section 3.3.4); in
fact, this assumption has been proven in silico (Section 3.3.4) and,
subsequently, in vivo as well (Section 3.3.6) to be determinant for the
Sad-iFFL controller functionality. Since the positive feedback loop on
its main components, namely the RNAPT7-PT7 transcription system,
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4.1. U-iFFL model-based design

couldhave lead to an uncontrollable overproduction of activator and
thus provide metabolic overload or unstable behavior, a second iFFL
architecture has been embedded, compared with Sad-iFFL, to control
the activator concentration and mantain its level in a physiological
range for the cell host. This second iFFL motif can simultaneously
guarantee the hypothesis of repressor overabundance, under different
less restrictive constraints, described in the next Section. As shown in
Fig. 4.1, the original iFFL motif regulating the target gene (GOI) has
been mantained compared with Sad-iFFL.

Transcription rate 𝛼
Translation rate 𝝆
Copy number n

Output
GOI

Repressor
R

Activator
A

Output level 
regulation

Activator-Repressor 
levels regulationAmplification

A.

B. C. D.

𝝆 𝝆 𝝆

Figure 4.1: An improved network design (U-iFFL) based on
the iFFL scheme. A, The design of the proposed network is based on iFFL scheme
with the addition of an activator A and two sub-modules responsible to increase the network
robustness and stability (B),(D). B, The amplification loop increases the concentration levels
of all proteins in the system in order to decrease the probability of violation of actuator over-
abundance hypothesis. C, The normal functioning of iFFL network is mantained. D, A new
regulation process based on iFFL scheme is apported to control the amplification loop.
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4. U-iFFL

4.1.1 Circuit description

The biological scheme, called universal-iFFL (U-iFFL), of the ar-
chitecture previously illustrated has been reported in Fig. 4.2. The
genetic controller is composed of three proteins: the transcriptional
repressor SadCas9 (dCas9), the protein G which is encoded by the
expression of the gene of interest (GOI) and the transcriptional ac-
tivator RNA Polymerase T7 (T7 ). The latter is responsible for the
whole transcriptional activity of the circuit including the activator it-
self, with the exception of the PC promoter which is placed upstream of
the RNAPT7 coding sequence and also upstream of its T7 promoter,
thereby obtaining a tandem PC − PT7 promoter region. The PC pro-
moter is important for the circuit activation and will be described at
the end of this Section. The RNAPT7 from the T7 bacteriophage
system is often referred to as an orthogonal transcriptional system for
recombinant bacteria due to the fact that the promoter recognized
by the enzyme, called PT7 promoter, is not recognized by the bacte-
rial RNA polymerases and viceversa the bacterial promoters are not
bound by the phage T7 RNA polymerase; a deeper description will
treated in Section 4.2.4. The positive feedback loop on T7, shown in
Fig. 4.2, enhances the transcription of all the genes in the circuit, de-
creasing the probability of violation of overabundances hypotheses for
Cg repressor, Cg formation and T7 activator, which are needed for
correct functioning of the circuit; such features are expected to result
in robustness and stability enhancement on protein G level control
compared with the previous Sad-iFFL design. The two iFFL subnet-
works shown in Fig. 4.1C and Fig. 4.1D are regulated by the SadCas9
repressor. The two promoters in the circuit are targeted by the same
repressor complex (yellow boxes in Fig. 4.2), thus only one sgRNA has
to be expressed, and the affinity for the complex can be modulated by
changing the DNA composition of the target region. The latter has
been designed immediatly downstream of the PT7 promoter region.
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Figure 4.2: Universal-iFFL (U-iFFL) biological model. Visual
representation of the new iFFL-based design (U-iFFL) for gene expression control system. The
network functionality is based on the activities of two proteins: the dCas9 (C) repressor which,
once bound with the sgRNA (sgRNA) forming a repressor complex (Cg), it, can bind the target
DNA region (yellow boxes) and repress the transcription process of the downstream genes (GOI,
RNAPT7); the RNAPT7 (T7) activator, once bound to its cognate promoter (PT7), can start
the transcription of the downstream genes (dCas9, GOI, RNAPT7). The curved arrow, the
circles and the T-shaped lines are respectively the promoter (PT7, PC), RBS and terminator
parts. The horizontal line inside square brackets represents the DNA while the wavy ones the
mRNA. The assosiation/dissociation reactions (k+

1 ,k−1 ,k+
CG,k−CG,k+

CT and k−CT ) are represented

by bi-directional arrows while the production events with monodirectional arrows (e.g., k+
T7, k−T7,

transcription rate αX , translation rate δX , where X is the biological entity).

The binding of the dCas9 complex to the PT7 promoter itself would,
otherwise, result in the repression of all the copies of this promoter,
thereby breaking the circuit logic. A target region is also present
downstream of the promoter sequence controlling GOI expression, as
in the Sad-iFFL scheme illustrated in Section 3.2.1. In summary, the
iFFL loop that has been created beetwen Cg and T7 allows to control
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4. U-iFFL

the T7 trancriptional activation activity, while the iFFL network be-
tween C and G, analyzed in the previous chapter, is mantained. The
transition from the off- to the on-state of the circuit relies on the tran-
scriptional activity of the PC promoter: as it will be discussed in the
next section, the role of this promoter is to enable RNAPT7 expression
at a rate sufficient to trigger the positive autoregulation loop. As it
will be discussed in the next section, the strength of the PC promoter
must be sufficient to carry out this task, but component choice is much
more flexible than for the selection of promoters in the Sad-iFFL, for
which only promoter-RBS pairs providing high expression are needed.
In conclusion, U-iFFL is expected to exhibit the same advantages as
the Sad-iFFL, but for a wider range of promoter, RBS and copy num-
ber conditions, for which Sad-iFFL is expected to fail to show robust
control.

4.1.2 Mathematical model of U-iFFL controller

The biological scheme reported in Fig. 4.2 (U-iFFL) has been mod-
eled considering the law of mass action and the law of conservation of
mass, described respectively in Equations (4.1) and (4.2).



C + sgRNA
k+

1



k−1

Cg

Cg + P PT7
G,Free

k+
CG



k−CG

P PT7
G,Repressed

Cg + P PT7
T7,F ree + P PC

T7,F ree

k+
CT



k−CT

P PT7
T7,Repressed + P PC

T7,Repressed

T7 + P PT7
Y,Free

k+
T7



k−T7

T7 + P PT7
Y,Free +mY

(4.1)
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4.1. U-iFFL model-based design


DNA : PX,Free + PX,Repressed = n

dCas : C + Cg + PX,Repressed = Ctot

Single guide RNA : sgRNA+ Cg = gtot

(4.2)

In Equations (4.1) − (4.2), C, Cg and PX,repressed (X = [G, T7])
are the concentrations ([nM ]) of dCas respectively free, coupled with
the single guide RNA and bound to the target DNA site (which is also
equal to the concentration of promoters in the off-state) promoter,
while sgRNA and PY,Free (Y = [C,G, T7, sgRNA]) are the concen-
trations ([nM ]) of free single guide RNA and non-repressed promot-
ers inside the cell driving the transcription of C, G, T7 and sgRNA.
The superscript (T7 or C ) indicates if the promoter is an RNAPT7-
regulated PT7 promoter or the PC promoter. The kinetics of the re-
pressor complex formation (Cg) and its activity towards the target
DNA (PX,Repressed) (X = [G, T7]) has been described with the associ-
ation k+

1 [nM−1time−1], k+
CG [nM−1time−1], k+

CT [nM−1time−1] and
dissociation k−1 [time−1], k−CG [time−1], k−CT [time−1] rate constants
(Equation (3.1)), respectively. Although the target regions upstream
the two coding sequences (C, T7 ) are identical and the Cg complex
can be engineered with only one single guide RNA targeting both re-
gions, the rate constants have been defined separately for both genes,
based on the subscript: CG refers to the C−G binding while CT to the
C−T7 one. The transcriptional activation kinetics of RNAPT7 is de-
termined by the association - dissociation rate constants K+

T7 and K−T7

(Equation (4.1)). The total amounts of target promoter, dCas and
single guide RNA inside the cell are defined as n[nM ], Ctot[nM ] and
gtot[nM ] (Equation (4.2)). The transcription of dCas9 is carried out by
the PT7 promoter upstream; the transcription of GOI is driven by the
non-repressed PT7 promoter upstream; the transcription of RNAPT7
is driven by the PC and the PT7 promoters when the target site is
not repressed. Assuming that the concentration of target promoters
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4. U-iFFL

is negligible compared with the total dCas9 repressor complex (Hy-
pothesis 1: Cg >> PX,Repressed, X = [G, T7]) and that the latter is
negligible as well compared with the total level of single guide RNA
(Hypothesis 2: sgRNA >> Cg) the mathematical model of U-iFFL
circuit can be written as (Equations (4.3) - (4.7)).

dC

dt
=

n · ρC
(dmC + µ)

·

(
αC(

1 + KT7

T7

))− (dC + µ) · C (4.3)

dG

dt
=

n · ρG
(dmG + µ)

·

 αG(
1 + KT7

T7

) · 1(
1 + Cg

KCG

)
− (dG + µ) ·G (4.4)

dT7

dt
=

n · ρT7

(dmT7 + µ)
·

(αT7,PC +
αT7,PT7(
1 + KT7

T7

)) · 1(
1 + Cg

KCG

)
−(dT7+µ)·T7

(4.5)

dsgRNA

dt
= n ·

(
αsgRNA(
1 + KT7

T7

))− dsgRNA · sgRNA (4.6)

Cg =
C

(1 + K1

sgRNA
)

(4.7)

No cooperativity was assumed (Hill coefficient η = 1 − not shown
in the model) for the complex formation from sgRNA binding [99]
(Equation (3.5)) and for the transcriptional repression from the com-
plex Cg [100] (Equation (3.4)).

No cooperativity was assumed (ηsgRNA = ηCg = ηT7 = 1 − not
shown in the model) for the complex formation from sgRNA binding
[99] (Equation (4.7)), the transcriptional repression from the complex
Cg (Equations (4.4) − (4.5)) [100] and the transcriptional activity of
T7 polymerase (Equations (4.3) − (4.6)) [115]. In Equations (4.3)
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4.1. U-iFFL model-based design

− (4.6), αX , ρX and δX represent the transcription, translation and
degradation rate [time−1] of the biological entity X, respectively, while
µ is the diluition rate [time−1] due to cell division. The transcription
rate of T7 coding sequence has been divided in two contributions,
based on its promoters PC and PT7, resulting in the two transcription-
related parameters αT7,PC and αT7,PT7

, respectively. In Equation (4.4),
(4.5), KCG [nM ] and KCT [nM ] are the Michaelis − Menten equilib-
rium dissociation constants for dCas9 with its DNA targets and have
the following relations: KCG = k−CG/k

+
CG and KCT = k−CT/k

+
CT ; in

Equation (4.7), the dissociation equilibrium constant is defined as well
as K1 = k−1 /k

+
1 . Analogously, the equilibrium dissociation constant

for the transcriptional activation of the T7 polymerase (Equation (4.3)
− (4.6)) has been modeled as the ratio between its dissociation - as-
sociation rate constants, as: KT7 = k−T7/k

+
T7.

Assuming (i) sgRNA overabundance (Hypothesis 3: sgRNA >>
K1), (ii) Cg overabundance (Hypothesis 4: Cg >> KCG, Hypothesis
5: Cg >> KCT ), (iii) T7 overabundance (Hypothesis 6: T7 >> KT7)
and defining the scale parameters as reported in Equations (4.8) -
(4.11), it is possible to simplify the model as in Equations (4.12) -
(4.16).

Transcription: αT7 = αC =
αG
f

=
αT7

g
=
αsgRNA

s
(4.8)

Translation: ρ = ρC =
ρG
b

=
ρT7

c
(4.9)

Protein Degradation: µ >> dC = dG = dT7 (4.10)

RNA Degradation: µ << dRNA = dsgRNA = dmC = dmG = dmT7

(4.11)

95



4. U-iFFL

dC

dt
=
n · ρ · αT7

dRNA
− µ · C (4.12)

dG

dt
=
n · b · ρ · f · αT7 ·KCG

dRNA · Cg
− µ ·G (4.13)

dT7

dt
=
n · c · ρ ·KCT ·

(
αT7,PC + g · αT7

)
dRNA · Cg

− µ · T7 (4.14)

dsgRNA

dt
= n · s · αT7 − dRNA · sgRNA (4.15)

Cg = C (4.16)

Equations (4.12) - (4.16) represent the ordinary differential equa-
tion (ode) system used in Section 4.2.3 to evaluate the time-dependent
behavior of U-iFFL circuit and compared with Sad-iFFL and open-
loop schemes.
The steady-state representation of the model has been obtained eval-
uating the Equations (4.12) - (4.16) at their equilibrium, i.e. for
dX/dt = 0, where X = [C,G, T7, sgRNA]. The system obtained
(Equations (4.17) - (4.21)) has been used in Section 4.2.3 to evalu-
ate the model robustness to parameters variations and to analyze the
propagation of uncertainty when these parameters are affected by bi-
ological noise.

CSS =
n · ρ · αT7

dRNA · µ
(4.17)

GSS =
n · b · ρ · f · αT7 ·KCG

dRNA · Cg · µ
(4.18)

T7SS =
n · c · ρ ·KCT ·

(
αT7,PC + g · αT7

)
dRNA · Cg · µ

(4.19)
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sgRNASS =
n · s · αT7

dRNA
(4.20)

CgSS = CSS (4.21)

Finally, substituting Cg expression (Equation (4.17) and (4.21)) in
Equations (4.18) − (4.19) and subsequentely to common parameters
simplification procedures the final G and T7 protein levels can be
described as:

GSS = b · f ·KCG (4.22)

T7SS =
c

α
·KCT ·

(
αT7,PC + g · αT7

)
(4.23)

In Equation (4.22), the G protein level at steady-state is equal to
the Michaelis−Menten constant of SadCas9 KCG multiplied by two
scale factors, respectively representing RBS and promoter differential
efficiency, between C and G, as shown for the Sad-iFFL model in Sec-
tion 3.2.2. Analogous to G, the internal iFFL (Fig. 4.1D) between Cg
and T7, results in a protein level of the T7 polymerase proportional to
the half-maximum constants of the complex Cg modulated by the scale
factor c and by a factor proportional to the total transcription rate of
the T7 coding sequence (αT7,PC +g ·αT7) compared with the reference
transcription rate (α = αC). The modulation of steady-state protein
levels can be achieved by the modification of the target sequences at
DNA-level in order to create a differential steady-state modulator for
G and T7 with one single guide RNA. The analytical analysis of the
U-iFFL steady-state model follows the same hypotheses of Sad-iFFL
(described in Section 3.2.2) for the four design scale factors: b, f , c and
g. The analysis that has been reported in Section 3.3.3 for the TIR
variability through different bacterial hosts are also valid for U-iFFL
model.
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4.2 U-iFFL Results

4.2.1 Leakage analysis

In the analytical model of U-iFFL no leakage is assumed to occur
for promoters with dCas9-repressible transcription. Here, the scenario
for which this assumption is restored is modeled and quantified to
understand the expected error affecting the steady-state level of G
and T7. The ode system discussed above (Equations (4.4) - (4.5))
describing the time evolution of the two dCas (C ) - regulated genes
(G, T7 ) has been modified as follows:

dG

dt
=
n · ρG · αG
(dmG + µ)

·

δ +
1− δ(

1 + KT7

T7

) · 1(
1 + Cg

KCG

)
−(dG+µ)·G (4.24)

dT7

dt
=
n · ρT7 · αT7,PC

(dmT7 + µ)
·

δ +
1− δ(

1 + Cg
KCG

)
+

n · ρT7 · αT7,PT7

(dmT7 + µ)
·

δ +
1− δ(

1 + Cg
KCG

)
− (dT7 + µ) · T7

(4.25)

In Equations (4.24) − (4.25), δ is the percent leakage of transcrip-
tional activity that can occur due to the non-zero basic transcriptional
activity when dCas9 (C ) is bound; the δ parameter has been assumed
to be equal for both genes (G, T7 ) regulated by dCas9. Assumed the
overabundances hypothesis (3)−(6), Equations (4.8) − (4.11) and by
substituting the Cg expression in the steady-state equations of G and
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T7, it follows that:

GSS = b · f ·KCG︸ ︷︷ ︸
full−repressed
steady−state

+ b · f ·


CgSS︷ ︸︸ ︷

n · ρ · αT7

dRNA · µ
−KCG

 · δ
︸ ︷︷ ︸

leakage−dependent

(4.26)

T7SS =
c

αT7
· (αT7,PC + g · αT7) ·KCT︸ ︷︷ ︸

full−repressed
steady−state

+

c

αT7
· (αT7,PC + g · αT7) ·


CgSS︷ ︸︸ ︷

n · ρ · αT7

dRNA · µ
−KCT

 · δ
︸ ︷︷ ︸

leakage−dependent

(4.27)

In Equations (4.26) − (4.27) the protein levels of G and T7, at
equilibrium, depends on two effects: the steady-state level in the full-
repressed state and a leakage-dependent term which increases the total
protein level by an additive factor proportional to δ. The assumptions
for which G and T7 are equal to their predicted value that has been
reported in Equations (4.22) − (4.23) are stated in the next Equations
(4.28) − (4.29) derived by modeling Cg as proportional to its half-
maximum constant by a multiplicative factor z (Cg = z ·KCG) and z′

(Cg = z′ ·KCT ).
1

(z − 1)
>> δ (4.28)

1

(z′ − 1)
>> δ (4.29)
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In Equation (4.28) − (4.29) it is shown that, for the contribution of
leakage to be negligible, it is necessary that the inverse of the increase
in the protein repressor Cg compared to KCX , X = G, T , has to be
greater compared to leakage δ, expressed as a percentage of the maxi-
mum transcription. While the first constraint (Equation (4.28)) needs
to be met, the second one (Equation (4.29)) is not necessary to achieve
a working system, since the level of RNAPT7 can also become greater
than its nominal value with no-leakage and hypothesis 6 is still valid.

4.2.2 Model constraints

The hypotheses that have been stated in the mathematical model
of U-iFFL have been collected and, subsequently, discussed:

• Hypothesis 1: overabundance of Cg compared to its tar-
get. Since the coding sequences of C and G are assumed to be
present at the same copy number, corresponding to the DNA
concentration (n), the production rate of the (Equations (4.17)
and (4.21)) repressor, and thus the Cg complex, has to be greater
than its degradation rate.

