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Abstract

The description of the functioning mechanisms of the heart has always attracted many re-
searchers. Thanks to modern computing resources, many interdisciplinary studies in this field
involving clinicians, biologists, physicists, engineers and mathematicians have emerged. This cross-
curricular interest has given birth to many mathematical models of cardiac physiological events, as
well as tools to computationally study and predict dysfunctions such as heart failure and arrhyth-
mias. As a result, most interactions between different physical models as well as possible outcomes
of medical therapies can be studied without invasive procedures or human testing.

However, mathematical modelling involves several challenges, ranging from the coupling of the
different physics to the design of efficient implementations. Simulation of these models requires
huge computational effort, both in terms of memory and of speed, and this motivates the employ-
ment of large scale system architectures for numerical calculations.

One of the most effective ways to solve large algebraic systems arising from the discretization of
Partial Differential Equations (PDEs), which usually model these biological phenomena, is provided
by Domain Decomposition (DD) methods (DDMs).

The main idea underlying these methods is the subdivision of the problem into smaller local
subproblems, either at the continuous, discrete or algebraic levels. Each of these subproblems is
solved independently from the others, but their algorithms ensure global continuity of the solution.
These algorithms provide powerful tools for avoiding dealing with ill-conditioned problems as well
as for ensuring fast convergence. When solving a linear system of the type Ax = b of large
dimensions, the inverse A−1 is never computed, since it requires a huge computational effort.
Moreover, if A is sparse, this property may not hold for its inverse A−1. Direct factorizations may
not be viable either, due to the large dimension of A.

DDMs are suitable for parallelization, which is an appealing feature given the increasing growth
of supercomputers.

In the following work, we will refer to DDMs as iterative algorithms for the solution of large al-
gebraic systems. In particular, we consider the class of non-overlapping DDMs (often referred to as
iterative substructuring methods), focusing on Balancing Domain Decomposition with Constraints
(BDDC) and Dual-Primal Finite Element Tearing and Interconnecting (FETI-DP) methods. In
these methods, variables are divided into three groups: internal, which belong to the internal part
of the subdomains; dual and primal, which, taken together, form the interface set of variables. In
general, the primal set of variables coincides with the vertices of the subdomains in two dimensions,
while in 3D this coarse space can be chosen suitably with the problem.

In this Thesis we study efficient, scalable and robust DD solvers for the solution of the Bidomain
model, which describes the propagation of the electric signal in the cardiac tissue by means of
parabolic reaction-diffusion PDEs.

We derive the algebraic formulation of the Bidomain model by discretizing with Q1 finite ele-
ments in space and the Backward Euler method in time. In particular, by applying a fully implicit
time discretization, the resulting algebraic system is nonlinear and we propose two strategies for



its solution.

The first strategy we investigate relies on a decoupling (or segregated) approach, where at
each time step we split the solution of the ionic model and the Bidomain system. We wrap the
nonlinear system within a Newton method and we linearize the algebraic system, resulting in a
symmetric problem. We construct and theoretically analyze BDDC and FETI-DP algorithms for
the Jacobian linear system in order to accelerate the convergence of the Preconditioned Conjugate
Gradient method. We prove a novel theoretical bound for the projection operator, using both ρ
and deluxe scaling. This bound is then employed in the proofs of the upper bound for the condition
number of the preconditioned operator showing a theoretical quasi-optimality property.

In the second strategy, we explore a coupled (or monolithic) solution, where the ionic model is
solved at the same time as the Bidomain system. In this case, the arising Jacobian system is non-
symmetric and we employ the Generalized Minimal Residual (GMRES) method for its solution.
We provide a tailored theoretical analysis for the convergence of the solver. This analysis exploits
a classical result for the upper bound of the residual of GMRES iterations, together with a proof
technique recently proposed for BDDC applied to advection-diffusion problems.

We numerically validate both these quasi-optimality properties through extensive parallel tests.
We also test the robustness of proposed solvers in case of realistic human ionic models, such as
Luo-Rudy (1991) and Ten Tusscher-Panfilov (2006), as well as in presence of an ischemic trans-
mural region, modeled by jumps in the diffusion coefficients. The results indicate scalability and
robustness of the solvers, as well as their quasi-optimality.

Future works should be devoted to the optimization of the codes in order to reduce the computa-
tional workload and to the employ of quasi-Newton methods for the improvement of the numerical
performance.

Other appealing future works are the design, theoretical analysis and numerical implementation
of nonlinear dual-primal DD solvers for this system, as a numerical comparison of the performances
between the two nonlinear approaches, for both solution strategies.
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If you can keep your head when all about you
Are losing theirs and blaming it on you,

If you can trust yourself when all men doubt you,
But make allowance for their doubting too;
If you can wait and not be tired of waiting,

Or being lied about, don’t deal in lies,
Or being hated, don’t give way to hating,

And yet don’t look too good, nor talk to wise.

If you can dream – and not make dreams your master;
If you can think – and not make thoughts your aim;

If you can meet with Triumph and Disaster
And treat those two impostors just the same;

If you can bear to hear the truth you’ve spoken
Twisted by knaves to make a trap for fools,

Or watch the things you gave your life to, broken
And stoop and build’em up with worn-out tools;

If you can make one heap of all your winnings
And risk it on one turn of pitch-and-toss,

And lose, and start again at your beginnings
And never breathe a word about your loss;

If you can force your heart and nerve and sinew
To serve your turn long after they are gone,
And so hold on when there is nothing in you

Except the Will which says to them: ‘Hold on!’

If you can talk with crowds and keep your virtue,
Or walk with Kings – nor lose the common touch,

If neither foes nor loving friends can hurt you,
If all men count with you, but none too much;

If you can fill the unforgiving minute
With sixty seconds’ worth of distance run,

Yours is the Earth and everything that’s in it,
And – which is more – you’ll be a Man, my son!

∼ R. Kipling, If.
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Chapter 1

Introduction

Can we simulate and predict complex biophysical phenomena, such as functions and dysfunctions
of the cardiac electrical activity, without invasive procedures?

Although this target seems to be ambitious, since it requires synergy between apparently distant
fields, it has been tackled with huge effort by the scientific community in the last decade. While
recent improvements in medical therapies have extended patients’ life expectancy, the growth of
collaborations between clinicians, biologists, engineers, physicists and mathematicians has resulted
in the development of many multi-disciplinary studies. The description of the functioning mech-
anisms of the heart has always fascinated many researchers and this cross-curricular trend has
given opportunity to translate physiological events into mathematical models, as well as tools to
computationally study and predict dysfunctions. For examples, References [18, 32, 91, 117], based
on experiments and clinical data, provide mathematical models and workflows for the study of
cardiac phenomena, also in patient-specific cases.

The advantage of this computational approach is the possibility of performing realistic inves-
tigations in a non-invasive way: dysfunctions of the heart which would require clinical inspection
for an in-depth analysis can be carried out through numerical simulations instead, exploring all
the interactions between cardiac bio-electrical and mechanical phenomena, as in Refs. [21, 24, 30,
31, 86, 100].

However, the mathematical modelling of these biophysical events involves several challenges.
Indeed, the estimate of the parameters of the models (see for example References [34, 54, 55]) or
the coupling of different physics (Refs. [92, 103, 118]) are research topics in the scientific commu-
nity. An other important issue to deal with is the need of efficient implementations: as a matter of
fact, the simulation of these models require huge computational efforts, both in terms of memory
and speed. This motivates the employment of large scale system architectures for the numerical
calculations: for example, in the field of cardiac mechanics, References [11, 26, 67, 71] explore the
performances of huge supercomputers in solving and simulating cardiac electro-mechanical systems.

In this Thesis, we focus on the development and analysis of efficient preconditioned solvers for fully
implicit time discretizations of the Bidomain model.

This system of Partial Differential Equations (PDEs) describes the propagation of electric
impulses in the cardiac tissue, by means of two degenerate parabolic reaction-diffusion equations
(see Refs. [27, 98, 102]). This model provides an accurate and rich description of the evolution of
the transmembrane potential v = ui − ue, where ui and ue are the intra- and extracellular electric
potentials respectively: due to its accuracy, it is usually employed in numerical studies concerning
pathological conditions (Refs. [19, 30]), but its (potentially) high computational cost impedes the
easy coupling with other models, such as the mechanical or the vascular ones. For this reason, by
assuming equal anisotropy between the intra- and extracellular diffusion coefficients, the reduced
Monodomain model is widely employed in various numerical studies (eg. [21, 53, 99, 125]).

In order to take into account the electrochemical reactions that occur at a cellular level, the
Bidomain system is coupled through the reaction term to a system of Ordinary Differential Equa-

1



2 CHAPTER 1. INTRODUCTION

tions (ODEs), modelling the inward and outward flow of ionic currents across the cell membrane.
Indeed, the electric impulse is originated in the sino-atrial node and then is transmitted to the
ventricle myocardium, causing a quick depolarization of the tissue: this means that the trans-
membrane potential changes sign in few milliseconds. This potential drop drives a change in the
concentration of different ionic species inside and outside each cell, which in turn condition the
slow repolarization of the cell. In this work, we will consider mainly the Rogers-McCulloch ionic
model [105], a phenomenological model where the gating and the concentration variables are rep-
resented by only one unknown: this model reproduces macroscopically the main action potential
features, but it neglects several sub-cellular processes. However, reduced models like this one are
usually employed in large time and space simulations, as well as in numerical studies that do not
need to accurately represent the ionic processes. Other two models that will be considered here
are the Luo-Rudy phase 1 [80, 81] and the Ten Tusscher-Panfilov [114, 115] ionic models, which
have been developed more recently and describe mammalian and human ventricular ionic currents
respectively.

As already mentioned, the simulations and numerical studies of the cardiac activities require
enormous computational resources: in order to develop efficient and optimal codes, it is necessary
to define successful solution strategies, from the discretization choices to the solvers to be employed.

Lot of attention has to be paid to the time discretization, especially when coupling different
models (electrical and mechanical models), as the time scales involved are very different. Concern-
ing the Bidomain model, the numerical time step needs to be small enough to capture the tiny but
fast-propagating wavefront, without incurring in stability issues of the numerical scheme or slowing
down the computational speed. In the literature, many works take in consideration semi-implicit
time discretizations, such as in References [20, 26, 28, 96, 108, 127, 128], where the diffusion term
is treated implicitly while the reaction term explicitly. Other works have been focused on the split-
ting of the differential operator, like Refs. [22, 23, 111, 112], applying different numerical schemes
for the diffusion and the reaction terms. However, operator splittings and decoupling techniques
introduce additional errors which increase the time finite difference errors. Possible alternatives
consider fully implicit time discretizations (which can be computationally more expensive) as in
Ref. [90] or decoupling strategies based on segregated implicit time discretizations as in References
[36, 88, 89, 109].

This Thesis deals with fully implicit time discretizations, where the solution strategy is pre-
sented in two variants: since the discretized Bidomain system is nonlinear, due to the implicit
treatment of the reaction term, a classic Newton scheme wraps the nonlinear algebraic system
which can include or not the ionic system. In case the ODEs are not included in the non-linear
system (segregated or decoupled approach), the Jacobian linear system to be solved at each Newton
step is symmetric, thus allowing an easy application of the Preconditioned Conjugate Gradient for
its solution. Conversely, if the ODEs are not included (monolithic or coupled strategy), the re-
sulting linearized problem is non-symmetric, requiring to adopt the Generalized Minimal Residual
(GMRES) method or the stabilized BiConjugate Gradient (BiCGS) method.

In general, when working with linear systems with potentially millions of degrees of freedom
(dofs), it is necessary to define a preconditioning procedure, in order to avoid dealing with ill-
conditioned problems as well as to ensure fast convergence. Indeed, when solving a linear system
of the type Ax = b of large dimensions, the inverse A−1 is never computed, since it requires a
huge computational effort; moreover, if A is sparse, this property could not hold for its inverse
A−1. Also direct factorizations may not be viable: if the matrix is dense of order n, then Gaussian
elimination will need O(n3) operations. On the other hand, iterative methods can suffer from slow
convergence. In this framework, Domain Decomposition (DD) methods (DDMs) provide powerful
tools to solve these issues.

Modern DDMs originate in the 80s and generally refer to parallel and scalable methods for the
iterative solution of PDEs, based on the decomposition of the problems into smaller subproblems.
Thanks to this basic idea, DDMs are widely applied in large-scale problems arising from applied
mathematics, computer and life sciences, engineering, etc. The subdivision can enter at different
levels: at the continuous level, by defining several physical models on different parts of the domain;
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at the discrete level, where different discretization techniques are employed in order to preserve
physical properties of the original problem. Lastly, the decomposition can be performed at the
level of the algebraic system arising from the discretization. From now on, we will refer to DDMs
as iterative algorithms for the solution of algebraic systems, like in Reference [116].
In this perspective, the computational domain is decomposed into smaller subdomain, on each of
which a restriction of the original problem is defined. The partitioning can be either performed
with overlapping (Schwarz methods) or non-overlapping subdomains. Each smaller problem is
then solved independently, i.e. in parallel, which is essential for the development of efficient and
optimized codes. With the ever increasing growth of modern supercomputers, it is necessary to
design and implement efficient solvers that are able to take advantage of the available computational
resources. Several parallel numerical libraries are available, such as the Portable Extensive Toolkit
for Scientific Computation (PETSc) from the Argonne National Laboratory [3] or Trilinos from
Sandia National Laboratories [113].

This Thesis focuses mainly on the design, numerical analysis and parallel implementation of
dual-primal DD preconditioners for the Jacobian linear system arising within each Newton iter-
ation for the solution of fully implicit time discretization of the Bidomain model. Dual-primal
methods belong to the class of iterative substructuring (non-overlapping) DD methods. In dual-
primal algorithms, the unknowns are divided into three groups: the internal ones, which belong
to the internal part of the subdomains; the dual and the primal ones, which altogether form the
interface set of variables. In general, the primal set of variables coincides with the vertices of the
subdomains in 2D, while in 3D the primal set must be chosen appropriately. The two precondition-
ers considered here are the Dual-Primal Finite Element Tearing and Interconnecting (FETI-DP)
and the Balancing Domain Decomposition with Constraints (BDDC) preconditioners.

The Finite Element Tearing and Interconnecting (FETI) methods are a family of DD algo-
rithms, which have been developed in the 90s, see References [42, 43, 45–47]. In these methods,
continuity condition is reached only at convergence. The first numerical evidence of the conver-
gence properties of FETI methods applied to second-order elliptic problems is reported in Ref.
[45], whereas the first theoretical estimates on the condition number of FETI are proved in Refer-
ence [84]. FETI-DP methods are derived from the one-level and two-level FETI methods. They
differ from standard FETI methods, as in this case the primal degrees of freedom are required to
be continuous across the subdomains. They are introduced in Ref. [48] with vertex constraints
and then extended to 3D in [46]. A 2D convergence bound is proved in Ref. [85], while a com-
plete 3D study of both algorithms is provided in Refs. [69, 72–74]. In FETI-DP methods the
continuity of the solution across the subdomain boundaries is enforced by Lagrange multipliers.
The basic idea is to form a Schur complement by eliminating the primal variables and solve the
arising linear system in the Lagrange variables with an iterative method, usually in combination
with a preconditioner. Scaling of the preconditioner is an important step in order to guarantee
convergence results, independent of jumps in the coefficients of the partial differential equation.
FETI-DP methods have been applied in several contexts, from three-dimensional elliptic problems
with heterogeneous coefficients in Ref. [73] to linear elasticity problems ([72, 104]) and structural
mechanics ([44, 69–71]). In the biomechanics field, we find evidences of robustness of this precon-
ditioner in the works [2, 13, 71, 127].

Balancing Domain Decomposition with Constraints (BDDC) have been introduced more re-
cently in [37] and theoretically analyzed in [82, 83]. BDDC are a two-level preconditioners, where
local and coarse problems are treated additively; moreover, a proper choice of the set of primal
constraints across the interface of the subdomains is needed. These primal constraints can be
vertex points as well as averages over edges and/or faces of the subdomains and this set can
influence the rate of convergence. BDDC have been also applied to a wide range of problems,
from incompressible Stokes equations in [77] to isogeometric analysis in [5–7], as well as in [38]
for H-curl problems. BDDC have been extended also to the solution of Navier-Stokes equations
and to multilevel approaches in [56, 57]. BDDC for advection-diffusion problems have been stud-
ied in the works [97, 121–123]. In the cardiac field, we find application of BDDC in [127, 128] for
the solution of the linearized semi-implicit Bidomain problem, and in [26, 95] for cardiac mechanics.
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As we mentioned, this Thesis deals with fully implicit time discretizations of the Bidomain
model, decoupled from or coupled to the ionic model. In both cases, the resulting algebraic system
turns out to be a nonlinear problem. In such cases, two DD approaches are possible. a) The lin-
earization is performed after the geometric decomposition, leading to face the solution of (weakly
coupled) nonlinear problems on the subdomains. In the literature, this step has been denoted as
nonlinear localization. Nonlinear FETI-DP and nonlinear BDDC have been studied for example in
[75], while more generally, nonlinear preconditioning has been analyzed in [79]. b) As in traditional
DD approaches, a geometric decomposition is performed after linearization, where the nonlinear
problem A(u) = 0 is solved by using a Newton-type method. In this way, we first linearize the
problem using an iterative method u(k+1) = u(k) + α(k)δu(k), with a suitable steplength α(k). The
increment δu(k) is obtained by solving the Jacobian linear system DA(u(k))δu(k) = −A(u(k)), by
using a DD method in order to decrease the problem dimension and improve the convergence.
These are commonly known as Newton-Krylov (NK) DD methods and they provide the basis for
the design of the preconditioned solvers we propose and analyze throughout this work. They were
originally designed for the solution of problems arising in computational fluid dynamics ([16, 17,
126]). So far, NK solvers have been developed for implicit time discretizations of the Bidomain
model in [88, 89, 109], with overlapping one-level and multilevel Schwarz preconditioners, while
NK-BDDC solvers have been proposed for the nonlinear elasticity equations modeling the cardiac
mechanics in [26, 95]. One advantage of dual-primal preconditioners is the easy extension to un-
structured meshes, since they do not need inter-grid operators.

The goal of this Thesis is to design, theoretical analyze and validate numerically dual-primal
Newton-Krylov solvers for implicit time discretization of the Bidomain system, both through de-
coupled and coupled solution strategies. Thanks to the results of [78, 83], showing that FETI-DP
and BDDC shares the same spectrum in case the same coarse space is chosen, we carry out a
unique convergence rate analysis that hold for both preconditioner. In the decoupled approach,
we prove in Theorem 4.1 a bound for the condition number of the preconditioned operator, both
in case the standard ρ-scaling and the recently introduced deluxe-scaling (see [38]) are applied.
For the coupled strategy instead, since the resulting Jacobian system is non-symmetric, we extend
the analysis of [40, 121], providing an upper bound in Theorem 5.1 for the residual at the m-th
iteration of the GMRES algorithm, preconditioned with BDDC.

The Thesis is structured as follows.

• In Chapter 2, we briefly review the principles of cell membrane, moving from a biological
description of the intra- and extracellular exchanges to the mathematical formulations of the
corresponding models, introducing the Goldman-Hodgkin-Katz (GHK) current equation and
the Nernst equilibrium potential. Then we show how the cell membrane can be modeled as
an electrical circuit, presenting the notion of channel gating. Afterwards, we introduce the
concept of cardiac action potential and the milestone Hodgkin-Huxley ionic model, which
provides the basis for the development of human ventricular ionic models (such as the Luo-
Rudy and Ten Tusscher-Panfilov models) presented next in the Chapter. Additionally, we
give an insight into two simpler phenomenological models, namely the FitzHugh-Nagumo and
the Rogers-McCulloch models, which are easier to implement and facilitate preliminary tests
of the solver we propose. Successively, we finally introduce the cardiac Bidomain model for
the description of the electrical impulse in the cardiac tissue and its numerical discretization
prior to the definition of the solver. In particular, we present two solution strategies for
the time discretization. The Chapter is ended by the theoretical study of continuity and
coercivity of the bilinear forms associated to the Jacobian linear problems arising from the
Newton schemes, which will be needed for the theoretical convergence analysis of the proposed
solvers in the next Chapters.

• In order to introduce the preconditioners chosen for our solver, we review in Chap. 3 the
basic ideas of DD methods, focusing on non-overlapping dual-primal algorithms. In partic-
ular, after a short presentation of the idea of subdivision of the problem into smaller local
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subproblems, we give an overview of the main ingredients needed for the definition of the
preconditioners, such as restriction operators and scaling procedures. Next, FETI-DP and
BDDC preconditioners are presented through an algebraic formulation, following [72, 104,
127]. Eventually, we report classic technical tools from functional analysis and DD which
will be employed in the proofs of the convergence rate bounds.

• The theoretical convergence analysis for the decoupled solution strategy is presented in Chap-
ter 4, where we first prove a bound for the projection operator (Lemma 4.1), for both cases of
ρ and deluxe scalings. This Lemma holds for both preconditioners, as they have been proven
to be spectrally equivalent in [78, 83].Then we provide an upper bound for the preconditioned
operator (Theorem 4.1) that holds for both FETI-DP and BDDC preconditioners, each with
a separate proof.

• Chapter 5 contains the theoretical study of the convergence rate for the coupled - or mono-
lithic solution strategy. As the Jacobian linear system is non-symmetric, we are forced to
employ iterative solvers such as GMRES. Consequently, the theoretical analysis is based on
the work of Eistentat [40], which provides a bound for the residual of GMRES iterations,
and on the work of Tu and Li [121], where BDDC preconditioner has been applied to the
solution of non-symmetric problems. In this perspective, while Lemma 5.1 is quite similar to
the analogous for the decoupled case, the construction of the proof of Theorem 5.1 requires
different steps in order to achieve the final bound.

• Chapter 6 presents extensive parallel numerical experiments that validate the theoretical
analysis of the previous Chapters. We first give an overview of our computational setting
(parallel architectures, computational domains, parameters tuning and employed parallel
library); next, we provide scalability and optimality tests for the Monodomain and Bidomain
equations, using both decoupled and coupled solution strategies. Furthermore, we test the
robustness, scalability and optimality of the Bidomain decoupled solver in the presence of an
ischemic transmural region.

• Chapter 7 ends this Thesis with some remarks on the advantages and limitations of the
proposed solvers, listing possible future developments and improvements.





Chapter 2

Cardiac reaction-diffusion models
and numerical settings

In this Chapter, we briefly review some principles of cell membrane physiology, from its biological
structure to the governing equations of the ionic currents. We introduce the notion of cardiac
action potential and a milestone in the field of mathematical physiology, the Hodgkin-Huxley
model for ionic currents; then, we review some of the most used ventricular models, such as
the Beeler-Reuter, the Luo-Rudy phase one, and Ten Tusscher-Panfilov models. We also present a
couple of phenomenological ionic models, which will be considered as benchmark for the theoretical
convergence analysis and its preliminary numerical validation.

Afterwards we introduce the cardiac Bidomain model, which describes the propagation of elec-
tric signals in the cardiac tissue, and its reduced formulation, the Monodomain model.
We close the Chapter by discussing the properties of the bilinear forms associated with the linear
problem arising from a finite element discretization in space and the Backward Euler method in
time.

2.1 Membrane ionic models

2.1.1 Principles of cell membrane

The cell membrane is a biological separator between the interior of the cell (intracellular space)
from the outside environment (extracellular space). The basic function of the cell membrane is to
protect the cell from its external surroundings: it regulates the passage of substances in and out
the cell, by being selectively permeable to ions and organic molecules.

It consists of a double layer (or bilayer) of phospholipid molecules about 7.5 nm thick, with
the nonpolar hydrophobic tails (impermeable to charged ions and molecules) pointing toward the
inside of the membrane and the polar hydrophilic heads forming the inner and outer faces of the
membrane (Fig. 2.1). Proteins and cholesterol molecules are scattered throughout the flexible
phospholipid membrane. Proteins may attach loosely to the inner or outer surface of the plasma
membrane (peripheral proteins), or they may lie across the membrane, extending from inside to
outside (integral proteins).

The intracellular and extracellular environments mainly consist of a dilute aqueous solution of
dissolved salts, primarily NaCl and KCl, which dissociate into Na+, K+ and Cl– ions. Typical
concentrations can be found in Table 2.1. The cell membrane acts as a barrier to the free flow of
these ions and maintains their concentration differences.

Even though the cell membrane itself is impermeable to ions, there exists a number of water-
filled pores with diameters of about 0.8 nm, as well as protein-lined pores, called channels proteins,
which allow passage of specific molecules. Ions can be transported across the cell membrane by
passive or active processes, where an active process requires the expenditure of energy (by using

7
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the concentration gradient of a different ion, called exchanger or by consuming chemically stored
energy in the form of ATP), while a passive process results solely from the inherent and random
movement of molecules, driven by concentration gradients and electric fields.

Figure 2.1: Schematic diagram of cell membrane.

In the literature passive processes are divided into three main categories [68].
Osmosis is the process that transports water through the cell membrane; simple diffusion accounts
for the passage of small molecules through pores and of lipid-soluble molecules through the bilipid
layer, as it happens for water, urea (a nitrogenous waste product of metabolism), and hydrated
chloride ions, for example. Carrier-mediated diffusion occurs when a molecule is bound to a
carrier molecule that moves readily through the membrane (for example, the transport of glucose
and amino acids).

On the other hand, concentration differences are set up and maintained by active mechanisms
that use energy to pump ions against their concentration gradient. This process is made by
transport proteins that spend energy to transfer material across the membrane. Differences in ionic
concentrations create a potential difference across the cell membrane that drives ionic currents.

The most important example of active (energy-consuming) transport is the sodium-potassium
pump. This pump acts as an antiport, actively pumping sodium ions out of the cell against its
steep electrochemical gradient and pumping potassium ions in. In general, the principal function
of the active transport processes is to regulate the intracellular ionic composition of the cell. In
this way the operation of sodium-potassium pump results in high intracellular K+ concentrations
and low intracellular Na+ concentrations.

For more details and additional topics, see Ref. [68].

Squid Giant Axon Human Red Blood Cell

Intra Extra Intra Extra

Na+ 50 437 19 155

K+ 397 20 136 5

Cl– 40 556 78 112

Table 2.1: Typical values for intracellular and extracellular ionic concentrations, from two different cell types.
Concentrations are given in units of mM.
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2.1.2 The membrane potential

As already stated, each ionic channel permits the passage of specific ions and this specificity
generates a potential difference. For example, consider two compartments i and e filled with
a solution of NaCl separated by a thin membrane. Suppose to add a concentration of NaCl
of 100 mM in compartment i and only 10 mM in compartment e. If the membrane had been
completely permeable to all ions, the diffusion would drive the ions from compartment i to e until
the concentrations were equal. Assume that the membrane is permeable only to Na+ ions instead:
in this case, diffusive forces would drive the ions over compartment e where the concentration is low,
creating a surplus of negative Cl– ions in compartment i and positive Na+ ions in compartment
e. This charge difference sets up an electric field across the membrane which tends to drive back
Na+ ions to compartment i: the point of equilibrium is reached when the Na+ flux caused by the
electric field is equal to and in opposite direction to the flux caused by diffusion.

