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Doctor of Philosophy

AI-aware Network Security Assessment:
A Graph based Approach

by Giuseppe NEBBIONE

The number of cyber threats continues to evolve at a rapid pace, thus lead-
ing to an increasing number of security incidents. Hence, it is of paramount
importance to properly secure digital infrastructures and services by assess-
ing the potential security risks. For this purpose, over time, assessment pro-
cedures have been developed and published in the form of industry stan-
dards (e.g., ISO27001, OWASP, NIST P-800-42). Unfortunately, these proce-
dures are far from being fully automated and integrated with AI technolo-
gies. To fill this gap, this thesis work aims at designing and developing a
methodological framework and a toolset relying on the combined applica-
tion of AI and graph-based algorithms. These AI-aware security assessment
methodology, techniques and tools advance the state of the art in that they
strongly enhance security assessment approaches. More precisely, graph
based techniques are able to reveal non-obvious properties and relationships
between the various components of a technological infrastructure. This infor-
mation can be processed in order to extract useful features that, when used
to train an AI classifier, allows to determine whether the target infrastructure
is vulnerable.

As a result of this work, an AI-aware network security assessment toolset
has been designed and developed in the domain of enterprise networks (i.e.,
complex computer networks based on directory services). This toolset relies
on graph shortest paths and implements state of the art machine learning
and statistical modeling techniques to determine critical points within an in-
frastructure and automatically detect vulnerabilities.
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Chapter 1

Introduction

The exponential growth of devices connected to Internet has led to a signif-
icant increase of cyber attacks which cause disastrous consequences and big
damages to the companies and organizations being attacked. The number of
cyber threats continues to evolve at a rapid pace, with an increasing number
of data breaches and new families of malware developed each year.

The attackers behind these threats are driven by different motivations and
goals. In fact, attacks are nowadays carried out by different actors who are
commonly identified as: cybercriminals, generally driven by monetary pur-
poses; hacktivists, generally driven by activism; state sponsored actors, gen-
erally driven by defensive or offensive cyberwarfare operations. As a mat-
ter of fact, the United States Department of Defense recognizes the use of
computers and the Internet to conduct warfare in cyberspace as a threat to
national security, but also as a platform for attack 1.

The goal of attackers is not always the one of compromising the target
systems. They might also aim at gathering data to be used to perform intel-
ligence operations and get insights on the target. This is especially the case
in industrial and state-sponsored espionage. Hence, it is also important for a
company to be constantly aware of the information being exposed and how
this information could be abused to harm the company itself.

It has been reported that over the past years, organizations have been
facing growing challenges in computer security. In fact, while they increased
the annual spending on cybersecurity infrastructures, the trend of attacks has
continued to escalate at unprecedented speed 2.

In this landscape, one of the primary choices used by the attackers is mal-
ware, which acts as a weapon to carry out malicious intents in the cyberspace.
As pointed out by Statista 3 the number of new malware developed by attack-
ers follows an exponential growth and is increasing every year. Attackers do
not limit themselves to simple attacks but in many cases are organized and
able to engineer novel attacks to achieve their purpose.

Malware is often deployed by e-mail through the use of phishing and
spear phishing techniques which in this context are the old time favorites
by attackers. Moreover, besides being the most used vector, compromised

1https://www.businessinsider.com/us-military-cyberwar-2016-5
2https://www.fireeye.com/content/dam/fireeye-www/virtualsummit/pdfs/cyber-

trends-2020-report.pdf
3https://www.statista.com/statistics/680953/global-malware-volume/
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e-mail accounts are also a very fruitful achievement in terms of monetary
costs.

The Federal Bureau of Investigation Internet Crime Complaint Center re-
ported that 26.2 billion US Dollars was the amount of international losses
reported due to mail compromise between June 2016 and July 2019 4.

Another recurring issue for what concerns the attacks is related to Dis-
tributed Denial of Service attacks. As documented by Akamai 5, between
July 2019 and June 2020, the commerce category faced 125 DDoS attacks,
90% of these attacks were against organizations operating in the retail sector,
while the remaining ones were targeted toward touristic services. These at-
tacks may happen as a form of hacktivism, protest or in general to disrupt
specific services.

Another common issue in the cybersecurity attack landscape is related
to data breaches which are mostly affecting the healthcare and government
sectors. There was an 80% increase in data breaches in the health sector from
2017 to 2019 6.

In addition, the COVID-19 pandemic increased the smart-work activi-
ties and led companies to expose services to their employees, thus increas-
ing their attack surface. Cybercriminals have quickly coped with this situ-
ation, utilizing it as an opportunity to launch attacks. In fact, as reported
by McAfee 7, there was recently an increase in malware attacks targeting the
public, healthcare and education sectors.

Over the years, proactive and reactive procedures have been developed
to assess the security of implementations and services. These procedures
have been organized and published in the form of industry standards (e.g.,
ISO27001, OWASP, NIST P-800-42). Unfortunately, they are far from being
fully automated and they still do not significantly exploit AI technologies in
contexts where it would be advantageous with respect to the usage of heuris-
tics.

Hence, to cope with the evolving threat landscape, it is of paramount
importance to properly secure digital infrastructure and services by assessing
security risks associated with each asset.

To secure infrastructures, a multitude of tools has been developed. In
particular, in recent years there has been a growing interest in AI technologies
and also in AI-powered cybersecurity. In fact, machine learning models can
provide insights about complex patterns found in advanced attack scenarios.

For this reason, it becomes particularly challenging to combine AI and
cybersecurity and explore the possibilities opened by the application of ma-
chine learning techniques to the computer security field.

This thesis work addresses these challenges by modeling computer net-
works as graphs and taking advantage of machine learning techniques to

4https://www.ic3.gov/Media/Y2019/PSA190910
5https://www.akamai.com/us/en/multimedia/documents/state-of-the-internet/soti-

security-loyalty-for-sale-retail-and-hospitality-fraud-report-2020.pdf
6https://www.statista.com/statistics/798564/number-of-us-residents-affected-by-data-

breaches/
7https://www.mcafee.com/enterprise/en-us/assets/reports/rp-quarterly-threats-july-

2020.pdf
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gain better insights on an infrastructure and its corresponding weaknesses.
More precisely, a methodological framework and a toolset for performing
AI-based security assessment within complex infrastructures are proposed.

The layout of this research work is as follows. Chapter 2 presents a gen-
eral overview of the proposed approach by describing the motivation and
reasons behind it and a high level description of the proposed framework.
Chapter 3 describes common security issues and typical countermeasures
implemented to tackle these issues. Chapter 4 discusses the state of the art
regarding computer security and in particular literature combining artificial
intelligence based techniques with security. Machine learning concepts and
graph theory notions are briefly highlighted in Chapter 5. The technologies
behind enterprise networks, Active Directory and the corresponding secu-
rity issues are discussed in Chapter 6. The proposed methodological frame-
work is described in Chapter 7, while details on the toolset implementing this
framework are given in Chapter 8. Chapter 9 discusses some experimental
results observed in artificially generated test environments developed to as-
sess the benefits of the proposed framework. Finally, Chapter 10 presents
some conclusions and possible developments of this research work.
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Chapter 2

Background

There is an urgent need in outperforming attackers by developing and up-
dating proactive and reactive measures to secure networks. To achieve this
goal, this thesis work focuses on proactive assessment of advanced attacks
within complex computer environments. In particular, the work aims at de-
signing and developing a methodological framework and a toolset based on
the combined application of graph algorithms and artificial intelligence tech-
niques. This comprehensive framework will bridge the gap between AI and
computer network security and will enhance the state of the art in the area of
security assessment procedures.

The focus of this research is security assessment in the domain of en-
terprise networks, i.e., complex computer networks relying on a directory
service, such as Microsoft Active Directory. In fact, enterprise networks are
particularly complicated to manage, because they are characterized by the
combination of many diverse devices, technologies and protocols, whose ac-
tual behavior might be difficult to understand, thus leaving possible points
of access for attackers. As a consequence, this complexity might lead to a
huge attack surface for advanced threat actors. The choice of analyzing Ac-
tive Directory environments is justified by the fact that these environments
although do not represent the totality of enterprise systems they are prolific
enough to be used by about ninety percent of Fortune 500 companies [1].

In this thesis work, these complex scenarios are modeled through graphs,
whose nodes represent network entities and whose edges represent the re-
lations between entities. The graphs considered in this work, also known as
“attack graphs”, represent the set of all paths that can be used by an attacker
to compromise a network by obtaining the role of the network administrator.
The concept of attack graph is well known in computer security although
these graphs are often customized to specific scenarios or technologies. In
fact, there is a lack of formalisms and tools to represent graphs able to model
general computer networks and scenarios. To cope with this issue, the pro-
posed framework focuses on Active Directory environment and is general
enough to be applied to a big variety of scenarios.

Applying graph theory to computer networks has many benefits. In par-
ticular, graph models allow the discovery of shortest paths in terms of weak-
nesses in a network, that is, the most easily exploitable path for an attacker,
or the path in which it may be easier to locate vulnerabilities. In this con-
text, the evaluation of the relationships between network entities and paths
within a graph is more effective than the isolated evaluation of vulnerabilities
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of a single entity. More precisely, the evaluation of single endpoints may not
reveal the complex attack scenarios resulting from the combination of mul-
tiple weaknesses. The relationships inside the graph can easily reveal these
vulnerabilities.

Although some works have investigated the application of graph mod-
els to computer security, the combined application of graph theory and AI
to complex infrastructures has not been yet studied. For this reason, this
work proposes a framework that relies on the use of graphs integrated with
machine learning supervised techniques. An overview of this framework is
depicted in Figure 2.1.

Target
Network

Information Attack
Graph

Vulnerability
Information

Features
Machine
Learning
Classifier

SAFE

VULNERABLE

FIGURE 2.1: Pipeline representing the main steps of the pro-
posed framework

As can be seen, an attack graph is built using information about the net-
work to be assessed and the priorities associated with potential vulnerabili-
ties. For example, information about the network can be retrieved through
the use of active and passive scanners. The analysis of the attack graph pro-
vides insights about the network topology and the paths that may be at risk
and allows to derive features for training the classification model. A vul-
nerability score is associated with each path to determine the severity of the
various weaknesses being identified. As a result, the classification process
will assess whether the network is vulnerable or safe. This combined auto-
matic application of machine learning and graph theory is novel in that it has
the potential to enhance the effectiveness of assessment procedures.

The toolset developed as a result of this research activity relies on a graph
database used to store, retrieve and analyze node relationships. In addition,
the toolset implements state of the art machine learning and statistical model-
ing techniques used to perform classification tasks based on the information
provided by the graph nodes and edges. The design of the toolset also in-
volved the development of passive and active scanners that can be used for
discovery purposes on Active Directory networks as well as the construction
of a generator of artificial complex environments that can be used for testing
and research purposes to cope with the lack of real data.
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Chapter 3

Security Issues

Even though large scale attacks cause big damages, small scale attacks can
be equally dangerous since they often go undetected for quite a long time.
Therefore, it is compelling to strengthen cybersecurity by identifying what
needs to be secured and by developing countermeasures that take account of
the specific characteristics and physical limitations of individual devices.

3.1 Introduction to Security Issues

Computer security is defined as “the branch of science that measures, con-
trols and ensures confidentiality, integrity, and availability of information
system assets including hardware, software, firmware, and information be-
ing processed, stored, and communicated” [2]. Keeping our information and
digital infrastructures secure in a world where digitalization is happening at
an ever growing rate is becoming more and more important. In fact, nowa-
days computers are an ubiquitous technology that, although allow us to in-
crease productivity and access a huge amount of information within seconds,
also carry a significant amount of threats to their users. For this reason, there
is an increasing need for companies and citizens to protect their digital assets.

Protecting assets means in general to have guarantees on confidentiality,
integrity and availability (the so called “CIA triad”). A cyberattack always
affects at least one of these three elements. In detail, confidentiality is a nec-
essary component of privacy and refers to the ability to protect data and in-
frastructures from accesses that are not authorized. Integrity refers to the
ability to prevent our data and systems from being changed in an unautho-
rized manner, while availability refers to the ability to access data, systems
or services when needed.

The problem of making systems immune to attacks is particularly difficult
since security and productivity are often contrasting concepts. In addition,
being able to point out exactly when we are sufficiently secure in a certain
context is a very difficult task.

Cyberattacks are conducted by taking advantage of vulnerabilities present
in information systems. In order to be able to analyze attacks and understand
mitigations, security threats must be understood and analyzed.

A threat in this context represents something that has the potential to
cause harm to digital assets. Threats tend to be related to environments. For
example, a malicious software for the Microsoft Windows operating system
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represents a threat for Windows machine, while it does not represent a threat
for a machine running any other operating system.

In this chapter, the actors behind these threats and the main sources of
threats are explored by analyzing common security issues. Additionally some
of the ways in which organizations are fighting these threats nowadays are
described.

3.2 Threat actors

A threat actor or malicious actor is a person or entity responsible for an event
or incident that impacts, or has the potential to impact, the safety or security
of another entity [3]. Most often, the term is used to describe individuals and
groups that perform malicious acts against organizations of various types
and sizes.

Threat actors can be categorized as either intentional or unintentional and
internal or external. A threat actor is considered “intentional” if it explicitly
has intentions to cause harmful events or damage. On the other hand, an
“unintentional” threat actor is unaware of representing a threat. Moreover
threat actors can be categorized into: “internal” if it belongs to the targeted
organization or “external” if it is external to the targeted organization.

Threat actors have different purposes and background. Common types
of actors involved in threats include but are not limited to malicious insiders,
cyber criminals, cyber-terrorists, nation-states, hacktivists.

Malicious insiders are the most frequent and successful threat in small
companies. According to the Ponemon Institute, the average cost related
to insider-related incidents was around $513, 000 only in 2018, even though
insider-related incidents can cost a company up to $8.76 million a year.

In addition, the percentage of companies that suffered from malicious in-
siders is constantly increasing as shown by Ekran System1.

3.3 Security threats

When talking about security threats, the concepts of risk and vulnerability
are of paramount importance. Risk is the likelihood that something bad will
happen. For a risk to materialize in a particular environment, it is neces-
sary to have both a threat and a point in the environment vulnerable to that
specific threat (i.e., vulnerability) that the specific threat can exploit.

To make an example, if we live in a neighborhood with many thieves
(threat), and our house does not have a door (vulnerability), we most defi-
nitely have a risk.

To deal with threats, security analysts need methods to manage, classify
and prioritize security vulnerabilities. For this purpose, MITRE2, a not-for-
profit organization provides information about vulnerabilities in the form of

1https://www.ekransystem.com/en/blog/insider-threat-statistics-facts-and-figures
2https://www.mitre.org/
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a database composed by a list of records, each containing an identification
number, a description, and at least one public reference for a publicly known
vulnerability. Each record associated with a vulnerability is known as Com-
mon Vulnerability Exposure (CVE). This public database represents a com-
mon knowledge base for publicly disclosed vulnerabilities in the computer
security industry.

In addition, the National Institute of Standards and Technology (NIST)3

periodically analyzes the database provided by MITRE and assigns a severity
score to each CVE, ranging from 1 to 10, known as Common Vulnerability
Scoring System, (CVSS).

In the next sections some of the most common threats used by attackers
are detailed.

3.3.1 Denial of Service

A Denial-of-Service (DoS) attack is a cyber-attack in which the attacker seeks
to make machines or network resources unavailable to their intended users
by temporarily or indefinitely disrupting the services being offered. Denial
of service is typically accomplished by flooding the targets with superfluous
requests in an attempt to overload systems and prevent some or all legitimate
requests from being fulfilled [4].

In general, nowadays this attack is mostly performed in a variant denoted
as Distributed Denial of Service (DDoS), because the incoming traffic origi-
nates from many different sources. Another characteristic of DoS or DDoS is
that it is impossible to stop the attack simply by blocking a single source of
the incoming traffic.

Frequently motivations behind DoS attacks are revenge, blackmail or ac-
tivism. Some vendors provide the so called “booters” or “stressers” which
are often misused by criminals as platforms to conduct DoS attacks. Mod-
ern DDoS attacks take advantage of botnets that frequently include compro-
mised IoT devices. A report from A10 Networks4 indicated that the company
tracked more than 20.3 million infected devices, including IoT devices, and
servers taking part to a DDoS attack.

3.3.2 Malware

Malicious software, or malware, is any software that causes harm to a user,
computer, or network. A malware plays a key role in most computer intru-
sion and incidents [5]. Malware comes in different forms, and one of the
ways to categorize malicious software refers to the actions it performs. In
this context, the main types of malware are classified into the following cate-
gories:

• Virus: this type of malware modifies legitimate files in such a way that
their execution causes the execution of some unwanted instructions;

3https://www.nist.gov
4https://www.a10networks.com/marketing-comms/reports/state-ddos-weapons/



10 Chapter 3. Security Issues

• Worm: this is a self-replicating malware that spreads without any end-
user action. For this reason, worms are generally devastating for enter-
prises;

• Trojan: this is a malware masquerading as a legitimate program but
containing malicious instructions;

• Ransomware: this is a malware whose goal is to “lock” the target ma-
chine and requires a ransom to unlock the system;

• Adware: this is a malware whose goal is to expose users to unwanted
or potentially malicious advertising;

• Spyware: this is a malware whose goal is to collect and send data to a
third party.

It is important to remark that a malware often spans different categories,
depending on the actions being performed.

Another common classification used to characterize a malware is based
on its target. In this context, a distinction can be made between mass mal-
ware, that is malware designed to affect as many machines as possible, and
targeted malware, that is a one-of-a-kind software tailored to a specific orga-
nization and scenario.

The number of new malware developed is increasing every year and ac-
cording to the ENISA Threat Report5 in 2019, about 10.1 billion of Euros have
been paid by organizations in ransoms with 45% of the targeted organiza-
tions paying the ransom.

3.3.3 Phishing

Phishing is an attack where the attacker exploits social engineering tech-
niques and performs identity spoofing to trick a target victim [6]. Phishing
traditionally relies on forged e-mail, SMS messages and other means, often
mimicking an online bank or a system administrator in an organization ask-
ing the user to install some software. In particular, Phishing emails provide a
common mean to infiltrate computer systems of organisations by encourag-
ing employees to enter login credentials on a specially crafted fake website,
click on malicious links or attachments. Although this attack is typically car-
ried out by means of email messages, instant messaging software, or text
messaging (smishing) represent emerging vectors.

Phishing represents the most common attack vector used by cybercrim-
inals. In fact, phishing emails are used either to guide the user to a bogus
website with the goal of stealing its credentials or guide the user in down-
loading a malware in the form of a fake Office document or software update
to execute.

Phishing attacks can be categorized depending on their target:

• Bulk Phishing: mass-phishing attacks without any specific target;

5https://www.enisa.europa.eu/publications/ransomware
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• Spear Phishing: phishing attacks directed towards specific individuals
or companies.

Phishing attacks can be simple or very complex. In fact, these attacks can
be used in combination with domain squatting techniques, which consist in
the registration of domain names similar to the original ones to be used in
the phishing attack with the intent of increasing the probability of fooling
the targets.

Phishing is so common that, as reported by KeepNetLabs, over 60, 000
phishing websites have been reported in March 2020 and 83% of the detected
attacks for spear phishing use brand impersonation to trick the targets6.

3.3.4 Data Breach

A data breach is the intentional or inadvertent exposure of confidential infor-
mation to unauthorized parties [7]. Data breaches hurt businesses and con-
sumers in a variety of ways since as technology progresses, more and more
of our information is being digitalized. As a result, cyberattacks attempt-
ing to steal personal data have become significantly more interesting and
profitable for criminals. Cybercriminals exploit personally identifiable infor-
mation (PII) to steal money, compromise identities, or sell data over dark
markets.

Data breaches can occur for a number of reasons, including unintentional
data breaches. Targeted data breaches are typically carried out thanks to the
following problems:

• System vulnerabilities: out-of-date software represents a vulnerability
that, under certain conditions, may allow attackers to compromise sys-
tems and steal data;

• Weak passwords: weak and insecure user passwords are easier for hack-
ers to guess or to bruteforce. Being able to compromise an adminis-
trative account can be still rewarding since provides the attacker with
additional privileges or information;

• Targeted malware attacks: attackers use social engineering techniques
such as phishing or malware deployment to trick users into revealing
their credentials, downloading malware attachments, or directing them
to vulnerable websites. These attacks may reveal sensitive information
about the target.

Corporations and businesses are extremely attractive targets for cyber-
criminals, simply due to the large amount of data that can be stolen within
single successful attack.

Data breaches happen quite often and often cause big economic losses. In
addition a data breach causes reputation damages to the affected company
that can lead to bankruptcy.

6https://www.keepnetlabs.com/phishing-statistics-you-need-to-know-to-protect-your-
organization/
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According to statistics provided by IBM7 the most affected sector by data
breach is the healthcare with an average loss of $7.13 millions per data breach.
On the other hand, the average total cost for companies due to data breaches
is $3.86 million. IBM also reports that the average time passed to contain a
breach is about 280 days.

3.3.5 Advanced Persistent Threat

An Advanced Persistent Threat (APT) is a stealthy, well funded, organized
group that is typically backed by a government or by important commercial
entities. The term is used to describe advanced adversaries that are focused
on critical data with the goal of exploiting information in a covert manner [8].
Since APT actors are highly skilled, sometimes they can bypass also nontriv-
ial security mitigations. In fact, attacks originating from APTs are generally
infiltrating target networks by taking advantage of zero days, that are vul-
nerabilities not publicly disclosed.

APTs, as described, are in general operated by nation states or state spon-
sored groups, with computer security experts denoted as “APT operators”.
Generally operators behind APTs have at their disposal a full spectrum of
intelligence gathering techniques and zero day exploits to use. In fact, in
these scenarios, operators have very specific objectives which often include
but may not be limited to intelligence gathering. As the name suggests, these
attacks are very complex and difficult to detect.

A famous example of APT was the Stuxnet computer worm, which tar-
geted the computer systems of Iran’s nuclear program. In this specific case,
the Iranian government considered the Stuxnet creators to be an advanced
persistent threat.

3.4 Defense Mechanisms

In order to mitigate and tackle cybersecurity attacks, organizations have started
to integrate in their policies defensive measures. These measures vary in na-
ture and can range from a simple vulnerability scan to a full fledged long
term adversary simulation, where a targeted real-world like attack is emu-
lated using a group of security specialists.

In general, we can distinguish between reactive and proactive defensive
measures. Often both should be adopted to be protected from cyberattacks.
Reactive methods include the set of techniques and tools to be used when-
ever an attack is taking place or has already happened. Their goal is to reduce
the likelihood associated to the success of the attack and to quickly remedi-
ate the incident. Examples of reactive tools and techniques include general
incident response plans or antivirus software used to limit the spread of an
attack.

On the other hand, proactive methods seek to check the security of a sys-
tem without the necessary presence of an incident. These methods can range

7https://www.ibm.com/security/data-breach
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from simple vulnerability assessments to penetration testing activities or to
red team operations aimed at testing all the security controls. In general
proactive methods should be performed periodically, since they provide a
snapshot of the security status of the infrastructure at a certain time.

One of the main proactive methods used in industry is penetration test-
ing. Penetration testing activities are conducted by security specialists called
“penetration testers” or in these contexts simply “testers”. Testers are in gen-
eral guided by a standard methodology following different steps to assess
the security of a system. There are different penetration testing standards,
some of them are general while others are focused to specific technologies
(e.g., web application testing, IoT testing).

In the following sections, the incident response and the penetration test
methodologies are briefly described.

3.4.1 Incident Response

The incident response plan is a list of steps to be taken in case of incident and
included in a methodology an organization uses to respond to and handle
cyberattacks. An incident response aims at reducing the damage that a com-
puter incident may bring to customers, intellectual property, resources and
brand value. In terms of enterprise security, protection of assets is particu-
larly difficult especially because of the large attack surface. In these contexts,
attackers have to succeed only once, while system administrators defending
the infrastructure cannot make mistakes. Thus, companies not only have to
constantly protect their assets but it is equally important to design and man-
age appropriate incident response plans.

Investigation is also a key component in order to learn from the attack
and better prepare for future threats. Because many companies today usually
experience a breach, a well-developed and repeatable incident response plan
is the best way to protect the company assets.

The team responsible for Incident Response management is known as
Computer Incident Response Team (CIRT). This team generally includes man-
agers, security analysts and auditors. Note that in the context of incident
response, any cyber attack is considered a network “breach”.

According to the SANS Institute8 the six key steps included in a response
plan as shown in Figure 3.1, are:

1. Preparation: this phase deals with the development of policies and pro-
cedures to follow in case of a cyber breach. It includes determining the
composition of the response team and the triggers that will alert in-
ternal mechanisms. Key to this process is effective training to timely
respond to a breach and documentation that is used to record actions
taken for later review;

2. Identification: this phase deals with the detection of the breach and
the enabling of a quick response. A team of security analysts identi-
fies breaches using a threat intelligence platform, intrusion detection

8https://www.sans.edu
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FIGURE 3.1: Incident Response steps according to SANS Insti-
tute

systems, and firewall logs. A fundamental step in this phase is repre-
sented by “Threat intelligence”, that is, the analysis of current threat
trends and common tactics used by adversaries fundamental part in
this step;

3. Containment: this phase deals with the containment of the damage and
the prevention of further penetration after having identified a computer
incident. This can be accomplished by taking specific parts of the infras-
tructure offline and relying on backups to maintain operations;

4. Eradication: this phase deals with the neutralization of the threat and
restoration of internal infrastructure and services to their previous state.
This step may involve additional monitoring activities to ensure that af-
fected systems are no longer vulnerable to further attacks;

5. Recovery: this phase deals with the validation that all affected systems
are no longer compromised and can return to normal working condi-
tion. This also requires setting timelines to fully restore operations and
continued monitoring for any abnormal network activities. At this step,
it is possible to estimate the costs of the breach and the corresponding
damage;

6. Lessons Learned: the most important stage of the incident response
plan is related the final steps of the methodology, where the incident
response team members meet to determine what went wrong and how
to improve the methodologies for future breaches. This can involve the
evaluation of the current policies and procedures, as well as the analysis
of specific decisions the team made during the incident. A final analysis
of the incident should be documented into a report and used for future
training.
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As already mentioned, incident response plans and reactive techniques in
general are not sufficient to guarantee the security of a digital infrastructure.
For this purpose, we need to couple reactive strategies with proactive tech-
niques. In the next section, the main proactive technique, that is penetration
testing, is detailed.

3.4.2 Penetration Testing

A penetration test, also known as a pen test, is a simulated cyber attack
against a computer infrastructure to check for exploitable vulnerabilities.
Penetration testing activities are conducted by specialized security profes-
sionals known as “penetration testers” or simply as “testers”. Since digital
infrastructures include technologies that can be very different, such as web
applications, IoT devices or full-fledged Active Directory environments, dif-
ferent penetration testing methodologies exist. In fact, penetration testers
may be specialized in one or more areas of testing.

Penetration testing methodologies can be subdivided into general pur-
pose methodologies, web application testing methodologies, network method-
ologies and wireless network methodologies.

In addition, penetration testing can be further categorized as follows:

• White box: full network and system information is shared with the
tester. In the case of a network pen test this information may include
network maps and credentials. White box approach is often chosen to
reduce the time required to perform tests and reduce the resulting costs.
Another advantage offered by this type of approach is that the testers
can simulate an attack on the target system using more attack vectors;

• Black box: no information is shared with the tester. This condition has
the advantage of being closer to a real world scenario where an attacker
has little or no information about the target. These kinds of tests are
more expensive and require longer time to be performed;

• Grey box: only a limited amount of information is shared with the
tester. This is an hybrid approach that represents a trade-off in terms of
costs and time between a white box approach and a black box approach.

In the case of network penetration testing, we can also make a distinction
between internal and external penetration test procedures. An internal pen-
etration test emulates the scenario of an attacker who has already access to a
machine within the target network. On the other hand, an external penetra-
tion test emulates the scenario of an attacker that has no access to any target
machine, thus, has to first gain a foothold into the target environment.

According to the Penetration Testing Execution Standard (PTES)9, pene-
tration testing activities as also shown in Figure 3.2

These steps are briefly detailed in what follows:

9http://www.pentest-standard.org
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FIGURE 3.2: Penetration Testing steps according to PTES

1. Pre-engagement: the pre-engagement interactions represent the first
step of every penetration test, when the type of test is outlined with the
customer, and details about time, IP addresses and other information
are agreed between the parts. This step is particularly important be-
cause the scope is defined and additional operational information may
be provided to the testers. The scope of an engagement generally in-
cludes: IP addresses, subnet blocks, domain names or applications. The
parties involved also establish the techniques the techniques allowed
during the testing activities. In general for standard penetration testing
activities for example, social engineering is not allowed, hence attackers
cannot interact with employees of the target company. On the contrary,
in the case of more extended assessments such as red team operations,
social engineering techniques become a fundamental component and
attackers may be allowed to trick employees, e.g., with phishing.