ρ · αT7 >> dRNA · µ (4.30)

• Hypothesis 2: overabundance of sgRNA compared to
free dCas9 (C ). The production rate of sgRNA (Equation
(4.20)) has to be greater than the diluted production rate of
C (Equation (4.17)). This hypothesis could be violated if a too
weak promoter is chosen for sgRNA expression.

s >>
ρ

µ
(4.31)
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4.2. U-iFFL Results

• Hypothesis 3: overabundance of sgRNA compared to its
half-maximum constant (K1). Raper et al. have shown that
the K1 parameter has a value of ≈ 10 [pM ] inferring that the
linkage between C and sgRNA (Equation (3.17)) is fast enough
to be considered instantaneous [105].

n · s · αT7

dRNA
>> K1 (4.32)

• Hypothesis 4: overabundance of Cg compared to its
half-maximum constant (KCG). Constraint for Cg (Equa-
tions (4.17) and (4.21)) to achieve transcriptional repression on
G.

n · ρ · αT7

dRNA · µ
>> KCG (4.33)

• Hypothesis 5: overabundance of Cg compared to its
half-maximum constant (KCT ). Constraint for Cg (Equa-
tions (4.17) and (4.21)) to achieve transcriptional repression on
T7.

n · ρ · αT7

dRNA · µ
>> KCT (4.34)

• Hypothesis 6: overabundance of RNAPT7 compared
to its half-maximum constant (KT7). Constraint for T7 to
achieve transcription activation of PT7 promoter. In Equation
(4.23), dependently from the strength of the PC promoter, it
is possibile to define three different scenarios, reported below
as Case A, B and C. Fixing the scale factor c and KCT value,
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it result that, varying the relative promoters strenght αT7,PC

and αT7,PT7
, the worst case scenario is represented by Case A

(Case C: approximating g ≈ 1, (αT7,PC/α
T7) >> 1); indeed, by

ensuring its validity it is possible to guarantee the transcriptional
activation hypothesis for all the other scenarios. Case A equation
described the trade-off between T7 -activation and its repression:
the relative production of T7 polymerase compared to Cg (c ·
g) times KCT has to be greater compared to its dissociation
equilibrium constants. This implies that the steady-state value
of T7 polymerase has to be controlled to be high enought to work
properly as an activator but controlled to avoid cell burden due
to the overexpression of C and RNAPT7 itself.

c ·KCT ·
(
g · αT7 + αT7,PC

αT7

)
>> KT7 (4.35)

Case A. g · αT7 >> αT7,PC :

c ·KCT · g >> KT7

Case B. g · αT7 = αT7,PC :

c ·KCT · 2 · g >> KT7

Case C. g · αT7 << αT7,PC :

c ·KCT ·
αT7,PC

αT7
>> KT7

• Hypothesis 7: Cg upper bound due to its repression
inefficiency. This assumption must be considered in the design
phase of the circuit when the repressor protein is chosen. In
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fact, the steady-state protein level can be stably mantained if the
intracellular repressor concentration is high enough to guarantee
its overabundance (Hypothesis 4: Cg >> KCX , X = [G, T ])
and lower than a factor dependent on its repression activity and
by the percentage of leakage due to its repression inefficiency.
Equations (4.28)-(4.29) can be written as follows:

KCX ·
(
δ + 1

δ

)
>> Cg, X = [C, T ] (4.36)

4.2.3 In silico comparisons with the Sad-iFFL and
open-loop schemes

Steady-state analysis

The steady state analysis performed previously in Section 3.3.4 is
now reproposed with the comparions between U-iFFL circuit scheme
under the same perturbation factors: transcription, translation and
copy number variations. This analysis is reported in Fig. 4.3; each of
them was tested with different ranges of transcription rate (α [0.05−
1] mRNA/s), translation rate (ρ [0.05− 1] protein/(mRNA ∗ s)) and
different desired GOI concentrations (set via KCG ) [1− 500]nM . Re-
sults on Fig. 4.3A, Fig. 4.3B, Fig. 4.3C show that U-iFFL overcomes
the major limitation occuring in the Sad-iFFL circuitry: in fact, at
low transcription and low translation rate the U-iFFL system is able
to converge to the theoretical set point value. The amplification mod-
ule (Fig. 4.1B) eventually increases the repressor protein level and its
overabundance hypothesis can be met more easily than in Sad-iFFL
in the same conditions. U-iFFL simulations demonstrated superior
performance, as its regulatory network becomes fully active at much
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Figure 4.3: In silico steady-state and robusteness analysis
of U-iFFL network compared to Sad-iFFL and open-loop
scheme on different transcription and translation rates and
different theoretic set points (KCG). The predicted GOI protein concen-
tration due to transcription and translation rate variation in the U-iFFL and Sad-iFFL circuits
are shown for different KCG (set point) values: 1 [nM] (A), 100 [nM] (B) and 500 [nM] (C).
D, Predicted GOI protein concentration due to transcription and translation rate variation in
the open-loop scheme. E, Comparison of the robustness performances of the circuits in terms of
rejection of transcription and translation rate variations.

lower transcription and translation rates than Sad-iFFL, and having
convergence issues only with the lowest translation rate used in the
simulations.

In order to understand how the controller rejects the transcription
and translation rate variations, the robustness analysis of the three
circuits are reported in Fig. 4.3E for different theoretical set point
tuned via KCG values. Details on the robustness computation have
been reported in Section 3.3.4. As shown in Fig. 4.3E, U-iFFL circuit
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overperformed in terms of robustness on transcription (lower median
> ≈ 98.5%) and translation rate (lower median ≈ 91%) variation com-
pared to Sad-iFFL controller (lower median of: transcription ≈ 68%,
translation: ≈ 68%). Such results quantify the enormous potential
of the newly-designed synthetic circuit (U-iFFL) in comparison with
the simpler iFFL composed of one repressor only (Sad-iFFL). These
properties open the possibility for new possible applications of gene
expression control for synthetic circuits in non-standard hosts with
unknown transcription or translation rates, given a promoter and RBS.

Propagation of biological noise

Propagation of biological noise was computationally investigated to
check how Sad-iFFL and U-iFFL perform in the presence of random
biological noise belonging to intrinsic and extrinsic components, us-
ing the simulated cell-to-cell variability in a recombinant population
analyzed in Section 3.3.4 for Sad-iFFL as well.

Results for U-iFFL are represented in Fig. 4.4. The most important
information from these results is that U-iFFL error propagation is
very close to the Sad-iFFL (red surface, not shown due to completely
overlapping surfaces).

Such results can be interpreted as U-iFFL has the same features
of noise propagation as Sad-iFFL, which underlines its stability and
potential. This result was expected since, under conditions of U-iFFL
functioning, biological noise affecting RNAPT7 expression does not
propagate throughout the circuit (due to its abundance in Hypothesis
6) and the other variable elements (SadCas9 and GOI) are in com-
mon between the two iFFL designs. Compared with the Open loop
configuration, iFFLs show a lower variability when the main noise con-
tribution is extrinsic (>0.5) and a higher variability when the extrinsic
component is <0.5. Biologically plausible values for the two compo-
nents indicate that the major noise contribution is extrinsic (0.6-0.8),
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0 0
[-] [-]

Figure 4.4: Propagation of biological noise of U-iFFL, Sad-
iFFL and Open-loop circuits. The graph is represented from two different
angular perspectives. The variation in GOI protein concentration is reported in terms of coeffi-
cient of variation (final CV) as a result of noise propagation, calculated for different transcription
and translation rates; the noise entity is proportional to their coefficient of variation level (initial
CV). The Pearson correlation coefficient of cellular noise (r) is the representation of dominant
noise contribution inside the system (0 - all intrinsic, 1 - all extrinsic). The U-iFFL and Sad-iFFL
curves are completly overlapped.

thereby making iFFL design less noisy than Open loop, confirming
the previously characterized advantages of feedback and feedforward
loops in terms of cell-to-cell variability.

Dynamic analysis

The dynamic behavior of the circuits are analyzed and compared based
on the settiling time at 95% and the response of the system to an
induction/de-induction cycle, both illustrated in Fig. 4.5; the perfor-
mance indexes computation has been reported in Appendix D.
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Figure 4.5: Dynamic analysis of U-iFFL circuit and comparison
with Sad-iFFL and Open-loop schemes. (A) Comparison of settling time

at GOISS
95% among the U-iFFL, Sad-iFFL and Open-loop circuits. The simulations of time-

dependent behavior of GOI protein concentrations for the three systems are shown, together with
the settling time calculated when the protein level reaches steady state and remain within a 5%
error band. The settling times are shown through colored (blue - U-iFFL, red - Sad-iFFL, green
- Open-loop) dotted vertical lines while the teoretical set point (KCG) is represented by black
dotted line. (B) The graph represents the two system responses (above; blue - U-iFFL, red -
Sad-iFFL) to a 20-minute impulse described biologically as the transcription activation of: the
PC promoter in the U-iFFL circuit and the whole set of identical promoters within the Sad-iFFL
circuit. The black dotted line represents the theoretical set point (KCG) of iFFLs.

Settling time
For this test the final desired concentration or minimal theoretical
limit of GOI was set equal to 500nM (represented as black dotted line
on Fig. 4.5). The simulation results of the two circuits showed similar
results in terms of converging speed. Even if the new designed U-iFFL
simulation is characterized by a slightly higher initial response than
Sad-iFFL, it is important to note that the difference in settling time
is less than ≈ 16 minutes, which is a minor disadvantage in relation
to the key advantages shown for the U-iFFL configuration. The pre-
dicted time delays of the two model circuit (Sad-iFFL, U-iFFL) are
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due to the activation of the regulation machinery: in fact, the cell
needs time to produce enough SadCas9 complex, and RNAPT7 in U-
iFFL, to meet thir overabundances hypotheses.

Induction/de-induction cycle
During this test, the initial conditions of simulations has set to a tran-
scription rate value of 1 s−1 and turned off after a time tOFF = 20min,
describing a transcriptional ‘pulse’. In the upper graph of Fig. 4.5B
the behavior of the two controller schemes (red - Sad-iFFL, blue - U-
iFFL) in response to a transcriptional ‘pulse’, reported in the graphs
above, highlighted by the blue vertical box. As usual, the theoretical
set point KCG is reported with black dotted line in the above graph, set
to 500 nM . Sad-iFFL is not capable to maintain its steady state after
turning the transcription off (it goes down to the initial state after the
pulse) as shown in Section 3.3.4. Differently, the U-iFFL circuit shows
the capability to maintain the GOI expression at the desired level after
the pulse. This feature makes the system work without necessity of
constant presence of the inducer molecule and its behavior is the same
as if it was constantly induced. In fact, positive autoregulation is the
simplest network motif implementing a genetic “on-memory”, as the
cell is able to“remember” the active state after the upstream promoter
is transiently triggered [116, 60]. In particular, after occurs the first
transcription events from the PC promoter (trigger) and translation
by the RBS upstream the rnapt7 gene, a small quantity of RNAPT7
protein starts to transcibe its own transcript and create the aforemen-
tioned ‘on-memory’ effect. The transition between the off-/on-state
depends on the dissociation constant KT7 value [117, 60], indeed, if
the protein produced by the trigger events (PC) is not high enought to
activate the PT7 promoter, the circuit remains in the off-state. To un-
derstand if the system composed by RNAPT7-PT7 is appropriate for
this application, the characterization of the module has been done in-
vivo and the valueof the dissociation costant KT7 has been estimated
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(data and discussion have been reported in Section 4.2.4). This fea-
ture can represent an advantage of the U-iFFL circuit over Sad-iFFL,
depending on its application.

4.2.4 In vivo characterization of RNAPT7-PT7 tran-
scriptional system from T7 phage

The set of characterizion circuits of RNAPT7-PT7 transcriptional
system, reported in Table C.6, is based on the biological scheme re-
ported in Fig. C.2; briefly, the fluorescence protein (RFP) is driven by
the PT7 promoter, which is recognized by RNAPT7, expressed by an
HSL-inducible expression cassette; the cell load is monitored from the
GFP monitor cassette. The full description of the biological scheme is
reported in Section C.4.2. The circuits hereby reported has been ob-
tained after the optimization of RNAPT7 coding sequence: the high
toxicity that arose from the wild-type RNAPT7 enzyme was incom-
patible with cell life, therefore, the enzyme efficiency was decreased
through the modification of the RNAPT7 coding sequence. This choice
has been made, among different solutions proposed in the literature
(e.g., start codon modification [62, 118], mutation of PT7 [118], PT7

transcriptional repression [119, 120]), for its semplificity and efficacy.

Despite the literature solution of promoter repression is included
in the U-iFFL circuit (PT7 repressed by SadCas9), it has been demon-
trated in our laboratory that the transcriptional activation-repression
system is not functional with the wild-type RNAPT7 as the system
remains constantly in the off-state due to SadCas9 repression and due
to cell burden generated from RNAPT7 activity when the SadCas9
concentration falls below a threshold limit (data not shown). The
successfull modification carried out in the engineered system is the
amino acid substitution R632S of RNAPT7. The nine possible circuit
combinations have been designed and constructed with three differ-
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ent RBSs (B0031, B0032, B0034), and the transfer functions obtained
from the experimental data are shown in Fig. 4.6. The functionality
of the system can be outlined in two properties based on the toxi-
city and activity of the RNAPT7-PT7 system. In fact, altough the
optimized system reached a non-toxic high target level for HSL con-
centration values below 0.5 [nM], the behavior changes for HSL above
this threshold value and cell burden arose in the cell, as shown in the
GFP and growth rate data in Fig. C.2. From these data it emerges
the importance to control the steady-state value of RNAP7 when used
in synthetic circuit. The transfer functions reported in the middle
graph of Fig. 4.6 are clustered in three separated groups accordingly
on target RBS strength (from the top-strongest to the bottom-weaker
B0034, B0032 and B0031). The independence of each group from the
RNAPT7 RBS strength and the high output level reached for HSL =
0 [nM] value indicate that the transcriptional activity of the PT7 pro-
moter is saturated for very low concentration of RNAPT7 that arose
from the leakage activity of PLux promoter, thereby suggesting that
the half-maximum constant of RNAPT7 is too low to be estimated
from the experimental analysis of such circuits, differently from the
SadCas9 characterization scenario, for which a wide and tunable re-
pression range was observed. This results lays the foundations for a
robust and stable circuit functionality since, for biologically reasonable
value of c, the hypothesis assumption (Hypothesis 6: T7 >> KT7) of
the model (discussed in Section 4.2.2) is easily guaranteed. Moreover,
as previously discussed, the KT7 is low enough to guarantee the mem-
ory effect discussed in Section 4.2.3 (Induction/de-induction cycle).
Despite the whole set parts of U-iFFL circuit is characterized, its as-
sembly has been interrupted due to Sars-Cov-2 worldwide pandemic
and the work is still on-going.
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Figure 4.6: Experimental data of steady-state transfer func-
tions of the RNAPT7-PT7 system. Experimental data in which the error
bars represent the standard error of the mean (n >= 3 biological replicates for each point). The
thick green line in the ‘Growth Rate’ graph represents the growth rate value of the strain used
in this study with no plasmids, used as growth control.

4.3 U-iFFL overall conclusion

In this chapter, a new architecture based on iFFLs and positive
feedback sub-networks has been developed in order to overcome the
limits that emerged from the Sad-iFFL in vivo and in silico perfor-
mances, discussed in the previous chapter. The mathematical model
developed from the biological scheme has been deeply analyzed in
its constraints and used to simulate the steady-state and dynamic
curves which were subsequently compared with the Sad-iFFL ones.
The steady-state comparisons between Sad-iFFL and U-iFFL showed
that the new architecture is more robust to transcription and trans-
lation rate variations in a wide range of theoretical set point values
(KCG) and, furthermore, it has been demontrated that the RNAPT7-
PT7 system does not propagate the noise in a different way to Sad-
iFFL. The dynamic analysis demonstrates the importance of the ge-
netic ‘on-memory’ achieved from the positive autoregulation loop that
may be beneficial in applications for which protein expression needs to
be triggered and maintained after the removal of inducers. The am-
plification module composed by the transcriptional activation system
of phage T7 has been optimized to limit its toxicity due to a too high
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RNAPT7 activity on PT7, and characterized in vivo. This analysis
validated the overabundances hypothesis of the mathemtical model ,
thereby indicating that, for biologically measured values of the Sad-
Cas9 and T7 systems, the U-iFFL is expected to work and show a
more stable behavior than Sad-iFFL due to less restrictive assump-
tions. Despite the whole set parts of U-iFFL circuit is characterized,
its assembly has been stopped due to Sars-Cov-2 worldwide pandemic
and the work is still on-going.
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Chapter 5
A bioinformatics approach to expand the

iFFL portability in different

microorganisms

The functionality of the automatic controllers (Sad-iFFL, U-iFFL)
explained in Chapter 3 and 4 rely on the availability of regulatory parts
(e.g., promoters, RBS) that drive the genes in the two circuits. Un-
der a set of assumptions, illustrated in detail in Chapter 3 and 4, the
circuits are expected to adjust the target protein level even if transcrip-
tion, translation and copy number varies, thereby making the circuits
portable modules for protein expression. In this chapter, to support
the rational choice of promoters and RBSs, two bioinformatic pipelines
based on publicly available high-throughput gene expression data and
genome sequences have been developed. After a brief overview on the
different strategies adopted in the literature to discover new regula-
tory parts in bacteria, the transcriptomic and genomic datasets used
are illustrated with the thorough exlpanation of the two bioinformat-
ics pipelines. Finally, the results derived from these pipelines and the
validation of some of the obtained findings have been reported with
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the conclusions and future developments of this work.

5.1 Introduction and project idea

The control of the gene expression can be achieved using previously
characterized regulatory parts such as promoters, RBSs and plasmid
vectors which in turn determine the transcription and translation rates
and the copy number. Fully characterized libraries of regulatory parts,
largely known for model bacteria, are not available for non-model bac-
teria thus limiting the rational design construction of new synthetic
circuits for new biological chassis, limitation that decrease the Sad-
iFFL (Chapter 3) and U-iFFL (Chapter 4) circuits portability [121].
The interest in the use of non-model organisms is increasing to expand
the application range of synthetic biology, as motivated in Chapter 1.
Promoters are defined as DNA sequences recognized by the enzyme
complex composed of RNA polymerase and sigma factor (σ) responsi-
ble for regulating the transcription of the downstream gene into RNA
(Fig. 5.1A) [122]. Adaptation to environmental perturbations (e.g.,
stress, temperature, pH) is essential for the survival of the bacterium,
which must rapidly adjust its physiological response. This is possi-
ble through the activation of regulatory genes that are turned off or
poorly expressed normal conditions, when, e.g., they are not neces-
sary; in fact, usually, the cell does not express all the genes within
its genome but modulates the gene expression pattern according to
the environmental condition, avoiding to sequester energy from the
most important biological function, cell replication [123]. The family
of proteins responsible for the modulation of different gene expression
patterns is sigma factors which direct the RNA polymerase towards
different promoter classes. In bacteria there are several σ-factors but,
usually, only one of them promotes the transcription of constitutive
genes (e.g., σ70 in E. coli, σA in B. subtilis) [122]. A promoter is char-
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acterized mainly by: the position of the Transcription Start Site (TSS,
or +1), the -10 and -35 regions, so called because they are respectively
located at about 10 and 35 nucleotides upstream of TSS (Fig. 5.1A).
The convention for which these sequences have been marked with the
numbers -10 and -35 is linked to the first studies conducted on bacte-
rial promoters in which it was evident that the frequency of consensus
sequences resided at about -10 and -35 bases from the TSS. In subse-
quent studies, it has been shown that this is not always respected: in
fact, the distance between the TSS and the -10 region can vary from 4
to 12 bases, as well as the length of the core region, the region between
the -10 region and the -35 region, which can vary from 15 to 18 bp
[124].

Promoter Gene

A. B.(TRANSCRIPTION)
PROMOTER

(TRANSLATION)
RIBOSOME BINDING SITE (RBS)

RBS

Figure 5.1: Promoter and Ribosome Binding Site (RBS) se-
quence. A. The recognition of the promoter sequence (light green box) by RNA polymerase
(RNAP) allows the transcriptional process of the downstream gene (dark green box) starting
from the Transcription Start Site (TSS, +1). Precisely, RNA polymerase recognizes promoter
subsequencies (yellow boxes), called -35 and -10, based on the sigma factor protein that forms
a complex with this enzyme. Different Escherichia coli promoter sequences recognized by the
complex formed between RNAP and σ70 have been reported in the graph [125]. B. The recog-
nition of the Ribosome Binding Site (RBS - green box) from the ribosome complex (50S + 30S)
allows the translational process of the downstream gene (from green AUG) into protein to occur.
This process is enabled by the recognition of a sequence within RBS, called SD (Shine-Dalgarno),
by the anti-SD (anti Shine-Dalgarno) present in the 16S rRNA gene embedded in the ribosomal
subunit 30S [126].