We briefly introduce the basic equations needed for the construction of a membrane model; for
more detailed studies, see Refs. [27, 68, 111].

The Nernst-Planck Equation. One of the most important equations in electrophysiology is
the Nernst-Planck equation [27, 68, 111], the constitutive law describing the total flux of a ion
across the membrane.

Suppose we are in the same situation as previously described, where we have two compartments
(separated by a semipermeable membrane) filled with the same ion, for example the potassium ion
Na+, but at different concentrations [Na+]i 6= [Na+]e, as shown in Fig 2.2. The solutions on each
side of the membrane are assumed to be electrically neutral (at least initially), and thus each ion
Na+ is balanced by another ion with opposite sign (for example, Cl– ). We denote inside the left
part of the membrane and outside the right part.

Figure 2.2: A schematic diagram of the electrodiffusion model for current through an ionic channel. Each side of
the channel is electrically neutral, and both ion types can diffuse through the channel.

If the membrane is permeable to Na+ but not to Cl−, the concentration difference of the
membrane results in a flow of Na+ from the higher concentration space to the lower one. However,
as Cl– cannot diffuse through the membrane, the diffusion of Na+ causes an increase of charge
across the membrane. This charge imbalance (in turn) sets up an electric field that opposes the
further diffusion of Na+ through the membrane and the equilibrium is reached when the electric
field exactly balances the diffusion of Na+. Note that at steady state there will be more Na+ ions
on one side than on the other, and thus neither side of the membrane is exactly electrically neutral.

The total flux of Na+ can be described by the following laws:

• Fick’s Law.. If we denote by c (mol cm−3) the concentration of the ion Na+, then the ionic
diffusion flux is given by

Jdiff = −D∇c,
where ∇c indicates the gradient of c and D is a diffusion coefficient (cm2 s−1).
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• Planck’s equation. The flow of ions through the membrane is driven by concentrations
gradients and also by electric field. So the contribution to the flow from the electric field is
given by

Jelect = −µ z

|z|
c ∇u,

where

– µ is the mobility of the ion (cm2 V−1 s−1), defined as the velocity of the ion under a
constant unit electric field;

– z is the valence of the ion, so that z/|z| is the sign of the force on the ion;

– u is the electrical potential (V), so that −∇u is the electrical field.

The ionic mobility µ and the Fick’s diffusion constant are linked by the Einstein’s relation

D = µ
RT

|z|F
,

where R = 8.3143 J K−1 mol−1 is the universal gas constant, T = 310 K is the absolute temperature
and F = 96.4867 C / mmol is the Faraday’s constant. When the effects of concentration and
electrical gradients are combined, we obtain the Nernst-Planck equation

J = −D
(
∇c+

zF

RT
c ∇u

)
.

If the flow of ions and the electric field are transverse to the membrane, we can write a one-
dimensional relation

J = −D
(
dc

dx
+
zF

RT
c
du

dx

)
.

In general, the electric potential u is determined by the local charge density and so J must be
found by solving a coupled system of equations.

Suppose now that the membrane has thickness L, such that the potential across the membrane
is v = u(0) − u(L) = ui − ue, where the indexes i, e denote intra- and extracellular quantities;
as boundary condition we suppose in the inside the concentration c(0) = ci, while in the outside
c(L) = ce. Furthermore we assume that the electric field is constant through the membrane, such
that du/dx = −v/L.

At a steady state with no production of ions, the flux J must be constant, leading to the
equation

dc

dx
− zF

RT

v

L
c+

J

D
= 0,

whose solution is

J =
D

L

zF

RT

ci − ce e−
zF
RT v

1− e− zF
RT v

,

by imposing the boundary conditions. This flux density becomes an electrical current density
(current per unity area) when multiplied by zF (the amount of charge carried per mole) and thus
the ion current (A cm−2) is given by

I =
D

L

z2F 2

RT

ci − ce e−
zF
RT v

1− e− zF
RT v

,

known as Goldman-Hodgkin-Katz (GHK) current equation, where D/L =: P is the permeability
of the membrane. This current is zero if the diffusively driven flow and the electrical driven flow
are in balance, i.e. I = 0, yielding the Nernst equilibrium potential

v = −RT
zF

log
ci
ce
. (2.1)
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Another common approach, widely used in the description of cardiac ionic currents, describes
the ionic current I as a linear function of the membrane potential. Suppose that the potential
drop across the membrane has two components: the first potential drop vS is given by the Nernst
equation (2.1) and the second potential drop is due to an electrical current, given by rIS , being
r the channel resistance and IS is the membrane current of a generic ion S. Summing these two
contributions we find

v = rIS + vS ,

and solving for the current, we get the current-voltage relationship

IS = G (v − vS) ,

where G = 1/r is the membrane conductance. We note that the current IS and the conductance G
are usually specified per unit area of membrane, being the product of the single channel conductance
times the number of channels per unit area of membrane.

The linear current-voltage relation is also denoted long-channel or high-concentration and it
derives from the Poisson-Nernst-Planck (PNP) equation.

Nernst equation can be considered as a ”universal” law, as it is independent of how the ions
move through the membrane, but depends only on the concentration difference. Moreover, any
equation that expresses the transmembrane current of a ion in terms of the membrane potential
must have a reversal potential vion, i.e. the current must be zero at the Nernst potential v = vion.
However, although this is true in the case we are considering the movement of a single ion species,
it could be more complicated when more than one type of ion species can cross the membrane:
in this case, the membrane potential that generates zero total current does not necessarily have
zero net current for each individual ion, so the phases are not, in general, at equilibrium, even
when there is no total current. Therefore, the arguments of chemical equilibrium used to derive
the Nernst equation cannot be used, and there is no universal expression for the reversal potential
in the multiple ion case. In this case, the reversal potential depends on the model used to describe
the individual transmembrane ionic flows.

2.1.3 Electrical circuit model of the cell membrane

Since the cell membrane separates charge, it can be viewed as a capacitor that acts in parallel
with a resistor, which represents the ionic channels. A simple electrical circuit model of the cell
membrane is shown in Fig. 2.3.

The capacitive current is given by Icap = Cm
dv

dt
, where Cm is the capacitance of the capacitor

(assumed to be constant) and v is the transmembrane potential. The membrane potential can
be described by the following relation, thanks to the conservation law for the current, where the
transmembrane current is given by the sum of the capacitative and ionic currents must be equal
to the applied current Iapp,

Cm
dv

dt
+ Iion(v) = Iapp.

Channel gating. As already mentioned in this Chapter, ionic channels can either open or close
in response to voltage. In general, the current through a population of channels can be written as

Iion = g(v, t) φ(v),

where g(v, t) is the proportion of open channels in the population per unity area, while φ(v) is the
current-voltage relationship of a single open channel (GHK or linear model). So, if we suppose to
have

• φ(v) = G(v − veq) in linear form, being veq the equilibrium potential,

• g(v, t) = N
S , where N is the number of open channels and S is the area,
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Figure 2.3: Electrical circuit model of the cell membrane.

then we can write
Iion(v) = Gmaxw(v − veq),

where Gmax := NtotG/S is the maximum conductance and w := N/Ntot is the gating variable,
representing the percentage of open channels.
The modeling of w depends on the structure of the channels: we briefly present two simple models
for the K+ and the Na+ channels and we refer to [27, 68] for a more detailed discussion.

One or two unit protein, two states. The simplest model for the K+ channel assumes
that the channel can exist in either a closed state S0 or an open state S1, and the rate of conversion
from one state to another is dependent to the voltage (α(v) and β(v)); thus

S0

α(v)

�
β(v)

S1.

Let w denote the proportion of channels in the open state: it is possible to derive from the law of
mass action a differential equation for the rate change of w as

dw

dt
= α(v)(1− w)− β(v)w, w(0) = 0,

where we used the fact that, thanks to the conservation of channels, the proportion of closed
channels is 1− w. It is often convenient to rewrite the equation as

dw

dt
=
w∞ − w
τ∞

w(0) = 0
,

where w∞ :=
α(v)

α(v) + β(v)
is the equilibrium state and τ∞ :=

1

α(v) + β(v)
is the time constant.

An important generalization of the two-state model occurs when the channel is assumed to
consist of multiple identical subunits, each of which can be in either the closed or open state (as in
the case of the potassium ion K+). Let’s denote by Si the group of channels with exactly i open
subunits. Then, the conversions between channel groups are governed by the reaction scheme

S0

2α

�
β
S1

α

�
2β
S2.
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By denoting with n the proportion of channels in the open state, from the law of mass action we
obtain

dn

dt
= α(1− n)− βn, (2.2)

and the current that flows through the channel is given by

Iion = Gmaxn
2(v − veq).

This argument generalizes to the case of k identical independent binding sites, where the channel
conductance is proportional to nk, so for the potassium K+ channels it holds

IK+ = Gmaxn
4(v − veq).

The opening or closing state of the subunits modules the conductance of the channel, which can
be increased or decreased depending on the proportion of open or closed subunits.

k subunits, two states. A more complex model is needed to explain the behavior of the Na+

channel, which both activates and inactivates. The simplest approach is to extend the previous
analysis to the case of multiple subunits (let’s say three subunits) of two different types, m and h,
where each subunit can be either closed or open.

Suppose we are in the case of two m subunits and one h subunit. Let Sij denote the channel
with i m-subunits open and j h subunit open. We want to determine a differential equation for
S21 (i.e. when the channel is entirely open). The law of mass action and a substitution yield

dm

dt
= α(1−m)− βm

dh

dt
= γ(1− h)− δh

,

and
Iion = Gmaxm

2h (V − Veq).

As the sodium channel consists of four subunits, three of which are identical, the current equation
will be

INa+ = Gmaxm
3h (V − Veq).

2.1.4 Cardiac ionic current models

So far we have seen that the potential difference across the cell membrane causes ionic currents
to flow through channels. The regulation of this activity is one of the most important cellular
function. Many cells, such as neurons and muscle cells, use the transmembrane potential as a
signal, and thus the functioning of the nervous system and muscle contraction are both dependent
on the generation and propagation of electrical signals [68]. To understand this process it is helpful
to divide cell types in two groups: excitable and nonexcitable cells.

• Nonexcitable cell : if currents are applied to the cell for a short period of time, the poten-
tial returns directly to its equilibrium value after the applied stimulus is removed. Typical
examples are epithelial and photoreceptors cells.

• Excitable cell : if the applied current is sufficiently strong, the transmembrane potential goes
through a large excursion (called action potential, AP) before returning to rest. Cardiac cells,
skeletal muscle cells, secretory cell and most neurons belongs to this category. An excitable
cell either respond to a stimulus or not at all, and thus a stimulus of sufficient amplitude
may be reliably distinguished from background noise.

The most important landmark in the study of generation and propagation of signals is the work
of Alan Hodgkin and Andrew Huxley [59–63], who developed the first quantitative model of the
propagation of an electrical signal along a squid giant axon. Their ideas have since been extended
and applied to a wide variety of excitable cells.
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Cardiac action potential. Let us first remark what an action potential is. As already stated, it
represents a large transmembrane potential excursion before returning to rest, due to a sufficiently
strong applied stimulus. We can notice two main features.

• Threshold potential vS : it is the critical value for which the action potential takes place. In
this way, the cell reacts to the applied stimulus only if v > vS .

• Refractory phase: in this time interval, no stimulus can produce another AP until the trans-
membrane potential returns to rest.

C

B

A

D

E

0 300 msec

-84 mV

0

E

Figure 2.4: Evolution of the cardiac transmembrane potential in time during the AP. The letters correspond to
the different phases of the AP.

We can identify five phases of cardiac AP (see Fig. 2.4).
In phase A (depolarization), fast Na+ channels open, allowing a rapid inflow of positive ions into

the cell (INa current). Consequently, the transmembrane potential passes from a negative resting
value to positive values. When the fast Na+ channels inactivate, phase B occurs: the outward
flows of K+ and Cl– ions (Ito1 and Ito2 currents respectively) cause a rapid decrease of the action
potential. Phase C is characterized by an inward current of Ca2+ (ICa) and an outward movement
of K+ (slow delayed rectifier potassium current IKs). This balance maintains the potential almost
constant; usually, this phase is referred to with the term “plateau”. This phase is sustained at a
lower rate by the sodium-calcium exchanger current INa,Ca and by the sodium-potassium pump
current INa,K. The rapid repolarization of the cell – phase D – is a consequence of the closing of
the Ca2+ channels and while K+ channels are still open. This net outward current, corresponding
to a negative change in the membrane potential which returns to negative values, causes more K+

channels to open (IKr current and the inwardly rectifying current IK1). Then, the cell repolarize
due to this net outward positive current. During phase E the potential is kept constant. Some of
the K+ ionic channels remain open, in order to guarantee the correct concentrations of ions outside
and inside the cell.

The Hodgkin-Huxley model. We now want to introduce the Hodgkin-Huxley (HH) model for
the membrane potential [59–63]. Hodgkin and Huxley carried their studies on the squid giant axon,
where the principal ionic currents are the sodium and the potassium current, as in many neural
cells. Although there are other ionic currents, primarily the chloride current, in the Hodgkin-
Huxley theory they are small and lumped together into one current called the leakage current.

We already described in Sec. 2.1.3 how the membrane can be modeled as a capacitor in parallel

with an ionic current, resulting in the equation Cm
dv

dt
+ Iion(v, t) = 0, where v denotes the
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transmembrane potential, which is the difference between the internal and the external potentials
and Cm is the capacitance of the capacitor. In the HH model, the sodium and potassium currents
are both gated, while the leakage current is time independent and is formulated as a linear function
of the transmembrane potential. This circuit (Fig. 2.5) is described by the following system of
equations 

Cm
dv

dt
+ Iion(v,m, h, n) = Iapp

dm

dt
= αm(1−m)− βmm

dh

dt
= αh(1− h)− βhh

dn

dt
= αn(1− n)− βnn

where we denote with Iion = INa+ + IK+ + IL sum of the sodium, potassium and leakage currents;
Iapp is the applied current. The specific rate functions α and β proposed by Hodgkin and Huxley

Figure 2.5: Schematic diagram of the electrical circuit of the HH membrane model.

are, in units of (ms)−1 [68],

αm = 0.1
25− v

exp
(

25−v
10

)
− 1

, βm = 4 exp

(
−v
18

)
,

αh = 0.07 exp

(
−v
20

)
, βh =

1

exp
(

30−v
10

)
+ 1

,

αn = 0.01
10− v

exp
(

10−v
10

)
− 1

, βn = 0.125 exp

(
−v
80

)
.

and the currents reads

INa+ = GNam
3h(v − vNa)

IK+ = GKn
4(v − vK)

IL = GL(v − vL)

where the maximal conductances are GNa = 120, GK = 36 and GL = 0.3, and the (adjusted)
equilibrium potentials are vNa = 115, vK = −12 and vL = 10.6.

If the potential v is raised slightly by a small stimulating current, the system returns to its
stable equilibrium. However, if the stimulating current is large enough to raise the potential, see
Fig. 2.6, the potential rises, m continues to rise and the inward sodium current is increased. This
causes the depolarization phase.
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Figure 2.6: Top: action potential of the Hodgkin-Huxley equations. Bottom: the gating variables m, n and h
during an action potential.

When the potential is at rest, the sodium inactivation h is positive, at about 0.6. As the
potential increases, h approaches zero, so that sodium channels begin to close and the inward
sodium current decreases.

At about the same time that the sodium current is inactivated, the outward potassium current
is activated: this drives the potential below rest toward vK = −12. When v is negative, n declines
and the potential eventually returns to rest, and the whole process can start again.

Of course the shape of the HH action potential (Fig. (2.6)) is substantially different respect
to the cardiac one reported in Fig. 2.4, as they describe different types of cells. Therefore, when
plugged into the bidomain equations, we would be able to reproduce both the depolarization
and repolarization of the tissue, but both the propagation velocity and the time interval between
those two phases would be incorrect. Thus, in order to obtain physiologically reliable models for
the transmembrane potentials, it is necessary to consider a more detailed representation of the
underlying cellular physiology.

Although this model is not directly relevant for studies of the heart, its ideas and mathematical
formalism have been widely used as building bricks for a number of models describing cardiac
action potentials. Indeed, it is possible to generalize the HH formalism by considering the following
general structure for the ionic current:

Iion(v, w, c) =

Nion∑
k=1

Gk(v, c)

M∏
j=1

w
pjk
j (v − vk(c)) + In(v, w, c)

where Nion is the number of ionic currents, Gk is the k-th membrane maximal conductance and
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vk the reversal potential for the k-th current, pjk are integers and In represents time independent
ionic currents.

By coupling the systems of ODEs accounting the dynamics of the gating variables w := (w1, . . . , wM )
and the dynamics of the ionic concentration variables c := (c1, . . . , cS), the time evolution of the
transmembrane potential of a single cell is given by the system

Cm
dv

dt
+ Iion(v, w, c) = Iapp

dw

dt
−R(v, w) = 0,

dc

dt
− C(v, w, c) = 0,

v(0) = v0, w(0) = w0, c(0) = c0,

with Cm the surface capacitance and Iapp is the applied current per unit area of the membrane
surface. For more details and a qualitative study of the HH model, we refer to Refs. [27, 68].

Ventricular models. The first model to describe the ventricular action potential was proposed
by Beeler and Reuter in 1977 [4], based on the HH formalism.

This model is based on experimental data from the guinea pig and, as an improvement with
respect to the Hodgkin-Huxley model, it takes into account the role of Ca2+: indeed, the entry of
calcium produces a significant change in the calcium intracellular concentration [Ca2+]i , mainly by
triggering the Ca2+ release from the sarcoplasmic reticulum (SR) via a calcium-induced calcium-
release (CICR) process. Thus it adequately reproduces characteristic experimental phenomena
such as the slow recovery of the sodium system from inactivation and membrane oscillations. In
this model, the ionic current is given as the sum of four currents Iion = INa + Is + IK1 + Ix1

for a
total of six gating variables and one equation for the Ca2+ dynamics. More extensive explanations
on this model can be found in [27, 68, 111].

This model is quite simple, but still widely used: recent models are more physiologically accu-
rate when describing the behaviour of a single cell, but the computational efficiency can be relevant
when simulating the electrical activity of the complete heart.

Another classical model for ventricular cells is the Luo-Rudy (LR) model, originally formu-
lated in 1991 [80] and then revised in 1994 [81] in order to give a detailed description of CICR,
intracellular calcium cycling and calcium buffering.

The first model (often referred to as Luo-Rudy phase one model, LR1) is a development of
the Beeler-Reuter model and it includes six ionic currents: INa a fast sodium current; Isi a slow
inward current; IK and IK1 time-dependent and a time-independent potassium currents; IKp a
plateau potassium current and Ib a time-independent background current. In addition, the reversal
potential Esi depends on the intracellular concentration [Ca2+]i , whose dynamics is described by
a ODE.

On the other hand, the second model (referred to as Luo-Rudy phase two, LR2) [81] provides
a much more detailed description of the specific ionic currents across the membrane: it includes
twelve membrane currents, in addition to the Ca2+ dynamics. This model also describes a number
of internal fluxes, including the Ca2+ flux in and out of the SR as well as buffering of calcium.
The SR is a network inside the cell that takes up calcium from the myoplasm and later release it
back in response to the activation of the cell: in this way, the concentration of calcium inside the
myoplasm varies and this variation is important for the contractile ability of the muscle cells. For a
detailed discussion, we refer to Refs. [9, 68]. In order to describe the calcium dynamics of the SR,
the Luo-Rudy phase two model proposes three different intracellular calcium concentrations, the
myoplasm calcium concentration [Ca2+]i and two SR calcium concentrations [Ca]NSR and [Ca]JSR;
moreover, four ionic currents are related to the uptake and the release of calcium from the SR.

The last model we would like to review is the human ventricular tissue model proposed by
ten Tusscher et al. in 2004 [114] and revised by ten Tusscher and Panfilov in 2006 [115]. This
formulation can reproduce human epicardial, endocardial and M cell action potential by modifying
the transient outward and slow delayed rectifier currents. Moreover, it accurately reproduces the
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experimentally observed data on action potential duration (APD) restitution (APDR), which is
an important feature for reentry phenomena, and some proprierties of wave propagation in human
ventricular tissue, such as the conduction velocity (CV) restitution (CVR), which is involved in
the generation of arrhythmias. The APD is defined as the interval in which the cardiac cell is in
an excited state, as a function of the diastolic interval (DI) (the time interval when the cardiac cell
is in an unexcited state), while the CV property of a propagating electric impulse in the cardiac
tissue depends on the APD and on one or several previous diastolic or interbeat intervals [27,
Sections 2.9.6 and 3.1.4], [111, Sec. 2.2], [68].

The total ionic current Iion is the sum of all transmembrane ionic currents

Iion = INa + IK1 + Ito + IKr + IKs + ICaL + INaCa + INaK + IpCa + IpK + IbCa + IbNa.

The fast Na+ current INa presents three gating variables (m is the activation gate, h the
inactivation and j is the slow inactivation gate), each of whom is governed by a HH-type equation
and characterized by a steady-state value and a time constant for reaching this steady-state value.
The time constant τj differs from the one in LR1 as here a more gradual CV restitution is granted.
The L-type calcium current ICaL is made up of a voltage-dependent activation gate d, a voltage-
dependent inactivation gate f and an intracellular calcium-dependent inactivation gate fCa. In the
original formulation [114], the activation times curve of this current is taken from the LR2 model,
due to limited experimental data. However, in the updated model [115] from 2006, modifications
are made to include the injection of calcium into the subspace and its inactivation by the CaSS via
the inactivation gate fcass. Moreover, voltage-clamp experiments induce the incorporation of both
a slow voltage inactivation gate f and a fast voltage inacivation gate f2. A single formulation for
the steady-state activation curve r∞ is used for the transient outward current Ito, as no significant
differences between activation in epicardial and endocardial cells were recorded; on the other
hand the steady-state inactivation curve s∞ presents two different formulations for epicardial and
endocardial cells, in order to fit experimental data. This current is not included in the LR model,
neither in phase one nor in phase two. Two other currents that are not included in Luo-Rudy
formulations are the slow and rapid delayed rectifier current IKs and IKr: these two currents are
in charge of the rapid repolarization phase of the action potential (phase D in Fig. 2.4), as the
L-type Ca2+ channels close while the slow delayed rectifier K+ channels are still open. The inward
rectification is modeled as a time-dependent inactivation gate. The formulation of the Na+/Ca2+

exchanger current is similar to the one used in LR model, with an additional α factor that accounts
for the higher concentration of calcium in the subspace close to the sarcolemmal membrane, where
this exchanger is operating. Also the Na+/K+ pump current (INaK), the plateau (IpCa and IpK)
and background (IbNa and IbCa) currents formulation resemble the one in the LR model. In the
calcium dynamics, three currents describe the movements of calcium ions inside the cell: Ileak is a
leakage current form the sarcoplasmic reticulum to the cytoplasm, Iup represent the pump current
raising calcium in the SR and Irel is the CICR current. In the model from 2006, a description of
calcium dynamics in the subspace (CaSS), in the cytoplasm (Cai) and in the sarcoplasmic reticulum
(CaSR) is given. In addition, two differential equations are provided to describe the changes in the
intracellular sodium Nai and potassium Ki concentrations, where the external stimulus current
Istim and the axial current flow Iax are accounted.

An important feature in this model is that all the major currents are fitted to experimental
data on human ventricular myocites, while being relatively computational simple, thus easily al-
lowing the simulation of reentrant spiral waves in a 2-dimensional sheet of epicardial tissue for the
investigation of reentrant arrhythmias.

For all the mentioned models, we refer to the original papers for the Equations of ionic currents
and gating variables [4, 80, 81] and to Appendix A.

Several ionic models are available at the CellML Physiome Model Repository in different pro-
gramming languages (https://models.physiomeproject.org/).
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Phenomenological models. Despite the accuracy of the ventricular models presented in the
previous paragraph, several models have been developed in order to investigate phenomena on
larger spatial and temporal scales, where the sub-cellular processes are ignored and only an ac-
tion potential is provided. We mention here the FitzHugh-Nagumo model [51, 52], the Rogers-
McCulloch [105] model, the Morris-Lecar model [87], the Aliev-Panfilov model [1] and the Fenton-
Karma model [49]. We give a brief insight of the first two models, as the Rogers-McCulloch model
is then employed in most of the numerical tests in Chapter 6.

The FitzHugh-Nagumo model. The FitzHugh-Nagumo model extracts the essential be-
havior of the Hodgkin-Huxley model and presents it in a simplified form [51, 52]. Thus, the
FitzHugh-Nagumo model has two variables: the first (v) is called the excitation variable, while the
second (w) is called the recovery variable.

The FitzHugh-Nagumo model can be derived from a simplified circuital model of the cell
membrane (Fig. 2.7). Here the cell consists of three components in parallel:

• a capacitor representing the membrane capacitance, with current ic;

• a nonlinear current-voltage device for the excitation variable, with a current j = F (v) with
F a cubic function in v;

• a resistor (with resistance R), inductor (L) and battery (with potential v0) in series for the
recovery current i.

Using Kirchhoff’s law ic + i + j = Iapp and noticing that the total potential difference is given
by v = v0 + Ldi/dt + Ri, we can write the equations for the behavior of this membrane circuit
diagram: 

Cm
∂v

∂t
= −i+ F (v) + Iapp,

L
∂i

∂t
= v − v0 −Ri,

where Iapp is the applied external current.

Figure 2.7: Schematic diagram of the electrical circuit of the FHN membrane model.