2. Intelligence Gathering: during this step a reconnaissance procedure
against a target is performed to gather as much information as possi-
ble to be utilized when penetrating the target during the vulnerability
assessment and exploitation phases. The more information gathered
during this phase, the more attack vectors to be used in future phases.
Intelligence gathering often is performed through Open Source Intelli-
gence (OSINT) techniques. OSINT is a form of intelligence collection
management that involves finding, selecting, and acquiring informa-
tion from publicly available sources and analyzing it to produce action-
able intelligence. This phase is particularly important, since it defines
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the target attack surface. In this context, a larger attack surface may lead
to a higher probability in finding vulnerabilities in the environment.

3. Threat modelling: this is the process aimed at identifying threats, such
as structural vulnerabilities or the absence of appropriate security mea-
sures. In this phase the findings are enumerated and prioritized. Threat
modeling can be used both by attackers and defenders. The purpose
of threat modeling for defenders is to provide a systematic analysis of
which security controls or measures need to be included, given the na-
ture of the system, the probable attacker’s profile, the most likely attack
vectors, and the most desired assets by an attacker. On the other hand,
for attackers, threat modelling defines possible attack scenarios or at-
tack paths for compromising specific assets.

At a high level a threat modeling process includes the following steps:

• Gathering relevant documentation;

• Identifying and categorizing primary and secondary assets;

• Identifying and categorizing threats and threat communities;

• Mapping threat communities against primary and secondary as-
sets.

Once the most important threats are modeled, attackers must plan which
threat should be exploited.

4. Vulnerability Analysis: vulnerability testing is the process of discover-
ing and enumerating flaws in systems and applications which can be
later leveraged by an attacker in the exploitation phase. These flaws
can include host and service misconfiguration, or insecure application
design. The process used to find flaws varies and is highly dependent
on the particular technology being tested. Vulnerability analysis can
be active, when there is a direct interaction with the component being
tested for security vulnerabilities, or passive, when an attacker lever-
ages data found from third parties (e.g., search engines) or traffic anal-
ysis without directly interacting with the target to find possible flaws.
The vulnerability analysis process involves the enumeration of the ser-
vices running on the system and their version. In addition, it includes
the usage of vulnerability scanners, that may provide useful insights
on the vulnerabilities on the tested system. Unluckily, although vul-
nerability scanners are automatic they provide lots of false positives,
that are, vulnerabilities detected by mistake. For this purpose, attackers
should always verify each result produced by these automated tools.

5. Exploitation: the exploitation phase focuses solely on establishing ac-
cess to a system or resource by bypassing security restrictions. The
main focus of this phase is to identify the main entry point into the
organization and high value target assets to compromise. Ultimately
the attack vector should take into consideration the success probability
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and highest impact on the organization. The techniques applied in this
phase vary depending on the technology that is being tested.

6. Post-Exploitation: the purpose of this phase is to determine the value
of the compromised system and to maintain control for later use. The
value of a system is determined by the sensitivity of the data stored
on it and its usefulness in further compromising the network. Post ex-
ploitation is a particularly critical step, because in most cases after the
exploitation step attackers have the control of an unprivileged user and
they generally need to elevate their privileges. In addition, attackers
must also be able to install backdoors on the system to be able to main-
tain the access on the compromised host. Maintaining the access and
escalating privileges are critical steps to further penetrate the network.

7. Reporting: the most important outcome of a penetration testing activ-
ity is the production of a report, where the tester communicates the
outcome of the activity. The technical report details every step that was
taken during the penetration testing exercise, outlining the steps that
lead to the compromise of the target.

Let us remark that penetration testing is becoming an essential part of the en-
tire systems and software development life cycle. Many organizations fully
integrate assessment methodologies both for their applications and for their
infrastructure. Nonetheless, being able to perform comprehensive assess-
ment procedures on complex infrastructures is not an easy task. In fact, it is
beneficial to be able to automate several aspects of penetration testing and
integrate assessment tools with state of the art machine learning.
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Chapter 4

State of the Art

In recent years, thanks to the massive digitalization and popularity of elec-
tronic systems, computing technologies pervade our society, that is becom-
ing more and more interconnected. Vulnerabilities of devices are discovered
with increasing frequency and their exploitation continues to accelerate. For
these reasons, a large body of the literature has focused on analyzing and
modeling computer security problems. In what follows, a brief review of the
literature considering general computer security research directions is pre-
sented. In addition, works related to the research addressed by this thesis
work are discussed.

In particular, the chapter reviews the use of graphs for modeling com-
puter security issues and the software tools and frameworks developed.

4.1 Computer Security Research

Computer security is a broad topic whose applications are very diverse. It in-
cludes cryptography, computer networks and protocols security, threat mod-
eling, web applications security, binary exploitation, to name a few. A large
body of the literature investigates computer security in different scenarios,
by also taking into account the evolution of the technological landscape.

The analysis of the literature has revealed that in the last few years there
has been a growing interest both on theoretical topics focusing on new and
emerging technologies, and on specific security technologies and problems
applied to a variety of domains. From a theoretical perspective cryptogra-
phy and threat modeling have been extensively investigated. In addition, se-
curity technologies have been frequently addressed in application domains
such as, Internet of Things (IoT), cloud computing, and Software Defined
Networking (SDN).

Cryptography is a relatively old and big field of research within com-
puter security mainly focused on methods to obtain confidentiality in com-
munications [9]. Many studies focus on efficient and robust techniques to
encrypt data and improve confidentiality (see, e.g., [10, 11]). For example,
in [10] lightweight cryptographic techniques are proposed in a direct com-
munication scheme in a 5G IoT network. The communication scheme design
is based on elliptic curve algorithms, which represent a fundamental tool
for lightweight cryptography. In fact, nowadays there is a strong interest in
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the implementation of efficient cryptographic techniques designed for low-
powered devices because of the pervasive presence of integrated electronic
systems, such as IoT devices, wireless sensors, SCADA instrumentation and
novel low power CPU architecture technologies (see, e.g., [12–15]).

Another emerging research direction within cryptography is related to
“quantum cryptography”, that is, an interdisciplinary field whose aim is to
take advantage of quantum mechanical properties to perform cryptographic
tasks [16]. A significant number of recent research works explore the capa-
bilities of quantum cryptography, its possible implementations and implica-
tions (see, e.g., [17–20]). For example, an entanglement-based secure quan-
tum cryptography scheme that works over 1, 120 km is proposed in [19]. This
scheme relies on Quantum Key Distribution and significantly increases the
secure distance (i.e., the maximum distance at which a secure communica-
tion can be established) by augmenting the overall security of quantum key
distribution.

An important field of research within computer security transversal to the
whole range of applications is threat modeling. Threat modeling is an ab-
stract process by which potential threats, such as structural vulnerabilities or
absence of appropriate safeguards, can be identified, enumerated, and cor-
responding mitigations can be prioritized. Different methodologies can be
used to model threats. Several papers focused on the development of threat
modeling techniques applied to different scenarios (see, e.g., [21–24]).

Recently, Novokhrestov et al. [25] proposed an approach to build threat
models based on an actual computer network model. In particular, the paper
distinguishes between information threats and system threats and presents
a solution that overcomes the limitations provided by the subjective opinion
of experts when compiling the list of threats.

Another research work [26] criticizes widely adopted threat modeling
frameworks by illustrating their main shortcomings. The paper considers
the current methodologies inadequate for the representation of different se-
curity concepts, data elements, abstraction levels, and deployment informa-
tion. Hence, the paper supports the need of a dedicated, integrated language
for threat modeling. The paper outlines that such a language is not read-
ily available and that future candidate languages should consider a trade-off
between the complexity of the language which makes adoption more chal-
lenging and its support for systematic and repeatable threat modeling.

Computer security literature has also addressed the IoT world. In fact,
as shown in several research works (e.g., [27, 28]) security and privacy of
many consumer IoT devices are characterized by some form of vulnerability.
Given the number and wide variety of security issues, some studies focus on
the identification and categorization of these issues. For example, Neshenko
et al. [29] classify IoT-specific vulnerabilities into a multi-dimensional tax-
onomy designed to assist implementers in the development of new devices.
Moreover, the research paper sheds light on corresponding technical details,
consequences, mitigations and best practices.

As can be seen by a recent literature review by Aly et al. [30], IoT se-
curity and its applications have been extensively analyzed in the literature.
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IoT security is particularly challenging because security features might be
expensive in terms of power, while IoT devices have to function on low
power. The interest in the improvement of the trade-off between security
and power consumption led several research efforts. For example, Shamala
et al. [31] provide an overview of lightweight cryptography algorithms de-
veloped for networks based on IoT devices. The analysis summarizes the
current research challenges involved in IoT security. In detail, the analy-
sis takes into account several lightweight cryptographic techniques in terms
of memory consumption, execution time and code size and shows that the
choice of the cryptographic technique depends on the requirements estab-
lished by the application. The research paper takes into account the most
popular performance metrics commonly considered for cryptographic algo-
rithms and demonstrate that “Chaskey” is the best performing algorithm.

The efficiency of cryptographic techniques is not the only problem affect-
ing IoT devices. In fact, misconfigurations caused by the plug-and-play na-
ture of these devices are abused to perform different kinds of attacks. Zhou
et al. [32] propose a set of features that uniquely characterize IoT devices,
network subsystems and applications and discuss the potential threats and
vulnerabilities associated with each feature as well as solutions and oppor-
tunities to tackle the threats.

Security in cloud environments is another hot topic investigated in the
literature [33–35]. In fact, cloud infrastructures and related exploitation tech-
niques are increasingly becoming popular and a successful attack could im-
pact a significant number of organizations and users. Tabrizchi et al. [34]
identify and categorize cloud environment security issues into five categories,
namely: policies, users, data storage, applications and network. The paper
also presents for each of these categories, the corresponding mitigations (that
can be put in place by implementers). For example, one of the most important
challenges in cloud computing security is represented by application vulner-
abilities. In fact, cloud applications sometimes consist of millions of lines of
code written by different programmers in different programming languages
each with its vulnerabilities. Hence, software development best practices in
terms of security should be strictly followed and software security should
periodically be assessed.

A common issue that is transversal with respect to the categories outlined
by Tabrizchi et al. [34] is related to DoS attacks. These attacks are very popu-
lar and may have catastrophic consequences in cloud environments. Saisind-
hutheja and Shyam [36] proposed a meta-heuristic algorithm based feature
selection and recurrent neural network for DoS attack detection in cloud en-
vironments. The research paper relies on an efficient technique that scans the
feature space until the best occurring combination of features is identified.

In the framework of Software Defined Networking several solutions for
ensuring security have been proposed in the literature. A survey of the state
of the art outlining research works in this area is presented in [37]. This work
identifies a taxonomy of SDN security issues is identified, this categorization
highlights the main characteristics and contributions of many recent works.
Hu et al. [38] develop a framework to facilitate the detection and resolution of
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firewall policy violations in SDN networks based on OpenFlow. The frame-
work checks network flow paths to detect firewall policy violations when the
network status is updated and conducts automatic and real-time violation
resolutions with the help of several strategies designed for diverse network
update situations.

A near real-time security system for SDN environments containing IoT
devices is presented in [39]. This systems is able to detect threats by analyz-
ing traffic and using a Convolutional Neural Network.

In summary, the analysis of the literature has shown that computer secu-
rity has been extensively studied under different angles. Particular attention
is dedicated nowadays to the challenges of new and emerging technologies,
such as machine learning, lightweight cryptography, cloud computing and
SDN, to name a few.

4.2 Machine Learning based Security

Machine learning is becoming the de-facto standard solution for many prob-
lems in the computer security field. Although its algorithms can be very
effective for detecting patterns and reveal previously unseen attacks, there
are many open issues to be tackled. In the literature, machine learning has
been applied to a wide variety of security problems, such as spam/phishing
detection, malware analysis and intrusion detection/prevention systems.

In what follows, we briefly review the state of the art in these areas. Spam
can be defined as unsolicited bulk messages, typically emails, that not only
waste users’ time, but also consume a considerable amount of network band-
width. In addition, some spam emails may also include malware as attach-
ments. For these reasons, being able to discriminate between legit emails and
spam is of paramount importance. Spam filtering has been studied in the lit-
erature for several decades as shown by a recent survey [40]. Unfortunately,
spam is constantly evolving and increasingly taking advantage of alternative
media. For example, mobile phones are used to send spam SMS messages.
These messages are particularly attractive for spammers, because they are
more frequently read with respect to emails. Many papers aimed at con-
trasting the SMS spam threat have been published. For example, Bosaeed et
al. [41] proposed an efficient machine learning based classifier for SMS spam
detection that can be used in cloud, fog or edge environments. In addition,
they provide recommendations on the usage of spam filters and correspond-
ing mail classifiers based on user requirements such as classification accu-
racy, true negatives, and computational resource requirements. SMS is not
the only medium used by spammers. In fact, in the effort to evade text-based
filters, spammers sometimes embed spam text in images. This kind of spam
is often referred to as image spam. Sharmin et al. [42] apply convolutional
neural networks for detecting image spam. The paper considers the Canny
edge detector as a tool for extracting information related to edges in images.
The convolutional neural networks used considered raw images, Canny im-
ages, and a combined feature consisting of both the raw and Canny images.
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Another problem addressed in the literature refers to malware analysis.
This problem is particularly challenging because nowadays malware can be a
complex and advanced software, sometimes also engineered to attack a spe-
cific target. In addition, this type of malware can be highly persistent and
able to escape different security controls. A detailed survey on sophisticated
attacks and evasion techniques used by contemporary malware is presented
in [43]. This study shows that there is a huge need for efficient security sys-
tems able to detect complex malware in an efficient way.

Although classification of malware is a difficult task, many works in this
area have been proposed. Some works focus on specific types of malware
families (see [44–46]), while others, as highlighted by a recent survey [47],
specialize on the detection of the family a malware belongs to.

Another work in the area of malware detection is proposed by Alazab
et al. [48] who propose a classification model for mobile devices malware
that combines features related to permission requests and API calls. These
features highlight a big contrast between malware and benign applications.
In particular, malware often request dangerous permissions to access sensi-
tive data. Interestingly, several of the mentioned research works on malware
analysis focus on mobile malware. This suggests the significant popularity
of mobile malware among malware developers.

Another approach that is gaining significant attention consists in apply-
ing machine learning for classifying malware represented as an image. This
approach enables an effective application of convolutional neural networks,
because of the huge number of features to evaluate. A literature analysis
demonstrates that convolutional neural networks are currently widely adopted
as a malware classification technique (see [49–51]). In addition, experiments
on custom neural network architectures based on convolutional neural net-
works are also being conducted. Vasan et al. [52] proposed a multi-class
classifier able to detect variants of malware families and improve malware
detection using a custom CNN-based deep learning architecture. The pro-
posed method converts the raw malware binaries into color images used by
a fine-tuned CNN architecture to detect and identify malware families.

Similarly to malware detection, machine learning has also been applied
in the framework of malicious traffic detection. A large variety of solutions
have been developed in the form of intrusion detection and prevention sys-
tems as highlighted in recent literature surveys [53, 54].

Machine learning techniques can also be applied for building data-driven
solutions that ideally adapt, to a certain degree, to previously unseen at-
tacks. Unfortunately, there are limitations on the kind of attacks that can
be detected. These limitations generally depend on the data provided to the
learning algorithm. For this reason, most research papers specifically tailor
intrusion detection systems to specific environments and applications, hence
limiting the number and type of previously known attacks that can be de-
tected.

Kasongo et al. [55] proposed a wireless intrusion detection system based
on feed forward deep neural networks coupled with a filter-based feature se-
lection algorithm and show that this approach outperforms other techniques.
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Almiani et al. [56] focused on an intrusion system for IoT networks based on
deep neural networks. The proposed model is particularly good at detecting
DoS attacks.

In summary, the analysis of the state of the art has shown that machine
learning is nowadays very popular for computer security. This thesis work
takes also advantage of machine learning techniques to extract useful secu-
rity insights from enterprise networks.

4.3 Graph Based Computer Security

Modeling attack scenarios in penetration testing activities has been origi-
nally addressed with the purpose of programmatically controlling penetra-
tion testing tools. A number of studies have focused on modeling computer
security from a statistical perspective using graph theory. In fact, these mod-
els naturally fit into graphs. Early works considering attack graphs date back
to the 90s and the beginning of the year 2000 [57–59]. In particular, Phillips
and Swiler [57] proposed a graph-based system to study the problem of net-
work vulnerability analysis. The proposed system could be used to test the
effectiveness of security measures put in place and the possible vulnerabili-
ties created with the changes of a setup. In particular, the graph-based sys-
tem works similarly to an intrusion detection system and its knowledge is
based on a database of common attacks. Network configuration and topol-
ogy information are fed to the system as inputs together with information
about possible attacker profiles. All this information is processed to create an
attack graph describing the network and related vulnerabilities. In this con-
text, nodes identify the stage of a possible attack, such as class of machines
an attacker has accessed and its privilege level. Edges represent attacks or
atomic attack steps in case of more complex attacks. Each edge is assigned a
success probability or a cost that represents the level of effort for an attacker
to successfully take advantage of that edge to perform an attack. Starting
from this graph, shortest paths, that is, paths with the highest probability of
success, are identified. This process can be useful both on the offensive side
and on the defensive side. Indeed, the shortest path on an attack graph may
help a penetration tester identifying the actions to perform to compromise a
network. The shortest path can also highlight critical issues to be mitigated.

In the context of attack graphs, some papers focused on methodologies
to automate the analysis and the creation of attack graphs. For example,
Sheyner et al. [59] use symbolic model checking algorithms to automatically
build and analyze attack graphs. This approach can be applied to model
basic network appliances such as firewalls and intrusion detection systems.
With respect to [57], this work tends to be more general and is not focused on
an attack-centric view of the graph. In fact, thanks to the flexibility provided
by a general symbolic modeling language, it is possible to take into account
seemingly benign events, e.g., the failure of a link. Model checking is also
used in [58] where vulnerabilities are encoded in a state machine description
suitable for a model checker and different assertions are performed based
on the attacker privilege and compromised hosts. The model checker can
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either assure the security of a computer network or confute its security by
providing an example where each step of a successful attack are detailed.

The approaches proposed by early works, based on a complete enumera-
tion of the attack states are characterized by an exponential complexity. More
precisely, the number of attacks highlighted through an attack graph grows
exponentially with the number of available actions an attacker can perform
and of machines on the network. To tackle this complexity, Jha et al. [60]
present a minimization technique for decreasing the set of security measures
that ensures system security. The paper provides a formal characterization
of attack graphs and presents a reliability analysis together with an approach
for performing a simple cost-benefit trade-off as a function of the attack like-
lihoods. The attack graphs are modeled as Markov Decision Processes and
the intruder success probabilities for each attack represented in the graph are
computed through the use of the value iteration algorithm.

A more challenging task is to incorporate into attack graphs more com-
plex vulnerabilities such as chained weak misconfiguration (e.g., inadver-
tently caused by system administrators). An example of this class of vulner-
abilities is the identity snowball attacks [61]. These attacks take advantage of
users logged on a compromised host and launch additional attacks using the
privileges of compromised users on other computers within the same net-
work. To address the identity snowball attacks in large enterprise environ-
ments Microsoft developed Heat-Ray, a system able to reduce the number of
machines that can be used to launch a large scale snowball attack. Although
the results of Heat-Ray are promising, cybersecurity is well represented as a
mice and cat game. Hence, defense techniques must be updated and able to
promptly counteract novel attack techniques.

A key problem addressed in the literature in the framework of graph-
based security is the definition of useful and effective metrics able to capture
insights on a system vulnerability and quantify the risk associated with a sys-
tem or an entire infrastructure. In this context, the work of Idika and Bhar-
gava [62] presents some possible metrics that can be used on attack graphs,
such as normalized mean or standard deviation of path lengths. In addition,
the paper shows how these metrics can be aggregated to produce additional
security indicators, since simple metrics such as shortest paths or the number
of paths between an attacker and a target might be insufficient.

Obes et al. [63] proposed a complete representation of an attack model
using the Planning Domain Definition Language. This representation allows
the automatic generation and validation of attack paths in penetration testing
scenarios. In addition, the paper presents an algorithm that transforms the
results provided by common penetration testing tools (e.g., network map-
pers, vulnerability scanners) in the planning domain, and shows the scalabil-
ity of the algorithm in medium-sized networks. The information used in this
work includes target network, target host, set of ports used, fingerprinted
applications and details about the operating system and kernel version.

Attack paths are also addressed by Chokshi et al. [64] where a heuristic-
based attack graph generation algorithm that integrates different phases of
network security assessment methodologies is proposed. The research paper
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proposes the generation of an attack graph starting from a database of pub-
lic exploits and scan results, provided by vulnerability assessment software,
and provides recommendations on mitigations to be put in place. These mit-
igations are proposed after the evaluation of an optimization problem taking
into account security and corresponding costs.

A more recent work [65] focuses on the assessment of cloud applications
by presenting a methodology to automatically configure a testing environ-
ment and obtain a preliminary evaluation of the security level provided by
the cloud application. This process takes into account the architecture of the
cloud application under test and the security issues it may be subject to, in-
cluding threats, attacks, vulnerabilities and weaknesses. One of the main
contributions of this work is the methodology for continuous security as-
sessment to be included in the software development life-cycle or in general
in DevOps methodologies.

In the context of cloud security automation, Wang et al. [66] developed
a framework for internal penetration testing of cloud infrastructures based
on the big data Hadoop system. The paper investigates potential attacks
starting from a single compromised internal node against the cloud system
availability and performance. The paper also discusses a possible mitigation
scheme for big data systems.

In the context of IoT technologies, George et al. [67] proposed a graph-
based security framework for securing industrial IoT networks from vulner-
ability exploitations. The paper focuses on common vulnerabilities character-
izing industrial IoT devices and develops a graph model where nodes rep-
resent device vulnerabilities, while the edges represent vulnerability depen-
dencies. The proposed framework also provides an optimization platform to
find the optimal trade-off between security and performance of the network.
Another work in the context of IoT networks [68] focuses on the develop-
ment of a framework for IoT penetration testing that automatically performs
information gathering and exploitation on the target IoT devices taking ad-
vantage of wireless communication, either WiFi or Bluetooth. The system
incorporates basic security guidelines according to the OWASP’s Top 10 IoT
Vulnerabilities1 for implementing mitigations.

It is worth noticing that many research results regarding the automation
of penetration testing techniques with graph models are published in the
form of patents [69–73]. In addition, there is a significant gap between aca-
demic and industrial approaches. An example is represented by the Blood-
hound project2 that represents the state of the art in Active Directory threat
modeling and penetration testing. Bloodhound takes advantage of graph
theory and shortest path algorithms to identify attack paths in Active Direc-
tory environments. Bloodhound represents one of the most popular tools
used nowadays by red teams to conduct vulnerability assessments on enter-
prise infrastructures relying on Microsoft technologies. Unfortunately, there
is a lack of tools that can adapt to general scenarios, such as a general pur-
pose computer networks or IoT infrastructures. For this reason, this thesis

1https://owasp.org/www-project-internet-of-things/
2https://bloodhound.readthedocs.io/en/latest/index.html
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work focuses on providing a methodology and a framework based on graph
theory to model computer networks and their properties from a security per-
spective. The graph modeling has been used with the purpose of providing
interesting insights about critical nodes and paths in a network.

4.4 Security Tools and Frameworks

Many tools and frameworks addressing security issues in different scenar-
ios have been proposed in the literature. For example, Ismagilova et al. [74]
focused on the security of smart-city applications and presented a compre-
hensive information framework containing a set of guidelines for developing
secure applications in the context of smart-cities. A security framework for
vehicular networks that is presented in [75] is able to protect smart vehicles
from external attackers by implementing a system relying on a hierarchical
cooperative game that is managed by a leader software agent controlling an
intrusion detection system, prevention system and reaction system.

Xi et al. [76] proposed a penetration testing framework to assess the secu-
rity of power web systems that integrates property information and expert
experience, thus leading to automatic vulnerability verification and exploita-
tion. A framework that implements a security scheme with flow monitor-
ing algorithms for fast anomaly detection and prediction of DDoS attacks on
SDN is presented in [77].

Other research tracks focus on the development of frameworks for miti-
gating specific attacks. Giechaskiel et al. [78] proposed a framework for an-
alyzing threat models in signal injection scenarios and introduced an algo-
rithm for calculating the security level of real systems composed of sensors.
Bhayo et al. [79] proposed a DDoS detection framework leveraging software
defined IoT technologies, that is, entire IoT infrastructures solely defined and
configured by software. Security aspects related to specific emerging tech-
nologies such as 5G are addressed in [80] where a framework for the for-
mal verification of control-plane protocols spanning multiple layers of the
5G stack is presented.

In summary, there is a constant need of automating procedures in many
computer security applications and scenarios. For this reason one of the out-
comes of this thesis work is a framework that semi-automatically analyzes
complex enterprise network security scenarios.
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Chapter 5

Theoretical Background

In this chapter, the background that this thesis relies on is presented. In the
first part, the main concepts of machine learning are detailed, following with
a discussion of common classification algorithms with a particular focus on
decision trees and random forests. These algorithms have been tested for
the development of the toolset. Finally, basic notions about graph theory are
provided. These notions are useful to understand graphs and shortest path
algorithms, that are fundamental building blocks of this thesis work.

5.1 Introduction to Machine Learning

Machine Learning is currently a scientific field widely used for very different
applications. The main objective of this field is the construction of “learn-
ers” which are models that can be used to solve problems which would be
too complicated to tackle by defining a set of heuristics. A core objective of
a learner is to generalize from its experience. Generalization in this context
refers to the ability of a learning machine to be accurate on new, unseen ex-
amples or tasks after having experienced a training data set. The training ex-
amples come from some unknown probability distributions and the learner
has to build a general model about this space that enables it to produce suf-
ficiently accurate predictions in new cases. Recently, machine learning has
gained significant popularity, due to the fact that deep learning is now com-
putationally feasible. In this chapter, after some basic definitions, a taxonomy
of machine learning algorithms is presented. Supervised learning and classi-
fication problems are also discussed.

5.1.1 Taxonomy of Machine Learning Algorithms

Machine Learning is considered a subfield of Artificial Intelligence [81]. Arthur
Samuel in 1959, defined Machine Learning as the field of study that gives
computers the ability to learn without being explicitly programmed [82].
While this definition is not accurate, it gives an intuition on the importance
of machine learning in creating autonomous software agents. Tom Mitchell
in 1998 provided a more precise definition of machine learning by first defin-
ing what a well-posed learning problem is. Mitchell stated that a computer
program is said to learn from experience E with respect to some task T with a
performance measure P, if its performance on T, as measured by P, improves
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with experience [83]. For example, if we consider the game of chess and a
software agent trying to learn how to play chess, in this case we can define:

• E: Experience of having the program play many games;

• T: Task of playing chess;

• P: Probability of winning the next game against some new opponent.

Machine learning explores the study and construction of algorithms that
can learn from data and make predictions. These algorithms do not follow
strictly static program instructions, instead they make data-driven predic-
tions or decisions. Machine Learning is applied to various types of problems,
such as:

• Problems whose solution requires a lot of hand tuning or long lists of
rules or heuristics;

• Problems without an existing solution;

• Problems aimed at extracting useful information from large data sets;

• Problems addressing a complex and dynamic environment.

As already stated, a core objective of machine learning system is to generalize
from its experience. Generalization in this context is the ability of a learning
machine to be able to handle new, unseen examples or tasks after having
experienced a training data set [84]. Defining as D a single observation –
which is a random variable – and as N the number of total observations,
generally the study of machine learning and its algorithms can be divided
into three broad categories [85]:

• supervised learning: where a computer has to be taught a certain task.
In this framework, the learning phase is based on complete observa-
tions. Each observation {D1, D2, ..., DN} includes values for all the ran-
dom variables in the model, the objective is to learn a distribution Y;

• unsupervised learning: where computer learns by itself a certain task.
In this framework, the learning phase is based on incomplete observa-
tions {D1, D2, ..., DN} and do not necessarily include values for all the
random variables in the model. The objective is to learn a distribution
Y;

• reinforcement learning: where a computer learns by itself an optimal
policy. In this framework, the observations {D1, D2, ..., DN} are states
or situations and at each state Xi a software agent must perform an
action ai that produces a result ri. The objective is to define a function
ai = π (Di) – called policy – that describes a strategy that a software
agent will follow. The strategy should be optimal, in the sense that it
should maximize the expected value of a function v (< r1, r2, ..., rn >)
which keeps track of the sequence of results.
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Scientists in the area of machine learning are not very strict on the subdi-
vision of these areas, indeed on some machine learning books [86] we may
find four or five sub-categories, but generally they are slight variations of the
basic areas described (e.g., sometimes we can read about semi-supervised
learning [87], or recommender systems [88] as a fourth category). Also it is
important to notice that this is a classification based only on a small set of
criteria, (i.e., whether data is labeled and purpose of the problem), although
these are the most common criteria taken into account when it comes to ma-
chine learning algorithms taxonomy, there are even other categorizations.
Other examples of taxonomy attempts consider the division between on-line
and off-line techniques or we instance-based and model-based learning tech-
niques and so on and so forth.