Promoters can be classified into two classes based on their behav-
ior: constitutive or inducible. Constitutive promoters transcribe the
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downstream gene regardless of the environmental conditions and their
transcription rates depends strictly on the sequence of the promoter
[127]. In fact, the variation of a few nucleotides within the promoter
sequence can significantly alter its strength. On the other hand, in-
ducible promoters alter their transcription rate as a result of an ex-
ternal stimulus represented by a physical agent, such as temperature,
or by a chemical agent such as a specific molecule. Although in some
cases of real-world application of engineered organisms the use of in-
ducible promoters has been successful in rationally modulating gene
expression, in other cases they are inadequate: the promoter can be
hypersensitive to the inducer, its high cost can also make the system
unusable in some contexts and, importantly, the levels of expression
reached the population may fluctuate significantly within isogenic bac-
teria leading to a large heterogeneity in gene expression. In light of
this, it is generally preferred to use stable and robust constitutive pro-
moters with known strength in the construction of synthetic circuits
to be inserted inside the host microorganism [128]. The product of the
transcription process is the mRNA which the coding sequence of the
gene is present, included within two UnTranslated Regions: 3’UTR
and 5’UTR. The 5’UTR region includes the RBS sequence responsi-
ble for the recognition of the ribosome and thus the beginning of the
translation process (Fig. 5.1B). Precisely, a short consensus sequence
called Shine-Dalgarno (SD) is contained in the RBS and the mecha-
nism by which the ribosome recognizes it is based on the complemen-
tarity between the RNA bases: the SD sequence is complementary to
short regions near the 3’ end of 16S rRNA, called in turns anti-SD.
This sequence was first discovered by Shine and Dalgarno in E. coli,
however some genes such as for example rpsA, they do not present
it in their 5’ UTR sequence, but the mRNA is still translated effi-
ciently [129]. Many authors use the term Shine-Dalgarno sequence to
indicate the AAGGAGG sequence (characteristic of E. coli and other
bacteria), while others use it to indicate more generally the regions
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of the 5’ UTR that are recognized by the ribosomes of these organ-
isms. In fact, alternative forms of the AAGGAGG consensus sequence
have been discovered: many genes of Cyanobacteria and Bacteroides
possess a sequence significantly different from E. coli [130]. The tradi-
tional approach to discover new promoter or RBS sequences consists
in taking portions of the genome for which it is assumed that a reg-
ulatory sequence is present, inserting it upstream of a reported gene
within an expression vector builted ad hoc for that microorganism and
quantifying the fluorescence of the downstream gene and compared to
a previously characterized part used as a reference. The high amount
of time and work behind this process motivated the need of alterna-
tive approaches that could identify in silico the regulatory sequences
and possibly predict their activity. In the literature, several solutions
based on a bioinformatics approaches have been conceived and repre-
sentatives examples have been reported below.

Bioinformatics algorithms for the prediction of promoter sequences
based on different modeling approaches have been developed. PePPER
[131], BPROM [132], 70ProPred [133] and BacPP [134] are algorithms
which based their functionality on the consensus sequences recognized
by sigma factors. In particular, all the mentioned ones use the infor-
mation of E. coli σ-factors, thus limiting the algorithm portability for
species phylogenetically close to it, for which it is assumed that the
transcriptional mechanism does not change in a decisive way. Algo-
rithms such as CNNpromoter b [135] and SAPPHIRE [136], on the
other hand, have been developed with a convolutionary neural net-
works (CNN) modeling to predict promoters based on the knowledge
acquired during the training phases on specific datasets of validated
promoters. Unfortunately, as is well known in machine learning, their
prediction performances strongly depends on the training set used and
by its size; in fact, it has been shown that small training sets result
in poor accuracy values of the pipeline, thereby limiting its general-
ization power [135]. A further developed approach is based on bio-
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physical models which rely on the calculation of energy variation on
moving windows on the whole genome (G4PromFinder and PromPre-
dict) [137, 138]. It has been assumed that the promoter sequences
possess, compared with the rest of the genome, binding energy values
between adjacent nucleotides significantly lower in order to help RNA
polymerase to open the DNA portion and start the transcription pro-
cess. Similar bioinformatics approaches have also been used for the
prediction of RBS sequences within a target genome. Tompa et al.
optimized an algorithm that is able to detect short motifs in multiples
sequences (such as RBSs in the regions upstream of coding sequences)
that overcomes the bias of the current local alignment algorithms for
which suboptimal solutions, characterized by short alignments with
exact matches, are discarded by the presence of long alignments with
the presence of multiple indels. However, the algorithm showed low
performances when tested to detect RBS sequences (more complex
than a short conserved motif) on different bacterial species due to the
high percentages of indels compared with nucleotides on the computed
RBS sequence [139].

The state-of-art algorithm for the identification of RBS strength
is the biophysical model that takes into account the secondary struc-
ture of the mRNA and the hybridization energy between RBS and
anti-SD sequences in the rRNA, called RBS Calculator (Salis Lab).
In its reverse engineering mode, the method predicts the translation
initiation rate for each detected start codon in a given mRNA (∼ 100
bp long) while in its forward engineering mode the method optimizes
a synthetic RBS sequence to achieve a targeted translation initiation
rate. In particular, the algorithm employs a thermodynamic model of
the starting events of bacterial translation to calculate the Gibbs free
energy of the ribosomal binding. Using a thermodynamic approach,
they related this Gibbs free energy to the translation initiation rate of
the ORF [101, 106, 107, 108]. Although the algorithm is widely used to
design new RBSs associated with various translation efficiency values,
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the accuracy of the prediction of this efficiency is still too low to allow
the precise engineering of expression systems in poorly studied hosts.
The limitations that emerged from the algorithms previously reported
leave the door open for the development of new high-portability bioin-
formatics algorithms for the identification and possible quantitative
prediction of regulatory sequences that can be used in different bacte-
rial strains. In this chapter, to support the rational choice of promoters
and RBSs, two bioinformatic data-driven pipelines based on publicly
available high-throughput expression data and genome sequences have
been developed in order to detect candidate and constitutive promoter
sequences with stable activity across different conditions, and design
new RBSs that are functional in different bacterial hosts in a wide
range of strengths of transcription and translation processes.

5.2 Bioinformatics procedures

Genomics data of promoter sequences were retrieved from public
online databas and have been analyzed in MATLAB R2020a (Math-
Works, Natick, MA, USA) while transcriptiomics data retrieved from
DNA microarray and NGS experiments have been analyzed in R v.3.6.2
software. For NGS data manipulation, where indicated, python v.3.8.5,
Linux bash and shell environment have been called through the R
software. Clustal-Omega v.1.2.4 software has been embedded in the
MATLAB environment and all multiple alignments have been made
locally in shell environment in a computer with 2.9 GHz Intel Core i7
processor and 8 GB 1600 MHz DDR3 RAM.
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5.2.1 Data resources: genomics and transcriptomics
datasets

Genomics datasets
The complete annotated genomes of 120 reference bacterial microor-
ganisms have been obtained in two steps. First, a summary list (in .xls
format) has been downloaded from NCBI Assembly online database
with the following query options: status - ‘latest’, assembly level -
‘complete genome’, category - ‘representative’, exclude - ‘partial, de-
rived from surveillance project, anomalous’ and annotation status -
‘has annotation’. Subsequently, the genomes informations have been
retrieved using the getgenbank function in MATLAB using the ‘Chro-
mosome GenBank’ accession code for each bacterium listed.

The complete genomes (Training sets) of Escherichia coli str K-
12 substr. MG1655 (GenBank code: U00096.3 ) and Bacillus subtilis
subsp. subtilis str. 168 (GenBank code: AL009126.3 ) used to test the
developed pipeline to detect promoter sequences inside a genomes have
been taken from the 120 microorgarnism genomes previously retrieved,
while their FASTA genome sequences have been retrieved from NCBI
Assembly repository. Datasets of promoter sequences (Test sets) of
E. coli and B. subtilis have been retrieved from EcoCyc and DBTBD
databases, respectively. In EcoCyc, 1700 promoter sequences with
their relative sigma factor(s) and Transcription Start Site (TSS) were
present (evidence code - experimental evidence), classified as follows:
σ70−795, σ38−181, σE−67, σ32−65, σ54−39, σ28−10 and σFecI−1,
while, in B. subtilis 673 promoter sequences with their relative sigma
factor(s) were present (evidence code - experimental evidence), classi-
fied as follows: σA− 368, σB− 40, σD− 13, σE− 67, σF − 24, σG− 52,
σH−21, σK−47, σM −3, σW −25 and σX−13. In the B. subtilis test
set, the TSS position for each promoter has been computed adding
+1 bp to the right absolute position of the promoter sequence if re-
lies on the non-complement strand referred to the genome notation,
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otherwise (complement strand) -1 bp has been substracted to the left
absolute position of the promoter sequence.

Transcriptomic datasets
Transcriptomics databases have been retrieved from the online database
Gene Expression Omnibus (GEO) supported by NCBI at the Na-
tional Library of Medicine (NLM). Differently from NGS data, two
platforms (GPL - Geo PLatform) have been used to retrieve the tran-
scriptomics experiments of E. coli and B. subtilis based on DNA-
microarray technology: GPL199 (chip manufacturer: Affymetrix ) and
GPL10901 (chip manufacturer: Agilent), respectively. In fact, the lack
of standardization protocols for data storing of microarray-based ex-
periments on public databases (e.g., NCBI GEO) represents a serious
limitation in the generalization of the pipeline for which, currently, an
adapatation module to integrate data from microarray chips different
than those used in this study (e.g., Affymetrix and Agilent) is under
development. Nonetheless, these chips brands have been selected since
cover a wide subset of microarray experiments (∼ 44% of GSEs, 3612
GSEs in total). The sets of experiments (GSE - Gene SEries) for each
GPL have been listed in Table 5.1. For each experiment, the number
of samples (GSM - Geo SaMple), the experimental condition analyzed
and its reference have been reported. The experiments (GSE) have
been selected by growth condition (mid-exponential phase of the bac-
terial growth), time-evolution series (static, no dynamic studies have
been selected) and if raw data were present. In total, 172 and 96
samples have been collected for E. coli and B. subtilis, respectively.
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5.2. Bioinformatics procedures

5.2.2 Automatic bioinformatic pipeline to iden-
tify promoter sequences with stable activity
in bacteria

The pipeline to detect promoters with stable activities in anno-
tated genomes from transcriptomics data is based on two bioinfor-
matics procedures divided as follows. The first has been developed
to detect candidate constitutively expressed genes whose expression
is stable in transcriptomics data from different experimental condi-
tions, while the second, starting from the genes found with the first
pipeline, has been developed to detect the promoter sequences based
on the knowledge of the consensus sequence related to the sigma factor
considered. For promoters that drive the expression of housekeeping
genes the sigma factor σ70 and σA for E. coli and B. subtilis have
been used, respectively. The basic assumption is that genes not differ-
entially expressed among different experimental conditions are driven
by constitutive promoters whose expression does not vary with exter-
nal perturbations.

The first part of the pipeline, the analysis of the transcriptomics
data, has been divided according to the chip technology, NGS or mi-
croarray, and the latter has been divided in turn based on the construc-
tion of the DNA-microarray chip (one or two channels - Affymetrix or
Agilent, respectively). In fact, data acquired in the two cases are sig-
nificantly different and their analyses have been adapted accordingly.
The overall scheme of the pipeline has been repoted in Fig. 5.2. In
the next subparagraphs, will be reported the different variants of the
first pipeline that handle microarray and NGS data (numbered points
1-2-3 in Fig. 5.2) in order to detect no differentially expressed (NDE)
genes in one experiments, the (common - refers as independent from
the type of the initial data) procedure to detect NDE genes on all
microarray and NGS experiments (numbered points 4-5-6 in Fig. 5.2)
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5. Expand iFFL portability through a bioinformatics approach

and, finally, the pipeline that, from the output list of NDE genes of the
first pipeline, identify the promoter sequences in the upstream regions
of the lattes genes.

Analysis of microarray experiments: Affymetrix
chip
The chips produced by Affymetrix (Thermo Fisher Scientific) are used
to estimate the level of transcripts inside a cell at a given time by
hybridizing the cDNA, obtained from the reverse transcription of the
RNA, to probes designed and synthesized ad hoc inside the chip. The
level of each transcript is estimated from a probe set of about 20
probe pairs of length equal to 25 nucleotides; where a probe pair is
composed of two probes called Perfect Match probe (PM), which has
been designed to hybridize completely to the sequence of interest, and
MisMatch probe (MM), which has been designed to bear a single-
point mutation at the center base of the 25-mer probe [163]. The
data extracted from the fluorescence image of the chip are used to
estimate the intensity of each probe and save the final data in a .CEL
file (GSM). These data represent the starting point of the analysis
here conducted to identify constant-activity genes through different
cell perturbations introduced in several experiments (GSE) made by
different research groups (upper part of Table 5.1).

A set of candidate constitutive genes from all the selected GSE
experiments has been obtained after a three-step analysis, reported as
follows:

1. Data quality analysis for all GSMs inside each GSE. The
data quality control of each chip is based on the qualitative anal-
ysis of the data distribution in each chip and on the evaluation of
two indices, called Relative Log Expression (RLE) and Normal-
ized Unscaled Standard Error (NUSE) calculated both from a
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1° pipeline: Detect constitutively expressed genes from transcriptomics data
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Figure 5.2: Overall representation of the two bioinformatics
pipeline. The first pipeline - light blue background (R environment) - has been adapted to
handle Microarray (blue) and NGS (green) data with different procedures (reported outside the
box ”common procedure”), due to the different nature of the transcriptomics data, based on a
shared rationale reported in the enumerate list on the left part of the graph. The second pipeline
- light orange background (MATLAB environment) - starts from the NDE gene list, output of
the first pipeline.
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data structure called PLMset which contains information on the
mean, standard deviation and calculated weights of gene expres-
sion in each probe set. The PLMset has been obtained through
the fitPLM function of the ‘affy’ package in R software (in-depth
explanation has been reported in [164]).

The RLE index identifies, within a chip, the contribution of the
random error due to the variation of environmental conditions
(e.g., temperature) among different chips of the same experi-
ment. It is calculated as the distribution of the differences be-
tween the expression value of each gene with the median of all
values of the same gene in all the chips of the GSE [165]. Since
no threshold value has been reported in the literature for which
a chip can be considered as low-quality, a one way ANOVA test
has been applied (α = 0.05, H0: all chip have the same mean
value) and, if the hypothesis is rejected, pairwise Tukey test has
been carried out and the chip(s) whose RLE index differs signif-
icantly from the others is selected.

The NUSE index represents the distribution of the standard de-
viations estimates of gene expressions present in a chip. In the
literature it has been shown that, in order to consider a good-
quality chip, the NUSE index must not exceed the value of 1.05
[165].

The qualitative analysis of data distribution in all chips has been
made via the non-parametric Kruskal-Wallis test (α = 0.05,
ANOVA has been not applied due to the violation of normality
or homoskedasticity assumptions) which compares the equality
of the medians of the distributions. If the null hypothesis is
rejected, a pairwise Wilcoxon signed rank test has been applied
to select the chip(s) which deviates significantly. The chips that
do not pass all three of the above criteria are discarded.
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2. Data normalization (RMA - Robust Multi-Array Avarage)
inside each GSE. Data normalization has been made through
the RMA method developed by Affymetrix which involves four
steps: (i) background correction which it derives from the con-
volution of the useful signal with signals coming from areas of
the chip without probes, (ii) log-data normalization, (iii) Quan-
tile normalization in order to correct the variability of chip data
between all chips within the experiment and (iv) data normal-
ization with respect to the probe set between different chips,
(identical probe sets of different chips are expected to be related
at most linearly). At the end of the RMA procedure, an expres-
sion value of a gene is provided as the average of the expression
of its associated probe sets [166].

3. Constitutive genes detection in one experiment (GSE).
The candidate constitutive genes have been selected via the non-
parametric Kruskal-Wallis test (α = 0.05, ANOVA has been not
applied due to the violation of normality or homoskedasticity
assumptions) based on the mean of the gene expression values
on all the GSMs samples. Genes for which the null hypothesis
(H0) is not rejected are considered as not differentially expressed.
Therefore, for each experiment (GSE) analyzed a set of genes not
differentially expressed has been isolated.

Analysis of microarray experiments: Agilent chip
The chips produced by Agilent Technologies are used to estimate the
level of transcripts between two samples (usually the same cell cul-
ture with and without a perturbation) at a given time by hybridizing
the cDNA, obtained from the reverse transcription of the RNA, to
probes designed and synthesized ad hoc inside the chip. Each set of
cDNA obtained from a cell is labeled with a fluorochrome so that the
genetic material can be distinguished between the two samples; Cy3
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(green) and Cy5 (red) markers are usually adopted. The hybridiza-
tion between marked cDNA and its relative probe in the chip releases
the colored fluorescence [167]. The data on cell transcriptomes are
acquired from fluorescence quantification of the image of the chip via
an image processing software and saved in .TAR format. For each
gene in the latter file the green-red foreground values and green-red
background values of fluorescence have been reported. These data
represent the starting point of the analysis herein conducted to iden-
tify constitutive genes through different cell perturbation conditions,
introduced in several experiments (GSE) made by different research
groups (lower part of Table 5.1).

A set of candidate constitutively expressed genes from all the GSM
samples in one GSE has been obtained after a three-step analysis,
reported as follows:

1. Background correction. The background signal has been
eliminated from the foreground signal using the backgroundCor-
rect function (option set method = ‘normexp’) implemented in R
software which assumes that the background signal has a normal
distribution and the noise-free signal an exponential distribution.
The background correction has been done independently for the
two colors [168].

2. Data normalization. Intra- and inter-sample normalizations
have been performed to purge the data of systematic effects not
associated with biological differences. (i) Intra-sample normal-
ization has been carried out using the normalizeWithinArrays
function (option set to method = ‘loess’, where loess = Locally
Estimated Scatterplot Smoothing) which considers the signal of
a gene as the contribution of several probes which in turns are af-
fected by their relative position in the chip. (ii) Inter-sample nor-
malization has been carried out using the normalizeBetweenAr-
rays function (option set to method = ‘Aquantile’) in order to
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equalize the distributions of the two signals. At the end of the
normalization process, for each gene, two values have been ob-
tained, M and A, defined in Equation (5.1) and Equation (5.2),
respectively [169].

M = log2(R)− log2(G) (5.1)

A =
log2(R) + log2(G)

2
(5.2)

where M is the fold-change of the expression values of the same
gene in the two conditions analyzed; a value of M = 0 indicates
that the gene expression is independent of the tested condition,
while A represents the mean expression of each gene.

3. Constitutive genes detection in one experiment (GSE).
The candidate constitutively expressed genes have been selected
via Wilcoxon signed rank test (α = 0.05) on the M

A
value of each

gene. Therefore, for each experiment (GSE) analyzed a set of
genes not differentially expressed has been isolated.

Analysis of NGS experiments
RNA-sequencing is a Next Generation Sequencing (NGS) technology
that, like microarray chips, allows to quantify the transcriptome of a
biological sample at a given moment in time. In this technology, the
chip manufacturing is replaced by the construction of a library of com-
plementary DNA (cDNA) that derives from the total RNA present in
the cell where the sequences thus obtained are called reads. There-
fore, unlike microarrays, a priori knowledge of the gene sequences to
be analyzed is not necessary and the signal acquired in the NGS ex-
periements needs an alignment-based reconstruction analysis on the
reference genome (FASTA format) of the organism to link them to
their genetic loci. The NGS data available in the public database
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NCBI GEO (downloadable in FASTQ format) are composed by the
sequences and their quality score for all the reads sequenced in the
experiments. For each sample (GSM) in the experiment, the data
(FASTQ format) have been downloaded with the fastq-dump function
of SRA Toolkit in the shell environment, called in turn from R soft-
ware, while the metadata (e.g., experimental conditions, Taxonomy
ID) have been retrieved with the function metadata of the python
package pysradb called from R environment as well.

1. Data processing and reads quality filtering inside each
GSM. The whole set of reads in each sample (GSM) has been
aligned on the reference genome (FASTA format) through the
align function of the Rsubread R package obtaining the BAM file
which contains all the alignment informations, such as: genome
position and the alignment quality of each reads. In order to dis-
card the reads with a quality score above a threshold limit, the
BAM file has been handled in Linux bash environment through
the view function of the Samtools suite; with a quality score of
20, only the aligned reads with a base call accuracy of 99% are
mantained. Finally, the gene expression values, called counting
value, have been obtained for each gene annotated in the ref-
erence genome (GFF format) from the BAM file through the
featureCounts function of Rsubread R package.

2. Data normalization inside each GSE. Intra-sample normal-
ization has been made through the DESeqDataSetFromMatrix
function of DESeq2 R package. The final value has been ob-
tained from a log2 transformation biased by a factor of 1 to
avoid negative values.