We notice that the current i in this model plays the role of the potassium current in the HH
model, that’s why it is called recovery current. The function F (v) is assumed to be of cubic shape.
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The FitzHugh-Nagumo equations [51] can be written in the following form:
∂v

∂t
− f(v, w) = Iapp

∂w

∂t
= g(v, w),

with Neumann boundary conditions v|∂Ω
= 0, where ∂Ω is the boundary of the domain Ω consid-

ered. The function f has a cubic form and it is often written as:

f(v, w) = c1v(v − a)(1− v)− c2w,

while g is a linear function of v and w

g(v, w) = b(v − c3w),

see for example [111]. In this ODEs system u is the excitation variable, which can be identified
with the transmembrane potential, and w is the recovery variable. Here, a, b, c1, c2 and c3 are
given parameters, which may be adjusted to simulate different cell types. This parameter choice
(reported in the caption of Fig. 2.8) gives a normalized action potential, with the resting potential
being zero and the peak potential approximately 0.9. Plots of v and w are shown in the left panel
of Figure 2.8. The action potential shown in the figure results from applying a stimulus current
Iapp of strength 0.05 mA/cm2, lasting from t = 50 to t = 60 ms.
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Figure 2.8: Transmembrane potential v (blue) and recovery variable w (lilac) computed using the FHN model
(left panel) and the Rogers-McCulloch model (right panel). Membrane parameters are taken from [111]: a = 0.13,
b = 0.013, c1 = 0.26, c2 = 0.1 and c3 = 1. The external applied current Iapp has strength 0.05 mA/cm2 lasting
from 50 ms to 60 ms. Note the hyperpolarization of v in the recovery phase.

The Rogers-McCulloch Model One detail of the original formulation by FitzHugh-Nagumo
that does not match well with physiological data is that the cell hyperpolarizes in the repolarization
phase: as a matter of fact, the waveform solution of the FHN system presents a negative excursion
of v during the refractory part of the wave (left panel of Fig. 2.8). A modification of the equations
to overcome this problem was suggested by Rogers and McCulloch [105], by modifying the last
term in the first equation: 

∂v

∂t
= c1v(v − a)(1− v)− c2vw + Iapp,

∂w

∂t
= b(v − c3w),

The right panel of Fig. 2.8 shows the action potential computed with the modified model. We see
that the undershoot in the transmembrane potential is eliminated, giving a more physiologically
realistic solution.
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2.2 The Bidomain model

So far we have reviewed a number of ionic models describing the dynamics of action potential
within a single cell. In order to describe the propagation of the electric signal in the heart, a
model for the cardiac tissue must be provided. Moreover, the mathematical model should be able
to describe the potential difference across the membrane: a natural approach would be to model
each cell as a single unit, thus enabling complete control of all facets in the intracellular and
extracellular potentials. However, this strategy would lead to a very complex and computational
inefficient model, due to the large number of cells in the heart. This motivates the continuous
approximation of the cardiac tissue as follows [27, 111].

At a cellular level, the structure of the cardiac tissue can be viewed as composed by two ohmic
conducting media, the intracellular space Ωi inside the cell and the extracellular space Ωe outside,
separated by the active membrane Γ (which also acts as an insulator between the two domains,
as otherwise there would be no potential difference across the domain). In each point of the two
domains the electric potential is defined as a quantity averaged over a small volume: consequently,
every point of the cardiac tissue is assumed to be both the intracellular and the extracellular
spaces, thus being assigned both an intracellular and an extracellular potential. From now on,
we will denote by Ω the cardiac tissue volume represented by the superposition of the intra- and
extracellular spaces.

A very common assumption is that the domains are continuous and fill the complete volume
of the heart, and that the membrane is a distributed continuum that fills the complete tissue
volume. Structural inhomogeneities in the intra- or extracellular spaces due to the presence of gap
junctions, blood vessels and collagen are generally included in the conductivity tensors Di and De

as inhomogeneous functions of space.
The cardiac tissue is composed of elongated cardiac cells, with roughly a cylidrical shape of

diameter dc ∼ 10 µm and length lc ∼ 100 µm. These cells are coupled together mainly end-to-end
and side-to-side by gap junctions, which are small channels embedded in the cell membrane pro-
viding direct intercellular communication between the internal compartments of two neighbouring
cells. Thanks to these gap junctions, ions and other molecules can pass directly from one cell to
another without entering in the extracellular space.
The cells are arranged in fibers set as laminar sheets running counterclockwise from the epicardium
to the endocardium [27, 76, 98]. In this way, at each point x of the cardiac domain Ω it is pos-
sible to define an orthonormal triplet of vectors al(x), at(x) and an(x) parallel to the local fiber
direction, tangent and orthogonal to the laminar sheets respectively.

To be able to formulate a mathematical model, we define the anisotropic conductivity tensors
Di and De of the two media as

Di,e(x) =
∑

•={l,t,n}

σi,e• a•(x)aT• (x),

where σi,e• are conductivity coefficients in the intra- and extracellular domain along the correspond-
ing direction a•, with • = l, t, n. For our theoretical purpose, we assume here that these coefficients
are constant in space.

We denote by Ji(x, t) and Je(x, t) the local average current densities per unit area in the intra-
and extracellular domains, and by im the transmembrane current per unit volume flowing across
the membrane surface Γ. If we consider a volume V enclosing x and we denote by |V | its volume,
∂V its smooth surface and by n the outward normal on ∂V , we can write the current conservation
law as

1

|V |

∫
∂V

Je · n dσ = − 1

|V |

∫
∂V

Ji · n dσ = Cm
1

|V |

∫
V

imdx,

where Cm is the surface capacitance. The equation above means that the flux flowing in the
extracellular volume must be equal and opposite to the one exiting from the intracellular volume,
and both must equal the transmembrane current across the membrane. By the divergence theorem,
it follows

divJe(x, t) = −divJi(x, t) = Cmim.
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As we made the assumption that the intra- and extracellular media are ohmic, the following
relations hold

Ji = −Di∇ui, Je = −De∇ue,

which lead to the parabolic-parabolic formulation of the Bidomain system.

Parabolic-parabolic formulation. Find the intra- and extracellular potentials ui,e: Ω× (0, T )→ R,
the transmembrane potential v = ui−ue: Ω×(0, T )→ R, the gating variables w: Ω×(0, T )→ RM ,
the ionic concentration variables c: Ω× (0, T )→ RS , such that



χCm
∂v

∂t
− div (Di∇ui) + Iion(v,w, c) = Iiapp in Ω× (0, T ),

−χCm
∂v

∂t
− div (De∇ue)− Iion(v,w, c) = Ieapp in Ω× (0, T ),

∂w

∂t
−R(v,w) = 0 in Ω× (0, T ),

∂c

dt
−C(v,w, c) = 0 in Ω× (0, T ),

nTDi,e∇ui,e = 0 in Ω× (0, T ),

(2.3)

given Ii,eapp: Ω× (0, T )→ R intra- and extracellular applied currents and initial values v0 : Ω→ R,

w0 : Ω→ RM and c0 : Ω→ (0,+∞)S

v(x, 0) = v0(x), w(x, 0) = w0(x), c(x, 0) = c0(x) in Ω.

The zero-flux boundary conditions in the system (2.3, last row) mathematically represent the
assumption that the heart is immersed in a non-conductive medium. The non-linear rection term
Iion and the ODEs system for the gatings w and the ionic concentrations c are given by the chosen
ionic membrane model.

Parabolic-elliptic formulation. It is possible to re-write the system (2.3) in terms of the
transmembrane potential v(x, t) and the extracellular potential ue(x, t)

χCm
∂v

∂t
− div (Di∇v) + div (Di∇ue) + Iion(v,w, c) = Iiapp in Ω× (0, T ),

−div (Di∇v)− div ((Di +De)∇ue) = Iiapp + Ieapp in Ω× (0, T ),

∂w

∂t
−R(v,w) = 0 in Ω× (0, T ),

∂c

dt
−C(v,w, c) = 0 in Ω× (0, T ),

nTDi∇(v + ue) = 0 in Ω× (0, T ),

nT (Di +De)∇ue + nTDi∇v = 0 in Ω× (0, T ),

(2.4)

and same initial conditions as in the parabolic-parabolic formulation.
Results on existence, uniqueness and regularity of the solution of the parabolic-parabolic system

(2.3) have been extensively studied, see for example References [27, 29, 124], while the well-
posedness of the parabolic-elliptic formulation (2.4) has been studied for example in Refs [12,
27].

2.3 The Monodomain model

The numerical solution of the Bidomain system is computationally demanding: in order to accu-
rately reproduce the steep potential propagation throughout the myocardium, very fine time and
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spatial scales are needed. Moreover, due to the pure Neumann boundary conditions, the discretized
linear system is ill-conditioned and iterative solvers such as the Conjugate Gradient (CG) method
preconditioned by standard preconditioning technique (for example, like ILU or Block Jacobi) are
not effective, thus motivating the development of more robust and efficient preconditioned solvers.

For this reason, for large scale simulations, it is often convenient to simplify the problem by
assuming equal anisotropy rate between the internal and external diffusion coefficient - i.e. by
taking De = λDi with λ constant, where the system (2.3) is equivalent to a single parabolic
reaction-diffusion equation describing the evolution of the transmembrane potential v = ui − ue,
coupled to the microscopic model through the gating variable w.

The system we consider is then the following:

χCm
∂v

∂t
− λ

1 + λ
div (Di∇v) + Iion(v, w) = Iapp in Ω× (0, T )

∂w

∂t
−R(v,w) = 0 in Ω× (0, T ),

∂c

dt
−C(v,w, c) = 0 in Ω× (0, T ),

nTDi∇v = 0 in Ω× (0, T ),

, (2.5)

where Iapp(x, t) =
Iiappσ

e
l − Ieappσ

i
l

σel + σil
is the applied current.

From the mathematical and numerical analysis point of view, this is certantly a useful reduction.
However, it has some limitations directly related to the choose of equal anisotropy: experimental
measurements of intracellular and extracellular conductivities show that this assumption is not
realistic and it is really difficult to set the parameter λ in order to obtain physiological conductiv-
ities.

2.4 Space and time discretizations

In the following Section, we provide a Finite Element discretization for the spatial variable, and
two different solution strategies for the time numerical discretization, based on a decoupling strat-
egy (such as the one proposed in Refs. [36, 88, 89, 109]) and on a coupled fully implicit time
discretization (see e.g. Ref. [90]). Common alternatives in the literature use semi-implicit time
discretizations [26, 127] and/or operator splitting [22, 23, 111], since fully implicit schemes are usu-
ally more expensive from a computational point of view if complex and high-dimensional non-linear
ionic (e.g. [35, 80, 114]) models are coupled with the Bidomain system. However, as the scope of
this Thesis is to design an efficient class of preconditioners for fully implicit time discretizations
of the Bidomain system and to avoid numerical stability constraints, both approaches (decoupled
and coupled) will be considered.

To this end, our theoretical analysis will be carried on the parabolic-parabolic formulation of the
Bidomain model (2.3) and will consider the class of phenomenological ionic model (by neglecting
the ionic concentration variables), while ionic models such as the Luo-Rudy phase one [80] and the
ten-Tusscher models [114, 115] will be only included in parallel numerical experiments in Chapter
6.

2.4.1 Weak formulation and space discretization

The current state-of-the-art on space discretization of the Bidomain model is very extensive: finite
difference methods have been investigated in Refs. [15, 94, 101, 120] as well as finite volume meth-
ods (Refs. [8, 33, 58, 66, 119]). In this Thesis we focus on Finite Element (FE) discretizations of
the Bidomain equations, in the same fashion as in [25, 26, 50, 107, 109].
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We remark that, for our theoretical purposes, we consider here a simplified ionic model, where
we denote with w both gating and ionic concentration variables.

Let the cardiac domain Ω ⊂ R3 be a bounded open Lipschitz set with Lipschitz continuous
boundary. We derive a variational formulation of the Bidomain model in the following way: con-
sider the functional spaces V = H1(Ω), Ṽ =

{
v ∈ V :

∫
Ω
v = 0

}
and define the usual L2-inner

product

(u, v) =

∫
Ω

uvdx ∀u, v ∈ L2(Ω)

and the elliptic bilinear form associated with the intra- and extracellular conductivity tensors

ai,e (u, v) =

∫
Ω

(∇u)
T
Di,e∇vdx, ∀u, v ∈ V.

Then, find ui ∈ L2(0, T ;V ), ue ∈ L2(0, T ; Ṽ ) and w ∈ L2(0, T ;L2(Ω)Nw) such that for v ∈

L2(0, T ;V ),
∂w

∂t
∈ L2(0, T ;L2(Ω)Nw) and ∀t ∈ (0, T ) it holds

χCm
∂

∂t
(v, ϕi) + ai (ui, ϕi) + (Iion(v, w), ϕi) =

(
Iiapp, ϕi

)
−χCm

∂

∂t
(v, ϕe) + ae (ue, ϕe)− (Iion(v, w), ϕe) =

(
Ieapp, ϕe

)
∂

∂t
(w,ϕw)− (R(v, w), ϕw) = 0

(2.6)

∀ϕi, ϕw ∈ V , ∀ϕe ∈ Ṽ , where Nw is the total number of gating and ionic concentration variables.

In a similar fashion, the Monodomain model can be written as: find v ∈ L2(0, T ;V ) and

w ∈ L2(0, T ;L2(Ω)Nw) such that for v ∈ L2(0, T ;V ),
∂w

∂t
∈ L2(0, T ;L2(Ω)Nw) and ∀t ∈ (0, T ) it

holds 
χCm

∂

∂t
(v, ϕ) + a (v, ϕ) + (Iion(v, w), ϕ) = (Iapp, ϕ)

∂

∂t
(w,ϕw)− (R(v, w), ϕw) = 0,

(2.7)

∀ϕ ∈ V and ∀ϕw ∈ V , where the bilinear form is a (u, v) =
∫

Ω
(∇u)

T
D∇v.

The models (2.6) and (2.7) are approximated in space by the finite element method (see e.g.
Ref. [14]), where the domain Ω is discretized by a structured quasi-uniform grid of hexaedral
isoparametric Q1 elements. Let Vh ⊂ V be the associated finite element space, with the same
basis functions {ϕp}Nh

p=1 for all variables ui,e and w and let Ai,e and M be the stiffness and mass
matrices with entries

{Ai,e}nm =

∫
Ω

(∇ϕn)
T
Di,e∇ϕm, {M}nm =

∫
Ω

ϕnϕm.

By denoting with ϕl the l-th nodal basis function, the nonlinear reaction term in (2.7) is approxi-
mated by

(Iion(v, w), ϕp) =

Nh∑
l=1

Iion(vl, wl) (ϕl, ϕp) .

With a standard Galerkin procedure, we thus need to solve at each time step, the semidiscrete
Bidomain model

χCmM
∂

∂t

(
ui
ue

)
+A

(
ui
ue

)
+

(
M Iion(v,w)

−M Iion(v,w)

)
=

(
M Iiapp

−M Ieapp

)
,

∂w

∂t
= R (v,w) ,
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where

A =

[
Ai 0

0 Ae

]
, M =

[
M −M
−M M

]
. (2.8)

Similarly, given the stiffness matrix A associated with the bilinear form a (·, ·), the semidiscrete
Monodomain system reads

χCmM
∂v

∂t
+Av +MIion(v,w) = MIapp

∂w

∂t
= R (v,w) .

For simplicity, from now on we write ∑
l

:=

Nh∑
l=1

assuming that we are adding contributions from all the Nh nodes of the discretization.

2.4.2 Time decoupling strategy

In the literature, one of the most common procedure for the time discretization is the implicit-
explicit (IMEX) scheme, where the diffusion term is treated implicitly while the remaining terms
are treated explicitly [22, 23, 26, 127]. On the other side, a fully implicit discretization in time of
the Bidomain system coupled with the gating equation while using physiological coefficients, leads
to the solution of a very nonlinear problem at each time step, which can be very expensive from
a computational point of view. The first approach we would like to present here is a decoupling
strategy, where we decouple the gating variable w from the intra and extracellular potential ui and
ue in the following manner: at the n-th time step

1. given ue = une and ui = uni (hence v), compute wn+1 by solving the membrane model(
wn+1, ϕw

)
− τ

(
R(v, wn+1), ϕw

)
= (wn, ϕw) ,

with time step τ := tn+1 − tn.

2. given w = wn+1, calculate un+1
e and un+1

i by solving the nonlinear equation Fbido(u
n+1
i , un+1

e ) = 0
derived from the Backward Euler scheme applied to the Bidomain equations, where

Fbido(u
n+1
i , un+1

e ) :=

(
Fbido,1(un+1

i , un+1
e )

Fbido,2(un+1
i , un+1

e )

)
(2.9)

=

(
χCm

(
vn+1, ϕi

)
+ τai

(
un+1
i , ϕi

)
+ τ

(
Iion(vn+1, w), ϕi

)
−
[
χCm (uni , ϕi) + τ

(
Iiapp, ϕi

)]
−χCm

(
vn+1, ϕe

)
+ τae

(
un+1
e , ϕe

)
− τ

(
Iion(vn+1, w), ϕe

)
−
[
χCm (une , ϕe) + τ

(
Ieapp, ϕe

)]) .
From now on, we will omit the dependence of Iion on the gating variable w, as it is given
from the previous step.

2.1 Use a Newton method to solve the nonlinear system (2.9); starting from the Newton
intial value (u0

i , u
0
e), at the kth iteration of the Newton loop, we solve the linear system

of equations
∑
l

∂Fbido,1
∂ui,l

(uki , u
k
e)sk+1

i,l +
∑
l

∂Fbido,1
∂ue,l

(uki , u
k
e)sk+1

e,l = −Fbido,1(uki , u
k
e)

∑
l

∂Fbido,2
∂ui,l

(uki , u
k
e)sk+1

i,l +
∑
l

∂Fbido,2
∂ue,l

(uki , u
k
e)sk+1

e,l = −Fbido,2(uki , u
k
e)

, (2.10)
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which can be explicitly written as

χCm
(
sk+1
i − sk+1

e , ϕi
)

+ τai
(
sk+1
i , ϕi

)
+

+τ

(∑
l

∂Iion

∂vl
(vk)

(
sk+1
i,l − s

k+1
e,l

)
ϕl, ϕi

)
= −Fbido,1(uki , u

k
e)

−χCm
(
sk+1
i − sk+1

e , ϕe
)

+ τae

(
sk+1
e,l , ϕe

)
+

−τ

(∑
l

∂Iion

∂vl
(vk)

(
sk+1
i,l − s

k+1
e,l

)
ϕl, ϕe

)
= −Fbido,2(uki , u

k
e)

where
sk+1
i = δuk+1

i sk+1
e = δuk+1

e

are the increments at time step k, and Iion is only dependent on uki and uke .

In matricial form, this means solving
χCm + τ

 ∂Iion

∂v
(vk,wk)

− ∂Iion

∂v
(vk,wk)

M
+ τA

(sk+1
i

sk+1
e

)
=

(
−MFbido,1(uki ,u

k
e)

−MFbido,2(uki ,u
k
e)

)
,

(2.11)
with the same stiffness and mass matrices defined in (2.8).

2.2 Update
uk+1
i = uki + sk+1

i , uk+1
e = uke + sk+1

e .

In the Monodomain case, the workflow is analogous: at the n-th time step

1. given v = vn, compute wn+1 by solving the membrane model(
wn+1, ϕw

)
− τ

(
R(v, wn+1), ϕw

)
= (wn, ϕw)

2. given w = wn+1, calculate vn+1 by solving the nonlinear equation F (vn+1) = 0 derived from
the Backward Euler scheme applied to the Monodomain equation, where

Fmono(v
n+1) := χCm

(
vn+1, ϕ

)
+ τa

(
vn+1, ϕ

)
+ τ

(
Iion(vn+1, w), ϕ

)
+

− [χCm (vn, ϕ) + τ (Iapp, ϕ)]
(2.12)

2.1 Use an exact Newton method to solve the nonlinear system (2.9); at the kth iteration
of the Newton loop, we solve the linear equation∑

l

∂Fmono
∂vl

(vk) sk+1
l = −Fmono(vk), (2.13)

i.e.

χCm
(
sk+1, ϕ

)
+ τa

(
sk+1, ϕ

)
+ τ

(∑
l

∂Iion

∂vl
(vk)sk+1

l ϕl, ϕ

)
= −Fmono(vk) ,

where
sk+1 = δvk+1

is the increment at time step k. In matricial form, we have[(
χCm + τ

∂Iion

∂v
(vk,wk)

)
M + τA

]
sk+1 = −MFmono,1(vk) (2.14)

2.2 Update
vk+1 = vk + sk+1.
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Properties of the bilinear form associated with the decoupled Bidomain and Mon-
odomain Jacobian systems

We reformulate problem (2.10) in variational form: find sk+1 =
(
sk+1
i , sk+1

e

)
∈ Vh = Vh×Vh such

that

abido(s
k+1, φ) = −Fbido,1(sk)− Fbido,2(sk), ∀φ = (ϕi, ϕe) ∈ Vh, (2.15)

where

abido(s
k+1, φ) = χCm

(
sk+1
i − sk+1

e , ϕi − ϕe
)

+ τai
(
sk+1
i , ϕi

)
+ τae

(
sk+1
e , ϕe

)
+τ

(∑
l

∂Iion

∂vl
(vk)

(
sk+1
i,l − s

k+1
e,l

)
ϕl, ϕi − ϕe

)
.

For our theoretical analysis, we need to study some properties of this bilinear form. We will need
the following lemma from Ref. [116]:

Proposition 2.1. Let Ω be a domain in Rd and Nh the set of vertices of the triangulation. Then
there exists two positive constants C and c such that

chd
∑
xj∈Nh

v2(xj) ≤ ||v||2L2(Ω) ≤ Ch
d
∑
xj∈Nh

v2(xj).

We proceed first by showing that the bilinear form (2.15) is continuous and coercive with respect
to the following norm defined ∀u = (ui, ue) ∈ Vh

|||u|||2τ := (1 + τ)||ui − ue||2L2(Ω) + τai (ui, ui) + τae (ue, ue) .

Lemma 2.1. Assume that

χCm + τ
∂Iion
∂vl

(vk) ≥ c > 0, c ∈ R+,

∀l = 1, . . . , Nh and for all k. Then the bilinear form abido(·, ·) defined in (2.15) is continuous and
coercive with respect to the norm ||| · |||τ .

Proof. We divide the proof in two parts.

(i) Continuity. Let sk+1 =
∑
l s
k+1
l ϕl, with ϕl being the l-th nodal basis function. We observe

that using the Cauchy-Schwarz inequality, we have


∑
l

∂Iion

∂vl
(vk)(sk+1

i,l − s
k+1
e,l )ϕl︸ ︷︷ ︸

=:f(x)

, ϕi − ϕe

 = (f(x), ϕi(x)− ϕe(x))

=

∫
Ω

f(x) (ϕi(x)− ϕe(x)) dΩ

≤ ||f(x)||L2(Ω)||ϕi(x)− ϕe(x)||L2(Ω).
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By using Proposition (2.1) and the triangle inequality, we get

||f ||2L2(Ω) ≤ Ch
d
∑
xj∈Nh

(∑
l

∂Iion

∂vl
(vk)(sk+1

i,l − s
k+1
e,l )ϕl(xj)

)2

= Chd
∑
xj∈Nh

(
∂Iion

∂vj
(vk)(sk+1

i,j − s
k+1
e,j )

)2

≤ Chd
∑
xj∈Nh

(
∂Iion

∂vj
(vk)

)2 ∑
xj∈Nh

(
sk+1
i,j − s

k+1
e,j

)2
= Chd

∑
xj∈Nh

(∑
l

∂Iion

∂vl
(vk)ϕl(xj)

)2

︸ ︷︷ ︸
=:f1(x) independent of sk+1

∑
xj∈Nh

(∑
l

(sk+1
i,l − s

k+1
e,l )ϕl(xj)

)2

≤ C||f1||2L2(Ω)||s
k+1||2L2(Ω) = KM ||sk+1||2L2(Ω),

(2.16)

for a positive constant KM , from which we can conclude(∑
l

∂Iion

∂vl
(vk)(sk+1

i,l − s
k+1
e,l )ϕl, ϕi − ϕe

)
≤ ||f ||L2(Ω)||ϕi−ϕe||L2(Ω)

(2.16)

≤ KM ||sk+1
i −sk+1

e ||L2(Ω)||ϕi−ϕe||L2(Ω).

The continuity simply follows

abido(s
k+1, φ) = χCm

(
sk+1
i − sk+1

e , ϕi − ϕe
)

+ τai
(
sk+1
i , ϕi

)
+ τae

(
sk+1
e , ϕe

)
+

+ τ

(∑
l

∂Iion

∂vl
(vk)(sk+1

i,l − s
k+1
e,l )ϕl, ϕi − ϕe

)

≤ χCm||sk+1
i − sk+1

e ||L2(Ω)||ϕi − ϕe||L2(Ω) + τai
(
sk+1
i , sk+1

i

) 1
2 ai (ϕi, ϕi)

1
2 +

+ τae
(
sk+1
e , sk+1

e

) 1
2 ae (ϕe, ϕe)

1
2 + τ ||sk+1

i − sk+1
e ||L2(Ω)||ϕi − ϕe||L2(Ω)

≤ C|||sk+1|||τ |||φ|||τ .

(ii) Coercivity. Thanks to the hypothesis, we observe that

χCm||sk+1
i − sk+1

e ||2L2(Ω) + τ

(∑
l

∂Iion

∂vl
(vk)(sk+1

i,l − s
k+1
e,l )ϕl, s

k+1
i − sk+1

e

)

=

(∑
l

(
χCm + τ

∂Iion

∂vl
(vk)

)
(sk+1
i,l − s

k+1
e,l )ϕl,

∑
p

(sk+1
i,p − s

k+1
e,p )ϕp

)

=
∑
l

∑
p

(
χCm + τ

∂Iion

∂vl
(vk)

)
(sk+1
i,l − s

k+1
e,l )(sk+1

i,p − s
k+1
e,p ) (ϕl, ϕp)

= (1 + τ)
∑
l

∑
p

1

1 + τ

(
χCm + τ

∂Iion

∂vl
(vk)

)
(sk+1
i,l − s

k+1
e,l )(sk+1

i,p − s
k+1
e,p ) (ϕl, ϕp)

≥ (1 + τ)min
l

[
1

1 + τ

(
χCm + τ

∂Iion

∂vl
(vk)

)]
(∑

l

(sk+1
i,l − s

k+1
e,l )ϕl,

∑
p

(sk+1
i,p − s

k+1
e,p )ϕp

)
≥ (1 + τ)||sk+1

i − sk+1
e ||2L2(Ω).

We can conclude that

abido(s
k+1, sk+1) = χCm

(
sk+1
i − sk+1

e , sk+1
i − sk+1

e

)
+ τai

(
sk+1
i , sk+1

i

)
+ τae

(
sk+1
e , sk+1

e

)
+
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+ τ

(∑
l

∂Iion

∂vl
(vk)(sk+1

i,l − s
k+1
e,l )ϕl, s

k+1
i − sk+1

e

)
≥ (1 + τ)||sk+1

i − sk+1
e ||2L2(Ω) + τai

(
sk+1
i , sk+1

i

)
+ τae

(
sk+1
e , sk+1

e

)
= |||sk+1|||2τ .

