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Abstract

In the last decades traffic congestion in freeway systems has become a major

problem, seriously affecting productivity, thus leading to a great social-economic

cost. Congestion results in increased travel times for drivers, reduced safety and

pollutant emissions. Variable speed limits and ramp metering are some of the

most spread techniques for controlling traffic. Recent studies on the future of

mobility have highlighted that the automotive world is changing fast, thanks to the

newly available technology, and the future of vehicles is expected to move towards

connectivity and automation. This introduces the possibility of evaluating new

traffic control actions, adopting Connected and Automated Vehicles (CAVs) both

as sensors and actuators. In this perspective, conventional traffic models need

to be revised in order to capture the impact of smart vehicles on the traffic flow,

and specific control actions can be introduced. This research mainly focuses on

revising conventional macroscopic traffic models, suitable for traffic control purposes

due to their lower computational complexity, in order to capture the presence of

smart vehicles. Different modelling approaches are investigated. A first approach

consists in modelling each single CAV as it was a moving bottleneck, impacting on

the surrounding traffic. A second explored approach considers multi-class mixed

human-driven and automated vehicles traffic flows.

The great spread of CAVs expected in next years suggests that high penetration

rates are likely to appear in traffic systems. In this context, in addition to control

each single smart vehicle, the possibility of controlling platooning of CAVs can be

envisaged to increase the effectiveness of the traffic control action. Macroscopic

models incorporating platoons, belonging to the class of moving bottlenecks models,

are then discussed. Once obtained reliable modeling of CAVs moving in the traffic

flow, specific control actions are designed. The speed, the number of occupied lanes

and the length of platoons can be controlled in cooperative variable speed limits

framework, where CAVs act as actuators for the traffic control laws. Adopting

macroscopic first-order traffic flow models, although it is a good choice for traffic
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control applications, introduces the problem of not being able to capture the capacity

drop phenomenon. This has also been field of study and a model to describe the

capacity drop in first-order models is presented.

As last point covered in this thesis, the conventional ramp metering control, already

successfully applied worldwide, is revised by applying a sliding mode algorithm. A

multi-level hierarchical more complex architecture is also developed to guarantee

robustness of the control action in front of disturbances, thanks to the application

of the sliding mode algorithms as decentralized controllers, supervised by an higher

level model predictive control generating the optimal reference.

iii



Acknowledgements

First and foremost, I would like to thank my supervisor Antonella Ferrara for

all the support and the motivation, as well as all the opportunity that she provided

me during my PhD.

I would also like to express my deep gratitude to Paola Goatin for her invaluable

guidance and inspiration, starting since my first visit at INRIA.

I would like to thank Karl Henrik Johansson for hosting me at the KTH and Mladen

Cicic for the fruitful collaboration and the useful discussions.

My sincere thanks also go to Markos Papageorgiou and Ioannis Papamichail for

hosting me at the Technical University of Crete, and for sharing their immense

knowledge in the traffic control field.

Special thanks to my co-authors, Cecilia Pasquale, Silvia Siri, Simona Sacone for

the fruitful collaboration.

I am deeply grateful to all my lab mates from the Lab SISDIN, for the special

atmosphere and the lunch discussions.

I also want to especially thanks Andrea, Bianca and Massimo for sharing with me

this experience and for the continuous encouragement.

I would like to express my gratitude to my family and to my cousin Silvia for the

support.

A special thanks to my boyfriend Daniele, for being by my side during this path.

Finally, a heartfelt thanks goes to my friends, Alessandra, Alessandro, Benedetta,

Caterina, Clelia, Eleni, Federico, Gemma, Greta, Linda, Lucrezia, Valentina and

Vittoria, that, year after year, always support me.

iv





Contents

Abstract ii

Outlines and Contribution of the Thesis 1

Introduction 1

1 Background 7

1.1 Traditional Control Methods for Highway Traffic Systems . . . . . . 7

1.1.1 Ramp Metering Control . . . . . . . . . . . . . . . . . . . . 7

1.1.2 Variable Speed Limits Control . . . . . . . . . . . . . . . . . 9

1.2 Intelligent Transportation Systems . . . . . . . . . . . . . . . . . . 10

1.2.1 Traffic Control Actuation via CAVs and Cooperative Variable

Speed Limits . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2.2 Macroscopic multi-class models for traffic flow . . . . . . . . 15

1.2.3 Macroscopic traffic models incorporating moving bottlenecks 16

1.3 Platooning on highways: effects on the traffic flow . . . . . . . . . . 17

2 Preliminaries 19

2.1 An overview of macroscopic traffic models . . . . . . . . . . . . . . 19

2.2 The Capacity Drop Phenomenon . . . . . . . . . . . . . . . . . . . 25

2.2.1 A CTM extension for capacity drop . . . . . . . . . . . . . . 26

2.3 Model Predictive Control . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Sliding Mode Control . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5 Performance indexes . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Macroscopic Traffic Models Incorporating Intelligent Vehicles 32

3.1 Intelligent Vehicles as Moving Bottlenecks . . . . . . . . . . . . . . 32

3.1.1 A coupled PDE-ODE model for Moving Bottlenecks in Traffic

Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

v



3.1.2 Control of moving bottlenecks for congestion dissipation . . 36

3.1.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 A Multi-class Model for Mixed Automated and Human-Driven Traffic

Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.1 The Multi-class Model . . . . . . . . . . . . . . . . . . . . . 42

3.2.2 Control of intelligent vehicles . . . . . . . . . . . . . . . . . 45

3.2.3 Simulations Results . . . . . . . . . . . . . . . . . . . . . . . 45

4 Traffic Models Incorporating Platoons of Intelligent Vehicles 52

4.1 A CTM extension to capture platoons of intelligent Vehicles . . . . 52

4.1.1 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1.2 Multiple Moving Bottlenecks Control via Platoons of Intelli-

gent Vehicles . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1.3 Proportional Integral Control Strategy . . . . . . . . . . . . 57

4.1.4 A Model Predictive Control Strategy for Travel Time Reduction 63

4.2 A PDE-ODE Model for Platoons of CAVs . . . . . . . . . . . . . . 70

4.2.1 The coupled PDE-ODE model . . . . . . . . . . . . . . . . . 70

4.2.2 Traffic Control via Platoons of Intelligent Vehicles for Saving

Fuel Consumption in Freeway Systems . . . . . . . . . . . . 88

4.2.3 Final considerations . . . . . . . . . . . . . . . . . . . . . . 95

5 An application of a Second Order Sliding Mode Algorithm for

Ramp Metering 97

5.0.1 Second-order sliding mode control . . . . . . . . . . . . . . . 98

5.0.2 Introduction of the canonical form for the SMC . . . . . . . 99

5.0.3 Auxiliary system . . . . . . . . . . . . . . . . . . . . . . . . 101

5.0.4 The SSOMC algorithm . . . . . . . . . . . . . . . . . . . . . 102

5.0.5 Extension to the classical SSOSM control . . . . . . . . . . . 103

5.0.6 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . 103

5.0.7 A Hierarchical MPC and Sliding Mode Based Two-Level

Control for Freeway Traffic Systems with Partial Demand

Information . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Conclusion 119

vi



List of Figures

1 Recurrent and non-recurrent congestion in freeway systems is a major

problem. Example of congestion on a Chinese highway. (Photo from

Pixabay) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Advanced traffic control technologies and modern highway infras-

tructure represent a key point in the development of smart cities.

(Photo from Pexels) . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2 New communication features enable several levels of cooperation

among vehicles and/or vehicles and the infrastructure. (Photo from

Getty Images) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Scheme of smart vehicles connected via V2V and V2I communication

systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4 Heavy-duty vehicles driving close behind each other, forming a pla-

toon, experience a reduced aerodynamic drag, and a consequent fuel

consumption reduction. (Photo from Pinterest) . . . . . . . . . . . 17

2.1 Linear speed density relationship and quadratic fundamental diagram. 21

2.2 Demand and supply functions. . . . . . . . . . . . . . . . . . . . . . 22

2.3 Triangular fundamental diagram. . . . . . . . . . . . . . . . . . . . 22

2.4 Demand and supply functions for the CTM model. . . . . . . . . . 23

2.5 Trend of the steady-state speed in the METANET model. . . . . . 25

2.6 Normal and modified demand and supply functions to model the

capacity drop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.7 Scheme of a generic MPC strategy in the traffic control context. . . 30

3.1 Speed of cars and of the MB. . . . . . . . . . . . . . . . . . . . . . 34

3.2 Example of density profile at different times for the initial density (3.5) 36

3.3 Approximated average trend of fuel consumption versus cruise speed

for steady-speed driving . . . . . . . . . . . . . . . . . . . . . . . . 37

vii



3.4 Simulation scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5 Density trend in the no control and controlled case . . . . . . . . . 40

3.6 Control speed of the moving bottleneck. . . . . . . . . . . . . . . . 41

3.7 Sketch of the highway divided in cells. . . . . . . . . . . . . . . . . 43

3.8 Scheme of the control applied to vehicles belonging to the automated

vehicles class. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.9 Demand of cell 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.10 Density trend when no control is applied. . . . . . . . . . . . . . . . 47

3.11 Comparison between control scenarios with different penetration rate

of CAVs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.12 CAVs class control speed computed via the MPC. . . . . . . . . . . 49

3.13 Distribution of the penetration rate of class a vehicles along then

stretch of highway . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1 The centralized control scheme . . . . . . . . . . . . . . . . . . . . . 57

4.2 The decentralized control scheme . . . . . . . . . . . . . . . . . . . 58

4.3 Inflow in the stretch . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4 Evolution of the density in time and space in the uncontrolled case

and with the moving bottleneck control. . . . . . . . . . . . . . . . 60

4.5 Example of position and speed of one of the controlled moving

bottleneck. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.6 Density trend in cell i = 12 in the no-control case and with the

application of the moving bottleneck control. . . . . . . . . . . . . . 62

4.7 Trapezoidal traffic demand. . . . . . . . . . . . . . . . . . . . . . . 64

4.8 Density trend in the case with traditional CTM 4.8(a), CTM with

capacity drop and no control 4.8(b) and CTM with capacity drop

and control 4.8(c). . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.9 Discharge flow from the cell in which the bottleneck is located. . . . 69

4.10 Example of the trend of the control speed for two moving bottlenecks. 69

4.11 Sketch of platoon on the highway. . . . . . . . . . . . . . . . . . . . 71

4.12 Solutions to the Riemann problem at the downstream end-point

of the platoon, considering different initial data. The non-classical

shock corresponding to the discontinuity in the flux is depicted in

red, taken from [124] . . . . . . . . . . . . . . . . . . . . . . . . . . 77

viii



4.13 Solutions to the Riemann problem (4.28) for different initial data.

The non-classical shock corresponding to the flux discontinuity is

depicted in red [124]. . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.14 Demand and supply considering the normal flow and the reduced flow 79

4.15 Representation of the reconstruction at the downstream endpoint

discontinuity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.16 Representation of the reconstruction algorithm (4.29)–(4.30) at the

downstream endpoint of the platoon. . . . . . . . . . . . . . . . . . 82

4.17 Representation of the reconstruction algorithm at the upstream

endpoint of the platoon. . . . . . . . . . . . . . . . . . . . . . . . . 82

4.18 Density profile at the front of the platoon at time t = 0.5 for the

different type of initial data. . . . . . . . . . . . . . . . . . . . . . . 85

4.19 Density profile at the back-end of the platoon at time t = 0.5 for

different initial data. . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.20 Density profile at different times corresponding to the initial condi-

tion (4.32). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.21 Space-time evolution of the solution to (4.19) corresponding to the ini-

tial datum (4.32): plot (a) displays the absolute density values ρ(t, x)

everywhere, plot (b) accounts for the relative density ρ(t, x)/αR at

the platoon location, accounting for the reduced road capacity. . . . 89

4.22 Evolution of the density in time and space in the uncontrolled and

controlled scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.23 Speed of the front-end and back-end of the platoon and length varying

in time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.24 Density trend in the simple moving bottleneck control of [125] . . . 96

5.1 Freeway segment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.2 Sketch of the considered highway portion . . . . . . . . . . . . . . . 103

5.3 Inflow to the highway . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.4 Density trend in the uncontrolled and controlled case . . . . . . . . 106

5.5 Controlled metering rate for the three ramps . . . . . . . . . . . . . 107

5.6 Trend of the sliding variables . . . . . . . . . . . . . . . . . . . . . 107

5.7 Queue length at the ramps . . . . . . . . . . . . . . . . . . . . . . . 108

5.8 Scheme of the multi-level hierarchical control . . . . . . . . . . . . . 111

5.9 Sketch of the considered highway portion . . . . . . . . . . . . . . . 111

ix



5.10 Example of incoming traffic demand both on the mainstream and

on-ramps, with an overlapped disturbance having amplitude equal

to 10% of the nominal demand. . . . . . . . . . . . . . . . . . . . . 112

5.11 Percentage of growth in travel times with increasing disturbances

when the MPC standalone is used . . . . . . . . . . . . . . . . . . . 114

5.12 Density trend in the three considered scenarios. (a) unmetered case

(S1). (b) MPC standalone (S2). (c) high level MPC with local

SSOSM control (S3) . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.13 Reference signals genereted by the MPC control . . . . . . . . . . . 116

5.14 Sliding variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.15 Control inputs computed by the controller . . . . . . . . . . . . . . 117

5.16 Traffic queues forming at the on-ramps 4 and 6 . . . . . . . . . . . 117

x



List of Tables

3.1 Simulation parameters . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Comparison between cost functionals in the controlled and uncon-

trolled case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Comparison between performance indexes in the uncontrolled case

and in the control case with different penetration rate. . . . . . . . 50

4.1 Simulation parameters. . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2 Comparison between cost functionals. . . . . . . . . . . . . . . . . . 67

4.3 Comparison between cost functionals. . . . . . . . . . . . . . . . . . 95

5.1 Simulation parameters . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.2 Performance indexes . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.3 Travel times by applying only the MPC with increasing disturbances

acting on the system . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.4 Performance indexes . . . . . . . . . . . . . . . . . . . . . . . . . . 116

xi





Introduction

Figure 1: Recurrent and non-recurrent congestion in freeway systems is a major problem.

Example of congestion on a Chinese highway. (Photo from Pixabay)

Nowadays traffic congestion, both in urban and extra-urban areas, is a major

problem. Traffic congestion appears every time that too many vehicles attempt

to use a common transportation infrastructure with limited capacity at the same

time. Highways, that were originally designed to have a sufficient capacity for

virtually unlimited mobility, due to the increasing volumes of traffic, are now

affected by recurrent and non-recurrent congestion, that leads to a degradation of

the infrastructure. Congestion has a strong socio-economical impact, since it results

in excess delays, reduced safety, and increased environmental pollution. The cost of

congestion is partially related to the waste of time due to the increasing travel time

that drivers spend on the roads. In addition to the travel times increase, the fuel

consumption and the associated emissions of CO2, hydro-carbons, or particulated

matter, are crucial factors when estimating the costs associated with vehicular
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traffic. The fuel consumption of vehicular traffic is strongly correlated with the

velocity profiles of the vehicles. Congestion introduces the need for an increased

number of slow-downs and speed-ups that lead to an increased fuel consumption.

In [139], [58] the effect of traffic congestion on the fuel consumption is investigated,

showing that the increase in consumption can be really high, around 80%. In [8]

the impact of traffic congestion on CO2 and greenhouse gases emissions, and their

impact on global warming is studied. Authors have highlighted how congestion

mitigation, traffic smoothing and speed management strategies could reduce CO2

approximately by the 30%. Traffic related pollution has also a consequent impact

on people safety. For example, in the study carried out in [93], an evaluation of the

public health impacts of ambient exposures to fine particulate matter (PM2.5) is

done, leading to very negative cost estimations. An estimate of the economic cost

of traffic congestion in U.K. has also been done in [56], resulting in a really high

predicted cost for the society. Lastly, traffic congestion has a strong influence on

drivers and passengers well-being since, as highlighted in the study carried out in

[69], [68], drivers traveling in rush hours experience high levels of stress.

For all these reasons, an efficient management of freeways traffic networks has

become of paramount importance. Advanced technologies and methodologies have

been recently designed and are still under development with the aim to provide

users with a safe, sustainable and smart traffic system.

This Thesis aims at revising traditional traffic control technologies, in the new

recent context of autonomy, connectivity and automation that are spreading in

road systems. Traditional control systems will be also adapted to this new context,

introducing new algorithms that incorporates smart vehicles in traffic control

systems in a cooperative way.
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Outlines and Contribution of the

Thesis

In this section, an overview of the thesis is provided, by describing the content

of each chapter, the relative contribution and the publications on which each work

is based.

Chapter 1: Background

In this chapter, a background is given to the research, firstly reporting a summary

of traditional traffic models and control strategies. Then, an overview of Intelligent

Transportation Systems (ITS) is reported, focusing on new technologies that are

becoming available and that can be exploited in the traffic control domain. Possible

models for capturing smart vehicles moving in a human-driven traffic flow are also

discussed. In additional to this, advantages deriving from the use of platoons, both

for vehicles traveling in the platoon itself and for the rest of the traffic flow, are

described.

Chapter 2: Preliminaries

In this chapter, basic topics that are needed for the thesis comprehension are

detailed. Specifically, the equations of the basic traffic models that are adopted

along the discussion are introduced. Moreover, the chapter introduces the problem

of the capacity drop, an important phenomenon that affects highways in presence

of bottlenecks. Macroscopic first order models do not capture this important

phenomenon, then several extensions have been proposed in the literature. This

thesis contributes to the modeling of the capacity drop in first-order models with

the proposal of a new extension to the Cell Transmission Model (CTM), that is

consistent with empirical observations. This extension has the advantage to be

a simple model and of being able to model different aspects of the capacity drop

3



phenomenon, as the congestion forming also in the bottleneck cell, in addition to

the reduced discharge flow. The capacity drop model was proposed in

� G. Piacentini, A. Ferrara, I. Papamichail, and M. Papageorgiou. “Highway

Traffic Control with Moving Bottlenecks of Connected and Automated Vehicles

for Travel Time Reduction”. In: Proceedings of the 58th Conference on

Decision and Control (CDC). 2019, pp. 3140–3145

The chapter ends with a list of performance indexes that will be used to evaluate

the performance of the proposed control actions throughout the dissetation.

Chapter 3: Macroscopic Traffic Models Incorporating Intelligent Vehi-

cles

In this chapter, models contributed by the author to describe the interaction

between normal vehicles and smart vehicles are presented. Indeed, the main

contribution of this thesis in the traffic control context is the idea of exploiting

moving bottlenecks, large slow moving vehicles, in an innovative way. Moving

bottlenecks, usually considered detrimental for the traffic flow, are here controlled

and adopted as actuators to regulate the surrounding traffic. To do this, specific

models are needed. While several microscopic modeling approaches are present

in the literature, not many research have faced this problem from a macroscopic

point of view. This thesis presents several models to capture moving bottlenecks

in the traffic flow. A moving bottleneck model and its speed control have been

developed, showing to be effective to dissipate traffic congestion and to reduce fuel

consumption of the overall traffic flow. This has been presented in the following

publication:

� Giulia Piacentini, Paola Goatin, and Antonella Ferrara. “Traffic control via

moving bottleneck of coordinated vehicles”. In: Proceedings of the 15th IFAC

Symposium on Control in Transportation Systems (CTS) 51.9 (Jan. 2018),

pp. 13–18

A second contribution in modelling smart vehicles in a macroscopic way has

been developed by adopting a different approach that considers a flow divided

in several classes of vehicles. Specifically, a new multi-class flow model has been

developed by extending the traditional CTM. Unlike the majority of multi-class

models present in the literature, this model distinguishes classes on the basis of

4



both their headway and their speed. Then, the speed of the automated cars class

has been assumed as control variable in an optimal control design, showing good

results in terms of travel times reduction for the overall traffic flow. This is based

on the work published as:

� Giulia Piacentini, Mladen Cicic, Antonella Ferrara, and Karl Henrik Johans-

son. “VACS equipped vehicles for congestion dissipation in multi-class CTM

framework”. In: Proceedings of the 18th European Control Conference (ECC).

2019, pp. 2203–2208

Chapter 4: Traffic Models Incorporating Platoons of Intelligent Vehicles

In this chapter, the concept of traffic control via smart vehicles is further

extended considering platoons of CAVs as actuators. Although in the literature

there are several studies about platooning and its benefits for vehicles traveling

in it, the impact of platoon on traffic is not yet well understood and few results

are available. Two different macroscopic models for platooning, from the point of

view of traffic, are contributed by the author. Moreover, platoons are also exploited

as actuators to mitigate congestion. The speed and the length of the platoon are

indeed assumed as control variables with the aim of reducing travel times and fuel

consumption on highway. This approach showed good results in simulations. The

chapter is based on the following publications:

� Giulia Piacentini, Cecilia Pasquale, Simona Sacone, Silvia Siri, and Antonella

Ferrara. “Multiple Moving Bottlenecks for Traffic Control in Freeway Sys-

tems”. In: Proceedings of the 18th European Control Conference (ECC).

Napoli, Italy, 2019

� Giulia Piacentini, Paola Goatin, and Antonella Ferrara. “A Macroscopic

Model for Platooning in Highway Traffic”. In: SIAM Journal on Applied

Mathematics 80.1 (Jan. 2020), pp. 639–656

� G. Piacentini, P. Goatin, and A. Ferrara. “Traffic Control Via Platoons of

Intelligent Vehicles for Saving Fuel Consumption in Freeway Systems”. In:

IEEE Control Systems Letters 5.2 (2021), pp. 593–598
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Chapter 5: An application of a Second Order Sliding Mode Algorithm

to the Ramp Metering Problem

In this chapter, a different traffic control approach is adopted, focusing in

the traditional ramp metering control. A sub-optimal second-order sliding mode

algorithm is developed to solve a decentralized ramp metering problem. A more

sophisticated control scheme, based on a two level model predictive control and

sliding mode control, is also presented to improve robustness in front of uncertainties

acting on the system. The work is based on:

� Giulia Piacentini, Gian Paolo Incremona, and Antonella Ferrara. “Freeway

Traffic Control via Second-Order Sliding Modes Generation”. In: Proc.

European Control Conference. Saint Pittsburgh, Russia, May 2020, pp. 1–6

� Antonella Ferrara, Gian Paolo Incremona, and Giulia Piacentini. “A Hierar-

chical MPC and Sliding Mode Based Two-Level Control for Freeway Traffic

Systems with Partial Demand Information”. In: Provisionally accepted to the

European Control Journal. 2021

Conclusion and Future Work

Finally, in this chapter the thesis is concluded, by summarizing the most

important obtained results.Some possible future developments are also outlined.
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Chapter 1

Background

The present chapter provides some background on a number of topics relevant

to the rest of the thesis. First, a review of traditional traffic control actions is

provided. Then, since one of the main objective of the thesis is the use of smart

vehicles for traffic control actions, Intelligent Transportation Systems (ITS) and new

technologies that have recently become available to drivers are reviewed. Possibilities

introduced by the presence of smart vehicles for traffic control are investigated,

and the most popular models developed to describe smart vehicles are resumed.