3. Constitutive genes detection in one experiment (GSE).
The candidate constitutive genes have been selected via the non-
parametric Kruskal-Wallis test (α = 0.05, ANOVA has been
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not applied due to the violation of normality or homoskedas-
ticity assumptions) based on the mean of the gene expression
values on all the GSEs studies. Genes for which the null hy-
pothesis (H0) is not rejected are considered as not differentially
expressed. Therefore, for each experiment (GSE) analyzed a set
of genes not differentially expressed has been isolated.

Constitutive genes detection on all GSEs of mi-
croarray and NGS data
From the lists of NDE genes isolated within each experiment (GSE),
a final list of NDE genes on all the aformentioned experiments have
been obtained. This part of the pipeline has been defined as ‘com-
mon procedure’ - light blue box in Fig. 5.2 - since it is independent
from the starting data type, differently from the procedures previously
explained.

4. Inter-experiment normalization and low-quality GSE fil-
tering. The experiments (GSEs) conducted in different labora-
tories could be affected by non-biological variability that arose
from several sources (e.g., DNA extraction quality, different buffers,
temperature, operator, different machineries) which could taint
the integration of gene expression values when compared to-
gether [170]. In order to mitigate this unsolicited variability,
a quantile - normalization on all the GSEs (fixed the technology
- microarray or NGS) has been performend and the differen-
tially expressed (DE) genes, highlighted in the previous step (3
in Fig. 5.2), were discarded. The experimets which decrease the
R2 coefficient computed among different pairwise experiments
by a factor of 50% have been discarded.

5. Standard deviation (SD) threshold to identify NDE genes
on all experiments of microarray or NGS data. The NDE
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genes on all experiments in one technology - microarray or NGS
- have been selected filtering the genes which standard deviation
values were below a threshold limit.

6. Identify NDE genes on all experiments. The final list of
NDE genes has been computed by intersecting the two lists ob-
tained in the previous step for the two technologies, microarray
and NGS.

Promoter detection pipeline based on sigma fac-
tor consensus sequence
The detection of promoter sequences inside a genomes of a target mi-
croorganisms has been performend via local alignment algorithm (lo-
calalign function of MATLAB) between the regions 300 bp upstream
of each annotated gene and the consensus sequence of the sigma fac-
tor, selected with different core-region length (the region between -35
and -10). The length of the region upstream of the genes has been set
to 300 bp as a compromise between the probability to find promoters
inside of it (it has been shown that within the 250 bp upstream of the
genes there are 89.77 % of bacterial promoters [124]) and the efficiency
of the algorithm. In fact, increasing the length of this region the prob-
ability of the algorithm to detect false positives (FP) increases (data
not shown). The score matrix of the localalign function has been mod-
ified in order to obtain a linear penalty (from 0 to 1) for uncertainty
matches: 1 - match (e.g., A-A), 0.66 - maximum uncertainty of two
nucleotides (e.g., A-R where R = [A, T]), 0.33 if maximum uncertainty
of three nucleotides (e.g., A-D, where D = [A, G, T]), 0 if uncertainty
is maximum (e.g., N, N = [A, G, T, C] ) or in case of mismatch. In
fact, in the default score matrix, the scores are excessively penalized
by the presence of mismatches, limiting the possibility of the recovery
of sub-optimal solutions. Indels (INsertions - DELetions) can be in-
serted to optimize the alignment of the algorithm. For each putative
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promoter found in the target genome, a putative TSS has been asso-
ciated by adding the value of ±8 bp to the distal position of the -10
region, depending on the directionality of the promoter. The compar-
ison with the literature data is based on TSS comparison, in fact, if
the true TSS is included inside a window of ± 4 bp on to the position
of the putative TSS then the putative promoter has been considered
as true positive (TP). The ±4 bp range derives from the evidence that
the bp-window between the -10 region and the TSS varies from 4 bp to
12 bp [124]. The test set has been limited to the TSS associated to the
promoter sequences recognized by the sigma factor used at the begin-
ning of the pipeline, here σ70 and σA. False negatives (FN) have been
considered as the promoter sequences present in the test set that were
not detected by the algorithm. Two negative controls, called NC1 and
NC2, have been used: (i) NC1 - the test set is composed by the pro-
moter sequences of the sigma factors different from the one that has
been used in the pipeline (false positives, FP - promoters found; true
negatives, TN - promoters not found), while (ii) NC2 - regions of 300
bp have been taken within the coding sequences with the assumption
that no promoters are present (false positives, FP - promoters found;
true negatives, TN - promoters not found). For NC2, the median
values obtained from 30 independent simulations were analyzed. The
performance of the algorithm has been analyzed using three figures of
merit:

accuracy =
TP + TN

TP + FP + FN + TN
(5.3)

sensitivity =
TP

TP + FN
(5.4)

specificity =
TN

TN + FP
(5.5)

Accuracy, sensitivity and specificity are the capabilities to detect a
generic istance, promoter sequences within a genetic portion where a
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promoters are present and no promoter sequences where no promoters
are present, respectively.

5.2.3 Automatic bioinformatic pipeline to estimate
RBS consensus sequence in bacteria

For each genome of the 120 reference microorganisms, the 18 bp
regions upstream of each annotated gene have been taken as follows:
15 bp upstream of the start codon and the 3 bp of the start codon.
The length was set at 18 bp as a compromise between the probabil-
ity of taking an RBS upstream of each gene and the capability of the
multiple alignment algorithm (Clustal Omega) to generate a biologi-
cally permissible output; in fact, as the length of the regions increases,
the proportion of indels (-) become much greater compared with nu-
cleotides (ATGC) - data not shown. The start codon has been kept
as a reference to guide the algorithm respect to the starting position
of the gene. A consensus sequence has been obtained for a list of
sequences by multiple alignment via Clustal Omega algorithm and a
position-dependent frequency profile of nucleotides (ATGC) or indel
(-) has been computed.

5.2.4 Design of new synthetic RBSs based on RBS
consensus sequence within one or more mi-
croorganisms of interest

New synthetic RBSs have been generated from the frequency profile
of the consensus sequence with the roulettewheel algorithm as follows:
for each base of the consensus sequence, a letter is extracted from
the set (ACGT-) proportionally to its frequency of appearance. The
sequence thus generated is purified from indels (-) and the start codon.
The procedure is repeated for the number of synthetic RBSs to be
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generated (N).

5.3 Detection of promoter sequences with

stable expression in bacterial genomes

In this section, the results obtained from the single bioinformat-
ics pipelines, illustrated in Section 5.2.2, for the research of genes in
bacterial genomes showing stable transcriptional activity in different
experimental conditions have been reported and analyzed. At the
end of this section, for the constitutively expressed genes obtained
from the transcriptomic data of E. coli and B. subtilis, the upstream
regions have been analyzed to detect the promoters sequences recog-
nized by sigma factor σ70 and σA in the two aforementioned species,
respectively.

5.3.1 Selection of constitutively expressed genes
in public datasets

The scatter plot of the mean gene expression values computed be-
tween microarray and NGS chips on all genes (E. coli - 4004, B. subtilis
- 3950) that has been reported in Fig. 5.3A shows a good correlation
score for both species infering that, even with the presence of the DE
genes, which could decrease the correlation index due to different per-
turbations on the two technologies, both alternatives - microarray and
NGS - are robust sources of transcriptomics data to be used in the
pipeline. The validation of the first pipeline has been based on the
genes for which, in the literature, have been demonstrated to be con-
stitutively expressed in different perturbations registered. Only the
genes with known promoter sequence, sigma factor and experimental
evidence code have been used for the validation process. At the end of

135



5. Expand iFFL portability through a bioinformatics approach

the first pipeline, 595 out of 4004 and 223 out of 3950 genes for E. coli
and B. subtilis, respectively, have been identified as non-differentially
expressed with a standard deviation threshold value of 0.5, but only
30 and 24 genes have been selected to validate the data based on the
aforementioned reasons. The results thus obtained have been reported
in the first three columns of Table 5.2 and Table 5.3 for the two mi-
croorganisms, where the expression of each genes is explicited in term
of mean percentile value in both technologies (Microarray (MA) and
NGS); their scatter plot and correlation index have been shown in
Fig. 5.3B. For each gene, the information of the upstream promoter(s)
has been collected as follows: the sigma factor, the possible transcrip-
tional factors (inside square brackets) and, in order to validate the
two pipelines together, the promoter sequence discovered in previous
literature studies in which the -35 and -10 regions have been high-
lighted in capital letters. The data have been collected from EcoCyc
and DBTBD databases and from the literature indicated in references.
A diagram tree which summarized the whole data reported in Table
5.2 and Table 5.3 has been represented in Fig. 5.4.

In Fig. 5.4, the transition from the ‘Genes’ to the ‘Promoters’ do-
main consider the nature (e.g., σ70) and the number of promoters found
in the upstream sequences of the previously selected stably expressed
genes. The sums between nodes of the same level are not exhaustive
since it is possible that a gene may have more than one promoter and
/ or, two genes, if in operon, may share the same promoter.

In Table 5.2, the gene with higher percentile values on both Mi-
croarray and NGS is mdoG, which has been proposed by Heng et al.
to be used as reference gene in E. coli K-12. Indeed, in the afore-
mentioned study, it has been shown that mdoG has the lowest CV
index (= 9.9%) on expression values among different transcriptomics
datasets, differently form the 6 housekeeping genes known in the liter-
ature (i.e., recA, porC, gyrA, map, rpoC, alaS ), tipically used as refer-
ence genes for experiment normalization procedure, whose CV indexes
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Microarray

N
G

S
E. coli B. subtilis

Expression 
[-]

Microarray

Percentile 
[%] N

G
S

R2=0.57 R2=0.69

R2=0.71R2=0.79

A.

B.

Figure 5.3: Scatter plot of mean expression values of all genes
and mean percentile values of the NDE genes selected from
the first pipeline on all experiments between Microarray and
NGS data in E. coli and B. subtilis. A, Scatter plots of mean expression
values of all genes (4004 for E. coli, 3950 for B. subtilis) on all experiments between Microarray
and NGS data in E. coli and B. subtilis are shown - light blue - and the R2 computed from
the linear regression model are reported in the upper left part of each graph. In dark blue are
highlighted the NDE genes (40 for E. coli, 24 for B. subtilis) selected from the first pipeline - and
selected as reference set to study since they are annotated in online databases - whose percentile
values have been reported in the graphs below (B) with the R2 values described aforementioned
as well.

were much higher (16% ∼ 53%) [171]. The pipeline detected 5 out of
6 genes within the same operon (agaS - kbaY - agaBDI ) despite the
promoter is regulated by the transcriptional factor AgaR but, since it
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30

4 21

𝜎70Other 𝜎

615

Constitutive Inducible by 
Transcriptional factor

24

718

𝜎A Other 𝜎

14 4

Constitutive Inducible by
Transcriptional factor

Genes

Promoters

E. coli B. subtilis

Figure 5.4: Overview of the genes selected as constitutively
expressed. Tree diagram that summarixes the gene / promoter counts present in Table
5.2 and Table 5.3. The number present in the ‘parent node’ refers to the number of genes
available in the online databases among the set of NDE genes selected at the end of the first
pipeline. The transition from the ‘Genes’ domain to the ‘Promoters’ domain refers to the nature
and the number of promoters found in the sequences upstream of the genes studied. The counts
are not exhaustive since it is possible that a gene can has more than one promoter and/or, two
genes, if present within an operon, can share the same promoter. The issue with operons has not
been considered in the pipeline and will be solved as future work.

becomes active only with the presence of N-acetylgalactosamine and
d-galactosamine in the medium and no E. coli experiment contains
this perturbation, is possibile to infer that the pipeline has identify
these genes as NDE correctly. The same results could be translated
for feaB gene for which, its transcriptional regulator (FeaR) is inactive
due to the lackness of its activator (succinate) variation [172]. Differ-
ently, 6 genes have been identified wrongly (i.e., chiA, caiT, ptrA-recD,
uvrA, rcsD) since the perturbations (i.e., stress, -O2) that are respon-
sible to activate the transcriptional factors H-Ns, LexA and ArcA were
present in the transcriptomics studies reported in Table 5.1. The genes
reported with sigma factor different from σ70 have been identified un-
correctly from the pipeline.
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In B. subtilis validation set, 3 (i.e., natB, spo0F, fabL) out 17 genes
regulated by the housekeeping sigma factor σA have been uncorrectly
identified as NDE since their regulation by NatR, Spo0A and RsfA are
altered by the sodium ion concentration, starvation and stress pertur-
bation, respectively, which are present in the initial transcriptomics
experimental set; differently from fur gene for which its perturbation
(i.e., peroxide stress) is not present. The gene subset composed by
mta, cssR, and rocR has been correctly identified as NDE since each
of them create a positive or negative feedback loop that regulates its
own expression upon different perturbation entities, behavior demon-
strated in several studies of network topology [60]. Nonetheless, if a
promoter sequence isolated from one of these genes would be used to
construct a synthetic expression cassette, it will be self-defeating due
to a lackness of ortogonality with the enzymatic host machinery. At
the end, the first bioinformatics pipeline detect correctly 20 (66.6 %)
and 14 (58.3 %) NDE genes in E. coli and B. subtilis, respectively.
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5. Expand iFFL portability through a bioinformatics approach

5.3.2 Performances of the promoter identification
pipeline on the literature-validated test sets

The performances of the pipeline for the detection of promoter
sequences within bacterial genomes have been computed as illustrated
at the end of Section 5.2.2 on a test set of promoters with numerosity
equal to 1700 (σ70 = 795) and 673 (σA = 368) for E. coli and B.
subtilis, respectively. Two negative controls have been used: in the
first one, the test set used has been composed by the set of promoter
sequences recognized by sigma factors different from the one selected
(e.g., σ70, σA) - NC1, while in second one, sequences of 300 bp within
genes of the microorganism have been taken randomly to search for
promoter sequences - NC2.

The values of sensitivity, specificity and accuracy obtained are (42
%, [80-98.3] %, [51.5-70.1] %) and (61 %, [72-99] %, [66.1-80.2] %)
for E. coli and B. subtilis respectively, where the specificity and ac-
curacy values were calculated with the negative control, NC1 (first
value reported in square brackets) and NC2 (second value). The sen-
sitivity has a unique value because it is independent on the TN and
FP values (determined by the negative control sets). The lower val-
ues given by the negative control NC1 compared to NC2 indicate that
the algorithm is less specific, and therefore less accurate, when tested
on the promoter sequences recognized by other sigma factors. This
is due to the fact that different sigma factors can recognize similar
sequences within the same microorganism (e.g., σ70 and σ38 of E. coli
recognize the consensus sequence TTGACA(-35)− TATAAT(-10) and
TTGACA(-35)−TATACT(-10), respectively).

Regardless of the negative control procedure, the algorithm has a
satisfactory capability to discriminate non-promoter sequences (high
specificity) and good sensitivity and accuracy values have been ob-
tained for the two microorganisms.

The pipeline performances have been computed to the previously
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5.4. RBS consensus sequence estimation and new RBSs design

identificated genes, in Section 5.3.1. From the constitutives genes se-
lected, the pipeline to detect promoter sequence has been applied.
On 21 and 18 constitutive promoters with experimental evidence, 12
(57.14%) and 12 (66.66%) promoters have been predicted correctly for
E. coli and B. subtilis, respectively.

5.4 RBS consensus sequence estimation

and new RBSs design

The consensus sequence obtained for Escherichia coli str. K-12
substr. MG1655 via multiple alignment of the 18 bp sequences up-
stream of 4357 annotated coding sequences is shown in Fig. 5.5A. The
final sequence has been obtained by removal of the gaps introduced
by Clustal Omega algorithm. In the consensus sequence shown in
Fig. 5.5A an AG-rich region has been detected upstream of the start
codon, correlated with the consensus sequence estimated in the liter-
ature (5’-AGGAGG-3’) for Escherichia coli at a distance of 6∼8 bp
upstream of the start codon [130]. This procedure has been repeated
for all 120 reference microorganisms thus producing 120 consensus
sequences (not reported here) which can be used to design 5’-UTR
sequences (therefore containing RBS) in the microorganisms studied
without any prior knowledge about the their translation control mech-
anism (e.g. anti-SD, optimal spacing between RBS and start codon,
etc.). To support the design of RBS sequences that could work in
several different organisms, two approaches can be followed: perform
a multiple alignment starting from all the sequences upstream of the
genes of all the reference microorganisms, or perform the multiple
alignment of the consensus sequence previously computed for each mi-
croorganism indipendently. Since the first approach requires a large
amount of computational time and preliminary results based on ≈
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5. Expand iFFL portability through a bioinformatics approach

A. B.

Figure 5.5: Consensus sequence estimation through Clustal
Omega multiple alignment. A. Estimation of the Escherichia coli consensus
sequence from 4357 18bp-region upstream of annotated genes B. Twelve previously estimated
(example in figure for E. coli - green box) consensus sequences of therapeutic-notable probiotics
have been aligned to obtain a new synthetic consensus sequence.

10 microorganisms produces an output sequence with indels (-) only,
the second approach has been chosen. The analysis has been carried
out on 12 bacteria known for their beneficial properties as probiotics
which have been chosen on the basis of scientific interest for their use
in the therapeutic field; the results have been reported in Fig. 5.5B.
The sequence profile thus obtained has been used to generate new
RBS sequences (reported in Table 5.4) that can be used to create new
expression systems of translation in the selected bacterial species.
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5.5. Discussion

Table 5.4: New synthetic RBS sequences obtained from con-
sensus sequence profile obtained for the twelve probiotics
selected.

Consensus sequence
AAGGGGGAAAAAAT

AGGAGGAAGGAAAT AAGAAAGAAATCTT
AGGAGAGAAAACAT AAGAAGACAATAAT
AAAGAGGAAAAAAT AGGAAGGAAAAATT
AGGAGGGAAGACAT AGGGAGGAAAACAT
AAGAAGGGGAAAAA AGGGGAACAAAAAT
AAAAGGAACAAAAT AAGGGAAAAATAAG
AAAAGGGGAAAAAT AAAAGAGAAAAAAT
AAGAGGGGCAACAT AGGAAGGAGAAAAT
AAAAAGGGAAGTAT AAGGGAAGGAAAAT
AAAAGGGAGAACAG AGAAAGGAAAAAAT
AAGAAGGCAGACAT AAGAGGGAAAAAAT
AAAGAGGGGAAAAT AGAGGGAAGTCAAT
AAAGAAGGAAAACT AGAAGGGAAGTAAT
AGAGGGAAGAACAT AGGAAGGAAAAATA
AAAAGAACAAAAAT AAAGAAGGAAACTA

5.5 Discussion

The incresingly demand of expanding the libraries of regulatory
parts (e.g., promoters and RBS) for non-model microorganisms mo-
tivated the development of novel strategies based on bioinformatics
approaches for their in silico prediction as an alternative to the high-
cost and time-consuming in vivo search and characterization.