Remark 2.1. We do observe that the hyptothesis of non-negativity of Lemma 2.1 is always satisfied
for any time step τ ≤ 0.37 ms, using the Rogers-McCulloch ionic model. Indeed, numerical
computations of χCm + τ ∂Iion

∂v validate this assumption (see Fig. 2.9). Although we have not
verified the validity of the non-negativity assumption for more general membrane models, we have
numerically tested the convergence rate estimate of Section 4.1 also with the Luo-Rudy phase 1
and Ten-Tusscher ionic models (see Chap. 6).

Remark 2.2. The hypothesis of non-negativity also guarantees that the matrix of the system
(2.11) is non singular. Hence, this ensures that the local problems are well-posed.

Figure 2.9: Surface plot of χCm + τ ∂Iion
∂v

, with Cm = 1 mF
cm3 , χ = 1 and τ = 0.05 ms, which are values usually

employed in numerical experiments.

As an immediate consequence of the continuity and coercivity of the bilinear form abido, it is
possible to prove the following bounds, which will be useful in the convergence rate estimate.

We can drop the index k from now on, unless an explicit ambiguity occurs.

Lemma 2.2. Assuming that the conductivity coefficients are constant in space, the bilinear form
abido (2.15) satisfies the bounds

abido(s, s) ≤ (χCm + τKM ) ||si − se||2L2(Ω) + τσiM |si|2H1(Ω) + τσeM |se|2H1(Ω),

abido(s, s) ≥ (χCm + τKm) ||si − se||2L2(Ω) + τσim|si|2H1(Ω) + τσem|se|2H1(Ω),

where
σi,eM = max

•={l,t,n}
σi,e• , σi,em = min

•={l,t,n}
σi,e• ,

and KM , Km are constants independent of the mesh size h.
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Proof. Using the same arguments as in the continuity proof, it holds

abido(s, s) ≤ χCm||si − se||2L2(Ω) + τσiM |si|2H1(Ω) + τσeM |se|2H1(Ω)+

+ τ

(∑
l

∂Iion

∂vl
(v) (si,l − se,l)ϕl, si − se

)
≤ (χCm + τKM ) ||si − se||2L2(Ω) + τσiM |si|2H1(Ω) + τσeM |se|2H1(Ω),

where KM is the constant related to the upper bound of the reaction term, see inequalities (2.16).

Concerning the second bound, it is straightforward to show that(∑
l

∂Iion

∂vl
(v)(si,l − se,l)ϕl, si − se

)
=

(∑
l

∂Iion

∂vl
(v)(si,l − se,l)ϕl,

∑
p

(si,p − se,p)ϕp

)

=
∑
l

∑
p

∂Iion

∂vl
(v)(si,l − se,l)(si,p − se,p) (ϕl, ϕp)

≥ min
l

∂Iion

∂vl
(v)

(∑
l

(si,l − se,l)ϕl,
∑
p

(si,p − se,p)ϕp

)
≥ Km||si − se||2L2(Ω).

It follows

abido(s, s) ≥ χCm||si − se||2L2(Ω) + τσim|si|2H1(Ω) + τσem|se|2H1(Ω)+

+ τ

(∑
l

∂Iion

∂vl
(v) (si,l − se,l)ϕl, si − se

)
≥ (χCm + τKm) ||si − se||2L2(Ω) + τσim|si|2H1(Ω) + τσem|se|2H1(Ω).

Remark 2.3. This result can be easily extended to the case of conductivity coefficients almost
constant over each subdomain.

In the same fashion, we can prove analogous properties for the Monodomain Jacobian system.
Define a variational formulation of the problem (2.13): find sk+1 ∈ Vh such that

amono(s
k+1, ϕ) = −Fmono ∀ϕ ∈ Vh,

where

amono(s
k+1, ϕ) = χCm

(
sk+1, ϕ

)
+ τa

(
sk+1, ϕ

)
+ τ

(∑
l

∂Iion

∂vl
(vk)sk+1

l ϕl, ϕ

)
.

We again define a norm ||| · |||τ,mono,

∀u ∈ Vh |||u|||2τ,mono := (1 + τ)||u||2L2(Ω) + τa (u, u) ,

and we can prove that the bilinear form amono is continuous and coercive w.r.t. this norm. Also
in this case, the hypothesis of non negativity is fullfilled (see Remark 2.1).

Lemma 2.3. Assume that

χCm + τ
∂Iion
∂vl

(vk) ≥ c > 0, c ∈ R+,

∀l = 1, . . . , N and for all k. Then the bilinear form amono(·, ·) defined in (2.4.2) is continuous and
coercive with respect to the norm ||| · |||τ,mono.
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Proof. As in the Bidomain case, we divide the proof in two parts.

(i) Continuity. Let sk+1 =
∑
l s
k+1
l ϕl. Using Cauchy-Schwarz inequality, we have

∑
l

∂Iion

∂vl
(vk)sk+1

l ϕl︸ ︷︷ ︸
=:f(x)

, ϕ

 = (f(x), ϕ(x)) =

∫
Ω

f(x)ϕ(x) dΩ ≤ ||f ||L2(Ω)||ϕ||L2(Ω).

By using Proposition (2.1) and the triangle inequality, we get

||f ||2L2(Ω) ≤ Ch
d
∑
xj∈Nh

(∑
l

∂Iion

∂vl
(vk)sk+1

l ϕl(xj)

)2

≤ Chd
∑
xj∈Nh

(
∂Iion

∂vj
(vk)

)2 ∑
xj∈Nh

(
sk+1
j

)2
= Chd

∑
xj∈Nh

(∑
l

∂Iion

∂vl
(vk)ϕl(xj)

)2

︸ ︷︷ ︸
=:f1(x) independent of sk+1

∑
xj∈Nh

∑
l

sk+1
l ϕl(xj)

≤ ||f1||2L2(Ω)||s
k+1||2L2(Ω) = KM ||sk+1||2L2(Ω),

(2.17)

from which we can conclude(∑
l

∂Iion

∂vl
(vk)sk+1

l ϕl, ϕ

)
≤ ||f ||L2(Ω)||ϕ||L2(Ω)

(2.17)

≤ KM ||sk+1||L2(Ω)||ϕ||L2(Ω).

The continuity simply follows

amono(s
k+1, ϕ) = χCm

(
sk+1, ϕ

)
+ τa

(
sk+1, ϕ

)
+ τ

(∑
l

∂Iion

∂vl
(vk)sk+1

l ϕl, ϕ

)
≤ (1 + τ) ||sk+1||L2(Ω)||ϕ||L2(Ω) + τa

(
sk+1, sk+1

) 1
2 a (ϕ,ϕ)

1
2

≤ C|||sk+1|||τ,mono|||ϕ|||τ,mono.

(ii) Coercivity. Thanks to the hypothesis, we observe that

χCm
(
sk+1, sk+1

)
+ τ

(∑
l

∂Iion

∂vl
(vk)sk+1

l ϕl, s
k+1

)

=

(∑
l

(
χCm + τ

∂Iion

∂vl
(vk)

)
sk+1
l ϕl,

∑
p

sk+1
p ϕp

)

=
∑
l

∑
p

(
χCm + τ

∂Iion

∂vl
(vk)

)
sk+1
l sk+1

p (ϕl, ϕp)

= (1 + τ)
∑
l

∑
p

1

1 + τ

(
χCm + τ

∂Iion

∂vl
(vk)

)
sk+1
l sk+1

p (ϕl, ϕp)

≥ (1 + τ)min
l

[
1

1 + τ

(
χCm + τ

∂Iion

∂vl
(vk)

)](∑
l

sk+1
l ϕl,

∑
p

sk+1
p ϕp

)
≥ (1 + τ)||sk+1||2L2(Ω).
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We can conclude that

amono(s
k+1, sk+1) = χCm

(
sk+1, sk+1

)
+ τa

(
sk+1, sk+1

)
+ τ

(∑
l

∂Iion

∂vl
(vk)sk+1

l ϕl, s
k+1

)
≥ (1 + τ)||sk+1||2L2(Ω) + τa

(
sk+1, sk+1

)
= |||sk+1|||2τ,mono.

It is then easy to show the Monodomain bounds analogous to the bounds of Lemma 2.2.

Lemma 2.4. The bilinear form amono satisfy the bounds

amono(s, s) ≤ (χCm + τKM ) ||s||2L2(Ω) + τσM |s|2H1(Ω),

amono(s, s) ≥ (χCm + τKm) ||s||2L2(Ω) + τσm|s|2H1(Ω),

where
σM = max

•={l,t,n}
σ•, σm = min

•={l,t,n}
σ•,

and KM , Km are constant independent of the mesh size h.

2.4.3 Fully implicit time schemes

As alternative to the decoupling strategy proposed in the previous section as well as in References
[88, 89, 109], the second approach we propose is a fully implicit time discretization of the Bidomain
system, in the same fashion as in Ref. [90], where we deal with a monolithic nonlinear system. At
the n-th time step,

1. compute the intra- and extracellular potentials as well as the gating variables by solving the
nonlinear system F (un+1

i , un+1
e , wn+1) = 0 derived from the Backward Euler scheme applied

to the Bidomain system,

F (un+1
i , un+1

e , wn+1) :=

F1(un+1
i , un+1

e , wn+1)

F2(un+1
i , un+1

e , wn+1)

F3(un+1
i , un+1

e , wn+1)

 (2.18)

=

 χCm
(
vn+1, ϕi

)
+ τai

(
un+1
i , ϕi

)
+ τ

(
Iion(vn+1, w), ϕi

)
−
[
χCm (vn, ϕi) + τ

(
Iiapp, ϕi

)]
−χCm

(
vn+1, ϕe

)
+ τae

(
un+1
e , ϕe

)
− τ

(
Iion(vn+1, w), ϕe

)
−
[
χCm (vn, ϕe) + τ

(
Ieapp, ϕe

)](
wn+1, ϕw

)
− τ

(
R(vn+1, wn+1), ϕw

)
− (wn, ϕw)

 ,

where ϕi, ϕe and ϕw are the test functions related to ui, ue and w respectively.

2.1 Apply an exact Newton method for the solution of the nonlinear system (2.18); given
the initial guess (u0

i , u
0
e, w

0), at the kth iteration of the Newton loop, solve the linear
system of equations

∑
l

∂F1

∂ui,l
(uki , u

k
e , w

k)sk+1
i,l +

∑
l

∂F1

∂ue,l
(uki , u

k
e , w

k)sk+1
i,l +

+
∑
l

∂F1

∂wl
(uki , u

k
e , w

k)sk+1
i,l = −F1(uki , u

k
e , w

k)

∑
l

∂F2

∂ui,l
(uki , u

k
e , w

k)sk+1
e,l +

∑
l

∂F2

∂ue,l
(uki , u

k
e , w

k)sk+1
e,l +

+
∑
l

∂F2

∂wl
(uki , u

k
e , w

k)sk+1
e,l = −F2(uki , u

k
e , w

k)

∑
l

∂F3

∂ui,l
(uki , u

k
e , w

k)sk+1
w,l +

∑
l

∂F3

∂ue,l
(uki , u

k
e , w

k)sk+1
w,l +

+
∑
l

∂F3

∂wl
(uki , u

k
e , w

k)sk+1
w,l = −F3(uki , u

k
e , w

k)

, (2.19)
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explicitly written as

χCm
(
sk+1
i − sk+1

e , ϕi
)

+ τai
(
sk+1
i , ϕi

)
+ τ

(∑
l

∂Iion

∂vl
(vk, wk)

(
sk+1
i,l − s

k+1
e,l

)
ψl, ϕi

)

+τ

(∑
l

∂Iion

∂wl
(vk, wk)sk+1

w,l ψl, ϕi

)
= −F1(uki , u

k
e , w

k)

−χCm
(
sk+1
i − sk+1

e , ϕe
)

+ τae
(
sk+1
e , ϕe

)
− τ

(∑
l

∂Iion

∂vl
(vk, wk)

(
sk+1
i,l − s

k+1
e,l

)
ψl, ϕe

)

−τ

(∑
l

∂Iion

∂wl
(vk, wk)sk+1

w,l ψl, ϕe

)
= −F2(uki , u

k
e , w

k)

(
sk+1
w , ϕk

)
− τ

(∑
l

∂R

∂vl
(vk, wk)

(
sk+1
i,l − s

k+1
e,l

)
ψl, ϕw

)

−τ

(∑
l

∂R

∂wl
(vk, wk)sk+1

w ψl, ϕw

)
= −F3(uki , u

k
e , w

k),

where

sk+1
i =

∑
l

sk+1
i,l = δuk+1

i , sk+1
e =

∑
l

sk+1
e,l = δuk+1

e , sk+1
w =

∑
l

sk+1
w,l = δwk+1

are the increments at time step k and ψl the l-th nodal basis function. In matricial
form, this means solving the linear system

JFksk+1 = −F(uk), (2.20)

where

JFk =

χCmM + τAi + τM ∂Iion

∂v (vk,wk) −χCmM − τM ∂Iion

∂v (vk,wk) τM ∂Iion

∂w (vk,wk)

−χCmM − τM ∂Iion

∂v (vk,wk) χCmM + τAe + τM ∂Iion

∂v (vk,wk) −τM ∂Iion

∂w (vk,wk)

−τM ∂R
∂v (vk,wk) τM ∂R

∂v (vk,wk)
(
1− τ ∂R∂w (vk,wk)

)
M



sk+1 =

si
k+1

se
k+1

wk+1

 , F(uk) =

−MF1(uki ,u
k
e ,w

k)

−MF2(uki ,u
k
e ,w

k)

−MF3(uki ,u
k
e ,w

k)

 ,

with the same stiffness and mass matrices defined in (2.8).

2.2 Update

uk+1
i = uki + sk+1

i , uk+1
e = uke + sk+1

e , wk+1 = wk + sk+1
w .

Again, we drop the index k from now on, unless an explicit ambiguity occurs.

Properties of the symmetric part of the bilinear form associated with the Bidomain
Jacobian system

The Jacobian linear system JF in 2.20 is non-symmetric, due to the inclusion of the ionic model.
For this reason, the iterative solver we adopt must address the solution of such type of system,
such as the Generalized Minimal Residual (GMRES) method (see Ref. [106]).
Following the work in Ref. [121] (where BDDC preconditioners are applied to the solution of
non-symmetric problems arising from the discretization of advection-diffusion PDEs) in order to
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properly prove the convergence rate estimate of the solver, we need to associate to the Jacobian
system (2.20) a bilinear form and to analyze its symmetric and skew-symmetric parts.

We reformulate problem (2.19) in variational form: find s = (si, se, sw) ∈ Vh = Vh × Vh × Vh
such that

a(s, φ) = −F1(s)− F2(s)− F3(s) ∀φ = (ϕi, ϕe, ϕw) ∈ Vh, (2.21)

where

a(s, φ) = χCm (si − se, ϕi − ϕe) + (sw, ϕw) + τai (si, ϕi) + τae (se, ϕe)

+ τ

(∑
l

∂Iion

∂vl
(v, w) (si,l − se,l)ψl, ϕi − ϕe

)
+ τ

(∑
l

∂Iion

∂wl
(v, w)sw,l ψl, ϕi − ϕe

)

− τ

(∑
l

∂R

∂vl
(v, w) (si,l − se,l)ψl, ϕw

)
− τ

(∑
l

∂R

∂wl
(v, w)sw,l ψl, ϕw

)
,

being ψl the l-th nodal basis function. The symmetric and skew-symmetric parts of a(s, φ) respec-
tively are denoted by

q(s, φ) = 2χCm (si − se, ϕi − ϕe) + 2 (sw, ϕw) + 2τai (si, ϕi) + 2τae (se, ϕe)

+ 2τ

(∑
l

∂Iion

∂vl
(v, w) (si,l − se,l)ψl, ϕi − ϕe

)
− 2τ

(∑
l

∂R

∂wl
(v, w)sw,l ψl, ϕw

)

+ τ

(∑
l

∂Iion

∂wl
(v, w) (si,l − se,l)ψl, ϕw

)
+ τ

(∑
l

∂Iion

∂wl
(v, w)sw,l ψl, ϕi − ϕe

)

− τ

(∑
l

∂R

∂vl
(v, w) (si,l − se,l)ψl, ϕw

)
− τ

(∑
l

∂R

∂vl
(v, w)sw,l ψl, ϕi − ϕe

)

and

z(s, φ) =− τ

(∑
l

∂Iion

∂wl
(v, w) (si,l − se,l)ψl, ϕw

)
+ τ

(∑
l

∂Iion

∂wl
(v, w)sw,l ψl, ϕi − ϕe

)

− τ

(∑
l

∂R

∂vl
(v, w) (si,l − se,l)ψl, ϕw

)
+ τ

(∑
l

∂R

∂vl
(v, w)sw,l ψl, ϕi − ϕe

)

In the same way, the system of linear equations (2.19) correspond to the finite element problem
(2.21), we can denote byQ and Z the symmetric and skew-symmetric parts of JF, which correspond
to the bilinear forms q(·, ·) and z(·, ·) respectively:

Q =


2

(
χCmM + τAi + τM

∂Iion

∂v

)
2

(
−χCmM − τM

∂Iion

∂v

)
τM

(
∂Iion

∂w
− ∂R

∂v

)
2

(
−χCmM − τM

∂Iion

∂v

)
2

(
χCmM + τAe + τM

∂Iion

∂v

)
−τM

(
∂Iion

∂w
− ∂R

∂v

)
τM

(
∂Iion

∂w
− ∂R

∂v

)
−τM

(
∂Iion

∂w
− ∂R

∂v

)
2

(
1− τ ∂R

∂w

)
M

 ,

Z =


0 0 τM

(
∂Iion

∂w
+
∂R

∂v

)
0 0 −τM

(
∂Iion

∂w
+
∂R

∂v

)
−τM

(
∂Iion

∂w
+
∂R

∂v

)
τM

(
∂Iion

∂w
+
∂R

∂v

)
0

 ,

where we simplify the notation by writing
∂g

∂•
:=

∂g

∂•
(v,w), with g = {Iion, R} and • = {v, w}.
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In the same spirit as in the decoupled approach, it is possible to show that the symmetric
bilinear form q(·, ·) is continuous and coercive with respect to the following norm defined as

|||u|||2τ,coup := (1 + τ)||u1 − u2||2L2(Ω) + (1− τ)||u3||2L2(Ω) + τai (u1, u1) + τae (u2, u2)

∀u = (u1, u2, u3) ∈ Vh.

Lemma 2.5. Assume that

χCm + τ
∂Iion
∂vl

(v, w) ≥ c1 > 0, 1− τ ∂R
∂wl

(v, w) ≥ c2 > 0,
∂Iion
∂wl

(v, w)− ∂R

∂vl
(v, w) ≥ 0,

c1,2 ∈ R+ and ∀l = 1, . . . , N . Then the bilinear form q(·, ·) is continuous and coercive with respect
to the norm ||| · |||τ,coup.

Proof. (i) Continuity. Let s =
∑
l sl ψl. By using the Cauchy-Schwarz inequality, we have

∑
l

∂Iion

∂vl
(v, w)(si,l − se,l)ψl︸ ︷︷ ︸

=:f(x)

, ϕi − ϕe

 = (f(x), ϕi(x)− ϕe(x))

=

∫
Ω

f(x) (ϕi(x)− ϕe(x)) dΩ

≤ ||f(x)||L2(Ω)||ϕi(x)− ϕe(x)||L2(Ω).

By using Proposition 2.1 and the triangle inequality, we get

||f ||2L2(Ω) ≤ Ch
d
∑
xj∈Nh

(∑
l

∂Iion

∂vl
(v, w)(si,l − se,l)ψl(xj)

)2

= Chd
∑
xj∈Nh

(
∂Iion

∂vj
(v, w)(si,j − se,j)

)2

≤ Chd
∑
xj∈Nh

(
∂Iion

∂vj
(v, w)

)2 ∑
xj∈Nh

(si,j − se,j)2

= Chd
∑
xj∈Nh

(∑
l

∂Iion

∂vl
(v, w)ψl(xj)

)2

︸ ︷︷ ︸
=:f1(x) independent from si,se

∑
xj∈Nh

(∑
l

(si,l − se,l)ψl(xj)

)2

≤ ||f1||2L2(Ω)||si − se||
2
L2(Ω) = CIv ||si − se||2L2(Ω),

from which we can conclude(∑
l

∂Iion

∂vl
(v, w)(si,l − se,l)ψl, ϕi − ϕe

)
≤ CIv ||si − se||L2(Ω)||ϕi − ϕe||L2(Ω).

Following the same arguments, it is possible to see that similar bounds hold:(∑
l

∂R

∂wl
(v, w)sw,l ψl, ϕw

)
≤ CRw

||sw||L2(Ω)||ϕw||L2(Ω),(∑
l

∂Iion

∂wl
(v, w)(si,l − se,l) ψl, ϕw

)
≤ CIw ||si − se||L2(Ω)||ϕw||L2(Ω),(∑

l

∂R

∂vl
(v, w)(si,l − se,l) ψl, ϕw

)
≤ CRv

||si − se||L2(Ω)||ϕw||L2(Ω),
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l

∂Iion

∂wl
(v, w)sw,l ψl, ϕi − ϕe

)
≤ CIw ||sw||L2(Ω)||ϕi − ϕe||L2(Ω),(∑

l

∂R

∂vl
(v, w)sw,l ψl, ϕi − ϕe

)
≤ CRv

||sw||L2(Ω)||ϕi − ϕe||L2(Ω),

where CRw
, CIw , CRv

come out from the computation of the counterpart of the norm. The
continuity follows easily:

q(s, φ) ≤ 2 (χCm + τCIv ) ||si − se||L2(Ω)||ϕi − ϕe||L2(Ω) + 2 (1− τCRw
) ||sw||L2(Ω)||ϕw||L2(Ω)

+ 2τai (si, si)
1
2 ai (ϕi, ϕi)

1
2 + 2τae (se, se)

1
2 ae (ϕe, ϕe)

1
2

+ τ (CIw − CRv
)
[
||si − se||L2(Ω)||ϕw||L2(Ω) + ||sw||L2(Ω)||ϕi − ϕe||L2(Ω)

]
≤ C|||s|||τ,coup|||φ|||τ,coup,

provided that (CIw − CRv
) ≤ 0.

(ii) Coercivity. Thanks to the hypothesis, we observe

• χCm||si − se||2L2(Ω) + τ

(∑
l

∂Iion

∂vl
(v, w)(si,l − se,l)ψl, si − se

)

=

(∑
l

(
χCm + τ

∂Iion

∂vl
(v, w)

)
(si,l − se,l)ψl,

∑
p

(si,p − se,p)ψp

)

=
∑
l

∑
p

(
χCm + τ

∂Iion

∂vl
(v, w)

)
(si,l − se,l)(si,p − se,p) (ψl, ψp)

= (1 + τ)
∑
l

∑
p

1

1 + τ

(
χCm + τ

∂Iion

∂vl
(v, w)

)
(si,l − se,l)(si,p − se,p) (ψl, ψp)

≥ (1 + τ)min
l

[
1

1 + τ

(
χCm + τ

∂Iion

∂vl
(v, w)

)](∑
l

(si,l − se,l)ψl,
∑
p

(si,p − se,p)ψp

)
≥ (1 + τ)||si − se||2L2(Ω)

• ||sw||2L2(Ω) − τ

(∑
l

∂R

∂wl
(v, w)sw,l ψl, sw

)

=

(∑
l

(
1− τ ∂R

∂wl
(v, w)

)
sw,l ψl,

∑
p

sw,p ψp

)

=
∑
l

∑
p

(
1− τ ∂R

∂wl
(v, w)

)
sw,l sw,p (ψl, ψp)

= (1− τ)
∑
l

∑
p

1

1− τ

(
1− τ ∂R

∂wl
(v, w)

)
sw,l sw,p (ψl, ψp)

≥ (1− τ)min
l

[
1

1− τ

(
1− τ ∂R

∂wl
(v, w)

)](∑
l

sw,l ψl,
∑
p

sw,p ψp

)
≥ (1− τ)||sw||2L2(Ω)

• τ

(∑
l

∂Iion

∂wl
(v, w) (si,l − se,l)ψl, sw

)
− τ

(∑
l

∂R

∂vl
(v, w) (si,l − se,l)ψl, sw

)

= τ

(∑
l

(
∂Iion

∂wl
(v, w)− ∂R

∂vl
(v, w)

)
(si,l − se,l)ψl,

∑
p

sw,p ψp

)



2.4. SPACE AND TIME DISCRETIZATIONS 37

= τ
∑
l

∑
p

(
∂Iion

∂wl
(v, w)− ∂R

∂vl
(v, w)

)
(si,l − se,l) sw,p (ψl, ψp)

≥ τ min
l

(
∂Iion

∂wl
(v, w)− ∂R

∂vl
(v, w)

)
(si − se, sw) ≥ 0.

We conclude that

q(s, s) = 2χCm (si − se, si − se) + 2 (sw, sw) + 2τai (si, si) + 2τae (se, se)

+ 2τ

(∑
l

∂Iion

∂vl
(v, w) (si,l − se,l)ψl, si − se

)
− 2τ

(∑
l

∂R

∂wl
(v, w)sw,l ψl, sw

)

+ τ

(∑
l

∂Iion

∂wl
(v, w) (si,l − se,l)ψl, sw

)
+ τ

(∑
l

∂Iion

∂wl
(v, w)sw,l ψl, si − se

)

− τ

(∑
l

∂R

∂vl
(v, w) (si,l − se,l)ψl, sw

)
− τ

(∑
l

∂R

∂vl
(v, w)sw,l ψl, si − se

)
≥ 2(1 + τ)||si − se||2L2(Ω) + 2(1− τ)||sw||2L2(Ω) + 2τai (si, si) + 2τae (se, se)

≥ |||s|||2τ,coup.

Remark 2.4. The norm ||| · |||τ,coup is well defined, as the quantity 1−τ is always positive (typical
computational values for τ are less than 10−2).

Remark 2.5. The request (CIw − CRv ) ≤ 0 is justified in Lemma 2.6.

Remark 2.6. As in the case of the decoupled strategy described in the previous Section, the
hypothesis of non-negativity of the above Lemma is always satisfied for any time step τ ≤ 0.37 ms
if we consider the Rogers-McCulloch ionic model. Indeed, numerical computations of χCm+τ ∂Iion

∂v
validate this assumption (see Fig. (2.10), left). Regarding the other two hypothesis, it is easy to
compute analytically that 1 − τ ∂R∂wl

= 1 + η2τ ≥ 0 for any value of τ , being η2 a physiological

parameter, while the last inequality is always satisfied for any v > 2 · 10−4. This request is not
restrictive, as for those values of the transmembrane potential the tissue is almost at rest. Also in
this case we have not verified the non-negativity hypothesis of Lemma 2.5 for more complex ionic
models: possible future works should be devoted to the theoretical and numerical study of human
ventricular ionic models in this coupled solution strategy.