Platooning and related traffic aspects are also discussed.

1.1 Traditional Control Methods for Highway Traf-

fic Systems

In the last decades several traffic control actions have been studied and, often,

successfully applied. In the following, two of the most common traffic control

methods are reviewed.

1.1.1 Ramp Metering Control

Ramp metering (RM) is a well-known traffic control strategy that acts by

regulating the number of vehicles that can access the mainstream from on-ramps,

based on the current traffic situation and it is implemented via traffic lights [115].

RM represents the most direct action to control the highway traffic in the mainstream

since it regulates the flow accessing it. This makes ramp metering one of the most

effective traffic control strategy.

RM control can be local or coordinated. The local one is implemented in the vicinity
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of each single ramp and takes into account only the local value of the density to

compute the controlled metering rate. On the other hand, a coordinated ramp-

metering controller collects information about the values of all the densities along

the controlled stretch and then establishes the proper control input for each ramp.

Once the amount of inflow allowed to access the mainstream is set by the controller,

the actuation is done by means of traffic lights. It can be implemented both via

traffic-cycle realization by converting the input information into a green-phase

duration, or via an one-car-per-green realization, where only one car is allowed to

pass for each green phase [117]. In addition to the direct control of the flow accessing

the mainstream, RM has several side effects that have proven to be beneficial for

the traffic flow. One of them is that RM can avoid the blocking of off-ramps due to

queues forming in their proximity. Moreover, the RM approach influences routing

decisions of drivers and can help to distribute them on different paths [112]. In

terms of safety, ramps metering improves road merging, reducing the occurrence of

car accidents [90].

The implementation of RM is traditionally done by adopting the well-known

ALINEA [113], that has a simple local feedback control structure. ALINEA has

been successfully applied worldwide and several field results are also available

[114]. A proportional integral version has been also implemented, the so called

PI-ALINEA [150], showing better performances in the case of bottlenecks located

downstream of the metered ramp. The RM problem is also often solved by means

of more sophisticated methods, based on optimal control approaches (see, among

others, [49, 85]). In [84] a coordinated ramp metering problem is formulated

as a constrained discrete-time nonlinear optimal control problem. A distributed

model predictive control (MPC) scheme for freeway systems is applied in [47]. The

drawback of optimal control strategies is the computational complexity that derives

from the solution of large and often nonlinear optimization problems. This issue was

successfully faced in [43] in which instead of computing the control law at each time

step, an event-triggered MPC scheme is proposed. The control law is updated only

when a given set of conditions is verified, thus strongly reducing the computational

complexity. Another solution was proposed in [48], where a first-order model is

formulated in a switched version and a switched controller is designed by adopting

different control laws, depending on the current mode of the system.

A traffic system, due to its nature, is affected by several uncertainties which are

often not manageable by adopting traditional control schemes. A solution that can

face this issue is the application of Sliding Mode (SM)[144, 44] algorithms, that
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have the advantage to be robust in front of disturbances acting on the system. In

Chapter 5, a sliding mode algorithm will be presented to solve the ramp metering

problem in an innovative way.

1.1.2 Variable Speed Limits Control

Variable Speed Limit (VSL) control systems consist in dynamic changing speed

limits in response to traffic and weather conditions. Speed, volume detection, and

road weather information are used to select the proper speeds which is communi-

cated to drivers via variable posted signs [82]. VSLC has several positive effects on

traffic. First of all, traffic breakdowns are easily resolved and sometimes avoided,

for example by slowing down vehicles upstream of bottlenecks. In [61], [28], [27] the

effectiveness of VSLC in reducing delays and queues at active bottlenecks locations

are studied. In [26] the challenging problem of recurrent congestion on commuting

corridors is faced by means of an innovative system that integrates variable speed

control and travel time information for alleviating day-to-day recurrent congestion,

obtaining higher throughput, stable traffic conditions, and shorter travel times. A

MPC-based optimal coordination of variable speed limits to suppress shock waves

in freeway systems is reported in [64], achieving a safer traffic flow by homogenizing

the speeds. An empirical study focusing on identification and examination of

several recurring freeway bottlenecks based on traffic data from a German highway

is reported in [15], showing the influence of VSL on the congestion forming at

bottlenecks. By reducing the speed of vehicles, also fuel consumption and related

emissions are reduced.

A design of VSLC specifically oriented to reduce pollutant emissions is done in [99].

Minimizing the fuel consumption of a single vehicle, authors obtain the optimal

trajectory, then a consequent carbon-footprint/fuel-consumption-aware variable-

speed limit traffic control designed based on the optimal trajectory is applied.

The homogenization of speeds consequent to the employment of VSLC leads to

improvements in safety. In [1] the potential benefits of VSL implementation for

reducing the crash risk on highways at different loading scenarios was studied, by

proving that VSL is an effective crash prevention strategy, especially when the

freeway is operating in uncongested conditions. In [94], a VSL control strategy

to reduce the risks of secondary collisions during inclement weathers is developed.

Indeed, bad weather conditions reduce travelers sight distance and increases vehicles

stopping distance, resulting in increased risk of collisions. By selecting the speed
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limit depending on traffic and weather condition, collisions are strongly reduced.

Another potential benefit of VSLC is in presence of work zones. In [98] results of

the conducted analyses have confirmed that VSL algorithms can yield a substantial

increase in both work-zone throughput and a reduction in delays of users. A

practical methodology to reduce traffic conflicts at work zones based on VSLC

was proposed in [86] and evaluated in the field on a highway in Minnesota. VSLC

control has been often applied in combination with ramp metering to obtain more

effective combined actions, some examples are present in [118], [101], [22] and [65].

Although the list of VSL positive aspects is long, two main drawbacks character-

ize the traditional VSLC. First, traditional VSLs require ad hoc infrastructure, as

stationary detectors to estimate the current traffic state and variable message signs

to communicate the speed limit. Moreover, the impact of VSLs is very sensitive

to the level of driver’s compliance to the posted speed limits. The compliance

rate has been proved to be very low, especially when dealing with familiar routes.

For instance, an experimental study was reported in [63], where participants were

familiarised with a particular route and then the displayed speed limit was changed.

The experiments showed that most of the driver, after passing all signs, were still

unaware that the speed limit had changed. In [67], a simulation model to evaluate

the sensitivity of the safety and operational impacts of VSL to driver compliance is

developed, finding out that VSL impacts are very sensitive to the level of drivers

compliance.

A solution to all these drawbacks can be found looking at new technologies that are

now being implemented on vehicles, leading to an Intelligent Transportation System

(ITS), where connected and automated vehicles can cooperatively contribute to

actuate traffic control methodologies.

1.2 Intelligent Transportation Systems

Recent studies on the future of mobility have highlighted that the automotive

world is changing fast, due to the new technologies that have become available and

in few years the automotive industry is expected to look radically changed. The

future of vehicles is expected to move towards four major trends: shared/diverse

mobility, electrification, connectivity and autonomous driving [147]. This renovated

mobility scenario is expected to increase customer convenience and safety, but also

to have a strong impact on the whole freeway system.
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Figure 1.1: Advanced traffic control technologies and modern highway infrastructure

represent a key point in the development of smart cities. (Photo from Pexels)

Focusing on vehicles automation, it is necessary to consider that there are several in-

termediate stages that need to be traversed in order to enter into the fully connected

and automated mobility, but car connectivity is already a fact. A considerable

number of new functionalities are offered to drivers and passengers by automated

systems, which aim at making the driving experience safer and less demanding.

Some of the offered technologies are the possibility of enabling autonomous driving

on highways and temporary platooning of multiple cars, adaptive cruise control with

consumption optimization and overtaking assistance systems. In urban context,

intersections and parking assistance have encounter increasing popularity [78].

Autonomy allows vehicles to accomplish tasks without the driver being alert, awake

or even present. Six consequent levels of automation are identified by the interna-

tional standard [77], starting from level 0, with no automation present, to level 5,

where the vehicle is fully autonomous and the human presence is no longer necessary

or, in some cases, possible.

On the other hand, new functionalities and features are provided to users in

term of connectivity, but also the whole traffic management system can benefit

of connectivity, especially aiming at exploiting connected vehicles both as sensor,

to gather information from the highway, and as actuators, to apply traffic control

actions

Indeed, a connected car is able to exchange information in real time with its

surroundings. Among all the existing VACS (Vehicle Automation and Commu-

nication Systems) categories, Vehicle-to-Environment (V2E) communication and,
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Figure 1.2: New communication features enable several levels of cooperation among

vehicles and/or vehicles and the infrastructure. (Photo from Getty Images)

specifically, Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) systems,

depicted in the scheme of Fig. 1.3, can be efficiently used for traffic control purposes

[39].

This kind of connection technologies enables data-enhanced driving functionalities,

as for example the automatic vehicle speed adjustment depending on the traffic

flow condition and the actual speed limits, based on Intelligent Speed Adaptation

(ISA) systems [23], [145].

Several additional technologies are becoming available for drivers. The primary

functionality of the so called Cruise Control (CC) is to maintain a desired speed set

by a driver. The Adaptive Cruise Control (ACC) represents an advanced version

of the earlier CC system, introducing the control of the acceleration based on a

distance gap and a speed difference between preceding and current vehicles. ACC

systems can indeed accelerate or decelerate if the preceding vehicle speed changes.

The Cooperative Adaptive Cruise Control (CACC) represents a further extension

to the adaptive cruise control concept. CACC system includes communication

functions, compared to ACC, through V2V communications [41]. Communication

allows the CACC vehicles to have shorter time headway (i.e., 0.5 seconds) compared

to the ACC (i.e., 1.4 seconds). This also improves traffic flow conditions, increasing

the capacity of a road.

It is interesting to glance an analysis of customer demand about connectivity and

automation, as the market research done in [147]. The 55 % of customers appears
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V2V

Figure 1.3: Scheme of smart vehicles connected via V2V and V2I communication

systems.

interested in driving-relating connectivity functionalities. In [105], the survey

highlights the 28 % of people buying a new car prioritizes vehicles connectivity

features over the traditional engine power or fuel efficiency that was preferred in the

past, and 13 % would not even buy an unconnected car. On the other side, promising

business models are expected to be created by the 85 % of the automotive executives

with new technologies in the field of connectivity and automation. The totality of

new cars is then expected to be connected by 2025 [7]. In [66], future scenarios

about the spread of autonomous cars are envisaged. The report claims that before

2030 fully autonomous vehicles are unlikely to be commercially available. On the

other hand, the number of cars equipped with advanced driver-assistance systems

(ADAS) is growing by 23% annually. A more aggressive scenario is envisioned in

[66], claiming that around the 50% of cars that will be sold in 2030 will be highly

autonomous, while an additional 15% will be fully autonomous.

Given this scenario, the great availability of Connected and Automated Vehicles

(CAVs) could be exploited to apply innovative traffic control management and

control techniques. Information about traffic conditions can be gathered via in-car

sensors, in addition to traditional sensors placed along roads. On the other hand,

CAVs are also suitable to be used as actuators, since control actions computed by

centralized decision makers, aware of the conditions along the whole road, could be

communicated to CAVs drivers, or even directly actuated as in-driven commands.
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1.2.1 Traffic Control Actuation via CAVs and Cooperative

Variable Speed Limits

In the literature several examples of cooperative variable speed limits, where

CAVs are exploited both as sensors and actuators are present.

In [146] traditional road-side systems are replaced with intelligent vehicles actu-

ation. A link-level traffic controller regulates traffic speeds through VSL gantries

while intelligent vehicles control accelerations through vehicle propulsion to opti-

mize their local situations. In [133] vehicles equipped with VACS are exploited

both as sensor, gathering traffic data from on-board sensors, and as actuators

for control systems. Three control actions, ramp metering, variable speed limit

and lane changing control, are implemented and the control inputs are directly

sent to automated vehicles, avoiding the need for special infrastructures. In [12]

connected vehicles are instead used as sensors in a “mixed” traffic scenario with

both connected and normal vehicles. Based on the average speed measurements

reported by connected vehicles and from only few spot-sensor-based total flow

measurements, the total density and flow are estimated. A motorway traffic flow

with a sufficient penetration rate of VACS equipped vehicles is considered in [133]

and their presence is exploited to actuate the control action. As the traffic situation

evolves, a Decision Maker (DM) computes the solution of a specific optimization

problem and assigns the control task to the proper equipped vehicle. In [106] a

cooperative mainstream control that uses VSL is a context of presence of automated

vehicles is applied. Since the automated vehicles can be designed to be much more

strict in complying with VSL, the performances of the control are increased. In [59]

communications between the infrastructure and the vehicles are used to transmit

variable speed limits to upstream vehicles before the variable message signs become

visible to the drivers, thus increasing the effectiveness of the control.

These mentioned works have been done in a microscopic context but a macroscopic

approach should be preferred, because of the less computational effort required. To

this aim, conventional models need to be revised in order to capture the presence

of CAVs.

In this thesis, two main approaches will be followed. The first one relies on the

concept of “moving bottleneck”, that is usually studied with the aim to understand-

ing the influence of slow moving vehicles, as buses or trucks, on the traffic. In the

models presented in the following, moving bottlenecks will represent CAVs, whose

speed will be assumed as control variable. A second approach to macroscopically
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model CAVs, is the use of multi-class models, with mixed human-driven and normal

cars flow.

1.2.2 Macroscopic multi-class models for traffic flow

One possible modelling approach is to consider multi-class flows of vehicles.

While this is easy when dealing with microscopic models, it can be tricky when

using macroscopic ones. Microscopic models of traffic are characterized by the fact

that vehicles are considered as individual entities that globally form the traffic

flow. They describe the longitudinal (car-following) and lateral (lane-changing)

behavior of individual vehicles. Each single vehicle-driver units is described by

its dynamical variables: position, speed and acceleration, therefore describing

the reaction of each driver depending on the surrounding traffic. Among all the

microscopic approaches, car-following models describe the interaction between

adjacent vehicles in the same lane. Some of the most well-known car-following

models are the Gazis-Herman-Rothery (GHR) model [53],the Gipps model [54]

and the Intelligent Driver Model (IDM) [140]. A positive aspect of microscopic

models is that since each vehicle is individually considered, it is easy to consider in

the same models vehicles of different types and different mobility characteristics.

A review of simulation microscopic models incorporating CAVs is done in [57].

Among others, in [136], a microscopic framework for simulations in presence of

CAVs is studied, also showing the capability of CAVs in improving stability and in

preventing shockwaves formation. Microscopic modelling considerations for smart

vehicles and CACC systems are present in [108] and [131].

On the other hand, by adopting macroscopic approaches, the description of multi-

class flows can be challenging. Some examples are present in the literature, most

of them initially developed to account for the presence of trucks in the flow. An

example of multi-class gas-kinetic model is presented in [71]. In [133], [132] a first-

order multi-lane macroscopic traffic flow model for motorways with VACS-equipped

vehicles is presented. A micro-macro extension to the second-order METANET

model is studied in [119] to describe the behaviour of trucks in traffic flow. In

[13] an n-population generalization of the Lighthill–Whitham and Richards (LWR)

traffic flow model is presented. An extension of the LWR model with heterogeneous

drivers is also formulated in [148], where the distribution of heterogeneous drivers is

characterized by their choice of speeds in a traffic stream. A similar multi-class CTM

able to model shared human and autonomous vehicle roads, considering multiple
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vehicle classes with different reaction times, is studied in [92]. In Section 3.2, a new

multi-class CTM model, that has been published in [127] will be presented.

1.2.3 Macroscopic traffic models incorporating moving bot-

tlenecks

Moving bottlenecks are usually represented by large slow moving vehicles, as

bus or trucks, that, due to their different motion, influence the surrounding traffic.

Moving bottlenecks are normally considered detrimental for the traffic flow but, in

the last years, an increasing attention has been paid to their possible exploitation

to positively influence the traffic, via proper control actions. A first work in this

direction has been published in [125], where a smart vehicle, modeled as a moving

bottleneck, has been used to control the traffic.

Several experimental results are also available indicating that the control of a small

number of autonomous or automated vehicles can crate benefits for the whole

traffic flow. In [135], experiments on a circular track with several cars have been

done. By controlling a single autonomous vehicle, stop-and-go waves result in being

dampened and also the fuel consumption is reduced. A study about traffic flow

control via very few AVs serving as mobile actuators is also carried out in [35].

Several models describing the interaction between moving bottlenecks and the

traffic flow have been developed in the literature. In [107], moving bottlenecks are

considered in an experimental way. The model given in [31] is an extension of the cell

transmission model that includes the influence of moving bottlenecks and a control

strategy is also derived for traffic jam resolution. A macroscopic model with moving

bottlenecks is also proposed in [109], to study the impact of moving bottlenecks on

the traffic flow, while a theory regarding congested patterns at moving bottlenecks

location is developed in [81]. One of the models adopted in this thesis for moving

bottlenecks is a coupled PDE-ODE model. Introduced in [89], it consists in a simple

model of the interaction between buses and the surrounding traffic flow. This

latter is described by the LWR model, while buses are moving capacity restrictions

from the point of view of other drivers. A rigorous mathematical framework for

that model was then proposed in [37], and a first numerical strategy to compute

approximate solutions was proposed in [38], developing a finite volume algorithm

using a locally non-uniform moving mesh which tracks the bus position. Finally, in

[25], a numerical scheme conservative on fixed meshes and able to compute non-

classical solutions was proposed, leading to the model that will be here adopted.
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Figure 1.4: Heavy-duty vehicles driving close behind each other, forming a platoon,

experience a reduced aerodynamic drag, and a consequent fuel consumption reduction.

(Photo from Pinterest)

Another approach, that will be further detailed in the following of this thesis, is

an extension of the CTM for moving bottlenecks, modeled as restriction on the

free-flow speed [127].

1.3 Platooning on highways: effects on the traffic

flow

Considering the high penetration rate of smart vehicles that is expected to

appear in next years, and the consequent increased availability of vehicles that

can be used to actuate traffic control actions, also their formations, as platooning,

may be taken into account. A platoon is a formation of vehicles in one dimension

constituted by a set of virtually linked vehicles driving at short distances. Platooning

was first introduced for trucks since driving close together strongly improves the

aerodynamics of all trucks in the platoon, as studied in [120]. Thanks to the

recent semi-automated driving technologies, as CACC, trucks are easily enabled to

drive very close. Moreover, new technologies also allow communication between

vehicles joining the platoon, empowering cooperation between vehicles. Obtained

benefits are significant, in terms of decrease in fuel and energy consumption, reduced

greenhouse gas emissions and operating costs. A lot of works are present in the

literature and experimental results are also available. The problem of Heavy-Duty
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Vehicle (HDV) platooning to improve freight transportation sustainability is faced

in [2]. A cooperative approach between HDVs to form platooning and reducing

the fuel consumption while enhancing safety operations is presented, leading to

significant improvements. In [70] the problem of how to coordinate a large fleet of

trucks with a given itinerary to enable fuel-efficient platooning is considered, in order

to elaborate fuel-efficient plans guaranteeing trucks to arrive at their destination

within the given deadline. Experiments on platoon formation when trucks are

moving in the traffic have been also conducted in [95]. An experiment conducted

with two electronically coupled trucks at close spacing in [17] showed that both

trucks experienced a considerable fuel consumption reduction compared to drive

in isolation. In [142], an automated truck platoon and its configuration, sensing

and control systems are studied. Experimental results confirm the effectiveness

on the energy saving due to the formation of the automated platoon, leading to a

fuel consumption reduction of the 14 % when considering only three trucks. While

benefits introduced by platooning on fuel consumption reduction for the platoon

vehicles are clear, and there has also been much work done on controlling the

vehicles inside a platoon (see, among others, [143] [151]), the effect of platoons on

the traffic flow is not yet well understood. Only recently vehicle platooning has

been attracting attention because of its ability to improve road capacity, safety and

fuel efficiency. Assuming that platoons can be controlled by communicating via

V2I communications, they can be used as controlled moving bottlenecks in order to

actuate traffic control actions [30]. This possibility has been recently investigated

in the literature. A fluid queuing model to study the interaction between randomly

arriving vehicle platoons and the background traffic at highway bottlenecks in

a macroscopic way is proposed in [79]. An advanced control algorithm for the

platoon control, which includes additional information about the downstream traffic

conditions, has been developed in [72], with aim of detecting and identifying shock

waves, and adapt the speed of platooned vehicles accordingly.

With the aim of developing a reliable model to capture the effect of platoons in

the surrounding traffic, a new PDE-ODE model, published in [124], is discussed in

Chapter 4.2.1. A control action aiming at reducing congestion and fuel consumption

by controlling the speed and the length of the platoon is also developed in [122].
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Chapter 2

Preliminaries

This chapter provides an overview on a number of topics relevant to the rest

of the thesis. Specifically, the traditional macroscopic traffic models that will be

adopted in the following are here detailed. A brief introduction to the capacity

drop, a crucial phenomenon in the traffic flow theory, is reported, together with

a model developed for its description. Traditional performance indexes used to

evaluate the effectiveness of applied traffic control actions are listed.

2.1 An overview of macroscopic traffic models

In order to study the traffic system and to apply traffic control management

techniques, reliable models are needed. The traffic flow theory and modelling

has started to be taken into account in 1930s, pioneered by Greenshields that

began to study the traffic by measuring traffic flow, density and speed by means of

photographic measurement methods. Nowadays several traffic models exist and a

classification can be done based on the level of aggregation.

Macroscopic models, in particular, also called hydrodynamic models, describe

the traffic flow as if it was a fluid, as a liquid or a gas. Dynamical variables are

locally aggregated quantities: the density of the traffic, the flow and its speed.

The basis on which the macroscopic models are founded are hyperbolic systems of

conservation laws, which are time-dependent systems of partial differential equations.

The main advantage of macroscopic models over microscopic and mesoscopic models

is the lower complexity, still keeping a good description of traffic. Due to the lower

number of parameters needed in the macroscopic models, also the calibration is

less demanding. Macroscopic models are then preferred for traffic control purposes,

especially if the applied control law must be computed in real time. For all these
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reasons, in the following only macroscopic models will be taken into consideration.

Macroscopic models can be classified in continuous models, in which time and space

are defined as continuous variables, and discrete models, in which time and space

are discretised. A further distinction is made based on the order of the model.

First-order models describe the dynamics of the density, that is the only state,

while second-order models include the dynamics of the speed. Throughout the

dissertation, the macroscopic aggregated variables used to describe the traffic are

denoted as:

� ρ, the traffic density, defined as the number of vehicles per unit of length of

the road.

� v, the mean speed of the flow.

� f , the flow.

In the following, some of the main macroscopic models, both first and second

order, that will be used in the thesis, are described.

The Lighthill-Whitham-Richards model

The Lighthill-Whitham-Richards (LWR) model [97], [130] is a macroscopic

first-order scalar model based on the principle of conservation of cars.