5.1.2 Supervised Learning

Supervised learning is the machine learning task of inferring a function from
labeled training data [89]. The training data consists of a set of training ex-
amples. In supervised learning, each example is a pair consisting of an input
object (typically a vector) and a desired output value (also called the supervi-
sory signal). A supervised learning algorithm analyzes the training data and
produces an inferred function, which can be used for mapping new exam-
ples. An optimal scenario allows a supervised learning algorithm to correctly
determine the result for unseen data instances. This requires the learning al-
gorithm to generalize from the training data to unseen situations in a ”rea-
sonable“ way. The two main problems that supervised learning algorithms
solve are [90]:

• regression: a regression problem is applied when the output variable is
represented by real values;

• classification: a classification problem is applied when the output vari-
able is represented by categorical values; e.g., “red” or “blue”, “dis-
ease” or “no disease”, in the case of this thesis work for example, we
want to be able to classify a network as either “safe” or “vulnerable”.

In turn, classification algorithms can be subdivided into two main cate-
gories:

• generative algorithms: these learn a model of the joint probability dis-
tribution p(X, y), where X represents the inputs and y corresponds to
the output. The prediction is computed by using Bayesian rules. This
requires the conditional probability distribution p(y|X), and the choice
of the label y. Examples of generative algorithms are: Naive Bayes, La-
tent Dirichlet Allocation, Probabilistic context-free grammar, Hidden
Markov Models, Gaussian mixture models;

• discriminative algorithms: these classifiers model the posterior distri-
bution [91] p(y|X) directly, or learn a direct map from inputs X to
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the class labels y. Examples of generative algorithms are: Logistic re-
gression, Support Vector Machines, Maximum Entropy Markov Model,
Conditional Random Fields, Neural Networks, Decision Trees.

Although there is a common belief that discriminative algorithms always
work better with respect to generative algorithms, an important result of the
work by Andrew Ng [92], shows that there are two distinct regimes of per-
formance which depend on the size of the training data set. As the number
of training examples increases, in the first regime of performance the gener-
ative model has already approached its asymptotic error and is performing
better, while in the second regime the discriminative model approaches its
lower asymptotic error and performs better. Generative models generally
have an higher asymptotic error with respect to discriminative models, but
they approach this limit earlier.

5.1.3 Unsupervised Learning

Unsupervised machine learning is a machine learning approach aimed at in-
ferring a function to describe an hidden structure starting from “unlabeled”
data. Hence, in this case, the supervisory signal is not included in the obser-
vations. The goal of discovering interesting structures in the data is some-
times called knowledge discovery [90]. Since the dataset processed by the
unsupervised algorithms is unlabeled, it is not always possible to evaluate
the accuracy of the structure that is provided as output by the algorithm.
The main problems that unsupervised learning algorithms solve are:

• cluster analysis, or simply clustering, that is the process of partitioning
a set of observations (i.e., data objects) into subsets. Each subset is a
cluster and objects in a cluster are similar to each other, and dissimi-
lar to objects belonging to different clusters. The set of all clusters is
referred to as clustering [93];

• visualization and dimensionality reduction, that is, the process of re-
ducing the number of random variables under consideration, by ob-
taining a set of principal variables (i.e., components) describing the en-
tire dataset [94];

• association rule learning, that is, the method of discovering interesting
relations between variables in large datasets. The goal of association
rule learning is to identify strong rules using a measure of interest-
ingness [95]. Based on the concept of strong rules, Rakesh Agrawal,
Tomasz Imieliński and Arun Swami [96] introduced association rules
for discovering patterns between purchase of products in large-scale
transaction data recorded by point-of-sale (POS) systems in supermar-
kets;

• anomaly detection, or outlier detection, that is, the identification of
items, events or observations which do not conform to an expected pat-
tern or other items in a dataset [97]. Typically in an anomaly detection
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system the anomalous items translate to some kind of problem such as
bank fraud, a structural defect, medical problems or errors in a text.
Anomalies are also referred to as outliers, novelties, noise, deviations
and exceptions.

5.1.4 Classification

In supervised learning, the dataset used to build a model is called “training
set”. We denote with m the number of training examples and each training
example is identified with the notation:(

X(i), y(i)
)
= ith training example

where X(i) is called feature vector, representing an array containing values
for all the features of a training example, while y(i) is the target value related
to the specific values in X(i). The set of features are generally chosen by the
specific domain expert.

Classification algorithms used as black boxes are very simple to under-
stand. They expect as input a “training set”, and give us as output an hy-
pothesis function or classifier. The hypothesis function, that is a function of
the training examples and of the model parameters, will be the one which
will represent the classification result. Generally an hypothesis function can
be denoted as:

hθ = g (Θ, X)

where g is a function that depends on the used classification algorithm.
Classification algorithms have to find the parameters of the model, denoted
in the above formula with vector Θ such that the cost function is minimized
with respect to vector Θ. Classification can hence be considered an optimiza-
tion problem. In fact, in order to minimize the error between the classifier
h (x) and the supervisory signal y, a minimization problem has to be solved.
In particular, To quantify the distance between hΘ and y, it is necessary to de-
fine and compute the error. In the context of classification, the error is called
“misclassification error” and can be mathematically defined as:

err (hθ (X) , y) =

{
1 if classification error
0 otherwise

The first goal to be achieved for a classifier is in general to minimize the
misclassification error function on the training examples. In this context, we
can notice that there are similarities between the problem of classification and
regression. In fact, an analogy between regression and classification can be
made, if we consider instead of the misclassification error function, another
cost function, as for example:

J (Θ) =
1

2m

m

∑
i=1

(
hΘ

(
X(i)

)
− y(i)

)2
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Note that the above cost function is commonly used in regression problems
but the measure of distance in this case is continuous. The purpose of the
1
m term in regression is to remove the dependency on the data set size. The
error magnitude is thereby independent from m. The accuracy of the error
estimate increases as m increases, assuming that data examples are selected
randomly.

5.1.5 Classification Performance

To evaluate classification performances, it is possible to compute two differ-
ent metrics, namely:

• Accuracy, appropriate for balanced datasets;

• Confusion Matrix, F1-Score, precision and recall, appropriate for unbal-
anced datasets.

A dataset is balanced when the number of target values for all categories
are equal, while a dataset is unbalanced when the number of target values
belonging to different categories are different. If the dataset is balanced we
can use the accuracy as measure for classification. These metrics should be
computed on a dataset which is not the one used for training. Usually the
original dataset is divided into two or more subsets. Common splits are,
for example, 70% of dataset used for training, and 30% used for validation,
or 80% used for training and 20% used for validation. Let us remark that
for practical reasons it is a good idea to randomly shuffle the data before
splitting. After data has been split, we cannot test our model on the training
data, since in this way we cannot be sure about how the model generalizes on
new examples. Hence, after the model has been trained we can measure the
performance of it by measuring the accuracy on the test dataset. Accuracy is
defined as:

A =
Nc

N
where Nc is the number of correctly classified observations of the validation
set, and N is the total number of observations in the validation dataset.

It is reasonable to think that this measure does not make sense for unbal-
anced dataset.

For unbalanced dataset the evaluation relies on different metrics, such as
precision, recall, F1-score and confusion matrix [98]. In details, the metrics
are defined as follows:

• Precision (also called positive predictive value) is defined as the ratio
of negative-labeled data being correctly classified. It is the fraction of
relevant observations among the retrieved observations, that is:

P =
true positives

predicted positives
=

true positives
true positives + f alse positives
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• Recall (also known as sensitivity) is defined as the ratio of positive-
labeled observations being correctly classified. It is the fraction of rel-
evant observations that have been retrieved over the total amount of
observations, that is:

R =
true positives

actual positives
=

true positives
true positives + f alse negatives

A classifier with high precision and high recall is in general a good classifier.
Let us remark that precision and recall are generally better indicators for

the representation of the performance of a classifier when the dataset is un-
balanced. Moreover, another common performance indicator whose attempt
is to combine precision and recall in single metric when dealing with unbal-
anced datasets, is the so called F1 score. The F1 score is defined as:

F1 = 2 · P · R
P + R

In addition to the above defined metrics, a less commonly used perfor-
mance indicator is the confusion matrix. A confusion matrix, also known as
error matrix, is a specific table that allows visualization of the performance of
a supervised learning algorithm. Each row of the confusion matrix represents
the instances in a predicted class while each column represents the instances
in an actual class (or vice versa) [99]. The confusion matrix is a special kind
of contingency table, with two dimensions (“actual” and “predicted”), and
identical sets of “classes” in both dimensions (each combination of dimen-
sion and class is a variable in the contingency table). In this contingency
table all correct predictions are located in the diagonal of the matrix, so it is
easy to perform a visual inspection for prediction errors.

5.1.6 Tuning Machine Learning Systems

There is an important problem to be addressed in many machine learning
problems, that is the tuning of the model. Tuning a model essentially means
selecting the best parameters for an algorithm in order to optimize its perfor-
mance. The following are possible guidelines to take into account in order to
reduce classification errors and improve the performance:

• increase the number of training examples;

• decrease the size of the set of features;

• increase the size of the set of features;

• add polynomial features (x2
1, x2

2,...);

• control the overfitting/underfitting of the model.
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In addition machine learning diagnostics can be applied to gain insights
about what is or is not working within a learning algorithm and gain guid-
ance as to how best improve performance. It becomes important at this point
to define the concepts of bias and variance.

5.1.7 The Bias vs Variance Tradeoff

In statistics and machine learning, the bias–variance trade off (or dilemma)
is the problem of simultaneously minimizing two sources of error that pre-
vent supervised learning algorithms from generalizing beyond their training
set [100]. More precisely:

• The bias is an error originated from erroneous assumptions in the learn-
ing algorithm. High bias can cause an algorithm to miss the relevant
relations between features and target outputs (underfitting);

• The variance is an error originated from sensitivity to small fluctuations
in the training set. High variance can cause an algorithm to model the
random noise in the training data, rather than the intended outputs
(overfitting).

We define Jtrain (Θ) and JCV (Θ) respectively as the misclassification error on
the training set and on the validation set.
The symptoms in case of underfitting are:

• the error Jtrain (Θ) on the training set is high;

• the error JCV (Θ) on the validation set is high and is approximately sim-
ilar to Jtrain (Θ).

The symptoms in case of overfitting are:

• the error Jtrain (Θ) on the training set is low;

• the error JCV (Θ) on the validation set is significantly higher than the
error on the training set Jtrain (Θ).

The analysis of bias and variance tells us whether collecting more data makes
sense. Indeed, huge datasets are not always helpful for classifiers. In particu-
lar, if a learning algorithm has a high bias, and hence JCV (θ) is almost equal
to Jtrain (θ) for m → ∞, a larger training dataset will not help much by itself.
In addition, if a learning algorithm is suffering from high variance, and hence
JCV (θ) is much larger than Jtrain (θ) for m → ∞, a larger training dataset is
likely to help.

5.1.8 Hypothesis Evaluation

In all those cases when data cannot be plotted, for example when a dataset
has many features, it is still possible to understand if we are overfitting or
underfitting without relying on the above mentioned plots. What is generally
done in these cases is to first split the dataset into “training set” and “test set”;
Then what is done is:



5.1. Introduction to Machine Learning 37

• learning the parameter Θ from the training data (minimizing training
error J (Θ)) (e.g., on the 70% split);

• compute test set error, in case of classifiers this is just the misclassifica-
tion error, defined previously, which is given by:

errortest =
1

mtest

mtest

∑
i=1

err
(

hθ

(
X(i)

test

)
, y(i)

)
Once, the error has been computed, we can use “learning curves” to under-
stand if we are underfitting or overfitting.

5.1.9 Learning Curves

A fundamental tool used in the visualization and troubleshooting of ma-
chine learning systems is the so called “learning curve”. A learning curve
is a graphical representation of the increase (or decrease) of learning (verti-
cal axis) as a function of the experience (horizontal axis). Ideally we should
have learning curves with a low Jtrain and Jcv and with Jcv approaching Jtrain.
Examples of learning curves can be observed in Figures 5.1 and 5.2. We can
see in those figures two examples of non desirable conditions. In particu-
lar, Figure 5.1 shows situation characterized by a high variance, hence in this
case collecting more data would help to increase the performance of the cor-
responding system. On the other hand, Figure 5.2 shows a situation char-
acterized by a high bias situation, so more data in this specific case will not
actually help to increase the performance of the model under exam.

m(training set size)

error

desired
performance

test error

training error

FIGURE 5.1: Typical learning curve for high variance

5.1.10 Model Selection and Additional Datasets

The “model selection” phase is related to the choice of the features and of
the model parameters used to train the model. Model selection helps us in
the choice of the optimal subset of features, or on the degree of the polyno-
mial used by the model to fit the data. Basically, we run into model selection
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error

m(training set size)

desired
performance

test error

training error

FIGURE 5.2: Typical learning curve for high bias

methodologies whenever we want to understand what are the best parame-
ters for our model.

A good approach for selecting a model is through the use of the so called
“cross-validation” datasets. Basically, this consists in dividing our dataset
into three or more partitions. The number of partitions depend on the num-
ber of parameters we want to tune, but basically to tune a single parameter
we would split a dataset as follows:

• training set: 60%;

• cross validation set (or simply validation set or cv-set): 20%;

• test set: 20%.

To make an example, let’s say we want to understand which is the best
polynomial to find Θ starting from our training set, by using different poly-
nomials. Basically we want to tune our model to find the best polynomial.
Using different tuning values we would find different θ values for different
polynomial degrees:

• hθ (x) = θ0 + θ1 · x

• hθ (x) = θ0 + θ1 · x + θ2 · x2

• ...

• hθ (x) = θ0 + θ1 · x + ... + θ10 · x10

In this context, since we want to test the performance of our model with dif-
ferent parameters it is not enough to compute the errors only by relying on
the test dataset (using e.g., a split 80/20). In fact, when selecting a model,
it is always necessary to use at least an additional dataset known as “cross-
validation dataset”. This dataset is used to find the best set of parameters
for our model, and once these are found we can finally test its performances
on the test dataset. In fact, using solely a test dataset when tuning a model,
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would not give a precise indication of how well our model generalizes on un-
seen data, and in these cases the performance of the system may be overesti-
mated. This is a common mistake when using machine learning algorithms.

In conclusion, let us remark that whenever we are tuning a model, it is
considered best practice to split the dataset into at least three partitions, and
proceed as follows:

• train the model on the training set;

• tune the model with respect to a parameter using a cross-validation set;

• check the performance of the model the test set.

Note that, the more parameters we want to tune, the more cross-validation
datasets we have to use.

5.1.11 Logistic Regression

Logistic regression is an old standard statistical classification method, that is
commonly used for many classification problems and particularly appropri-
ate for models involving binary decisions, although it can be generalized to
multi-class problems [101]. This classification method relies on the logistic
model (or logit model) which is used to model the probability of a certain
class or event existing such as pass/fail, safe/dangerous or healthy/sick.
Each possible output class would be assigned a probability between 0 and
1, with a sum of one.

Logistic regression is very similar to a certain extent to linear regression,
the fundamental difference consists in the type of output that we are trying
to predict and on the cost function.

In fact, the classification problem could be approached by ignoring the
fact that y is discrete-valued, and use the linear regression algorithm to pre-
dict y given x. However, this method would perform very poorly in this
context. In addition, it also wouldn’t make sense for an hypothesis func-
tion hθ(x) to take values larger than 1 or smaller than 0, as it may happen
with linear regression, when we know that y ∈ 0, 1. In order to tackle a
discrete-valued output, logistic regression involves a particular choice for the
hypotheses function hθ(x). More precisely:

hθ (x) = g
(

θT · x
)
=

1
1 + e−θT x

where:
gz =

1
1 + e−z

is called the logistic function, or sigmoid function. The shape of this function
is depicted in Figure 5.3. As can be seen Notice that when z → ∞, g(z)
tends towards 1, while g(z) tends towards 0 as z → −∞. Moreover, g(z),
and as consequence also h(x), is always bounded between 0 and 1. We keep
the convention of letting x0 = 1, so that: θT · x = θ0 + ∑n

j=1 θj · xj. Although
other functions that smoothly increase from 0 to 1 could be used, the sigmoid



40 Chapter 5. Theoretical Background

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.2

0.4

0.6

0.8

1.0

Si
gm

oi
d(
X)

FIGURE 5.3: Sigmoid function

function other than being a natural choice also has several useful properties.
In fact, the derivative of g(z) can be computed as:

g′
(
z′
)
=

d
dz
· 1

1 + e−z

=
d
dz
· 1

1 + e−z

=
1

(1 + e−z)2 ·
(
e−z)

=
1

(1 + e−z)
·
(

1− 1
(1 + e−z)

)
= g (z) · (1− g (z))

This derivative as we will allows the computation of the stochastic gra-
dient descent, that is a common optimization algorithm used in different
machine learning applications. Indeed, in order to fit for θ, a least squares
regression can be derived by employing the maximum likelihood estimator
under a set of assumptions. In what follows, the classification model is en-
dowed with a set of probabilistic assumptions and the parameters are fit by
using the maximum likelihood technique.

Let us assume that:

P (y = 1|x; θ) = hθ (x) P (y = 0|x; θ) = 1− hθ (x)

Let us remark that this can also be written more compactly as:

P (y|x; θ) = (hθ (x))y (1− hθ (x))1−y
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With the assumption that the m training examples of data are indepen-
dent, we can derive the likelihood of the parameters as:

L (θ) =
m

∏
i=1

p
(

y(i)|x(i); θ
)

At this point it is easier to maximize the log likelihood, hence:

l (θ) = log L (θ)

This derivation is very similar to the case of linear regression, hence the
gradient descent technique can be used. Each update can therefore be de-
scribed in the vectorial notation as θ := θ + αδθ l (θ).

Finally, the stochastic gradient ascent rule in the case of logistic regression
corresponds to:

θj := θj + α
(

y(i) − hθ

(
x(i)
))

x(i)j

Let us remark that this derivation is almost identical to the linear regres-
sion one. The fundamental difference in this case is related to hθ

(
x(i)
)

that

is defined as a non-linear function of θTx(i). Nonetheless, gradient descent
optimization technique can be applied together with the same update rules.

Another difference with respect to the linear regression is related to the
interpretation of the coefficients of the mode. In fact, the coefficients in the
logistic version are more difficult to interpret with respect to the ordinary
linear regression. More precisely, the interpretation could correspond to the
changes in the log-odds of the outcome being modeled, but the meaning of
these log-odds is a little opaque since practically speaking the effect on the
probability that moving one of the input features will have depends on other
factors. However, the direction of the coefficients alone can be interpreted
usefully. In fact, features with positive coefficients increase the probability of
the modeled outcome as they increase, while features with negative coeffi-
cients decrease the probability of the outcome as they increase.

5.1.12 Support-Vector Machine

Support-vector machine (SVM) is a non-probabilistic binary linear classifier
frequently used in machine learning. The non-probabilistic aspect is its ma-
jor key strength. In fact, this aspect is in contrast with probabilistic classifiers
such as the Naïve Bayes. More precisely, an SVM works by separating data
across a decision boundary, that can be defined as “plane”. A plane is deter-
mined by a subset of the data, known as “feature vectors”. The data subset
that supports the plane are known as “support vectors”. The remaining part
of the dataset does not have any influence in determining the position of the
decision boundary in the feature space.

In contrast with SVMs, probabilistic classifiers develop a model that best
explains the data by considering all of the data instead of just a subset. In
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addition, in general SVM require less computing resources with respect to
probabilistic classification techniques.

A depiction of the separation of data at the base of the SVM inner working
is shown in Figure 5.4. The image shows how the hyperplane separates sets

FIGURE 5.4: Support-Vector Machine hyperplane separating
input data

of data belonging to different classes (i.e., characterized by different colors).
In fact, the final aim of SVM is to find the optimal hyperplane that separates
data belonging to different classes by maximizing the margin between the
hyperplane and the data samples.

More precisely, an SVM is fed with a training dataset of n points in the
form (x1, y1), ..., (xn, yn), with yi being either 1 or −1 corresponding to the
class to which the point xi belongs. More precisely, each xi corresponds to
a p-dimensional vector. The aim of SVM is to find the “maximum-margin
hyperplane” that separates the group of vectors xi for which yi = 1 from
the group of points for which yi = −1. This maximum-margin hyperplane is
defined in order to have the distance between the hyperplane and the nearest
point xi from either group maximized.

Any hyperplane can be defined as the set of points x satisfying the fol-
lowing equation:

wTx− b = 0

where w is the normal vector to the hyperplane and b
||w|| determines the offset

of the hyperplane from the origin along the vector w.
In general, performing a classification task with an SVM classifier corre-

sponds to minimizing an expression of the following form:
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(
1
n

n

∑
i=1

max
(

0, 1− yi

(
wTxi − b

)))
+ λ||w||2

Where λ determines the trade-off between increasing the margin size and
ensuring that the xi lie on the correct side of the margin.

Note that the binary and linear aspects associated with SVM represent
its limitations. A common technique used to overcome the linear limitation
is to use the well-known “Kernel Trick” that is able to address the linearity
restriction on the decision boundary [102].

On the other hand, the inability to deal with multinomial classification
problems, that is, classify data into more than two classes, is still an area of
ongoing research.

The current solution to this issue nowadays involves the creation of mul-
tiple binary SVM classifiers that compare data objects in a variety of ways,
such as one-versus-all (OVA) or all-versus-all (AVA) [103]. For a problem in-
volving k classes of data, OVA requires training k classifiers so that each class
discriminates against the remaining k− 1 classes. In particular, AVA requires
k (k− 1) /2 classifiers because each class is discriminated against every other
class, and all possible pairings must be taken into account. Once all the bi-
nary classifiers for either method are constructed, a new object is classified
based on the comparison that provides the largest discriminant output value.

Note that in addition to these issues for which workarounds have been
found, there is another potential drawback to consider when using SVMs. In
fact, the parameters of a solved model are of difficult interpretation. Nonethe-
less, SVMs represent a widely used solution for many problems and by si-
multaneously minimizing the empirical classification error and maximizing
the geometric margin they are able to outperform other algorithms in many
fields.
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5.2 Decision Trees and Random Forests

In this chapter we delve into the tree based methods. These methods are
largely applied in supervised learning both for regression and classification
purposes and are known for their good performance in many applications.
After the definition of the decision trees, ensemble learning methods are
briefly introduced, subsequently random forests are described.

5.2.1 Decision Trees

A decision tree is a decision support tool that has a flowchart-like tree struc-
ture, where each internal node (i.e., non-leaf node) denotes a test on an at-
tribute, each branch represents an outcome of the test, and each leaf node
(or terminal node) represents a specific class or class distributions [93]. The
tree consists of one or more nodes, where each node, except the root, has an
incoming edge. A node without any outgoing edge is called leaf node. The
topmost node in a tree is defined as root node, that is, the only node without
any incoming edge. An example of decision tree is shown in Figure 5.5.

FIGURE 5.5: Example of a decision tree

In order to understand how a decision tree is used to make predictions,
we consider the simple tree in Figure 5.5 who models a decision tree related
to the famous Iris dataset [104]. Suppose new data of an iris flower needs
to be classified. Starting from the root node (depth 0 of the tree), this node
checks whether the flower’s petal length is shorter than the specified length.
If this is true, we move down to the left child node (depth 1). Since this is a
leaf node, the predicted class is specified into the node, i.e., class=setosa.

Each node has different attributes; for example, the node samples count
the number of training instances from the dataset it applies to. Another at-
tribute is the value which indicates the number of training instances of each
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class the node applies to. Finally another important attribute usually associ-
ated to a node is the Gini impurity index [105].

The Gini impurity index for a node is computed as follows:

Gi = 1−
n

∑
k=1

p2
i,k

where n is the number of classes, and pi,k is the ratio of class k instances
relative to the ith node. As example, the Gini impurity index of the depth-2
left node in Figure 5.5 is equal to:

Gi = 1− (0/54)2 − (49/54)2 − (5/54)2 ≈ 0.168

A node is said to be “pure” – with a Gini impurity index equal to zero – if all
dataset instances it applies to belong to the same class. Compared to other
classifiers decision trees are very intuitive to understand and their decisions
(e.g., classifications) are easy to interpret. These models are often referred to
as “white box models”. In contrast, neural networks and random forests are
generally considered as “black box models”. In fact, even if these are very
good classifiers, it is very difficult to explain in simple terms why a specific
prediction was made. Decision trees can also estimate the probabilities of an
instance to belong to a particular class k. For example, the ratio between the
number of instances of a specific class associated to a leaf node and the total
number of training instances associated to the node gives us the probability
that a specific training instance related to the node belongs to the specific
class. For the decision tree shown in Figure 5.5 and a flower whose petals are
5 cm long and 1.5 cm wide, the resulting leaf node is the depth-2 left node.
The decision tree provides the following probabilities: 0 for Setosa, 0.907 for
Versicolor and 0.093 for Virginica. The response of course provides as output
the class with the highest probability.

5.2.2 CART Training Algorithm

A very common algorithm used to train decision trees is the Classification
And Regression Tree (CART) algorithm [106]. This algorithm recursively
splits the training set in two subsets using a feature k and a threshold tk. In
order to determine the order of the pairs (k, tk), the algorithm selects the pair
that produces the purest subsets in terms of Gini impurity index, weighted
by the size of the subset.

As many classification algorithms, for decision trees the classification prob-
lem is a cost function minimization problem. The cost function for CART is
given by:

J (k, tk) =
mle f t

m
Gle f t +

mright

m
Gright

where Gle f t/Gright denote the measures of impurity of the left/right subsets
respectively, while mle f t/mright represent the number of instances belonging
to the left/right subsets respectively. The split procedure is recursive and
stops when one of following conditions is satisfied:
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1. the predefined maximum depth has been reached, this is a tuning pa-
rameter for decision trees;

2. a split that reduces the impurity cannot be found;

3. Additional user-defined parameters that are used to control the stop-
ping conditions of the algorithm.

The CART algorithm is a greedy algorithm, since it searches for an optimum
split at the top level, then repeats the process at each level, without check-
ing whether a specific split leads to the lowest impurity level. Greedy algo-
rithms generally produce a reasonably good solution, without any guarantee
of their optimality. Unfortunately, training an optimal decision tree is an
NP-Complete problem that requires O (exp (m)) time. Hence, the problem is
computationally unfeasible even for small training sets. Although there are
algorithms, such as ID3 [107] which work with non binary trees the CART
algorithm only works with binary trees – so traversing a tree has a compu-
tational complexity of O (log2 (m)) – and the predictions are very fast even
when dealing with large training datasets.

For what concerns the training of the algorithm, that is, the growing phase,
the complexity is of O (n×m · log (m)), where n denotes the number of fea-
tures.

5.2.3 Decision Trees Parameters

Unconstrained decision trees adapt themselves to the training data, this model
is non-parametric, and a common problem associated to it is being subjected
to overfitting scenarios. In fact, when the number of nodes is high related
to the number of features we may have an high variance model. To avoid
overfitting issues, the growth of the tree can be restricted, this is known as
“regularization” process. The regularization parameters depend on the algo-
rithm used. Setting properly a maximum depth can indeed prevent model
overfitting. Moreover, there are even other parameters that can be used to
tune a decision tree, such as [86]:

• minimum sample split: the minimum number of samples a node must
have before it can be split;

• minimum leaf number: the minimum number of samples a leaf must
own;

• maximum leaf number: the maximum number of leaf nodes;

• maximum features: the maximum number of features that are evalu-
ated for splitting at each node.

In general to regularize a model, it is possible to decrease the value corre-
sponding to the “maximum” parameters or increase the value corresponding
to the “minimum” parameters. Many algorithms first train the decision tree
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without any restrictions – as a non parametric model – and then delete un-
necessary nodes. The node deletion is called “pruning”, and it represents an
example of regularization process for decision trees. Although decision trees
represent a very flexible, easy to interpret and powerful machine learning al-
gorithm, they have some limitations. In particular, decision trees are affected
by the following weaknesses:

• orthogonal decision boundaries: every split is perpendicular to one of
the axis. This makes decision trees very sensitive to dataset rotations,
and prone to overfitting;

• sensitiveness to small dataset variations: even removing a single ele-
ment in the training set, could lead to an extremely different tree. Ran-
dom forests – which will be discussed later in this thesis work – can
limit this instability by averaging predictions over many trees.

5.2.4 Ensemble methods

Ensemble methods are techniques used to create multiple models by means
of learning algorithms in order to obtain better predictive performance [108].
The basic principle is that the aggregation of a group of predictors provides
better performance than considering individual isolated predictors [109] [110].
A set of predictors is called ensemble. The most popular ensemble methods
are, bagging/pasting, boosting, stacking and random forests.