Figure 2.10: Surface plots of χCm + τ ∂Iion
∂v

(left) and ∂Iion
∂w
− ∂R

∂v
(right), with Cm = 1 mF

cm3 , χ = 1 and τ = 0.05
ms, which are values usually employed in numerical experiments.

As an immediate consequence of the continuity and coercivity of the symmetric bilinear form q(·, ·),
it is possible to prove the following bounds.
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Lemma 2.6. Assuming that the conductivity coefficients are constant in space, the symmetric
bilinear form q(·, ·) satisfies the bounds

q(s, s) ≤ 2
[
(χCm + τKM,I) ||si − se||2L2(Ω) + (1− τKM,R)||sw||2L2(Ω) + τσiM |si|2H1(Ω) + τσeM |se|2H1(Ω)

]
,

q(s, s) ≥ 2
[
(χCm + τKm,I) ||si − se||2L2(Ω) + (1− τKm,R)||sw||2L2(Ω) + τσim|si|2H1(Ω) + τσem|se|2H1(Ω)

]
where

σi,eM = max
•={l,t,n}

σi,e• , σi,em = min
•={l,t,n}

σi,e• ,

and KM,∗, Km,∗ are constants, independent of the subdomain diameter H and the mesh size h.

Proof. By proceeding as in the proof for the continuity, we obtain

q(s, s) ≤ 2χCm||si − se||2L2(Ω) + 2τ ||sw||2L2(Ω) + 2τσiM |si|2H1(Ω) + 2τσeM |se|2H1(Ω)+

+ 2τ

(∑
l

∂Iion

∂vl
(v, w) (si,l − se,l)ψl, si − se

)
− 2τ

(∑
l

∂R

∂wl
(v, w)sw,l ψl, sw

)

+ τ

(∑
l

∂Iion

∂wl
(v, w) (si,l − se,l)ψl, sw

)
− τ

(∑
l

∂R

∂vl
(v, w) (si,l − se,l)ψl, sw

)

+ τ

(∑
l

∂Iion

∂wl
(v, w)sw,l ψl, si − se

)
− τ

(∑
l

∂R

∂vl
(v, w)sw,l ψl, si − se

)
≤ 2χCm||si − se||2L2(Ω) + 2τ ||sw||2L2(Ω) + 2τσiM |si|2H1(Ω) + 2τσeM |se|2H1(Ω)+

+ 2τKM,I ||si − se||2L2(Ω) − 2τKM,R||sw||2L2(Ω) + 2τ (CIw − CRv
) ||si − se||L2(Ω)||sw||L2(Ω)

≤ 2
[
χCm||si − se||2L2(Ω) + τ ||sw||2L2(Ω) + τσiM |si|2H1(Ω) + τσeM |se|2H1(Ω)

+τKM,I ||si − se||2L2(Ω) − τKM,R||sw||2L2(Ω)

]
,

where KM,∗ are the constants related to the upper bound of the reaction term and where in the
last inequality we use the hypothesis of non-positivity of the quantity CIw − CRv

made in the
previous proof.

Concerning the second bound, it is straightforward to show that(∑
l

∂Iion

∂vl
(v, w)(si,l − se,l)ψl, si − se

)
=

(∑
l

∂Iion

∂vl
(v, w)(si,l − se,l)ψl,

∑
p

(si,p − se,p)ψp

)

=
∑
l

∑
p

∂Iion

∂vl
(v, w)(si,l − se,l)(si,p − se,p) (ψl, ψp)

≥ min
l

∂Iion

∂vl
(v, w)

(∑
l

(si,l − se,l)ψl,
∑
p

(si,p − se,p)ψp

)
= Km,I ||si − se||2L2(Ω)

and, in a similar way, that(∑
l

∂R

∂wl
(v, w)(si,l − se,l)ψl, si − se

)
≥ Km,R||sw||2L2(Ω),

with Km,R = min
l

∂R

∂wl
(v, w). Then the bound follows from the coercivity.

Remark 2.7. This result can be extended to the case of conductivity coefficients almost constant
over each subdomain.



Chapter 3

Dual-Primal Iterative
Substructuring Methods

The notion of Domain Decomposition (DD) methods (DDMs) is often referred to the splitting and
approximation of Partial Differential Equations (PDEs) into coupled subproblems each defined on
smaller subdomains, which form a partition of the original domain.

The subdivision can be usually performed at three different stages: at continuous level, if
several physical models are defined in different regions of the domain; at the discretization level,
by employing different approximation methods in different portion of the domain; otherwise, the
splitting can be done in the solution of algebraic systems.
As a matter of fact, in general, when modeling real life problems arising in Physics, Engineering
and Biology, it is not always possible to define an exact analytic solution of these equations: thus
it becomes necessary to adopt discrete formulations of the original problem. This leads to alge-
braic systems of equations that in case of real applications might be very large (more than 106

unknowns): in this sense, direct methods run into memory, complexity and scalability problems
and basic iterative methods can have slow convergence.

In this framework, DDMs can be viewed as iterative algorithms to find approximate solutions
of a large problem, by solving many smaller subproblems defined on single subdomains. The main
effort regards the selection of subproblems that ensure a fast rate of convergence, providing precon-
ditioners that can be accelerated by Krylov space methods. Another important feature of DDMs is
their easy applicability for development of efficient codes, which nowadays are essential on modern
supercomputers, since the divide-and-conquer approach used in DDMs makes them particularly
suitable for parallel computing. For an extensive discussion, we refer to References [39, 110, 116].

The aim of this Chapter is to introduce the basic ideas of DDMs, focusing on non-overlapping
methods; in particular on dual-primal algorithms, since the solvers proposed in this Thesis are
preconditioned by the Dual-Primal Finite Element Tearing and Interconnecting (FETI-DP) (Sec-
tion 3.2) and Balancing Domain Decomposition by Constraints (BDDC) (Section 3.3) algorithms.
These two preconditioners will be then applied to the solvers introduced in the previous Chapter
and, as they have been shown to be spectrally equivalent in Refs. [78, 83], it will be possible to
derive only one convergence rate analysis for both the proposed solvers (see next Chapters). A
closing section with useful technical tools that will be needed in the core of this Thesis ends this
Chapter.

39
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3.1 Non-overlapping Dual-Primal Algorithms

Let Ωj , j = 1, . . . , N , be a decomposition of the cardiac domain Ω, into non-overlapping subdo-
mains:

Ω =

N⋃
j=1

Ωj Ωj ∩ Ωk = ∅ if j 6= k,

∂Ωj ∩ ∂Ωk =


∅
a vertex

an edge

a face

if j 6= k.

Each subdomain is a union of shape-regular finite elements, with matching finite element nodes
on the boundaries of neighboring subdomains across the interface Γ. The interface Γ is the set of
points that belong to at least two subdomains,

Γ :=
⋃
j 6=k

∂Ωj ∩ ∂Ωk,

where ∂Ωj , ∂Ωk are the boundaries of Ωj and Ωk respectively.
We assume that subdomains are shape regular and have a typical diameter of size H whereas the
finite elements are of diameter h.

Let us denote the set of nodes on ∂Ω, ∂Ωj and Γ by ∂Ωh, ∂Ωhj and Γh, respectively. For any

interface nodal point x ∈ Γh, we can use Definition 4.1 in Ref. [116]

Nx := {j ∈ {1, . . . , N}| x ∈ Ω
h

j }, (3.1)

i.e. Nx is the set of indices of all subdomains with x in the closure of the subdomain. If x is in the
interior of a subdomain, then Nx contains only the index of that subdomain.
For any pair of interface points x, y ∈ Γh, we introduce an equivalence relation defined by

x ∼ y ⇔ Nx = Ny,

meaning that two nodes x, y belong to the same open set if and only if they share the same index
set. We can now describe the sets of nodes on edges E , on faces F , on vertices V and in the interior
I, using their equivalence classes:1.

Definition 3.1. Let x ∈ ∂Ωh ∪ ∂ΩhN , then

• x ∈ I, interior ⇐⇒ |N| = 1;

• x ∈ F , faces ⇐⇒ |N| = 2;

• x ∈ E, edges ⇐⇒ |N| > 2 or |N | = 2 and x ∈ ∂Ω;

and x ∈ V, vertices, defined as endpoints of edges.

We denote the associated local finite element spaces by Wj . It is therefore helpful to partition

Wj into the interior part W
(j)
I and the finite element trace space W

(j)
Γ , such that

Wj = W
(j)
I ⊕W (j)

Γ .

Note that we consider variables on the Neumann boundaries ∂ΩN as interior to a subdomain. We
introduce the product spaces by

W := W1 × · · · ×WN =

N∏
j=1

Wj and WΓ :=

N∏
j=1

W
(j)
Γ .

1In the definition, |N | denotes the cardinality of the set N .



3.1. NON-OVERLAPPING DUAL-PRIMAL ALGORITHMS 41

Therefore we define Ŵ ⊂W as the subspace of functions of W , which are continuous in all interface
variables between subdomains and similarly we denote by ŴΓ ⊂ WΓ, the subspace formed by the
continuous elements of WΓ.

In dual-primal methods, we iterate in the space W while requiring certain constraints to hold
throughout the iterations. In this case, these constraints are continuity constraints (named primal
constraints), that have to be chosen such that each subdomain problem becomes invertible and
such that a good convergence bound can be obtained [104].

We denote by W̃ the space of finite element functions in W , which are continuous in all primal
variables; clearly we have Ŵ ⊂ W̃ ⊂W and likewise ŴΓ ⊂ W̃Γ ⊂WΓ.

We define W
(j)
Π ⊂ W

(j)
Γ the subspace of functions which are continuous across the interface

and that will be subassembled between the subdomains that share Γ(j); this subspace (and its

elements) will be called primal. Additionally, let W
(j)
∆ ⊂W (j)

Γ contain the finite element functions
that can be discontinuous across the interface and which vanish at the primal degrees of freedom;
it will be denoted as dual.

In this work we will denote with subscripts I, ∆ and Π the interior, the dual and the primal
variables respectively.
We introduce two subspaces, WΠ and W∆, such that

WΠ =

N∏
j=1

W
(j)
Π , W∆ =

N∏
j=1

W
(j)
∆

and
WΓ = WΠ ⊕W∆.

Using this notation, we can decompose W̃Γ into a primal subspace ŴΠ which has continuous
elements only and a dual subspace W∆ which contains finite element functions which are not
continuous, i.e. we have

W̃Γ = ŴΠ ⊕W∆,

and similarly we can write
Ŵ = ŴΠ ⊕ Ŵ∆ ⊕WI .

This space subdivision induces a reordering of the degrees of freedom (dofs), which will be
divided into those internal and those on the interface (further classified into dual and primal dofs)
of each subdomain, see Fig. 3.1. From now on, we will refer interchangeably to dofs and nodal
points, as we assume they coincide.

In dual-primal methods, this reordering leads to consider a reordered system matrix. Define the
local stiffness matrices

K(j) =

[
K

(j)
II K

(j)T
ΓI

K
(j)
ΓI K

(j)
ΓΓ

]
=

K
(j)
II K

(j)
I∆ K

(j)T
ΠI

K
(j)
∆I K

(j)
∆∆ K

(j)T
Π∆

K
(j)
ΠI K

(j)
Π∆ K

(j)
ΠΠ

 .
and

KII = diagj=1,...,NK
(j)
II , K∆I = diagj=1,...,NK

(j)
∆I , K∆∆ = diagj=1,...,NK

(j)
∆∆,

KΠI = diagj=1,...,NK
(j)
ΠI , KΠ∆ = diagj=1,...,NK

(j)
Π∆, KΠΠ = diagj=1,...,NK

(j)
ΠΠ.

Then the linear system Ku = f can be written as

K =

KII KT
∆I KT

Π∆

K∆I K∆∆ KT
∆Π

KΠI KΠ∆ KΠΠ

 .



42 CHAPTER 3. DUAL-PRIMAL ITERATIVE SUBSTRUCTURING METHODS

Figure 3.1: A schematic diagram of domain subdivision into four subdomains and splitting of degrees of freedom
(dofs): interior (blue squares), dual (red circles) and primal (green triangles) dofs.

As in many iterative substructuring algorithms, the first step is to eliminate all the interior vari-
ables, obtaining the unassembled Schur complement SΓ

SΓ = KΓΓ −KΓIK
−1
II K

T
ΓI =

[
K∆∆ KT

∆Π

KΠ∆ KΠΠ

]
−
[
K∆I

KΠI

]
K−1
II

[
KT

∆IK
T
ΠI

]
. (3.2)

Then, we can write ŜΓ = RTΓSΓR
T
Γ , with RΓ being the direct sum of local restriction operators R

(j)
Γ

(which returns the local interface components). Applying the same idea to the right hand-side f ,

ĝΓ = f̂Γ −KΓIK
−1
II fI , f =

[
fI
f̂Γ

]
, f̂Γ = RTΓfΓ,

the resulting system which we need to solve is

ŜΓuΓ = ĝΓ. (3.3)

Once this problem is solved, the solution uΓ on the interface is used to recover the solution on the
internal degrees of freedom by

uI = K−1
II (gI −KIΓuΓ) .

Restriction operators and scaling. Before going into the details of the proposed precon-
ditioners, we need to introduce some operators needed for their definition. In particular, when
working with these methods, an interface averaging is needed in order to ensure a correct continu-
ity of the global solution. Let us define the restriction operators

R
(j)
∆ : W∆ →W

(j)
∆ , RΓ∆ : WΓ →W∆,

R
(j)
Π : ŴΠ →W

(j)
Π , RΓΠ : WΓ → ŴΠ,

and the direct sums R∆ = ⊕R(j)
∆ , RΠ = ⊕R(j)

Π and R̃Γ = RΓΠ ⊕RΓ∆, which maps WΓ into W̃Γ.

In this Thesis we will consider mainly two types of scaling, the ρ-scaling and the deluxe scaling;
for further details see References [7, 38, 116].
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The ρ-scaling takes into account the standard counting functions of the Neumann-Neumann
methods and in particular their pseudoinverses, which can be defined for the Bidomain model as,
∀x ∈ Γ(j)

δi,e †j (x) =
σi,e

(j)

M∑
k∈Nx

σi,e
(k)

M

, σi,e
(j)

M = max
•={l,t,n}

σi,e
(j)

• , δw, †j (x) =
1

|Nx|
, (3.4)

where Nx is the set of indices of all subdomains with x in the closure of the subdomain, defined in
Eq. (3.1). The following property (see [116]) holds

σi,e
(j)

M

(
δi,e †k

)2

≤ min
{
σi,e

(j)

M , σi,e
(k)

M

}
.

Conversely the deluxe scaling, recently introduced by [38], defines the average w̄ = EDw
differently for the equivalence classes of faces or edges.
We define the deluxe scaling for classes F and E in the following way. We recall that the class
of faces F contains all the nodes shared by two elements. Suppose that F is shared by Ωj and

Ωk; let S
(j)
F and S

(k)
F be the principal minors obtained from S

(j)
Γ and S

(k)
Γ by removing all the

contributions that are not related to the degrees of freedom of the face F .
Let uj,F = RFuj be the restriction of uj to the face F through the restriction operator RF ;

the deluxe average across F is then defined as (see [7])

ūF =
(
S

(j)
F + S

(k)
F

)−1 (
S

(j)
F uj,F + S

(k)
F uk,F

)
.

Note that we have denoted with ūj,F the mean value of uj over the face F , while, if we omit the
index j, we denote the deluxe average.

The action of (S
(j)
F +S

(k)
F )−1 can be computed by solving a Dirichlet problem over the two subdo-

mains, by extending to zero the right-hand side entries associated with the interior nodes.

If we consider an edge E , where a node is common to at least two elements, the deluxe average
across E is defined in a similar manner.
Suppose for simplicity that E is shared by only three subdomains with indices j1, j2 and j3; the
extension to more than three subdomains is immediate. Let uj,E = REuj be the restriction of uj
to the edge E through the restriction operator RE and define

S
(j123)
E = S

(j1)
E + S

(j2)
E + S

(j3)
E ;

the deluxe average across an edge E is given by

ūE =
(
S

(j123)
E

)−1 (
S

(j1)
E uj1,E + S

(j2)
E uj2,E + S

(j3)
E uj3,E

)
.

The relevant equivalence classes, involving the substructure Ωj , will contribute to the values of ū.

These contributions will belong to ŴΓ, after being extended by zero to Γ\F or Γ\E ; the sum of all
contributions will result in RT∗ ū∗. We then add the contributions from the different equivalence
classes to obtain

ū = EDu = uΠ +
∑

∗={F,E}

RT∗ ū∗,

where ED is a projection. Its complementary projection is given by

PD : W̃Γ → W̃Γ PDu := (I − ED)u = u∆ −
∑

∗={F,E}

RT∗ ū∗. (3.5)

Lastly, for each subdomain Ωj we define the scaling matrix

D(j) =


D

(j)
∗k1

. . .

D
(j)
∗kj

 , ∗ = {F , E} (3.6)
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with k1, . . . , kj ∈ Ξ∗j set containing the indices of the subdomains that share the face F or the
edge E and where the diagonal blocks are given by

D
(j)
F = (S

(j)
F + S

(k)
F )−1S

(j)
F or D

(j)
E = (S

(j1)
E + S

(j2)
E + S

(j3)
E )−1S

(j1)
E .

Thanks to the definition of the scaling matrix, we define the scaled local restriction operators

R
(j)
D,Γ = D(j)R

(j)
Γ , R

(j)
D,∆ = R

(j)
Γ∆R

(j)
D,Γ,

RD,∆ as direct sum of R
(j)
D,∆ and the global scaled operator R̃D,Γ = RΓΠ ⊕RD,∆RΓ∆.

3.2 Dual-Primal Finite Element Tearing and Interconnect-
ing (FETI-DP)

The Finite Element Tearing and Interconnecting Dual-Primal preconditioner was proposed first
in Ref. [48] with vertex constraints as an alternative to one-level and two-level FETI, introduced
in References [42, 43, 45–47]. It has been then extended to 3D in Reference [46]; References [85]
provide a convergence bound in 2D, while a complete 3D dissertation of both algorithm and bound
are provided in Refs. [69, 72–74].

This class of methods is based on the transposition from the Schur problem on ŴΓ to a mini-
mization problem on W̃Γ, with continuity constraints on dual degrees of freedom. They have been
applied in several contexts, from three-dimensional elliptic problems with heterogeneous coeffi-
cients [73] to linear elasticity problems [72, 104]. In the biomechanics field, applications of FETI
and FETI-DP have been extensively studied in Refs. [2, 13, 71, 127].

We present here an algebraic formulation of FETI-DP algorithm, following Refs. [72, 104].
Starting from the algebraic system Ku = f , we denote the unknows on each subdomain by

u(j). For each subdomain Ωi for j = 1, . . . , N, we can distinguish between interior, dual and primal
contribution in the stiffness matrix, the unknowns and the right-hand side vectors:

K(j) =

K
(j)
II K

(j)T
∆I K

(j)T
ΠI

K
(j)
∆I K

(j)
∆∆ K

(j)T
Π∆

K
(j)
Π K

(j)
Π∆ K

(j)
ΠΠ

 , u(j) =

u
(j)
I

u
(j)
∆

u
(j)
Π

 , f (j) =

f
(j)
I

f
(j)
∆

f
(j)
Π

 .
Note that any variable on the Neumann boundary ∂ΩN is considered to be interior to a subdo-
main. Unknowns on the Dirichlet boundary ∂ΩD are usually eliminated upfront and do not need
to be considered. We observe that in a structured decomposition (as considered in this Thesis),
the vertex unknowns are all degrees of freedom which are associated with nodes shared by four or
eight subdomains, as in Fig. 3.1.

We introduce the following notation

uB =

[
uI
u∆

]
, u

(j)
B =

[
u

(j)
I

u
(j)
∆

]
, fB =

[
fI
f∆

]
, f

(j)
B =

[
f

(j)
I

f
(j)
∆

]
.

Let us now partition the stiffness matrix K, the right-hand side f and the unknowns vector u
according to the different sets of unknowns:

KBB =


K

(1)
BB

. . .

K
(N)
BB

 , K
(j)
BB =

[
K

(j)
II K

(j)T
∆I

K
(j)
∆I K

(j)
∆∆

]
,

KΠB =
[
K

(1)
ΠB . . . K

(N)
ΠB

]
, K

(j)
ΠB =

[
K

(j)
ΠI K

(j)
Π∆

]
.
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Observe that KBB is a block-diagonal matrix. If we subassembly with respect to the primal
displacement vectors, we obtain

K̃ =

[
KBB K̃T

ΠB

K̃T
ΠB K̃T

ΠΠ

]
, K̃ΠB =

[
K̃

(1)
ΠB , . . . , K̃

(N)
ΠB

]
,

where, for j = 1, . . . , N ,

K̃
(j)
ΠB = R

(j)T
Π K

(j)
ΠB , K̃ΠΠ =

N∑
j=1

R
(j)T
Π K

(j)
ΠΠR

(j)
Π .

We note that K̃ is block diagonal and coupling is introduced only through the primal variables.

To enforce continuity on the remaining interface variables u
(j)
∆ , we define a discrete jump operator

B = [0 B∆] and a set of Lagrange multipliers λ ∈ Λ = range(B) such that

B uB = B∆u∆0. (3.7)

Since we assume that finite element nodes match across the interface Γ, the entries of the matrix
B will be chosen between 0, 1 and −1.
For example, consider the domain Ω in Fig. 3.2: a suitable choice for the entries of B is to assign

Ω1

B1 = 1
Ω2

B2 = −1

Ω3

B3 = −1
Ω4

B4 = 1

Figure 3.2: A generic domain subdivided into 4 subdomains.

values 1, −1, −1 and 1 for subdomains Ω1, Ω2, Ω3 and Ω4 respectively.

The starting algebraic system Ku = f can be reformulated as the following saddle point problem:
find (u, λK) ∈ W̃ × Λ, such thatKBB K̃T

ΠB BT

K̃ΠB K̃ΠΠ 0

B 0 0

uBũΠ

λK

 =

fBf̃Π

0

 . (3.8)

We emphasize that BuB = 0 holds if and only if uB ∈ Ŵ , which means that the columns of B
associated with primal degrees of freedom are null. As K̃ is invertible on Λ, the degrees of freedom
in W̃Γ can be eliminated by a block-Cholesky factorization, reducing the above system to a problem
only in the Lagrange multipliers unknowns

FKλK = dK , (3.9)

where

FK = BK−1
BB

(
BT + K̃T

ΠBS̃
−1
ΠΠK̃ΠBK

−1
BBB

T
)
,

dK = BK−1
BB

(
fB + K̃T

ΠBS̃
−1
ΠΠ

(
f̃Π − K̃ΠBK

−1
BBfB

))
,

S̃ΠΠ = K̃ΠΠ − K̃ΠBK
−1
BBK̃

T
ΠB .
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The symmetric positive definite Schur complement S̃ΠΠ represents the FETI-DP coarse problem
and it introduces the global coupling across the subdomains. For computational purposes, we
note that the matrix FK is never computed explicitly, as it can be retrieved from the solution
of two linear systems; moreover, the inverse matrices that appear are never calculated, as they
are only needed in terms of matrix action on a vector, and direct solvers such as Cholesky or LU
factorization are used. After the solution λK is found, we can retrieve the solution on W̃Γ as

u = K̃−1
(
f̃ −BTλK

)
.

Usually, Eq. (3.9) is preconditioned by the FETI-DP preconditioner M−1: in order to properly
define this preconditioner, we introduce a scaled jump operator BD.
This operator is obtained by applying D(j) : Λ → Λ scaling matrices that act on the space of
the Lagrange multipliers, which are given by matrix (3.6) if the deluxe scaling is used or by the
pseudoinverses Eq. (3.4) if the standard ρ-scaling is used. In both cases, the scaling is chosen such
that the linear mapping PD = BTDB becomes a projection.

Then, a quasi-optimal preconditioner for the FETI-DP algorithm is given by

M−1 = BD K̃ BTD.

In this way, FETI-DP method can be considered as a standard preconditioned conjugate gradient
algorithm for solving the preconditioned system

M−1FKλK = M−1dK ,

see Ref. [116]. It can be implemented with the recursive Algorithm (1).
In order to be consistent with the notation in the next Chapter, we reformulate the FETI-DP

Algorithm 1 FETI-DP method as a PCG method

Require: r0 = d− Fλ0;
for k = 1, . . . until convergence do

Precondition zk−1 = M−1rk−1, then

βk =
< zk−1, rk−1 >

< zk−2, rk−2 >
, [β1 = 0]

pk = zk−1 + βkpk−1, [p1 = z0]

αk =
< zk−1, rk−1 >

< pk, Fpk >
λk = λk−1 + αkpk

rk = rk−1 − αkFpk
end for

preconditioner for the Schur complement problem S̃ΓuΓ = g̃Γ.
By eliminating the interior unknowns, system (3.8) is equivalent to[

S̃Γ BTΓ
BΓ 0

] [
uΓ

λ

]
=

[
g̃Γ

0

]
, uΓ ∈ W̃Γ, (3.10)

where S̃Γ is the partially assembled Schur complement matrix, BΓ is the restriction to the interface
of the jump operator B

BΓ = [B∆ 0Π] .

This saddle point problem can be also viewed as a reformulation of the minimization problem on
W̃Γ

find uΓ ∈ W̃Γ


1

2
uTΓ S̃ΓuΓ − uTΓ g̃Γ

BΓuΓ = 0
.
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In the same manner, the system (3.10) can be reduced to a problem only in the Lagrange multipliers
by eliminating the interface dofs by a block-Cholesky factorization: this leads to the algebraic
system

F λ = d, F = BΓS̃
−1
Γ BTΓ , d = BΓS̃

−1
Γ g̃Γ,

and the FETI-DP preconditioner for the system above is given by

M−1
FETI-DP = BD,ΓS̃ΓB

T
D,Γ,

where BD,Γ is the scaled restricted jump operator.

3.3 Balancing Domain Decomposition with Constraints (BDDC)

The Balancing Domain Decomposition with Constraints (BDDC) procedure is a two-level precon-

ditioner for the Schur complement system (3.3) ŜΓuΓ = ĝΓ.
BDDC algorithms were initially proposed by [37] for the solution of symmetric, positive definite
problems, but its formulation can be equally applied to non-symmetric problems, as done in [121]
for advection-diffusion equations. This preconditioner has been applied to a large variety of prob-
lems, such as 3D problems in H(curl) (see e.g. [38]), Raviart-Thomas vector fields ([93]) and more
recently to Isogeometric Analysis ([5–7]) and Virtual Elements Method (Refs. [10, 78]).