The conservation law is given by

∂ρ

∂t
+
∂f(ρ)

∂x
= 0. (2.1)

The corresponding law f = f(ρ) = ρv(ρ) that expresses the flux as a function of

the density is called fundamental diagram. Several fundamental diagrams have been

proposed in the literature to capture the relation between flow and density, based on

data collected via empirical observation. In the following, when adopting the LWR

model, the fundamental diagram proposed by Greenshield in 1934, that assumes a

linear dependence of the speed on the traffic density, is adopted. Specifically,

v(ρ) = V

(
1− ρ

R

)
, (2.2)

where V denotes the maximal speed of the flow and R the maximal (bump-to-bump)

density. As a result, the fundamental diagram is a quadratic function.

f(ρ) = V ρ

(
1− ρ

R

)
. (2.3)
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Figure 2.1: Linear speed density relationship and quadratic fundamental diagram.

The linear speed-density relationship and the consequent quadratic fundamental

diagram are depicted in Fig. 2.1. This approach could be extended to any fun-

damental diagram f : [0, R] → R+ with f(0) = f(R) = 0, eventually changing

convexity in the congested region.

The conservation law of the LWR model needs to be discretized to be solved.

This can be done by applying the standard Godunov’s method [55]. For concave

flux functions, this is equivalent to the supply-demand method that is typically

used by the transportation engineers [36, 52, 88]. This latter will be here detailed

and adopted along the thesis. To solve the conservation law, a discretization in

both time and space is done, dividing the time in K time steps of duration T

and the space in N cells of length L. In order to ensure numerical stability, the

Courant-Friedrichs-Lewy (CFL) condition [34] must be fullfilled, specifically

T ≤ L

V

For each cell i = 1, . . . , N a demand and a supply functions are defined. The

demand of the ith cell at time step k represents the amount of cars that would

leave the cell, while the supply of the ith cell represents the amount of cars that

cell i can accommodate. They are respectively given by

Di(k) =

 f(ρi(k)) if ρi(k) < ρcr,

fmax if ρi(k) ≥ ρcr,

Si(k) =

 fmax if ρi(k) < ρcr,

f(ρi(k)) if ρi(k) ≥ ρcr,

Above, ρcr denotes the critical density while fmax = f(R) is the maximal flux,

the capacity, of the road. The demand and supply function of a generic cell i are

depicted in Fig. 2.2.
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The flux between two cells i− 1 and i is then computed as

fi(k) = min
{
Di−1(k), Si(k)

}
(2.4)

and the density of each cell i is updated as

ρi(k + 1) = ρi(k) +
T

L

[
fi(k)− fi+1(k)

]
. (2.5)

The Cell Transmission Model

The Cell Transmission Model (CTM) [36] is the discretized version of the LWR

model. The space is discretized in N cells of length L and the simulation time is

composed by K time steps of T seconds. In order to ensure numerical stability the

CFL condition T ≤ L/vfree must be satisfied, where vfree is the free flow speed of

the traffic.

Unlike the quadratic fundamental diagram adopted for the LWR model, here

the behavior of each cell is described by a triangular fundamental diagram, defined

by some parameters:
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Figure 2.4: Demand and supply functions for the CTM model.

� ρmaxi is the maximum density of cell i.

� ρcri is the critical density of cell i.

� fmaxi is the free-flow capacity of cell i.

� vi is the free-flow speed of cell i.

� wi is the congestion wave speed of cell i.

The triangular fundamental diagram is depicted in Fig. 2.3.

The state variables are the traffic densities ρi(k) of cell i at time step k, fi(k) is

the flow entering cell i from cell i− 1 during interval of time [kT, (k + 1)T ). The

evolution of the state is described by

ρi(k + 1) = ρi(k) +
T

L

[
fi(k)− fi+1(k)

]
(2.6)

Again, for each cell i, a demand and a supply functions are defined as

Di−1(k) = min
{
vi−1(k)ρi−1(k), qmax

i−1

}
(2.7)

Si(k) = min
{
wi(ρ

jam
i − ρi(k)), qmax

i

}
(2.8)

The demand and supply function are depicted in Fig. 2.4. The flow between the

two cells is given by

fi(k) = min
{
Di−1(k), Si(k)

}
(2.9)
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The Metanet model

The METANET model [116] is a macroscopic discrete second-order model that

was firstly applied to the Boulevard Périphérique in Paris. The name METANET,

acronym for “Modèle d’Écoulement de Trafic sur Autoroute NETworks”, was firstly

associated with the simulation tool for the freeway network, but it is now adopted

to generically indicate the second-order traffic flow model.

The traffic dynamics in a freeway link, with a number of on-ramps divided in

N cells of equal length Li, i = 1, . . . , N , is described. Each cell has a number λi of

lanes. In each cell, the aggregate quantities adopted to describe the dynamics of

the traffic flow are the same of the LWR and the CTM models, the density ρ, the

flow f and the flow speed v, while the dynamic equations of the METANET model

are:

ρi(k + 1) = ρi(k) +
T

Liλi

(
fi−1(k)− fi(k)

)
(2.10)

vi(k + 1) = vi(k) +
T

τ

(
V (ρi(k)− vi(k)

)
+
T

Li
vi(k)

(
vi−1(k)− vi(k)

)
−

− νT

τLi

ρi+1(k)− ρi(k)

ρi(k) + κ

(2.11)

for i = 1, ..., N . The traffic flow is given by

fi(k) = vi(k)ρi(k) (2.12)

and the steady-state speed V (ρi(k)) is expressed as a function of the free-flow speed

vf , and of the critical density ρcr, i.e.,

V (ρi(k)) = vf exp

(
−1

p

(
ρi(k)

ρcr

)p)
(2.13)

above, τ is the time constant, ν is the anticipation constant and κ is a correction

factor expressed in vehicles per kilometer per lane. p is an empirical correction

factor to take into account the maximum flow, given the features of the considered

cell. The trend of the steady-state speed is depicted in Fig. 2.5.

The first equation represents the conservation of cars in a cell, while the second

equation describes the evolution of the speed. Specifically, the first term of (2.11)

is called relaxation term and aims to model the tendency of drivers to reach their

steady-state speed depending on the actual density ρi(k), according to the time

constant τ which represents the swiftness of drivers. The second term of the right
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Figure 2.5: Trend of the steady-state speed in the METANET model.

side of (2.11), called convection term, models the delay of vehicles in adapting

their speed to the one of cell i when arriving from cell i− 1. The third term, the

anticipation term, takes into account the behaviours of drivers that, looking at the

situation downstream their position, adjust the speed.

2.2 The Capacity Drop Phenomenon

A phenomenon of great interest in the traffic flow modelling, that has an impor-

tant impact on congestion on highway, is the so called capacity drop. First-order

traffic models have the advantage of being simple and computational efficient and

this makes them suitable to be used for traffic control application. However, they

have the drawback of not being able to capture the capacity drop. On highways,

the capacity is defined as the maximum throughput and it represents an essential

concept for the design and the analysis of a freeway system. However, most of the

time highways results to be underutilized due to the presence of recurrent and non-

recurrent congestion and this is also due to the capacity drop phenomenon. Indeed,

congestion usually forms in correspondence of bottlenecks along the highways. A

bottleneck may be any location with particular characteristics, such as lane-drops,

merge areas, tunnels, strong curvatures, but also traffic accidents or work-zones. In

all these cases, whenever the incoming traffic demand overcomes the capacity of
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the bottleneck, a jam forms and propagates. It has been observed that in all these

situations, the discharge flow from the bottleneck, i.e. the outflow from its location,

appears to be lower than the capacity. Empirical observations have indeed shown

that the discharge flow is from the 5% to the 25% lower than the nominal capacity in

free-flow conditions. This phenomenon is probably due to microscopic phenomena,

most of them related to the behavior of drivers, lane-changing and velocity changes

[141]. First-order traffic flow models cannot describe such phenomenon. Since they

still remain the best modelling option especially for traffic control applications,

various extensions have been studied in the last years in order to make them able

to model the capacity drop. A review of the main extensions of first-order models

incorporating capacity drop has been done in [83], where several approaches are

proposed and validated with real data. One of the most widespread approach is the

modification of the CTM demand function at the bottleneck location, by reducing

it. Some others approaches modify the capacity instead, as in [62].

2.2.1 A CTM extension for capacity drop

A simple model to capture the capacity drop in the CTM framework, published

in [121], is here reported. To do this, a stretch of highway modeled by means of the

CTM with a bottleneck located in a cell, denoted as ī, is considered. The bottleneck

reduces the capacity of the cell. Specifically, when the bottleneck becomes active,

i.e. when the inflow from upstream exceeds the capacity of the bottleneck cell,

two phenomena are observed. First, cell ī gets congested, and the jam spreads

upstream for a number of cells. At the same time, the discharge flow from cell

ī is reduced and appear to be lower than its free-flow capacity. This difference

between the free-flow capacity and the discharge flow is the so called capacity drop.

The first question to answer is what happens in this situation when the traditional

CTM is adopted. Let the bottleneck cell ī have an initial situation in which its

density is lower than the critical value and the incoming flow from the previous

cell ī− 1 is equal to its capacity cī−1, cī−1 > cī, i.e. the bottleneck is active. Since

the density in cell ī is under-critical, its state is described by the left part of the

fundamental diagram: the supply of cell ī is equal to its capacity cī. The flow

between ī − 1 and ī is consequently obtained as the minimum between the two

values, that results in being the bottleneck cell capacity cī. On the other hand, the

demand of cell ī is represented again by the left part of the fundamental diagram,
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and it is lower than cī. Then the outflow from cell ī is surely lower than its inflow,

and its density increases. At some point the density reaches the critical value. Now

the incoming flow is still equal to cī, but also the demand function is equal to cī, i.e.

inflow and outflow are the same and the density remains constant. Then, the only

possible scenario is that the bottleneck cell ī never gets congested and its density

remains always equal to the critical one. This is totally in contrast with empirical

observations. In addition to this, since the density of cell ī remains constant at its

critical value, its demand is equal to its capacity, again in contrast with empirical

observations, that show a reduced outflow from a bottleneck location.

With the aim of solving these issues, a simple model for the capacity drop has been

developed. It consists in two different modelling strategies that are simultaneously

applied. The first one allows the bottleneck cell to get congested, instead of having

a constant density equal to the critical one. To this aim, its supply is no more

constrained by the capacity of the cell (Fig. 2.6(d)). In this way, the bottleneck cell

receives more flow than its capacity, its density increases and overcomes the critical

value. In order to model the reduction of the discharge flow from the cell in which

there is the bottleneck, the second strategy is applied. It consists in modifying the

demand of the cell by decreasing it linearly with the increasing value of the density,

that thanks to the first mechanism can now be over-critical. This reduced capacity

is denoted with qmax
i and it coincides with the free-flow capacity ci when there is no

congestion, while it is lower than ci when the cell is congested. The new capacity,

demand and supply functions are given by

qmax
i (k) = min

{
ci, ci + (η − 1)ci

ρi(k)− ρcri
ρmaxi (k)− ρcri

}
(2.14)

Di(k) = min
{
vi(k)ρi(k), qmax

i

}
(2.15)

Si(k) = wi(ρ
max
i − ρi(k)) (2.16)

Where ci(k) is the free-flow capacity of cell i and qmax
i (k) is the reduced capacity

in presence of active bottlenecks.

The parameter η ∈]0, 1[ indicates the amplitude of the reduction of the discharge

flow and ci is the free-flow capacity of cell i.

Eq. (2.14)-(2.16) are applied to every cell of the stretch but they have an effect

only when a bottleneck is present and active in a cell. Fig. 2.6 shows all the

modified demand and supply functions.
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Figure 2.6: Normal and modified demand and supply functions to model the capacity

drop.
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In [29] real data obtained from three bottlenecks, with different features, were

analyzed. In the totality of the cases a strong relationship between the severity of

the capacity drop and the traffic density was observed. In this perspective, control

schemes aiming to maintain the density in the bottleneck area close to a reference

value would then be beneficial for the reduction of the congestion. This will be

taken into account in the formulation of the control strategies.

2.3 Model Predictive Control

In this section, a brief account of the Model Predictive Control (MPC) approach

(see, among others, [102], [21]) is done, since it will be widely adopted along the

dissertation. MPC era started in the late 70s, first applied in refineries and petro-

chemical plants and it has encountered increasing popularity, thanks to the advent

of cheaper and faster microprocessors. MPC experienced an explosive growth

due to its widespread adoption by the process industries where it proved to be

highly successful in comparison with alternative methods for multi-variable control.

Industrial control problems involve many interacting variables and various, po-

tentially conflicting objectives, that were not manageable via traditional approaches.

MPC works by using a model of the system to make predictions about the system

future behavior and performs on-line optimization for optimal control adjustments.

Basically, there is no explicit form of control law, but just the plant model, an

objective function, and constraints are specified.

At each time step, a prediction of the system trajectory is done over a finite time

horizon and a chosen cost function is optimized along the horizon. The online

optimization algorithm solves the problem to find the optimal control sequence

optimizing the cost function. At this point, only the first sample of the control

sequence is actually applied to the real system. At the following time step, based

on the new available system information, the MPC repeats the prediction and the

optimization to update the optimal input trajectory after the feedback update. A

scheme for a generic MPC applied in the context of traffic control is depicted in

Fig. 2.7.

MPC can handle multi-input multi-output systems that may have interactions

between their inputs and outputs and also input and output constraints. Moreover,

the MPC strategy has preview capability since it can incorporate future information

into the control problem to improve the performance of the controller. In the
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Figure 2.7: Scheme of a generic MPC strategy in the traffic control context.

following, many of the proposed control problem will be solved via the MPC

approach.

2.4 Sliding Mode Control

Another control method that will be applied in the following to traffic control,

especially in the ramp metering framework, is the so-called Sliding Mode Control

(SMC). The SMC theory starts at the end of the 70s, with the first publications in

English by Vadim I. Utkin (Ph.D. 1964, Institute for Control Sciences, Moscow,

Russia). SMC is a nonlinear control technique consisting in a state-feedback control

law that is discontinuous in time, since it can switch from a continuous structure to

another one based on the current state. Then, sliding mode control belongs to the

class of variable structure control methods. In its traditional version the SMC is

then characterized by a bounded discontinuous input signal. This discontinuity has

the drawback of being the main cause of the so-called chattering phenomenon [91],

that can be disruptive for the system under control. To avoid such phenomenon,

the discontinuity can be confined to the time derivative of the effective control

input fed into the plant, giving rise to the so-called Higher-Order Sliding Mode

(HOSM) control algorithms, which will be applied in the following.

In the context of modern control theory, any variable structure system, like a

system under SMC, may be viewed as a special case of a hybrid dynamical system
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as the system both flows through a continuous state space but also moves through

different discrete control modes.

The great advantage of SMC is the capabilty of being a computationally light

easy-to-implement solution capable to guarantee finite-time stabilization and ro-

bustness of the controlled system in front of a wide class of uncertainties, that is

an important feature for traffic control systems.

2.5 Performance indexes

In all the situations in which macroscopic models are adopted, the characteristics

about single vehicles, their trajectory, speed and travel times can not be individually

tracked. On the other hand, there is the need for adopting performance indexes to

be able to evaluate if the proposed control actions are useful and effective. The

most common adopted indexes in the macroscopic traffic context are here listed.

The Total Travel Time (TTT) [veh· h] is defined as the total time spent by all

the traveling vehicles in the mainstream. It is defined as

TTT = T
K∑
k=0

N∑
i=1

Liρi(k) (2.17)

The Total Travel Distance (TTD) is the total distance [veh km] covered by all

the vehicles in the considered time horizon. It is given by

TTD = T
K∑
k=0

N∑
i=1

Liφi(k) (2.18)

The Mean Speed (MS)[km/h] of vehicles traveling in the considered system is

then obtained as

MS =
TTD

TTT
(2.19)

In case of the presence of ramps, specifically in the context of ramp metering

control applications where on-ramps can be closed, also the time spent by drivers

waiting at the on ramp must be considered.
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Chapter 3

Macroscopic Traffic Models

Incorporating Intelligent Vehicles

This chapter deals with models developed to describe situations in which both

human-driven vehicles and smart vehicles share the same road. Two modelling

approaches are studied in this dissertation. The first one describes each single

intelligent vehicle as a moving bottleneck, having a motion law different from the

rest of the traffic flow, and impacting its neighbourhood. A second investigated

approach defines the traffic flow as a multi-class flow, distinguishing between classes

of normal vehicles, CAVs, but also trucks and other vehicles that move following

a their own motion law. The chapter first introduces a moving bottleneck model

together with the speed control that has been designed to reduce congestion. The

second part of the chapter is devoted to the description of a multi-class model,

where the speed of the CAVs class is controlled to positively influence the rest of

the traffic.

3.1 Intelligent Vehicles as Moving Bottlenecks

This section deals with the first modeling approach of considering intelligent

vehicles as moving bottlenecks, leading to a coupled PDE-ODE model, presented

in [125]. The innovative idea behind this work is to exploit moving bottlenecks,

usually considered detrimental for the traffic flow, to get benefit for the overall

traffic. In the following, equations constituting the model are described, followed

by a description of the control law that has been applied to control the MB and

simulation results are presented.
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3.1.1 A coupled PDE-ODE model for Moving Bottlenecks

in Traffic Flow

The adopted model consists in an existing model taken from [25], [87] that

adapts the traditional LWR model [96, 129], described in Section 2.1, to model

interactions between slow moving vehicles and the bulk traffic flow.

The standard LWR model with linear speed-density relation and quadratic funda-

mental diagram is then considered

v(ρ) = V

(
1− ρ

R

)
, (3.1)

f(ρ) = V ρ

(
1− ρ

R

)
. (3.2)

where V is the maximal speed of the traffic flow and R denotes the maximal

(bump-to-bump) density.

Anyway, the same approach can be extended to different fundamental diagrams

f : [0, R] → R+ with f(0) = f(R) = 0, eventually changing convexity in the

congested region.

Smart controllable vehicles are seen as slow moving large vehicles reducing the

capacity of the highway, generating a moving bottleneck for the surrounding traffic

flow. To do this, a Partial Differential Equation (PDE) is used to model the traffic

flow, while an Ordinary Differential Equation (ODE) tracks the trajectory of the

vehicle. The resulting coupled PDE-ODE model is given by:

∂ρ

∂t
+
∂f(ρ)

∂x
= 0 (3.3a)

ρ(0, x) = ρ0(x) (3.3b)

f(ρ(0, t)) = fin(t) (3.3c)

f(ρ(L, t)) = fout(t) (3.3d)

f(ρ(t, y(t)))− ẏ(t)ρ(t, y(t)) ≤ αR

4V
(V − ẏ(t))2 (3.3e)

ẏ(t) = ω(ρ(t, y(t)+)) (3.3f)

y(0) = y0 (3.3g)

for x ∈ [0, L], L > 0, and t > 0, being L the length of the road. The first

equation of 3.3 is the conservation law, where ρ = ρ(t, x) ∈ [0, R] and ρ0 is the

initial value for the density. Equations 3.3c, 3.3d are the boundary conditions,
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Figure 3.1: Speed of cars and of the MB.

i.e. the arriving inflow at the beginning of the stretch, denoted by fin and the

outflow at the end, fout. The variable y = y(t) denotes the position of the moving

bottleneck and ω its motion law, that depends on the downstream traffic density

ρ(t, y(t)+) = limx→y(t)+ ρ(t, x):

ω(ρ) = min(Vb, v(ρ)) (3.4)

The slow vehicle has its own maximal speed Vb that can not be higher than

the maximal speed of the traffic flow (Vb ≤ V ). Then, the moving bottleneck can

assume its maximum speed if the surrounding traffic is not congested but it has to

adapt its velocity when the average speed of the neighbouring flow decreases, as

shown in Fig. 3.1. It is then not possible for the moving bottleneck to overtake

cars.

The loss of highway capacity due to the presence of the moving bottleneck is

expressed by the inequality constraint on the vehicles flow at the moving bottleneck

position, see equation (3.3e). The coefficient α ∈]0, 1[ gives the reduction rate of

the highway capacity due to the large vehicle occupying some lanes. The inequality

(3.3e) was derived by studying the problem in the moving bottleneck reference frame,

i.e., setting X = x− y(t) and rewriting the conservation law as ∂tρ− ∂XF (ρ) = 0,

with F (ρ) = f(ρ)− ẏρ.

The rescaled flux function fα : [0, αR] → R+ describing the reduced flow at

x = y(t) is

fα(ρ) = V ρ

(
1− ρ

αR

)
.

Moreover, ρα ∈]0, αR/2[ is such that F ′α(ρα) = 0 ⇐⇒ f ′α(ρα) = ẏ with

Fα(ρ) = fα(ρα)− ẏρ. Then
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ρα(ρ) =
αR

2

(
1− ẏ

V

)
.

At this point, by observing that Fα = Fα(ρα) = fα(ρα)− ẏρα = αR
4V

(V − ẏ(t))2,

and imposing that in the moving bottleneck reference frame the flux function F

should be less than the maximum value of the flux of the reduced flow, at the

moving bottleneck position, the inequality of system 3.3 is obtained.

The numerical scheme able to compute approximate solutions of system (3.3)

has been developed in [25]. Specifically, authors detail the construction of the

solutions to the Riemann solver for (3.3a), (3.3b) for the Riemann type initial

datum

ρ(0, x) = ρ0(x) =

 ρl if x < y0,

ρr if x ≥ y0,

where y0, the position of the MB, is the point in which the flux discontinuity

arises. The solutions to the Riemann problem, namely ρ̂, ρ̌, are the values expected

to appear respectively upstream and downstream the moving bottleneck. Once

detailed the Riemann solver, a reconstruction based numerical method able to

numerically capture non-classical shocks for the coupled PDE-ODE problem with

moving constraints is developed, see [25].

A simulation example of the model in open loop is here reported. For the

simulation, a road stretch of 50 km, divided in 250 cells is considered, for half

an hour of simulation. The maximum density is chosen R = 400 veh/km, the

maximum speed is V = 140 km/h, the capacity restriction factor is α = 0.6 and

three lanes are considered. As initial density, a Riemann type datum is considered:

ρ0(x) =

 150 if x ≤ y0,

100 if 0.2 ≤ x < y0,
y0 = 25, (3.5)

By computing the solutions to (3.3a), (3.3b), (3.5) by means of the Riemann

solver developed in [25], the obtained solutions result to be ρ̂ = 256 veh/km and

ρ̌ = 58 veh/km. The reconstruction strategy gives rise at the solution reported in

3.2, in which the trend of the density in space at different time during the simulation

is reported. In the first figure 3.2(a), the Riemann type initial density is shown. In
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Figure 3.2: Example of density profile at different times for the initial density (3.5)

Fig. 3.2(b), the expected solution appears, with a rarefaction wave followed by a

shock, and it evolves during time as shown in the last two figures.

3.1.2 Control of moving bottlenecks for congestion dissipa-

tion

In this section the control of the speed of the moving bottleneck, modelled as

described in the previous section, is designed. The aim is to reduce congestion and

pollution for the overall traffic flow. Specifically, a Model Predictive Control (MPC)

approach is adopted, motivated by its capability to deal with nonlinear systems,

multi-criteria optimization and constraints [100].

At each time step, the controller computes the optimal values of the control

variable based on the evaluation of a selected cost functional, by predicting of the

evolution of the system. Unlike for linear systems, where the prediction of the state

along the chosen time horizon linearly depends on the future control moves and
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Figure 3.3: Approximated average trend of fuel consumption versus cruise speed for

steady-speed driving

explicit formulæ exist, the problem here can only be solved numerically, by means

of iterative optimization algorithms that require, at each iteration, a simulation

run of system (3.3).