5.2.5 Voting Ensemble Techniques

An example of ensemble technique is the Voting classifier. The concept be-
hind these voting classifiers is simple and is based on the aggregation of the
predictions of each classifier. The class with the largest number of votes or
with the most significant votes is then predicted. Voting classification tech-
niques can be divided into:

• hard voting classifiers: they consider the number of occurrences of a
particular output with the maximum number of votes;

• soft voting classifiers: all classifiers in the ensemble are able to estimate
class probabilities. They predict the class with the highest probability,
averaged over all the individual classifiers.

Soft voting classifiers often achieve better performance than hard voting be-
cause they consider more important votes with higher probabilities. In gen-
eral, hard voting is useful when all classifiers have comparable performance.
On the contrary, it does not make sense in case of very unbalanced classi-
fiers, i.e., classifiers with very different accuracies, especially if the number
of classifiers with higher performance are the minority in the ensemble. An
example of voting classifier is shown in Figure 5.6. In this case a support
vector machine, a logistic regression, a decision tree and other classification
algorithms are used, then the final result is given by the output with the high-
est mode.
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FIGURE 5.6: Example of voting ensemble classification

5.2.6 Bagging and Pasting

Bagging and pasting methods use the same algorithm in an ensemble for
every predictor but on different subsets of the training dataset. In detail:

• Bagging [111]: (i.e., bootstrap aggregating), the sampling from the train-
ing dataset allows replacement;

• Pasting [112]: the sampling allows replacement.

Hence bagging allows training dataset objects to be sampled multiple times
for the same classifier.

Once all classifiers are trained, all the classifiers predictions are aggre-
gated to make a new prediction. The aggregation technique is similar to the
voting classifier; in the case of a regression it is computed as the average of
all regressors. When these techniques are used, it can be noticed, that each
individual classifier has higher bias than if it was trained on the entire train-
ing set. Anyway, aggregation is able to reduce both bias and variance. In
general the entire ensemble classifier has a lower variance but a similar bias
with respect to each single individual classifier trained on the entire dataset.

By default a bagging classifier gives to each predictor only a portion of the
entire training set, while the remaining part that is called out-of-bag (OOB)
set is not provided to the classifier. Since a predictor never samples the OOB
instances during the training phase, its performance can be evaluated on the
OOB set, without the need of an additional validation set.

The performance of a bagging method is evaluated by taking the average
performance of each classifier evaluated on the OOB set.
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5.2.7 Random Forests

Random forests or random decision forests [113] are an ensemble learning
method mainly used for classification and regression, that operate by con-
structing different decision trees at training time and by giving as output the
class that is the mode of the classes. In case of a regression problem, the
output is represented by the mean prediction of the individual trees [114].

The training algorithm for random forests applies the general technique
of bootstrap aggregating, or bagging, relying on a set of decision trees. Given
a training set X = x1, x2, ..., xn with responses (i.e., target values) Y = y1, ..., yn,
the bagging procedure selects B times a random sample with replacement of
the training set and trains trees with these samples. For b = 1, ..., B the fol-
lowing steps are executed:

1. sample with replacement of n training examples from X, Y, that is,
Xb, Yb;

2. train a classification (or regression) tree fb on Xb, Yb.

After training, predictions for validation samples xv can be made. In the
case of a classification problem the output is just the mode value of all the
classification trees, that is the majority vote, while in the case of a regression
problem the output corresponds to the average of all the predictions from the
individual trees computed as follows

f̂ =
1
B

B

∑
b=1

fb (xv)

This bootstrapping procedure leads to improvements in the model perfor-
mance because it decreases the variance of the model, without increasing the
bias. Thus, while one of the decision trees weaknesses is the high sensitivity
to noise in training set, the average of many trees is not, as long as the trees
are not correlated. Bootstrap sampling is a technique to remove the correla-
tion between the decision trees by training them using different training sets.
When all the trees are trained on a single training set, the result is a set of
strongly correlated trees.

5.3 Introduction to Graph Theory

Graph Theory is the study of graphs, which are mathematical structures used
to model pairwise relations between objects [115].

Graph theory is commonly used to solve routing, network problems and
is being employed to find a “best” route. Best in this case may mean the
least expensive, the one involving the least amount of time or the one with
the least distance. Some examples of routing problems are routes covered
by postal workers, UPS drivers, police officers, garbage disposal personnel,
tour buses and other applications. Furthermore, some examples of network
problems are the deployment of telephone networks, railway systems, road
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planning for traffic engineering, pipelines, and design of computer chips.
In this chapter, after some basic definitions, a taxonomy of shortest paths
techniques is presented.

5.3.1 Basic Definitions and Concepts

A graph is a pair G = (V, E) of sets that satisfy E ⊆ [V]2, that is, the elements
of E are subsets of V composed by 2 elements [116]. The elements of V are
known as “vertices” (or nodes) of the graph G, while the elements of E are
known as the graph “edges” (or lines). A common graphical way to represent
a graph is by using a dot for each vertex of the graph and joining each of these
vertices by a line if they form an edge. An example of graph can be seen in
Figure 5.7. Note that although representing a graph seems quite intuitive and
simple, the representation of dynamic graphs (i.e., graphs whose structure
may change with time) is a current topic of research [117].
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FIGURE 5.7: Basic example of graph

Graphs are commonly classified depending on the characteristics of the
relationships between nodes, in particular, we can distinguish between:

• Simple Graphs, that is, graphs in which node pairs can only have a
single relationship between them;

• Multi-Graphs, that is, graphs in which node pairs can have multiple
relationships between them;

• Pseudo-Graphs, that is, multi-graphs where nodes can have relation-
ships looping on themselves.

An example depicting the differences between these classes of graphs is
shown in Figure 5.8.

The vertex set of a graph G can be denoted with the notation V (G) (or
v ∈ G), while the edge set of the same graph can be referred to as E (G)
(or e ∈ G). The number of vertices in a graph G is defined as its “order”
and is denoted as |G|. A graph with an empty set of vertices and edges
G = (∅, ∅) is defined as “empty graph”. Given two vertices x, y of G, these
vertices are “adjacent” (or neighbors) if x and y represent an edge of G. The
set of neighbors of a vertex v on the graph G is denoted by by N (v). We can
define the “degree” of a vertex v on a graph G as d (v) = |E (v)|, that is, the
number of neighbors of v. For a graph G we can define its minimum degree,
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FIGURE 5.8: Comparison between different classes of graphs

that is, the node belonging to G with the lowest degree and its maximum
degree, that corresponds to the node of the same graph with the maximum
degree. For a graph G we can additionally define the “average degree” by
computing:

d (G) :=
1
|V| ∑

v∈V
d (v)

The average degree is a common statistic used to describe the character-
istics of a graph.

Another distinction in the field of graph theory is made between “undi-
rected graphs”, where all the edges link two vertices symmetrically, and “di-
rected graphs”, where edges link two vertices asymmetrically. An example
of this distinction can be observed in Figure 5.9.
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FIGURE 5.9: Comparison between a directed and an undirected
graph

Another common characterization of graphs is based on whether the edges
of the graph have an associated weight or not. In the first case we can talk
about “weighted” graphs, while in the other case the graph can be described



52 Chapter 5. Theoretical Background

as “unweighted”. An example of this distinction can be observed in Fig-
ure 5.10.
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FIGURE 5.10: Comparison between a weighted graph and an
unweighted graph

The weight associated to an edge usually represents:

• Cost or Distance, that is, the amount of effort needed to travel from one
place to another;

• Capacity, that is, the maximum amount of flow that can be transported
from one node (e.g., a place) to another.

On both weighted and unweighted graphs we can define one of the most
important concepts in the field of graph theory, that is, the concept of path.

A path is defined as a non-empty graph P = (V, E) where:

V = {x0, x1, ..., xn}

E = {x0x1, x1x2, ..., xn−1xn}
with all xi distinct, while the vertices x0 and xk are linked by P and are by

definition known as the “ends” of the path. Given a path P we can define its
length as the number of edges contained in the graph; a path of length n is
denoted as Pk. An example of path is showed in Figure 5.11.

Another important concept linked to paths is definition of connectivity.
A non-empty graph G is said to be “connected” if any two of its vertices
are linked by a path in G. In practical terms, if there is at least one way to
get from one vertex of a graph to all the other vertices of the graph, then the
graph is connected. On the contrary, if there is even one vertex of a graph that
cannot be reached from every other vertex, then the graph is disconnected.
A comparison between an example of connected graph and a disconnected
graph is depicted in Figure 5.12.

Considering the set of all paths in a graph, we can determine if a graph is
cyclic or acyclic. A graph is said to be “cyclic” if it contains a cycle. A cycle
is a graph built starting from a path P = x0...xk−1, with k ≥ 3, more precisely
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FIGURE 5.12: Comparison between a connected and a discon-
nected graph

a cycle C is defined as C = P + xk−1x0. If a graph does not contain any cycle,
then it is defined as “acyclic”. In Figure 5.13 a comparison between a cyclic
graph and an acyclic graph is shown.

The set of all paths in a graph, other then defining the connectedness and
cyclicity of the graph itself are also at the base of one of the major applications
of graph theory, that is, finding the shortest path. The shortest path is defined
through the "minimum spanning tree", that is a sub-graph that connects all
the nodes of a graph with either the least number of hops or least weighted
paths. In what follows, the most commonly used techniques used for finding
the shortest paths on a graph are discussed.

5.3.2 Shortest Path Algorithms

In graph theory, the shortest path problem is the problem of finding the
shortest route between two vertices (or nodes) in a graph. In the case of
unweighted graphs, generally the shortest path between two nodes A and
B corresponds to the path characterized by the lowest number of nodes be-
tween the two nodes. On the other hand, the shortest path between two
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nodes A and B on a weighted graph corresponds to the path with the mini-
mum sum of the weights of its constituent edges [118], [119].

The shortest path problem is general enough to be defined for graphs
whether undirected, directed, or mixed. In this section the problem is de-
fined for undirected graphs, anyway for directed graphs the definition of the
problem is identical with the exception that the concept of path requires that
consecutive vertices are connected by an appropriate directed edge.

A path in an undirected graph is a sequence of vertices P = (v1, v2, ..., vn) ∈
V × V × · · · × V such that vi is adjacent to vi+1 for 1 ≤ i < n. Such a path
P is called a path of length n − 1 from v1 to vn. Note that vi are variables;
their numbering relates to their position in the sequence and does not need
to necessarily relate to a canonical labeling of the vertices.

Let ei,j be the edge incident to both vi and vj. Given a real-valued weight
function f : E → R, and an undirected (simple) graph G, the shortest path
from v to v′ is the path P = (v1, v2, . . . , vn) (where v1 = v and vn = v′)
that over all possible n minimizes the sum ∑n−1

i=1 f (ei,i+1). When each edge
in the graph has unit weight, that is, f : E → {1}, (or alternatively if we are
considering unweighted graphs) this is equivalent to finding the path with
fewest edges.

The above stated problem is also often defined as “single-pair shortest
path problem” [120]. This definition distinguishes the classical shortest path
problem from some of its variations:

• The single-source shortest path problem, in which we have to find short-
est paths from a source vertex v to all other vertices in the graph;

• The single-destination shortest path problem, in which we have to find
shortest paths from all vertices in the directed graph to a single desti-
nation vertex v. This can be reduced to the single-source shortest path
problem by reversing the arcs in the directed graph;

• The all-pairs shortest path problem, in which we have to find shortest
paths between every pair of vertices v, v′ in the graph.
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In the context of this work, for reasons of brevity the shortest path prob-
lem will refer to the single-pair shortest path problem.

The most common algorithms used for solving this problem are [118]:

• Dijkstra’s algorithm solves the single-source shortest path problem with
non-negative edge weight;

• Bellman–Ford algorithm solves the single-source problem if edge weights
may be negative;

• A search algorithm solves for single-pair shortest path using specific
heuristics to try to speed up the search;

• Floyd–Warshall algorithm solves all pairs shortest paths.

In the context of this work it is particularly important to focus on the
Dijkstra’s algorithm, which is also one of the most popular solutions to the
shortest path problem.

In what follows a brief description of the Dijkstra’s solution is detailed.
Given a graph G, let the node at which we are starting be called the “initial

node”. Given a node Y from G, let the distance of node Y be the distance from
the initial node to Y. Dijkstra’s algorithm will assign some initial distance
values and will try to improve them at each iteration of the algorithm.

1. Mark all nodes as “unvisited”. Create a set of all the unvisited nodes,
this set is defined as “unvisited set”;

2. Assign to every node a tentative distance value: set it to zero for our
initial node and to infinity for all other unvisited nodes. Set the initial
node as current;

3. For the current node, consider all of its unvisited neighbours and cal-
culate their tentative distances through the current node. Compare the
newly calculated tentative distance to the current assigned value and
assign the smaller one. For example, if the current node is A, and A is
marked with a distance of 6, and the edge connecting it with a neigh-
bour B has length 2, then the distance to B through A will be 6 + 2 = 8.
If B was previously marked with a distance greater than 8 then change
it to 8. Otherwise, the current value will be kept;

4. When all of the unvisited neighbours of the current node have been
considered, mark the current node as visited and remove it from the
unvisited set. A visited node will never be checked again;

5. If the destination node has been marked as “visited” or if the smallest
tentative distance among the nodes in the unvisited set is infinity (when
planning a complete traversal; occurs when there is no connection be-
tween the initial node and remaining unvisited nodes), then stop. The
algorithm has finished;
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6. Otherwise, select the unvisited node that is marked with the smallest
tentative distance, set it as the new "current node", and go back to step
3.

When planning a route, it is not necessary to wait until the destination
node is marked “visited” as described above. In fact, the algorithm can stop
once the destination node has the smallest tentative distance among all "un-
visited" nodes (and thus could be selected as the next "current").
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Chapter 6

Active Directory

In this chapter, Active Directory and its security concepts are discussed. Ac-
tive Directory is the core of enterprise networks nowadays, hence, under-
standing its foundations is particularly important from a security perspec-
tive. First, basic concepts about the Windows operating system security are
highlighted, then the protocols and technologies used in Active Directory
environments as well as the security attacks affecting these environments are
detailed.

6.1 Microsoft Windows Security

Understanding notions related to the Microsoft operating systems is partic-
ularly important, because it is frequently employed as the main operating
system for workstations and domain controllers in enterprise organizations.
Moreover, Active Directory environments are primarily designed, supported
and documented for the Windows Operating System. These operating sys-
tems are proprietary and complex enough that a complete description of the
security aspects would require an entire book, it is therefore out of the scope
of this work to provide a comprehensive documentation about all security
aspects. Nonetheless, a description of the fundamental building blocks of
Windows security are provided in what follows. More precisely, the concept
of SID (Security Identifier) will be detailed with its implications. The role of
Default Service Accounts used as security principals is discussed and gen-
eral considerations about Windows access control mechanisms are provided.
In addition concepts involved with common privilege escalation attacks are
covered, such as the mandatory integrity control, access token duplication,
privileges and security descriptors.

6.1.1 SID

SID stands for Security Identifier and is a unique identifier for objects to
which it is possible to assign permissions or control access. The entities which
own a SID are called “Security Principals” and generally correspond to users,
groups or services. Basically every object having a SID can be managed from
a security perspective.

A SID is identified by a unique string, (e.g., in the form S-1-5-21-1692),
and can be decomposed into two parts:
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• the entire string before the last dash is known as the “root SID”(i.e.,
S-1-5-21- from the example above) and identifies the computer and
the domain;

• the string after the last dash is known as the “RID” (i.e., 1692 from the
above example) and corresponds to a relative identifier that is specific
for a user or group; RIDs differentiates specific users within a computer
or a domain.

Notice that Windows defines some built-in SIDs for default entities that
are present on every installation of the operating system. Some of these are
worth to mention for their importance:

• S-1-1-0: Everyone, represents all users;

• S-1-2-0: Local, represents all users who log on physically;

• S-1-5-18: Local System, represents a special service account;

• S-1-5-20: Network Service, represents a special service account;

• S-1-5-19: Local Service, represents a special service account;

• S-1-5-32-544: Administrators, the administrative group;

The SID is a very important concept in Windows environments and it is
worth to remind that everything that does not have a SID cannot be con-
trolled from a security perspective since no access control can be imposed.

6.1.2 Default Service Accounts

Within the Microsoft Windows operating systems accounts can be distin-
guished into: “User accounts” and “Service accounts”. User accounts rep-
resent accounts associated to the actual users of the system who are able to
log on and are associated to real physical users. On the contrary Service ac-
counts are security principals who cannot log on machines and are associated
to services running on a Windows computer. These accounts exist so that
Windows can associate privileges and permissions to the running services;
this is done to implement the concept of separation of privileges.

On every Windows machine, by default there are three built-in service
accounts:

• NTAUTHORITY\SYSTEM: also known as "Local System Account". It is a
very high-privileged account. It has extensive privileges on the local
system and acts as the computer on the network;

• NTAUTHORITY\LOCALSERVICE: also known as "Local Service Account" is
a built-in account that has the same level of access to resources and
objects as members of the Users group. This limited access helps safe-
guard the system if individual services or processes are compromised.
Services that run as the Local Service account access network resources
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as a null session (i.e., without credentials). Be aware that the Local Ser-
vice account is not supported for some services such as the SQL Server
or SQL Server Agent services;

• NTAUTHORITY\NETWORKSERVICE: also known as "Network Service Ac-
count" is a built-in account that has an higher level of access to resources
and objects with respect to members of the Users group. Services that
run as the Network Service account access network resources by using
the credentials of the computer account.

Default Service accounts are particularly interesting since they normally
run with high privileges and are active by default. For this reason, these
accounts represent an interesting target from the perspective of an attacker.

6.1.3 LSASS

LSASS (Local Security Authentication Subsystem Service) is a process in Mi-
crosoft Windows operating systems that is responsible for enforcing the se-
curity policies on the system. LSASS accomplishes different tasks, such as
verifying users logging on to a Windows computer or server, handling pass-
word changes or creating access tokens. In addition, this process is also re-
sponsible for writing to the Windows Security Log. Let us remark that this
process represents one of the major pillars within Windows security.

LSASS is complex and hosts different sub-services used for different pur-
poses, it can be subdivided into these components:

• Active Directory Module: used to interact with Active Directory;

• NetLogon: used to provide secure communications to Active Directory
or to other network based resources/services;

• LSA Server: local security policy service which interacts with the LSA
database, that is a part of the registry holding information about local
users and passwords;

• SAM Server: is the service responsible for the interaction with the SAM
database, that is a part of the registry holding additional information
about local users, groups and security policies;

• Msv1_0.dll and Kerberos.dll: responsible for the communication with
the domain controllers.

In addition LSASS can interact with “LSAISO” which is a component act-
ing as an additional mitigation mechanism. LSAISO enables a set of security
features for Windows. “LSAISO”, when enabled, substitutes LSASS for cer-
tain features such as the handling of credentials.
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6.1.4 Access Token

Whenever a user logs onto a Microsoft Windows system it will be provided
with a key-chain called “Access Token”. Windows uses these tokens to en-
sure that accounts have the right privileges to carry out a particular action.
Access tokens are assigned to an account when users physically log in or are
authenticated by other means. The assignment of the access token is gener-
ally handled by the LSASS.exe process. After a login procedure, a user access
token typically contains:

• SID of the logging user;

• SIDs of all the groups the user belongs to;

• Privileges, given from user rights assignments, which are rights with
respect to some operating systems operations, for example: loading a
driver, shutting down the system, reading security logs and privileged
tasks;

• Claims (from Windows 8.x/2012), which represent dynamic tempo-
rary rights, this is related to a special access control mechanism im-
plemented from Windows Vista.

Note that access tokens are implemented as kernel objects identifying the
security context of a user, a process or a thread. We can distinguish between
two types of access tokens, primary tokens and impersonation tokens.

Primary tokens are associated with a user account or with a process and
are generated when that user logs onto a machine. These tokens are bound
to the user for the entire session. On the other hand, impersonation tokens
allow a particular process (or thread within a process) to gain access to re-
sources using the token of another user or process, hence performing an im-
personation.

Note that, when a user starts a new process, her primary access token is
copied and attached to the new process.

By default threads inherit their parent process access token. However
threads can impersonate other users by taking advantage of the imperson-
ation mechanisms described. In fact, the process of impersonation takes place
anytime a process or thread needs to temporarily run with the security con-
text of another process or user.

Concerning the impersonation token, there are different levels of imper-
sonation that a process can request:

• SecurityAnonymous: current user/client cannot impersonate another
user/client;

• SecurityIdentification: current user/client can get the identity and priv-
ileges of a client, but cannot impersonate the client;

• SecurityImpersonation: current user/client can impersonate the client’s
security context on the local system;
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• SecurityDelegation: current user/client can impersonate the client’s se-
curity context on a remote system.

The abuse of these impersonation mechanisms in unintended ways is a
very common vector for privilege escalation on Windows systems. In fact,
whenever an attacker is able to inject code into a process (for example through
buffer overflows), the token impersonation mechanism can be abused to du-
plicate the access token of the attacked process and spawn a separate process
with equal rights.

6.1.5 Access Control Mechanisms

Access control management within Microsoft Windows can be a complex
topic. In fact, these operating systems have several security mechanisms de-
signed to manage access control on security principals and resources. More
precisely, permissions can be managed through the following components:

• Privileges;

• NTFS Permission Control;

• Mandatory Integrity Control (introduced since Microsoft Windows Vista);

• User Account Control (introduced since Microsoft Windows Vista).

These access control mechanisms have different degrees of priority. In
case of conflicts with each other about the access control directives to apply,
the one with the highest priority wins. This means that the mechanism hav-
ing the highest priority imposes its access control directives ignoring the ones
imposed by the other mechanisms.

Privileges represent the most powerful form of permission a security prin-
cipal may have. These are general special permissions which allow users to
perform critical actions, such as adding a driver, turning off/on a connected
device, mount/unmount a disk and others. Privileges have the highest pri-
ority, no other mechanism can be imposed over privileges.

NTFS permissions are related to read/write/access permissions associ-
ated to files on NTFS filesystems, which is the most common Windows filesys-
tem type. These type of access control determines if a specific resource can
be accessed by a user.

The Mandatory Integrity Control (MIC) is a core security feature starting
from Windows Vista and later versions. This feature adds mandatory access
control to running processes based on their Integrity Level (IL). The IL repre-
sents the level of trustworthiness of an process. The goal of this mechanism
is to restrict the access permissions for potentially less trustworthy processes
compared with other processes running under the same user account that are
more trusted. Basically certain actions may require a specific integrity level,
if this integrity level is not met by a process, the operating system prevents
the process from performing that action.

The User Account Control (UAC) aims at improving the security of Mi-
crosoft Windows by limiting applications to standard user privileges unless
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an administrator authorizes an increase or elevation of privileges. In this
way only trusted applications can obtain administrative privileges. This al-
lows in some cases to protect the system from malware. In other words, a
user account may have administrative privileges assigned to it, but applica-
tions that this same user runs do not directly inherit those privileges unless
they are approved beforehand or the user has explicitly authorized them.

Let us remark that these mechanisms have many caveats and additional
details that have not been discussed because out of the scope of this thesis
work. Nonetheless, it is sufficient to remind that Windows associates differ-
ent priorities to these access control mechanisms and in particular, it is im-
portant to remember that the access control mechanism characterized by the
highest level of priority corresponds to the “privileges”. In fact, privileges
can bypass all other access control mechanisms.

In what follows, a more detailed description of the most relevant access
control mechanisms is provided.

6.1.6 Privileges

Privileges are user rights attachable to the access token who allow users to
perform privileged “special” actions. Examples of these actions include:
loading a driver, shutting down the system, reading security logs, chang-
ing time/zone settings. As already discussed, privileges correspond to the
highest priority access control mechanisms and privileges can all other con-
straints imposed or restrictions. Privilege names start with “Se” and end
with “Privilege”. Privileges are managed by the so called attached to users
on by using the local policies manager (i.e., gpedit.exe). Notice that "User
Rights Assignment" contains both privileges and other user rights that do
not qualify as privileges. These other user rights are simply called "User
Rights" and differ from privileges since they are not attached to the access to-
ken. This happens because "User Rights" refer to pre-login activities, hence,
they cannot be attached to the access token (remember that privileges and in
general the access token is provided only after login. This means that these
“User Rights” are taken care of by the Security Reference Monitor (SRM) to
be enforced.

Administrators generally have a significant amount of privileges, among
these some interesting ones are:

• Ownership: which allows access to any resource;

• Debug: allows adjusting processes access tokens and manipulate mem-
ory;

• Backup and Restore: these are two different privileges allowing in the
case of “backup” to read all data and in the case of “restore” to write to
any location;

• Impersonate: allows an admin to impersonate any logged on user.
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Let us remark that the privileges associated to an account (provided to
the account when it is created or inherited from a group) may allow a user to
carry out sensible actions. Since privileges are commonly abused by attackers
to perform privilege escalation attacks, in what follows are reported the most
commonly abused privileges:

• SeImpersonatePrivilege: grants the ability to impersonate any access
tokens which it can obtain. The infamous “Juicy Potato” uses this priv-
ilege;

• SeAssignPrimaryPrivilege: similar to the SeImpersonatePrivilege and
enables a user to assign an access token to a new process. Again, this
can be exploited with the “Juicy Potato” exploit;

• SeBackupPrivilege: grants read access to all objects on the system, re-
gardless of their ACL. Using this privilege, a user could gain access to
sensitive files or extract hashes from the registry that can be cracked or
used in a pass-the-hash attack;

• SeRestorePrivilege: grants write access to all objects on the system,
regardless of their ACL. There are multiple techniques to abuse this
privilege, for example by modifying service binaries, overwriting DLLs
used by SYSTEM processes, modifying registry settings and others;

• SeTakeOwnershipPrivilege: allows the user take ownership over an
object (this is the WRITE_OWNER permission). Once we own an object we
can modify its ACLs and grant write access to ourselves. At this point,
the same methods used with SeRestorePrivilege apply;

• SeCreateTokenPrivilege: allows the user to create another access to-
ken;

• SeLoadDriverPrivilege: allows a user to load a device driver, thus,
executing low level privileged code;

• SeDebugPrivilege: allows a user to manipulate the memory.

Note that it is useless to implement group policies aimed at limiting the
privileges of an Administrator, since Administrators can always bypass group
policies.

6.1.7 Mandatory Integrity Control

Microsoft Windows Vista introduced MIC (Mandatory Integrity Control) which
made it possible to differentiate a user’s processes according to a level of
trustworthiness. Mandatory integrity level control, differs from the classical
permission based access control since it takes into account the application we
are using and how much we can trust this application. MIC indeed, doesn’t
care “who” is doing something but “what” is being used.

Whenever a resource residing on a Windows system has to be accessed,
different types of access control mechanisms are considered. Each of these
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mechanisms checks if there are appropriate rights to successfully perform an
operation on an object. As already described these mechanisms have differ-
ent priorities.

In terms of priorities MIC represents the strongest access control mech-
anism after the evaluation of Privileges. In fact, MIC permissions are very
powerful. For example, even if we have the sufficient NTFS permissions to
access a resource we may not access it if we do not have a sufficient manda-
tory level to access that resource.

MIC integrity levels are subdivided into:

• SYSTEM, highest MIC level;

• HIGH, used when we explicitly run processes as an Administrator (e.g.,
through the “Run as Administrator” pop-up);

• MEDIUM, Default MIC level;

• LOW, used by insecure applications such as IE and sometimes referred
to as “AppContainer”.

A MIC is also stored within the access token associated to each user. By
default, running as a standard user sets the integrity level to MEDIUM, while
running as an administrator sets the integrity level to HIGH. Services running
under one of the three default service accounts (Local System, Network Ser-
vice, Local Service) have integrity level set to SYSTEM, that is, the highest.
In addition all processes and resources are assigned with an integrity level,
and interaction is possible only when the integrity level of a process is at
least equal or higher to the one of the resource. Note that, to further sepa-
rate processes from sensible resources we can observe that modern Microsoft
Windows versions have three directories in the user profile:

• Roaming: containing data that is synchronized over AD;

• Local: containing a running environment for applications running with
a MEDIUM integrity level;

• LocalLow: containing a running environment for applications running
with a LOW integrity level.

For example, Internet Explorer normally runs with a LOW integrity level,
but when we have to download something, a new window pops up. This is
done in order to spawn a different process running with a MEDIUM integrity
level.

In addition to the MIC, from Microsoft Windows 8 to further enhance
the concept of separation of privileges also “Modern Apps” have been intro-
duced. These “apps” are also known as “Universal Apps” and are programs
containerized to be isolated from the rest of the system. Each one of these
applications have:

• a SID associated with the application;
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• additional SIDs to enhance its capabilities;

• a dedicated, per-user specific separate directory;

• a separate object manager namespace;

• a separate installation directory for the application.