A very interesting feature which has been proved in References [78, 83] is the spectral equiva-
lence with FETI-DP: if the same primal space is considered, it has been demonstrated that both
preconditioners share the same eigenvalues, except for those equal to 0 and 1. This means that the
rate of convergence is essentially the same, allowing us to carry out only one convergence analysis.

As previously done for FETI-DP, we partition the degrees of freedom of the interface Γ into those
internal (I), dual (∆) and primal (Π) dofs, and partition the local stiffness matrices as

K(j) =

[
K

(j)
II K

(j)T
ΓI

K
(j)
ΓI K

(j)
ΓΓ

]
=

K
(j)
II K

(j)
I∆ K

(j)T
ΠI

K
(j)
∆I K

(j)
∆∆ K

(j)T
Π∆

K
(j)
ΠI K

(j)
Π∆ K

(j)
ΠΠ

 .
Let S̃Γ be the partially assembled Schur complement obtained from Eq. (3.2) S̃Γ = R̃ΓSΓR̃

T
Γ ; then

we define the BDDC preconditioner using the scaled restriction operators as

M−1
BDDC = R̃TD,ΓS̃

−1
Γ R̃D,Γ.

The action of S̃Γ on any vector uΓ of W̃Γ can be computed as

K
(1)
II K

(1)T
∆I K̃

(1)T
ΠI

K
(1)
∆I K

(1)
∆∆ K̃

(1)T
Π∆

. . .
...

K
(N)
II K

(N)T
∆I K̃

(N)T
ΠI

K
(N)
∆I K

(N)
∆∆ K̃

(N)T
ΠI

K̃
(1)
ΠI K̃

(1)
Π∆ · · · K̃

(N)
ΠI K̃

(N)
ΠI K̃ΠΠ





u
(1)
I

u
(1)
∆
...

u
(N)
I

u
(N)
∆

uΓ


=



0

R
(1)
∆ RΓ∆S̃ΓuΓ

...

0

R
(N)
∆ RΓ∆S̃ΓuΓ

RΓΠS̃ΓwΓ


.

The inverse of the partially assembled Schur complement S̃Γ can be evaluated with a block-Cholesky
elimination procedure

S̃−1
Γ = R̃TΓ∆

 N∑
j=1

[
0 R

(j)T
∆

] [ K(j)
II K

(j)
I∆

K
(j)T
I∆ K

(j)
∆∆

]−1 [
0

R
(j)
∆

] R̃Γ∆ + ΦS−1
ΠΠΦ.
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In this way, the first term is the sum of local solvers on each substructure Ωj , with Neumann data
on local dual edges, while the latter is a coarse solver for the primal variables where

SΠΠ =

N∑
j=1

R
(j)T
Π

K(j)
ΠΠ −

[
K

(j)T
IΠ K

(j)T
∆Π

] [ K(j)
II K

(j)
I∆

K
(j)T
I∆ K

(j)
∆∆

]−1 [
K

(j)
IΠ

R
(j)
∆Π

]R
(j)
Π ,

is the primal problem and

Φ = RTΓΠ −RTΓ∆

N∑
j=1

[
0 R

(j)T
∆

] [ K(j)
II K

(j)
I∆

K
(j)T
I∆ K

(j)
∆∆

]−1 [
K

(j)
IΠ

R
(j)
∆Π

]
R

(j)
Π ,

is the matrix which maps the primal degrees of freedom to the interface variables. The columns of Φ
represent the coarse basis functions defined as the minimum energy extension into the subdomains
and subject to the chosen set of primal constraints.

3.4 Preliminary technical results

We assume that the cardiac domain Ωj ∈ R3 is a bounded domain with Lipschitz continuous bound-
ary; moreover suppose Γ(j) ⊆ ∂Ωj has non-vanishing two-dimensional measure and is relatively
open with respect to ∂Ωj .

We recall the following definition, see [14, Definition 7.5.25] :

Definition 3.2. The fractional order Sobolev semi-norm | · |H1/2(Γ(j)) is defined by

|u|H1/2(Γ(j)) =

∫∫
Γ(j)

|u(x)− u(y)|2

|x− y|2
dsxdsy,

where ds is the differential of the arc-length. The space H1/2(Γ(j)) consists of functions u ∈ L2(Γ(j))
such that |u|H1/2(Γ(j)) <∞, and we define the norm

||u||2H1/2(Γ(j)) = ||u||2L2(Γ(j)) + |u|2H1/2(Γ(j)).

Furthermore, we define the space

H
1/2
00 (Γ(j)) =

{
u ∈ H1/2(Γ(j)) : Eextu ∈ H1/2(∂Ωj)

}
,

as the set of all functions u ∈ H1/2(Γ(j)) for which the zero extension from Γ(j) to ∂Ωj by the
extension operator Eext

Eext : Γ(j) −→ ∂Ωj Eextu =

{
0 on ∂Ωj \ Γ(j),

u on Γ(j),

remains bounded in || · ||H1/2(Γ(j)). This space is equipped with the norm

||u||2
H

1/2
00 (Γ(j))

:= ||u||2H1/2(Γ(j)) +

∫
Γ(j)

u2d(x; Γ(j))−1dx,

where d(x; Γ(j)) denotes the distance between x and the boundary Γ(j). We observe that if
u ∈ H1/2(∂Ω) vanishes almost everywhere on ∂Ω \ Γ, then ||u||H1/2(∂Ω) and ||u||

H
1/2
00 (Γ)

are equiv-

alent norms.

We also need to introduce the usual Lagrangian interpolator operator

Ih : C0(Ωj) −→ Vh(Ωj),
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and define the discrete harmonic extensions of the Laplacian operator on ∂Ωj

u = H∆
j uΓ ⇔


−∆u = 0 in ∂Ωj ,

u = uΓ on Γ(j)

u = 0 on ∂Ωj\Γ(j).

Notation We will write with A . B whenever A ≤ cB with c constant independent of the diam-
eter H, the mesh size h, the time step τ and the conductivity coefficients; similarly, we will write
A ∼ B whenever A . B and B . A.

We recall some useful technical results that will be employed in the proofs of the convergence
rate estimates. These results can be found in the appendix A of [116].

Proposition 3.1 (Poincaré-Friedrichs inequality). Let Ω be Lipschitz continuous with diameter
H. Then, there exists a constant Cf , that depends only on the shape of Ω but not on its size, such
that

||u||2L2(Ω) ≤ CfH
2|u|2H1(Ω),

for all u ∈ H1(Ω) with vanishing mean value on Ω.

Lemma 3.1. Let Γ ⊂ ∂Ω. There exists two constants, such that for u ∈ H1/2
00 (Γ)

c||Eextu||2H1/2(∂Ω) ≤ ||u||
2

H
1/2
00 (Γ)

≤ C||Eextu||2H1/2(∂Ω).

Theorem 3.1 (Trace theorem). Let Ωj be a polyhedral domain, then

|u|2H1/2(Γ(j)) ∼ |H
∆
j uΓ|2H1(Ωj).

Also the following Lemmas are from the same reference, [116, Lemmas 4.16, 4.17 and 4.19],
[116, Lemma 4.26] and [116, Lemma 4.30].

Lemma 3.2 (Edge estimate). Let E be an edge of ∂Ωj and θE be the finite element function

θE ∈ Vh(Ωj), θE =

{
1 on nodal points of E
0 elsewhere.

Then, ∀u ∈ Vh(Ωj),

|Ih(θEu)|2H1/2(Γ(j)) ≤ C||u||
2
L2(E),

||u||2L2(E) ≤ C
(

1 + log
H

h

)
||u||2H1(Ωj),

||u− ūE ||2L2(E) ≤ C
(

1 + log
H

h

)
|u|2H1(Ωj),

where ūE is the average value of u over E. The last two inequalities hold also in case the norm and
seminorm on the right-hand side are replaced with the H1/2(Ωj) norm and seminorm respectively.

Lemma 3.3 (Face estimate). Let F be a face of ∂Ωj and θF be the finite element function

θF ∈ Vh(Ωj), θF =

{
1 on nodal points of F
0 elsewhere.

Then, ∀u ∈ Vh(Ωj),

|Ih(θF (u− ūF ))|2H1/2(F) ≤ C
(

1 + log
H

h

)2

|u|2H1/2(∂Ωj).
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where ūF is the average value of u over F . The same bound holds if the seminorm on the left-hand

side is replaced by the norm of H
1/2
00 (F). It follows [116, Lemma 6.36]

||θF (ūi,F − ūj,F )||2
H

1/2
00 (F)

≤ C
(

1 + log
H

h

)2 (
|ui|2H1/2(F) + |uj |2H1/2(F)

)
.

Lemma 3.4. Let ūF and ūE be the average of u over F and E respectively. Then,

(ūF )
2 ≤ CH−2||u||2L2(F)

(ūE)
2 ≤ CH−1||u||2L2(E)

where H is the subdomain diameter.



Chapter 4

Newton-Krylov Dual-Primal
methods for the Decoupled
Bidomain problem

As already introduced at the end of Chapter 2, two strategies arise when dealing with fully implicit
time discretizations: a staggered, or decoupled, approach, where for each time step the ionic model
is solved first and then its solution is used for solving and updating the Bidomain system; a
monolithic, or coupled, approach, where the nonlinear system (including the ionic variables) is
solved as a unique problem. In the same Chapter, we proved Lemma 2.2, which provides an upper
and a lower bound for the bilinear form associated with the decoupled Jacobian Bidomain system.
This Lemma is fundamental for the theoretical estimate for the condition number of the operator
proposed in Chap. 2, preconditioned by FETI-DP and BDDC preconditioners (Chap. 3).

In this Chapter, after the introduction of local bilinear forms defined on each subdomain, we
prove an upper bound for the projection operator, both scaled by the standard ρ-scaling and by
the deluxe scaling. Then, we conclude the Chapter with the estimate of the condition number,
both in case of FETI-DP and BDDC preconditioners, showing that the same bound holds, as they
have been proved to be spectrally equivalent in Refs. [78, 83].

The main results of this Chapter have been submitted for publication and a preprint version
can be found in Reference [65]. We notice that a similar bound for the projection, while using
the ρ-scaling, has been developed in Reference [127], where a semi-implicit time discretization was
applied: in our approach the main difficulty is given by the presence of the nonlinear reaction term
Iion, which influences the elliptic bound in Lemma 2.2.

Local bilinear forms. In the non-overlapping framework, the global system matrix (see Eq.
(2.11) and (2.14) for the decoupled problem) is never formed explicity, but a local version with the
same structure is assembled on each subdomain, by restricting the integration set from Ω to Ωj

a
(j)
i,e (ϕ,ψ) =

∫
Ωj

D
(j)
i,e∇ϕ · ∇ψ,

and by defining the local bilinear forms (i.e. the local analog of the global forms defined in (2.15),
(2.4.2))

a
(j)
bido(s, φ) = χCm (si − se, ϕi − ϕe)|Ωj

+ τai (si, ϕi)
(j)

+ τae (se, ϕe)
(j)

+τ

(∑
l

∂Iion

∂vl
(vk) (si,l − se,l)ϕl, ϕi − ϕe

)
|Ωj

,

a(j)
mono(s, ϕ) = χCm (s, ϕ)|Ωj

+ τa (s, ϕ)
(j)

+ τ

(∑
l

∂Iion

∂vl
(vk)slϕl, ϕ

)
|Ωj

,
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where (· , ·)|Ωj
denotes the restriction of the L2-inner product on the j-th subdomain.

These definitions are admissible here, as the proposed theory allows constant non-negative dis-
tribution of the conductivity coefficients among all subdomains, with large jumps aligned to the
interfaces.

Since the Jacobian Bidomain (Monodomain) system 2.11 (2.14) is symmetric positive semidef-

inite (definite), the Schur complement matrix ŜΓ is also symmetric positive semidefinite (definite).
Thus, it is possible to apply iterative methods for symmetric positive definite systems, such as the
Conjugate Gradient method, taking care to start and keep the iteration in the orthogonal space of
the possible operator kernel.

The following results will be stated in terms of the Jacobian Bidomain problem, as the case of
the Jacobian Monodomain problem is analogous.

We define the Jacobian Bidomain local discrete harmonic extension operators as follows:

Hj : W
(j)
Γ −→W (j), Hjw(j)

Γ =

{
−K(j)−1

II K
(j)
IΓw

(j)
Γ on W

(j)
I

w
(j)
Γ on W

(j)
Γ

.

It is appropriate to notice that the local discrete harmonic extension of a constant vector is the
vector itself. From now on, we will use the componentwise notation

Hjw(j)
Γ =

(
Hijw

(j)
Γ ,Hejw

(j)
Γ

)
,

where the superscripts i, e denote the usual intra- and extracellular component.
Moreover, it would be useful to remark some useful properties between this object and the

Schur complement matrices (see [116]). First, the Schur bilinear form can be defined through the
action of the Schur complement matrix and the Jacobian bilinear form

a
(j)
bido(Hju

(j)
Γ ,Hjv(j)

Γ ) = v
(j)
Γ S

(j)
Γ u

(j)
Γ = s(j)(u

(j)
Γ , v

(j)
Γ ).

From the definition of S
(j)
Γ , it follows immediately that the bilinear form s(j)(·, ·) is symmetric

and coercive. Thanks to Lemma 2.2 it is possible to bound the energies related to the local Schur
complements and prove that

s(j)(u
(j)
Γ , u

(j)
Γ ) = min

u
(j)
Γ

a
(j)
bido(Hju

(j)
Γ ,Hju(j)

Γ ), (4.1)

which allows us to consider the corresponding discrete harmonic extensions, instead of working
with functions defined on Γ.

4.1 Convergence rate estimate for the decoupled Bidomain
and Monodomain systems

Here we first prove our main result for the projection operator while using the standard ρ-scaling,
then we show the analogous result for the deluxe scaling.

Lemma 4.1. Assume that the primal space is spanned by the vertex nodal finite element functions
and the edge cutoff functions. Let the Bidomain projection operator be scaled by either the standard
ρ-scaling or the deluxe scaling. Then

|PDu|2SΓ
. max
k=1,...,N
?=i,e

τσ
?(k)
M +H2 (χCM + τKM )

τσ
?(k)
m

(
1 + log

H

h

)n
|u|2SΓ

,

∀u ∈ W̃Γ, with n = 2 in case of ρ-scaling, n = 3 in case of deluxe-scaling.
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By using the same arguments as in the Bidomain case, it is easy to extend this result also to
the Monodomain Jacobian system.

Lemma 4.2. Assume that the primal space is spanned by the vertex nodal finite element functions
and the edge cutoff functions. Let the Monodomain projection operator be scaled by the standard
ρ-scaling or the deluxe scaling. Then

|PDu|2SΓ
. max
k=1,...,N

τσ
(k)
M +H2 (χCM + τKM )

τσ
(k)
m

(
1 + log

H

h

)n
|u|2SΓ

holds ∀u ∈ W̃Γ, with n = 2 in case of ρ-scaling, n = 3 in case of deluxe-scaling.

4.1.1 Proof of Lemma 4.1 with ρ-scaling

Using the ρ-scaling, we will need the standard counting functions of the Neumann-Neumann meth-
ods and in particular their pseudoinverses, which can be defined for the Bidomain model as follows:
∀x ∈ Γ(j)

δi,e †j (x) =
σi,e

(j)

M∑
k∈Nx

σi,e
(k)

M

, σi,e
(j)

M = max
•={l,t,n}

σi,e
(j)

• ,

and the following property (see [116]) holds

σi,e
(j)

M

(
δi,e †k

)2

≤ min
{
σi,e

(j)

M , σi,e
(k)

M

}
.

In this case, the action of the scaling operator on a given function w ∈ W̃Γ is locally defined for
the decoupled Jacobian Bidomain model as

(PDw(x))j =

(∑
k∈Nx

δi †k (wij(x)− wik(x)),
∑
k∈Nx

δe †k (wej (x)− wek(x))

)
.

By eliminating all internal variables of Ωj , we denote by S
(j)
Γ the local Schur complement matrix

and SΓ the global unassembled Schur complement matrix:

S
(j)
Γ =

[
S

(j)
∆∆ S

(j)
∆Π

S
(j)
Π∆ S

(j)
ΠΠ

]
, SΓ = diag

j
S

(j)
Γ .

Let ΘEjk , ΘFjk and ΘVjk be the characteristic finite element functions associated with and edge
Ejk, a face F jk and a vertex Vjk between two substructures Ωj and Ωk. Those functions form
a partition-of-unity associated with the decomposition of Γ into edges, faces and vertices. For
brevity, we will write Θ∗ =

(
θi∗, θ

e
∗
)
, with ∗ = {E ,F ,V}, and drop the index jk, unless an explicit

ambiguity occurs.

In the substructuring framework, the global estimate on PD can be established by bounds cal-
culated locally: indeed, by introducing the operator R∂Ωj

that restricts the finite element function
w to the subdomain boundary ∂Ωj , it is straightforward to observe that

|w|2SΓ
= 〈w,w〉SΓ

=

N∑
j=1

〈w(j), w(j)〉
S

(j)
Γ

=

N∑
j=1

〈R∂Ωj
w(j), R∂Ωj

w(j)〉
S

(j)
Γ

=

N∑
j=1

|R∂Ωj
w|2
S

(j)
Γ

for all w ∈ W̃Γ. Thus, the thesis becomes

|PDu|2SΓ
=

N∑
j=1

|R∂ΩjPDu|2S(j)
Γ

.
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We denote by Ih the finite element interpolant,

vj(x) = (PDu(x))j =

(∑
k∈Nx

Ih(δi †k (uij(x)− uik(x))),
∑
k∈Nx

Ih(δe †k (uej(x)− uek(x)))

)
=
∑
E
Ih(ΘEvj) +

∑
F
Ih(ΘFvj) +

∑
V
Ih(ΘVvj).

We note that with our assumption on the primal space, the vertex contribution vanishes, as

vj(x) = vk(x) ∀x ∈ Vh, j, k ∈ Nx,

thus we only need to estimate the edge and face contributions.
Since each local Schur complement is positive semidefinite, it holds

|vj |2S(j)
Γ

.
∑
E
|Ih(ΘEvj)|2S(j)

Γ

+
∑
F
|Ih(ΘFvj)|2S(j)

Γ

.

Since the Schur seminorm realizes the minimum of the bilinear form (Eq (4.1)), each component
of the above sum can be bounded from above by using Lemma 2.2:

|Ih(Θ∗vj)|2S(j)
Γ

= sj
(
Ih(Θ∗vj), I

h(Θ∗vj)
)

= aj

(
Hi,ej Ih(Θ∗vj), Hi,ej Ih(Θ∗vj)

)
≤ (χCm + τKM ) ||H∆

j I
h(Θ∗(v

i
j − vej ))||2L2(Ωj)+

+ τσiM |H∆
j I

h(Θ∗v
i
j)|2H1(Ωj) + τσeM |H∆

j I
h(Θ∗v

e
j )|2H1(Ωj).

As the argument of the L2-norm vanishes on a two-dimensional subset of Γ(j), we can use the
Poincaré-Friedrichs inequality (Prop. 3.1) and the Trace theorem (Thm. 3.1) as follows:

||H∆
j I

h(Θ∗vj)||2L2(Ωj)

Prop.3.1

. H2|H∆
j I

h(Θ∗vj)|2H1(Ωj)
Thm3.1∼ H2|Ih(Θ∗vj)|2H1/2(Γ(j)),

|H∆
j I

h(Θ∗vj)|2H1(Ωj)
Thm3.1∼ |Ih(Θ∗vj)|2H1/2(Γ(j)),

to obtain

|vj |2S(j)
Γ

.
∑
∗=E,F
?=i,e

[
τσ

?(j)
M +H2 (χCm + τKM )

]
|Ih(Θ∗v

?
j )|2H1/2(Γ(j)). (4.2)

We now proceed to estimate the contribution from edges and faces separately.

Edge contribution We recall that in dual-primal construction,

∀vi,ej ∈ W̃Γ, vi,ej =
∑
k∈KE

δi,e †j (ui,ej − u
i,e
k ), (4.3)

where KE = NE \ {j} is the index set of subdomains sharing E . Therefore, thanks to Lemma 3.2,
Equation (4.3) and the triangle inequality, we have

|Ih(ΘEv
i,e
j )|2H1/2(Γ(j)) . ||v

i,e
j ||

2
L2(E)

= ||
∑
k∈KE

δi,e †k

(
ui,ej − u

i,e
k

)
||2L2(E)

.
∑
k∈KE

(
δi,e †k

)2

||ui,ej − ū
i,e
E ||

2
L2(E) +

∑
k∈KE

(
δi,e †k

)2

||ui,ek − ū
i,e
E ||

2
L2(E)
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.

(
1 + log

H

h

)[∑
k∈KE

(
δi,e †k

)2
]
|Hi,ej uj |2H1(Ωj) +

(
1 + log

H

h

) ∑
k∈KE

(
δi,e †k

)2

|Hi,ek uk|2H1(Ωk)

=

(
1 + log

H

h

)[∑
k∈KE

(
δi,e †k

)2

|Hi,ej uj |2H1(Ωj) +
∑
k∈KE

(
δi,e †k

)2

|Hi,ek uk|2H1(Ωk)

]
.

Note that, by definition of pseudoinverses,

∑
l

(
δi,e †l

)2

≤

(∑
l

δi,e †l

)2

=

(∑
l

σi,e
(l)

M∑
k∈Nx

σi,e
(k)

M

)
≤ 1

yelding
∑
k∈KE

(
δi,e †k

)2

≤ 1. Moreover, we recall the following property

σi,e
(j)

M

(
δi,e †k

)2

≤ min
{
σi,e

(j)

M , σi,e
(k)

M

}
,

from which we can conclude that either

σi,e
(j)

M

(
δi,e †k

)2

≤ σi,e
(j)

M or σi,e
(j)

M

(
δi,e †k

)2

≤ σi,e
(k)

M . (4.4)

Consequently, the edge terms in inequality (4.2) can be bounded as follows, using inequalities
(4.4) and Lemma 2.2:

|PDuj |2S(j)
Γ

= |vj |2S(j)
Γ

.
∑
?=i,e

[
τσ

?(j)
M +H2 (χCm + τKM )

](
1 + log

H

h

)
×

×

[ ∑
k∈KE

(
δ? †k

)2

|H?juj |2H1(Ωj) +
∑
k∈KE

(
δ? †k

)2

|H?kuk|2H1(Ωk)

]

=
∑
?=i,e

[
τσ

?(j)
M +H2 (χCm + τKM )

](
1 + log

H

h

) ∑
k∈KE

(
δ? †k

)2

︸ ︷︷ ︸
≤1

|H?juj |2H1(Ωj)+

+
∑
?=i,e

[
τσ

?(j)
M +H2 (χCm + τKM )

](
1 + log

H

h

) ∑
k∈KE

(
δ? †k

)2

|H?kuk|2H1(Ωk)

.
∑
?=i,e

[
τσ

?(j)
M +H2 (χCm + τKM )

](
1 + log

H

h

)
|H?juj |2H1(Ωj)+

+
∑
?=i,e

∑
k∈KE

[
τσ

?(j)
M +H2 (χCm + τKM )

](
1 + log

H

h

)(
δ? †k

)2

|H?kuk|2H1(Ωk)

.
∑
?=i,e

[
τσ

?(j)
M +H2 (χCm + τKM )

](
1 + log

H

h

)
|H?juj |2H1(Ωj)+

+
∑
?=i,e

∑
k∈KE

τσ
?(j)
M

(
δ? †k

)2

︸ ︷︷ ︸
for Ineq. (4.4)

≤σ?(k)
M

+H2 (χCm + τKM )
(
δ? †k

)2

︸ ︷︷ ︸
≤1


(

1 + log
H

h

)
|H?kuk|2H1(Ωk)

.
∑
?=i,e

[
τσ

?(j)
M +H2 (χCm + τKM )

](
1 + log

H

h

)
|H?juj |2H1(Ωj)+
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+
∑
?=i,e

∑
k∈KE

[
τσ

?(k)
M +H2 (χCm + τKM )

](
1 + log

H

h

)
|H?kuk|2H1(Ωk)

=
∑
?=i,e

τσ
?(j)
M +H2 (χCm + τKM )

τσ
?(j)
m

(
1 + log

H

h

)
σ?(j)m |H?juj |2H1(Ωj)+

+
∑
?=i,e

∑
k∈KE

τσ
?(k)
M +H2 (χCm + τKM )

τσ
?(k)
m

(
1 + log

H

h

)
σ?(k)
m |H?kuk|2H1(Ωk)

≤ max
?=i,e

τσ
?(j)
M +H2 (χCm + τKM )

τσ
?(j)
m

(
1 + log

H

h

)
|uj |2S(j)

Γ

+

+
∑
k∈KE

max
?=i,e

τσ
?(j)
M +H2 (χCm + τKM )

τσ
?(k)
m

(
1 + log

H

h

)
|uk|2S(k)

Γ

=

(
1 + log

H

h

)
max
?=i,e

∑
k∈NE

(
τσ

?(k)
M +H2 (χCm + τKM )

τσ
?(k)
m

)
|u|2

S
(k)
Γ

,

since the number of subdomains sharing an edge is finite. In conclusion,

|PDu|2S(j)
Γ

.

(
1 + log

H

h

)
max
k∈NE
?=i,e

τσ
?(k)
M +H2 (χCm + τKM )

τσ
?(k)
m

∑
k∈NE

|u|2
S

(k)
Γ

.

Face contribution The procedure is essentially the same as the edge term estimate, but we
need to treat differently the addition of the average values: since we have not included the face
averages in the primal space, it could happen that the mean on the face F jk takes different values
from the substructure j and from k. Therefore,

|Ih(ΘFv
i,e
j )|2H1/2(Γ(j)) . |I

h(ΘFδ
i,e †
j (ui,ej − u

i,e
k ))|2H1/2(Γ(j))

. ||Ih(ΘFδ
i,e †
j (ui,ej − u

i,e
k ))||2

H
1/2
00 (F)

≤
(
δi,e †j

)2

||Ih(ΘF (ui,ej − u
i,e
k ))||2

H
1/2
00 (F)

≤
(
δi,e †j

)2

||Ih(ΘF

(
ui,ej − ū

i,e
j,F

)
)||2
H

1/2
00 (F)

+
(
δi,e †j

)2

||Ih(ΘF

(
ui,ek − ū

i,e
k,F

)
)||2
H

1/2
00 (F)

+

+
(
δi,e †j

)2

||Ih(ΘF

(
ūi,ej,F − ū

i,e
k,F

)
)||2
H

1/2
00 (F)

=
(
δi,e †j

)2

||Ih(ΘF

(
ui,ej − ū

i,e
j,F

)
)||2
H

1/2
00 (F)

+
(
δi,e †j

)2

||Ih(ΘF

(
ui,ek − ū

i,e
k,F

)
)||2
H

1/2
00 (F)

+

+
(
δi,e †j

)2

||ΘF
(
ūi,ej,F − ū

i,e
k,F

)
||2
H

1/2
00 (F)

.