The control variable is then the maximum speed of the moving bottleneck Vb(k).

Since the road transport is one of the main source of air pollution, it is of paramount

importance to reduce its impact. In this perspective, as cost function to be

minimized, here the focus of the controller is on the fuel consumption of the overall

traffic flow. A macroscopic fuel consumption model derived by [128] is considered to

compute the cost function. The choice of the model has been done considering that

since the model is first-order, the dynamics of acceleration is not detailed, and the

fuel consumption model has to require as input only the average speed. In [14] the

curves expressing the fuel consumption of vehicles depending on their cruise speed

are considered. From these characteristics, it is possible to notice that vehicles

consumes more when travelling at too low or too high speed. An approximated

trend of a vehicle characteristics, taken from [125], is shown in Fig. 3.3.

The fuel consumption efficiency curve is multiplied by the vehicle speed in order

to get the consumption rate, expressed in liters/hours. Then, the average of these

curves is computed and approximated via a sixth order polynomial, denoted as

K(v). The resulting polynomial is

K(v) = 5.7 · 10−12 · v6 − 3.6 · 10−9 · v5 + 7.6 · 10−7 · v4−

− 6.1 · 10−5 · v3 + 1.9 · 10−3 · v2 + 1.6 · 10−2 · v + 0.99.
(3.6)

above, K(v) expresses the fuel consumption as a function of the speed.
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Table 3.1: Simulation parameters

L 50 km

V 140 km/h

R 400 veh/km

Tf 1 h

Since in the LWR model the velocity is a function of the density, it is possible

to derive the trend of the fuel consumption as a function of the traffic density,

specifically here the linear relationship (3.1) is adopted. The polynomial (3.6) can be

then re-parametrized in terms of the density ρ, to get the function K(ρ) = K(v(ρ)),

that is the consumption rate of one car as a function of the traffic density at the

vehicle position. At this point, the Total Fuel Consumption (TFC), that will be

denoted by F, of the overall traffic flow as function of the density is obtained

F(ρ) = ρK(ρ) (3.7)

At the k-th iteration step, the optimal speed value Vb(k), assuming the current

density value ρ(tk, ·) as initial datum in (3.3), over the fixed time horizon [tk, tk+∆T ],

is obtained as

Vb(k) = arg min

{∫ tk+∆T

tk

∫ L

0

F(ρ(t, x))dxdt

}
. (3.8)

subject to model dynamics (3.3) and to the following constraint

Vmin(k) ≤ Vb(k) ≤ Vmax(k) (3.9)

Above, Vmin(k) and Vmax(k) are two values chosen to constrain the velocity.

The upper limit prevents the MB to assume speeds higher than the maximum speed

of the traffic flow. The lower limit is needed to avoid the MB from assuming too

low speed, that would be not realistic on highways.

3.1.3 Simulation Results

In order to assess the validity of the approach a simulation case has been studied.

Specifically, a section of highway of length L = 50 km with three lanes, no ramps

and uniform road conditions, as depicted in 3.4, is considered.
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Figure 3.4: Simulation scenario.

The parameters used in the simulation are reported in Table 3.1, choices have

been done considering 5 m of average vehicle length and a 50% of safety distance.

The initial density is ρ0 = 0.3 ·R, while the boundary conditions are given by the

following inflow fin(t) and outflow fout(t):

fin =

 fmax if t ≤ 0.5Tf ,

0 if t > 0.5Tf ,
(3.10)

fout = 0.5fmax ∀t ∈ [0, Tf ], (3.11)

where fmax = maxρ∈[0,R] f(ρ) = f(R/2) is the maximum flow.

Concerning the MPC, the optimization time horizon is 15 minutes. To reduce

the computational burden deriving from the non-linear problem minimization,

the optimization is done every 5 minutes, instead of at each time step. At any

computation time step, a constant speed Vk is computed and then applied to the

controlled vehicle for the time interval [tk, tk + ∆τ ], with ∆τ = 5 min. The control

speed is constrained to vary between Vmin = 30 km/h and Vmax = 80 km/h. This

results in a piece-wise constant control speed, i.e.

Vb(t) = Vb(k) for t ∈]tk, tk + ∆τ ] (3.12)

The trend of the density with respect to time and space is depicted in Fig. 3.5.

In the uncontrolled case, a jam starts forming due to the fixed bottleneck present

at the end of the stretch, that strongly limits the inflow. Congestion propagates for

several kilometers upstream. In this case, the moving bottleneck is no controlled

and it travels at its maximum speed until it reaches the congested zone, where it has

to adapt its speed to the surrounding traffic. In the control case, a congestion starts

forming, but the control of the moving bottleneck reduces the congested zone. This

is due to the fact that the controller properly slows down the MB and this creates

a controlled congestion upstream the bottleneck. The control speed computed by

the MPC and applied to the MB is reported in Fig 3.6. In Table 3.2, the TFC is

compared for both the situations. This latter is reduced from 2.7413 · 104 liters in
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Figure 3.5: Density trend in the no control and controlled case

the uncontrolled case to 2.6852 · 104 liters in the MPC controlled simulation, thus

resulting in 561 liters of fuel saving. This corresponds to a 2.05% reduction rate,

that represents both an economical return for drivers and a reduction of pollutants

emissions, beneficial for the environment.

Conclusion

To conclude, in this section a model describing the trajectory of each single smart

vehicle as a moving bottleneck has been presented. The moving bottleneck has

been adopted as actuator for a traffic control action aiming at reducing congestion.

Specifically, the speed of the actuator has been computed via a MPC approach,

minimizing the fuel consumption of the overall traffic flow. The approach has been

40



0 0.2 0.4 0.6 0.8 1

time [h]

40

45

50

55

s
p

e
e

d
 [

k
m

/h
]

control speed

Figure 3.6: Control speed of the moving bottleneck.

Table 3.2: Comparison between cost functionals in the controlled and uncontrolled case.

TFC TFC reduction

[liters] %

Uncontrolled 2.7413 ·104 0

Controlled 2.6852 ·104 2.05

assessed in simulation, showing good results. Further developments of this model

will be addressed in Section 4.2.
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3.2 A Multi-class Model for Mixed Automated

and Human-Driven Traffic Flow

In this section a different modelling approach to capture the presence of CAVs on

highways is presented. Unlike the previous models, in which each CAV was modeled

as a moving bottleneck, here the multi-class modelling approach that was presented

in [127] is reported. Instead of considering each single CAV, a mixed flow composed

both by human-driven vehicles and CAVs is used. The model has been developed

starting from the traditional CTM [36], described in Section 2.1, extending it in

order to model a multi-class situation, taking inspiration from [149] and [79], where

proportional priority is allocated to each class of vehicles. Let us consider different

classes c ∈ C of vehicles, distinguished on the basis of some features. Specifically,

classes are here differentiated based on different headway, i.e the time distance

between traveling vehicles, and their free-flow speed. The minimum headway that

should be maintained in order to safely drive and to prevent collisions with the

vehicle in front usually is two seconds. This comes from microscopic considerations

taking into account the reaction times of human drivers [5]. Autonomous vehicles

allow a shorter time headway since their reaction times are obviously smaller than

human drivers’ ones [51], [40].

In the following, the model will be detailed and the controller designed to regulate

the speed of vehicles belonging to a specific class is presented.

3.2.1 The Multi-class Model

Although the model can support the deployment of multiple classes, only two

of them are of interest in this context. Specifically, two classes a and b, where a

represents the automated vehicles and b the class of “background” vehicles, i.e.

human driven vehicles, are considered. The headway of the two classes is denoted

by ha, hb while H is a chosen default headway adopted to derive the parameters of

the fundamental diagrams of cells, as the critical density and the maximum density.

Densities of class a and b in cell i at time step k are respectively indicated by ρai (k)

and ρbi(k). An “effective traffic density” ρ̄i(k) is defined by summing the densities

of individual classes weighed by their headway, specifically

ρ̄i(k) =
∑
c∈C

hc
H
ρci(k) (3.13)
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Figure 3.7: Sketch of the highway divided in cells.

and the share of aggregate flow is then given by

r̄ci (k) =
ρci(k)

ρ̄i(k)
(3.14)

For consistency, the conservation law of the class specific density ρc must be

respected, then
∂ρc(x, t)

∂t
+
∂f c(x, t)

∂x
= 0 (3.15)

∀c ∈ C
To update the density of each class, a class-specific transition flow f c is computed.

This latter is proportional to rc and by assuming that different classes have different

free flow speed vc, demand and supply functions specific for each class c ∈ C are

individuated

Dc
i−1(k) = r̄ci−1(k) min

{
vci−1(k)ρ̄i−1(k), qmaxi−1

}
(3.16)

Sci (k) = r̄ci−1(k) min
{

(ρmaxi − ρ̄i(k))wi, q
max
i

}
(3.17)

and the class-specific flow is as usual computed as the minimum between the

two functions

f ci (k) = min
{
Dc
i−1(k), Sci (k)

}
(3.18)

The state ρc of each class c is then updated according to

ρci(k + 1) = ρci(k) +
T

L

[
f ci (k)− f ci+1(k)

]
(3.19)

The total transition flow can be obtained by summing

fi(k) =
∑
c∈C

f ci (k) (3.20)

For each cell i the penetration rate p(k) of CAVs at time instant k is defined as

p(k) =
ρai (k)

ρai (k) + ρbi(k)
(3.21)
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Figure 3.8: Scheme of the control applied to vehicles belonging to the automated

vehicles class.

A sketch of the freeway with multiple classes of vehicles is depicted in Fig.3.7. It

is worth noting that, unlike the majority of similar multi-class models, here the

penetration rate is not an a priori imposed parameter but it dynamically varies

depending on the system evolution.

As mentioned in Section 2.2, the CTM belongs to the class of first order models,

then it does not include the capacity drop modeling. In order to overcome this

issue and make the set-up more realistic, a term is added to the model to capture

the capacity drop. Among the several extension proposed in literature, for this

model the one proposed in [62] is applied. It computes the capacity of each cell as

qmax
i (k) = min

ci, ci
(

1− α
ρi−1(k)− ρcri−1

ρmaxi−1 (k)− ρcri−1

) (3.22)

Above, ci is the free-flow capacity of cell i, i.e. the capacity that the cell have

when no congestion is present. When the density in the cell increases, its capacity

linearly decreases and the intensity of its reduction is given by the value of the

parameter α.
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3.2.2 Control of intelligent vehicles

The multi-class model described in the previous section is used to develop a traf-

fic controller aiming at reducing congestion on highway. Specifically, situations in

which bottlenecks are present along the highway creating congestion are considered.

Bottlenecks are locations with particular characteristics, such as merge areas, lane

drops, tunnels, strong curvatures, or locations interested by temporary events such

as traffic accidents, work zones and so on, that reduce capacity, creating jams. In

the following, an highway whose capacity is affected by a bottleneck is considered

and a control action is applied to vehicles belonging to class a, the automated cars.

Specifically, the free-flow speed va of the automated vehicles class is controlled with

the aim of uniforming the traffic density and to reduce congestion. A scheme of the

controller is depicted in Fig. 3.8.

Considering the traffic system, its states are the densities of the two classes

ρ(k) = [ρa(k) ρb(k)], while the control variable is the vector of the class a free-flow

speed for each cell i = 2, ..., N . The optimization problem is formulated over

the finite prediction horizon of Kp time steps as follows. At each time k, given

the current initial state ρ(k) = [ρa(k) ρb(k)], find the optimal control sequence

u(h) = [u2(h)...uN(h)], h = k, ..., k +Kp that minimizes the objective cost function

J . u(h) is a matrix having as entries the optimal values of the free-flow speed of

class a for each cell i = 2, ..., N . The optimization problem is given by

J = T

k+Kp∑
h=k

N∑
i=1

Liρ̄i(h)− β
k+Kp∑
h=k

φib(h) (3.23)

subject to the model dynamics (3.13)-(3.22) and to

umin ≤ u(k) ≤ umax for k = 1, ...., K (3.24)

The cost function of Eq.(3.23) is given by Total Travel Time (TTT), see section

2.5, as first term, while the second term represents the discharge flow from the

bottleneck cell ib, to be maximized to reduce the capacity drop occurrence. The

parameter β acts as weight in the cost function. This results in a non-linear

multi-variable minimization problem that is solved by means of the interior-point

algorithm implemented in the CasADI software tool [3].

3.2.3 Simulations Results

The MPC described in the previous paragraph is simulated to assess its validity.

A stretch of highway of N = 9 cells of length Li = 0.7 km for i = 1, ..., N and three
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Figure 3.9: Demand of cell 0

lanes is taken into consideration. The free-flow capacity of each cell is c = 6000

veh/h, while qmax is given by Eq.(3.22), the critical density is ρcr = 63.2 veh/km

and the jam density ρmax = 305.1 veh/km. The human-driven vehicles class has a

fixed free-flow speed vb = 95 km/h, while the congestion wave speed is w = 24.8

[km/h]. The parameter expressing the capacity drop amplitude α in Eq. (3.22) is

equal to 0.56. For both the classes the headway is set to 1 second. As incoming

demand a trapezoidal shape is considered for both the classes, as depicted in Fig.

3.9. In this presented scenario, the 30% of the flow is composed by CAVs, the

remaining flow by human-driven vehicles. As initial condition, the total density,

sum of the initial density of the two classes, is equal to 30 veh/km.

A temporary bottleneck reduces the capacity of the highway for a part of the

simulation. Specifically, in cell i = 8, the free-flow capacity is reduced to c8 = 5000

veh/h from the beginning of the simulation and it lasts for the 60% of the simulation

time. At the end of this period the capacity is restored to the value of 6000 veh/km.

The controller detailed in Section 3.2.2 is applied with a prediction horizon of

Kp = 14 time steps, thus the prediction time is around five minutes. The control

speed va is constrained to vary between vmin = 50 km/h and vmax = vfree = 95

[km/h]. The speed control starts from cell i = 2, no control action is applied to the

first cell, va1 = vfree.

Fig. 3.10 reports the trend of the traffic density when no control is applied,

and so the speed of the two classes is equal to vfree = 95 km/h and the model

behaves as the traditional CTM, with the capacity drop extension. Focusing on

the incoming traffic demand depicted in Fig.3.9, at time instant k = 7 it exceeds
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the capacity of the bottleneck, that activates and congestion starts forming. The

congestion propagates upstream, pushed by the drop in the capacity that limits

the discharge flow from the bottleneck. With the chosen value of α = 0.56, the

maximum capacity drop results into a reduction of the 16% of the discharge flow.

When the temporary bottleneck is cleared and the capacity of cell i = 8 is restored

to its maximum value, the congestion dissipates. The higher is the value that the

density of cell i = 7 reaches, the higher will be the reduction of the discharge flow,

and the higher the congestion. Therefore, an effective control has to avoid to reach

too high congestion states in order to guarantee the maximum discharge rate, and

a limited occurrence of the capacity drop.

The speed control designed in Section 3.2.2 is now applied. The control action

is actuated via vehicles belonging to class a, then for different penetration rates,

the control can be more or less aggressive. In this perspective, the control action

has been simulated in different scenarios with different penetration rates. Fig. 3.11

shows the density in the controlled case for different penetration rates of CAVs.

The penetration rate is determined by the share of class a vehicles in the inflow

but its value is not kept constant and dynamically varies. It is possible to see that

even when the penetration rate is low, ∼ 0.1, as depicted in Fig. 3.11(a), there

is a congestion mitigation that leads to a slight travel time reduction. Of course,

the higher is the penetration rate, the more effective the control action is. With

the highest simulated penetration rate, ∼ 0.6 reported in Fig. 3.11(f), congestion

appears almost totally dissipated.
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Figure 3.11: Comparison between control scenarios with different penetration rate of

CAVs.
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Figure 3.12: CAVs class control speed computed via the MPC.

In Table 3.3 an evaluation of the performance indexes introduced in Section 2.5

for each simulated penetration rate. The Total Travel Time (TTT) decreases

more steeply with penetration rates increasing from the value of 0.1 to 0.3, going

from the value of 188.79 to 175.22 veh h, then by further increasing its value, the

decrease of the TTT tapers off. This is due to the fact that over a certain value of

penetration rate there is some form of saturation in the applied control action. The

Total Traveled Distance (TTD) increases from the value of 14893 to 14901 veh·km

when p = 0.3, leading to a consequent increase of the mean speed. The scenario

with penetration rate p = 0.3, i.e. the best compromise of lowest penetration rate

with good control effectiveness, is here detailed as example. For this scenario, the

incoming flow allocated to each class is indicated in Fig. 3.9, while Fig.3.11(c)

reports the density trend. The control speeds computed by the MPC are depicted

in Fig. 3.12.

The controller properly decreases the speed of class a in the cells located

upstream the bottleneck. This is motivated by the need of delaying the traffic jam

formation. The most aggressive control action appears to be applied to cell i = 2

that is the farthest from the bottleneck location. Cell i = 9, located downstream

the bottleneck, does not have any modification in the free-flow speed imposed by

the controller, as expected. Its value is kept fixed at 95 km/h to guarantee the

maximum outflow. When the temporary bottleneck is cleared, the speed is restored

by the controller to the normal maximum free-flow value of 95 km/h in all the cells.

Looking at the density distribution along the highway, in the control case it

appears globally more uniform and the congestion propagates for only one cell and

49



Table 3.3: Comparison between performance indexes in the uncontrolled case and in

the control case with different penetration rate.

TTT TTD MS

No control 188.7947 14893 78.88

p=0.1 183.2409 14895 81.29

p=0.2 176.8308 14900 84.26

p=0.3 175.2191 14901 85.04

p=0.4 173.6013 14901 85.84

p=0.5 174.7722 14899 85.25

p=0.6 173.0361 14903 86.13

Figure 3.13: Distribution of the penetration rate of class a vehicles along then stretch

of highway
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too high value of density are reached only in the cell immediately upstream the

bottleneck, and they last for a short span of time.

Fig. 3.13 depicts how the distribution of autonomous vehicles varies along the

stretch, i.e. the dynamic evolution of the penetration rate. At the beginning of the

simulation, the penetration rate is constant along the stretch and equal to 0.3 since

it is determined only by the inflow of Fig. 3.9. When the control action is applied,

the controller communicates the optimal speed to vehicles belonging to class a, thus

slowing down the free-flow speed of the connected/automated vehicles class. The

consequence is that they tend to accumulate in the first part of the stretch during

the simulation. The accumulation dissolves when the bottleneck is cleared and the

automated/connected vehicles class can flow again at the free-flow speed of 95 km/h.

Final Considerations

In this section of the thesis a multi-class model able to capture a mixed flow of

human-driven cars and CAVs is presented. Since the model is still a macroscopic

model, the computational burden is limited compared to microscopic approaches,

but the model appears to be still able to describe the presence of CAVs. The

proposed control action aiming at regulating the speed of the connected/automated

class vehicles influences also the human-driven vehicles and obtains benefits for

the overall traffic flow. The overall density experiences an homogenization and the

congestion is strongly reduced. The control action is effective also with limited

penetration rates, and it becomes more and more effective by increasing the share

of CAVs.
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Chapter 4

Traffic Models Incorporating

Platoons of Intelligent Vehicles

In this chapter the concept of exploiting connected and automated vehicles as

actuators for traffic control purposes is further developed. Specifically, instead of

controlling single vehicles, platoons of cars are here taken into account. In this

perspective, conventional traffic models need to be revised to be able to incorporate

platoons of vehicles. While some researches has moved in the direction of modelling

the interaction between platoon and traffic from a microscopic point of view, few

results are available in the macroscopic context. This work aims at filling this gap

by proposing a macroscopic approach for platooning in highway traffic.

Two different extensions to traditional macroscopic models are presented in the

following, both of them exploiting the moving bottleneck concept already developed

in Section 3.1.1 for a single vehicle. Specific traffic control actions using platoons

as actuators are also designed.

4.1 A CTM extension to capture platoons of in-

telligent Vehicles

In this section, the traditional CTM model is extended to consider platoons of

smart vehicles moving in the human-driven surrounding flow. Specifically, the state

equation is properly augmented to take into account platoons, whose presence is

captured by modifying the free-flow speed of the cells in which they are traveling.

Platoons of CAVs are then assumed as actuators and their speed becomes the

control variables to design different control schemes that aim at reducing congestion.
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4.1.1 The Model

The Moving Bottleneck Cell Transmission Model (MB-CTM), presented in [127],

is here described. The basic CTM and the relative adopted notation are reported

in the preliminaries Section 2.1.

To the aim of this work, for each cell i = 1, . . . , N , and for each time step

k = 0, . . . , K − 1, the dynamic state equation (2.6) updating the traffic density is

enhanced to capture the presence of J moving bottlenecks. Specifically, the equation

describing the dynamic evolution of the traffic density is augmented, becoming

ρi(k + 1) = ρi(k) +
T

L

[
fi(k)− fi+1(k)

]
+

J∑
j=1

[
δji (k)

oj

L
− δji+1(k)

oj

L

]
(4.1)

where oj denotes the occupancy [veh] of the moving bottleneck j = 1, . . . , J , while

δji (k) is a binary variable that is introduced in order to track the entrance (or the

exiting) of moving bottlenecks in a cell. Specifically, δji (k) is defined as follows

δji (k) =


1 if the moving bottleneck j enters

cell i at time step k

0 otherwise

(4.2)

At each time step k, at most one moving bottleneck can be present in each cell

i. Then, condition
∑J

j=1 δ
j
i (k) ≤ 1 must be fulfilled.

The traffic flow fi(k) entering the ith cell is obtained as the minimum between

the so called demand function of cell i − 1 and the supply function of cell i. As

described in Section 2.1, these quantities are computed as

fi(k) = min
{
Di−1(k), Si(k)

}
(4.3)

Di−1(k) = min
{
vi−1(k)ρi−1(k), qmax

i−1

}
(4.4)

Si(k) = min
{
wi(ρ

max
i − ρi(k)), qmax

i

}
(4.5)

While in the standard CTM the speed vi(k), the free-flow speed, is a parameter,

in this extension vi(k) in (4.4) is given by

vi(k) =


f(v̄j(k)) if the moving bottleneck j is in

cell i at time k

vfree
i otherwise

(4.6)
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where v̄j(k) represents the speed of the moving bottleneck j at time step k. Ac-

cording to (4.6), if the moving bottleneck j is in cell i, the speed vi(k) is a function

of the moving bottleneck speed. Note that the speeds of the moving bottlenecks

v̄j(k), j = 1, . . . , J , will represent the control variables.

As a first approximation, the moving bottleneck directly affects the speed of

the cell, such that f(v̄j(k)) = v̄j(k). Accordingly, equation (4.6) becomes

vi(k) =


v̄j(k) if the moving bottleneck j is in

cell i at time k

vfree
i otherwise

(4.7)

To the aim of tracking the trajectory of each moving bottleneck in this macro-

scopic modelling scenario, the covered distance pj(k) is introduced and updated as

follows

pj(k + 1) = pj(k) + v̄j(k) · T (4.8)

When the moving bottleneck j is in a location in which is close to cross the

interface between two consecutive cells, namely i − 1 and i, pj(k) is updated

according to the amount of flow that the downstream cell accepts. Two different

situations have then to be considered, corresponding to the Free-Flow Case and

the Congested Case.