In this chapter, two new bioinformatics pipelines have been devel-
oped with the aim to: detect constitutive endogenous promoters in mi-
croorganisms with annotated genomes based on transcriptomics data
in different experimental conditions (172 and 96 samples for E. coli
and B. subtilis have been collected, respectively, to test the pipeline),
and to design new RBS sequences from the knowledge acquired on the
consensus sequences computed via multiple alignment algorithm of the
18bp regions upstream each genes, via a process that does not need
prior knowledge of the translation mechanism within the considered
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5. Expand iFFL portability through a bioinformatics approach

microorganism.
The two procedures adopted for promoter sequence detection and

for selection of constitutively expressed genes, which compose the
first mentioned pipeline, have been tested and the results compared
with genomics data (dataset of promoters obtained from the EcoCyc
and DBTBS databases) and scientific literature articles on the two
model microorganisms. The performances reached show a promis-
ing prediction capability (accuracy of promoters detection in genome
= [51.5∼70.1, 66.1∼80.2]%, percentage of putative constitutive genes
founded = [40, 85.71]% where ‘,’ separate the two bacterial species,
‘∼’ the values obtained from the two negative controls NC1 and NC2),
furthermore the accuracy of the whole pipeline reached 57.14% (E.
coli) and 66.66% (B.subtilis) values. Even if the latter values are
high enought to guarantee a good stable and constitutive promoter
detection, further optimization steps are needed to achieve better re-
sults. Indeed, the optimization to increase the generalization power of
this bioinformatics pipeline is in progress. In particular, the process
of automatic reading of data from DNA-microarray chips of different
manufacturers is still on-going with the aim to increase the experimen-
tal data collected throughout multiple perturbations and thus increase
the pipeline accuracy: 3612 total GSEs (306 have been used in this
study) are present in the GEO NCBI database (filtering by Organism
- ‘Bacteria’ and Study type - ‘Expression profiling by array’) cover-
ing 1315 unique GPLs (2 have been analyzed in this study) out of
972 unique microorganisms (526 for NGS) in order to discover good
promoter candidates for non-model microorganisms as well. Afore-
mentioned GSE and GPL counts reported are updated to July 2020.
Actually, a new pipeline is under development which take into accounts
the Transcription Start Sites (TSSs) prediction of the promoter from
the NGS data, in fact, the single-base resolution of this technology
[207] (gene-resolution for DNA-microarray technology) allows to esti-
mate the TSSs of the promoters thus estimating with greater accuracy
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5.5. Discussion

their sequences (generally the promoter relies on the -35 bp upstream
its TSS - in this study a 300 bp region has been considered to detect
promoter sequences), overcoming also the limitation of the knowledge
of consensus sequences recognized by sigma factor, generally not avail-
able for non-model microorganisms. In parallel, a new branch of the
project will be open in order to use the part of information that has
been discarded in the first part of this study: the subset of DE genes.
In fact, from the latter is possible to infering the DNA operator sites
linked to a particular perturbation; usefull in the synthetic circuit
design step in order to increase the circuit orthogonality from the en-
zymatic host machinery. A new approach to design synthetic RBSs
within one or more selected microorganisms based on their genomic
information has been illustrated. The fully automatic procedure and
the lacks of assumptions on the translation regulatory mechanisms in-
crease the scalability and portabilty of the pipeline to more bacterial
species. The synthetic RBS sequences obtained in Section 5.4 will
be synthesized and tested in laboratory in order to engineer a set of
bacteria of interest via ad hoc expression vectors. The experimental
work will allows an appropriate validation of the developed pipeline.
Taken together, the illustrated results and the numerosity of available
public datasets pave the way to an expanded bioinformatics workflow
to increase the toolkit of regulatory parts in non-model organisms and
to design novel regulatory parts that could work in different hosts
with high probability, without any prior knowledge on host regulation
mechanisms.
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Chapter 6
Overall conclusions

The low portability of synthetic circuits characterized in model
microorganisms (e.g., Escherichia coli, Bacillus subtilis) has limited
the applicative potential of synthetic biology in many sectors, such
as, for example, agricultural, cosmetic, therapeutical, biofuel, opening
up the need of designing a gene expression control system that can
function in a stable, robust and predictable way in any chassis. In
this work, two new control architectures, called Sad-iFFL and U-iFFL
whose functionality rely in a novel repressor system based on Staphy-
lococcus aureus dCas9 (SadCas9), have been developed to mitigate
the sources of variability that affect a genetic circuit in the context
of different bacterial species, in terms of the variation of transcription
rate, translation rate and gene copy number. The bottom-up design of
the circuits has been supported by in silico analyses of ad hoc defined
mathematical models, whose accuracy is fundamental to support the
design of complex synthetic circuits like those developed in this study.

Chapter 2 has been entirely dedicated to illustrate different mod-
elling tools for synthetic circuits. Eight different mathematical models
have been developed, focusing on the Lux-circuitry as a case study, to
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6. Overall conclusions

show the impact of different model assumptions and deviations from
the traditional Hill function models. In particular, regulatory protein
abundance, ligand binding, and resource usage were made and the re-
sulting models were compared to analyze the effects on the transfer
function of the circuits.

Although it is hard to select a single model as the best tool to
describe synthetic circuits, it has been shown that in some cases dif-
ferent assumptions lead to input-output characteristics that signifi-
cantly deviate from traditional Hill function models and such effects
may be important for proper description of synthetic circuit behavior,
inference on biological phenomena and prediction of unseen circuits.
Importantly, considering the one-step LuxR-PLux regulatory network,
all the considered models have been shown to be identifiable, paving
the way to an expanded toolkit of computational methods for circuit
analyses. In specific, the simulations carried out on the case study
circuit showed that all the relevant parameters of a Hill function may
change depending on the underlying assumptions. The selection of
the best model will have to be done depending on the experimental
situation of interest and some of them have been adopted in the main
work of this thesis.

The first designed circuit, Sad-iFFL, relies on the incoherent feed-
forward-loop motif enabled by the SadCas9 repressor enzyme. The
mathematical treatment has been fundamental to characterize the
transfer function of the new SadCas9 repressor, never done in liter-
ature so far, to understand the working constraints of the Sad-iFFL
circuit and to simulate its steady-state and dynamic characteristics,
which were compared with an expression cassette circuit without con-
trol, called Open loop. It has been demonstrated that the robustness
performances of Sad-iFFL are strongly dependent on the theoretical
set-point value KCG (an increase of the latter leads to raise the Sad-
Cas9 biological demand to work as a repressor) in agreement with the
data collected in vivo, for which the Sad-iFFL circuit fails to regulate
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the expression of the target gene low transcriptional activities by the
input promoter (PLux), used to drive the circuit over a range of expres-
sion values, and the lower bound for HSL concentration was ≈ 1 nM.
The in vivo results showed consistency with model simulations in terms
of expression-dependent behavior and robustness against transcription
variation. In addition, by testing five different ribosome binding sites
(RBSs) upstream of the SadCas9 and GOI genes, it was possible to
confirm circuit robustness in different translation rate contexts. In
this case, the steady-state values were different across the used RBSs,
since the translation initiation rates (TIRs) of the two genes were dif-
ferent (despite identical RBSs were used for SadCas9 and GOI), and
the quantitative output values measured for the Sad-iFFL circuit vari-
ants were highly correlated with the expected ratio between SadCas9
and GOI, thereby demonstrating the predictability of the designed
architectures.

Despite robust and predictable features have been demonstrated in
silico and in vivo for Sad-iFFL, the perfect adaptation of the target
gene has not been achieved for a range of transcriptional activities due
to model hypothesis violation. For this reason, a novel architecture,
called U-iFFL, has been developed in which a new network motif (pos-
itive autoregulation) was added to the incoherent feedforward-loop to
implement a more robust circuitry. The transcriptional machinery
taken from the phage domain (RNAPT7-PT7) has been used for posi-
tive autoregulation and has been inserted to drive all the genes within
the circuit, to increase the probability of guaranteering overabundance
hypotheses of the circuit actuators. The model-simulated steady-state
comparisons between Sad-iFFL and U-iFFL showed that the new ar-
chitecture is more robust to transcription and translation rate varia-
tion in a wide range of theoretical set point values (KCG). Further-
more, it has been demontrated that Sad-iFFL and U-iFFL have theo-
retically similar noise propagation properties, for both yielding lower
cell-to-cell variability than the Open loop circuitry. The dynamic anal-
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ysis demonstrates the importance of the genetic ’on-memory’ device
achieved from the positive autoregulation loop that overcomes the is-
sue of selecting the right promoter sequence in new bacterial hosts.
The positive autoregulation module composed by the transcriptional
activation system of phage T7 has been optimized and successfully
characterized in vivo, validating its suitability for U-iFFL in meeting
the overabundances hypothesis of the mathematical model.

The promising results achieved by Sad-iFFL and U-iFFL rely on
the availability of regulatory parts (e.g., promoter, RBS) that drive
the genes inside the circuits in all the target hosts. Such regulatory
parts do not need to have a specific quantitative activity (since the
circuits are expected to adjust the output by design), but it is impor-
tant that they are functional and are sufficient to express the circuit
proteins at a minimum level, which is especially limiting and crucial
the for Sad-iFFL circuit. To support the rational choice of promot-
ers and RBSs, thereby increasing the probability to get a functional
circuit, two bioinformatic pipelines based on publicly available high-
throughput transcriptomic and genomic data have been developed. In
particular, these methods are expected to: (i) enrich the library of
regulatory parts in bacteria, thus expanding the range of strenghts
available for promoters and RBSs, and (ii) increase the portability
of genetic circuits in different non-model microorganisms. The first
pipeline, adopted for promoter sequence and strength identification
from high-throughput transcriptomics microarray and NGS data se-
lected a set of genes among which ≈ 57.14% and 66.66% are known
constitutive promoters, considering two case studies (Escherichia coli,
Bacillus subtilis, respectively). Although the pipeline efficiency is suf-
ficient to help the discovery of new promoter sequences for the afore-
mentioned scenario, further optimization steps are needed to achieve
better results. The optimization of the pipeline is in progress in order
to expand the availability of microarray data through the optimiza-
tion of the data retrieval algorithm on different chip manufacturers,
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thus including more trascriptomics data on different perturbation con-
ditions on several microorganisms. Furthermore, a new procedure on
NGS data is under development in order to increase the accuracy of
promoter sequence identification by Transcription Start Site (TSS) es-
timation, possible with NGS data due to their single base resolution.
The second pipeline, for identification of RBS consensus sequence in
one or more microorganisms, has been provided a new tool to gener-
ate new synthetic RBSs that can ben used to create new expression
system of translation in the target bacteria, without any knowledge
about their translation control mechanism (e.g., anti-SD, optimal spac-
ing between RBS and start codon, etc.). Several synthetic RBSs have
been designed and will be de novo synthesized and tested in the probi-
otic organisms considered thus validating the here illustrated pipeline.
Taken together, the developed pipelines are expected to support the
design of new synthetic parts for non-model bacteria and increase the
probability to get functional iFFL circuit architectures, using public
data without any prior knowledge on the specific expression machinery
of the hosts.

In conclusion, the work of this thesis aimed to increase the porta-
bility of new genetic circuit designs in non-model bacteria ensuring
their predictability, stability and robustness through the contribution
of different approaches, such as: automatic control, bioinformatics,
mathematical analyses of dynamic systems and protein engineering.
The results of the interconnection of all these disciplines can be sum-
marized in the performances reached for the circuit models, here de-
veloped, Sad-iFFL and U-iFFL. In particular, the promising in silico
behavior, the in vivo functioning of the new repression system based
on the SadCas9 enzyme and the efficiency of the new optimized tran-
scriptional activation system using RNAPT7-PT7 lays the foundations
to the use of control circuits capable of adapting to different hosts,
thereby expanding the potential of synthetic biology applications.
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Appendix A
Supplementary Information for Chapter 2

A.1 Model parametrization

Models were parametrized using plausible values, according to avail-
able biological knowledge (e.g., DNA/protein concentrations) and pre-
viously published experimental data (e.g., PLux activation curve, re-
source usage [84, 88]). A summary of parameters is provided in Table
A.1 for each model used in this work. When indicated, structural
parameters were fixed to the reported values in simulations and they
were assumed to be unknown during parameter estimation tasks (e.g.,
when studying a posteriori identifiability). E. coli cell volume was
assumed to be 1µm3 , corresponding to 10−15 L. Under this assump-
tion, the concentration of one molecule of promoter DNA or protein
corresponds to 1.66 nM [208]. A variation of the average E. coli cell
volume has been previously reported in the range 0.5− 2µm3 for dif-
ferent growth rates and conditions [208]. This variation is expected to
affect the absolute values but not the trends of the numerical simula-
tions shown of this work, thereby not affecting the drawn conclusions.
Nonetheless, the variation of cell volume will be highly relevant in the
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analysis of real data, in which model parameters have to be estimated
based on the knowledge of this value.

Table A.1: Model parameters. The indicated values were used for simulation
and, unless differently indicated, for the study of a posteriori identifiability. aDuring the study
of a posteriori identifiability, n2 was expressed as AU with known value, while rT was expressed
as nM/AU with unknown value; bWhen indicated, a range of copy number values was spanned;
cTypical value of E. coli growth rate, which is used as the rate of intracellular protein dilution;
dA value of 2 was used to simulate the presence of external load where indicated.

Parameter Units Models Value

PU nM All 1.66
rT nMa All 1.66
n1 − All 5b

n2 −a All 301b

γX min−1 All 0.01c

σ min−1 All 0.0167

k̂m0 AUnM−1min−1 All 0.0192

k̂mL AUnM−1min−1 All 1.907

K1 nM−1
M1, M1L, M2, M2L 0.001

M1T, M1TL, M2T, M2TL 0.0055
K3 nM−1 M1, M1L, M2, M2L 0.2
K4 nM−1 M1L, M2L, M1TL, M2TL 0.001375
K5 nM−1 M1L, M2L, M1TL, M2TL 0.2
JRFP minAU−1 M1L, M2L, M1TL, M2TL 0.04

E − M1L, M2L, M1TL, M2TL 0d

As mentioned in Section 2.2.3, to enable the application of the
models in popular situations occurring in synthetic biology (i.e., model
identification with the data routinely measured in fluorescent reporter
protein-based assays) promoter copy number (n1) was assumed to be
available; on the other hand, the actual LuxR protein concentration
(dependent from luxR DNA copy number, transcription rate, transla-
tion rate, dimerization, and mRNA/protein degradation) is harder to
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measure. While in simulation the R2T quantity was spanned to explore
the effects of having wide ranges of LuxR values, its value was assumed
to be unavailable during model identification. Nonetheless, the rela-
tive strength of the promoter expressing the luxR gene is commonly
known, thereby enabling to approximate the relative level of LuxR.
For model amenability reasons, in estimation steps we parametrized
n2 as the (known) relative strength of this promoter (in AU) and rT
as the (unknown) scale factor between protein concentration (in nM)
and AU, in which all the biologically occurring processes, described
above, are lumped without any loss of generality and maintaining the
mechanistic nature of the model. In M1, the rT quantity always ap-
pears multiplied by K3 (Equation (2.23)) and, for this reason, only

their product is identifiable. By defining K̂3 = K3 · rT (in AU−1), the
M1 model can be re-parametrized as Equation (A.1)

y = n1 · PU · k̂m0 +
n1 · PU · (k̂m0 + k̂mL)/(1 + 1/(K̂3 · n2))

1 + 1/(K1 · (1 + K̂3 · n2) · L)
(A.1)

Analogously, the K5 · rT product in M1T (Equation (2.37)) can

be re-parametrized as K̂5 = K5 · RT (in AU−1), thereby yielding the
model in Equation (A.2)

y = n1·PU ·
k̂m0 + (k̂m0 ·K1) · L+ (k̂m0 ·K2

1/4 + k̂mL ·K2
1/4 · K̂5 · n2) · L2

1 +K1 · L+ (K : 12/4 +K2
1/4 · K̂5 · n2) · L2

(A.2)

A.2 A priori identifiability

Given a circuit output expression with known form (e.g., a Michaelis
–Menten or a rational function) with specific coefficients that could be
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estimated from data, an expression for each parameter of the model
was found as a function of the theoretically known coefficients. If the
system can be solved uniquely, the model was considered as struc-
turally (or a priori) identifiable.

A.3 A posteriori identifiability

Given a model, simulated data were generated and parameters were
estimated. Different experiments were simulated varying n2 as re-
quired, while the other structural parameters were kept constant to the
values in Table A.1, unless differently indicated. Proportional Gaus-
sian random noise was added to the simulated data with a coefficient
of variation (CV) of 5% as default value; other values were also evalu-
ated (0, 1, 2.5, and 110%). A limited number of data points (12) was
assumed to be available, resembling a realistic dose–response experi-
mental setup. Parameter estimation was performed via least squares
method with the MATLAB R2017b (MathWorks, Natick, MA, USA)
lsqnonlin routine. If the estimated parameters are consistent with the
ones used to generate the data, the model is considered as practically
(or a posteriori) identifiable. For each proportional error entity, 200
simulation and estimation steps were carried out, thereby identifying
the model using different synthetic data with random noise. Relative
estimation error (REE = 100 · |pest− ptrue|/ptrue), where pest and ptrue
are the estimated and true parameter values, respectively) was used to
express parameter consistency. Uncertainty of parameter estimates, in
terms of CV, was also computed as reported previously [208]. For each
run, the maximum REE and CV among all the estimated parameters
was considered.
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A.4 Simulations

The MATLAB roots function was used to find P and R2 as polyno-
mial roots to solve the M2, M2T, and M2L model equations. Implicit
equations, commonly occurring in models including cell load terms,
were solved using the fixed-point method, as previously described [84].

A.5 Analysis of activation curves

Hill function parameters, described in Equation (2.5), were cal-
culated for each activation curve: δ and α were computed as the y
values at lowest and highest L value, respectively; κ was computed
as the value of L corresponding to half-maximum activation; η was
computed according to Equation (A.3).

η =
log(81)

log(L90/L10)
(A.3)

where L90 and L10 are the L values corresponding to 90% and
10% of the maximum value of y. On the other hand, in vivo mea-
sured activation curves were fitted with Equation (2.5) to estimate its
parameters, as described in Section 2.2.4.

A.6 In vivo experiments

Circuit output, i.e., RFP synthesis rate per cell (Scell) at steady-
state, was measured for recombinant MG1655-Z1 strain [88] bear-
ing the low-copy plasmid pSB4C5 with X3r as insert [84]. In this
construct, previously described in [84] and with sequence available
as BBa J107032 code in the Registry of Standard Biological Parts
(http://parts.igem.org), luxR is under the control of an anhydrotetra-
cycline (ATc) inducible promoter, which works as gene expression knob
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in Escherichia coli strains overexpressing TetR, like the one used in
this study. The detailed experimental protocol for Scell measurement
was previously described [84]. Briefly, 0.5 ml of M9 medium (11.28
g/L M9 salts, 1 mM thiamine hydrochloride, 2 mM MgSO4, 0.1 mM
CaCl2, 0.2% casamino acids and 0.4% glycerol) were inoculated with
a colony from a freshly streaked LB agar plate in a 2-ml tube and the
culture was incubated at 37◦C, 220 rpm for at least 16 h. The grown
culture was 100-fold diluted in 200 µL of M9 in a 96-well microplate.
ATc and HSL (2 µL) were added to the microplate wells to reach the
desired concentrations. The microplate was incubated at 37◦C in the
Infinite F200 (Tecan) microplate reader and an automatic measure-
ment procedure was programmed via the i-control software v.2.0.10
(Tecan, Switzerland): shaking (15 s, 3-mm amplitude), wait (5 s), op-
tical density (600 nm) acquisition, red fluorescence (excitation: 535
nm, emission: 620 nm, gain = 50) acquisition, sampling time = 5
min. Raw data time series were background-subtracted using ster-
ile medium (absorbance) and a non-fluorescent culture (fluorescence),
incubated in the same experiment. The resulting data were used to
compute Scell as the numeric time derivative of fluorescence, divided
by absorbance over time. Scell was averaged in the exponential growth
phase, typically occurring at absorbance values between 0.05 and 0.18
[209]. Finally, the average Scell values of the X3r strains at the desired
inductions were normalized by the Scell value of a reference culture
(MG1655-Z1 bearing the BBa J107029 constitutive RFP expression
cassette in the pSB4C5 plasmid) as internal control to obtain Scell in
standardized relative units.
The resulting dose-response curves were fitted using the MATLAB
lsqnonlin routine to estimate Hill function parameters. For each HSL
and ATc condition, at least three independent experiments were car-
ried out.
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Appendix B
Supplementary information: Open loop

model as control for iFFL-based

controllers

In this appendix the Open loop genetic circuit that has been used
in this study as a term of comparison for the synthetic circuit archi-
tectures, Sad-iFFL and U-iFFL, is reported. It is based on the un-
regulated expression of a gene of interest (GOI). The biological circuit
description and the mathematical model equations are reported in the
following Sections, while the in vivo circuits realizations are listed in
Table 3.2, represented with an OL-suffix at the end of the construct
name.