Moreover, to enhance the notion of MIC, Microsoft recently also intro-
duced the concept of “protected processes”. These are processes designed to
create an additional barrier used to protect processes not only from user pro-
cesses but even from administrators. These mechanisms are typically found
in antivirus solutions.

6.1.8 Security Descriptor

A security descriptor contains the security information associated with a se-
curable object. Basically this is analogous to access tokens, but while access
tokens is associated to users and processes, security descriptors are related
to resource objects such as files or devices. Each resource upon creation is
provided with a security descriptor. Each security descriptor is composed by
different entries:

• Owner SID, ownership information about an object;

• DACL (Discretionary Access Control List): a list describing what per-
missions specific security principals have on a specific object;

• SACL (System Access Control List): a list specifying auditing and trac-
ing directives. In this list information such as who we are auditing and
against what is provided. SACL allows to determine which operations
by which users should be logged in the security audit log.

Each of the access control lists described contains zero or more entries
known as access control entries (ACE). Each ACE contains a SID and an ac-
cess mask.

Note that the order in which a DACL is specified is important and plays a
fundamental role in understanding how access control is applied to an object.
In fact, the order of application of DACL entries follows a policy that makes
the higher (in the list) more important with respect to the lower ones. For
example, considering a user named Joe belonging to two groups, namely,
“Administrators” and “Writers”, if Joe tries to write to an object X which has
the following DACL:

• Allow Bob Write;

• Deny “Writers” Read/Write;

• Allow Joe Read/Write.
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Joe is denied to access the object X with write permissions, because the
second ACE specifies that “Writers” cannot read or write to the resource and
Joe belongs to this group. Note that, although the third ACE explicitly speci-
fies that Joe can access the resource, this is ignored, because the second ACE
is more important (higher in the list) with respect to the third ACE. Basically
ACLs evaluated first have higher priority. On the other hand, if we swap the
last two entries, then Joe would be able to write to X. Notice that if there are
no ACEs related to Joe, then he would be denied by default to access the ob-
ject. Contrarily, if no DACL is specified at all, by default the access is granted
to everyone.

6.2 Active Directory

Active Directory (AD) is a set of technologies developed by Microsoft im-
plementing directory services with the aim of managing complex computer
networks. This technology was originally built-on top of Windows 2000, and
has evolved over years through multiple Windows releases. Active Directory
is implemented through a client/server architecture and enables network
administrators to manage information, users, computers, groups, services
and more in general network policies. This administration is efficiently per-
formed through a central repository. Basically, once a resource (e.g., a user,
a computer, a printer) has been added to the Active Directory infrastructure,
it can be made available for the entire managed enterprise or to a subset of
selected users. Let us remark that the structure of the information stored
within directory services very often matches the structure of the organiza-
tion that is using it. In what follows the logical structure of Active Directory
is described.

6.2.1 Logical Structure

From a bird’s eye view, Active Directory systems are logically organized into
domains, trees and forests.

An Active Directory domain is a container for collections of objects (e.g.,
users, computers). Each domain is identified by a namespace that corre-
sponds to a DNS domain name and holds a database containing objects and
corresponding identity information. Domains can be related to other do-
mains. Whenever one or more domains share a contiguous namespace, a
tree of domains is composed. The set of all related domains under a common
namespace is defined as a forest. A forest is a collection of trees that share
a search engine for AD objects (also known as “global catalog”), a directory
scheme, a logical structure, and a directory configuration. A forest is at the
top of the Active Directory hierarchical structure and it represents the secu-
rity zone where users, computers, groups, and other resources are accessible.
In fact, elements within a forest cannot communicate with elements within
other forests unless a trust relationships between these forests is explicitly
defined. Figure 6.1 shows an example of an Active Directory forest consist-
ing of seven domains (represented by triangles) organized into two trees. As
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can be seen, the domains belonging to the same tree (e.g., testlab.com and
europe.testlab.com) are linked by a parent-child relationship. On the con-
trary, domains belonging to different trees of the same forest (e.g., testlab.com
and caronte.com) are not linked by any relationship.

testlab.local caronte.local

europe.testlab.local asia.testlab.local europe.caronte.local asia.caronte.local

italy.europe.testlab.local

Tree

Tree

Forest

Domain

FIGURE 6.1: Example of Active Directory forest

In addition to the forest trust relationships, system administrators can de-
fine domain trust relationships. A domain trust relationship is a relationship
between two domains that allows the users of a domain to be recognized by
the Domain Controllers of the other domain. In this way, authorized users
can access objects belonging to the trusted domain. As shown in Figure 6.2,
there are four main types of domain trusts:

• Two-way: this is established by default in parent-child domain rela-
tionships. More precisely, a new child domain automatically trusts the
parent domain and vice versa;

• Transitive: when domain A and domain B are linked by a parent-child
relationship, and domain B and C are also in a parent-child relationship.
In this case domain A and domain C trust each other in an implicit way;
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• Shortcut Trust: when domain B and domain D belong to the same for-
est and are non-adjacent (i.e., they are not linked by a two-way-parent-
child relationship), it is possible to define a one-way transitive relation-
ship between B and D to reduce the time needed for computing and
traversing a trust path;

• External Trust: it is a one-way-non-transitive relationship between two
domains belonging to two different Active Directory forests. Thus, it is
necessary to combine two one-way relationships in order to generate a
two-way trust relationship.
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FIGURE 6.2: Examples of Active Directory domain trust rela-
tionships

6.2.2 Active Directory Data and Objects

The main repository used by Active Directory to store all the information is
a distributed database organized into three partitions, respectively: Schema,
Configuration and Domain. Each partition contains specific type of data and
follows a specific replication pattern. Microsoft often refers to these parti-
tions as ’naming contexts’. In detail, the ’Schema’ partition contains the defi-
nition of object classes and attributes within the entire Forest. The ’Configu-
ration’ partition contains information on the physical structure and topology
of the sites where the environment is installed. Finally, the ’Domain’ partition
holds all objects created within a specific domain. Basically these partitions
store mainly Active Directory objects, it is then important to understand what
are these objects.

In fact, “objects” represent a fundamental concept in Active Directory. An
object represents a resource on the network, that typically is a user, a group,
a computer, an application, a printer, or a shared folder. Objects are stored in
the Active Directory database within three categories, namely:
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• Security Principals, i.e., users, computers, and groups;

• Resources, such as printers, scanners;

• Services, such as email service or file share service.

Anyway for the scope of this work, we can generalize and group objects
only using two categories. In fact, from a security point of view, objects fall
into two broad categories: “resources” (e.g., printers, file shares) and “se-
curity principals” that is everything that can be controlled from a security
perspective as described in 6.1. Every object is uniquely identified by what
is known as the Global Universal Identifier (GUID) and security principals
also have an additional identifier used for security purposes known as Se-
curity Identifier (SID). Hence, every object has a GUID, but only security
principals have a SID. Note that GUID for an object is practically unique in
the whole world and never changes. On the contrary, unlike the GUID, the
value of the SID can change. For example, when users are moved to another
domain of the forest, their SIDs will change, but their GUIDs will remain un-
changed. Let us remark that each object is defined and described also by a set
of attributes. For example, each user in Active Directory other than having a
unique GUID and a unique SID, is described by a set of additional descriptive
attributes. Examples of these attributes are name, e-mail address or her/his
phone number. All objects of the same type (or class) have the same set of
attributes. Some attributes are required to have values (e.g., the first name
attribute of a user object), while other attributes can be optional (e.g., Phone
Number). The RID, that is, the last part of the SID, uniquely identifies a se-
curity principal relative to the local or domain security authority that issued
the SID. Any group or user that has not been created explicitly has a RID
of 1000 or greater by default; this is in fact true for all built-in accounts. In
fact, by default, the value of the RID of every Security Principal created by
an administrator is greater or equal to 1,000, while the values of the SID of
default Security Principals generated by Microsoft Windows are lower than
1,000. The unique identifiers associated to each object and all the attributes
described are defined in the Active Directory Schema. In this schema a class
is a component of the Schema that defines the type of an object and the set
of its mandatory and optional properties. In fact, every object stored in the
schema is an instance of a specific object class.

The Schema definitions are objects themselves that are stored in the database
as types Class Schema or Attribute Schema. Objects that are logically related
can be grouped into containers, these containers are known as organizational
units (OUs). These units are container objects used to organize other objects.
OUs provide hierarchy to a domain, simplify its administration and often
resemble the organization’s structure in managerial or geographical terms.
OUs can contain other OUs, they act as directories. The OU is the recom-
mended level at which to apply group policies, which are Active Directory
objects formally named group policy objects (GPOs), although policies can
also be applied to the entire domain. The OU is the level at which administra-
tive powers are commonly delegated. The objects are generally grouped into
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Organizational Units and OUs according to geographical, logistic or manage-
ment needs. Organizational Units are directory objects whose sole purpose
is containing other objects and child Organizational Units. Organizational
Units are an abstraction used to facilitate the logically organization of objects
and the management of Group Policies and administrative privileges. They
are identified using a unique identifier like any other Active Directory object.

Let us remark that SIDs play an important role in Access Control Lists
as described in 6.1. In fact, Microsoft Windows NT uses SIDs to identify the
objects with rights on other Active Directory objects.

In fact, every security principal has a SID. Moreover it is important to
note that security principals themselves can be divided into four distinct cat-
egories within Active Directory environments:

• Domain Admins, these are the users who have administrative rights
over the domain and are the only ones with access to the domain con-
troller;

• Service Accounts, (that can also be domain admins) these are never
used by physical users but are used by Windows to pair services with
an account to which access control policies can be applied;

• Local Admins, these are the users who have administrative rights over
a specific machine but not on the domain;

• Domain Users, users who can log onto the domain.

Objects within an AD environment are replicated following different strate-
gies among other machines. This is done in order to improve the availabil-
ity of the services provided by Active Directory. In particular the “Schema”
and the “Configuration” partitions replicate to all domains within the Forest,
while the “Domain” partition replicates only within its domain. Note that
replication of Active Directory relies on Remote Procedure Calls (RPC) over
IP (RPC/IP), a protocol described in the next section.

6.2.3 Protocols

In this section a brief description of the main protocols involved within Ac-
tive Directory environments is provided. Let us remark that Active Directory
relies on many different protocols and technologies and this is also the reason
behind its complexity. For each of these protocols the main features together
with the main security threats are discussed.

DNS

DNS (Domain Name System) is a hierarchical and decentralized naming sys-
tem for computers, services, or other resources connected to the Internet or a
private network. Its main task is related to translating each human friendly
names to IP addresses of computers. DNS protocol uses UDP port 53 for
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most of its functions. The protocol is described in RFC 1034 [121] and RFC
1035 [122].

Active Directory Domain Services (AD DS) relies on DNS to discover
the domain controllers hosting the directory services. In this sense, DNS is
needed by all computers in a domain for performing basic Active Directory
operations, such as search queries, authenticate users, or updates.

In Active Directory, each DNS server must provide support for Service
Location (SRV) resource records, as described in RFC 2052 [123]. SRV re-
source records in this context translate the name of a service to the IP address
of the domain controller that offers that particular service. Furthermore, SRV
resource records allow domain administrators to use several servers for host-
ing domain services and to designate some servers as primary and other as
backup servers. It is also recommended that each DNS server provides sup-
port for DNS dynamic updates as specified in RFC 2136 [124]. In this way, it
is possible to improve the DNS administration by reducing the time needed
to manually manage zone records.

The most useful and common SRV records used within Active Directory
domains are:

• _gc._tcp: enable a client to find a Global Catalog server;

• _ldap._tcp: enable a client to find an LDAP server;

• _kerberos._tcp: enable a client to find an KDC (Key Distribution Cen-
ter) server;

• _kpasswd._tcp: enable a client to locate a server that is running the
Kerberos Password Change service over TCP.

Active Directory provides a built-in method of storing and replicating
DNS records within a defined set of machines, called “zone”.

All of the records stored within the zone are replicated to other DNS
servers by using AD replication services. In practice, each domain controller
stores a writable copy of the DNS zone data for namespaces for which they
are authoritative. Active Directory zones also provide the ability to use se-
cure dynamic updates, which supports controlling which computers may
make updates and prevents unauthorized changes from being made.

DNS zone data is stored in an application directory partition. A forest-
wide partition named ForestDnsZones is used for the zone data. For each
AD DS domain, a domain partition named DomainDnsZones is created. Typ-
ically, DNS implementations are used with a contiguous namespace.

DNS: Security Threats

To mitigate the threats associated with the DNS protocol, DNS zones can
be secured by using secure dynamic updates, restricting zone transfers, plus
implementing zone delegation and DNS Security Extensions (DNSSEC). By
using secure dynamic updates, computers will be authenticated through Ac-
tive Directory, and security settings will be applied when performing a zone
transfer.
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Additionally, zone transfers can also be restricted to specific IP addresses
within the network. Zone delegation can be approached by using two meth-
ods.

The first method involves the constraint of delegating DNS changes to
a single team or entity. Hence all changes must be tracked and approved.
This method limits the amount of people making changes but also creates a
single point of failure. The second method involves delegating zones to mul-
tiple teams which will be managing each component of a network or domain.
While changes may still need to be approved and tracked, this spreads out
the risk among multiple points of failures. Hence, this second method may
limit damage if a single component is compromised.

Although there are not types of DNS attacks that are specific to Active
Directory, these directory services are susceptible to the common threats to
which the DNS is exposed. The most relevant threats to take into account are
related to denial of service and poisoning, more precisely:

• Distributed Denial of Service (DDoS): it consists of sending many DNS
requests to the target DNS server (in the specific case to the domain con-
troller that works also as a DNS server) in order to make it unavailable.
Generally, a DDoS attack is carried out using a network of computers
called botnet;

• Source IP spoofing DDoS: DNS protocol relies on UDP; thus it is very
easy to spoof the source IP address. In this way, it is possible to over-
come the DDoS mitigation technique that consists of blocking an IP ad-
dress after a specific number of requests;

• Reflected DDoS: it consists of spoofing the source and the destination
IP addresses, so that, querying a set of legitimate DNS servers, it is
possible to flood the victim DNS server with a large amount of DNS
responses;

• Cache Poisoning: this attack consists in changing the DNS responses
stored in the DNS cache so that any user that queries the DNS server
will obtain a poisoned response from the cache and will be redirected
to a malicious site;

• Unauthorized Zone Transfer: this attack allows an attacker to get full
information about all the subdomains available for a specific domain.
This is generally due to an access control misconfiguration allowing
non-authorized users or non-privileged users to perform a DNS zone
transfer, revealing the whole attack surface related to a domain.

LDAP

The Lightweight Directory Access Protocol (LDAP) is an open, vendor-neutral,
industry standard application protocol for accessing and maintaining dis-
tributed directory information services over an Internet Protocol (IP) net-
work as. LDAP latest specifications are defined in the list of RFCs going from
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RFC4511 to RFC4519 [125–133]. LDAP is a binary protocol, but in general a
common format used to represent LDAP entries is provided by the LDAP
Data Interchange Format (LDIF) as described in RFC2849 [134].

A common use of LDAP is to provide a central place to store usernames
and passwords. This allows different applications and services to connect to
the LDAP server to validate users. A client starts an LDAP session by con-
tacting an LDAP server, called a Directory System Agent (DSA), by default
on TCP and UDP port 389, or on port 636 for using LDAP over SSL (LDAPS).
In Active Directory LDAP is additionally used for global catalogs over ports
3268 and 3269 (LDAPS). The client then sends an operation request to the
server, and the server sends responses in return. For most types of LDAP
queries, there is no need for the client to wait for a response response before
sending the next request, and the server may also send the responses in any
order. All information is transmitted using Basic Encoding Rules (BER) [135].

The client may request the following operations to an LDAP server:

• StartTLS, use the LDAPv3 Transport Layer Security (TLS) extension for
a secure connection;

• Bind, authenticate and specify LDAP protocol version;

• Search, perform a search for and/or retrieve directory entries;

• Compare, test if a named entry contains a given attribute value;

• Add a new entry;

• Delete an entry;

• Modify an entry;

• Modify Distinguished Name (DN), that corresponds to moving or re-
naming an entry;

• Abandon, abort a previous request;

• Extended Operation, generic operation used to define other operations;

• Unbind, close the connection.

In addition the server may send “Unsolicited Notifications” that are not
responses to any request, e.g. before the connection is timed out.

The protocol provides an interface with directories that follow the 1993
edition of the X.500 model where an entry consists of a set of attributes. An
attribute has a name (an attribute type or attribute description) and one or
more values. The attributes are defined in a schema (see below). Each entry
has a unique identifier: its Distinguished Name (DN). This consists of its Rel-
ative Distinguished Name (RDN), constructed from some attributes related
to the entry, followed by the parent entry’s DN.

The DN can be thought of as a full file path and the RDN as its relative
filename in its parent folder (e.g. if /foo/bar/myfile.txt is the DN, then
myfile.txt is the corresponding RDN).
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A DN may change over the lifetime of the entry, for instance, when entries
are moved within a tree. To reliably and unambiguously identify entries, a
UUID might be provided in the set of the entry’s operational attributes.

An example of LDAP entry may be:

dn: uid=user,ou=people,dc=example,dc=com
changetype: add
objectClass:top
objectClass:person
uid: user
sn: last-name
cn: common-name

Note that all LDAPv3 servers should provide a special LDAP entry that
provides information about the capabilities of that specific server and the
data that it contains. This entry is called the rootDSE, where DSE stands for
DSA-Specific Entry, and it is a special entry characterized by a null DN (i.e.,
the DN with zero RDNs, and a string representation that is the empty string).

LDAP: Security Threats

LDAP allows authentication via SASL mechanism as specified in RFC4422 [136].
As LDAP includes native anonymous and name/password (plain text) au-
thentication methods, the ANONYMOUS authentication specified in RFC4505 [137]
and PLAIN SASL mechanisms are typically not used with LDAP.

The main threats to an LDAP directory service include (but are not limited
to) access control misconfiguration, spoofing and denial of service. Access
control should be properly configured by system administrators, common
threats related to the authorization processes are:

• Unauthorized access to directory data via data-retrieval operations due
to misconfigurations in the access control mechanisms;

• Unauthorized access to directory data by monitoring access of others,
by taking advantage of Man-In-The-Middle (MITM) techniques;

• Unauthorized modification of directory data;

• Unauthorized modification of configuration information.

Spoofing threats can instead lead to:

• Tricking a user (i.e., client) into believing that information came from
the directory server when in fact it did not;

• Tricking a user (i.e., client) into sending privileged information to a hos-
tile entity that appears to be the directory server but is not;

• Tricking a directory server into believing that information came from a
particular client when in fact it came from a hostile client.

In addition to these threats LDAP can also be vulnerable to Denial of Ser-
vice (DoS) attacks, where the aim is denying service availability to other users
by making an excessive use of the resources of the directory server.



6.2. Active Directory 75

Kerberos

Kerberos is a network protocol used for authentication that uses tickets as a
form of communication RFC 4120 [138]. The protocol originated at MIT but
over time different implementations have been popularized. Its name is in-
spired by the Greek mythology three-headed dog, Cerberus. In fact, Kerberos
is based on the interaction of three parties: the client, the resource server and
the Key Distribution Center (KDC).

Older implementations of Kerberos used UDP port 88 by default, but
modern implementations must support both TCP and UDP communications
over port 88. Active Directory makes use of both ports and in addition, pro-
vides a Kerberos password management service on ports 464 TCP and 464
UDP.

Active Directory implements its authentication and Single Sign On capa-
bilities through a Microsoft implementation of Kerberos v5. This implemen-
tation slightly differs from the original Kerberos v5 RFC specification and the
main difference is that Microsoft Kerberos adds authorization capabilities in
addition to the pre-existing authentication features of the protocol.

The Microsoft Kerberos implementation (also dubbed as NT Kerberos)
is the most famous and common Kerberos implementation existing nowa-
days because of Active Directory. In fact, the only time we see Kerberos
outside the Microsoft world is when providing Single Sign On capabilities
to GNU/Linux servers. Windows 2000 and later versions use Kerberos as its
default authentication method in Active directory. Some Microsoft additions
to the Kerberos protocol are documented in RFC 3244 [139]. Within Active
Directory, Kerberos is used as preferred authentication method: in general,
joining a client to a Windows domain means enabling Kerberos as the de-
fault protocol for authentications from that client to all the services in the
Windows domain and all domains with trust relationships to that domain.
In contrast, when either client or server or both are not joined to a domain
(or not part of the same trusted domain environment), Windows will instead
use NTLM for performing authentication between a client and a server.

Kerberos works in what is in its lingo called “Kerberos Realm”, this ba-
sically corresponds to the domain name in Active Directory environments. In
fact, Kerberos realms are named after domain names, e.g., MYDOMAINNAME.ORG.
Note that realms, differently from domains, must always be specified in the
uppercase notation.

Within a Kerberos realm, there are three types of parties:

• Users: identified by User Principal Names (UPNs) which must authen-
ticate with the KDC to interact with the services;

• Services: identified by Service Principal Names (SPNs), which are basi-
cally the services available in a realm;

• KDC (Key Distribution Center): that is the Kerberos server, this cor-
responds to the domain controller in Active Directory. The KDC au-
thenticates user with a component known as “Authentication Server”
and provides tickets which are used by users to authenticate to services
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available on the domain with a component known as “Ticket Granting
Service”.

For example, if a user jdoe has a domain account in the EXAMPLE.COM Ker-
beros realm (i.e., that is corresponding to the domain name example.com),
then this user will have a UPN corresponding to it denoted as jdoe@EXAMPLE.COM.
At the same time, if this same user initiates a connection to the share path \\
server1.example.com\SharedDirectory then its workstation will first lookup
the computer server1.example.com in the Active Directory database and
then read its SPN attribute (cifs/server1.example.com). Note that cifs in-
dicates a file sharing service type. Remember that AD domains are an in-
tegrated system of DNS, LDAP, Kerberos and other services, so nowadays
Kerberos comes embedded in AD environments and Domain Controllers act
as Key Distribution Centers. Under the hood, domain names are converted
to equivalent Kerberos principal names, which have a similar format and
are represented in the form fred@SERVER.EXAMPLE.COM. The Kerberos realm
name is always case-sensitive and by convention always uppercase. Each
Active Directory domain acts as a Kerberos realm, and has exactly one realm
name (even if multiple UPN suffixes are configured). Every AD domain con-
troller also acts as a Kerberos KDC for the corresponding Kerberos realm.

Note that in Active Directory, Kerberos requires valid DNS names, in the
case where IP addresses are provided then authentication will fall back to
NTLM (e.g., requesting \\10.10.10.10\share will use NTLM for authenti-
cation).

Individually, the terms “domain” and “realm” in Active Directory have
the same meaning, but are used for different purposes. Realms and realm
names come from the Kerberos authentication protocol, where they serve
practically the same purpose as domains and domain names. They have no
direct relation, strictly speaking, but in practice nearly all Kerberos realms
are named after the corresponding DNS domain. The Authentication Service
is the first point of contact the client has with the Kerberos system. Basi-
cally, this service is used to lookup the user’s password and create the Ticket
Granting Ticket (TGT). The AS also creates the session key that the user will
use for future communication with Kerberos.

The Ticket Granting Ticket (TGT) is the Kerberos ticket for the Ticket
Granting Service which runs on the KDC. This ticket is encrypted using a
key called “KDC key” belonging to the KRBTGT domain Kerberos account and
signed using the requesting user password hash. This means that only a KDC
can decrypt and read the TGT tickets. TGT have a default expiration of 10
hours within Active Directory systems, but it can be renewed by default for
a maximum of 7 days of usage.

TGT Tickets obtained by users are sent to the KDC to obtain Service Tick-
ets for the Ticket Granting Service (TGS) on the KDC. A client requests a
ticket by performing a requesting a TGT (Ticket Granting Ticket) along with
credentials. The server at this point will check the credentials and if these
are correct will send back a TGS (Ticket Granting Service) which compre-
hends a secret key which will be stored on the client. Now the client will
have this ticket until it expires. Now let’s say that there are on this networks



6.2. Active Directory 77

other hosts/servers with available services. Services in Kerberos environ-
ments have what we call “SPN” or Service Principle Names, these can be
SQL servers, antivirus or really any other kind of service we may come up
with. At this point if the client wants to connect to one of these services, let’s
say an SQL database service, he has to know the SQL database SPN, and then
has to send a request containing among other information the SPN which he
wants to use in the form of a TGT request. At this point the server will re-
ply with a TGS containing the session key to the SPN which will allow the
client to connect. Let us remark that the possession of a valid TGT allows the
request for a TGS ticket corresponding to a specific SPN.

The Kerberos authentication process

The steps that take place when a user logged inside a domain wants to access
a specific application server (i.e., service) within the same domain are the
following:

• A user sends a timestamp encrypted with its NTLM hash and sends it
to the KDC, this kind of request is called AS-REQ. Note that this step
of encryption is skipped if the user has pre-authentication disabled. In
this case, in fact, the user can just request a TGT;

• At this point since the DC/KDC has access to all the secrets in the do-
main it has the password of the user and can decrypt this request and
verify that the AS-REQ request was actually sent by a valid user. At this
point the KDC responds with a TGT; this TGT ticket is encrypted and
signed with the NTLM hash of a special account belonging to the do-
main controller called krbtgt. Notice that this special account is used
specifically for this purpose. This kind of response is called AS-REP.
Notice that only krbtgt can open and read TGT data;

• Now the user can request a TGS ticket by sending a request called
TGS-REQ" where it sends its TGT encrypted with the krbtgt hash to the
DC/KDC and requests a ticket which will be used to access a specific
service, (in our case the application server mentioned) this is the TGS
ticket;

• The KDC is able to decrypt the TGT because it is the only component
having access to the hashes. If the request is valid it provides the re-
quester with a TGS encrypted using the target service’s account NTLM
hash. This type of response is called TGS-REP;

• The user connects to the server hosting the service on the appropriate
port and presents the TGS ticket. This request is called AP-REQ. The
service will decide if the requesting user has privileges/rights to access
the requested resource;

• (Optional) The application server may perform an optional mutual au-
thentication with the client through a message called AP-REP;
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• (Optional) In the Microsoft implementation of Kerberos, the application
server may perform additional validation steps to check for authoriza-
tion related to that specific user, this is related to the PAC (Privileged
Attribute Certificate) VERIFY_PAC_REQUEST.

There can be an additional validation step to Kerberos called “PAC” (Priv-
ileged Attribute Certificate). Moreover, an additional Kerberos message is
the ERROR message type which can be used to communicate error conditions.

From a security standpoint the additional details must also be taken into
account:

• NTLM password hash for Kerberos uses RC4 encryption;

• TGT can be used as a Logon Ticket when authenticating to DC on a
domain;

• DC validates user accounts only when the TGT is greater than 20 min-
utes;

• Service Ticket (TGS) PAC validation is optional and rarely used.

Figure 6.3 summarizes visually the main steps involved with the Kerberos
authentication process.
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FIGURE 6.3: Kerberos authentication process
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Note that, it is useful to distinguish between AS “Authentication Server”,
that is part of the KDC, hosted on the domain controller and AP that stands
for “Application” and corresponds to the accessed service.

Active Directory has default settings that can be changed by system ad-
ministrators, these settings provide an idea on common values for the valid-
ity of tickets. In particular:

• Enforce user logon restrictions: Enabled;

• Maximum lifetime for service ticket: 600 minutes (10 hours);

• Maximum lifetime for user ticket: 600 minutes (10 hours);

• Maximum lifetime for user ticket renewal : 7 days;

• Maximum tolerance for computer clock synchronization: 5 minutes.

Let us remark that Kerberos represents the core technology for the secu-
rity within Microsoft Active Directory, hence it is frequently abused by at-
tackers. Strong password requirements and password audits are necessary
to ensure the security of environments relying on this complex protocol.

NetBIOS

NetBIOS (Network Basic Input/Output System) is a networking industry
standard developed by Sytec in 1983 as an API for network communica-
tion on IBM networks. This API is described in RFC 1001 [140] and RFC
1002 [141]. NetBIOS allows applications on different computers to commu-
nicate over a Local Area Network. NetBIOS services were not originally de-
signed to specifically run over TCP/IP networks. In fact, NetBIOS used to
run over IEEE 802.2 networks, using NetBIOS Frames protocol (NBF) and on
IPX/SPX networks, using NetBIOS over IPX/SPX protocol (NBX). In mod-
ern networks, NetBIOS runs over TCP/IP using the NetBIOS over TCP/IP
protocol (NBT); consequently, every device on a NetBIOS enabled network a
NetBIOS name. NetBIOS over TCP/IP was implemented to allow Windows
2000 and Windows XP computers to communicate with devices and share
resources on the network running Windows operating systems.

A common misunderstanding is to associate a single protocol and port to
NetBIOS, in reality, this protocol should be thought as a set of services run-
ning for different purposes and on different ports. More precisely, NetBIOS
provides three different types of services:

• NetBIOS Name Service (NetBIOS-NS): enabling names registration and
resolution;

• NetBIOS Session Service (NetBIOS-SSN): enabling reliable connection-
oriented communications;

• NetBIOS Datagram Distribution Service (NetBIOS-DGM): enabling con-
nectionless communications.
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In what follows, a brief description of these three services is provided. Ta-
ble 6.1 provides a summary of the services provided by NetBIOS and relative
ports used.