Free-Flow Case. In this first case, condition Di−1(k) ≤ Si(k) holds. The

downstream cell i can receive the demand of cell i− 1 and, consequently, also the

moving bottleneck j in cell i − 1. Hence, moving bottleneck j continues moving

with speed v̄j(k), its position pj(k) is updated by equation (4.8) and δji (k) is set

equal to 1.

Congested Case. In this case, condition Di−1(k) > Si(k) is satisfied. Then,

cell i is too congested to receive the whole traffic demand arriving from cell i− 1.

It is therefore necessary to evaluate if the moving bottleneck j is involved in the

part of flow that actually accesses the downstream cell.

To do this, p̄j(k) is used to denote the position that the moving bottleneck would

reach if it could enter cell i, which is computed as

p̄j(k + 1) = L · (i− 1) + (T −∆T j) · fi(k)

ρi(k)
(4.9)

Above,

∆T j =
L · (i− 1)− pj(k)

v̄j(k)
(4.10)
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Indicated with lj the length of the j-th moving bottleneck, two further subcases

of the congested case are possible.

� Case 1 - If condition (T −∆T j) · fi(k)
ρi(k)
≥ lj is satisfied (i.e. the platoon can

enter cell i), the moving bottleneck j enters cell i with probability Si(k)
Di−1(k)

.

This choice of adopting the probability is justified by the fact that having

used a macroscopic model discrete in space, the precise location of the moving

bottleneck inside the traffic flow can not be precisely known. Hence, the

probability term models the uncertainty on its location. The higher is the

supply of the receiving cell i, the higher the probability that the moving

bottleneck can cross the cell interface.

The position is then updated as follows:

– if the moving bottleneck can access cell i, the corresponding binary

variable δji (k) is set to 1 and the position becomes

pj(k + 1) = p̄j(k + 1) (4.11)

When moving bottleneck j enters the congested cell i, its speed is no

longer controlled and it becomes

v̄j(k) =
fi(k)

ρi(k)
(4.12)

– if the j-th moving bottleneck cannot enter cell i, the binary variable

δji (k) is set to 0 and the moving bottleneck stops in cell i− 1, at the end

of the cell:

pj(k + 1) = L · (i− 1) (4.13)

and, accordingly, the moving bottleneck speed is

v̄j(k) =
L · (i− 1)

T
(4.14)

Moreover, in this case, if at time step k + 1 the downstream cell i can

receive the moving bottleneck, i.e. Si(k + 1) ≥ Smin (with Smin properly

defined), the moving bottleneck that was in cell i − 1 at time step k

can access the cell i. Therefore, δji (k + 1) is set to 1 and the position is

updated according to (4.8). In this case the speed v̄j , at time step k + 1,

is defined by the controller if cell i is in free-flow condition, otherwise it

is computed following (4.12). If Si(k + 1) < Smin, the platoon remains

in cell i− 1 and the same condition is checked at k + 2.
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Case 2 - If (T −∆T ) · fi(k)
ρi(k)

< lj, i.e. the platoon can not enter without dividing

itself in two portions, the moving bottleneck stops at cell i − 1. The position of

the moving bottleneck at time step k + 1 is then given by (4.13), while its speed is

computed following (4.14) and δji (k) is set equal to 0.

Also in this case, if at time step k+ 1 the condition Si(k+ 1) ≥ Smin is satisfied,

the moving bottleneck can access cell i, and its position is updated according to

(4.8), setting δji (k + 1) to 1. The speed of the moving bottleneck at time step k + 1

is imposed by the state of the receiving cell. If Si(k + 1) < Smin, the platoon still

remains in cell i− 1 and the same condition is checked at k + 2.

4.1.2 Multiple Moving Bottlenecks Control via Platoons of

Intelligent Vehicles

The model presented in Section 4.1.1 is here adopted to describe the traffic

behavior and proper control actions are discussed. Control strategies for problems

described by means of the MB-CTM model have been presented in [127], [121].

As before, the basic idea is to exploit the presence of intelligent, automated and

connected vehicles to implement, by means of vehicles coordination, suitable control

actions with the aim of positively affecting the overall traffic system. Several control

schemes can be used. A possible classification between them can be done:

� centralised control schemes, as depicted in Fig. 4.1;

� decentralised control schemes, as shown in Fig. 4.2.

A centralised scheme involves the presence of a central controller having the

full knowledge of the entire freeway, via traffic data collected both by means of

traditional sensors and from all the data directly transmitted from connected vehicle

via V2I communication systems. The central controller takes decision about the

formation of the platoons specifying their size and speed, based on the collected

information. In addition to this, communication and coordination between platoons

is allowed by the presence of vehicles communication systems, with the aim to boost

the effectiveness of the strategy.

On the other hand, a decentralized control scheme includes local controllers

establishing the action for each platoon, as shown in Fig. 4.2. In this scheme,

the size of the platoons is a priori known and the each controller indicates the

speed that each platoon has to assume. Each decentralised controller decides the

strategy on the basis of the information exchanged among the different (at least
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Figure 4.1: The centralized control scheme

close) controllers.

In the following, two different control schemes are applied. The first one is a

decentralised control scheme where each controller is implemented by means of a

PI-type feedback control law, while the second one involves a Model Predictive

Control.

4.1.3 Proportional Integral Control Strategy

The presented control scheme aims at preventing congestion that would originate

due to physical bottlenecks located further downstream. To do this, it regulates the

upstream flow by exploiting controlled platoons. This action inevitably produce a

controlled congestion, due to the presence of platoons travelling at lower controlled

speeds.

As remarked in 4.1.1, platoons are modelled as J moving bottlenecks, whose

speeds represent the control variables. At each time step k each speed is computed

by a PI-type feedback regulator, according to the following

v̄j(k) = v̄j(k − 1) +KP

[
ej(k)− ej(k − 1)

]
+KI · ej(k) (4.15)

where KP and KI respectively represent the proportional and the integral gain,

while ej(k) is the density error. Specifically, as error, the difference between a

density set-point ρ̂ and a mean density value ρ̄j(k), referred to the traffic densities
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Figure 4.2: The decentralized control scheme

measured in a set of downstream cells is adopted. Specifically,

ej(k) = ρ̂− ρ̄j(k) (4.16)

The set-point is set equal to the value of the critical density ρcr
i of the physical

bottleneck. Moreover, with ıj(k) ∈ {1, . . . , N} the cell corresponding to the

position pj(k) of the moving bottleneck j at time step k is denoted, while ıb(k) ∈
{1, . . . , N} indicates the cell related to the position of the physical bottleneck at

time k. The average density is then computed on the subset of cells Ij(k) ⊆{
ıj(k), ıj(k) + 1, . . . , ıb(k)

}
. Specifically, this set is defined so that i ∈ Ij(k) if

ρi(k) ≥ %, where % is a density threshold properly defined. The average density

ρ̄j(k) to be used in (4.16) is computed as

ρ̄j(k) =

∑
i∈Ij(k) ρi(k)

|Ij(k)|
(4.17)

Note that the control speed computed by the feedback law (4.15) has to be

bounded between a minimum and maximum values, i.e. vmin ≤ v̄j(k) ≤ vfree
i , in

order to prevent the speed to assume values that would be too low on highways, thus

creating safety issues. Moreover, when the interface between two cells is congested,

it is no more possible to control the speed that is updated according to the model

dynamics described in Section 4.1.1, given by (4.12) or (4.14).
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Figure 4.3: Inflow in the stretch

Simulation Results

The proposed PI feedback control is simulated considering a case study to

evaluate the effectiveness of the strategy.

A stretch of freeway composed of N = 16 cells, each one with length L = 0.5

km is taken into consideration. The stretch has three lanes and no ramps. The

sample time is T = 10 s, while the total time horizon is 2 hours that corresponds

to K = 720 time steps.

For each cell i = 1 . . . , N , the free-flow speed is ı̀ vfree
i = 100 km/h, the congestion

wave speed is equal to wi = 38 km/h, the maximum value of density is ρmaxi = 360

veh/km, ρcri = 90 veh/km while the capacity is qmaxi = 6000 veh/h.

A temporary bottleneck is modeled in order to simulate the creation of congestion.

Specifically, at the beginning of the simulation time, a reduction of the capacity in

cell i = 13 appears, to simulate the presence of a temporary physical bottleneck.

During the first half of the simulation, the capacity of cell i = 13 is then reduced to

qmax13 = 5410 [veh/h], while it is restored to its value of qmax13 = 6000 [veh/h] during

the second half.

The demand of cell 0, i.e. the inflow in the highway stretch, has a trapezoidal

trend that is reported in Figure 4.3.

Fig. 4.4(a) depicts the density when the control is not applied. At time step

k = 87 the incoming flow overcomes the value of the capacity of the temporary

bottleneck and congestion starts forming, and spreads for several cells upstream.

In this situation, accordingly with the CTM principle, the density in the temporary
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Figure 4.4: Evolution of the density in time and space in the uncontrolled case and

with the moving bottleneck control.
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Figure 4.5: Example of position and speed of one of the controlled moving bottleneck.

bottleneck cell i = 13 is kept constant at the density value qmax13 /vfree13 , corresponding

to 54.1 veh/km, while the cell discharges a flow equal to its capacity qmax13 . At

the same time, a congestion forms and propagates in the three upstream cells. At

time step k = 360, the temporary bottleneck is cleared, since its capacity in cell

i = 13 is restored to the maximum value, so cell i = 13 discharges the maximum

flow and the congestion starts to dissipate. In Fig. 4.4(b) the density trend in case

the decentralised feedback PI moving bottlenecks control is applied is reported. In

this situation, as soon as the congestion starts to form at the physical bottleneck

and the density error computed as in (4.16) becomes negative, controllers start

to work. In this simulation scenario, multiple moving bottlenecks subsequently

enter the stretch. Once a moving bottleneck has entered the highway, the following

one enters when the previous moving bottleneck has reached at least the sixth

cell. This prevents the superposition of the effects that would appear in case of

the presence of two moving bottlenecks in the same cell. Moreover, at most two

moving bottlenecks are present in the stretch and each moving bottleneck is seen as

a formation of vehicles of length oj = 100 meters. The set of cells Ij(k) is composed

of the two cells upstream the fixed bottleneck. As reference value for the density,

the critical density is adopted while the minimum value allowed for the moving

bottleneck speed is vmin = 60 km/h and the proportional gain KP and the integral

gain KI have been selected respectively equal to 0.8 and 1.6, by applying a trial

and error procedure.
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Figure 4.6: Density trend in cell i = 12 in the no-control case and with the application

of the moving bottleneck control.

An overall number of 30 controlled moving bottlenecks enter the stretch during

the simulation time. As an example, the trajectory of the first platoon entering

the portion of highway is reported in Fig. 4.5. The blue line represents the

position of the moving bottleneck, while the orange one is its speed. The designed

feedback controller tends to properly slow down the moving bottleneck upstream

the physical bottleneck reducing the capacity. This results in the creation of a

controlled congestion that prevents jams to appear at the bottleneck. In this way,

the density is more uniform along the highway. Moreover, the total number of cells

in congestion state, i.e. the sum of the number of cells i such that ρi(k) > ρcri at

each time step during the overall simulation time horizon, decreases from 1079 to

857.

In Fig. 4.6, a comparison between the density in one of the cells upstream the

physical bottleneck in the no-control case and in the controlled one is reported. In

the absence of control action, the density in the cell is very high until the end of

the simulation, while by applying the control, the congestion lasts for less time and

also the density value is strongly reduced.
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4.1.4 A Model Predictive Control Strategy for Travel Time

Reduction

The MB-CTM and its relative control strategies have been further developed in

[121], leading to a more sophisticated control scheme with more effective results.

First of all, with the aim to make the simulation scenario more realistic, the capacity

drop model described in Section 2.2 is here applied to the model. This results in

the modification of the demand and supply function so that, in presence of active

bottlenecks, the discharged flow is reduced.

Moreover, a different control action is here presented. The control variables are

again the speeds of the platoons of VACS-equipped vehicles traveling on the highway.

These latter, acting as moving bottlenecks, influence the neighbouring traffic.

The new approach involves the use of a MPC approach that is oriented at reducing

travel times for drivers. As remarked in section 2.3, the MPC minimizes the chosen

cost function over a prediction horizon in order to get an optimal control sequence.

The optimization is repeated at each time step and the first sample of the sequence

is applied to the system.

The formulation of the optimization problem over the finite prediction horizon of

Kp time steps is as follows. At each time step k, given the current initial state ρ(k),

find the optimal control sequence u(h), h = k...k +Kp minimizing the cost function

J

J = β1T

k+Kp∑
h=k

N∑
i=1

Liρi(k)− β2

k+Kp∑
h=k

φī(k)− β3

k+Kp∑
h=k

|ρī(k)− ρcr| (4.18)

subject to umin ≤ u(k) ≤ umax for k = 1....K.

In Eq.(4.18), the first term represents the the Total Travel Time (TTT) (see

section 2.5), the second term is the outflow from the bottleneck location in cell ī,

while the third term is defined as the density error at the bottleneck location ī with

respect to a reference value. Moreover, βi, i = 1, 2, 3, are arbitrarily chosen weights.

The two last terms in J prevent the occurrence of the capacity drop phenomenon,

since they act by maximizing the discharge flow from the bottleneck and by aiming

at keeping the density below its critical value.

Following the receding horizon principle, at each iteration k the first sample of

the optimal control sequence u(k) is applied to the system, while at the following

iteration, based on the new available state information, a new prediction over the

time horizon is done. This results in solving a nonlinear optimization problem, that
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Figure 4.7: Trapezoidal traffic demand.

is here done by means of the interior-point algorithm implemented in MATLAB.

Notice that, unlike the previous PI controller, the MPC approach results in the

adoption of a centralised control (see Fig. 4.1).

Simulations

The MPC approach described in the previous section is here assessed in sim-

ulation. A realistic case of study consisting in a stretch of highway is simulated.

It has not any intermediate on-ramps or off-ramps. The parameters adopted in

the simulations are listed in Table 4.1, while the incoming traffic demand has a

trapezoidal shape, as shown in Fig. 4.7. In order to create congestion, a temporary

bottleneck is simulated in cell i = 13. It reduces the capacity to c13 = 5400 veh/km

for k < 540, then it is restored to 6000 veh/h.

Three different situations are simulated:

� No control, no capacity drop: in this case the basic CTM is simulated. It does

not account for the capacity drop phenomenon. The control is not applied

yet.

� No control, capacity drop: in this situation again the control is not applied,

but the capacity drop model is added.

� Control, capacity drop: in this case the complete model with the capacity
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Table 4.1: Simulation parameters.

L 500 [m]

N 16

T 10 [s]

K 720

Simulation time 2 [h]

ρcr 70 [veh/km]

ρjam 320 [veh/km]

c 6000 [veh/h]

α 0.83

Bottleneck cell 13

Bottleneck capacity 5400 [veh/h]

drop model is simulated and moving bottlenecks are controlled via the MPC

approach.

The trend of the density depending on time and space is depicted in Fig.4.8

where the first image is the uncontrolled case without the capacity drop model.

When the arriving demand overcomes the capacity of the bottleneck cell i = 13, the

supply function in the cell shows a lower value with respect to the demand of the

previous cell. Then the flow between the two cells, given by the minimum between

demand and supply, is equal to the value of the capacity of the bottleneck.

Since downstream the bottleneck location there are not congested cells, the

flow leaving cell i = 13 is equal to its capacity, while the density value in the cell

where the bottleneck is located remains equal to the critical density of the cell. A

congestion forms only in the previous cell i = 12, and there is no capacity drop in

the discharge flow.

Fig. 4.8(b) depicts the density trend when the capacity drop is modeled. Unlike the

previous case, when the incoming demand overcomes the capacity of the bottleneck,

the supply of the bottleneck cell is no more saturated to the capacity value and so

it can accept a flow higher than its capacity, and congestion appears. As soon as

the cell gets congested, the demand of cell i = 13 decreases according to Eq.(2.14),

as explained in Section 2.2.

The discharge flow is consequently reduced and the congestion spreads for several
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cells upstream. The trend of the flow leaving the bottleneck cell i = 13 is reported

in Fig. 4.9 for both the traditional CTM, without capacity drop, and the CTM

with the extension to model the capacity drop.

Fig. 4.8(c) depicts the density when the MPC control is applied. For the MPC,

the prediction horizon Kp is 20 time steps, the weights in the cost function 4.18 are

β1 = 0.1, β2 = 0.1, β3 = 0.8 and Smin = 10. During the two hours of simulation

several VACS-equipped vehicles enter the stretch and are controlled. They always

keep a distance of at least one cell in order to avoid the superposition of the effects

of two different controlled vehicles in the same cell. In the present simulation

scenario, each platoon is composed by two vehicles. The total number of moving

bottlenecks entering the stretch is 13, thus indicating that even with a limited

number of controlled vehicles the proposed control can be effective. Looking at

Fig.4.8(c) it is possible to notice that the controlled vehicles tend to create a jam

upstream the bottleneck, thus avoiding hard congestion to form at the bottleneck.

Moreover, the reduction of the congestion has another important effect in this

situation where the capacity drop is captured. Specifically, reduced congestion

means a reduced capacity drop effect and increased discharge flow. This can be

seen in Fig. 4.9, in which the discharge flow from the bottleneck cell is depicted in

the three different situations. The blue line is indeed the discharge flow from the

bottleneck when there is not the capacity drop, so the flow is equal to the capacity

of the bottleneck. On the other hand, the green line is the flow when the capacity

drop is modeled but there is no control. The discharge flow decreases linearly with

the density when the cell gets congested. The violet line, which is the flow when

there is the capacity drop model but also the controller, shows that by applying

the proposed solution the capacity drop is delayed and strongly reduced. This

has obviously an impact on travel times. The performance of the controller are

indeed evaluated also in terms of Total Travel Distance (TTD) and Mean Speed

(MS) (see Section 2.5). Results are reported in Table 4.2 for the three cases. When

the capacity drop effect is not considered, the TTT is equal to 824 [veh h] and it

increases to 899 [veh h] when the capacity drop is instead included in the model,

due to the reduced discharge flow that strongly affects the congestion formation.

By applying the MPC, the TTT decreases, getting close to the uncontrolled case

with no capacity drop.

About the control speeds, their profiles for two of the 13 controlled moving bottle-

necks traveling in the stretch are reported in Fig. 4.10 as an example. At time step

k = 275 a moving bottleneck enters the stretch with speed v̄1 = 82 and then its
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Table 4.2: Comparison between cost functionals.

TTT TTD MS

Traditional CTM, uncontrolled 824.21 80366 97.51

CTM with capacity drop, uncontrolled 899.94 80366 89.30

CTM with capacity drop, MPC control 832.46 80102 96.22

speed is set by the controller. At k = 291 a second bottleneck enters the stretch

and its speed trend is again given by the controller. The same is valid for each of

the 13 platoons that enter the stretch during the simulation horizon, for the sake of

simplicity only speeds of two of them are here depicted. The controller properly

slows down the moving bottlenecks to create the needed controlled congestion.

With the adoption of the presented control action, even with a small number of

controlled vehicles the capacity drop occurrence has been strongly reduced and

a higher discharge flow from the bottleneck has been observed. Congestion is

mitigated and travel times strongly reduced.
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Figure 4.8: Density trend in the case with traditional CTM 4.8(a), CTM with capacity

drop and no control 4.8(b) and CTM with capacity drop and control 4.8(c).
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4.2 A PDE-ODE Model for Platoons of CAVs

In this section a different model developed in [122] is presented. This model

represents an extension of the coupled PDE-ODE model for moving bottleneck

presented in Section 3.1.1, having the aim of capturing the presence of platoons of

CAVs, whose length can vary in time.

Similarly to the moving bottleneck model of Section 3.1.1, the model consists of

a Partial Differential Equation (PDE) for the bulk traffic flow and two Ordinary

Differential Equations (ODEs) for the trajectory of the platoon. While in the

moving bottleneck (MB) model one ODE was enough to describe the MB trajectory,

since it was a punctual capacity restriction with no physical dimension, here one

ODE describes the trajectory of the initial point of the platoon and the second

describes the final point trajectory. This introduces discontinuities in the flows and

a numerical methods to treat them is needed.

The literature on conservation laws having discontinuous flux functions is vast but

most of the works focus only on discontinuities at fixed points in space [4], while

only few researches face the issue of time dependent discontinuities, as [32, 33, 80,

110, 111, 137, 138] and, more recently, [19, 60]. Although the scalar conservation

law here adopted could be assimilated to the framework reported in [19], the strong

coupling of the PDE with the ODEs makes the problem more challenging. An

efficient numerical strategy able to precisely capture the density discontinuities has

then been developed. To this end, a conservative reconstruction strategy similar

to [18, 24], requiring the knowledge of Riemann problem solutions at the flux

discontinuity points, is applied.

In the following of this section, the model and the developed numerical method are

presented. A control action aiming at controlling the speed and the length of the

platoon is subsequently developed, showing good effectiveness in reducing traffic

congestion.

4.2.1 The coupled PDE-ODE model

As in the moving bottleneck model described in Section 3.1.1, the bulk traffic

flow is described by means of the LWR model. A platoon of vehicles is introduced

in the model as a capacity restriction. The front-end point of the platoon is denoted

as zd = zd(t), while its back-end point is called zu = zu(t). The platoon occupies a

portion of lanes, acting as a flux constraint on the interval [zu(t), zd(t)]. A sketch of

the platoon is shown in Fig. 4.11. Similarly to the model of the moving bottleneck
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of Section 3.1.1, the model results in a PDE describing the traffic flow and two

ODEs corresponding to the trajectory of the extremes of the platoon. The obtained

coupled PDE-ODE model is

∂tρ+ ∂xF (t, x, ρ) = 0, (t, x) ∈ R+ × R, (4.19a)

ρ(0, x) = ρ0(x), x ∈ R, (4.19b)

żu(t) = vu(t, ρ(t, zu(t)+)), t ∈ R+, (4.19c)

zu(0) = z0
u, (4.19d)

żd(t) = vd(t, ρ(t, zd(t)+)), t ∈ R+, (4.19e)

zd(0) = z0
d. (4.19f)

Above, ρ = ρ(x, t) is again the conserved quantity, the traffic density, while

F is the flow function, that appears to be discontinuous due to the discontinuity

introduced by the platoon presence, specifically

F (t, x, ρ) :=

 f(ρ) if x 6∈ [zu(t), zd(t)],

fα(ρ) := αf(ρ/α) if x ∈ [zu(t), zd(t)].
(4.20)

In (4.20), as usual f(ρ) = ρv(ρ), and a linear speed-density relationship is adopted

v(ρ) = V

(
1− ρ

R

)
Once again, the study could be easily extended to different fundamental diagrams.