B.1 Circuit Description

The genetic circuit includes no feedback control, and it is composed
of a single DNA expression cassette for a gene of interest (GOI) under
the control of a constitutive (or inducible) promoter. The main ex-
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GOI

GOI

GOI

mG

𝛼G

𝜌G

G

GOI Gmat

𝜽GOnly for 
fluorochrome 
proteins

Figure B.1: Open loop (OL) biological model.Visual representation of
gene expression. The curved arrow, the circles and the T-shaped lines are respective the promoter,
RBS and terminator parts. The horizontal line inside square blakets represents the DNA while
the wavy one the mRNA. The production rates are represented with monodirectional arrows (e.g.,
transcription rate αG, translation rate δG, maturation rate θG). The biological scheme lacks of
the degradation constants (e.g., mRNA degradarion rate, protein degradation rate), which are
considered in the associated mathematical model in Section B.1), due to graphical reasons.

pression processes occurring in this circuit are summarized in Fig. B.1:
transcription αG (regulated by the promoter) and translation ρG (reg-
ulated by the RBS) and, if the protein is a fluorophore (e.g., Red Fluo-
rescent Protein - RFP), protein maturation θG. This circuit represents
a control configuration that is expected to provide different protein ex-
pression levels as a function of promoter, RBS, plasmid copy number
and host strain.
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B.2 Mathematical model

In Equation (B.1) the ordinary differential equation describing the
time-dependent evolution of a generic protein G is reported, while in
Equation (B.2) the same equation has been represented but for the
case which G is a fluorophore and, therefore, its maturation step has
been also modeled.

dG

dt
=
n · αG · ρG
(dmG + µ)

− (dG + µ) ·G (B.1)

dGmat

dt
= θG ·

n · αG · ρG
(dmG + µ) · (dG + θG + µ)

− (dG + µ) ·G (B.2)

In Equations (B.1) - (B.2), n, αG, ρG are the copy number [nM ],
transcriptional rate [time−1] and translation rate [time−1], respec-
tively, while dmG, dG and µ are the mRNA degradation rate [time−1]
for the mG transcript, protein degradation rate [time−1] for protein
G and the diluition rate [time−1] due to cell division. In Equation
(B.2), θG [time−1] is the maturation rate from G to its mature form,
Gmat. The Equations (B.1) represent the ordinary differential equation
(ode) used to study the dynamic behavior of the Open loop circuit in
silico and its performances has been compared with the Sad-iFFL and
U-iFFL circuits in Section 3.3.4 and Section 4.2.3.

The steady−state representation of the model has been obtained
by evaluating Equation (B.1) and Equation (B.2) at their equilibrium,
i.e. for dG/dt = 0, and, considering the protein degradation rate
negligible compared with cell diluition rate µ >> dG and the latter
negligible compared with the mRNA degradation rate, dmG >> µ.

GSS =
n · αG · ρG
dmG · µ

(B.3)
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GSS
mat =

θG
(θG + µ) · µ

· n · αG · ρG
dmG

(B.4)

Equation (B.3) has been used to evaluate the robustness of Open loop
model on parameter variations and to analyze the propagation of bio-
logical noise on α and ρ parameters in Section 3.3.4 and Scetion 4.2.3.
Equation (B.3) has been used to describe mature RFP formation in the
mathematical model used for the in silico SadCas9 characterization in
Section D.2.
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Appendix C
Supplementary information: wet lab

protocols and data analysis

C.1 Materials and reagents

C.1.1 Inducers

Inducers are small molecules that regulate gene expression in two
ways: repressing or activating the transcriptional activity of the pro-
moter upstream the target gene. In this study two inducer molecules,
HSL and IPTG, have been used that indirectly activate the Lux- and
Lac-circuitries, respectively.

• N-(3-oxohexanoyl)-L-homoserine lactone (HSL): the bind-
ing between HSL molecule and LuxR protein forms a complex re-
sponsible for the activation of the transcriptional activity of PLux
promoter. The HSL molecule has been purchased from Sigma
Aldrich (K3007), dissolved in deionized water at final concentra-
tion of 200mM and conserved at -20◦C. The small size of this
molecole allows to freely permeate through bacterial membrane.
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• Isopropyl β-D-thiogalactopyranoside (IPTG): the binding
between the IPTG molecule and the LacI protein inactivates
LacI, which is not able to bind DNA anymore. IPTG molecule
has been bought from Sigma Aldrich (I1284) in a ready made so-
lution at a concentration of 2mM and conserved at -20◦C. IPTG
molecule is a synthetic, structural analogue, of allolactose (also
inducing the of Lac-circuitry) which, differently from the latter,
is not metabolized thus providing a constant concentration of
IPTG within the cell.

C.1.2 Antibiotics

Antibiotics are molecules with antimicrobial properties which are
used in synthetic biology to select a bacterial population bearing a
plasmid which the resistance gene is encoded, in order to selectively kill
all the non-engineered bacteria. In this study, high-, medium- and low-
copy plasmids have the ampicillin, kanamycin and chloramphenicol
resistance, respectively:

• Chloramphenicol (Cm): molecule that inhibits the protein
synthesis, blocking the translation process of mRNAs. Chlo-
ramphenicol has been used as a marker for the selection of bac-
teria bearing the low-copy number plasmid vector pSB4C5. This
molecule is conserved at -20◦C at a concentration of 34mg/ml;
the working concentration is 12.5µg/ml.

• Kanamycin (Kan): molecule that inhibits the protein sythe-
sis. Kanamycin has been used as a marker for the selection
of bacteria bearing the medium-copy number plasmid vector
pSB3K3. This molecule is conserved at -20◦C in a concentra-
tion of 50mg/ml; the working concentration is 25µg/ml.

• Ampicillin (Amp): molecule that prevents the formation of
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plasma membrane of new forming bacteria. Ampicillin has been
used as a marker for the selection of bacteria bearing the high-
copy number plasmid vector pSB1A2. This molecule is conserved
at -20◦C at a concentration of 100mg/ml; the working concen-
tration is 100µg/ml.

C.2 Cloning

The E. coli TOP10 strain (Invitrogen) has been used for the in
vivo amplification of plasmids. TOP10 was transformed by heat-shock
according manufacturer’s instructions and transformed bacteria were
grown in L-broth (LB: sodium chloride 10 g/l, tryptone 10 g/l, yeast
extract 5g/l) at 37◦C. Glycerol stocks have been prepared with 750 µl
of saturated culture with proper antibiotics and 250 µl of glycerol 80%,
and stored at -80◦C. All the circuits used in this study were assem-
bled from existing plasmids avaliable in the MIT Registry of Standard
Biological Parts (reported in Table C.1) according to the BioBrickTM

Standard Assembly procedure or from standardized parts taken from
another plasmid (sadcas9 - Section C.4.1) or bacterial genome (rnapt7
- Section C.4.2) and a number of standard molecular biology methods:
plasmids were extracted from saturated 5 ml cultures (grown in LB at
37◦C, 220rpm) through the NucleoSpin Plasmid kit (Macherey-Nagel);
DNA was digested as appropriate, with the EcoRI/XbaI/SpeI/PstI en-
zymes, and the fragments of interest were extracted from 1% agarose
gel by NucleoSpin PCR cleanup and gel extraction kit (Macherey-
Nagel) before proceeding with ligation. As a result, each part used
in this work is compliant to the BioBrickTM Standard. Consequently,
every junction between assembled parts has the TACTAG sequence
if the downstream part is a coding sequence (only exception for syn-
thetic the new RBSs designed in this work and reported in Section
C.6), otherwise the sequence is TACTAGAG. All the DNA-modifying
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enzymes were purchased from Thermo Fisher Scientific. The DNA
of all the constructed parts was screened via diagnostic restriction
digest/electrophoresis, and was sequence-verified via the Eurofins Ge-
nomics Germany GmbH DNA analysis service (Ebersberg, Germany).
All single-plasmid construct that have been obtained in this study are
reported in Table C.2.

Table C.2: Synthetic constructs obtained in this study. For
each single-plasmid synthetic constructs is reported the description of the single parts used to
assemble it is reported. The description of the final circuits is outlined.

Name Construct Purpose

SadCas9 new part

Dead-endonuclease Cas9 from S.
aureus mutagenized to allow
BioBrickTM assembly taken from
Addgene plasmid #113718.

sgRNA new part

single-guide RNA with termina-
tor (taken from Addgene plas-
mid #44251) designed for Sad-
Cas9 compatibility.

AE-3A31SadCas9
AE-3A + BBa B0031 +
SadCas9 + BBa B0015 +
pSB4C5

LuxR-Inducible SadCas9 expres-
sion under B0031 RBS

AE-3A32SadCas9
AE-3A + BBa B0031 +
SadCas9 + BBa B0015 +
pSB4C5

LuxR-Inducible SadCas9 expres-
sion under B0032 RBS

AE-3A34SadCas9
AE-3A + BBa B0034 +
SadCas9 + BBa B0015 +
pSB4C5

LuxR-Inducible SadCas9 expres-
sion under B0034 RBS

AE-3ACU1SadCas9
AE-3A + CU1 + SadCas9 +
BBa B0015 + pSB4C5

LuxR-Inducible SadCas9 expres-
sion under CU1 RBS

AE-3ACU2SadCas9
AE-3A + CU2 + SadCas9 +
BBa B0015 + pSB4C5

LuxR-Inducible SadCas9 expres-
sion under CU2 RBS

AE-3ACA1SadCas9
AE-3A + CA1 + SadCas9 +
BBa B0015 + pSB4C5

LuxR-Inducible SadCas9 expres-
sion under CA1 RBS

Plac sgRNA
J119SCTarget34RFP

BBa R0011 + sgRNA +
BBa J23119 + SCTarget +
BBa B0034 + BBa E1010 +
BBa 0015 + pSB3K3

LacI-inducible sgRNA expression
and constitutive RFP cassette ex-
pression bearing the target region
for SadCas9 repression

Plac sgRNA
J119SCTarget31RFP

BBa R0011 + sgRNA +
BBa J23119 + SCTarget +
BBa B0031 + BBa E1010 +
BBa 0015 + pSB3K3

LacI-inducible sgRNA expression
and constitutive RFP expression
cassette bearing the target region
for SadCas9 repression

Continues on next page...
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Table C.2 – ...continued from previous page
Name Construct Purpose

Plac sgRNA
J118SCTarget34RFP

BBa R0011 + sgRNA +
BBa J23118 + SCTarget +
BBa B0034 + BBa E1010 +
BBa B0015 + pSB3K3

LacI-inducible sgRNA expression
and constitutive RFP cassette ex-
pression bearing the target region
for SadCas9 repression

PLuxSCTarget31RFP
BBa R0062 + SCTarget +
BBa B0031 + BBa E1010 +
BBa B0015 + pSB3K3

LuxR-inducible RFP expression
cassette under B0031 RBS bear-
ing the target region for SadCas9
repression

PLuxSCTarget32RFP
BBa R0062 + SCTarget +
BBa B0032 + BBa E1010 +
BBa B0015 + pSB3K3

LuxR-inducible RFP expression
cassette under B0032 RBS bear-
ing the target region for SadCas9
repression

PLuxSCTarget34RFP
BBa R0062 + SCTarget +
BBa B0034 + BBa E1010 +
BBa B0015 + pSB3K3

LuxR-inducible RFP expression
cassette under B0034 RBS bear-
ing the target region for SadCas9
repression

PLuxSCTargetCU1RFP
BBa R0062 + SCTarget
+ CU1 + BBa E1010 +
BBa B0015 + pSB3K3

LuxR-inducible RFP expression
cassette under CU1 RBS bearing
the target region for SadCas9 re-
pression

PLuxSCTargetCU2RFP
BBa R0062 + SCTarget
+ CU2 + BBa E1010 +
BBa B0015 + pSB3K3

LuxR-inducible RFP expression
cassette under CU2 RBS bearing
the target region for SadCas9 re-
pression

PLuxSCTargetCA1RFP
BBa R0062 + SCTarget
+ CA1 + BBa E1010 +
BBa B0015 + pSB3K3

LuxR-inducible RFP expression
cassette under CA1 RBS bearing
the target region for SadCas9 re-
pression

J119sgRNA
BBa J23119 + sgRNA +
pSB1A2

Constitutive expression of sgRNA
cassette under J119 promoter

AE-3A31T7(R632S)
AE-3A + BBa B0031
+ RNAPT7(R632S) +
BBa B0015 + pSB4C5

LuxR-Inducible RNAPT7 expres-
sion under B0031 RBS

AE-3A32T7(R632S)
AE-3A + BBa B0032
+ RNAPT7(R632S) +
BBa B0015 + pSB4C5

LuxR-Inducible RNAPT7 expres-
sion under B0031 RBS

AE-3A34T7(R632S)
AE-3A + BBa B0034
+ RNAPT7(R632S) +
BBa B0015 + pSB4C5

LuxR-Inducible RNAPT7 expres-
sion under B0034 RBS

PT7SCTarget31RFP
BBa I719005 + SCTarget +
BBa B0031 + BBa E1010 +
BBa B0015 + pSB3K3

RNAPT7-Inducible RFP expres-
sion cassette under B0031 RBS

PT7SCTarget32RFP
BBa I719005 + SCTarget +
BBa B0032 + BBa E1010 +
BBa B0015 + pSB3K3

RNAPT7-Inducible RFP expres-
sion cassette under B0032 RBS

Continues on next page...
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Table C.2 – ...continued from previous page
Name Construct Purpose

PT7SCTarget34RFP
BBa I719005 + SCTarget +
BBa B0034 + BBa E1010 +
BBa B0015 + pSB3K3

RNAPT7-Inducible RFP expres-
sion cassette under B0034 RBS

C.2.1 Mutagenesis

Synthetic circuits modifications have been performed through mu-
tagenesis of two types: convergent or divergent. Divergent primers
have been used to carry out single point-mutations or to delete DNA
portion (e.g., TACTAGAG-scar between the promoter transcription
start site and the single guide RNA after assembly procedure with
BioBrickTM enzymes, delete a whole promoter sequence). Convergent
primers have been used to amplify DNA sequences and, when specified,
add a DNA portion (e.g., RBS) to them. The convergent primers have,
on their tail, a complete (EcoRI, XbaI) or partial (XbaI) BioBrickTM

prefix on the forward primer and a complete (SpeI, PstI) or null suffix
(if the DNA template includes a BioBrick-standardized - VR reverse
primer to enable the assembly procedure of the PCR-amplified DNA
sequence. The experimental protocol includes:

• DNA amplification: template plasmid DNA has been purified
through the NucleoSpin Plasmid kit (Macherey-Nagel) in case it
was a plasmid in a bacterial culture, otherwise, in case of am-
plification from genomic template, a bacterial colony has been
suspended in 100 µl of deionyzed water and 1 µl has been used
for the PCR protocol. Phusion Hot Start Flex II (ThermoFisher
Scientific) has been used according to manufacturer protocol and
using primer pairs added (reported in Table C.3), for which an-
nealing temperatures have been estimated on the free online tool
Tm Calculator (ThermoFisher Scientific) with parameters set to
‘Phusion or Phire DNA polymerase’.
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• Template DNA digestion: after PCR cycles, the DpnI (Roche)
enzyme has been added in order to digest the methylated tem-
plate DNA by cutting a commonly occurring sequence.

• DNA ligation: PCR product has been separated in 1% agarose
gel and the selected DNA band extracted by NucleoSpin Extract
II kit (Macherey-Nagel). The blunt-end DNA fragment obtained
after PCR has been phosphorylated by T4 Polynucleotide Ki-
nase (PNK - ThermoFisher Scientific) and ligated with T4 ligase
(Roche).

Table C.3: Primers used in this study. For each template reported in the
first coloumn the primer pairs used to obtain the final product are shown; the purpose of each
DNA manipulation is outlined, together with the final product obtained.

Template Primer Pairs Sequence (5’ - 3’) Aim Product

Addgene plasmid
FW BB SadCas9

gtgcttctagagcggttac
cacgttgtaaaggaacaa
cagaatggcttcctccga
agacgt

Conversion of Sad-
Cas9 in BioBrickTM

format
SadCas9wEXsites

#113718 RV BB SadCas9

gtgcttctagagcggttac
cacgttgtaaaggaacaa
cagaatggcttcctccga
agacgt

SadCas9wEXsites
FW DeleteEcoRI

aactctaaagatgcacaa
aaaatg

Delete EcoRI site in
SadCas9 CDS

SadCas9wXsite

RV DeleteEcoRI
cttttctctcgcaagttca
a

SadCas9wXsite
FW DeleteXbaI

ctcgaagatttacttaata
atccatt

Delete XbaI site in
SadCas9 CDS

SadCas9

RV DeleteXbaI
agggattgcttctaacga
gt

SadCas9
FW B0031SadCas9

ccgcttctagagtcacaca
ggaaacctactagatgaa
aaggaattatatc

Insertion of
BBa B0031 RBS
in the upstream
region of SadCas9

31SadCas9

VR
attaccgcctttgagtgag
c

SadCas9
FW B0032SadCas9

cgcttctagagtcacaca
ggaaagtactagatgaaa
aggaattatatcttaggat
tagc

Insertion of
BBa B0032 RBS
in the upstream
region of SadCas9

32SadCas9

VR
attaccgcctttgagtgag
c

SadCas9
FW B0034SadCas9

cgcttctagagaaagagg
agaaatactagatgaaaa
ggaattatatcttaggatt
agc

Insertion of
BBa B0034 RBS
in the upstream
region of SadCas9

34SadCas9

VR
attaccgcctttgagtgag
c

SadCas9
FW CU1SadCas9

gtgcttctagagccataa
aaacttgacactagggtc
aaaatatgaaaaggaatt
atatcttaggattagc

Insertion of CU1
RBS in the upstream
region of SadCas9

CU1SadCas9

Continues on next page...
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Table C.3 – ...continued from previous page
Template Primer Pairs Sequence (5’ - 3’) Aim Product

VR
attaccgcctttgagtgag
c

SadCas9
FW CU2SadCas9

gtgcttctagagtatttaa
aaggaaaacatcaaagg
gcactatgaaaaggaatt
atatcttaggattagc

Insertion of CU2
RBS in the upstream
region of SadCas9

CU2SadCas9

VR
attaccgcctttgagtgag
c

SadCas9
FW CA1SadCas9

gtgcttctagagcggttac
cacgttgtaaaggaacaa
cagaatgaaaaggaatta
tatcttaggattagc

Insertion of CA1
RBS in the upstream
region of SadCas9

CA1SadCas9

VR
attaccgcctttgagtgag
c

J11934RFP
FW SCTarget11934

caatatggtcttgatccta
ctagagaaagaggagaa
at

Insertion of the
Target region for
the complex Sad-
Cas9:sgRNA be-
tween J119 and
B0034

J119SCTarget34RFP

RV SCTargetJ11934
aaccatgagttagctagc
attatacctaggactg

J119SCTarget34RFP
FW Suffix

tactagtagcggccgctg
cag

Deletion of B0034
RFP part

J119SCTarget

RV SCTarget
ggatcaagaccatattga
accatgagtta

118119SCTarget34RFP
FW SCTarget

taactcatggttcaatatg
gtcttg

Deletion of B0034
RFP part

J118SCTarget

RV J118
gctagcacaatacctagg
actgag

PLux119SCTarget34RFP
FW SCTarget

taactcatggttcaatatg
gtcttg

Deletion of B0034
RFP part

PLuxSCTarget

RV Plux-3A
attcgactataacaaacc
attttcttgcgtaaacctg
tac

J119scarsgRNA
FW sgRNA

ggatcaagaccatattga
accgtt

Deletion of the
BioBrickTM

assembly-derivate
scar between J119
and sgRNA

J119sgRNA

RV J119
gctagcattatacctagg
actgagctagct

PLacscarsgRNA
FW sgRNA

ggatcaagaccatattga
accgtt

Deletion of the
BioBrickTM

assembly-derivate
scar between PLac
and sgRNA

PLacsgRNA

RV Plac
gtgctcagtatcttgttat
ccgc

BBa E1010
FW CU1RFP

gtgcttctagagccataa
aaacttgacactagggtc
aaaatatggcttcctccga
agacgt

Insertion of CU1
RBS in the upstream
region of RFP

CU1RFP

VR
attaccgcctttgagtgag
c

BBa E1010
FW CU2RFP

gtgcttctagagtatttaa
aaggaaaacatcaaagg
gcactatggcttcctccga
agacgt

Insertion of CU2
RBS in the upstream
region of RFP

CU2RFP

VR
attaccgcctttgagtgag
c

Continues on next page...
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Table C.3 – ...continued from previous page
Template Primer Pairs Sequence (5’ - 3’) Aim Product

BBa E1010
FW CA1RFP

gtgcttctagagcggttac
cacgttgtaaaggaacaa
cagaatggcttcctccga
agacgt

Insertion of CA1
RBS in the upstream
region of RFP

CA1RFP

VR
attaccgcctttgagtgag
c

BL21(DE3)
FW B0034T7

gtgcttctagagaaagag
gagaaatactagatgaac
acgattaacatcgctaag

Amplification of
RNAPT7 from E. coli
BL21(DE3) genome

in BioBrickTM for-
mat under B0034
RBS

34T7

RV BB RNAPT7
gtttcttcctgcagcggcc
gctactagtttattacgcg
aacgcgaagtcc

34T7
FW B0031T7

gcttctagagtcacacag
gaaacctactagatgaac
acgattaacatcgc

RBS changing from
B0034 to B0031

31T7

VR
attaccgcctttgagtgag
c

34T7
FW B0032T7

gcttctagagtcacacag
gaaagtactagatgaaca
cgattaacatcgc

RBS changing from
B0034 to B0032

32T7

VR
attaccgcctttgagtgag
c

31T7
FW T7(R632S)

gactaagagttcagtcat
gacgctg

R632S mutation in
31T7 CDS

31T7(R632S)

RV T7(R632S)
acactgcgagtaacaccg
taagcc

32T7
FW T7(R632S)

gactaagagttcagtcat
gacgctg

R632S mutation in
32T7 CDS

32T7(R632S)

RV T7(R632S)
acactgcgagtaacaccg
taagcc

34T7
FW T7(R632S)

gactaagagttcagtcat
gacgctg

R632S mutation in
34T7 CDS

34T7(R632S)

RV T7(R632S)
acactgcgagtaacaccg
taagcc

PT7119SCTarget34RFP
FW SCTarget

taactcatggttcaatatg
gtcttg

Deletion of B0034
RFP part

PT7SCTarget

RV PT7
tctccctatagtgagtcgt
attactctag

C.2.2 Amplification and BioBrickTM-standardization
of biological elements

Biological elements not available as Registry parts have been PCR-
amplified to convert them into BioBrickTM standard format.