NetBIOS Protocol Purpose Used Ports
NetBIOS-NS Name Resolution TCP 137; UDP 137

NetBIOS-SSN Connection-Oriented Communication TCP 139
NetBIOS-DGM Connection-Less Communication UDP 138

TABLE 6.1: Summary of NetBIOS services and corresponding
TCP/IP ports

NetBIOS-NS: Name Service

NetBIOS Name Service is a network service for name resolution whose pur-
pose is very similar to that of DNS, that is, translating human-readable names
into IPv4 addresses (NetBIOS does not support name resolution for IPv6).
NetBIOS-NS can use both TCP and UDP as transport protocol on port 137,
even if UDP is used in most cases. Before the introduction of DNS, Active
Directory relied mainly upon NetBIOS-NS and Windows Internet Name Ser-
vice (WINS) for name resolution. Even if NetBIOS-NS provides the same
service offered by DNS, it has different important limitations for modern net-
works who contributed to its loss in popularity in favor of DNS. The most
important limitations are, flat name structure (in opposite to the hierarchical
structure of DNS) and limited length of hostnames, which cannot have more
than 15 characters. However, unlike DNS, it supports the peer-to-peer name
resolution between all the computers within the same subnetwork. Nowa-
days, NetBIOS-NS is used in Active Directory for name resolution as a fall-
back solution whenever the DNS service is not available or is not able to
resolve a specific hostname. For this reason, every domain controller is char-
acterized by a NetBIOS name that is setup in addition to the DNS name.

The primitives provided by NetBIOS-NS are:

• Register a new NetBIOS name or a NetBIOS group name;

• Delete a NetBIOS name or a NetBIOS group name;

• Search for a NetBIOS name on the network.

Note that the NetBIOS-NS protocol on Windows is only used as a fallback
protocol when DNS and LLMNR resolution fail.

The name resolution logic for NetBIOS follows a simple algorithm. If a
Windows network node requires NetBIOS name resolution, it will first check
its local NetBIOS computer name. It then looks at its local NetBIOS name
cache for already acquired remote NetBIOS names. If no entry is found, the
node forwards its NetBIOS query to the primary WINS server configured
in the IPv4 properties of its network adapter. If the primary WINS server
does not respond, it will query any other WINS servers it is configured for,
if they exist. Only if no WINS server responds will the node send a broad-
cast NetBIOS query to the local subnet. Finally, if these attempts have been
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unsuccessful, the node will check its LMHOSTS file and then its HOST file
for the mapping. The flowchart representing the name resolution algorithm
within the NetBIOS protocols is shown in Figure 6.4.

NetBIOS name service is particularly interesting from an attacker point of
view since it is a commonly abused protocol to perform cache poisoning and
MiTM attacks on a LAN network.
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BEGIN
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found
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Do other
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Send a broadcast NetBIOS
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Was there
any
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True END

Check LMHOSTS file

END

True

True END

FIGURE 6.4: Flowchart describing the NetBIOS Name Resolu-
tion algorithm used in Microsoft Windows

NetBIOS-SSN: Session Service

NetBIOS Session Service was born as connection-oriented protocol analo-
gous to the TCP protocol and nowadays runs on TCP port 139 by default.
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This service allows two computers to establish a connection and transfer
large amounts of data reliably. Furthermore, it enables authentication across
a domain or a Windows Workgroup. NetBIOS-SSN provides features for er-
ror detection, data integrity checks and recovery.

The primitives offered by NetBIOS-SSN can be summarized as follows:

• Open a session to a remote NetBIOS name;

• Listen for attempts to open a session to a NetBIOS name;

• Send a packet to another end-system requiring an acknowledgement;

• Send a packet to another end-system without requiring an acknowl-
edgement;

• Wait for a packet to arrive from the sender;

• Close a session.

The basic NetBIOS-SSN conversation in TCP/IP networks can be like this:

• Two NetBIOS enabled computers establish a TCP connection;

• Originator sends NetBIOS session request message (type=0x81) (this
includes information about the caller and callee, like their NetBIOS
names);

• Responder sends response (e.g., type=0x82 if session is accepted). Note
that at this point of the communication the responder can also deny or
redirect communication;

• Messages are exchanged. These are of type “session message” (i.e.,
type=0x00). The session message is 4 bytes NetBIOS specific informa-
tion followed by the payload. SMB is typically carried in this payload.
The first couple of bytes of the payload are known as SMB magic bytes.
Note that, the NetBIOS message header is used to specify the length of
the payload;

• NetBIOS can also take advantage of “Keepalive” messages to , whose
type is “0x85”;

NetBIOS-DGM: Datagram Distribution Service

NetBIOS Datagram Distribution Service provides a method for handling connection-
less communication between computers. In the case of NBT, NetBIOS-DGM
uses UDP on port 138.

The primitives provided by NetBIOS-DGM are:

• Send a datagram to a NetBIOS name;

• Send a datagram to all the NetBIOS names of the network (broadcast-
ing);
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• Wait for a packet to arrive from a sender;

• Wait for a packet that arrives from a sender that executed a Send Broad-
cast Datagram Operation.

NetBIOS: Security threats

NetBIOS services are commonly abused by attackers for different purposes.
In fact, NetBIOS services can be abused both to perform enumeration against
the target network or to remotely execute commands on a target machine.

The NetBIOS Name Service can for example be useful for an attacker in
the enumeration phase, where it could be abused to perform:

• Enumeration of information regarding users, security policies and do-
mains;

• Brute-forcing of user passwords.

On the other hand, the attacks that are typically performed against the
NetBIOS datagram service are related to the enumeration phase, more pre-
cisely an attacker could gain:

• NetBIOS hostnames on a network;

• Accessible network interface MAC addresses;

• Authenticated users that are currently using a system;

• Domain name of which a specific system is a member.

In addition, if the attacker can authenticate into a NetBIOS session with
appropriate privileges, the NetBIOS session service can be abused to perform
the following operations:

• Access the system registry and edit registry keys;

• Run arbitrary command on the target host;

• Access the SAM password database;

• Transfer files.

Although as a security recommendation NetBIOS should be disabled, in
plenty of Active Directory this is still enabled and abused by attackers.

RPC

Remote Procedure Call (RPC), is a protocol defined specified in RFC 1057 [142]
and RFC 5531 [143]. This protocol uses the client-server model in order to al-
low one program to request service from a program on another computer
without having to understand the details of that computer’s network. Mi-
crosoft implements a custom version of RPC, called Microsoft RPC
(MSRPC) [144], which is based on the DCE/RPC protocol. MSRPC is used
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in Windows for implementing client-server functionalities; for example the
Windows Server domains protocols completely relies on Remote Procedure
Call. Some examples of services that use RPC are Outlook, Microsoft Ex-
change, and the Messenger Service. MSRPC is used also for replication in
an Active Directory environment. MSRPC was originally derived from open
source software but after additional development for Windows the imple-
mentation become closed source and copyrighted by Microsoft. Depending
on the host configuration, the RPC endpoint mapper can be accessed through
TCP and UDP port 135, via SMB with a null or authenticated session (TCP
139 and 445), and as a web service listening on TCP port 593. RPC provides
a well-defined interface and a simple call syntax (high-level language) for
communication between processes on the same machine (inter-process com-
munication) or on remote machines. In RPC client-server model the device
that requires a service is the client and the device that provides the service is
the server.

A remote procedure call can be subdivided into six steps:

1. The client call the client stub through a local procedure call;

2. The client stub packs the procedure parameters into a message. The
parameters are passed only by values;

3. RPC Runtime manages the transmission of the message between the
client and the server over the network;

4. The message is received and unpacked by the server stub. After that
the procedure is extracted, it is executed;

5. The server packs the result message using the stub and then it sends
back the message to the client using TPC/IP as transport layer;

6. The client RPC Runtime pass the message to the stub which unpacks
the message returning the parameters to the client.

In addition, remote procedure calls can be subdivided into three types:

• CallBack RPC: involved processes communicates each other according
to a P2P paradigm; thus a each process can be both client and server;

• Broadcast RPC: the client’s request is broadcast on the network and
then it is processed by all the server that have the method for process-
ing that particular type of request. Broadcast RPC allows to declare
broadcast ports and help to reduce the network overhead;

• Batch-mode RPC: it allows the client to store separate RPC requests
into a client-side transmission buffer. Once all the requests have been
collected, they are sent as a single batch to the server The batch-mode
helps to reduce the network overhead, but it requires a reliable trans-
mission protocol as TCP and it is efficient only for the applications that
require a low call rate.
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Figure 6.5 presents the main steps involved with the RPC mechanism.
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FIGURE 6.5: Remote Procedure Call mechanisms

Note that, RPC represents a fundamental building block for Windows, al-
though many of its features are deprecated. Active Directory relies for many
tasks on remote procedure calls, e.g., for replication tasks.

RPC: Security threats

RPC is a protocol widely used by developers since it is easy to use and pro-
vides advanced features for remote control of machines, but unfortunately
it is also very popular with hackers. It is so powerful that it represents a
security threat. For this reason, many organizations have restricted the func-
tionalities offered by this protocol on their machines, sometimes reducing
the productivity. In fact, RPC is a very chatty protocol that provides a lot of
information about the services running on a server.

Exploiting the Microsoft Remote Call Procedure, an attacker can attempt
to:

• Enumerate system information, such as IP addresses or network inter-
faces;

• Enumerate user details via the SAMR and LSARPC interfaces;

• Run commands through the Task Scheduler interface;

• Run arbitrary code and carry out Dos attacks;

• Brute-force the password of the users belonging to the Administrators
group.
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In 2003, when the Blaster worm was discovered, organizations learned
that RPC could be widely exploited by malicious people. Blaster took ad-
vantage of a vulnerability in the Windows Distributed Component Object
Model (DCOM) Remote Procedure Call (RPC) interface for taking control of
a remote server, using an exposed RPC port.

Nowadays, most RPC traffic is blocked on the Internet, but attacks that
exploits RPC are very common on the organizations’ LANs. In fact, there are
malware and viruses created specifically to conduct attacks on local networks
exploiting the RPC protocol.

SMB

SMB (Server Message Block) is a client-server communication protocol for
sharing files, printers and serial ports between computers on the network.
Furthermore, it offers an authenticated inter-process communication mecha-
nism. SMB is mainly used by the computers running Windows, for example,
in the Active Directory environment.

When a client wants to start a new connection with the server, it connect
to the server using NetBIOS over TCP/IP RFC 1001 [140], RFC 1002 [141],
IPX/SPX or NetBEUI. After that a connection is established, the client sends
specific commands to the server for accessing shares and files and, eventu-
ally, edit them. SMB with NetBEUI is supported by Windows 95, Windows
98, Windows NT and Windows 2000/Me. Starting from Windows XP, SM-
B/NetBEUI is no longer supported. In the past, SMB was often used with
NetBIOS over TCP/IP (NBT) over UDP on port 137 and 138, exploiting the
NetBIOS Name Service and the NetBIOS Datagram Distribution Service, or
over TCP on port 137 and 139, exploiting the NetBIOS Name Service and
the NetBIOS Session Service. NBT with SMB is supported by Windows 95,
Windows 98, Windows NT, Windows 2000/Me, Windows XP and Windows
Server 2003. Since Windows Vista and Windows Server 2008, SMB/NTB is
used only for backward compatibility. In fact, Windows 2000 and later oper-
ating systems use SMB directly over TCP on port 445.

Let us remark that there are various SMB shares that are exposed by de-
fault The most important ones are:

• Default administrative shares, C$ and ADMIN$;

• The inter-process communication share, IPC$;

• Domain controller shares, NETLOGON SYSVOL);

• Shared printer and fax shares, PRINT$ and FAX$.

Note that the “$” symbol at the end of the share name is used to denote a
default and hidden share. SMB protocol has two security levels:

• Share level: protection is applied at the share level on a server. Clients
can connect to an SMB share and access to the files contained in it, only
if it knows the password;



6.2. Active Directory 87

• User level: protection is applied to individual files on the base of ACLs.

These protections act as authorization mechanisms on resources but do not
represent mitigations against the compromise of accounts. In fact, an attacker
impersonating a user could access the resources associated with the compro-
mised account.

Microsoft SMB Implementations

Microsoft has implemented three major versions of SMB, namely:

• CIFS (also known as SMBv1);

• SMBv2;

• SMBv3.

In its first version, SMB ran over NetBIOS/NetBEUI API, but, starting
from Windows 2000, it runs over TCP on port 445, exploiting a feature known
as Direct Host SMB. In 1996, Microsoft launched an initiative for renaming
SMB to CIFS (Common Internet File System). Furthermore, Microsoft im-
plemented new features, such as support for larger file sizes, hard links and
symbolic links. SMB 1.x was implemented in Windows 2000 and it was dep-
recated in June 2013, starting from Windows Server 2012 R2. Moreover, SMB
1.x is not installed by default in the later versions of Windows, such as Win-
dows Server 2016 and Windows 10 Fall Creators Update (1709). In 2006,
Microsoft implemented SMB 2.0 in Windows Vista. SMB 2.0 reduces the set
of SMB commands to just nineteen. It has a new mechanism for pipelin-
ing, it improves the performance over high latency links and introduces the
possibility of compounding multiple actions into a single request in order
to reduce the number of round-trips that the client has to do to the server.
SMB2 implements a mechanism for allowing the SMB connection to survive
to brief network outages, without incurring in the negotiation of a new ses-
sion. Moreover, SMB2 improves the caching of file properties, the scalability,
increasing the number of users, shares and open files per server, and perfor-
mance in large file transfers using 32 or 64-bit wide storage fields, and 128
bits in the case of file-handles. In this way, the constraints on block sizes, im-
posed by SMB 1.x that uses 16-bit data sizes, have been overcome. SMB 2.0 is
used by default in Windows Vista Service Pack 1 and Windows Server 2008.
In Windows 7 and Windows Server 2008 R2, Microsoft implements SMB 2.1.
This minor update, enhances performance exploiting a new opportunistic
locking mechanism. SMB 3.0 was implemented for the first time in Windows
2008 and Windows Server 2012. It brought several new features for improv-
ing performance and functionality in data centers, such as SMB Multichan-
nel, for supporting multiple connection for SMB session, SMB over Direct
Memory Access (RDMA), and SMB Transparent Failover. Furthermore, in
order to increase security, Microsoft implemented a new signing algorithm
based on AES and end-to-end encryption. In Windows 8.1 and Windows
Server 2012 R2, Microsoft updated SMB to the version 3.0.2, adding the possi-
bility of disabling SMB for improving security. In Windows 10 and Windows
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Server 2016/2019, SMB 3.1.1 is used by default. SMB 3.1.1 adds the support
for AES-128 GCM encryption, implements pre-authenticating integrity check
using SHA-512 hash and makes security negotiation mandatory for connec-
tion using SMB 2.0 or higher.

SMB: Security threats

Using an anonymous SMB session, it is possible to access the IPC$ share and
query the services exposed via named pipes. In this way it is possible to re-
trieve details on the parent domain and on the operating system, information
on the local users and groups, a list of available SMB shares and details on
the security policies.

Some of the most dangerous ransomware and trojan malware exploit typ-
ical vulnerabilities of the SMB protocol. In fact, in 2018, MalwareBytes, ex-
ploiting its antivirus telemetry services, conducted a research which discov-
ered that within 30 days there were 5315 installations of Emotet and 6222
installations of TrickBot (two trojans exploiting SMB vulnerabilities) in the
business networks analyzed. 1

In March 2017, Microsoft patched these vulnerabilities, but many orga-
nizations or private users have not installed do not upgrade regularly their
device with the last updates available.

Nowadays, there are three well-known vulnerabilities that exploit SMB
vulnerabilities:

• EternalBlue, exploited by Emotet and WannaCry;

• EternalRomance, exploited by TrickBot;

• EternalChampion.

EternalBlue relies on a bug in the process of converting File Extended
Attributes (FEA) from OS2 structure to NT structure by the Windows SMB
implementation. This bug can lead to a buffer overflow in the non-paged ker-
nel pool. In this way, attackers can control the content of forbidden memory
locations. In the specific case of EternalBlue, attackers can take the control of
a heap that has execution permissions, and, exploiting a Remote Code Exe-
cution vulnerability, they can take the control of the target machine executing
remote commands

EternalRomance is a Remote Code Execution attack which exploits CVE-
2017-0145 against SMB 1.x. EternalRomance is based on a type confusion
vulnerability. This type of vulnerability is a programming flaw that happens
when a piece of code is executed without verifying the type of object that is
passed to it. In this way, an attacker can feed function pointers and data into
the wrong piece of code in order to attempt to execute remote commands.

1https://blog.malwarebytes.com/101/2018/12/how-threat-actors-are-using-smb-
vulnerabilities/
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EternalChampion exploits a race condition in how SMB 1.x handles trans-
actions. Exploiting this bug, an attacker can change the sequence or the tim-
ing of a series of events in order to try to get a Remote Code Execution and
make information leak.

RDP

RDP (Remote Desktop Protocol) [145] is a proprietary secure network proto-
col developed by Microsoft, which allows a user to connect to another com-
puter exploiting a graphical interface. RDP is an extension of the T-120 family
of protocol standards, and, by default, it runs on port 3389 and uses both TCP
and UDP as communication protocol. RDP provides 64000 separate chan-
nels for data transmission, even if current transmission activities use a single
channel for mouse, keyboard and presentation data. The screen is transmit-
ted as a bitmap from the server to the client and the client transmits mouse
and keyboard interactions to the server.

RDP was originally designed to run over IPX and NetBIOS protocols;
however, nowadays, RDP runs only over TCP/IP. In the future, RDP may
support communication protocols other than those offered by TCP/IP be-
cause it was designed to be completely independent of its transport stack.

RDP has only four primitives:

• Connection request;

• Connection confirmation;

• Handle data transmission;

• Disconnection request.

RDP relies on a security layer which includes encryption and signature
services. This security layer prevents malicious users from intercepting, mon-
itoring and manipulating data exchanged during an RDP session. The algo-
rithm used for encrypting data is the RC4 by RSA Inc. Instead, for prevent-
ing data manipulation, RDP leans on a signature mechanism that consists of
a combination of the MD4 and SHA-1 algorithms.

When a client wants to start an RDP connection with a terminal server, it
has to send a set of parameter and information about it, that the server will
use in order to improve the user experience. For example, the client needs to
send information to the server about the RDP protocol version, the operating
system, the data compression supported, the desktop size, the preferred color
depth, the set of local characters supported and many other specifications.

The main problem that had to be faced in the development of RDP was
related to the huge amount of data transmitted between client and server.
Thus, for reducing the data transmitted on the network, two mechanism
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were implemented: data compression and caching. Data compression con-
sists in reducing graphical element to the minimum necessary, removing an-
imations and decorations, and reducing the number of colors. Caching, in-
stead, consists in temporary store on the client frequently used images frag-
ments that can be displayed again. There are also special network compo-
nents that can store RDP, providing a global caching space on a LAN seg-
ment.

The Windows versions that have installed a Remote Desktop Connection
client are Windows NT 4.0 Terminal Server Edition, Windows 2000 Server,
Windows XP Professional, Windows Fundamentals for Legacy PCs, Win-
dows Home Server, Windows Server 2003 and latest, Windows Vista, 7, 8.x,
10 (excluded Home editions).

RDP: Security threats

The main threats related to the Remote Desktop Protocol are:

• Brute-forcing attack;

• Man-In-The-Middle attack;

• Cryptographic attack;

• Pass the hash attacks;

• DoS attack.

In a brute-forcing attack, malicious users can scan the network to searching
for Windows devices that have port 3389 open. Then, they can run automatic
tools that try to guess the login credentials starting from lists of common
usernames and passwords. A study conducted by Microsoft states that in
90% of cases brute-forcing attacks last from a few days to a week. Only in
5% of cases the brute-force attacks last for two weeks or more. According to
Microsoft, only the 0.8% of the attacked computers analyzed by the Windows
telemetry were compromised during an RDP attack. Brute-forcing attacks
last days and not hours in order not to trigger the Intrusion Detection system
(IDS).

RDP offers data encryption, but not provide authentication for checking
the identity of the Terminal Server. Thus, malicious users can exploit the lack
of identity verification in order to intercept the network traffic exchanged
between the client and the server. Attackers can perform DNS spoofing or
ARP spoofing in order to redirect data transmitted from the RDP client to the
attacker’s computer before transmitting them to the Terminal Server.

By default, RDP encrypts data exchanged between the client and the server
using the maximum key strength supported by the client. Thus, if an old ver-
sion of RDP client with week encryption settings is used, it will be possible
to decrypt the connection in a reasonable time-frame.

RDP sessions are susceptible to in-memory credential harvesting; thus
an attacker can retrieve them and carry out a pass the hash attack. Exploit-
ing a pass the hash attack, it is possible to authenticate to a service without
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stealing or cracking the credentials of a user. Thus, in this way, an attacker
can authenticate to the Terminal Server using the NTLM hash instead of the
plaintext account’s password.

Terminal Servers which have not configured Network Level Authentica-
tion (NLA) are susceptible to Denial of Service attacks (DoS). NLA is a feature
of RDP that compels a user to authenticate to the service before starting an
RDP connection with the server. This feature is very important because the
creation of a new session is an expensive task from the point of view of the re-
sources used. Thus, enabling NLA, it is possible to reduce the susceptibility
to DoS attacks.

Net-NTLM

Net-NTLM (Net-NT LAN Manager) [146] is a family of security protocols
developed by Microsoft with the aim of providing users with authentication,
integrity and confidentiality.

The Net-NTLM suite includes LAN Manager (versions 1 and 2), Net-
NTLM v.1 and Net-NTLM v.2. Net-NTLM is an encrypted challenge/re-
sponse authentication protocol that has the task of proving to the domain
controller that the user knows the account’s password. An interactive Net-
NTLM authentication procedure consists of three steps:

1. The client establishes a connection with the server and sends a packet
known as NEGOTIATE_MESSAGE in which it specifies its capabilities;

2. The server replies with a CHALLENGE_MESSAGE which is necessary for
establishing the identity of the client. The challenge consists of a 16-bit
random number, called nonce;

3. The client solves the challenge encrypting the nonce with the hash of
the account’s password. Then, it sends the result to the server with an
AUTHENTICATE_MESSAGE.

Net-NTLM can run on both TCP and UDP and the port used is that of the
service which relies on Net-NTLM as the authentication protocol. Although
Kerberos is the preferred authentication method in Active Directory since
Windows 2000, Net-NTLM authentication is still used for Windows authen-
tication with systems configured as members of a workgroup or for logon
authentication on non-domain controllers. Furthermore Net-NTLM is used
for authenticating non-Windows machines and as secondary authentication
method for the SMB protocol. Microsoft recommends not using Net-NTLM
in applications because, as specified in Microsoft documentation, “NTLM
does not support any recent cryptographic methods, such as AES or SHA-
256. It uses cyclic redundancy check (CRC) or message digest algorithms
(RFC1321 [147]) for integrity, and it uses RC4 for encryption. Deriving a key
from a password is as specified in (RFC1320 [148]). Therefore, applications
are generally advised not to use NTLM” [149]. Nowadays, Net-NTLM au-
thentication is supported in the latest version of Windows only for compati-
bility with older systems.
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Net-NTLM: Security threats

Net-NTLM authentication does not support the typical security features of
Kerberos v.5. For example, Net-NTLM does not support mutual authenti-
cation, multi-factor authentication and a modern encryption method. At-
tackers often try to compromise the target Active Directory infrastructure
exploiting the vulnerabilities of the Net-NTLM authentication method. The
main type of attack to which Net-NTLM is susceptible are due to the lack
of mutual authentication mechanism. These attacks are the NTLM relay at-
tack and Person-In-The-Middle attack. As shown in Figure 6.6, when a target
user wants to connect to a server via Net-NTLM, an attacker could hijack the
connection and relay the user’s credentials. In this way, the attacker could
authenticate to the server using the challenge encrypted by the user.

Client Attacker Server

Server Client

NEGOTIATE_MESSAGE NEGOTIATE_MESSAGE

CHALLENGE_MESSAGE CHALLENGE_MESSAGE

AUTHENTICATE_MESSAGE AUTHENTICATE_MESSAGE

Generate
challenge

Check
response
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FIGURE 6.6: Net-NTLM Relay Attack

Note that this type of attack represents one of the main techniques for per-
forming lateral movement by attackers who already have a foothold within
a network.

LLMNR

LLMNR (Link-Local Multicast Name Resolution), as specified in RFC 4795 [150],
is a protocol over IPv4 and IPv6 that allows name resolution for hosts on the
same local link when the DNS is not available.
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In responding to queries, computers that use LLMNR protocol listens on
UDP port 5355 on the following link-scope multicast addresses:

• IPv4: 224.0.0.252, MAC address: 01-00-5E-00-00-FC;

• IPv6: FF02:0:0:0:0:0:1:3, MAC address: MAC address 33-33-00-01-00-03.

The responders listen on TCP port 5355 on the unicast address that the host
uses to respond to queries.

Typically, an LLMNR sender sends an LLMNR query to the link-scope
multicast address, unless a unicast query is indicated. Then, a responder
responds only if it is authoritative for the name contained into the query. The
responder responses to a multicast query by sending a unicast UDP response
to the sender. Finally the sender processes the response.

The Microsoft implementation of LLMNR, known as MS-LLMNRP, dif-
fers from the version described in RFC 4795 [150] in the area of transport. In
fact, TCP support and EDNS0 (RFC 6891 [151], RFC 2671 [152]) support are
optional.

LLMNR: Security threats

The main security threats is due to the lack of mutual authentication; in fact,
an attacker can spoof an authoritative source for name resolution pretending
to know the identity of the requested host. If the target user tries to query
for a host that requires identification and/or authentication, he will send his
username and the NTLMv2 hash to the attacker device. Thus, the attacker
can collect the hashes transmitted over the network using a sniffer and then
he can try to crack the hashes offline using brute-forcing techniques in or-
der to retrieve the plaintext password. It is possible to crack the hash in a
reasonable time since NTLMv2 relies on MD4 hash algorithm.

CIFS Browser Protocol

As explained in the Microsoft documentation, the Common Internet File Sys-
tem (CIFS) Browser Protocol is a protocol that operates on the top of SMB and
it is used for discovering machines and the resources on the network.

The CIFS Browser Protocol, for example, is used by an application in or-
der to identify print servers and files on a local subnet.

The CIFS Browser Protocol allows:

• A server or a set of servers to act as a browser server for retrieving
information about the services available on the network;

• A set of servers that are making services available to access the browser
server and advertise the services they provide. These server are called
non-browser servers;

• A set of clients, called browser clients or workstations, to access the
information provided by the browser server and query details about a
particular service.
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The CIFS Browser Protocol relies on NetBIOS name service for host name
resolution and on the Remote Mailslot Protocol for delivering datagrams be-
tween the end-points.

The CIFS Browser Protocol manages groups of computer. The computers
belonging to these groups can be members of a workgroup or of a domain.
If computers are members of an Active Directory domain, the CIFS Browser
Protocol allows for browsing across multiple subnets by exploiting the do-
main master browser server. It is usually the Primary Domain Controller
(PDC) that covers the role of domain master browser server and queries all
the local master browsers of the domain for getting a list of all domains and
servers known in their subnets.

For each machine group, a single local browser master is selected. The
selection is made through an election process. Local master browsers period-
ically query the domain master browser for getting network-wide informa-
tion. There are also backup browsers that maintain a replica of the informa-
tion stored on the local master browser. For this purpose, they periodically
synchronize with the local master browser.

CIFS Browser Protocol: Security threats

In February 2011 a vulnerability was discovered affecting the CIFS Browser
Protocol. The vulnerability can lead to a Denial of Service and, theoretically,
it can also lead to a Remote Code Execution. All versions of Windows were
vulnerable. In particular, it affects all the computers that have been config-
ured to use the CIFS browser protocol and that are or could become master
browser on the local network.

The vulnerability can be triggered by a malformed browser message sent
to a master browser and it is due to an integer underflow where a 32-bit
length value becomes -1. This vulnerability lead to a kernel buffer overrun
causing a Denial of Service. Remote Code Execution is possible only if the
corrupted memory is used before the RtlCopyMemory triggers a bug-check,
and in a way that can be used to modify the executed code.

Web Service-Management Protocol

As specified in Microsoft documentation [153], Web Service-Management
(WS-Management) is a DMTF (Distributed Management Task Force) open-
standard protocol for the management of devices, servers, applications and
web services. WS-Management offers a method for accessing and exchang-
ing management information across the IT infrastructure. It is used on Win-
dows machines as an alternative to ssh to control devices remotely.