Above, V is the maximal speed of the flow and R is the maximal density. This

latter is reduced to αR at the platoon position, where α represents the occupancy

rate due to the platoon presence. The flux functions are then given by

f(ρ) = V ρ

(
1− ρ

R

)
, (4.21)

fα(ρ) = V ρ

(
1− ρ

αR

)
. (4.22)

vdvu

zu zd

Figure 4.11: Sketch of platoon on the highway.
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The initial data ρ0 is in the form

ρ0(x) ∈ [0, αR] if x ∈ [z0
u, z

0
d],

ρ0(x) ∈ [0, R] otherwise.
(4.23)

We remark that the points of maximum of f and fα are ρcr = R/2 and

ραcr = αR/2 respectively, fmax = f(ρcr) and fmaxα = fα(ραcr).

In 4.19, (4.19c)–(4.19e) describe the dynamic of the platoon extreme points.

Their speed are given by

vu(t, ρ) := max
{
Vu(t),−fα(ρ)/(R− ρ)

}
, (4.24)

vd(t, ρ) := min
{
Vd(t), v(ρ)

}
, (4.25)

where Vu(t) ∈ [−V, V ] and Vd(t) ∈ [0, V ] are the maximal speeds of the upstream

and downstream endpoints. Equation (4.25) accounts for the fact that the platoon

cannot assume speed higher than the surrounding traffic flow.

The length of the platoon is denoted as L(t) := zd(t)− zu(t) and it is allowed

to vary depending on the number of vehicles joining the platoon and their spacing.

Constraints are introduced for the length of the platoon, specifically Lmin ≤ L(t) ≤
Lmax, given a certain number of vehicles. The length can then vary according to

L̇(t) = żd(t)− żu(t) = vd(ρ(t, zd(t)+))− vu(ρ(t, zu(t)+)). (4.26)

The downstream speed Vd is also constrained to be positive, since vehicles cannot

move backwards. On the other hand, the upstream speed Vu may take negative

values when additional vehicles join the platoon.

Following [80, Definition 5.1], the objective is to construct a weak entropy

solutions of the system (4.19) in the following sense:

Definition 4.2.1. A triple (ρ, zu, zd) ∈ C0
(
R+; L1 ∩BV(R; [0, R])

)
×
(
W1,∞(R+;R)

)2

is a weak entropy solution to (3.3)–(4.20)–(4.23) if

(i) ρ(t, x) ∈ [0, αR] for a.e. x ∈ [zu(t), zd(t)] and t ∈ R+;

(ii) for all κ ∈ R and all test functions φ ∈ C1
c(R2;R+) it holds∫

R+

∫
R

(
|ρ− κ| ∂tφ+ sgn(ρ− κ)

(
F (t, x, ρ)− F (t, x, κ)

)
∂xφ
)
dx dt

+

∫
R
|ρ0 − κ|φ(0, x) dx

+

∫
R+

∣∣F (t, zu(t)+, κ)− F (t, zu(t)−, κ)
∣∣φ(t, zu(t)) dt

+

∫
R+

∣∣F (t, zd(t)+, κ)− F (t, zd(t)−, κ)
∣∣φ(t, zd(t)) dt ≥ 0;
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(iii) zu and zd are Carathéodory solutions of (4.19c)–(4.19d), respectively (4.19e)–

(4.19f), i.e. for a.e. t ∈ R+ it holds

zu(t) = z0
u +

∫ t

0

vu(s, ρ(s, zu(s)+)) ds,

zd(t) = z0
d +

∫ t

0

vd(s, ρ(s, zd(s)+)) ds.

Solutions to the Riemann problem

In this section the construction of the solutions to the two Riemann problems is

detailed. Each Riemann problem corresponds to the discontinuities in correspon-

dence of the upstream and downstream endpoints of the platoon, zu(t) and zd(t).

Discontinuities then move with speeds Vu and Vd. For simplicity, each interface is

separately studied. The solutions to these Riemann problems are needed to design

the numerical scheme to accurately capture the dynamics of the platoon.

� Downstream end-point

Firstly, the problem at the front-end of the platoon is detailed. The following

Riemann problem appears at the downstream point of the platoon zd:
∂tρ+ ∂xF (t, x, ρ) = 0 x ∈ R, t > 0,

ρ(0, x) = ρ0(x) =

 ρl if x < z0
d,

ρr if x ≥ z0
d,

(4.27)

where

F (t, x, ρ) =


fα(ρ) if x ≤ zd(t),

f(ρ) if x > zd(t),

with zd(t) := z0
d + Vdt, ρl ∈ [0, αR], ρr ∈ [0, R], subjected to the constraint

Vd ≤ v(ρr), in order to comply with (4.25). In order to solve (4.27), the concept

of supply and demand functions [52, Section 5.2.3] have to be introduced.

They will be adapted into the platoon reference frame. The unique solution

of the equation f ′(ρ) = Vd is indicated with ρ], while ρ]α denotes the solution

of equation f ′α(ρ) = Vd.

D̃α(ρl) =

 fα(ρl) if ρl < ρ]α,

yαd (ρl; ρ
]
α) if ρl ≥ ρ]α,

S̃(ρr) =

 yd(ρr; ρ
]) if ρr < ρ],

f(ρr) if ρr ≥ ρ],
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where

yαd (ρ; ρ̄) = fα(ρ̄) + Vd(ρ− ρ̄),

yd(ρ; ρ̄) = f(ρ̄) + Vd(ρ− ρ̄),

indicates the straight lines having slope Vd passing respectively through

(ρ̄, fα(ρ̄)) and (ρ̄, f(ρ̄)). For ρ̄ ∈ [0, αR]:

ρ+(ρ̄) := max
{
ρ ∈ [0, R] : yαd (ρ; ρ̄) = f(ρ)

}
,

ρ−(ρ̄) := min
{
ρ ∈ [0, R] : yαd (ρ; ρ̄) = f(ρ)

}
,

and for ρ̄ ∈ [0, R]

ρ+
α (ρ̄) := max

{
ρ ∈ [0, αR] : yd(ρ; ρ̄) = fα(ρ)

}
,

ρ−α (ρ̄) := min
{
ρ ∈ [0, αR] : yd(ρ; ρ̄) = fα(ρ)

}
.

For each initial datum, several situations are possible, the different cases are

here reported.

(D1) ρl < ρ]α and ρr < ρ+(ρl).

Since in the platoon reference frame, with abuse of notation, D̃α(ρl) <

S̃(ρr), i.e.

yαd (ρ; ρl) ≤ S̃(ρr) + Vd(ρ− ρr),

the solution to the Riemann problem is a jump discontinuity between

the values ρl and ρ−(ρl), followed then by a classical wave, a shock or a

rarefaction, between ρ−(ρl) and ρr. Specifically, the left and right traces

at x = zd(t) are respectively

ρ̂α = ρl, ρ̌ = ρ−(ρl).

The solution is depicted in Figure 4.12(a), where the red line indicates

the jump.

(D2) ρl < ρ]α and ρr ≥ ρ+(ρl).

In this case computing demand and supply in the platoon reference

frame, one gets D̃α(ρl) ≥ S̃(ρr). The solution is then given by a shock

wave between ρl and ρ+
α (ρr), followed by a jump discontinuity between

ρ+
α (ρr) and ρr. In this case

ρ̂α = ρ+
α (ρr), ρ̌ = ρr,

as depicted in Figure 4.12(b).
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(D3) ρl ≥ ρ]α and ρr < ρ+(ρ]α).

With these initial data, a rarefaction wave between ρl and ρ]α and a conse-

quent jump between ρ]α and ρ−(ρ]α), followed by a shock between ρ−(ρ]α)

and ρr form the solution, as indicated in Figure 4.12(c). Specifically

ρ̂α = ρ]α, ρ̌ = ρ−(ρ]α).

(D4) ρl ≥ ρ]α and ρr ≥ ρ+(ρ]α).

In this situation D̃α(ρl) ≥ S̃(ρr) and the solution is a shock or a rarefac-

tion wave appearing between ρl and ρ+
α (ρr) and a jump discontinuity

between ρ+
α (ρr) and ρr. Then again

ρ̂α = ρ+
α (ρr), ρ̌ = ρr,

as reported in Figure 4.12(d).

All the computed solutions ensure that the condition

ρ(t, x) ∈ [0, αR] for x < zd(t) and ρ(t, x) ∈ [0, R] for x > zd(t).

is satisfied.

� Upstream end-point Now the Riemann problem is solved in correspondence

of the upstream endpoint:
∂tρ+ ∂xF (t, x, ρ) = 0 x ∈ R, t > 0,

ρ(0, x) = ρ0(x) =

 ρl if x < z0
u,

ρr if x ≥ z0
u,

(4.28)

where

F (t, x, ρ) =


f(ρ) if x < zu(t),

fα(ρ) if x ≥ zu(t),

Above, zu(t) := z0
u +Vut, ρl ∈ [0, R] and ρr ∈ [0, αR]. In this case the demand

and supply functions are defined as

D̃(ρl) =

 f(ρl) if ρl < ρ],

yu(ρl; ρ
]) if ρl ≥ ρ],

S̃α(ρr) =

 yαu (ρr; ρ
]
α) if ρr < ρ]α,

fα(ρr) if ρr ≥ ρ]α,

75



where

yαu (ρ; ρ̄) = fα(ρ̄) + Vu(ρ− ρ̄),

yu(ρ; ρ̄) = f(ρ̄) + Vu(ρ− ρ̄).

As in the downstream case, for ρ̄ ∈ [0, αR] one defines

ρ+(ρ̄) := max
{
ρ ∈ [0, R] : yαu (ρ; ρ̄) = f(ρ)

}
,

ρ−(ρ̄) := min
{
ρ ∈ [0, R] : yαu (ρ; ρ̄) = f(ρ)

}
,

and for ρ̄ ∈ [0, R]

ρ+
α (ρ̄) := max

{
ρ ∈ [0, αR] : yu(ρ; ρ̄) = fα(ρ)

}
,

ρ−α (ρ̄) := min
{
ρ ∈ [0, αR] : yu(ρ; ρ̄) = fα(ρ)

}
.

The following cases are studied.

(U1) ρl ≤ ρ−(ρ]α) and ρr ≤ ρ+
α (ρl).

Here in the moving reference frame D̃(ρl) ≤ S̃α(ρr), so the solution

consists in a non-classical shock between ρl and ρ−α (ρl), followed by a

classical wave between ρ−α (ρl) and ρr. This is shown in Figure 4.13(a)

and

ρ̂ = ρl, ρ̌α = ρ−α (ρl).

(U2) ρl ≤ ρ−(ρ]α) and ρr > ρ+
α (ρl) (this requires ρ+

α (ρl) < αR if Vu < 0).

Unlike the previous case, here in the moving reference frame D̃(ρl) >

S̃α(ρr). The solution is a classical shock from ρl to ρ+(ρr) followed by a

non-classical shock between ρ+(ρr) and ρr, as depicted in Figure 4.13(b).

For this, ρ+(ρr) ≥ R, thus Vu ≥ −fα(ρr)/(R− ρr) is needed and

ρ̂ = ρ+(ρr), ρ̌α = ρr.

(U3) ρl > ρ−(ρ]α) and ρr ≤ ρ]α.

In the moving reference frame, D̃(ρl) > S̃α(ρr), and the solution, depicted

in Figure 4.13(c), is a classical wave between ρl and ρ+(ρ]α), followed by

a non-classical jump between ρ+(ρ]α) to ρ]α and a rarefaction wave from

ρ]α to ρr. For this, we need ρ+(ρ]α) ≥ R, thus Vu ≥ −fα(ρ]α)/(R − ρ]α).

Therefore,

ρ̂ = ρ+(ρ]α), ρ̌α = ρ]α.

76



ρ

f

RαRρ]αρlρ− ρ+ρr

(a) Solution for ρl < ρ]α and ρr < ρ+(ρl)

ρ

f

RαRρ]α
ρl ρ+

α ρ+ρr

(b) Solution for ρl < ρ]α and ρr ≥ ρ+(ρl)

ρ

f

RαRρ]α
ρl ρ+ρrρ−

(c) Solution for ρl ≥ ρ]α and ρr < ρ+(ρ]α)

ρ

f

RαRρ]α
ρl ρ+ρrρ+

α

(d) Solution for ρl ≥ ρα and ρr ≥ ρ̃

Figure 4.12: Solutions to the Riemann problem at the downstream end-point of the

platoon, considering different initial data. The non-classical shock corresponding to the

discontinuity in the flux is depicted in red, taken from [124]

(U4) ρl > ρ−(ρ]α) and ρr > ρ]α.

In the moving reference frame D̃(ρl) > S̃α(ρr) and we get a classical wave

(shock or rarefaction) between ρl and ρ+(ρr), followed by non-classical

discontinuity between ρ+(ρr) and ρr, see Figure 4.13(d). Also here, we

need ρ+(ρr) ≥ R, thus Vu ≥ −fα(ρr)/(R− ρr). We set

ρ̂ = ρ+(ρr), ρ̌α = ρr.

As in the downstream case, here the solutions ρ(t, x) satisfy the condition

ρ(t, x) ∈ [0, R] for x < zu(t) and ρ(t, x) ∈ [0, αR] for x > zu(t).

At this point, solutions to any possible case of the Riemann solver are computed

and the numerical scheme can be outlined.
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(a) Solution for ρl ≤ ρ−(ρ]α) and ρr ≤ ρ+α (ρl)

ρ

f

RαRρ]αρ− ρ+
α

ρl ρr ρ+

(b) Solution for ρl ≤ ρ−(ρ]α) and ρr > ρ+α (ρl)

ρ

f

RαRρ]αρ− ρlρr ρ+

(c) Solution for ρl > ρ−(ρ]α) and ρr ≤ ρ]alpha

ρ

f

RαRρ]αρ− ρlρr ρ+

(d) Solution for ρl > ρ−(ρ]α) and ρr > ρ]α

Figure 4.13: Solutions to the Riemann problem (4.28) for different initial data. The

non-classical shock corresponding to the flux discontinuity is depicted in red [124].

Similarly to the numerical scheme presented in [25] for the moving bottleneck

problem, in order to approximate the solution of the conservation law (4.19a), a

conservative finite volume scheme based on flux discontinuities reconstruction is

here presented. First of all, the system is discretized in both time and space, with

space and time steps respectively denoted as ∆x and ∆t. For each cell j in which

the space is divided, xj = (j − 1/2)∆x denotes its centers and xj+1/2 = j∆x its

interfaces, for j ∈ Z. As regards the time, tn = n∆t, n ∈ N, indicates the time

mesh.

The initial datum (4.19b) is approximated by the piece-wise constant function

given by its average on each discretization cell Cj = [xj−1/2, xj+1/2[, i.e.

ρ0
j =

1

∆x

∫ xj+1/2

xj−1/2

ρ0(x)dx, j ∈ Z.
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Figure 4.14: Demand and supply considering the normal flow and the reduced flow

At each time step n the density is updated as

ρn+1
j = ρnj −

∆t

∆x

(
F n
j+1/2 − F n

j−1/2

)
, j ∈ Z,

Above, 2V∆t ≤ ∆x, to comply with the Courant-Friedrichs-Lewy (CFL) condi-

tion. The numerical flux F n
j+1/2 is computed as the standard Godunov’s flux [55] in

the cells located away from the discontinuities locations znu and znd . By assuming a

concave flux functions as (4.21)–(4.22), the supply-demand method [36] results to

be equivalent, then, if znu ∈ Cju and znd ∈ Cjd for some ju, jd ∈ Z, the demand and

the supply functions are defined as

D(ρnj ) =

 f(ρnj ) if ρnj < ρcr,

fmax if ρnj ≥ ρcr,
S(ρnj ) =

 fmax if ρnj < ρcr,

f(ρnj ) if ρnj ≥ ρcr,

for j < ju or j > jd, i.e. locations in which the platoon is not present. On the other

hand, for ju < j < jd, the demand and supply functions are computed considering

the reduced flow:

Dα(ρnj ) =

 fα(ρnj ) if ρnj < ραcr,

fmaxα if ρnj ≥ ραcr,
Sα(ρnj ) =

 fmaxα if ρnj < ραcr,

fα(ρnj ) if ρnj ≥ ραcr.

Demand ans supplies are depicted in Fig. 4.14.

Therefore, the numerical fluxes F n
j+1/2 are computed as

F n
j+1/2 = min

{
D(ρnj−1), S(ρnj )

}
for j ≤ ju − 2 and j ≥ jd + 1,

F n
j+1/2 = min

{
Dα(ρnj−1), Sα(ρnj )

}
for j ≥ ju + 1 and j ≤ jd − 2,

The interfaces xju±1/2 and xjd±1/2 of the cells where the discontinuities lie, need

a special treatment. As before, the procedures will be separated treated for the

front and the back-end of the platoon.
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� Front-end The position of the downstream endpoint of the platoon is updated

as

zn+1
d = znd + min{V n

d , v(ρnjd+1)}∆t,

The trajectory of the downstream endpoint could be approximated in a more

detailed way following [24, Section 3.2], see also [20].

A discontinuity is expected to appear in cell Cjd , motivated by presence of the

flux discontinuity introduced by the presence of the platoon endpoint. This

corresponds to the situation described by the Riemann problem (4.27), where

ρl = ρnjd−1 and ρr = ρnjd+1. Inspired by [18, 24], the density ρnjd in the cell Cjd

is replaced by a convex combination of the values ρ̂α and ρ̌ corresponding to

ρl and ρr, computed above. More precisely, djd is computed such that

ρ̂α djd + ρ̌
(
1− djd

)
= ρnjd , i.e. djd =

ρnjd − ρ̌
ρ̂α − ρ̌

.

Consequently, the reconstructed discontinuity location is at position x̄jd =

xjd−1/2 + djd∆x. This guarantees the conservation.

At this point, two possible scenarios may occur. In the first one, djd ∈ [0, 1],

and reconstruction of the numerical flux at the interface xjd+1/2 can be easily

done as

∆tF n
jd+1/2 = min

{
∆tjd ,∆t

}
f(ρ̌) + max

{
∆t−∆tjd , 0

}
fα(ρ̂α) (4.29)

where

∆tjd =
1− djd

min{V n
d , v(ρnjd+1)}

∆x

indicates the time needed by the discontinuity to reach the interface xjd+1/2

traveling at its speed vd.

The numerical flux at x = xjd−1/2 is computed as

F n
jd−1/2 = min

{
Dα(ρnjd−1), Sα(ρ̂α)

}
. (4.30)

Figure 4.15 depicts a scheme of the reconstruction.

On the other hand, if ρnjd 6∈ [min{ρ̂α, ρ̌},max{ρ̂α, ρ̌}], then djd 6∈ [0, 1]. Indeed,

due to the approximation ρl = ρkjd−1 and ρr = ρkjd+1, the discontinuity

x̄jd = xjd−1/2 +djd∆x does not in general coincide with znd , the actual position

of the front-end of the platoon. The traveling speed is anyway the same. In

some situations it may happen that znd and x̄jd are not located in the same

cell, as depicted in Fig.4.16.

When this occurs, the following strategy is deployed
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– if
∣∣∣ρnjd − ρ̂α∣∣∣ < ∣∣∣ρnjd − ρ̌∣∣∣, i.e. djd > 1, we set ρ̂′α = ρnjd and ρ̌′ = ρ̌, which

corresponds to d′jd = 1; the corresponding numerical fluxes are then

computed as

F n
jd−1/2 = min

{
Dα(ρnjd−1), Sα(ρnjd)

}
,

F n
jd+1/2 = min

{
Dα(ρnjd), S(ρnjd+1)

}
;

– if
∣∣∣ρnjd − ρ̂α∣∣∣ > ∣∣∣ρnjd − ρ̌∣∣∣, i.e. djd < 0, we take ρ̂′α = ρ̂α and ρ̌′ = ρnjd ; the

numerical fluxes are then computed as

F n
jd−1/2 = min

{
Dα(ρnjd−1), Sα(ρ̂α)

}
,

F n
jd+1/2 = min

{
D(ρnjd), S(ρnjd+1)

}
;

this accounts for the direction of propagation of the non-classical discontinuity

and corresponds to (4.29)–(4.30) with ρ̂′α, ρ̌
′ in place of ρ̂α, ρ̌.

� Back-end The position of the upstream endpoint of the platoon is updated

as

zn+1
u = znu + V n

u ∆t,

Above, V n
u,d :=

1

∆t

∫ tn+1

tn
Vu,d(t)dt. The same method applied to the down-

stream point of the platoon is here arranged for the upstream one. The cell

of interest is here Cju , corresponding to the cell where the discontinuity is,

and the corresponding Riemann problem is the one of Eq. (4.28).

Here ρl = ρnju−1 and ρr = ρnju+1 and

dju =
ρnju − ρ̌α
ρ̂− ρ̌α

,

where ρ̂, ρ̌α have been computed above.

tk

tk+1

zd(k)

ρ̂α ρ̌
∆tjd

Ck
jd−1 Ck

jd
Ck
jd+1

Figure 4.15: Representation of the reconstruction at the downstream endpoint disconti-

nuity.
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tn

tn+1

znd x̄jd

ρ̂α ρ̌

∆tjd

Cn
jd−1 Cn

jd
Cn
jd+1

Figure 4.16: Representation of the reconstruction algorithm (4.29)–(4.30) at the down-

stream endpoint of the platoon.

tn

tn+1

znu x̄ju

ρ̂ ρ̌α

∆tju

Cn
ju−1 Cn

ju Cn
ju+1

(a) Case V nu ≥ 0.

tn

tn+1

znux̄ju

ρ̂ ρ̌α

∆tju

Cn
ju−1 Cn

ju Cn
ju+1

(b) Case V nu < 0.

Figure 4.17: Representation of the reconstruction algorithm at the upstream endpoint

of the platoon.
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If dju ∈ [0, 1] and V n
u ≥ 0, the numerical flux at the interface xju+1/2 is simply

reconstructed as

∆tF n
ju+1/2 = min

{
∆tju ,∆t

}
fα(ρ̌α) + max

{
∆t−∆tju , 0

}
f(ρ̂), (4.31)

where

∆tju =
1− dju
V n
u

∆x,

and

F n
ju−1/2 = min

{
D(ρnju−1), S(ρ̂)

}
,

This situation is depicted in Fig. 4.17(a)

As previously remarked, the upstream end-point of the platoon can also take

negative values of the speed if vehicles join the platoon, moving its back-end

backwards. When this occurs, V n
u < 0 and the flux reconstruction must be

done at the previous interface x = xju−1/2. In this situation:

∆tF n
ju−1/2 = min

{
∆tju ,∆t

}
f(ρ̂) + max

{
∆t−∆tju , 0

}
fα(ρ̌α),

where

∆tju = −dju
V n
u

∆x

is the time for the discontinuity to reach the interface xju−1/2. In addition,

F n
ju+1/2 = min

{
Dα(ρ̌α), Sα(ρnju+1)

}
,

as depicted in Figure 4.17(b).