(
1 + log

H

h

)2 (
δi,e †j

)2

|ui,ej |
2
H1/2(Γ(j)) +

(
1 + log

H

h

)2 (
δi,e †j

)2

|ui,ek |
2
H1/2(Γ(k))+

+

(
1 + log

H

h

)2 (
δi,e †j

)2 [
|ui,ej |

2
H1/2(F) + |ui,ek |

2
H1/2(F)

]
. 2

(
1 + log

H

h

)2 (
δi,e †j

)2 [
|Hi,ej uj |2H1(Ωj) + |Hi,ek uk|2H1(Ωk)

]
≤ 2

(
1 + log

H

h

)2 (
δi,e †j

)2
[

1

τσ
i,e(j)
m

aj

(
Hi,ej uj , Hi,ej uj

)
+

1

τσ
i,e(k)
m

ak

(
Hi,ek uk, Hi,ek uk

)]
= 2

(
1 + log

H

h

)2 (
δi,e †j

)2
[

1

τσ
i,e(j)
m

|uj |2S(j)
Γ

+
1

τσ
i,e(k)
m

|uk|2S(k)
Γ

]
,

by applying Lemmas 3.1 and 3.3, the Trace theorem (Thm 3.1) and the ellipticity property (Prop.
2.2). In the same fashion as with the edge term, we can conclude our proof with the estimate of
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the face term

|PDu|2S(j)
Γ

.

(
1 + log

H

h

)2

max
t=j,k
?=i,e

τσ
?(k)
M +H2 (χCm + τKM )

τσ
?(t)
m

[
|uj |2S(j)

Γ

+ |uk|2S(k)
Γ

]
.

4.1.2 Proof of Lemma 4.1 with deluxe scaling

We now show that, for the Jacobian Bidomain linear system, the same bound holds when the
deluxe scaling is used. This particular scaling (see Chapter 3) is based on the solution of local
problems built from local Schur complements associated with the dual unknowns. In this particular
application, the bound is essentially the same as for the ρ-scaling, but it can be potentially more
efficient when applied to other systems or discretizations.

As in the previous proof, instead of proving the bound for the projection operator ED, we prove
it for the complementary projection PD (3.5). Moreover, in the same fashion, it is sufficient to

compute only the local bounds, since |PDu|2SΓ
=
∑N
j=1 |R∂Ωj

PDu|2
S

(j)
Γ

. Thus, for all u ∈ W̃Γ

R∂Ωj
PDu = R∂Ωj

u∆ −
∑

∗={F,E}

RT∗ ū∗

 ,

that leads to

|R∂ΩjPDu|2S(j)
Γ

≤ |Ξ∗j |
∑

∗={F,E}
∗∈Ξ∗j

|RT∗
(
ui,ej,∗ − ū

i,e
∗

)
|2
S

(j)
Γ

,

where Ξ∗j is the index set containing the indices of the subdomains that share the face F or the
edge E . Let us distinguish between face and edge contributions.

Face contribution Suppose that the face F is shared by subdomains Ωj and Ωk. Then, by
simple algebra, it follows

ui,ej,F − ū
i,e
F = ui,ej,F −

(
S

(j)
F + S

(k)
F

)−1 (
S

(j)
F ui,ej,F + S

(k)
F ui,ek,F

)
=
(
S

(j)
F + S

(k)
F

)−1

S
(k)
F

(
ui,ej,F − u

i,e
k,F

)
=
(
S

(j)
F + S

(k)
F

)−1

S
(k)
F

[(
ui,ej,F − ū

i,e
j,F

)
−
(
ui,ek,F − ū

i,e
k,F

)
+
(
ūi,ej,F − ū

i,e
k,F

)]
,

where we add and subtract the mean values ūi,ej,F and ūi,ek,F of u over the face F of subdomains j
and k respectively. Therefore, it follows

|RTF
(
ui,ej,F − ū

i,e
F

)
|2
S

(j)
Γ

=
(
ui,ej,F − ū

i,e
F

)T
RFS

(j)
Γ RTF︸ ︷︷ ︸
S

(j)
F

(
ui,ej,F − ū

i,e
F

)
=
(
ui,ej,F − ū

i,e
F

)T
S

(j)
F

(
ui,ej,F − ū

i,e
F

)

=
(
ui,ej,F − u

i,e
k,F

)T
S

(k)
F

(
S

(j)
F + S

(k)
F

)−1

S
(j)
F

(
S

(j)
F + S

(k)
F

)−1

S
(k)
F

(
ui,ej,F − u

i,e
k,F

)
≤
(
ui,ej,F − ū

i,e
j,F

)T
S

(k)
F

(
S

(j)
F + S

(k)
F

)−1

S
(j)
F

(
S

(j)
F + S

(k)
F

)−1

S
(k)
F

(
ui,ej,F − ū

i,e
j,F

)
+

+
(
ui,ek,F − ū

i,e
k,F

)T
S

(k)
F

(
S

(j)
F + S

(k)
F

)−1

S
(j)
F

(
S

(j)
F + S

(k)
F

)−1

S
(k)
F

(
ui,ek,F − ū

i,e
k,F

)
+

+
(
ūi,ej,F − ū

i,e
k,F

)T
S

(k)
F

(
S

(j)
F + S

(k)
F

)−1

S
(j)
F

(
S

(j)
F + S

(k)
F

)−1

S
(k)
F

(
ūi,ej,F − ū

i,e
k,F

)
≤ 2|ui,ej,F − ū

i,e
j,F |

2

S
(j)
F

+ 2|ui,ek,F − ū
i,e
k,F |

2

S
(k)
F

+ |
(
S

(j)
F + S

(k)
F

)−1

S
(k)
F

(
ūi,ej,F − ū

i,e
k,F

)
|2
S

(j)
F
,



58CHAPTER 4. DUAL-PRIMAL NKMETHODS FOR THE DECOUPLED BIDOMAIN PROBLEM

∀ui,ej,F ∈ W̃Γ, where in the last line we use the two inequalities

S
(k)
F

(
S

(j)
F + S

(k)
F

)−1

S
(j)
F

(
S

(j)
F + S

(k)
F

)−1

S
(k)
F ≤ S(j)

F

S
(k)
F

(
S

(j)
F + S

(k)
F

)−1

S
(j)
F

(
S

(j)
F + S

(k)
F

)−1

S
(k)
F ≤ S(k)

F .

(4.5)

These relations follows from the generalized eigenvalue problem S
(j)
F φ = λS

(k)
F φ and by observing

that all eigenvalues are strictly positive [7].

It is sufficient now to estimate |ui,ej,F − ū
i,e
j,F |2S(j)

F
and |

(
S

(j)
F + S

(k)
F

)−1

S
(k)
F

(
ūi,ej,F − ū

i,e
k,F

)
|2
S

(j)
F

;

we note that, when the subdomain faces averages are included in the primal space, the last term
is zero. Let us start from the first term, which we can bound by

|ui,ej,F − ū
i,e
j,F |

2

S
(j)
F

= sj

(
uj,F − ūi,ej,F , uj,F − ū

i,e
j,F

)
≤ (χCm + τKM ) ||H∆

j

(
uj − ūi,ej,F

)
||2L2(Ωj)+

+ τ
∑
?=i,e

σ?M |H∆
j

(
uj,F − ū?j,F

)
|2H1(Ωj)

.
[
τσi,eM +H2 (χCm + τKM )

]
|uj,F − ūi,ej,F |

2
H1/2(Γ(j)),

by using the ellipticity Lemma 2.2, and the Poincaré-Friedrichs inequality (Prop. 3.1) combined
with the Trace theorem (Thm. 3.1). In contrast to the previous Lemma, here we are already

taking in consideration the discrete restriction of a function uj ∈ W̃Γ to the face F . In this way

the notations uj − ūi,ej,F and Ih(ΘF (uj − ūi,ej,F )) are essentially the same. Therefore, it is possible
to apply Lemma 3.3 and the Trace theorem (Thm. 3.1) to obtain

|ui,ej,F − ū
i,e
j,F |

2

S
(j)
Γ

.
[
τσi,eM +H2 (χCm + τKM )

](
1 + log

H

h

)2

|uj |2H1/2(∂Ωj)

∼
[
τσi,eM +H2 (χCm + τKM )

](
1 + log

H

h

)2

|H∆
j uj |2H1(Ωj).

Regarding the term |
(
S

(j)
F + S

(k)
F

)−1

S
(k)
F

(
ūi,ej,F − ū

i,e
k,F

)
|2
S

(j)
F

, let E ⊂ ∂F be a primal edge, such

that ūi,ej,E = ūi,ek,E . Then, by using the two inequalities in (4.5)

|
(
S

(j)
F + S

(k)
F

)−1

S
(k)
F

(
ūi,ej,F − ū

i,e
k,F

)
|2
S

(j)
F
≤ 2 |

(
S

(j)
F + S

(k)
F

)−1

S
(k)
F

(
ūi,ej,E − ū

i,e
j,F

)
|2
S

(j)
F

+

+ 2 |
(
S

(j)
F + S

(k)
F

)−1

S
(k)
F

(
ūi,ek,E − ū

i,e
k,F

)
|2
S

(j)
F

≤ 2 |ūi,ej,E − ū
i,e
j,F |

2

S
(j)
F

+ 2 |ūi,ek,E − ū
i,e
k,F |S(k)

F
.

It is sufficient now to estimate the first term on the right-hand side, as we can deal with the
other in the same fashion. Combining the result of ellipticity (Lemma 2.2), the Poincaré-Friedrichs
inequality (Prop. 3.1) and the Trace theorem (Thm. 3.1), we have

|ūi,ej,E − ū
i,e
j,F |

2

S
(j)
F

= aj

(
Hi,ej

(
ūi,ej,E − ū

i,e
j,F

)
, Hi,ej

(
ūi,ej,E − ū

i,e
j,F

))
= aj

(
Hi,ej

(
uj − ūi,ej,F

)
j,E
, Hi,ej

(
uj − ūi,ej,F

)
j,E

)
≤ (χCm + τKM ) ||H∆

j

(
uj − ūi,ej,F

)
j,E
||2L2(Ωj) + τ

∑
?=i,e

σ?M |H∆
j

(
uj − ūi,ej,F

)
j,E
|2H1(Ωj)
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.
∑
?=i,e

[
τσ?M +H2 (χCm + τKM )

]
|
(
uj − ūi,ej,F

)
j,E
|H1(Ωj).

Using Lemmas 3.2 and 3.4, it follows

‖
(
uj − ūi,ej,F

)
j,E
‖2 ≤ CH−1||uj − ūi,ej,F ||

2
L2(E)

≤ C
(

1 + log
H

h

)
|uj − ūi,ej,F |

2
H1/2(∂Ωj)

≤ C
(

1 + log
H

h

)3

|uj |2H1/2(∂Ωj).

This means that

|ūi,ej,E − ū
i,e
j,F |

2

S
(j)
F
≤ C

(
1 + log

H

h

)3 ∑
?=i,e

[
τσ?M +H2 (χCm + τKM )

]
|uj |2H1/2(∂Ωj)

∼ C
(

1 + log
H

h

)3 ∑
?=i,e

[
τσ?M +H2 (χCm + τKM )

]
|H∆

j uj |2H1(Ωj).

To conclude, thanks again to Lemma 2.2, the face contribution is analogous to the ρ-scaling case:

|PDu|2S(j)
Γ

.
∑
?=i,e

∑
F∈ΞFj

[
τσ?M +H2 (χCm + τKM )

](
1 + log

H

h

)3

|H?juj |2H1(Ωj)

=
∑
?=i,e

∑
F∈ΞFj

τσ?M +H2 (χCm + τKM )

τσ?m

(
1 + log

H

h

)3

σ?m|H?juj |2H1(Ωj)

≤ max
?=i,e

∑
F∈ΞFj

τσ?M +H2 (χCm + τKM )

τσ?m

(
1 + log

H

h

)3

|uj |2S(j)
Γ

.

Edge contribution For simplicity, suppose that an edge E is shared only by three subdomains
associated with indexes j1, j2 and j3. The extension to the case of more subdomains is then similar.

Define S
(j123)
E as

S
(j123)
E := S

(j1)
E + S

(j2)
E + S

(j3)
E .

Then, the average operator is given by

ūi,eE :=
(
S

(j123)
E

)−1 (
S

(j1)
E uj1,E + S

(j2)
E uj2,E + S

(j3)
E uj3,E

)
.

Proceeding in the same fashion as for the face contribution, we find

uj1,E − ū
i,e
E =

(
S

(j123)
E

)−1 [(
S

(j2)
E + S

(j3)
E

)
uj1,E − S

(j2)
E uj2,E − S

(j3)
E uj3,E

]
,

which leads to

|RTE
(
uj1,E − ū

i,e
E

)
|2
S

(j1)

Γ

=
(
uj1,E − ū

i,e
E

)T
RE S

(j1)
Γ RTE

(
uj1,E − ū

i,e
E

)
=
(
uj1,E − ū

i,e
E

)T
S

(j1)
E

(
uj1,E − ū

i,e
E

)
≤ 3uTj1,E

(
S

(j2)
E + S

(j3)
E

)T (
S

(j123)
E

)−1

S
(j1)
E

(
S

(j123)
E

)−1 (
S

(j2)
E + S

(j3)
E

)
uj1,E +

+ 3uTj2,ES
(j2)T
E

(
S

(j123)
E

)−1

S
(j1)
E

(
S

(j123)
E

)−1

S
(j2)
E uj2,E +
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+ 3uTj3,ES
(j3)T
E

(
S

(j123)
E

)−1

S
(j1)
E

(
S

(j123)
E

)−1

S
(j3)
E uj3,E

≤ 3uTj1,ES
(j1)
E uj1,E + 3uTj2,ES

(j2)
E uj2,E + uTj3,ES

(j3)
E uj3,E

where we use analogous inequalities as in the face case. The first term can be bounded by taking

into account the matrices S
(j1)
E and S

(j2)
E + S

(j3)
E in the generalized eigenvalue problem

S
(j1)
E φ = λ

(
S

(j2)
E + S

(j3)
E

)
φ.

The second and third terms follow similarly, by first bounding them from above with (see for
example the second term)

3uTj2,ES
(j2)T
E

(
S

(j123)
E

)−1 (
S

(j1)
E + S

(j2)
E

)(
S

(j123)
E

)−1

S
(j2)
E uj2,E ,

and then considering the generalized eigenvalue problem

S
(j2)
E φ = λ

(
S

(j1)
E + S

(j3)
E

)
φ.

By adding and subtracting the mean value ūi,ej1,E over the edges (which assume the same value over
the three subdomain, as we have included the edge averages into the primal space) we obtain the
analogous estimate for the egdes:

uTj1,ES
(j1)
E uj1,E ≤ |uj1,E − ū

i,e
j1,E |

2

S
(j1)

Γ

.
[
τσi,eM +H2 (χCm + τKM )

]
|uj1,E − ū

i,e
j1,E |

2
H1/2(Γ(j))

≤
[
τσi,eM +H2 (χCm + τKM )

]
||uj1,E − ū

i,e
j1,E ||

2
L2(E)

≤
[
τσi,eM +H2 (χCm + τKM )

](
1 + log

H

h

)
|H∆

j1uj1,E |
2
H1(Ωj)

by applying Lemma 3.2. In conclusion, using Lemma 2.2, the edge estimate gives us

|PDu|2S(j)
Γ

.
∑
?=i,e

∑
E∈ΞEj

[
τσi,eM +H2 (χCm + τKM )

](
1 + log

H

h

)
|H∆

j uj |2H1(Ωj)

=
∑
?=i,e

∑
E∈ΞEj

τσi,eM +H2 (χCm + τKM )

σ?m

(
1 + log

H

h

)
σ?m|H∆

j uj |2H1(Ωj)

≤ max
?=i,e

∑
E∈ΞEj

τσi,eM +H2 (χCm + τKM )

σ?m

(
1 + log

H

h

)
|uj |2

S
(j1)

Γ

,

where the index j collects all contributions from the subdomains that share the edge E .

4.2 Condition number bound for FETI-DP and BDDC pre-
conditioners

Lemma 4.1 is used for estimate the condition number in the FETI-DP and in BDDC methods.
As the constants are the same whether we use the ρ-scaling or the deluxe one, we can state the
following result.

Theorem 4.1. The condition number of the Bidomain FETI-DP and BDDC operators satisfies

cond (M−1
∗ A) ≤ C

(
1 + log

(
H

h

))n
,
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with n = 2, 3 depending on the scaling, where M−1
∗ denotes the FETI-DP or the BDDC precondi-

tioner, A is the Bidomain system matrix and the constant C is computed from the above Lemmas,

C = max
k=1,...,N
?=i,e

τσ
?(k)
M +H2 (χCm + τKM )

τσ
?(k)
m

.

It is possible to see that (see e.g. [116, Appendix A])

cond (M−1
∗ A) =

λmax(M−1
∗ A)

λmin(M−1
∗ A)

,

so we have to estimate the smallest eigenvalue λmin(M−1
∗ A) from below and the largest eigenvalue

λmax(M−1
∗ A) form above. In this case, this means to show that

〈x, x〉A ≤ 〈M−1
∗ Ax, x〉A ≤ C

(
1 + log

(
H

h

))n
〈x, x〉A, n = 2, 3,

holds for all x ∈ V , with 〈a,b〉A = bTAa.

This result holds for both preconditioners, since they have been proven in Refs. [78, 83] to
be spectrally equivalent. Anyway, we distinguish the proofs for the two preconditioners, showing
indeed their equivalence.

4.2.1 FETI-DP preconditioner

Before going into details of the proof for FETI-DP, it is convenient to rewrite algebrically the
projection PD.
Given the operator R̃Γ∆ which restricts partially assembled interface variables to their dual parts

R̃Γ∆uΓ = u∆, ∀uΓ ∈ W̃Γ,

we recall the definition of the interface jump operator BΓ

BΓ = B∆R̃Γ∆ = [B∆ 0Π] ,

as the matrix which extends the enforced continuity on dual variables (through the Lagrangian
multipliers) to the interface Γ. Lastly, it is possible to define the scaled jump operator, obtained
by scaling the submatrices of B∆

BD,Γ = BD,∆R̃Γ∆.

In the FETI-DP case, the projection can be algebrically written as PD := BTD,ΓBΓ. Moreover, it
is possible to show, from projection properties, that

1. PD preserves the jump of any function u ∈ W̃Γ with respect to the jump operator BΓ, i.e.
BΓPDu = BΓu;

2. PTD preserves the scaled jump of any function u ∈ W̃Γ, i. e. BD,ΓP
T
Du = BD,Γu;

3. PDu = 0, ∀u ∈ Ŵ .

Lower bound. Observe that from property (2) of the projection PD, it follows

BD,ΓP
T
Du = BD,ΓB

T
ΓBD,Γu

(2)
= BD,Γu, (4.6)

so that

BD,ΓB
T
Γ = I. (4.7)
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So ∀λ ∈ range(M−1
FETI-DP) ⊂ range(BD,Γ) thanks to Eq. (4.7), it follows

〈λ, λ〉2F = 〈λ,BD,ΓBTΓ λ〉2F
= 〈λ,BD,ΓS̃1/2

Γ S̃
−1/2
Γ BTΓ λ〉2F

= 〈Fλ,BD,ΓS̃1/2
Γ S̃

−1/2
Γ BTΓ λ〉2.

Using the inner product definition and keeping in mind that S̃Γ is a block-diagonal and symmetric
matrix (i.e. S̃Γ = S̃TΓ ), we can write

〈Fλ,BD,ΓS̃1/2
Γ S̃

−1/2
Γ BTΓ λ〉 =

(
BD,ΓS̃

1/2
Γ S̃

−1/2
Γ BTΓ λ

)T
(Fλ)

=
(
S̃
−1/2
Γ BTΓ λ

)T (
S̃

1/2
Γ BTD,ΓFλ

)
= 〈S̃1/2

Γ BTD,ΓFλ, S̃
−1/2
Γ BTΓ λ〉.

Applying the Cauchy-Schwartz inequality, we get

〈λ, λ〉2F = 〈Fλ,BD,ΓS̃1/2
Γ S̃

−1/2
Γ BTΓ λ〉2

≤ 〈S̃1/2
Γ BTD,ΓFλ, S̃

1/2
Γ BTD,ΓFλ〉〈S̃

−1/2
Γ BTΓ λ, S̃

−1/2
Γ BTΓ λ〉

= 〈S̃ΓB
T
D,ΓFλ,B

T
D,ΓFλ〉〈S̃−1

Γ BTΓ λ,B
T
Γ λ〉

=
[(
BTD,ΓFλ

)T (
S̃ΓB

T
D,ΓFλ

)] [(
BTΓ λ

)T (
S̃−1

Γ BTΓ λ
)]

=

(Fλ)
T

BD,ΓS̃ΓB
T
D,Γ︸ ︷︷ ︸

M−1
FETI-DP

Fλ



λT

BΓS̃
−1
Γ BTΓ︸ ︷︷ ︸
F

λ


= 〈M−1

FETI-DPFλ, λ〉F 〈λ, λ〉F .

In conclusion we have, by cancelling the common factor 〈λ, λ〉F ,

〈λ, λ〉F ≤ 〈M−1
FETI-DPFλ, λ〉F .

Upper bound. We observe now that for λ ∈ range(M−1
FETI-DP), we have S̃ΓB

T
Γ λ ∈ W̃ . Using

Lemma 4.1 from the previous Section, we otain ∀λ ∈ range(M−1
FETI-DP),

〈M−1
FETI-DPFλ, λ〉F = 〈M−1

FETI-DPFλ, Fλ〉

= 〈BTD,ΓBΓ︸ ︷︷ ︸
PD

S̃−1
Γ BTΓ λ,B

T
D,ΓBΓ︸ ︷︷ ︸
PD

S̃−1
Γ BTΓ λ〉S̃Γ

= |PDS̃−1
Γ BTΓ λ|2S̃Γ

≤ C
(

1 + log

(
H

h

))n
|S̃−1

Γ BTΓ λ|2S̃Γ

= C

(
1 + log

(
H

h

))n
〈S̃−1

Γ BTΓ λ, S̃ΓS̃
−1
Γ BTΓ λ〉

= C

(
1 + log

(
H

h

))n
〈S̃−1

Γ BTΓ λ,B
T
Γ λ〉

= C

(
1 + log

(
H

h

))n
〈BΓS̃

−1
Γ BTΓ︸ ︷︷ ︸
F

λ, λ〉

= C

(
1 + log

(
H

h

))n
〈Fλ, λ〉

= C

(
1 + log

(
H

h

))n
〈λ, λ〉F ,
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where C is given by

C = max
k=1,...,N
?=i,e

τσ
?(k)
M +H2 (χCM + τKM )

τσ
?(k)
m

,

and n = 2 in case the ρ-scaling is applied and n = 3 if the deluxe scaling is used. Therefore,

〈M−1
FETI-DPFλ, λ〉F ≤ C

(
1 + log

(
H
h

))2 〈λ, λ〉F .

Eventually, we estimate the condition number cond (M−1
FETI-DPF ) by

cond (M−1
FETI-DPF ) =

λmax(M−1
FETI-DPF )

λmin(M−1
FETI-DPF )

≤ C
(
1 + log

(
H
h

))2 〈λ, λ〉F
〈λ, λ〉F

= max
k=1,...,N
?=i,e

τσ
?(k)
M +H2 (χCM + τKM )

τσ
?(k)
m

(
1 + log

(
H

h

))n
,

which ends our proof for the FETI-DP preconditioner.

4.2.2 BDDC preconditioner

In the same fashion as for the FETI-DP operator, we need to estimate the smallest and the
largest eigenvalues λmin and λmax related to the BDDC operator M−1

BDDCŜΓ from below and above
respectively:

〈u, u〉ŜΓ
≤ 〈M−1

BDDCŜΓu, u〉ŜΓ
≤ C

(
1 + log

(
H

h

))n
〈u, u〉ŜΓ

, ∀u ∈ W̃Γ,

with n = 2, 3 depending on the applied scaling (ρ or deluxe scaling, respectively). In this case, it

is more convenient to work directly on the projection ED := R̃ΓR̃
T
D,Γ.

Lower bound. Analogously to Eq. (4.6), it holds

R̃TΓ R̃D,Γ = I. (4.8)

We can evaluate the bound from below in the same manner, by using the Cauchy-Schwarz inequal-
ity:

〈u, u〉2
ŜΓ

= 〈u, ŜΓu〉2 = 〈u, R̃TΓ R̃D,ΓŜΓu〉2

= 〈S̃1/2
Γ R̃Γu, S̃

−1/2
Γ R̃D,ΓŜΓu〉2

≤ 〈S̃1/2
Γ R̃Γu, S̃

1/2
Γ R̃Γu〉〈S̃−1/2

Γ R̃D,ΓŜΓu, S̃
−1/2
Γ R̃D,ΓŜΓu〉

=

[(
S̃

1/2
Γ R̃Γu

)T (
S̃

1/2
Γ R̃Γu

)] [(
S̃
−1/2
Γ R̃D,ΓŜΓu

)T (
S̃
−1/2
Γ R̃D,ΓŜΓu

)]
=

[
uT (R̃TΓ S̃ΓR̃Γ︸ ︷︷ ︸

ŜΓ

u)

][(
ŜΓu

)T
(R̃TD,ΓS̃

−1
Γ R̃D,Γ︸ ︷︷ ︸

M−1
BDDC

ŜΓu)

]

=
(
uT ŜΓu

)[(
ŜΓu

)T (
M−1

BDDCŜΓu
)]

= 〈ŜΓu, u〉〈M−1
BDDCŜΓu, ŜΓu〉 = 〈u, u〉ŜΓ

〈M−1
BDDCŜΓu, u〉ŜΓ

.