It relies on SOAP (Simple Object Access Protocol) over HTTP, SOAP 1.2,
HTTPS, WS-Addressing, WS-Enumeration, WS-Transfer and WS-Eventing,
as described in DMTF specifications [154].

WS-Addressing and WS-Transfer are the standards that define XML schemas
for web service messages. The messages refer to a resource using a resource
URI. WS-Transfer defines a set of operations and values for managing re-
mote resources; for example it defines the operations GET, PUT, CREATE
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and DELETE. Furthermore WS-Management includes RENAME, PARTIAL
GET and PARTIAL PUT in its set of operations

The XML messages are assembled by Windows Remote Management when
the user execute a command using the Windows Remote Management (WinRM)
command-line tool and then they are sent using the Sample Object Access
Protocol over HTTP (port 80) or HTTPS (port 443). Starting from Windows
7, the default ports used by WinRM are 5985 for SOAP over HTTP and 5986
for SOAP over HTTPS. The user can send a WS-Management message only
if his account is associated to the local administrator groups on the remote
computer or he is member of the Administrators group.

Microsoft implemented WS-Management for the first time in WinRM 1.1
that was available for Windows XP, Windows Vista, Windows Server 2003
and Windows Server 2008. On October 2009, WinRM 2.0 was released intro-
ducing the possibility of invoking PowerShell commands on one or multiple
remote machines at the same time. Since Windows 7 and Windows Server
2008 R2, the most updated version of WinRM is the 3.0.

6.3 Active Directory Security

In this section, the major threats related to Active Directory environments are
described. In particular, access control abuses and Kerberos related attacks
are discussed. Active Directory has always represented a huge attack surface
for attackers, because of the complexity associated with these environments
and the significant amount of features it provides to its users. Although there
are many interesting attack vectors to be aware of, this section focuses on the
two most prevalent areas of interest for attackers, that are, the Single Sign On
infrastructure provided by Kerberos and the rich access control mechanisms
offered by Active Directory to system administrators.

6.3.1 Kerberos Attacks

Kerberos represents the core of security for Active Directory environments,
hence it is frequently targeted by attackers. Over the years, different impor-
tant attacks have been developed relying on abuse of Kerberos functionali-
ties. These attacks are commonly used in penetration testing activities and
red teaming operations. In this section a summary of the main attacks is pro-
vided and for each attack both pre-conditions and post-conditions are de-
tailed. More precisely, pre-conditions represent what are the prerequisites
that an attacker must have in order to perform the attack. On the other hand,
post-conditions represent the outcome of an attack.

The summary of the main attacks related to Kerberos in Active Directory
are summarized in the Table 6.2.

Login Brute-force

In first place, due to the Kerberos nature of being an authentication protocol,
it is possible to perform brute-force attacks against it. Moreover, performing
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Attack Type of Attack Pre-Condition Post-Condition

Login Bruteforce Enumeration/
Online Brute-force

No domain access required
(Optional) Valid usernames

A set of valid users
A set of valid credentials

AS-REPRoasting Offline Brute-force A set of users with pre-authentication disabled A set of hashes
Pass the Key Lateral Movement A set of NTLM hashes or passwords A set of TGT tickets

Pass the Ticket Lateral Movement A set of TGT tickets; Authentication with TGT
Unconstrained Delegation Lateral Movement Access to a computer with unconstrained delegation A set of TGT tickets

Constrained Delegation Lateral Movement Access to a computer with constrained delegation A set of TGS tickets
Kerberoasting Offline Bruteforce A set of valid user credentials A set of hases
Golden Ticket Persistence Domain Admin access Hash of krbtgt account
Silver Ticket Persistence NTLM hash of a service account Access to a service with any user
Skeleton Key Persistence Domain Admin access Access as any user with a single password

TABLE 6.2: Kerberos main attacks breakdown

a brute-force attack using Kerberos has many advantages over brute-forcing
other authentication methods, these advantages can be summarized as fol-
lows:

• No domain account is needed to conduct the attack, just connectivity to
the KDC (i.e., a domain controller);

• Kerberos pre-authentication errors are not logged in Active Directory
with a normal Logon failure event (4625), but rather with specific logs
to Kerberos pre-authentication failure (4771), making them more diffi-
cult to detect by System Administrators;

• The Kerberos authentication process provides information about the
correctness of the username even if the provided password is wrong.
This is very important from the perspective of an attacker because they
can use this technique to collect valid usernames;

• In Kerberos brute-forcing it is also possible to discover user accounts
without pre-authentication required, which can be useful to perform
an ASREPRoasting attack.

Note that depending on the configuration set on the domain controller,
by carrying out a brute-force attack it is also possible to block user accounts.
Thus, this technique should be used carefully from an attacker perspective.

AS-REPRoasting

If we are able to find any accounts in a Windows domain that don’t require
Kerberos pre-authentication, we can easily request a Ticket for these accounts
and try to crack the encrypted part of these Tickets offline, revealing the
user’s credentials.

Basically in the first step of a Kerberos communication the client per-
forms an AS-REQ requests where he tries to identify and authenticate itself
by sending the current timestamp encrypted with its NTLM hash. The Ker-
beros Server (Authentication Server) verifies if the user claims who it is (since
he has the hashes of any user in the domain) and provides him/her with a
TGT in the AS-REP response. Unfortunately, this kind of first authentication is
skipped if the specific use has pre-authentication disabled DONT_REQ_PREAUTH.
Hence a TGT for these users can be requested without any kind of validation.
While the AS-REP ticket itself is encrypted with the service key (in this case
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the krbtgt hash) the AS-REP “encrypted part” is signed with the client key, i.e.
the key of the user we send an AS-REQ for. Hence we can attempt to offline
brute-force the user key and retrieve its password.

Note that as a matter of fact the reason for enabling Kerberos pre-authentication
is to prevent offline password brute-force.

Kerberoasting

Kerberoasting takes advantage of how service accounts leverage Kerberos
authentication with Service Principal Names (SPNs). From an attacker point
of view it is very important to find service accounts. Kerberoasting allows us
to crack passwords for those accounts. By logging into an Active Directory
domain as any authenticated user, we are able to request service tickets (TGS)
for service accounts by specifying their SPN value. A KDC will provide as
response the encrypted service ticket, (is encrypted using the NTLM hash
of the service account that is associated with the specific SPN). We can then
brute force these service tickets until successfully cracked, with no risk of
detection or account lockouts.

This attack can be summarized as:

• Scan Active Directory for user accounts with SPN values set;

• Request service tickets from AD using the found SPN values;

• Extract service tickets to memory and save to a file;

• Brute-force attack those passwords offline until cracked.

Kerberoasting applies to service accounts, so it is important to use strong
passwords for service accounts.

Pass The Key

Pass the Key attack, also known as Overpass The Hash attack, is referred to
an attack where a user uses its NT hash to request a valid TGT ticket. The
“over” in Overpass-The-Hash refers to taking the pass-the-hash technique
one step further to acquire a valid Kerberos ticket.

Typically, with Pass-The-Hash you use a NT hash from a compromised
user account to directly authenticate to remote services as that user, either by
injecting into the memory of the current Windows user or by providing the
hash directly to client applications which are able to accept NT hashes.

With Overpass-The-Hash we can leverage an NT hash twice to request a
valid Kerberos TGT (or TGS) from the KDC on behalf of the compromised
user. This technique is often used in combination with the Pass-The-Ticket
attack, where a forged valid (not expired) TGT or TGS can be exported and
re-injected for future use to bypass communication with the KDC.

Since this attack takes advantage of the NT hash to request Kerberos tick-
ets, as an alternative to the common Pass-The-Hash over NTLM protocol,
this technique becomes particularly useful in networks where the Net-NTLM
protocol is disabled and only Kerberos is allowed as authentication protocol.
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In order to perform this attack, an attacker has to gather the NT hash re-
lated to the password of a target domain user. Once the NT hash is obtained,
a TGT can be requested for that account, hence typically an attacker is able to
impersonate a domain user. By taking advantage of pass-the-key attacks an
attacker is generally able to access any service or machine where the target
user account has permissions.

Pass the Ticket

Pass-the-ticket is a credential theft technique that enables attackers to use
stolen Kerberos tickets to authenticate to resources (e.g. file shares or other
computers) as a user without compromising that user’s password. This tech-
nique is often used by adversaries to perform lateral movement within the
target network. This kind of attack is similar to Pass-the-Key, but instead
of using user hashes to request tickets, the ticket itself is stolen and used to
authenticate as its owner.

In general an attacker must have compromised a user account, a com-
puter containing readable tickets or obtained tickets in some other ways. This
attack is commonly used in combination with the Pass-The-Key technique.

Note that both TGT tickets and TGS tickets can be stolen and reused by
adversaries. Without administrative privileges, an adversary can obtain the
TGT (using “fake delegation”) and all TGS tickets for the current user. More-
over, if an attacker has administrative privileges on a target machine, it can
dump the LSASS process and obtain all TGTs and TGS tickets cached on the
system.

Golden Tickets

Golden tickets attack are used for persistence purposes once we have con-
quered a domain admin account and are able to dump the hash of the krbtgt
account. Basically this is possible if we are able to forge the TGS-REQ by us-
ing a valid TGT ticket. The scenario here is that once we have obtained the
krbtgt hash (and to obtain this we must have conquered a domain controller)
we can access any service with any account since we have the key which is
able to give us any TGS for any user for any service. Basically having this
key we can forge whatever request with any user account for any service.

We only need a valid TGT encrypted by the Kerberos krbtgt account.
Since account validation is not done by the KDC until the TGT is older than
20 minutes we can also take advantage of pretending to be disabled/deleted
accounts. This kind of ticket can be used to impersonate any account since
we can write anything in our request, since it is enough to encrypt it with the
krbtgt hash.

Notice that if we are able to get the hash of the krbtgt account on the
domain controller, we can impersonate basically any user with any privileges
on the domain. Moreover, note that password changes have no effect on this
attack.
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Silver Tickets

Silver tickets attacks are used for persistence for a specific service. Basically
this is possible if we are able to forge the AP-REQ (step 5) by using a valid TGS
ticket. Basically this happens when we have access to the NTLM hash of a
service account, allowing us to forge valid TGS tickets as any user for that
service.

Silver tickets have a reasonable persistence of 30 days for computer ac-
counts. Generally we are very interested in the machine account, which is
indeed used as a service account for many different services.

Comparison between Golden and Silver Tickets

Golden tickets allows us to impersonate any user and request any service,
since by having the hash of the krbtgt account we can forge our own TGS
with any detail we want. This is the holy grail of domain persistence.

Silver tickets allows us to impersonate any user on a specific service, since
by having the hash of the service account we can forge our own TGS for that
service with any user detail we want.

Skeleton Key

Skeleton key is another persistence technique where it is possible to patch
the lsass.exe process of a domain controller so that it allows access as any
user with a single password. This is a very effective backdoor which was
originally found in a malware named “Skeleton key malware”, anyway this
technique is not used often by penetration testers since, the backdoor does
not persist across Domain Controller reboots. Indeed, the less the domain
controllers are rebooted in a company the more effective this technique be-
comes.

When this attack is used anyway, attackers try to install this skeleton key
on each Domain Controller to increase its effectiveness, so that when a do-
main controller goes down, the skeleton key can still be used thanks to other
domain controllers. Skeleton key allows access also to other machines in the
domain.

Note that in order to patch the lsass.exe process on a domain controller
an attacker must have domain administrative rights, hence a full compro-
mise of the domain. For this reason, when a domain is fully compromised
attackers prefer more stable persistence techniques such as Golden Keys or
Silver Keys.

6.3.2 Access Control List Abuses

During penetration testing activities and red team engagements, there are
a number of Active Directory misconfigurations that are commonly found
which depend on incorrect access control list settings.

An ACL is a set of rules defining which entities have which permissions
on a specific AD object. These objects are generally user accounts, groups,
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computers, the domain itself and other entities. The ACL can be configured
on an individual object such as a user account, but can also be configured on
an Organizational Unit (OU). The main advantage of configuring the ACL on
an OU is that it allows an ACL to be applied to all objects within the OU. The
ACL of the Organizational Unit (OU) wherein the objects reside, contains an
Access Control Entry (ACE) that defines the identity and the corresponding
permissions that are applied on the OU and descending objects. The identity
that is specified in the ACE does not necessarily need to be the user account
itself; it is a common practice to apply permissions to AD security groups. By
adding the user account as a member of this security group, the user account
is granted the permissions that are configured within the ACE, because the
user is a member of that security group.

• AllExtendedRights: these are extended rights granted on objects which
allow a principal to read privileged attributes and perform “adminis-
trative” actions, for example adding principals to a group or change a
target user’s password are both examples of Active Directory extended
rights. If an attacker compromises a user or a group that presents an
AllExtendedRights ACL toward an important AD object, that object is
compromised;

• GetChangesAll: when a user has this right in relation to a domain con-
troller, it is able to replicate objects from the domain, hence obtaining
sensitive information. The abuse of this relationship is also known as
“DCSync attack”;

• AddMember: when a user has the AddMember right with respect to a group,
it has the ability to add arbitrary security principals (including itself) to
the target group. The advantage of adding a user to a group, is that the
newly added user will have the same privileges of the target group;

• Self, or Self-Membership: when a user has the Self right with respect
to a group, it has the ability to add itself to that target group. The ad-
vantage for an attacker of being able to add itself to a group is that it
will acquire all the privileges valid for that target group;

• ForceChangePassword: when a user has the right to change the pass-
word of another user without having to know its current credentials.
The advantage of being able to change a password, is that it allows an
attacker to impersonate a target user. Note that these kind of attacks
are easily detected, anyway attackers may consider useful to perform
these attacks targeting users with a low login frequency and who are
not logged in;

• GenericAll: a user has a GenericAll right to an object when it has full
control over that object. This privilege allows the trustee to manipulate
the target object in any way;

• GenericWrite: a user has a GenericWrite right to an object when it
can write to any non-protected attribute on the target object, including
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Members of a group or Service Principal Names for a user. This grants
an attacker the ability to add itself to a group and obtaining the privi-
leges that come with that group or perform targeted Kerberoast attacks
by adding to that user the service principal name of a service we want
to attack;

• Owns: a user has a Owns right with respect to an object when it can mod-
ify the object security descriptors independently from the object discre-
tionary access control list;

• WriteOwner: a user has a WriteOwner right with respect to an object
when it can change the owner of an object, hence acquiring the same
privileges of an Owns relationship. Basically an attacker may modify
the security descriptors of an object independently from the object dis-
cretionary access control list;

• ReadLAPSPassword: a user has a ReadLAPSPassword right with respect to
a computer, when it can read the password related to the local admin-
istrator of that computer. The local administrator password for a com-
puter managed by LAPS is stored in the confidential LDAP attribute
ms-mcs-AdmPwd.

Note that Active Directory objects such as users and groups are secur-
able objects and ACE/DACL define who can read or modify those objects.
Nonetheless, misconfigurations within access control mechanisms in enter-
prise environments is very common and this makes access control one of the
favorite targets for attackers.

In fact, access control misconfigurations in these context represent a com-
mon attack vector. In conclusion, modeling ACLs and access control mecha-
nisms as graphs, as described in this thesis work, is particularly beneficial
since graphs highlight non-obvious chained misconfigurations that could
lead to a network compromise.
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Chapter 7

AI-based Framework for Security
Assessment

This chapter presents the methodological approach proposed in this thesis
work for AI-assisted security assessment of complex technological environ-
ments. More precisely, the chapter introduces the workflow for the offline
detection of vulnerable networks and discusses the proposed classification
approach aimed at evaluating the security of a complex environment and
determining whether it is vulnerable.

7.1 Methodological Approach

The evaluation of computer network security is a complex task. Despite the
availability of some automatic tools customized to specific areas of assess-
ment, manual procedures are still highly valuable because of the complex-
ity of the environments under examination. This complexity is due to the
number of computers, users, organizational units, technologies and protocols
used within these environment. In general, manual procedures are coupled
with automatic scanners that determine the presence of vulnerabilities by
using heuristics. Automatic tools save a significant amount of time in pene-
tration testing activities, nonetheless they have two main disadvantages. The
number of false positives they produce can be large. Moreover, automation
based on heuristics is difficult to develop when the number of heuristics is
significant. For this purpose in the last years the attention for the devel-
opment of AI-based network assessment tools has increased. Nevertheless,
there is a lack of research and toolsets to tackle security assessment in com-
plex enterprise networks. For this purpose, in this thesis work a methodolog-
ical approach for the systematic evaluation of the security status of complex
environments is proposed. This approach provides users with a framework
to automatically evaluate their networks by using a machine learning based
classification system.

This novel framework combines graph theory and machine learning tech-
niques in order to extract useful insights from graph models and transform
these insights into features that are fed in a classifier.

Note that, in this context, although there is a growing interest in apply-
ing machine learning to the computer security field, the scientific literature
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does not include works that consider AI-assisted network evaluation for en-
terprise environments. For this purpose, there is an interest (and need) to
incorporate artificial intelligence techniques within network security assess-
ment tools and penetration testing methodologies.

The overall architecture of the proposed framework is shown in Figure 7.1.
In this architecture we can identify five main steps dealing with: data ac-
quisition, definition of a knowledge base used to build network graphs and
network classification where a classifier determines whether the network is
vulnerable or safe according to the features extracted from the graphs. In
what follows details about these steps are given.

Machine
Learning
Classifier

SAFE

VULNERABLE

Network
Knowledge

Base

Graph

Feature
Extractor

Data
Acquisition

FIGURE 7.1: Architecture of the proposed framework

7.2 Data Acquisition Phase

The first step of the methodological approach is related to the acquisition of
data about the target being analyzed. The output of this phase is data orga-
nized in a structured knowledge base to be further analyzed in subsequent
steps. The input data refers to:

• the users of the target and all their attributes, such as privileges, access
control properties or group memberships;

• the organizational units of the target used to organize the resources;

• the computers that are part of the target and their attributes, such as
operating system, role of the machine, exposed network services.

As shown in Figure 7.2 the data acquisition phase can be performed in
several ways (or modes), thus making the framework very flexible. These
modes refer to:

• manual mode: data describing the network configuration is provided
manually to the system through the use of configuration files;

• automatic mode: data describing the network is provided by means of
automated tools using passive and active scanners;

• random mode: data describing the network is generated randomly.
This mode can be used for testing or evaluation purposes.
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FIGURE 7.2: Data Acquisition Modes

For example, “automatic mode” could consist of running a scanner to ob-
tain the target data. On the contrary, the “manual mode” requires to insert
data within a configuration file. Another interesting option is to use the data
obtained from a randomly generated (“random mode”) artificial network en-
vironment.

Let us remark that it is particularly challenging to obtain real data about
enterprise environments since companies rarely release details about their in-
ternal organization. Hence, the generation of realistic artificial environments
can be very beneficial for testing complex environments.

7.3 Network Knowledge Base

The data collected in the acquisition phase is organized in a structured knowl-
edge base which keeps track of all the network data and configurations. This
knowledge base works as an interface for further steps. This allows third-
party developers to implement custom tools to collect data that can be used
within the framework.

The collected data is organized according to the following entries:

• Domains: containing data about the domains analyzed and the trust
relationships they may have with other domains;

• Users: containing the users and the information collected in the data
acquisition phase;
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• Computers: containing the computers within the target network and
their attributes;

• Groups: containing information about the groups into which users are
organized;

• Organizational Units, containing information about organizational hi-
erarchies into which other elements of the network are organized;

• Access Control Lists, containing information about access control re-
lationships between users, computers, domains, groups and organiza-
tional units.

The data stored within the knowledge base captures the hierarchical struc-
ture of the network organization as shown in Figure 7.3.
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Access Control Mechanisms

FIGURE 7.3: High-Level hierarchy of collected data

The data at this stage is organized in way that can be easily inserted into
a graph database.

7.4 Network Graph Database

The data organized in a well structured knowledge base is stored within a
non-relational graph database [155], [156]. Graph databases represent the
state of the art of database technology since graph processing is behind nu-
merous problems in computing. Nowadays these databases are employed in
areas where information about data interconnectivity or topology is as im-
portant as the data itself, or even more important. In these applications, data
and relations among the data, have the same priority.
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In fact, graphs have the advantage of being able to store all the informa-
tion about an entity in a single node and highlight information related to that
node by edges that are connected to it.

This feature allows users to find hidden relationships which would be
very difficult to highlight by using a different kind of database. In addition,
graphs can nicely represent relationships in a computer network. As can be
seen in the example graph depicted in Figure 7.4, users are often in some kind
of relationship with other entities on a network and graphs are particularly
good at capturing these relationships. The graph shown in Figure 7.4 shows
user “John1” (in light green) belonging to two different groups (in yellow).
One of these groups, namely “Remote Admins”, has access to “Computer1”
where the user “Joe22” has stored his credentials. The user “Joe22” belongs
to the group of administrators. Basically the graph shows a path from the
user “John1” to the group of administrators.
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FIGURE 7.4: Example of a graph capturing network properties
and relationships

In fact, graphs allow the construction of paths from users to domain ad-
ministrators, that are the most privileged users within a domain. These paths
are built from nodes that may represent entities on a network, such as users,
computers, groups or organizational units and relationships that link the en-
tities such as, “HasAccess”,“CanRDP”,“Contains”,“Owns”.

The presence of nodes and relationships inside a graph database allows
an easy identification of paths that could lead an attacker to the compromise
of the entire network.

Note that, during this phase, a “compromised” user is specified. This
models a scenario where an attacker has compromised that specific user.
Shortest paths in this context highlight the capabilities that the attacker has
on the network.
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7.5 Information Extractor

Information extraction and feature engineering are of fundamental impor-
tance in AI-powered systems. In the context of this framework there is a
need of finding useful security insights about the graph to be used by the
classification systems. For this purpose, in this step, we take advantage of
the domain knowledge about computer systems security, attacks and vul-
nerabilities to identify paths, attributes, and characteristics of a graph useful
to determine whether an enterprise environment is vulnerable or safe.

The information extraction involves the computation of overall scores as-
sociated to each node in the graph. These scores assess the degree of vulner-
ability associated with the nodes and their value depends on the interest that
an attacker may have for a specific node.

Computing overall scores allow the identification of weighted shortest
paths, that is, paths that may be more “interesting” for an attacker and that
do not directly depend merely on the number of hops between an attacker
and its target.

Once the overall scores have been assigned to each node in the graph,
the information extraction phase involves the extraction of two sub-graphs.
These sub-graphs correspond to all the shortest paths and a weighted short-
est path from an attacker node and a target node.

Note that the non-weighted shortest paths prioritize the number of hops
between two end nodes, while the weighted shortest path takes into account
the overall scores, hence, prioritizes the network characteristics that may lead
an attacker to compromise the network. The identification of the weighted
path relies on the Dijkstra’s algorithm.

Taking into account these two types of shortest paths, a general set of
attributes have been identified. These attributes are general enough to be
applied to very diverse networked environments.

The set of attributes contains insights about the structure and the proper-
ties of both the non-weighted and the weighted shortest paths, namely:

• number of “Access Control relationships”, that is, the rights and per-
missions a node has on other nodes;

• number of “Remote Access relationships”, that is, the remote control
capabilities users have on specific machines, such as SSH, RDP and oth-
ers;

• number of “Hierarchical relationships”, that is, the groups and hierar-
chical organizational units within the paths;

• number of “Critical relationships”, that is, features that are critical from
the perspective of security, such as number of user sessions on ma-
chines or administrative relationships between nodes;

• features related to the structure of the shortest paths, such as number of
nodes, number of relationships, number of shortest paths, sum of the
overall scores related to the nodes, number of old operating systems
within the path.
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These attributes appropriately capture the status of the security of an en-
terprise environment from the perspective of a compromised user.

7.6 Machine Learning Classifier

Machine learning is particularly useful in applications where heuristics-based
systems would be overly complicated. Within this framework the classifier
is based on a standard supervised machine learning pipeline as shown in
Figure 7.5.

Data 
Acquisition

Normalization/
Pruning

Feature
Engineering Classification Testing/

Scoring

Data
Visualization

Dimensionality
Reduction

FIGURE 7.5: Supervised machine learning pipeline used within
the framework

Data preprocessing is a fundamental step in a machine learning system.
Data gathering methods are often loosely controlled, resulting in out-of-range
values, impossible data combinations or missing values. Analyzing data
which has not been carefully checked and corrected or discarded can lead
to completely misleading conclusions.

If information in a dataset is redundant, ambiguous, unreliable, or noisy,
then finding patterns during the training step is significantly more difficult.

In the context of this thesis work, the data preprocessing step was very
limited, since most of the data was artificially generated, hence, the only ac-
tions to perform were related to the removal of duplicates.

The output of a data preprocessing system is the final training set.
One of the most critical steps of the workflow is represented by feature

engineering, that is, the process of using domain specific knowledge to select
appropriate features for machine learning algorithms to work. A feature is a
characteristic of the phenomenon under investigation. Feature engineering
is both difficult and expensive. Let us remark that an incorrect selection of
features can lead to poor classification performance.

Data visualization is another important step of the proposed workflow.
This step is applied to better understand data and detect anomalies (e.g.,
outliers) which have to be pruned.

A supervised learning algorithm is applied to train a model for classifi-
cation or regression. Finally it is necessary to evaluate the system, that is,
testing and scoring phase. The evaluation relies on different metrics, e.g.,
accuracy for balanced datasets, precision, recall and F1-score for unbalanced



110 Chapter 7. AI-based Framework for Security Assessment

datasets. In case of unsatisfactory results, the process is iterated with the
objective of improving the system performance.

Note that evaluation of the results is a critical step in machine learning
pipelines. When the amount of data is significant a classical three-fold ap-
proach is sufficient. This approach involves splitting the entire dataset into
three partitions: the training set (used for training the model), the cross-
validation set (used for tuning the model parameters) and the testing set for
evaluating the model. This approach does not represent the best choice when
data availability is a problem. In fact, the k-fold approach for validation is a
better choice when dealing with small datasets [157].

In this work, a k-fold approach for validation is suggested. The k-fold
approach in these contexts has many benefits, since enterprise network data
is difficult to retrieve, and its labeling other than being time-consuming re-
quires domain expertise. The final result of the classifier in our context deter-
mines whether the provided input network is vulnerable or safe.
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Chapter 8

Implementation of the Framework

This chapter presents the solutions proposed in this thesis work for the im-
plementation of the framework for automatic AI-assisted security assess-
ment of enterprise networks. More precisely, we describe the design of the
tools developed for automating the enumeration process. Since the target
enterprise networks are based on Active Directory, we focus on the enumer-
ation tools both from a domain-joined Microsoft Windows machine and from
a non-domain joined machine. In addition, we present the graph-based ap-
proach and the details of the nodes and relationships used for automatic
threat modeling. Finally, we describe the design of a generator of artificial
Active Directory environments and the approach for classifying the graph
models.

8.1 Active Directory Enumeration

In penetration testing activities, “enumeration” is the process consisting of
the collection of information about the target technological infrastructure for
discovering potential vulnerabilities or misconfigurations. It is possible to
enumerate a system using sniffers and scanners or other tools that automate
this process. During this thesis work two tools used for enumeration of en-
terprise Active Directory environments have been designed and developed.
These tools can perform the enumeration from both domain-joined Microsoft
Windows computers and non-domain joined computers. In fact, since Active
Directory is a technology which naturally fits Microsoft systems, some fea-
tures are only available on machines running Microsoft Windows operating
systems.

Both tools provide a report in a JSON format containing detailed infor-
mation about the target domains such as security principals, group member-
ships, trust relationships, organizational units, and group policies.

In detail, the tool dedicated to the enumeration from machines that are
joined to a Microsoft domain (called WinForestMap) is developed using Pow-
erShell to take advantage of the features offered by Microsoft Windows API,
COM, WMI, and the .NET library. This tool relies on PowerView and the
native Active Directory Module.

As shown in Figure 8.1, the architecture of WinForestMap consists of four
main components including a general “main” controller whose goal is to
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drive other operations, a PowerView based module and an AD (Official Mi-
crosoft module available for Active Directory administration) based mod-
ule that collect information about the target infrastructure through DNS and
LDAP queries and ADReport module that converts all the gathered informa-
tion into a structured JSON component.
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FIGURE 8.1: WinForestMap architecture

The Main component receives as input the list of domains to be enumer-
ated and executes the cmdlets (PowerShell user defined functions) contained
in PowerView and in the Microsoft Active Directory Module. These cmdlets
interact with the forest’s Domain Controllers using the LDAP and the DNS
protocols. These protocols make it possible to collect a significant amount of
information about the directory objects. The PowerView module provides the
most used cmdlets for the enumeration process. For example, Get-NetUser,
Get-NetGroup, and Get-NetComputer are used for retrieving the lists of users,
groups, and computers, respectively. In addition, this module provides the
cmdlets to obtain more specific information, such as the IP addresses of the
domain computers (Get-IPAddress) or the list of computers with uncon-
strained delegation enabled (Get-NetComputer -Unconstrained).
The ADModule provides additional enumeration capabilities for collecting do-
main’s properties. At the end of the enumeration process, the Main compo-
nent sends the collected data to the ADReport module responsible for gener-
ating a report in a JSON format.
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By running WinForestMap as a non-privileged user, it is possible to re-
trieve information about a forest, such as forest domains, domain policies,
Kerberos policies, security principals, computers, groups, OUs, GPOs, ACLs,
SMB shares, domain trusts, and active user sessions. Additional information
about SMB shares can be obtained by running the tool from an account with
elevated privileges.