As for the front of the platoon, it may happen that dju 6∈ [0, 1],and the method

has to be adapted as follows:

– if
∣∣∣ρkju − ρ̂∣∣∣ < ∣∣∣ρkju − ρ̌α∣∣∣, i.e. dju > 1, we set ρ̂′ = ρkju and ρ̌′α = ρ̌α and

the numerical fluxes become

F k
ju−1/2 = min

{
D(ρkju−1), S(ρkju)

}
,

F k
ju+1/2 = min

{
D(ρkju), Sα(ρkju+1)

}
;

– if
∣∣∣ρkju − ρ̂∣∣∣ > ∣∣∣ρkju − ρ̌α∣∣∣, i.e. dju < 0, we take ρ̂′ = ρ̂ and ρ̌′α = ρkju ; the

numerical fluxes are then computed as

F k
ju−1/2 = min

{
D(ρkju−1), S(ρ̂)

}
,

F k
ju+1/2 = min

{
Dα(ρkju), Sα(ρkju+1)

}
.

At this point the numerical fluxes between all the cells have been defined.
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Simulations

In order to assess the validity of the proposed approach, the different cases

are simulated. Since the aim is to assess the proposed numerical method, the

front and the back end of the platoon will be first separately simulated.

For all the simulation the discretization space step is ∆x = 0.001.

The front-end of the platoon is simulated as first.

In the following, the initial position of the downstream end-point of the

platoon is z0
d = 0.5, the maximum speed is V = 1 and the maximum density

R = 1. The occupancy parameter is α = 0.5 and the initial speed of the point

is Vd = 0.3, which gives ρ]α = 0.1750. A simulation is done for each possible

type of initial data detailed in the Riemann solver in Section 4.2.1.

Case d1) The Riemann type initial datum is

ρ0(x) =

 0.15 if x < 0.5,

0.4 if x ≥ 0.5.

The solutions ρ̂α and ρ̌ are computed as explained in Section 4.2.1, case (D1),

and ρ̂α = ρl = 0.15 and ρ̌ = 0.1. In Figure 4.18(a) the solution composed by

a non-classical shock followed by a classical one is shown. The star represents

the position of the front of the platoon.

Case d2) We consider a Riemann type initial datum

ρ0(x) =

 0.15 if x < 0.5,

0.65 if x ≥ 0.5.

Starting from this type of initial data, ρ̌ = 0.65 and ρ̂α = ρl = 0.29. The

solution is classical shock followed by a non-classical one, as shown in Fig-

ure 4.18(b), corresponding to the case (D2).

Case d3)The initial density is now

ρ0(x) =

 0.4 if x < 0.5,

0.5 if x ≥ 0.5.

Figure 4.18(c) reports the trend of the solution, computed as detailed in case

(D3). It results that ρ̌ = 0.1025 and ρ̂α = ρ]α = 0.1750 and the solution is a

rarefaction wave between ρl and ρ̂α, followed by a non-classical and a classical

shock.
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Figure 4.18: Density profile at the front of the platoon at time t = 0.5 for the different

type of initial data.

Case d4) The initial density considered in this last case is

ρ0(x) =

 0.3 if x < 0.5,

0.6 if x ≥ 0.5.

A rarefaction wave between ρl and ρ̂ = 0.2 appears, and then a non-classical

shock to ρ̌ = ρr, as shown in Figure 4.18(d).

The back-end of the platoon is now simulated.

In the following, z0
u = 0.5, V = 1, R = 1, α = 0.5, Vu = 0.2, corresponding to

ρ]α = 0.2.
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Figure 4.19: Density profile at the back-end of the platoon at time t = 0.5 for different

initial data.

Case u1) The considered Riemann type initial datum is

ρ0(x) =

 0.08 if x < 0.5,

0.2 if x ≥ 0.5.

The solutions computed as in case (U1) are ρ̂ = ρl = 0.08 and ρ̌α = 0.0942.

A non-classical shock followed by the classical one appears, as shown in

Figure 4.19(a).

Case u2) The initial data is

ρ0(x) =

 0.08 if x < 0.5,

0.4 if x ≥ 0.5.

According to case (U2), ρ̂ = 0.8 and ρ̌α = ρr = 0.4, and the solution is

reported in Figure 4.19(b).
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Case u3) The initial datum now is:

ρ0(x) =

 0.75 if x < 0.5,

0.1 if x ≥ 0.5.

The solution is depicted in Figure 4.19(c).A rarefaction wave between the

value ρl and ρ̂ = 0.6828, followed by the non-classical shock between ρ̂ and

ρ̌α = ρ]α, and a rarefaction wave to ρr. Values are computed as in case (U3).

Case u4)

An initial datum :

ρ0(x) =

 0.3 if x < 0.5,

0.4 if x ≥ 0.5.

Figure 4.19(d) illustrates the solution, computed as in case (U4). As expected,

a shock wave between ρl and ρ̂ = 0.8, followed by the non-classical shock to

ρ̌α = ρr appears.

At this point the full platoon with its initial and final point is simulated. As an

example, the following initial data is considered:

ρ0(x) =



0.3 if x < 0.2,

0.4 if 0.2 ≤ x < 0.5,

0.5 if 0.5 ≤ x < 0.8,

0.95 if x ≥ 0.8,

z0
u = 0.2, z0

d = 0.5. (4.32)

The initial length of the platoon is chosen equal to L = 0.3, the downstream

point of the platoon moves with a speed Vd = 0.3 while the back-end point has

a lower speed Vu = 0.2. The reduction rate α is 0.5. The back-end point of the

platoon is the one of case (U4) (see also Case u4 in the previous simulations). A

shock is then expected to appear with a value of the density equal to the computed

ρ̂ = 0.8. Concerning the downstream endpoint of the platoon, the situation of

case (D3), in which a rarefaction wave is followed by a shock appear. At some

point of the simulation the platoon reaches the downstream high density region, the

front-end point of the platoon slows down adapting its speed to the downstream

traffic. Since the speeds of the front-end and the back-end points of the platoon
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Figure 4.20: Density profile at different times corresponding to the initial condi-

tion (4.32).

are chosen to be different, the length of the platoon varies during the simulation.

Figure 4.20 depicts the simulation results at different time of the simulation, while

Figure 4.21 shows the space-time evolution of the solution.

4.2.2 Traffic Control via Platoons of Intelligent Vehicles for

Saving Fuel Consumption in Freeway Systems

The platoon model developed and presented in Section 4.2.1 is here adopted to

describe the traffic flow and a controller aiming at reducing congestion and fuel

consumption is applied. This problem was solved in [122]. Specifically, the platoon

is controlled in order to influence the surrounding traffic and to reduce the fuel

consumption of the overall traffic flow. The approach is similar to the one adopted

in section 3.1.2, with the additional degree of freedom added by considering a

platoon with variable length.
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Figure 4.21: Space-time evolution of the solution to (4.19) corresponding to the initial

datum (4.32): plot (a) displays the absolute density values ρ(t, x) everywhere, plot (b)

accounts for the relative density ρ(t, x)/αR at the platoon location, accounting for the

reduced road capacity.
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The aim is then to design a control scheme that optimizes the fuel consumption, by

controlling the maximum speed of the downstream and upstream end-points of the

platoon, Vd and Vu respectively. This means controlling both the speed and the

length of the platoon, thanks to Eq. (4.26).

The fuel consumption of the overall traffic flow is computed by means of the model

presented in [125, 128], already used in section 3.1.2. It was derived considering that

variations in vehicles fuel consumption are related to their mean speed and a curve

averaged on the characteristics of different cars was computed and approximated

by a sixth order polynomial K(v), see Eq. (3.6). The function K(v) was re-

parametrized in terms of density, by obtaining K(ρ), and the total fuel consumption

was then indicated as

F(ρ) = ρK(ρ).

The control problem is here again solved by means of a MPC approach, where

Vd and Vu are assumed as control variables. The vector of control inputs is here

indicated as u = [Vd, Vu]. Kp represents the number of time steps of the prediction

horizon for the MPC. At each fixed time step k, given the current initial state ρ(k),

the optimal control sequence u(h) = [Vd(h)Vu(h)], h = k, . . . , k +Kp, minimizing

the objective function is computed by solving the optimization problem over

the prediction horizon. The control u is constrained to be piece-wise constant

on subintervals of size ∆tKp/`, for some ` ∈ N with the aim of reducing the

computational complexity deriving from the non-linear problem optimization. At

t = k∆t, only the first input u(k) = [Vd(k)Vu(k)] of the obtained sequence is

actually applied to the real system for the time interval [t, t + ∆tKp/`]. At the

following iteration, based on the new system information, the optimization is

repeated shifting the horizon. Since the model is non-linear, the problem can be

solved only numerically, by means of iterative optimization algorithms that ask

at each time step to compute approximate solutions of system (4.19). At the

k-th iteration, the optimal input speeds are computed as solution of the following

constrained multi-variable optimization problem

min
u

k+Kp∑
h=k

N∑
i=1

F(ρi(h))∆x∆t, (4.33)

subject to the model dynamics (4.19), (4.25), (4.24) and to the following constraints

Lmin ≤ L(h) ≤ Lmax, (4.34a)

V min
d ≤ Vd(h) ≤ V max, (4.34b)

|Vd(h)− Vu(h)| ≤ c. (4.34c)
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for h = k, ..., k +Kp.

The first constraint (4.34a) is needed in order to limit the minimum and the

maximum length that the platoon may reach. The value of Lmin is strictly related

to safety distance considerations.

The upper limit,Lmax, has to be decided based on fuel efficiency evaluations

of vehicles composing the platoon. Specifically, an excessive distancing between

vehicles in the platoon would reduce the advantage for them to stay in the formation.

Indeed, especially for trucks, traveling close to each other, reduces the aerodynamic

drag and so the fuel consumption.

Constraint (4.34b) prevents the platoon to assume speeds that would be too low,

and so dangerous, on highways. The last constraint expressed by Eq. (4.34c) limits

the rate at which the platoon can change its length. Here, c is a suitable threshold

to be chosen to avoid undesired accordion effects in the variation of the length of

the platoon. The parameter c has to be identified based on several conditions, as

the type of the highway (number of lanes, slope, etc.) and the type of vehicles

traveling in the platoon, as cars, trucks etc.

Simulation Results

The control scheme presented in Section 4.2.2 is assessed in simulations to prove

the validity of the approach. The simulated scenario consists in a highway stretch

without any on-ramps or off-ramps. It is divided in N = 200 cells, each of them of

length 250 [m]. In each segment the traffic fundamental diagram is the quadratic

one, with maximum speed V = 140 [km/h], maximum density R = 400 [veh/km]

and capacity fmax = 14000 [veh/h]. To comply with the CFL condition, the

sampling time is ∆t = 5.76 [sec] and the scenario is simulated for a total time

interval of one hour. The simulated platoon has initial length L=3 [km] and at

the beginning of the simulation is located at position zd(t0) = 4 [km]. Its initial

speed are vd(t0) = vu(t0) = 80 [km/h], while the capacity is reduced of a factor

α = 0.6. The arriving demand, the inflow, is equal to the capacity fmax for the first

half of the simulation, while it is zero for the second half. As in section 3.1.2, the

flow allowed to exit from the last cell of the stretch is half of the capacity, with the

aim of simulating the presence of a fixed temporary bottleneck inducing congestion

at the end of the highway. The prediction horizon for the MPC is 40 time steps

but, in order to reduce the computational burden deriving from the solution of

the non-linear optimization problem, each value of the speed is kept constant for 5

time steps. For the constraints of Eq. (4.34), the platoon minimal and maximum
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allowable lengths are Lmin = 2 [km] and Lmax = 4 [km], V min
d = 40 [km/h], and

c = 30 [km/h]. To solve the non-linear optimization, the fmincon function of the

Matlab optimization toolbox is used.

In Fig. 4.22, the spatio-temporal evolution of the density is reported, both for the

case with no applied control and for the case with the application of the proposed

MPC control. In the no control situation (Fig. 4.22(a)), all the vehicles travel

keeping their maximum allowable speed until they reach the congestion due to the

presence of the bottleneck. At this point, the speed of the flow drops down to adapt

to the high density value speed. This situation causes an high fuel consumption,

since vehicles travel always either at very high or very low speed, which are the

worst situations in terms of fuel consumption, as highlighted by the adopted fuel

consumption model.

In Fig. 4.22(b) the proposed optimal control is applied. It acts by slowing down

the platoon and modifying its length in order to prevent vehicles to travel too fast

towards the congestion. This prevents vehicles to abruptly brake when they reach

the high congestion zone. In this way, the traffic in the surroundings of the platoon

is harmonized and cars show a moderate speed that is beneficial to reduce the

consumption of fuel and then the emissions.

In the last part of the simulation, the platoon enters the area with high congestion

and it has to adapt its speed to the downstream traffic, that becomes no controllable

anymore.

The optimal speeds computed by the controller and applied to the platoon and its

consequent length are reported in Fig. 4.23.

The value of the TFC obtained with this control strategy is reported in Table

4.3. This latter shows a reduction of the 2.6% by applying the proposed approach,

leading the fuel consumption of the overall traffic flow from 27629 liters to 26903

liters, that represents a saving of 726 liters of fuel. Although at a first glance this

reduction could appear small, it represents a significant reduction of emissions, that

is beneficial for the environment and for people health. It is important to consider

that the improvement is obtained by controlling only one platoon but, considering

the widespread of CAVs, scenarios with several platoons of CAVs are realistic to be

considered. Moreover, this control can be applied without adding any additional

infrastructure and, therefore, at low cost. Several platoons of vehicles could then

be formed and controlled to increase the effectiveness of the control. Moreover, in

the simulation scenario here presented individual vehicles traveling in the platoon

are not specifically considered. Indeed, the original contribution of this work is
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Figure 4.22: Evolution of the density in time and space in the uncontrolled and

controlled scenario.
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Table 4.3: Comparison between cost functionals.

TFC reduction %

No control 2.7629 e+04 0 %

MB control 2.6988 e+04 2.29 %

Platoon control 2.6903 e+04 2.63 %

related to macroscopic traffic control, while the platoon is here conceived as an

actuator. The proposed control has to be considered as a two levels control. An

upper level computes an optimal speed and length for the platoon, considering

proper constraints, by optimizing a cost function related with the bulk traffic flow.

Then a lower level will receive as inputs the optimal speed and length of the platoon

and, by applying a suitable spacing policy, it adapts the platoon characteristics.

Here the platoon is seen as an actuator for the macroscopic traffic control action,

and to this aim also non-traditional spacing policy could be applied.

As single vehicles in the platoon are concerned, a reduction in the consumed

fuel [152] can appear, since a more harmonized driving behaviour would emerge and

the aerodynamics of vehicles in the platoon is improved at reduced inter-distances.

In addition to this, this aspect would be more accentuated if the controlled vehicles

traveling in the platoon were autonomous trucks [16], [142].

To conclude, a comparison with the control action designed in [125] and reported

in Section 3.1.2 of this thesis is done. The main difference lies in the fact that the

moving bottleneck model consider just a single vehicle with punctual occupancy,

while here the platoon can change its length, so adding a control variable. A

more effective control action is then expected to appear. The results obtained in

the same simulation scenario are here compared. The trend of the density in the

moving bottleneck control case is depicted in Fig. 4.24, while the fuel consumption

performances are compared in Table 4.3, showing that the platoon control is more

effective in reducing the fuel consumption with respect to the single vehicle control.

4.2.3 Final considerations

In this section, a PDE-ODE model describing the interaction between a platoon

of vehicles and the traffic flow has been studied. The length and the speed of the

platoon have been assumed as control variables in the design of a MPC aiming at

reducing the fuel consumption. Simulations results have assessed the effectiveness
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Figure 4.24: Density trend in the simple moving bottleneck control of [125]

of the control action and a comparison with the simple MB control has been done.
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Chapter 5

An application of a Second Order

Sliding Mode Algorithm for

Ramp Metering

In this chapter the Sliding Mode Control (SMC) algorithm that has been

developed in [126] to solve the ramp metering problem is presented. The sliding mode

control [144, 44] is an approach that has the advantage of being a computationally

light easy-to-implement solution capable to guarantee finite-time stabilization and

robustness of the controlled system in front of a wide class of uncertainties.

SMC consists in a variable structure technique characterized, in its traditional

version, by a bounded discontinuous input signal. This discontinuity has the

drawback of being the main cause of the so-called chattering phenomenon [91], that

can be disruptive for the controlled systems. Among all the possible strategies

proposed to reduce such phenomenon, the idea of confining the discontinuity to the

time derivative of the effective control input fed into the plant resulted an efficient

solution, giving rise to the so-called Higher-Order Sliding Mode (HOSM) control

algorithms, whose main aim is the chattering alleviation [10, 9, 50].

In the following, a sliding mode control approach to solve the ramp metering

problem is proposed. In the literature, there are only few examples of applications

of SMC to ramp-metering. In [104], a first-order traffic model is chosen to describe

a stretch of highway with several on-ramps and a so-called drift algorithm is applied

for the sliding mode control. The resulting control system is a coordinated Multi-

Input Multi-Output (MIMO) sliding mode controller using both a first-order and

a second-order algorithm. In [76], the concept of differential flatness is combined

with a first-order SMC in order to keep the density close to its prescribed value by
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modeling the traffic with the well known first-order Lighthill-Whitham-Richards

(LWR) model [97][130], without taking into consideration the queue length dynamics.

The same approach has then be extended by applying a Super-Twisting sliding

mode approach in [42]. In [134], an integrated traffic control strategy that combines

Route Guidance and RM is designed, based on the inverse control technique and

Super- Twisting SMC. In [126], we introduced a Suboptimal Second-Order Sliding

Mode (SSOSM) control [45] to ramp metering with the aim of minimizing the

error between a chosen reference value, i.e., the critical density, and the value of

the density in the vicinity of the on-ramps. The algorithm will be detailed in the

following.

5.0.1 Second-order sliding mode control

To apply the sliding mode control, typically designed in the continuous time

framework, a continuous version with ramps of the traditional METANET model,

revised in Section 2.1, is here detailed.

As usual, a stretch of freeway divided in N cells of equal length Li, i = 1, . . . , N

is considered. A sketch of each section i is depicted in Figure 5.1. As in the classical

discrete METANET, the dynamics of the density is described by the conservation

law, given by the following differential equation

d
dt
ρi(t) = mmi(t) =

1

Liλi

(
qi−1(t)− qi(t) + qri(t)

)
(5.1)

where mmi denotes the density change rate, λi ∈ N is the number of lanes, while qri

is the metered on-ramp flow.

98



The dynamics of the mean speed of the traffic flow in the ith cell is given by

d
dt
vi(t) = ai(t) =

1

τ

(
V (ρi(t)− vi(t)

)
+

+
1

Li
vi(t)

(
vi−1(t)− vi(t)

)
+

− ν

τLi

ρi+1(t)− ρi(t)
ρi(t) + κ

− δ

Liλi

qrivi(t)

ρi(t) + κ
(5.2)

where the parameters τ , ν, δ and κ have the same meaning of the traditional

METANET. The steady-state speed V (ρi(t)) is

V (ρi(t)) = vf exp

(
−1

p

(
ρi(t)

ρcr

)p)
(5.3)

where p is an empirical correction factor to take into account the maximum flow,

given the features of the considered cell.

For each ramp, ωri denotes the number of vehicles in queue on the jth ramp.

The queue model is given by

d
dt
ωri(t) = mri(t) = dri(t)− qri(t) (5.4)

where dri is the traffic demand coming at the on-ramp. The portion of flow accessing

the mainstream from the ramp depends on the traffic flow on the main segment and

on the flow rate input ri(t) ∈ [rmin, 1], where ri = 1 is the case when the on-ramp

is unmetered and rmin ≥ 0. More specifically, one has that

qri(t) = ri(t)q̂ri(t) (5.5)

where q̂ri(t) = min {q̂1ri ; q̂2ri} and

q̂1rj =dri(t) +
ωri(t)

T
(5.6)

q̂2ri =Qsat min

{
1 ;
ρmax − ρi(t)
ρmax − ρcr

}
(5.7)

with T being the sampling time, Qsat being the on-ramp capacity under free-flow

conditions and ρmax being the maximum density of the mainstream segment.

5.0.2 Introduction of the canonical form for the SMC

In order to formulate the control problem at hand, it is convenient to make

reference to a canonical form frequently used in the development of sliding mode

control laws. The canonical form, which enables to describe the dynamics of the
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tracking error in a suitable form for control design, is here presented. Consider a

Single-Input-Single-Output (SISO) system affine in the control variable as follows.

Let xi =
[
xi1, x

i
2, x

i
3

]>
= [ρi, vi, ωri]

> ∈ X ⊂ R3 be the state vector of the ith cell,

di = dir be the exogenous input on-ramps, and ui = ri be the control variable. The

output is instead σi1 chosen as the error between the controlled variable xi1 = ρi and

its reference x?1 = ρ? assumed to be piecewise constant. Then system (5.1)–(5.5)

can be written in state-space form as follows ẋ(t) = f(x(t)) + g(x(t), d(t))u(t)

σ1(x(t)) = xi1 − xi?1
(5.8)

where x ∈ X is the state vector, with initial conditions x(t0) = x0, t0 being the

initial time instant and u ∈ U ⊂ R is the control input such that U := [−α, α]

with α > 0, while f(x(t)) : X→ Rn and b(x(t)) : X→ Rn are uncertain functions

of class C1(X). The uncertain nature of these functions is due to the fact that

modeling uncertainties related to the traffic demand are assumed to be present. The

output function σ1(x(t)) : X→ R plays the role of the so-called “sliding variable”.

The following input constraint holds

0 ≤ rmin ≤ ui ≤ 1 . (5.9)

The scalar input, belonging to the set [rmin, 1], can be mapped into a new

input ũi taking value in the set [−ū, ū], with ū > 0 by applying the following

transformation

ui =
(1− rmin)(ũi − ū)

2ū
+ 1 . (5.10)

Furthermore, the following assumptions hold.

Assumption 1. System (5.8) has an uniform and time invariant relative degree

equal to 1. �

By virtue of Assumption 1, exploiting (5.10) the following first-order dynamics

can be defined

σ̇i1 = f1(xi−1, xi) + g1(xi, di)ũi (5.11)

where σi1 is the ith sliding variable, while

f1(xi−1, xi) =
1

Lλi

(
xi−1

1 xi−1
2 − xi1xi2 + wi1 +

1 + rmin

2
q̂ir

)
(5.12)

g1(xi, di) =
1− rmin

2ūLλi
q̂ir . (5.13)
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Above, wi1 is the uncertainty on the traffic demand of the mainstream, while q̂ir is

as in (5.7) with an additional disturbance, i.e.,

q̂i1r(t) = di(t) + wi2(t) +
xi3(t)

T
, (5.14)

where wi2 is the uncertainty due to the flow coming at the ramps.

Moreover, the following condition holds.

Assumption 2 (Boundedness of the vector field). There exist positive constants

F, Gmin and Gmax such that the following inequalities hold,∣∣∣f1(xi−1, xi)
∣∣∣ ≤ F (5.15)

0 <Gmin ≤ g1(xi, di) ≤ Gmax , (5.16)

∀ i ∈ C.

Following the standard sliding mode approach, the control law could be designed

as a discontinuous control law. Another option is to design it as the output of an

integrator having in input the discontinuous signal, i.e., w(t) = u̇(t). This second

strategy is called Higher-Order Sliding Mode (HOSM).