• sadcas9 gene has been taken from Addgene plasmid #113718
used in the study of Savic et al. (Schwank Lab) which has the
two single-point mutations (D10A and N580A) that convert the
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Cas9 protein to its dead version [210]. The sadcas9 gene has
been inserted in pSB1A2 to sequently cloning procedures.

• rnapt7 gene has been taken from E. coli BL21(DE3) strain.
BL21(DE3) is an optimized bacterial strain used in labotatory
for high level protein expression using IPTG-inducible T7 RNA
polymerase system [211]. The rnapt7 gene amplification has
been coupled with insertion in its upstream region of BBa B0034
RBS and sequently integrated into pSB1A2 vector.

The primer that have been used are reported in Table C.3.

C.3 sgRNA design

The single guide RNA (sgRNA) has been designed in the free on-
line tool Benchling (https://benchling.com) and de novo synthesized
(GenScript Biotech). The whole sgRNA sequence is composed of three
parts: base pairing region, dCas9 handle and terminator sequence.
The base pairing region has been designed manually by avoiding se-
quences that could interfere with synthetic circuits funcionality or as-
semby procedures (e.g., BioBrickTM restriction sites, hairpins, -35 or
-10 promoter consensus sequence, or sequences resembling the RBS
consensus of E. coli). The target region, which has been derived by
base pairing complementarity, has been coupled with the PAM se-
quence recognized from Staphylococcus aureus dCas9 protein NNGR-
RTN (in this study the TTGAGTA sequence was used) [74]. The
dCas9 handle sequence has been designed based on the study of Ran
et al. [74] and the terminator sequence has been taken from Strepto-
coccus pyogenes, already used in our laboratory to terminate the tran-
scription of sgRNA compatible with SpydCas9. All sequences have
been reported in Table C.4.
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Table C.4: sgRNA components and their relative sequence.

Component Sequence

Base pairing region GGATCAAGACCATATTGAACC

S. aureus dCas9 handle
GTTTTAGTACTCTGGAAACAGAATCTACTAA
AACAAGGCAAAATGCCGTGTTTATCTCGTCA
ACTTGTTGGCGAGATTTTTT

S. pyogenes terminator

GAAGCTTGGGCCCGAACAAAAACTCATCTCA
GAAGAGGATCTGAATAGCGCCGTCGACCAT
CATCATCATCATCATTGAGTTTAAACGGTCT
CCAGCTTGGCTGTTTTGGCGGATGAGAGAA
GATTTTCAGCCTGATACAGATTAAATCAGAA
CGCAGAAGCGGTCTGATAAAACAGAATTTG
CCTGGCGGCAGTAGCGCGGTGGTCCCACCT
GACCCCATGCCGAACTCAGAAGTGAAACGCC
GTAGCGCCGATGGTAGTGTGGGGTCTCCCC
ATGCGAGAGTAGGGAACTGCCAGGCATCAA
ATAAAACGAAAGGCTCAGTCGAAAGACTGG
GCCTTTCGTTTTATCTGTTGTTTGTCGGTGA
ACT

PAM sequence TTGAGTA
Target region GGTTCAATATGGTCTTGATCC

C.4 In vivo enzyme characterization

In this Section the ad hoc designed biological circuits used for the
characterization of the transcriptional repression (SadCas9) and ac-
tivation (RNAPT7-PT7) systems have been reported. The rationale
behind both characterization circuits is to analyze how the fluorescent
output level (RFP) changes as a function of the repressor (SadCas9) or
activator enzyme (RNAPT7) concentration variation. Their expres-
sions have been modulated with different HSL inducer concentrations
via the PLux promoter activated from Lux-circuitry activity and differ-
ent RBS sequences upstream of the activator or repressor gene. All the
assembled biological circuits have been transformed in the test strain
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E. coli TOP10 F’ since it carries the lacIq repressor for inducible ex-
pression from lac promoter using the IPTG molecule, which is used to
trigger sgRNA expression (see below).

C.4.1 Staphylococcus aureus dCas9 (SadCas9) tran-
scriptional repression system

GFP

Target cassette

SC 
Target B003x RFPJ2311x

Low
Copy 

plasmid

LuxR SadCas9B003x

HSL

Medium 
Copy 

plasmid

PLac sgRNA

sgRNA IPTG-
inducible expression 

cassetteIPTG

Burden monitor

SadCas9:sgRNA complex

SadCas9 HSL-inducible
expression cassette 

PLux

Figure C.1: Circuitry scheme for S. aureus dCas9 characteri-
zation. The synthetic circuits used for SadCas9 characterization are based on a two-plasmid
system. The first plasmid (low-copy plasmid) contains two modules responsible, respectively, for
monitoring cell load (burden monitor) and for HSL-inducible expression of the SadCas9 protein.
The second (medium-copy plasmid) contains the IPTG-inducible expression of sgRNA module
and the target cassette characterized by the fluorescent protein RFP.

Originally, the coding sequence of SadCas9 in the purchased Ad-
dgene plasmid #113718 presented two BioBrickTM restriction sites
(EcoRI, XbaI) that interfere with the standard assembly procedures.
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Two single-point mutations (c.1449T>C and c.1629A>C) have been
carried out to delete them without changing the amino acid composi-
tion of the protein, via the protocol that has been reported in Section
C.2.1.

The characterization circuits scheme, based on two-plasmid sys-
tem, for the SadCas9 repressor enzyme has been reported in Fig. C.1.
The expression of the active SadCas9 repressor complex (SadCas9:sgRNA)
is modulated by two inducers: HSL that drives the PLux transcrip-
tional activity (and thus the expression of free SadCas9 protein) and
IPTG that drives the single guide RNA expression through the PLac
promoter. The target DNA region of SadCas9 has been placed down-
stream of the Transcription Start Site (TSS) of the constitutive pro-
moter responsible for the expression of the fluorescent protein (RFP).
Constitutive GFP expression cassette (in the low-copy plasmid) has
been used as burden monitor. The concentration of the IPTG inducer
has been set to 200µM (fully inducing the PLac promoter in the used
strain) in order to meet the overabundance hypothesis of sgRNA com-
pared with SadCas9 level. Several circuit combinations have been con-
structed by changing the RBS sequence upstream of SadCas9 (B0031,
B0032, B0034, CU1, CU2, CA1) and RFP (B0031, B0034) coding se-
quences and the target promoter sequence (J118, J119), as reported in
Table C.5. The design of CU1, CU2 and CA1 RBSs has been described
in Section C.6.

Table C.5: Synthetic circuits used for S. aureus dCas9 (Sad-
Cas9) characterization. Each circuit reported in the first column is composed of
the two plasmids in the adjacent columns. The final construct name, CSxyz, is composed as:
‘CS’ - Characterization SadCas9, ‘x’ - SadCas9 RBS code, ‘y’ - RFP promoter code, ‘z’ - RFP
RBS code. The ‘x’, ‘y’ and ‘z’ codes are highlighted with bold font within plasmid name.

Construct Low copy Medium copy
name plasmid plasmid
CS191 AE-3A31SadCas9 Plac sgRNA J119SCTarget31RFP
CS291 AE-3A32SadCas9 Plac sgRNA J119SCTarget31RFP

Continues on next page...
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Table C.5 – ...continued from previous page
Construct Low copy Medium copy

name plasmid plasmid
CS491 AE-3A34SadCas9 Plac sgRNA J119SCTarget31RFP
CS184 AE-3A31SadCas9 Plac sgRNA J118SCTarget34RFP
CS284 AE-3A32SadCas9 Plac sgRNA J118SCTarget34RFP
CS484 AE-3A34SadCas9 Plac sgRNA J118SCTarget34RFP

CSU184 AE-3A3CU1SadCas9 Plac sgRNA J118SCTarget34RFP
CSU284 AE-3A3CU2SadCas9 Plac sgRNA J118SCTarget34RFP
CSA184 AE-3A3CA1SadCas9 Plac sgRNA J118SCTarget34RFP
CS194 AE-3A31SadCas9 Plac sgRNA J119SCTarget34RFP
CS294 AE-3A32SadCas9 Plac sgRNA J119SCTarget34RFP
CS494 AE-3A34SadCas9 Plac sgRNA J119SCTarget34RFP

C.4.2 RNAPT7-PT7 transcriptional activation sys-
tem

The high toxicity that arose from the expression of the wild-type
RNAPT7-PT7 system in the test strain E. coli TOP10 F’ in prelimi-
nary experiments (data not shown) indicated the need to reduce the
transcriptional system efficiency to enable the use of an activation mo-
tif compatible with cell life. As reported in Section 4.2.4, a single-point
mutation in the RNAPT7 coding sequence (c.1894C>A) has been car-
ried out that results in an amino acid alteration in the protein sequence
(p.Arg632Ser), inspired by previous works in which this (and other)
mutations were used to decrease the efficiency of RNAPT7. The char-
acterization scheme, based on a two-plasmid system, for the RNAPT7
activator enzyme, has been reported in Fig. C.2. The RNAPT7 ac-
tivator is expressed usign the PLux promoter, whose transcriptional
activity is triggered by using the HSL inducer. The recognition of
the cognate promoter PT7 by the RNAPT7 enzyme enhances the ex-
pression of the fluorescent protein (RFP). Several circuit combinations
have been constructed by changing the RBS sequence (B0031, B0032,
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GFP

Target cassette

SC 
Target B003x RFPPT7

Low
Copy 

plasmid

LuxR RNAPT7B003x

HSL

Medium 
Copy 

plasmid

Burden monitor
RNAPT7 HSL-inducible

expression cassette 

PLux

Figure C.2: Circuitry scheme for RNAPT7-PT7 in vivo char-
acterization. The synthetic circuits used for RNAPT7-PT7 characterization are based
on two-plasmid system. The first plasmid (low copy plasmid) contains two modules responsi-
ble, respectively, for monitoring cell load (burden monitor) and for HSL-inducible expression of
RNAPT7 protein. The second (medium copy plasmid) contains the RNAPT7-inducible expres-
sion of RFP cassette.

B0034) upstream of the RNAPT7 and RFP coding sequences, reported
in Table C.6.

Table C.6: Synthetic circuits used for the characterization of
the RNAPT7-PT7 transcriptional system. Each circuit reported in the
first column is composed of the two plasmids in the adjacent columns. The final construct name,
CT7xy, is composed as: ‘CT7’ - Characterization RNAPT7(R632S), ‘x’ - RNAPT7 RBS code,
‘y’ - RFP RBS code. The ‘x’ and ‘y’ codes are highlighted with bold font within plasmid name.

Construct Low copy Medium copy
name plasmid plasmid

CT7 3131 AE-3A31T7(R632S) PT7SCTarget31RFP
CT7 3231 AE-3A32T7(R632S) PT7SCTarget31RFP
CT7 3431 AE-3A34T7(R632S) PT7SCTarget31RFP
CT7 3132 AE-3A31T7(R632S) PT7SCTarget32RFP
CT7 3232 AE-3A32T7(R632S) PT7SCTarget32RFP
CT7 3432 AE-3A34T7(R632S) PT7SCTarget32RFP

Continues on next page...
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Table C.6 – ...continued from previous page
Construct Low copy Medium copy

name plasmid plasmid
CT7 3134 AE-3A31T7(R632S) PT7SCTarget34RFP
CT7 3234 AE-3A32T7(R632S) PT7SCTarget34RFP
CT7 3434 AE-3A34T7(R632S) PT7SCTarget34RFP

C.5 Quantitative assays and data analy-

sis

C.5.1 Fluorescence and growth assays

Bacteria from long-term glycerol stocks were streaked on LB agar
plates supplemented with the proper antibiotic(s), with the purpose
of isolating single colonies. These colonies were considered as biolog-
ical replicates. Plates have been incubated overnight at 37◦C, then
0.5 ml of selective M9 (M9 salts - #M6030, Sigma Aldrich - 11.28g/l,
thiamine hydrochloride 1mM, MgSO4 2mM, CaCl2 0.1mM, casamino
acids 0.2%, glycerol 0.4%) have been inoculated with single colonies
and incubated overnight in 2−ml tubes at 37◦C, 220rpm (when ex-
plicitly indicated, IPTG inducer has been also added at the final con-
centration of 200 µM). Cultures were 100-fold diluted in the same
medium (with IPTG when indicated) in 200 µl in a 96-well microplate.
The HSL inducer was also added to the microplate wells as indicated
to trigger the expression of the PLux promoter. Cultures were assayed
via the Infinite F200Pro microplate reader (Tecan), programmed with
the i-control (Tecan) software to perform a kinetic cycle as follows:
linear shaking (3 mm amplitude, 15s), wait (5s), absorbance measure-
ment (600nm), red fluorescence measurement (excitation at 535nm,
emission at 620nm, gain=50), repeat cycle every 5min. In every mi-
croplate experiment, 200µl of M9 and a non-fluorescent TOP10 F’ E.
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coli culture were included in triplicate to enable the estimation of ab-
sorbance and fluorescence backgrounds, respectively. Finally, the Con-
stRFP and ConstGFP strains, including a constitutive RFP and GFP
expression cassette, respectively, under the control of the J23101 con-
stitutive promoter (with B0034 and B0032 RBS, respectively), herein
named REF cultures, where also included in triplicate as controls to
enable the computation of fluorescence outputs in normalized units.
Absorbance and fluorescence background signals were subtracted from
raw absorbance and fluorescence over time (t), to obtain cell density
(X, expressed as optical density - OD - proportional to the per-well cell
count), and RFP (R, expressed as arbitrary units of raw RFP - AUR -
proportional to the per-well number of fluorescent proteins) and GFP
(G, expressed as arbitrary units of raw GFP - AUG - proportional to
the per-well number of fluorescent proteins). Since a significant cell
density-dependent autofluorescence was previously reported for GFP
measurements with the adopted experimental setup, green fluorescence
has been blanked via a different procedure, described in [212]: the raw
green (auto)fluorescence (GFPauto) as a function of OD600 has been
computed as:

GFPauto(t) = eq+m·OD600(t) (C.1)

and it has been subtracted from the raw fluorescence value of each
GFP-expressing strain to obtain a signal proportional to the GFP
level in the whole culture. This exponential function was previously
parametrized with the growth rate-dependent coefficients q and m,
measured from different exponentially growing cultures used for cali-
bration. A signal proportional to RFP or GFP synthesis rate per cell
Srawcell , expressed as AUR·OD−1 ·min−1 has been computer over time in
the exponential growth phase (EGP, identified via visual inspection,
typically 0.02 < OD600 < 0.14 in microplate experiments) for each
culture as the numeric time derivative of fluorescence, divided by the
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mean cell density.

Srawcell,i =
Fi − Fi−1

ti + ti−1

· 2

Xi +Xi−1

,∀i ∈ EGP,F = [R,G]; (C.2)

The mean value (Srawcell ) of the Srawcell time series of the REF strain repli-
cates Srawcell,REF has been computer over the EGP and it has been di-

vided by (Srawcell,REF ) for normalization, obtaining the RPU (Relative
Promoter Units) value, expressed as AU ·min−1:

RPU =
Srawcell,i

Srawcell,REF,i

(C.3)

RPU is proportional to the synthesis rate of the fluorescence protein
(RFP or GFP), and it is also is proportional to the intracellular level
of RFP or GFP produced, for a given growth rate. Growth rate (µ)
was computed as the slope of the regression line of the log(X(t)) time
series in the EGP.

C.6 New RBS design for SadCas9 expres-

sion

New synthetic RBSs for SadCas9 expression have been designed us-
ing the free online tool RBS Calculator v2.1 (Salis Lab) with the aim
of expanding the SadCas9 expression range and, at the same time,
ensuring expression of the target RFP protein in order to test new
combinations of Sad-iFFL in Chapter 3. New synthetic RBSs have
been generated based on the information of: (i) host organism (Es-
cherichia coli str. K-12 substr MG1655, NCBI accession: NC 000913),
(ii) the coding sequence of the target protein (sadcas9 ) and (iii) the
desidered Translation Initiation Rate (TIR) value. The latter has been
set by considering values higher than the predicted TIR values for
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B0032 upstream of the SadCas9 coding sequence, and around B0034
upstream of the same gene. From a candidate RBS, with the same
algorithm, the TIR of RFP (with upstream the target sequence for
SadCas9:sgRNA binding) has been predicted in order to guarantee
the functionality of the RBS designed also for the expression of the
reporter protein. Three synthetic RBSs have been designed: CU1 and
CU2 with TIRSadCas9

B0032 < TIRSadCas9
X < TIRSadCas9

B0034 where X=[CU1,
CU2], and CA1 with TIRSadCas9

CA1 > TIRSadCas9
B0034 . TIRSadCas9

B0032 has been
used as lower constraint for TIR since the RFP signal produced is low
but well detectable (when driven by Lux circuitry at full induction)
usgin the Infinite F200Pro microplate reader (Tecan) and good results
have been obtained in characterization of SadCas9 with this RBS. The
three synthetic RBS candidates obtained have been reported in Table
C.7 and their predicted TIRs are reported as percentages of B0034 for
SadCas9 ad RFP.