The second tool designed and developed, namely ForestMap, is dedi-
cated to the enumeration process from machines running Linux or MacOS
operating systems and not belonging to the target Active Directory envi-
ronment. As shown in Figure 8.2, the architecture of ForestMap consists of
six components including a general “main” controller whose goal is to drive
other operations and generate a final structured JSON report, and multiple
secondary tools that are able to collect information using different protocols
such as DNS, LDAP or ICMP.
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FIGURE 8.2: ForestMap architecture

Starting from features, such as the IP address of the Domain Controller
acting as DNS server, the name of the target forest, the credentials of a com-
promised account, and the target domains, the Main component is responsi-
ble for calling the enumeration functions provided by the Entities module.
This module in turn interacts with the LDAPConnector, the DNS Resolver,
ping, and nmap for collecting information about the Active Directory envi-
ronment. In detail, the LDAPConnector component relies on OpenLDAP to
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execute LDAP queries using the credentials of a compromised user and re-
trieve information about the directory objects. The DNS Resolver compo-
nent performs DNS queries for translating the hostnames of computers and
Domain Controllers into their IP addresses. The ping command is used for
checking the availability of domain computers, while nmap is exploited for
collecting information about the SMB shares of the current domain. At the
end of the enumeration process, the Main component generates a JSON report
to be analyzed by threat modeling tools.

Table 8.1 details the output information contained in the structured JSON
modules extracted from LDAP queries. More precisely, the table summa-
rizes the information collected on a test target domain called CARONTE.LOCAL,
through LDAP queries. The table also shows the search base, that is, the
LDAP path used to start the search, and the filters applied.

Information Search base Search filter
List of computers DC=CARONTE,DC=LOCAL objectClass=Computer
List of computers
with unconstrained
delegation

DC=CARONTE,DC=LOCAL
(&(objectCategory=computer)
(objectClass=computer)
(userAccountControl:1.2.840.113556.1.4.803:=524288))

List of domains
CN=PARTITIONS,
CN=CONFIGURATION,
DC=CARONTE,DC=LOCAL

NETBIOSName=*

List of Domain
Controllers

OU=DOMAIN CONTROLLERS,
DC=CARONTE,DC=LOCAL

objectClass=Computer

List of GPOs DC=CARONTE,DC=LOCAL objectClass=groupPolicyContainer
List of groups DC=CARONTE,DC=LOCAL objectClass=Group
List of OUs DC=CARONTE,DC=LOCAL objectClass=OrganizationalUnit
List of users DC=CARONTE,DC=LOCAL (&(objectCategory=person)(objectClass=user))
List of users
with unconstrained
delegation

DC=CARONTE,DC=LOCAL
(&(&(objectCategory=person)
(objectClass=user))
(userAccountControl:1.2.840.113556.1.4.803:=524288))

List of
kerberoastable users DC=CARONTE,DC=LOCAL

(&(&(servicePrincipalName=*)
(UserAccountControl:1.2.840.113556.1.4.803:=512))
(!(UserAccountControl:1.2.840.113556.1.4.803:=2)))

TABLE 8.1: Information about the domain objects retrieved us-
ing LDAP queries.

In summary, WinForestMap and ForestMap represent good options for
the automation of a detailed enumeration phase aimed at collecting informa-
tion about a target and storing this information into structured JSON reports.
These JSON reports are designed in order to be easily parsable, converted to
a graph and stored in appropriate databases as described in what follows.

8.2 Active Directory Threat Modeling

As already discussed, threat modeling is the process following the enumer-
ation phase applied with the aim of identifying, classifying, and prioritizing
the security risks that affect a system. This step of penetration testing is cru-
cial for identifying the “best” paths to be followed to compromise a target
Active Directory environment.

In this context, a graph-based tool, namely ADGraphGenerator, for the
generation of an Active Directory graph model starting from the report pro-
duced enumeration tools has been designed and developed. The generated
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graph model contains nodes and edges. Nodes represent domains, users,
computers, groups, Organizational Units, and GPOs, while edges represent
relationships between nodes (e.g., MemberOf, Contains, GenericAll, TrustedBy).
After the generation of the graph, the tool assigns to each node a criticalasset
boolean property, to specify that the asset is considered critical within the in-
frastructure. In addition, each node is assigned a score that depends on its
properties and each edge a cost.

Figure 8.3 shows the architecture of ADGraphGeneratorwhere we can iden-
tify three core components, responsible for reading the normalized input
data, computing the scores and costs associated with nodes and edges and
interacting with the Neo4J graph database.

WinForestMap report
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Neo4j report

MS Windows UTF-16
dos2unix

ZIP archive

UNIX UTF-8

JSON Normalizer

UNIX UTF-8

JSON Reader
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Cypher queryDB Request

DB Response

Attack graph

Graph generation

Extracted
data

ZIP Extractor

MS Windows UTF-16

FIGURE 8.3: ADGraphGenerator architecture

Note that, in order for the tool to be flexible enough, different types of
reports are supported. In fact, the JSON Normalizer component is dedicated
to this purpose. More precisely, the ZIP Extractor component extracts the
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JSON files from the ZIP archive generated by SharpHound, that is, a well-
known tool used in Active Directory enumeration, this has been done for
compatibility reasons with common third-party tools. The JSON Normalizer
component normalizes the reports by adding missing properties, converting
null values to strings, rewriting property values in the appropriate formats,
and removing information not being used.

The JSON Reader component takes as input the normalized JSON report
and calls the methods of the DB Connector component for storing nodes and
edges with their properties in a Neo4j database instance. The Evaluator com-
ponent processes the data and identifies critical assets (i.e., domain nodes,
privileged users and groups, Domain Controllers), and computes overall
scores for the nodes and costs for the edges. Finally, the Neo4j Web Interface
processes the Cypher queries and generates the requested attack graphs.

Note that, the choice of a graph database, that represents the state of the
art of non-relational databases, was driven by their performance and suit-
ability to store data that can be well described as a graph and their ability at
identifying hidden relationships among data.

8.2.1 Overall Scores

As previously mentioned, the most important feature provided by ADGraph-
Generator is the identification of the most vulnerable nodes within an Active
Directory environment by means of a score assigned to each node according
to its properties and relationships. Various properties and relationships of
the nodes are considered for assigning these scores, such as version of oper-
ating system, password policies, access control lists. The overall score of a
node N is calculated by assigning a score to each property pi associated with
that node and to each outgoing relationship rj belonging to the same node
according to their exploitability in a potential attack. Thus:

overallscore(N) = ∑
i

scorepi + ∑
j

scorerj

Table 8.2 summarizes the scores assigned to the properties and to the re-
lationships considered to compute the overall score of each type of node.
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Object Type Property Relationship
Name Value Name Value

Computer

is a DC 10 MemberOf 5-30
operatingsystem 0-30 AdminTo 2
lastlogon 1 HasSession 2

unconstraineddelegation 5
CanRDP
CanPSRemote
ExecuteDCOM

2

AllowedToAct
AllowedToDelegate

5

ACLs 5-10

Domain TrustedBy 0-5
ACLs 10-30

GPO ACLs 5-10

Group

is a privileged group 20-50 MemberOf 20-50
AdminTo 10
CanRDP
CanPSRemote
ExecuteDCOM

2

ACLs 5-30
OU ACLs 5-10

User

admincount 5 MemberOf 20-50
description 1-5 AdminTo 10
dontreqpreauth 5 HasSession 3

pwdneverexpires 3
CanRDP
CanPSRemote
ExecuteDCOM

5

hasspn 5 AllowedToAct
AllowedToDelegate

5

unconstraineddelegation 5 ACLs 5-30
passwordnotreqd 10
pwdlastset 3
lastlogon 1

TABLE 8.2: Default scores of properties and relationships for
the computation of the overall scores

It is worth mentioning that the score assignment requires solid domain
knowledge about the kinds of attacks affecting enterprise infrastructures and
their severity. As a simple example, scores of computers running with an op-
erating system no longer supported by Microsoft are higher with respect to
scores of computers with a modern patched operating system. Similarly, the
score of a computer running the Microsoft Windows XP operating system
and with two active user sessions can be very high, namely 34 in our exam-
ple.

Once the overall scores have been computed for all the nodes of the graph,
the tool computes the cost associated with each edge, that is:

cost(rNM) = log
(

1 +
1

overallscore(M) + 1

)
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where rNM denotes the relationship associated with the edge connecting
the node N to the node M.

The logarithm is used to remove the skewness of the data and one is
added to the argument of the logarithm to obtain positive costs. Finally, one
is added to the overall score of the node M to avoid a zero division error.

The cost was chosen inversely proportional to the overall score of the
node M in order to favor the relationships that lead to the most critical nodes
when the shortest path is computed with Dijkstra’s algorithm [118]. We re-
call that this algorithm is used to find the shortest path from an initial node
to the destination node in a weighted directed graph.

In our case, the Dijkstra’s algorithm is applied to compute the total cost
of each path, that is, the sum of the costs of the edges traversed to reach the
target node starting from an initial node and identify the path with the lowest
total cost.

8.3 Simulation of Active Directory Domains

Simulated environments are very useful to carry out experiments. In fact,
companies and organizations rarely agree on sharing information about their
technological infrastructures and in particular of Active Directory environ-
ments. To ease the experimental activities, during this thesis a tool for the
simulation of Active Directory domains has been designed and developed.
The tool, named ADRandom, allows the random generation of realistic graph
models representing the relationships between the entities of a domain.

The graph models are generated according to a list of specifications, such
as number of nodes and number of trusts. Figure 8.4 shows the architecture
of this tool.
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FIGURE 8.4: ADRandom architecture

Starting from the specifications of the graph model, the CLI component
calls the methods provided by the Object Generator component for creating
Active Directory objects and their relationships. In addition, the CLI compo-
nent loads the pickle files that contain the first names, the last names, and the
domain names to be used for the generation of the users and of the domain
trusts. The Entities and the Templates components. In details, the Entities
component provides the methods for the generation of the default groups
(e.g., Administrators, Domain Users), users (e.g., Administrator, Guest) and
Access Control Lists, while the Templates component provides basic tem-
plates used to generate objects and relationships that allows the generation
of realistic Active Directory environments. The generated objects are then
stored in a Neo4J database instance. Furthermore, an add-on of the CLI com-
ponent is the APOC plugin for exporting the generated graph model into a
JSON file. Finally, the Neo4j Web Interface processes the Cypher queries
for analyzing the graph model.
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The ability to generate graphs according to the specifications is the most
relevant functionality offered by ADRandom to obtain models representative of
real Active Directory environments. For example, it is possible to choose the
size of the Active Directory environments by setting the number of domain
trusts, Security Principals, computers, OUs, groups, and GPOs. Moreover, it
is possible to choose the probabilities associated with object properties.

It is also possible to generate environments affected by specific vulner-
abilities (e.g., various types of ACL misconfigurations, inadequate security
policies) that make them possible targets of cyber-attacks, such as AS-REP
Roasting and DCSync. Table 8.3 summarizes the most relevant parameters
used in the generation of an Active Directory domain.

Object Property Description Value

ACL ACLsProbability
Probability of each access control
right (e.g., GenericAll, AddMember,
WriteDacl).

Integer for each right (0-100).
The sum of the probabilities
must be equal to 100.

Computer nComputers Number of computers. Integer >0

Computer CanRDPFromUserPercentage
CanRDPFromGroupPercentage

Maximum percentage of computers
with CanRDP edges from users/
groups.

Integer (0-100)

Computer CanPSRemoteFromUserPercentage
CanPSRemoteFromGroupPercentage

Maximum percentage of computers
with CanPSRemote edges from users/
groups.

Integer (0-100)

Computer ExecuteDCOMFromUserPercentage
ExecuteDCOMFromGroupPercentage

Maximum Percentage of computers
with ExecuteDCOM edges from users/
groups.

Integer (0-100)

Computer AllowedToDelegateFromUserPercentage
AllowedToDelegateFromComputerPercentage

Maximum percentage of users/
computers with AllowedToDelegate
edges.

Integer (0-100)

Computer
DC
User

enabled
Probability that an object
is enabled. Integer (0-100)

Computer
User unconstraineddelegation

Probability that an object
has unconstrained delegation
enabled.

Integer (0-100)

Computer
DC osProbability

Probability of each OS
version.

Integer for each OS
version (0-100).
The sum of the probabilities
must be equal to 100.

Domain functionalLevelProbability
Probability of each
functional level value.

Integer for each
functional level (0-100).
The sum of the probabilities
must be equal to 100.

Domain Trusts
Number of Inbound,
Outbound and Bidirectional trusts. Integer >= 0

GPO nGPOs Number of GPOs. Integer >0
Group nGroups The number of groups. Integer >0
OU nOUs Number of OUs. Even integer >0
User nUsers Number of users. Integer >0

User dontreqpreauth
Probability that a user
has Kerberos pre-authentication
disabled.

Integer (0-100)

User hassp
Probability that a user
has a SPN. Integer (0-100)

User passwordnotreqd
Probability that a user
does not have a login password. Integer (0-100)

User pwdneverexpires
Probability that a user’s
password never expires. Integer (0-100)

User sidhistory
Probability that a user
previously belonged to another
domain.

Integer (0-100)

TABLE 8.3: Most relevant parameters used for the generation
of graph models.
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8.3.1 Active Directory Domain Generation

In what follows, we describe the generation of an Active Directory domain
and we discuss the most relevant relationships inside the domain. The ex-
ample refers to a domain consisting of 30 users and 20 computers that are
contained (Contains relationship) in 10 Organizational Units. In addition,
the domain has to include an Organizational Unit containing six Domain
Controllers and a parent-child relationship with another domain has to be
considered. Table 8.4 summarizes some specifications used to generate this
model.

Object Property Value
Computer nComputers 20
Computer CanRDPFromUserPercentage 10
Computer CanRDPFromGroupPercentage 10

Domain Trusts
Inbound: 0,
Outbound: 0,
Bidirectional: 1

Group nGroups 10
OU nOUs 10
User nUsers 30

TABLE 8.4: Specifications used for the generation of the graph
model

Basically, ADRandom takes as input data like the one shown in Table 8.4 and
by interacting with the Neo4J instance fills the database with the generated
Active Directory environment.

Figure 8.5 shows the parent-child trust relationship between the
TESTLAB.LOCAL and the BACKET.TESTLAB.LOCAL domains.

BACKET

TESTLAB.LOC

TESTLAB

FIGURE 8.5: Graph showing TrustedBy relationships between
two domains

The graph of Figure 8.6 shows the generation of users and computers by
and how these are hierarchically organized within Organizational Units that
belong to the domain. In particular, yellow nodes in this graph represent
users, while purple nodes represent computers, and blue nodes are Orga-
nizational Units. The green node denotes the compromised user who was
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exploited for enumerating the Active Directory domain represented by the
graph model. Users and computers are contained in Organizational Units
and Organizational Units are contained in the domain (the central red node).

FIGURE 8.6: Example of a graph showing Contains relation-
ships between objects. Yellow nodes correspond to users, red
to computers, cyan to OUs, green to the compromised user and

red to the domain

The graph in Figure 8.7 shows the users and the computers that are mem-
bers (MemberOf relationship) of the domain groups (depicted in orange). Pur-
ple nodes on the top left are the computers that belong to the DOMAIN COMPUTERS
group, while yellow nodes and the green one are the users that belong to the
DOMAIN USERS group. Purple nodes on the right are the Domain Controllers
that belong to the DOMAIN CONTROLLERS and to the
ENTERPRISE DOMAIN CONTROLLERS groups.
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FIGURE 8.7: Graph showing MemberOf relationships between
objects. Yellow nodes correspond to users, red to computers,

green to the compromised user and orange to groups

The graph in Figure 8.8 shows the Security Principals that can open a ses-
sion on a remote computer using the Remote Desktop Protocol. In this case,
two computers can be remotely controlled by a user and two computers can
be controlled by the members of a group. In fact, the
CanRDPFromUserPercentage and the CanRDPFromGroupPercentage parame-
ters were set equal to 10% (see Table) 8.4.
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VNEITHER00001

FIGURE 8.8: graph showing CanRDP relationships between se-
curity principals. Yellow nodes correspond to users, red to com-

puters and orange to groups

8.4 Machine Learning Classifier

To automatically classify enterprise networks a supervised learning approach
has been used. For this purpose, different classifiers have been tested for the
proposed methodological framework. All of these classifiers have been val-
idated through the use a k-fold with k = 10 validation approach. This has
been done in order to tackle the relatively small amount of available data. In
fact, organizations and companies rarely share information about their tech-
nological infrastructure.

In general, classifiers require an accurate feature engineering phase, since
the performance of these systems mainly depend on the choice of the fea-
tures. In addition, due to issues related to the curse of dimensionality, on
small datasets it is not beneficial to use a large number of features. For these
reasons, features have to accurately be identified. The proposed classifica-
tion system takes advantage of the properties related to the shortest paths
between the compromised user and the target administrators group. Start-
ing from these shortest paths, features are extracted. These features are sta-
tistically analyzed with the purpose of removing the highly correlated ones,
since these would deteriorate the performance of the overall system. Finally,
different classification algorithms such as logistic regression, support-vector
machines and random forests have been tested to perform the classification
task.
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Chapter 9

Experimental Results

This chapter presents an experimental application of the proposed frame-
work to detect vulnerable enterprise networks. In particular, the chapter of-
fers an overview of the dataset used to train, tune and validate the classifier.
Moreover, classification results are discussed in detail.

9.1 Graph Dataset

The dataset used in these experiments consists of artificial graph models gen-
erated using the ADRandom tool. The characteristics of the models, such as the
number of users, the number of computers or groups, are drawn from a uni-
form distribution specified through the settings provided to ADRandom.

Note that we are ultimately interested in identifying and analyzing short-
est paths, but before being able to retrieve shortest paths we have to generate
realistic graph models from which the shortest paths are extracted. For this
purpose, we generated 220 graphs by using ADRandom tuned with the settings
shown in Table 9.1.

Property Min Max
Users 50 150
Computers 50 150
Groups 20 100
OUs 39 41
GPOs 20 40
Domains 2 6

TABLE 9.1: Settings of the number of entities used for graph
generation

Basic statistics related to characteristics of the generated graphs are pre-
sented in Table 9.2



128 Chapter 9. Experimental Results

Property Mean Std Dev
Users 103 28
Computers 120 29
Groups 113 24
OUs 41 1
GPOs 31 6
Domains 4 1
Number of Total Nodes 415 47
Total Relationships 4124 590

TABLE 9.2: Basic statistics of the graphs generated by ADRan-
dom

All the provided statistics were rounded to the closest integer.
Let us remark that, although these settings are defined randomly through

a uniform distribution, by following a set of heuristics ADRandom is able to
determine whether the resulting graph represents a realistic environment.
Moreover a set of builtin properties has to be checked.

For example, the generation of an Active Directory environment with 10
groups, will include additional 54 that have to be added to the specified ones,
since every Active Directory environment has by default 54 builtin groups.

For each of the Active Directory graphs, we extract two sub-graphs, that
is, one related to all the shortest paths and the other related to the single
weighted shortest path identified by using the Dijkstra’s algorithm. Let us re-
mark that these paths are computed starting from a compromised user whose
target is the Domain Administrators group.

The features extracted from these sub-graphs refer to:

• ACE relationships: total number of relationships related to access con-
trol mechanisms, such as GenericWrite, or GenericAll;

• Group nodes: total number of nodes representing hierarchical group-
ing, such as nGroup, or nOUs;

• Remote relationships: total number of relationships related to remote
access capabilities, such as CanRDP, or CanPSRemote;

• Critical relationships: total number of relationships considered “Crit-
ical” from a security point of view, such as AddMember, HasSession,
AdminTo;

• Old Machines: total number of old machines in the paths;

• Critical Assets: total number of critical assets in the paths;

• Nodes: total number of nodes in the paths;

• Relationships: total number of relationships in the paths;

• Critical Score: overall score corresponding to the shortest path;
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• Path Cost: overall cost associated with the shortest path;

• Shortest Paths: number of shortest paths from the compromised user
to the target;

Note that for each of these features (except for the number of Shortest
Paths) we must consider a dual feature corresponding to the weighted short-
est path.

The distributions of the features extracted from the shortest paths are
summarized in Figures 9.1 and 9.2.

As can be seen from Figure 9.2 (K), the number of different shortest paths
varies between 1 and 35 with an average of 5 shortest paths per graph. In Fig-
ure 9.1 (A) we can notice how the number of nodes on the weighted shortest
path tend to be around 5 and 6 suggesting that this is a typically length for a
shortest path within the considered graphs.
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FIGURE 9.1: Distributions of the features related to weighted
paths
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FIGURE 9.2: Distributions of the features related to non-
weighted paths

From this dataset, the highly correlated features, that is, features with a
high coefficient of correlation (i.e., above 0.9) have been removed. The re-
maining dataset is composed by 12 features.

Table 9.3 presents descriptive statistics of these features.
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Feature Mean Std Dev Min Max Median
Remote Relationships (weighted) 1.34 1.14 0 6 1
Group Nodes (weighted) 1.87 0.62 1 4 2
Critical Relationships (weighted) 1.81 0.89 0 5 2
ACE Relationships (weighted) 2.05 0.71 1 5 2
Path Cost (weighted) 0.13 0.069 0.01 0.37 0.11
Users (weighted) 2.33 0.61 1 5 2
Old Computers (weighted) 0.53 0.58 0 3 0
Computers (weighted) 1.29 0.70 0 4 1
Administrative Sessions (weighted) 0.92 0.27 0 1 1
Critical Score (weighted) 257.59 38.81 168 409 248
Path Cost 0.87 1.35 0.01 11.32 0.39
Old Computers 2.22 5.08 0 57 1

TABLE 9.3: Statistics of the features used for the classification
process

The final dataset contains 220 data entries, corresponding to graph mod-
els described with the features listed in Table 9.3. Within this dataset, half of
these models correspond to safe networks, while the other half corresponds
to vulnerable networks.

Note that each shortest path has been labeled individually through a man-
ual visual inspection of the sub-graphs according to the attacks described in
Chapter 6. It is particularly important to perform manual labeling in these
contexts and domain knowledge is an essential element to be able to deter-
mine whether a shortest path can lead to the compromise of the network.
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9.2 Classification Performance

The classification task has been performed using different common classifi-
cation algorithms, namely, logistic regression, support-vector machines and
random forests. These algorithms generally represent good choices on rect-
angular data (i.e., structured information) and are relatively simple to tune
with respect to other algorithms.

The classifiers have been tested with a k-fold validation technique, setting
k = 10. This cross validation scheme has been chosen because of its benefits
on small datasets.

An initial 80/20 split has been performed to use the 20% in the final eval-
uation of the classification system.

9.2.1 Hyper-Parameter Tuning

The tuning of hyper-parameters is based on a grid-search customized to each
classifier.

Table 9.4 presents the hyper-parameters used for the grid search of the
logistic regression (LR) classifier.

C 10−3, 10−2, 10−1, 1, 10, 102, 103

Penalty L1, L2

TABLE 9.4: Hyper-parameters used for tuning the Logistic Re-
gression classifier

The accuracy corresponding to the tested hyper-parameters is shown in
Figure 9.3.
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FIGURE 9.3: Accuracy of the Logistic Regression classifier on
the Cross-Validation dataset

As can be seen, the results of the validation suggest that the best values
of the regularization parameter C and of the penalty are equal to 1 and L1
respectively. In fact, the resulting accuracy on the testing dataset when using
these hyper-parameters is equal to 84.1%.
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The grid-search of the support-vector machine (SVM) classifier is based
on the hyper-parameters presented in Table 9.5.

C 10−2, 10−1, 1, 10, 102, 103, 104, 105, 106

Kernel Linear, RBF

TABLE 9.5: Hyper-parameters used for tuning the Support Vec-
tor Machine classifier

The accuracy corresponding to the tested hyper-parameters is shown in
Figure 9.4. The best performance using SVM during validation is obtained
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FIGURE 9.4: Accuracy of the Support-Vector Machine classifier
on the Cross-Validation dataset

by setting the regularization parameter C = 1 and using a linear kernel. By
using these hyper-parameters the resulting accuracy on the testing dataset is
86.3%.

For the Random Forest (RF), the grid search is based on two tuning pa-
rameters, namely, the number of decision trees used within the forest and
maximum tree depth.

Table 9.6 presents the details of these parameters. The accuracy corre-

Number of Decision Trees 10, 20, 50, 100, 150, 200, 300
Max Depth for Trees None, 2, 3, 4

TABLE 9.6: Hyper-parameters used for tuning the Random For-
est classifier

sponding to the tested hyper-parameters is shown in Figure 9.5.
As can be seen, the grid search suggests that the best performance is ob-

tained with a number of decision trees equal to 100 and a max depth for
trees equal to 3. By using these best hyper-parameters the resulting accuracy
reaches 91% on the testing dataset.

Another interesting result is related to the importance of features. When
using Random Forests, it is possible to determine the importance of each
feature for the classification task. Figure 9.6 shows a bar plot that highlights
the most important features involved in the classification process.
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FIGURE 9.5: Accuracy of the Random Forest classifier on the
Cross-Validation dataset
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FIGURE 9.6: Feature importance for the Random Forest classi-
fier

These results are particularly interesting, since they show how the defi-
nition of critical scores and path costs are fundamental to obtain good clas-
sification results. In fact, some of the most important features correspond to
characteristics of the weighted shortest path.
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9.2.2 Performance Comparison

The performance of the three classifiers, with respect to the security assess-
ment of the Active Directory environments, is summarized in Table 9.7. Note
that this performance, expressed in terms of precision, recall and F1-score,
refers to the testing dataset.

Classifier Label Precision Recall F1

LR Safe 0.74 0.88 0.80
Vulnerable 0.92 0.82 0.87

SVM Safe 0.90 0.82 0.86
Vulnerable 0.83 0.91 0.87

RF Safe 0.95 0.86 0.90
Vulnerable 0.88 0.95 0.91

TABLE 9.7: Comparison of the performance of the three classi-
fiers

In general, the performance of all the classifiers evaluated is good. For
example, the F1-score ranges between 0.80 obtained by the LR classifier for
the assessment of safe networks and 0.91 obtained by the RF classifier for the
assessment of vulnerable networks. Let us remark that random forests are
in practice well known to often outperform other classifiers in many applica-
tions. In our specific case, about nine times out of ten, random forests are able
to correctly detect whether a complex network environment is vulnerable or
not.

The F1-scores reflect the accuracy results obtained on the testing dataset
for all of the analyzed classifiers. This is due to the balanced nature of the
dataset on which the classifiers have been trained, validated and tested.

In conclusion, these results validate the benefits of using a classification
system in performing automated network assessment.
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Chapter 10

Conclusion

Penetration testing is an important activity for evaluating the security of tech-
nological infrastructures and services. Security assessment is becoming a
fundamental and necessary step within the systems and software develop-
ment life-cycle. This thesis work focused on the design and development of
a methodology and framework for performing AI-assisted penetration test-
ing activities within enterprise environments. The proposed methodology
relies on graph theory and machine learning techniques coupled with solid
domain knowledge.

The development of the framework involved the design of a methodolog-
ical framework and of a toolset for network assessment based on AI. The
toolset is designed in a modular structure and each tool has a specific pur-
pose. The entire toolchain includes the enumeration phase and information
gathering process as well as the detection of vulnerabilities within a complex
infrastructure.

A fundamental part of the framework is the approach proposed to as-
sign scores to nodes and costs to edges, thus enabling the identification of
weighted shortest paths based on the Djkstra’s algorithm. The experimental
results have shown that the proposed solutions allow an accurate identifica-
tion of the most critical entities in an enterprise network.

In particular, ensemble methods, e.g., Random Forests, coupled with fea-
ture engineering obtain good performance in the detection of vulnerable net-
works. The accuracy on the test dataset is about 91%.

The entire toolset accompanying this framework, that is, the automated
enumeration tools, the threat modeling tool, the simulator of Active Direc-
tory domains and the classification system will be released as open-source
software.

As a future work there are still many open research issues to be explored.
For example, more complex attack scenarios could be investigated, such as
advanced delegation attacks or diversification of privilege escalation tech-
niques. Moreover, models of additional lateral movement techniques when
no shortest path is available for a node should be investigated. More pre-
cisely, the possibility of compromising other users starting from a user with
no paths available.

Another possible research direction refers to the refinement of the graph
generator to allow testing forests containing multiple domains and the gen-
eration of even more realistic environments.
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