5.0.3 Auxiliary system

With the aim to design a Second-Order Sliding Mode (SOSM) control, letting

σ = [σ1, σ̇1]> = [σ1, σ2]> be the vector of the sliding variable and its time derivative,

the relative degree of system (5.8) is artificially increased to 2 [11].

The system (5.1)-(5.7), with the degree artificially increased to 2, becomes: σ̇1(t) = σ2

σ̇2(t) = 1
Liλi

(
q̇i−1(t)− q̇i(t) + q̇ri(t)

) (5.17)

where q̇ri explicitly depends on the input ri(t), since qri(t) = ri(t)q̂ri(t) from

(5.5).

By adopting the canonical notation introduced for the SMC in Section 5.0.2,

letting µ̃i(t) = ˙̃ui(t) be an auxiliary control input, the system with the additional

integral dynamics is  σ̇i1 = σi2

σ̇i2 = h1(xi−1, xi, ũi) + g1(xi, di)µ̃i
(5.18)
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where the augmented vector of the sliding variable and its derivative is σi =
[
σi1, σ

i
2

]>
,

while the drift term becomes

h1(xi−1, xi, ũi) = d
dt
f1(xi−1, xi) +

(
d
dt
g1(xi, di)

)
ũi , (5.19)

and g1 is as in (5.13). Furthermore, the following assumption holds.

Assumption 3 (Boundedness of the auxiliary drift term). There exists a positive

constants H such that the following inequality holds,∣∣∣h1(xi−1, xi, ũi)
∣∣∣ ≤ H, ∀ i ∈ C . (5.20)

Note that Assumption 2 and 3 mean that uncertainties affecting the systems

are bounded, that is reasonable due to the nature of the involved variables.

5.0.4 The SSOMC algorithm

Given these preliminaries, a discontinuous finite-time SMC law, generically

indicated as ψ is defined

µ̃i := ψ(σi1, σ
i
2), ∀ i ∈ R , (5.21)

such that there exists σi1(t) ≡ 0, ∀ t ≥ t̄, in spite of the uncertainties, with t̄ ≥ t0

being the so-called reaching time. The presented second order sliding mode control

law is a SSOSM control [11]. Starting from the Bang-Bang principle [6], if bounded

uncertain terms are present, it is possible to generate a “suboptimal” state trajectory

with respect to that obtained with the Bang-Bang minimum time optimal control

law. Specifically, computing the local minimum or maximum of the sliding variable,

referred to as σ1imax, instead of its first time derivative, the SSOSM control law

can be defined as

ψ(t) = −ηi · αi sgn

(
σ1i(t)−

1

2
σ1imax(t)

)
(5.22)

where ψ = ṙi in our case, while ηi = η∗ and αi are chosen such that

αi > max

(
βi
η∗γi

,
4βi

3γi − η∗εi

)
(5.23)

η∗ ∈ (0, 1] ∩
(

0,
3γi
εi

)
. (5.24)

As for the stability analysis, according to [11], one can prove that, under sufficient

conditions (5.23) and (5.24), the control law (5.22) implies a contraction property

of the extreme values of the sliding variable in time, so that the sliding variable

and its first time derivative are steered to zero in a finite time tr.
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Figure 5.2: Sketch of the considered highway portion

5.0.5 Extension to the classical SSOSM control

The performance of the proposed algorithm is increased through two modifica-

tions. Firstly, a saturation strategy is introduced to take into account the limit of

the on-ramp flow ri. Indeed, since the ramp signal ri is constrained to assume values

between rmin and 1, while αi has to be set according (5.23), it is needed to modify

the proposed control (5.22) in order to take into account these bounds. Inspired by

[45], the SSOSM control law is modified adding an additional law depending on the

sign of the input signal ri(t). More specifically, the control law (5.22) becomes

ψ(t) =

−ηi · αi sgn
(
σ1i(t)− µσ1imax(t)

)
rmin < ri(t) < 1

−αi sgn
(
ri(t)

)
otherwise ,

(5.25)

where µ ∈
[

1
2
, µ̄
]

and µ̄(t) = σ1i(t)
σ1imax(t)

, ∀ t ∈ T := {tk}, k ∈ N and T being the

sequence of the time instants tk when the control law switches.

The second mechanism that is considered is the introduction of a supervisor

with the aim to avoid that ramps are blocked for too long periods. The supervision

mechanism is introduced as follows: if the flow rate input ri(t) = rmin for a time

interval greater than cT , c ∈ N, then set ri > rmin; if instead ri(t) = 1 for less than
cT
2

, maintain ri = 1 up to cT
2

. This mechanism has the aim to avoid the generation

of long queues on the ramps, thus avoiding too high waiting time.

5.0.6 Simulation results

The proposed SMC has been assessed in simulation. To this aim we have

considered a stretch of highway composed by N = 7 cells with M = 3 ramps located

in the first, third and sixth cell. The sketch of the highway is depicted in Figure

5.2.

The inflow to the highway, both from the mainstream and from the on-ramps, has a

trapezoidal shape as depicted in Figure 5.3. The parameters adopted for the model

in the simulations are reported in Table 5.1.
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Figure 5.3: Inflow to the highway

Table 5.1: Simulation parameters

N 7

M 3

tf 5 h

ρcr 33.5 veh/km/lane

ρmax 180 veh/km/lane

vf 102 km/h

p 1.867

τ 0.005 h

T 0.0028 h

ν 60 km2/h

κ 40 veh/km/lane

δ 0.0122

Li 1 km

λi 2 lane

αi 10

ηi 0.9

c 4

rmin 0
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Figure 5.4(a) shows the trend of the density along the stretch of highway when

the ramp metering control is not applied yet. Looking at the incoming demand, the

inflow of the on-ramp of the cell 6 shows a peak at the beginning of the simulation

time. The sum of the ramp demand and the mainstream inflow overcomes the

value of the capacity and this causes the formation of congestion that starting from

cell 6 propagates for several cells upstream. The same scenario occurs around the

first hour of simulation when a peak of demand appears at ramp 3 and again at 2

hours of the simulation when a severe congestion is caused by the peak of demand

coming from the first ramp. In the scenario without control, the access of vehicles

from ramps is not regulated, so all the incoming cars can enter the highway and

vehicles do not wait at ramps forming queue.

The scenario with the developed SSOSM algorithm where the reference value is

chosen equal to the critical density, has been simulated. The correspondent trend of

the density in time and space in this controlled case is depicted in Figure 5.4(b). By

applying the ramp metering control, the congestion in the mainstream is completely

solved. The control variables r1, r3 and r6, metering rates of the three controlled

ramps, are reported in Figure 5.5. As previously remarked, the control variable ri

is the metering rate, that represents the portion of incoming flow allowed to access

the highway from the on-ramp.

The first control action that is activated is the one regulating the access to ramp 6.

According to its incoming demand, depicted in Figure 5.3, a peak of flow appears

at the beginning of the simulation time. The controller reacts by applying a strong

reduction of the metering rate for the whole duration of the demand peak. A

similar situation appears in the other two ramps when their traffic demands show a

strong increase, causing a congestion. Figure 5.6 reports the trend of the sliding

variables, i.e., the difference between the reference value and the density respectively

appearing downstream each ramp. It is possible to see that the control action

successfully steers the error to zero when the traffic demand coming from the ramp

is high, so that the density value is very close to the one of the reference. An error

high but negative appears when there is not enough incoming demand to let the

density increase up to the reference value but, as highlighted before, this behavior

does not represent a problem in the traffic control since a free-flow condition holds.

The drawback that occurs by controlling the on-ramps inflows is obviously the

formation of queues at the ramps. Their trends are depicted in Figure 5.7.

The control effectiveness is evaluated considering the value assumed by the TTS,

that is the time spent by all the drivers on the highway both in the mainstream
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Figure 5.4: Density trend in the uncontrolled and controlled case

106



Figure 5.5: Controlled metering rate for the three ramps

Figure 5.6: Trend of the sliding variables
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Figure 5.7: Queue length at the ramps

Table 5.2: Performance indexes

Strategy TTT TWT TTS RMSE

Unmetered 1769 311 2080 26.33

ALINEA 1689 337.9 2027 20.99

FOSM 1690 323.5 2014 20.94

SSOSM 1453 396 1849 18.02

and waiting at the queue. In order to quantitatively verify the performance of the

present proposal with respect to already exixting algorithms, the SSOSM control

algorithm is compared with a First-Order Sliding Mode (FOSM) control algorithm,

with the ALINEA strategy and with the unmetered case. The achieved results are

reported in Table 5.2, in terms of TTT, TWT, TTS (see Section 2.5),and Root

Mean Square Error (RMSE) of the density. The TTS presents a strong reduction of

thea 11.1% by applying the proposed SSOSM with respect to the uncontrolled case,

given by an expected increase of the TWT due to the ramps closure, balanced by a

strong reduction of the TTT. The latter results outperform the improvements that

are achieved via the traditional ALINEA strategy. The FOSM algorithm succeeds

as well in reducing the TTS with respect to the unmetered case (3.2%) but its

performance is lower than the proposed SSOSM. Moreover, the latter outperforms
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all the other strategies in terms of RMSE.

5.0.7 A Hierarchical MPC and Sliding Mode Based Two-

Level Control for Freeway Traffic Systems with Par-

tial Demand Information

In the present section, the SSOSM algorithm is adopted to design a more

sophisticated control scheme capable to solve an optimal RM problem, while

being robust in front of disturbances acting on the system. The approach has

been presented in [46]. Differently from other works published in the literature,

the control problem to solve is made more challenging and realistic due to the

introduction uncertainties and disturbances acting on the system. Note that the

considered uncertainty is physically reasonable due to the uncertain nature of the

traffic. In this perspective, the proposal consists of a hierarchical control architecture

based on the combined use of MPC and SMC. Specifically, an high-level controller

is based on the use of a MPC as supervisor, that supplies the reference value for

the density based on an ideal model of the traffic system. On the other hand,

a low-level controller implements a decentralized SSOSM algorithm to track the

reference provided by the high-level controller. In this way, the real control input is

generated and fed into the real traffic system. This proposal introduces the need

for the two loops to run at different rates. Specifically, due to its nature the MPC

runs at low frequency, while the SSOSM control needs a frequency sufficiently high

to enforce the sliding mode, while fulfilling the sampling constraint of the actuators,

as the traffic lights. The combination of MPC and SMC is a solution that proved

to be effective, as remarked in survey [74], or in [75] and [73] where it was applied

to microgrids and robot manipulators.

As previously remarked, in the proposed control scheme, the lower level controller

is represented by the sliding mode algorithm proposed in Section 5.0.4. The higher

level controller is instead a MPC generating the reference signal, that will be here

detailed.

The higher level MPC

By virtue of the fact that the lower level sliding mode local controllers ensure

robustness to the controlled system, the upper level based on MPC can rely on a

nominal model representing the real system with reduced uncertainties. Moreover,

in order to apply the MPC, the continuous dynamics (5.8) is discretized, and the
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output is chosen equal to the cell density y2 = xi1, thus leading to a discrete model

in the form xk+1 = f̂(xi+1
k , xik, x

i+1
k ) + ĝ(xik, d

i
k)u

i
k

y2k = xi1k

∀ i ∈ C , (5.26)

with k ∈ N and xk = x(tk) meaning the variable x at the sampling instant tk = kT ,

while f̂ and ĝ are the nominal (that is without disturbances wi1 and wi2) counterparts

corresponding to functions f and g in (5.8). The MPC is based on the solution

of the so-called Finite-Horizon Optimal Control Problem (FHOCP). It consists in

minimizing, at any time step tk, a suitably defined cost function with respect to

the control sequence ui[tk,tk+Np−1|tk] := [ui0(tk), u
i
1(tk), . . . , u

i
Np−1(tk)], where Np ≥ 1

is the prediction horizon.

The aim of the control scheme is to reduce travel times for drivers. Specifically,

considering the travel times definition presented in 2.5, the cost function to minimize

with respect to u[tk,tk+Np−1|tk] is given by

J(xi(tk), Np) = T

Np−1∑
p=0

 N∑
i=1

Lxi1(tk+p)λ
i +

M∑
j=1

x
[j]
3 (tk+p)

 . (5.27)

representing the Total Time Spent (TTS). Furthermore, the cost function is subject

to the hard constraint represented by the dynamics (5.26) and the inequality

constraint on the input given in (5.9).

Then, given u?i[tk,tk+Np−1|tk] := [u?i0 (tk), u
?i
1 (tk), . . . , u

?i
Np−1(tk)], the optimal se-

quence generated from the solution of the FHOCP, according to the Receding

Horizon strategy, the applied piecewise-constant high-level control law is the follow-

ing

u?iHL(t) = u?i0 (tk), t ∈ [tk, tk+1) , (5.28)

where tk+1 − tk = T is the MPC time step, and u?0(tk) the first value at tk of the

optimal control sequence for the ith cell.

Case of Study

In order to assess the validity of the proposed two levels controller a scenario is

simulated, as depicted in Figure 5.9.

A stretch of highway divided in N = 7 cells, each of them with length L = 1

km, has been considered. Two on-ramps are present in cells 4 and 6.

As previously remarked, the proposal is a multi-rate control scheme, that requires
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MPC

Figure 5.8: Scheme of the multi-level hierarchical control

q[0] q[7]

q[4]

ρ[4]

q[6]

ρ[6]

Figure 5.9: Sketch of the considered highway portion

the numerical implementation of the FHOCP and a time discretization such that

the input constraints can be verified only at the integration time step. Following

the results in [103], an integration step τi = 1 second is chosen, while the MPC

time step is T = 30 seconds. This choice still guarantees the convergence properties

of the control system.

The minimum value of the input is chosen as rmin = 0, to indicate the case in

which the ramp can be completely closed. The external inflow is depicted in Figure

5.10. This profile is given by a trapezoidal shape plus a random unpredictable

disturbance, whose amplitude is chosen as a percentage of the maximum value

of the nominal demand. The critical density is ρcr= 33.5 veh/km per lane, the

maximum density is given by ρmax =180 veh/km per lane and the flow speed is vf

102 km/h. The METANET speed model parameters are c=1.867, τ is 0.005 hours,

ν=60km2/h, κ=40 veh/km per lane and δ=0.0122.

Three different scenarios are simulated in order to make a comparison:
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Figure 5.10: Example of incoming traffic demand both on the mainstream and on-ramps,

with an overlapped disturbance having amplitude equal to 10% of the nominal demand.

S1) Umetered case: no control is applied to the ramp and then the whole incoming

ramp demand is allowed to access the mainstream. Queues at the ramps

obviously do not form. The TWT is zero, or can be very close to zero in the

case in which the congestion in cells downstream a ramp is so severe that

vehicles arriving from ramps cannot accede.

S2) MPC standalone: in this situation a genuine MPC is applied, without the

lower level SM. The prediction is done by adopting the nominal model of

the system with a prediction horizon equal to Np = 30 time steps. The

optimal input is then applied to the real system using a zero-order-hold

mechanism, which converts the signal sampled each T seconds into a signal

at the integration step τi.

S3) High level MPC with local SSOSM control: this is the proposed control

scheme. The high-level MPC supervisor produces the reference density signals

to be tracked by applying the saturated SSOSM control algorithm, locally

acting on the controlled cells. The prediction horizon is chosen again equal to

Np = 30.

MPC standalone in presence of uncertainties

Before discussing the results achieved by adopting the two levels control scheme,

the effect of disturbances acting on the demand on a genuine MPC is evaluated. As
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reference case study, an MPC standalone is directly applied to on-ramps in nominal

conditions, assuming that a perfect knowledge of the traffic demand is available.

Different simulations have been done by increasing the disturbance on the traffic

demand with amplitude variation, namely ∆w%, from 10% to 25% of the nominal

demand. All the cases are then compared in terms of TTT , TWT and TTS, as

reported in Table 5.3. The high nonlinearity of the system under control strongly

Table 5.3: Travel times by applying only the MPC with increasing disturbances acting

on the system

∆w% TTT TWT TTS ∆TTT S2n
% ∆TWT S2n

% ∆TTSS2n
%

0 318.85 176.10 494.95 – – –

10 341.93 209.48 551.42 7.24 18.95 11.41

15 357.53 248.15 605.68 12.13 40.91 22.37

20 428.10 269 697.35 34.27 52.75 40.89

25 427.10 315.34 742.52 33.95 79.07 50.02

influences the TTS, but it is still possible to observe that the percentage variation

with respect to the MPC in nominal condition (namely, ∆TTT S2n
% , ∆TWT S2n

% , and

∆TTSS2n
% ) considerably increases, the higher is the disturbance amplitude. These

results are illustrated in Figure 5.11, where it is evident the increase of travel times

compared to a baseline nominal MPC scenario. These results introduces the need

for the adoption of two levels control schemes, aiming at increasing the robustness

of the control action.

Two levels controllers: Simulation Results

The results obtained by means of the proposed two-levels scheme, indicated as

scenario S3, are here discussed. The amplitude of the considered disturbance acting

on the inflow is equal to 10% of the nominal demand. Moreover, the unmetered

case (scenario S1) is also simulated to make a comparison.

The trend of the density in time and space is shown in Figure 5.12 for all the

simulated scenarios. Figure 5.12(a) depicts the trend in the umetered situation,

without any control. In correspondence of the two ramps in cell 4 and 6, a

congestion forms and spreads for several cells upstream, reaching also the first

cell of the considered stretch. High values of density, up to 70 veh/km/lane occur

along the stretch, thus indicating the presence of a severe congestion. The TTS in
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Figure 5.11: Percentage of growth in travel times with increasing disturbances when

the MPC standalone is used

this case, as reported in Table 5.4 reaches the value of 569 veh/h. Figure 5.12(b)

depicts the density trend when the MPC standalone is adopted. On the other

hand, the effect on the density of the complete hierarchical two levels controller is

shown in Figure 5.12(c). In this case, congestion appears strongly reduced, with

results that are better than in the case of the MPC standalone. This demonstrates

the effectiveness of the SSOSM control to reduce the uncertainty level affecting

the system. Travel times in the different scenarios are reported in Table 5.4. A

scenario has been simulated also with an increased disturbance amplitude equal

to 25% of the nominal demand is reported for further assessing the proposal, and

the percentage variation with respect to the unmetered case (namely, ∆TTSS1
% ) is

computed.

The reference density signals generated by the MPC supervisor are depicted

in Figure 5.13 for cells 4 and 6. The trend of the sliding variable for both the

ramps is instead reported in Fig. 5.14, in which it is important to notice that

they are steered to zero in a finite time. The abrupt variations of the disturbed

demand causes the sliding mode to be lost sometimes, but it is always recovered

in a finite-time. The presence of some oscillations is instead mainly due to the

multi-rate nature of the scheme in which the error between the continuous-time

system and its discretized model slightly propagates over time. This does not have

a strong negative impact on the performance of the proposed scheme. The optimal

control inputs r?4, r?6 computed by the MPC supervisor, solving the FHOCP, are
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Figure 5.12: Density trend in the three considered scenarios. (a) unmetered case (S1).

(b) MPC standalone (S2). (c) high level MPC with local SSOSM control (S3)
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Table 5.4: Performance indexes

∆w% Scenario TTT TWT TTS ∆TTSS1
%

S1 566 3 569 -

10 S2 321 175 496 12.8%

S3 317 175 492 13.5%

S1 543 1 544 -

25 S2 315 157 472 13.2%

S3 311 157 468 13.7%

Figure 5.13: Reference signals genereted by the MPC control

Figure 5.14: Sliding variables
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Figure 5.15: Control inputs computed by the controller

Figure 5.16: Traffic queues forming at the on-ramps 4 and 6
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illustrated in Figure 5.15.

Figure 5.15 depicts the trend of the optimal input computed by the MPC and the

input generated by the SM algorithm. It is worth noting that the local SSOSM

controllers do not only reject the uncertainties affecting the system, but, following

the reference provided by the MPC supervisor, generate control inputs which

reproduce the optimal ones achieved by solving the FHOCP at high level.

Looking at the time evolution of the control signals, the first peak of the demand

depicted in Figure 5.10 occurs in cell 4, thus letting the MPC provide a density

reference such that the corresponding SSOSM input closes ramp 4. The same

happens for ramp 6 when the second peak of demand arrives. The signals are then

modulated in order to avoid, at the same time, too high congestion on the highway

and too long queues at the ramps, reported in Figure 5.16.

Final considerations

The proposed hierarchical two-level MPC with SSOSM control, adopted to solve

a ramp metering problem for traffic systems characterized by partial demand infor-

mation, has proven to be effective to reduce the level of uncertainty of the controlled

system, while maximizing the traffic throughput. The proposal outperforms the

other compared cases in terms of improvements of total travel times.
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Conclusion

In this chapter final considerations and some possible future works are consid-

ered.

The central theme of this dissertation is the possibility of exploiting new technolo-

gies implemented on vehicles, as connectivity and automation features, to regulate

traffic control. Specifically, throughout the thesis, the use of smart vehicles as

actuators for traffic control actions is investigated. The central question is if also in

scenarios with low penetration rates of connected ans automated vehicles, a small

number of actuated vehicles is sufficient to influence the traffic.

Unlike the majority of the works present in the literature, the problem is faced in a

macroscopic framework, to reduce the computational complexity that characterizes

microscopic approaches.

To overcome the first-order macroscopic model problem of not being able to capture

the capacity drop phenomenon, a capacity drop modelling approach has been

investigated and it is applied to most of the presented models, making them more

realistic.

Several approaches have been investigated to describe flows with smart vehicles.

The technique that is mainly adopted in the thesis is the representation of connected

and automated vehicles as they were moving bottleneck with a their own motion

law different from the rest of the traffic flow. Each single moving bottleneck is

individually controlled to influence the traffic in its neighborhood.

The problem was first explored in the framework of PDE traffic models, leading to

a PDE-ODE model describing the interaction between the macroscopic flow and

the moving bottleneck, whose trajectory is described by the ODE. A speed control

is then applied to the moving bottleneck to optimize the fuel consumption of the

overall traffic flow, showing that even with only one controlled vehicle, benefits are

brought to the traffic flow.

A second field of research has focused on the modelling of CAVs by means of

multi-class flow modelling, leading to the development of a multi-class CTM model
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for mixed human-driven and CAVs flow. A centralized decision maker computing

the optimal speed to be communicated to the CAVs class has been developed and

benefits are visible for the overall traffic flow, leading to a reduction of travel times.

A lot of attention has recently been paid to platooning, especially for trucks, looking

at the energy efficiency that derives from reducing the aerodynamic drag between

trucks and then decreasing the fuel consumption. However, the impact of platooning

on the traffic flow is not yet well understood. A part of this dissertation is devoted

to study the interaction between platoons and the surrounding traffic, leading to

the development of two different modelling approaches. Moreover, the length and

the speed of the platoon become the control variables in control schemes aiming

at improving traffic conditions and demonstrating that platoons could be even

beneficial for traffic.

There are several possible future developments that could be explored. The

presented models and the control strategies, derived in a macroscopic framework,

could be tested by means of micro-simulators in order to validate them.

Additionally, platooning related aspects have not been central in the dissertation,

that mainly focused on the impact of platoons on the bulk traffic flow. Platoons

have been assumed as simple actuators for the macroscopic traffic control action

without focusing on their internal spacing-policy, that will be further investigated.
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