Table C.7: Synthetic RBS designed with RBS Calculator

RBS Sequence [%] of TIRSadCas9
B0034 [%] of TIRRFP

B0034

B0032 Reference 79.94 35.72

CU1
CCATAAAAACTT
GACACTAGGGTC
AAAAT

86.31 77.83

CU2
TATTTAAAAGGA
AAACATCAAAGG
GCACT

91.59 65.94

CA1
CGGTTACCACGT
TGTAAAGGAACA
ACAGA

162.14 92.8
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Appendix D
Supplementary information: in silico

models simulation and data fitting

In this appendix the model parameters that have been used for the
in silico study of Open Loop, Sad-iFFL and U-iFFL models are re-
ported. The methods to compute the model performance at the steady
state (steady state analysis, biological noise propagation) and the dy-
namic evolution (induction/de-induction cycle, settling time) are also
illustrated. In the last Section, the procedure on the experimental
data of SadCas9 characterization has been reported.

D.1 Simulations

The model parameters that have been used to simulate the models
(Open Loop, Sad-iFFL and U-iFFL) are reported in Table D.1. PU
is the intracellular concentrations of one DNA copy of promoter and
it is used to convert the number of DNA molecules into its relative
concentration value ([nM]), while the remaining parameters have been
explained in Section 3.2.2 and Section 4.1.2. All simulations and data
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fitting steps have been made with MATLAB R2018a (MathWorks,
Natick, MA, USA); parameter estimation procedure has been per-
formed through the ordinary least squares algorithm via the lsqnonlin
function on all experimental data simultaneously.

Steady state analysis
Steady state analysis shows how a given system performs at its steady
state as a function of perturbation factors like transcription, trans-
lation and target protein levels variations. This analysis has been
made for the three designed circuits (Open Loop, Sad-iFFL and U-
iFFL). Each of them was tested with different range of transcription
rate (α [s−1]), translation rate (ρ [s−1]) and different desired GOI
concentration, defined via the corresponding KCG [nM ] value. The
robustness index on transcription rate α and translation rate ρ has
been calculated as the median of the fold-change distribution on the
other parameter (translation rate ρ, transcription rate α, respectively)
variation (Equation (D.2)), as follows:

Robustness(α) = median([FCρ1 , ...FCρi , ...FCρN ]) (D.1)

Robustness(ρ) = median([FCα1 , ...FCαi , ...FCαN ]) (D.2)

where FCρi and FCαi are the fold-change values computed by fixing
the i-th transcription rate or the i-th translation rate value, respec-
tively, as reported in Equations (D.3) and (D.4):

FCδi =

{
GOI(αmin,ρi)
GOI(αmax,ρi)

if GOI(αmax, ρi) > GOI(αmin, ρi)
GOI(αmax,ρi)
GOI(αmin,ρi)

if GOI(αmin, ρi) > GOI(αmax, ρi)
(D.3)

FCαi =

{
GOI(αi,ρmin)
GOI(αi,ρmax)

if GOI(αi, ρmax) > GOI(αi, ρmin)
GOI(αi,ρmax)
GOI(αi,ρmin)

if GOI(αi, ρmin) > GOI(αi, ρmax)
(D.4)
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D.1. Simulations

Propagation of biological noise
Noise has been assumed to affect transcription and translation rate (α·
ρ) on the steady state model of Open Loop (Equation (B.3)), Sad-iFFL
(Equations (3.15)−(3.18)) and U-iFFL (Equations (4.17)−(4.21)) as
follows:

P = p · v , p = α · ρ (D.5)

v ∼ LogN(0, σ2) (D.6)

where the logarithm of the lognormal distribution (v) is a Gaussian dis-
tribution with mean µ = 0 and variance σ2; this noise representation
has been widely used in literature to describe the fluorescence distribu-
tion of reporter proteins in cell populations engineered with synthetic

circuits [111]. The statistical proprieties of P (AV E(P ) = e
σ2

2 and
V AR(P ) = eσ

2 · (eσ2 − 1)) show that the mean is biased by a fac-

tor of e
σ2

2 due to lognormal distribution. A correction term has been
introduced to clear variable P from this undesirable contribution, as
follows:

p = ppop · e−
σ2

2 (D.7)

The final noise model has been derived on constant coefficient of vari-
ation (CV) assumption, in which, a value of variance σ2 has been
obtained as:

σ2 = ln(1 + CV 2) (D.8)

Cellular noise can be split in two components: extrinsic and intrinsic
noise. The first (extrinsic) refers to the variation that affect equally
the whole set of regulatory parts (as reported in Equation (D.5), the
single part is considered here as the sequence composed by promoter
and RBS pair) within a system, while, the second (intrinsic) refers to
the variation in identically-regulated quantities that arises from the
stochasticity of biochemical reactions in the same cell. A correlation
coefficient φ (0 ≤ φ ≤ 1) has been introduced to model the proportion
between intrinsic (φ = 0) and extrinsic (φ = 1) factors that compose
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D. in silico simulations and data fitting

the total noise. Particularly, if noise is composed only by the intrinsic
component, the behaviors of the regulatory parts in an isogenic re-
combinant cell population are indipendent. The parameters that have
been used for simulate the propagation of biological noise in the Open
loop, Sad-iFFL and U-iFFL models have been reported in Table D.1.
The CV values for multiplicative lognormal noise range between 0%
and 100% and the final CV on model outputs (GOI [nM ]) has been
computed from 10,000 independent generated samples.

Induction/de-induction cycle
To test the designed systems dynamic behavior, transcriptional activ-
ity was assumed to be null and to be triggered at t=0. The models were
analyzed computationally with MATLAB using a differential equation
solver by low order method (ode23s) and the solution of each model
(Open Loop, Sad-iFFL and U-iFFL) has been computed separately.
The transcriptional activity has been described through a transcrip-
tional impulse of time tset for which the target promoters is active
with transcription rate of α [s−1] that has been setted opportunatly
as reported in Section 3.3.4 and Section 4.2.4.

Settling time
The settling time is the time required for the response curve to reach
and stay within a range around the final value of size specified by
absolute percentage of the final value (usually 2% or 5%). The set-
tling time was here recorded at 5% of the difference from the steady
state, which was considered equal to the final estimated value from
the differential equation solver.

188



D.2. Models implementation for the characaterization of SadCas9
repressor
Table D.1: Model parameters for in silico simulations of Open
Loop, Sad-iFFL and U-iFFL models. aIntracellular concentration of one

DNA copy of promoter; bWhen indicated, a range of values was spanned.

Parameter Units Models Value

PU nM All 1.66a

dRNA s−1 All 0.0042
dProtein s−1 All 3.83e-4

µ s−1 All 0.023
n − All 1b

α s−1 All 1b

ρ s−1 All 0.4b

b − Sad-iFFL, U-iFFL 1
f − Sad-iFFL, U-iFFL 1

KCG nM Sad-iFFL, U-iFFL 500b

c − U-iFFL 1
g − U-iFFL 1

KCT nM U-iFFL 500
KT7 nM U-iFFL 10

D.2 Models implementation for the chara-

caterization of SadCas9 repressor

The repression and activation of protein expression in the circuit for
SadCas9 characterization (Fig. C.1) have been represented with Hill
functions modulated by their degradation rate assuming the steady-
state of all the molecular species within the cell in the exponential
growth phase, as reported in Equation (D.9).

Sj =

βj0 +
βjmax

1 +
(
Kj
Ij

)±ηj
 · 1

µ
(D.9)
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where β0, βmax, K and η are the Hill parameters that characterize the
transfer function between the Input molecule (I) and the output pro-
tein (S); in more details, β0 is the minimum synthesis rate, β0 + βmax
is the maximum synthesis rate, K is the input (I) level corresponding
to the half-maximum concentration of the output (S) and η is the Hill
coefficient which describes the cooperativity and the effect of the input
(I) to the output (S) (no cooperativity - η = 1, (I) repressor - η < 0,
(I) activator - η > 0); µ is the dilution rate due to cell division (ap-
proximation due to negligible protein degradation rate compared with
growth rate). The Hill parameters reported hereby lumped the infor-
mation on the biologically-meaningful parameters used in this work
(e.g., transcription rate α, translation rate ρ) in order to work with
an identifiable model from the experimental data of SadCas9 char-
acterization and thus enabling the fitting procedure. For fluorescent
proteins, as RFP, the maturation process has been modeled as follows:

Rimmature =
1

µ+ θRFP
· Sj (D.10)

Rmature = θRFP ·Rimmature (D.11)

where θRFP is the maturation rate for RFP. In Equation (D.11), Rmature

(called R from now) is expressed in AU ·cell−1 ·min−1 and refers to the
normalized RFP value of Scell computed from the in vivo experimental
data of SadCas9 characterization that has been illustrated in Section
3.3.5 (Fig. 3.6). The cell load modeling (described in Section 2.2.6)
has been used here to better describe the data affected by metabolic
burden caused by the incorporation of the circuit in the bacterial host.
As mentioned in Section 2.2.6, the cell load effect is modeled through
the parameter D as denominator on all the protein synthesis rates,
reported as follows:

Sj,B =
Sj
D

(D.12)

190



D.2. Models implementation for the characaterization of SadCas9
repressor

D = 1 +
c∑
i=1

Ji · Si,B = 1 + JR ·R + JC · C (D.13)

where Sj,B is the j-th protein synthesis rate affect from burden. The
parameter D has been readapted (from Equation (2.41)) within this
context and reported in Equation (D.13) assuming that the cell load
is generated by RFP and SadCas9 proteins. Describing RFP and Sad-
Cas9 production rates as Equation (D.9), considering the maturation
rate of RFP (Equations (D.10) − (D.11)) and modeling cell burden
as reported in Equations (D.12)−(D.13), the whole model used to fit
the experimental data of SadCas9 characterization has been derived
as follows:

C =

(
βC0 +

βCmax
1 + (KLux·D

HSL
)ηLux

)
· 1

µ1 ·D
(D.14)

R =
θRFP

(µ2 + θRFP ) · µ2 ·D
·

(
βX0 +

βXmax
1 + ( C

KY
C

)ηC

)
(D.15)

G =
max(GData)

D
(D.16)

D = 1+JR ·

(
βX0 +

βXmax
1 + ( C

KY
C

)ηC

)
· θRFP

(µ2 + θRFP ) · µ2 ·D
+

JC ·

(
βC0 +

βCmax
1 + (KLux·D

HSL
)ηLux

)
· 1

µ1 ·D

(D.17)

where C, R, G and D are the SadCas9, RFP, GFP protein level and
burden parameter, respectively. βC0 [AU ] and βCmax[AU ] are the min-
imum synthesis rate and the maximum excursion between off- and
on- state rate for SadCas9 (C) expressed from Lux-circuitry (HSL);
βX0 [AU ] and βXmax[AU ] have the same meaning but for RFP protein ex-
pressed by the promotor-RBS combination X (X = [J118−34, J119−
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31, J119 − 34]). ηC and ηLux are the Hill parameters which describe
the cooperativity of Lux-activation and dCas9-repression. The only
equation based on experimental data by design is Equation (D.16),
in which max(GData) is the maximum value of GFP on different HSL
concentration value. The resource usage terms, JR and JC for RFP
(R) and SadCas9 (C), respectevely, represent a weight coefficient re-
lated with of the burden caused by the associate protein; both are
expressed in [AU−1 ·min]. KY

C [AU ] are the SadCas9 level from RBS
Y (Y = B0032, B0034, CU1, CU2, CA1) for which the half-maximum
concentration of the output (RFP) is reached and KLux is the HSL
concentration for which half-maximum level of SadCas9 is achieved.
In biological terms, the KY

C value is unique for each dCas9 protein
and does not change with the expression level of the repressor protein.
As mentioned at the beginning of this Section, in order to obtain an
identifiable model from the available data, the parameters hereby used
lump the information of two or more biological descriptors; here, KY

C

describes the variation of SadCas9 due to different RBS strength and
the real half-maximum constant K̂C . Precisely, the KY

C can be written
as

KY
C = K̂C/τRBS (D.18)

where τRBS is the RBS strength, which modulates the resulting re-
pressor protein level and a lumped K parameter was estimated for any
given RBS combinations in the tested strains.
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R Solé, and C Rodŕıguez-Caso. A bottom-up characterization
of transfer functions for synthetic biology designs: lessons from
enzymology. Nucleic acids research, 42(22):14060–14069, 2014.

203



BIBLIOGRAPHY

[82] Y Mileyko, RI Joh, and JS Weitz. Small-scale copy number vari-
ation and large-scale changes in gene expression. Proceedings of
the National Academy of Sciences, 105(43):16659–16664, 2008.

[83] B Canton, A Labno, and D Endy. Refinement and standardiza-
tion of synthetic biological parts and devices. Nature biotechnol-
ogy, 26(7):787–793, 2008.

[84] L Pasotti, M Bellato, M Casanova, S Zucca, MGC De Angelis,
and P Magni. Re-using biological devices: a model-aided analy-
sis of interconnected transcriptional cascades designed from the
bottom-up. Journal of biological engineering, 11(1):50, 2017.

[85] A Gábor, AF Villaverde, and JR Banga. Parameter identifia-
bility analysis and visualization in large-scale kinetic models of
biosystems. BMC systems biology, 11(1):1–16, 2017.

[86] Y Berset, D Merulla, A Joublin, V Hatzimanikatis, and
JR Van Der Meer. Mechanistic modeling of genetic circuits
for arsr arsenic regulation. ACS synthetic biology, 6(5):862–874,
2017.
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[123] L López-Maury, S Marguerat, and J Bähler. Tuning gene ex-
pression to changing environments: from rapid responses to evo-
lutionary adaptation. Nature Reviews Genetics, 9(8):583–593,
2008.

[124] AM Huerta and J Collado-Vides. Sigma70 promoters in es-
cherichia coli: specific transcription in dense regions of over-
lapping promoter-like signals. Journal of molecular biology,
333(2):261–278, 2003.

[125] JE Mitchell, D Zheng, SW Busby, and SD Minchin. Identifica-
tion and analysis of ‘extended–10’promoters in escherichia coli.
Nucleic acids research, 31(16):4689–4695, 2003.

[126] C Yang, AJ Hockenberry, MC Jewett, and LAN Amaral. Deple-
tion of shine-dalgarno sequences within bacterial coding regions
is expression dependent. G3: Genes and Genomes and Genetics,
6(11):3467–3474, 2016.

[127] A Feklistov, BD Sharon, SA Darst, and CA Gross. Bacterial
sigma factors: a historical and structural and genomic perspec-
tive. Annual review of microbiology, 68:357–376, 2014.

209



BIBLIOGRAPHY

[128] MD Engstrom and BF Pfleger. Transcription control engineering
and applications in synthetic biology. Synthetic and systems
biotechnology, 2(3):176–191, 2017.

[129] MR Amin, A Yurovsky, Y Chen, S Skiena, and B Futcher. Re-
annotation of 12 and495 prokaryotic 16s rrna 3’ends and analysis
of shine-dalgarno and anti-shine-dalgarno sequences. PloS one,
13(8):e0202767, 2018.

[130] D Omotajo, T Tate, H Cho, and M Choudhary. Distribution
and diversity of ribosome binding sites in prokaryotic genomes.
BMC genomics, 16(1):604, 2015.

[131] A de Jong, H Pietersma, M Cordes, OP Kuipers, J Kok, and
Jan. Pepper: a webserver for prediction of prokaryote promoter
elements and regulons. BMC genomics, 13(1):299, 2012.

[132] VSA Salamov and A Solovyevand. Automatic annotation of mi-
crobial genomes and metagenomic sequences. Metagenomics and
its applications in agriculture and biomedicine and environmen-
tal studies. Hauppauge: Nova Science Publishers, pages 61–78,
2011.

[133] W He, C Jia, Y Duan, and Q Zou. 70propred: a predictor
for discovering sigma70 promoters based on combining multiple
features. BMC systems biology, 12(4):44, 2018.

[134] SDA e Silva, S Echeverrigaray, and GJL Gerhardt. Bacpp: bac-
terial promoter prediction—a tool for accurate sigma-factor spe-
cific assignment in enterobacteria. Journal of theoretical biology,
287:92–99, 2011.

[135] RK Umarov and VV Solovyev. Recognition of prokaryotic and
eukaryotic promoters using convolutional deep learning neural
networks. PloS one, 12(2):e0171410, 2017.

210



BIBLIOGRAPHY

[136] L Coppens and R Lavigne. Sapphire: a neural network based
classifier for σ70 promoter prediction in pseudomonas. BMC
bioinformatics, 21(1):1–7, 2020.

[137] M Di Salvo, E Pinatel, M Fondi A Talà, C Peano, and A Ali-
fano. G4promfinder: an algorithm for predicting transcription
promoters in gc-rich bacterial genomes based on at-rich elements
and g-quadruplex motifs. BMC bioinformatics, 19(1):36, 2018.

[138] V Rangannan and M Bansal. Relative stability of dna as a
generic criterion for promoter prediction: whole genome anno-
tation of microbial genomes with varying nucleotide base com-
position. Molecular bioSystems, 5(12):1758–1769, 2009.

[139] M Tompa. An exact method for finding short motifs in sequences
and with application to the ribosome binding site problem. In
ISMB, volume 99, pages 262–271, 1999.

[140] LM Maurer, E Yohannes, SS Bondurant, M Radmacher, and
JL Slonczewski. ph regulates genes for flagellar motility and
catabolism and oxidative stress in escherichia coli k-12. Journal
of bacteriology, 187(1):304–319, 2005.

[141] ET Hayes, JC Wilks, P Sanfilippo, E Yohannes, DP Tate,
BD Jones, MD Radmacher, SS BonDurant, and JL Slonczewski.
Oxygen limitation modulates ph regulation of catabolism and
hydrogenases and multidrug transporters and envelope compo-
sition in escherichia coli k-12. BMC microbiology, 6(1):89, 2006.

[142] MW Covert, EM Knight, JL Reed, MJ Herrgard, and BO Pals-
son. Integrating high-throughput and computational data eluci-
dates bacterial networks. Nature, 429(6987):92–96, 2004.

211



BIBLIOGRAPHY

[143] S Saito, S Aburatani, and K Horimoto. Network evaluation from
the consistency of the graph structure with the measured data.
BMC systems biology, 2(1):84, 2008.

[144] Y Asakura, H Kojima, and I Kobayashi. Evolutionary genome
engineering using a restriction–modification system. Nucleic
acids research, 39(20):9034–9046, 2011.

[145] SE Cohen, CA Lewis, RA Mooney, MA Kohanski, JJ Collins,
R Landick, and GC Walker. Roles for the transcription elonga-
tion factor nusa in both dna repair and damage tolerance path-
ways in escherichia coli. Proceedings of the National Academy of
Sciences, 107(35):15517–15522, 2010.

[146] P Berger, IU Kouzel, M Berger, N Haarmann, U Dobrindt,
GB Koudelka, and A Mellmann. Carriage of shiga toxin phage
profoundly affects escherichia coli gene expression and carbon
source utilization. BMC genomics, 20(1):1–14, 2019.

[147] RT Veetil, N Malhotra, A Dubey, and ASN Seshasayee. Labo-
ratory evolution experiments help identify a predominant region
of constitutive stable dna replication initiation. Msphere, 5(1),
2020.

[148] A Anand, K Chen, L Yang, AV Sastry, CA Olson, S Poudel,
Y Seif, Y Hefner, PV Phaneuf, S Xu, et al. Adaptive evolution
reveals a tradeoff between growth rate and oxidative stress dur-
ing naphthoquinone-based aerobic respiration. Proceedings of
the National Academy of Sciences, 116(50):25287–25292, 2019.

[149] D Kim, SW Seo, Y Gao, H Nam, GI Guzman, BK Cho, and
BO Palsson. Systems assessment of transcriptional regulation
on central carbon metabolism by cra and crp. Nucleic acids
research, 46(6):2901–2917, 2018.

212



BIBLIOGRAPHY

[150] SW Seo, D Kim, EJ O’Brien, R Szubin, and BO Palsson. Decod-
ing genome-wide gadewx-transcriptional regulatory networks re-
veals multifaceted cellular responses to acid stress in escherichia
coli. Nature communications, 6(1):1–8, 2015.

[151] E Dzyubak and MNF Yap. The expression of antibiotic resis-
tance methyltransferase correlates with mrna stability indepen-
dently of ribosome stalling. Antimicrobial agents and chemother-
apy, 60(12):7178–7188, 2016.

[152] T Winter, J Winter, M Polak, K Kusch, U Mäder, R Sietmann,
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