Therefore,

〈u, u〉ŜΓ
≤ 〈M−1

BDDCŜΓu, u〉ŜΓ
.
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Upper bound. Thanks to the bound on the projection operator in Lemma 4.1, we can compute
the upper bound as follows,

〈M−1
BDDCŜΓu, u〉2ŜΓ

= 〈M−1
BDDCŜΓu, ŜΓu〉2

= 〈R̃TD,ΓS̃−1
Γ R̃D,ΓR̃

T
Γ S̃ΓR̃Γu, R̃

T
Γ S̃ΓR̃Γu〉2

= 〈R̃ΓR̃
T
D,Γ︸ ︷︷ ︸

ED

S̃−1
Γ R̃D,ΓR̃

T
Γ S̃ΓR̃Γ︸ ︷︷ ︸
ŜΓ

u, S̃ΓR̃Γu〉2

= 〈EDS̃−1
Γ R̃D,ΓŜΓu, R̃Γu〉2S̃Γ

≤ 〈EDS̃−1
Γ R̃D,ΓŜΓu,EDS̃

−1
Γ R̃D,ΓŜΓu〉S̃Γ

〈R̃Γu, R̃Γu〉S̃Γ

= |EDS̃−1
Γ R̃D,ΓŜΓu|2S̃Γ

|R̃Γu|2S̃Γ

≤ C
(

1 + log

(
H

h

))n
|S̃−1

Γ R̃D,ΓŜΓu|2S̃Γ
|R̃Γu|2S̃Γ

= C

(
1 + log

(
H

h

))n
〈S̃−1

Γ R̃D,ΓŜΓu, S̃
−1
Γ R̃D,ΓŜΓu〉S̃Γ

〈R̃Γu, R̃Γu〉S̃Γ

= C

(
1 + log

(
H

h

))n
〈R̃TD,ΓS̃−1

Γ R̃D,Γ︸ ︷︷ ︸
M−1

BDDC

ŜΓu, ŜΓu〉〈R̃TΓ S̃ΓR̃Γ︸ ︷︷ ︸
ŜΓ

u, u〉

= C

(
1 + log

(
H

h

))n
〈M−1

BDDCŜΓu, ŜΓu〉〈ŜΓu, u〉

= C

(
1 + log

(
H

h

))n
〈M−1

BDDCŜΓu, u〉ŜΓ
〈u, u〉ŜΓ

,

where we used first the Cauchy-Schwarz inequality, then one of the estimates for the projection
operator and C is given as above by

C = max
k=1,...,N
?=i,e

τσ
?(k)
M +H2 (χCm + τKM )

τσ
?(k)
m

,

with n = 2, 3 depending on the type of scaling applied (ρ or deluxe scaling, respectively). So

〈M−1
BDDCŜΓu, u〉ŜΓ

≤ C
(

1 + log

(
H

h

))n
〈u, u〉ŜΓ

.

In conclusion, the condition number cond (M−1
BDDCŜΓ) is bounded by

cond (M−1
BDDCŜΓ) ≤ max

k=1,...,N
?=i,e

τσ
?(k)
M +H2 (χCm + τKM )

τσ
?(k)
m

(
1 + log

(
H

h

))n
,

which proves that the FETI-DP and BDDC preconditioners have the same condition number
bound, provided that the same primal set is taken in consideration.



Chapter 5

Newton-Krylov Dual-Primal
methods for the Coupled
Bidomain problem

The aim of this Chapter is to develop a theoretical convergence analysis of the preconditioned
operator for the coupled Jacobian Bidomain system (2.20). Since this system is non-symmetric,
due to the inclusion of the ionic model in the monolithic solution strategy, the iterative solver
that we consider is the Generalised Minimal Residual (GMRES) method. In the literature, so far,
the BDDC preconditioner has been applied to non-symmetric problems only in few cases and the
relative convergence analysis is not widely available: in References [121, 122] BDDC application
to the solution of non-symmetric algebraic problems arising from the stabilized finite element
discretization of advection-diffusion problems has been studied and theoretically analyzed; in the
recent work in Ref. [97], the strategy proposed by Tu and Li is extended by designing an adaptive
strategy for choosing the primal constraints, while in Ref. [123] an investigation of the problem
discretized with hybridizable Discontinuous Galerkin is provided.

We combine the main result for the GMRES convergence in Reference [40] and the proof
technique proposed in Ref. [121] to carry out the convergence analysis of the preconditioned
operator for the coupled Jacobian Bidomain system. In Section 5.1 we provide a bound for the
projection operator of the symmetric part of the bilinear form associated with the Jacobian: as in
the previous Chapter, this upper bound is proven for both ρ-scaling and deluxe scaling; afterwards,
in Sec. 5.2 the convergence Theorem for the BDDC preconditioned GMRES solver is provided.
The content of this Chapter has been partially submitted for publication and a preprint version
can be found in Ref. [64].

Local bilinear forms. As done in the previous Chapter, we define the local bilinear forms by
restricting the integration set, thus allowing us to assemble a local matrix on each subdomain

a(j)(s, φ) = χCm (si − se, ϕi − ϕe)|Ωj
+ (sw, ϕw)|Ωj

+ τa
(j)
i (si, ϕi) + τa(j)

e (se, ϕe)

+ τ

(∑
l

∂Iion

∂vl
(v, w) (si,l − se,l)ψl, ϕi − ϕe

)
|Ωj

− τ

(∑
l

∂R

∂wl
(v, w)sw,l ψl, ϕw

)
|Ωj

+ τ

(∑
l

∂Iion

∂wl
(v, w)sw,l ψl, ϕi − ϕe

)
|Ωj

− τ

(∑
l

∂R

∂vl
(v, w) (si,l − se,l)ψl, ϕw

)
|Ωj

.

The symmetric and skew-symmetric parts of a(j)(·, ·) are given by

q(j)(s, φ) = 2χCm (si − se, ϕi − ϕe)Ωj
+ 2 (sw, ϕw)Ωj

+ 2τa
(j)
i (si, ϕi) + 2τa(j)

e (se, ϕi)

65



66 CHAPTER 5. NK-BDDC FOR THE COUPLED BIDOMAIN PROBLEM

+ 2τ

(∑
l

∂Iion

∂vl
(v, w) (si,l − se,l)ψl, ϕi − ϕe

)
Ωj

− 2τ

(∑
l

∂R

∂wl
(v, w)sw,l ψl, ϕw

)
Ωj

+ τ

(∑
l

∂Iion

∂wl
(v, w) (si,l − se,l)ψl, ϕw

)
Ωj

+ τ

(∑
l

∂Iion

∂wl
(v, w)sw,l ψl, ϕi − ϕe

)
Ωj

− τ

(∑
l

∂R

∂vl
(v, w) (si,l − se,l)ψl, ϕw

)
Ωj

− τ

(∑
l

∂R

∂vl
(v, w)sw,l ψl, ϕi − ϕe

)
Ωj

,

z(j)(s, φ) =

τ

(∑
l

∂Iion

∂wl
(v, w)sw,l ψl, ϕi − ϕe

)
Ωj

− τ

(∑
l

∂Iion

∂wl
(v, w) (si,l − se,l)ψl, ϕw

)
Ωj

τ

(∑
l

∂R

∂vl
(v, w)sw,l ψl, ϕi − ϕe

)
Ωj

− τ

(∑
l

∂R

∂vl
(v, w) (si,l − se,l)ψl, ϕw

)
Ωj

,

where (· , ·)Ωj
denotes the restriction of the L2-inner product to the j-th subdomain.

Following [121], after introducing the space W̃ of partially subassembled finite element space,
we define the corresponding bilinear forms by

ã(s, φ) =

N∑
j=1

a(j)(s, φ), q̃(s, φ) =

N∑
j=1

b(j)(s, φ), z̃(s, φ) =

N∑
j=1

z(j)(s, φ).

We denote the partially subassembled matrices corresponding to the bilinear forms above with Ã,
Q̃ and Z̃, respectively, and let

A = R̃T ÃR̃, Q = R̃T Q̃R̃, Z = R̃T Z̃R̃,

with R̃ the injection operator from Ŵ to W̃ .

In the same fashion as in [121], we define the truncated norms on the space W̃

||w||2L2(Ω) =

N∑
j=1

||w||2L2(Ωj), |w|2H1(Ω) =

N∑
j=1

|w|2H1(Ωj), ∀w ∈ W̃ .

In this work, ||w||L2(Ω) and |w|H1(Ω) for w ∈ W̃ always represent these truncated norms. Since

for construction the bilinear forms q(j)(·, ·) for j = 1, . . . , N are symmetric and positive definite on
W (j), it is possible to define

|u|2Q(j) = q(j)(u, u), ∀u ∈W (j)

and

|u|2Q =

N∑
j=1

|u|2Q(j) , ∀u ∈ Ŵ , |u|2
Q̃

=

N∑
j=1

|u|2Q(j) , ∀u ∈ W̃ .

For any uΓ ∈ W̃Γ, we define the harmonic extension uA,Γ to the interior of subdomains as

uA,Γ =

[
−K−1

II K̃IΓuΓ

uΓ

]
∈ W̃ ,

and analogously, it is possible to define its counterpart uA,Γ ∈ Ŵ for uΓ ∈ ŴΓ.

We define the following bilinear forms for vectors in ŴΓ and W̃Γ

〈uΓ, vΓ〉QΓ
= vTA,ΓQuA,Γ, 〈uΓ, vΓ〉ZΓ

= vTA,ΓZuA,Γ, ∀uΓ, vΓ ∈ ŴΓ (5.1)
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〈uΓ, vΓ〉Q̃Γ
= vTA,ΓQ̃uA,Γ, 〈uΓ, vΓ〉Z̃Γ

= vTA,ΓZ̃uA,Γ, ∀uΓ, vΓ ∈ W̃Γ (5.2)

We observe that [121, Lemma 7.2] follows from these definitions and this will be needed for
further calculations.

Following Reference[121], it is useful to define QΓ and Q̃Γ norms:

|uΓ|2QΓ
= 〈uΓ, uΓ〉QΓ

for uΓ ∈ ŴΓ and |uΓ|2Q̃Γ
= 〈uΓ, uΓ〉Q̃Γ

for uΓ ∈ W̃Γ.

Ultimately, we define
Hcj u =

(
H∆
j u

i,H∆
j u

e, Eext,Ωj
uw
)
,

a discrete harmonic extension whose first two components are the discrete harmonic extension of
the Laplacian operator of the intra- and extracellular component of the solution, while the last is
the extension to zero of the gating components uw to Ωj .

5.1 A bound for the projection operator for the coupled
Jacobian Bidomain system

The following Lemma can be proved for both ρ-scaling and deluxe scaling:

Lemma 5.1. Assume that the primal space is spanned by the vertex nodal finite element functions
and the edge cutoff functions. Let the Bidomain projection operator be scaled by either the standard
ρ-scaling or the deluxe-scaling. Then

|EDu|2Q̃Γ
.

 max
k=1,...,N
?=i,e

τσ
?(k)
M +H2 (χCm + τKM,I)

τσ
?(k)
m

+
1− τKM,R

1− τKm,R

(1 + log
H

h

)n
|u|2

Q̃Γ
,

∀u ∈ W̃Γ, with n = 2 in case of ρ-scaling or n = 3 in case of deluxe-scaling.

5.1.1 Proof of Lemma 5.1 with ρ-scaling

As for the decoupled case, instead of proving the bound for the projection operator ED, we prove
it for the complementary projection PD. The action of the ρ-scaling on a given w ∈ W̃Γ can be
defined locally for the coupled Jacobian Bidomain model as

(PDw(x))j =

(∑
k∈Nx

δi †k (wij(x)− wik(x)),
∑
k∈Nx

δe †k (wej (x)− wek(x)),
∑
k∈Nx

δw †k (wwj (x)− wwk (x))

)
.

It is sufficient to compute only the local bounds, as it holds |PDu|2Q̃Γ
=
∑N
j=1 |R∂Ωj

PDu|2
Q̃

(j)
Γ

.

We recall that by eliminating all internal variables of Ωj , we obtain the local Schur complement

matrix S
(j)
Γ and the global unassembled Schur complement matrix SΓ:

S
(j)
Γ =

[
S

(j)
∆∆ S

(j)
∆Π

S
(j)
Π∆ S

(j)
ΠΠ

]
, SΓ = diag

j
S

(j)
Γ .

Let ΘEjk , ΘFjk and ΘVjk be the characteristic finite element functions associated with an
edge Ejk, a face F jk and a vertex Vjk respectively, between two substructures Ωj and Ωk. Those
functions form a partition-of-unity associated with the decomposition of Γ into edges, faces and
vertices. For brevity we will write Θ∗ =

(
θi∗, θ

e
∗, θ

w
∗
)
, with ∗ = {E ,F ,V}, and drop the index jk,

unless an explicit ambiguity occurs.

Denoting by Ih the finite element interpolant, we have

vj(x) = (PDu(x))j
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=

(∑
k∈Nx

Ih(δi †k (uij(x)− uik(x))),
∑
k∈Nx

Ih(δe †k (uej(x)− uek(x))),
∑
k∈Nx

Ih(δw †k (uwj (x)− uwk (x)))

)
=
∑
E
Ih(ΘEvj) +

∑
F
Ih(ΘFvj) +

∑
V
Ih(ΘVvj).

We note that with our assumption on the primal space, the vertex contribution vanishes, as

vj(x) = vk(x) ∀x ∈ Vh, j, k ∈ Nx,

thus we only need to estimate the edge and face contributions.
As we proved, the symmetric bilinear form q(·, ·) is positive semidefinite, and it leads

|vj |2Q̃(j)
Γ

.
∑
E
|Ih(ΘEvj)|2Q̃(j)

Γ

+
∑
F
|Ih(ΘFvj)|2Q̃(j)

Γ

.

Moreover, thanks to [121, Lemma 7.2], each component of the above sum can be bounded from
above by using Lemma 2.6:

|Ih(Θ∗vj)|2Q̃(j)
Γ

= |Ih(Θ∗vj)|S̃(j)
Γ

= s(j)
(
Ih(Θ∗vj), I

h(Θ∗vj)
)

≤ q(j)
(
Hcj Ih(Θ∗vj),Hcj Ih(Θ∗vj)

)
≤ (χCm + τKM,I) ||H∆

j I
h(Θ∗(v

i
j − vej ))||2L2(Ωj) + (1− τKM,R) ||Eext,Ωj

Ih(Θ∗v
w
j )||2L2(Ωj)

+ τσ
i(j)
M |H

∆
j I

h(Θ∗v
i
j)|2H1(Ωj) + τσ

e(j)
M |H∆

j I
h(Θ∗v

e
j )|2H1(Ωj).

As a matter of fact, since the Schur seminorm realizes the minimum of the bilinear form a(j) (thus
of its symmetric part q(j)), we can bound it with any function defined on the interface Γ: we
choose the discrete harmonic extension of the Laplacian operator for the intra- and extracellular
ui,e components, while for the gating we use the discrete extension by zero of uw to Ωj .

In this perspective, as the argument of the L2-norm vanishes on a two-dimensional subset of
Γ(j), we can use the Poincaré-Friedrichs inequality (Prop. 3.1) and the Trace theorem (Thm 3.1)
as follows

||H∆
j I

h(Θ∗vj)||2L2(Ωj)

Prop.3.1

. H2|H∆
j I

h(Θ∗vj)|2H1(Ωj)
Thm3.1∼ H2|Ih(Θ∗vj)|2H1/2(Γ(j)),

|H∆
j I

h(Θ∗vj)|2H1(Ωj)
Thm3.1∼ |Ih(Θ∗vj)|2H1/2(Γ(j)),

to obtain

|vj |2Q̃(j)
Γ

.
∑
∗=E,F
?=i,e

[
τσ

?(j)
M +H2 (χCm + τKM,I)

]
|Ih(Θ∗v

?
j )|2H1/2(Γ(j))

+
∑

∗={E,F}

(1− τKM,R) ||Eext,ΩjI
h(Θ∗v

w
j )||2L2(Ωj).

. (5.3)

We now proceed to estimate the contribution from edges and faces separately.

Edge contribution We recall that in the dual-primal construction,

∀vi,ej ∈ W̃Γ, vi,ej =
∑
k∈KE

δi,e †j (ui,ej − u
i,e
k ), (5.4)

where KE = NE \ {j} is the index set of subdomains sharing E . Therefore,

|Ih(ΘEv
i,e
j )|2H1/2(Γ(j)) . ||v

i,e
j ||

2
L2(E)
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= ||
∑
k∈KE

δi,e †k

(
ui,ej − u

i,e
k

)
||2L2(E)

.
∑
k∈KE

(
δi,e †k

)2

||ui,ej − u
i,e
k ||

2
L2(E)

.
∑
k∈KE

(
δi,e †k

)2

||ui,ej − ū
i,e
E ||

2
L2(E) +

∑
k∈KE

(
δi,e †k

)2

||ui,ek − ū
i,e
E ||

2
L2(E)

.

(
1 + log

H

h

)[∑
k∈KE

(
δi,e †k

)2
]
|Hi,ej uj |2H1(Ωj)+

+

(
1 + log

H

h

) ∑
k∈KE

(
δi,e †k

)2

|Hi,ek uk|2H1(Ωk)

=

(
1 + log

H

h

)[∑
k∈KE

(
δi,e †k

)2

|Hi,ej uj |2H1(Ωj) +
∑
k∈KE

(
δi,e †k

)2

|Hi,ek uk|2H1(Ωk)

]
,

where we used Lemma 3.2 and Eq. (5.4). By definition of pseudoinverses,

∑
l

(
δi,e †l

)2

≤

(∑
l

δi,e †l

)2

=

(∑
l

σi,e
(l)

M∑
k∈Nx

σi,e
(k)

M

)
≤ 1

yielding
∑
k∈KE

(
δi,e †k

)2

≤ 1 and also - easy to prove -
∑
k∈KE

(
δw †k

)2

≤ 1 . Moreover, we recall

that the following property

σi,e
(j)

M

(
δi,e †k

)2

≤ min
{
σi,e

(j)

M , σi,e
(k)

M

}
,

holds, from which we can conclude that either

σi,e
(j)

M

(
δi,e †k

)2

≤ σi,e
(j)

M or σi,e
(j)

M

(
δi,e †k

)2

≤ σi,e
(k)

M . (5.5)

In addition, we notice that

||Eext,ΩjI
h(θ∗uj)||2L2(Ωj) ≤ ||uj ||

2
L2(Ωj),

i.e. the L2-norm of the extension to zero on Ωj of the discrete restriction of uj to ∗ = {E ,F} is
bounded by the L2-norm on Ωj of the function uj itself.
Therefore, using the ellipticity property (Lemma 2.6), the edge terms in (5.3) lead to

|PDuj |2Q̃(j)
Γ

= |vj |2Q̃(j)
Γ

.
∑
?=i,e

[
τσ

?(j)
M +H2 (χCm + τKM,I)

](
1 + log

H

h

)[∑
k∈KE

(
δ? †k

)2

|H?juj |2H1(Ωj) +
∑
k∈KE

(
δ? †k

)2

|H?kuk|2H1(Ωk)

]
+ (1− τKM,R) ||Eext,jIh(Θ∗u

w
j )||2L2(Ωj)

.
∑
?=i,e

[
τσ

?(j)
M +H2 (χCm + τKM,I)

](
1 + log

H

h

) ∑
k∈KE

(
δ? †k

)2

︸ ︷︷ ︸
≤1

|H?juj |2H1(Ωj)+

+
∑
?=i,e

[
τσ

?(j)
M +H2 (χCm + τKM,I)

](
1 + log

H

h

) ∑
k∈KE

(
δ? †k

)2

|H?kuk|2H1(Ωk)

+ (1− τKM,R) ||uwj ||2L2(Ωj)

.
∑
?=i,e

[
τσ

?(j)
M +H2 (χCm + τKM,I)

](
1 + log

H

h

)
|H?juj |2H1(Ωj)+
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+
∑
?=i,e

∑
k∈KE

τσ
?(j)
M

(
δ? †k

)2

︸ ︷︷ ︸
for Ineq.(5.5)

≤σ?(k)
M

+H2 (χCm + τKM,I)
(
δ? †k

)2

︸ ︷︷ ︸
≤1


(

1 + log
H

h

)
|H?kuk|2H1(Ωk)

+ (1− τKM,R) ||uwj ||2L2(Ωj)

.
∑
?=i,e

[
τσ

?(j)
M +H2 (χCm + τKM,I)

](
1 + log

H

h

)
|H?juj |2H1(Ωj)+

+
∑
?=i,e

∑
k∈KE

[
τσ

?(k)
M +H2 (χCm + τKM,I)

](
1 + log

H

h

)
|H?kuk|2H1(Ωk) + (1− τKM,R) ||uwj ||2L2(Ωj)

=
∑
?=i,e

τσ
?(j)
M +H2 (χCm + τKM,I)

τσ
?(j)
m

(
1 + log

H

h

)
τσ?(j)m |H?juj |2H1(Ωj)+

+
∑
?=i,e

∑
k∈KE

τσ
?(k)
M +H2 (χCm + τKM,I)

τσ
?(k)
m

(
1 + log

H

h

)
τσ?(k)

m |H?kuk|2H1(Ωk)

+
1− τKM,R

1− τKm,R
(1− τKm,R) ||uwj ||2L2(Ωj)

≤ max
?=i,e

τσ
?(j)
M +H2 (χCm + τKM,I)

τσ
?(j)
m

(
1 + log

H

h

)
|uj |2Q̃(j)

Γ

+

+
∑
k∈KE

max
?=i,e

τσ
?(k)
M +H2 (χCm + τKM,I)

τσ
?(k)
m

(
1 + log

H

h

)
|uk|2Q̃(k)

Γ

+
1− τKM,R

1− τKm,R
|uj |2Q̃(j)

Γ

=

(
1 + log

H

h

)[
max
?=i,e

∑
k∈NE

(
τσ

?(k)
M +H2 (χCm + τKM,I)

τσ
?(k)
m

)]
|u|2

Q̃
(k)
Γ

+
1− τKM,R

1− τKm,R
|u|2

Q̃
(j)
Γ

≤
(

1 + log
H

h

)[
max
?=i,e

∑
k∈NE

(
τσ

?(k)
M +H2 (χCm + τKM,I)

τσ
?(k)
m

)
+

1− τKM,R

1− τKm,R

]
|u|2

Q̃
(j)
Γ

by eventually noting that the number of subdomains sharing an edge is finite. In conclusion,

|PDu|2Q̃(j)
Γ

.

(
1 + log

H

h

)max
k∈NE
?=i,e

τσ
?(k)
M +H2 (χCm + τKM,I)

τσ
?(k)
m

+
1− τKM,R

1− τKm,R

 ∑
k∈NE

|u|2
Q̃

(k)
Γ

.

Face contribution The procedure is essentially the same as the edge term estimate, treating
differently the addition of the average values: as we have not included the face terms in the primal
space, it could happen that the mean on the face F (jk) takes different values from the substructure
j and from k. Therefore, for the intra- and extracellular components,

|Ih(ΘFv
i,e
j )|2H1/2(Γ(j)) . |I

h(ΘFδ
i,e †
j (ui,ej − u

i,e
k ))|2H1/2(Γ(j))

. ||Ih(ΘFδ
i,e †
j (ui,ej − u

i,e
k ))||2

H
1/2
00 (F)

≤
(
δi,e †j

)2

||Ih(ΘF (ui,ej − u
i,e
k ))||2

H
1/2
00 (F)

=
(
δi,e †j

)2

||Ih(ΘF

(
ui,ej − u

i,e
k + ūi,ej,F − ū

i,e
j,F + ūi,ek,F − ū

i,e
k,F

)
)||2
H

1/2
00 (F)

≤
(
δi,e †j

)2

||Ih(ΘF

(
ui,ej − ū

i,e
j,F

)
)||2
H

1/2
00 (F)

+
(
δi,e †j

)2

||Ih(ΘF

(
ui,ek − ū

i,e
k,F

)
)||2
H

1/2
00 (F)

+

+
(
δi,e †j

)2

||Ih(ΘF

(
ūi,ej,F − ū

i,e
k,F

)
)||2
H

1/2
00 (F)
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=
(
δi,e †j

)2

||Ih(ΘF

(
ui,ej − ū

i,e
j,F

)
)||2
H

1/2
00 (F)

+
(
δi,e †j

)2

||Ih(ΘF

(
ui,ek − ū

i,e
k,F

)
)||2
H

1/2
00 (F)

+

+
(
δi,e †j

)2

||ΘF
(
ūi,ej,F − ū

i,e
k,F

)
||2
H

1/2
00 (F)

.

(
1 + log

H

h

)2 (
δi,e †j

)2

|ui,ej |
2
H1/2(Γ(j)) +

(
1 + log

H

h

)2 (
δi,e †j

)2

|ui,ek |
2
H1/2(Γ(k))+

+

(
1 + log

H

h

)2 (
δi,e †j

)2 [
|ui,ej |

2
H1/2(F) + |ui,ek |

2
H1/2(F)

]
. 2

(
1 + log

H

h

)2 (
δi,e †j

)2 [
|Hi,ej uj |2H1(Ωj) + |Hi,ek uk|2H1(Ωk)

]
≤ 2

(
1 + log

H

h

)2 (
δi,e †j

)2
[

1

τσ
i,e(j)
m

q(j)
(
Hi,ej uj ,Hi,ej uj

)
+

+
1

τσ
i,e(k)
m

q(k)
(
Hi,ek uk,Hi,ek uk

)]
= 2

(
1 + log

H

h

)2 (
δi,e †j

)2
[

1

τσ
i,e(j)
m

|uj |2Q̃(j)
Γ

+
1

τσ
i,e(k)
m

|uk|2Q̃(k)
Γ

]
,

by using Lemmas 3.1, 3.3, the Trace theorem (Thm 3.1) and the ellipticity Lemma 2.6. We also
have to add the estimate of the L2 norm of the gating component uw, which can be treated in the
same way as in the previous case.

In the same fashion as with the edge term, we can conclude this proof with the estimate of the
face term

|PDu|2Q̃(j)
Γ

.

(
1 + log

H

h

)2
[

max
?=i,e

τσ
?(k)
M +H2 (χCm + τKM,I)

τσ
?(k)
m

+
1− τKM,R

1− τKm,R

]
|u|2

Q̃
(j)
Γ

.

5.1.2 Proof of Lemma 5.1 with deluxe scaling

It is possible to extend the proof of the analogous Lemma for the decoupled problem, with few
modifications, for the coupled problem when the deluxe scaling is applied.

We need to define first the deluxe scaling induced by the symmetric bilinear form q(·, ·). As

already done in Chapter 3, suppose that the face F is shared by Ωj and Ωk; let Q
(j)
F and Q

(k)
F be

the principal minors obtained from Q
(j)
Γ and Q

(k)
Γ by removing all the contributions that are not

related to the degrees of freedom of the face F .
Let uj,F = RFuj be the restriction of uj to the face F through the restriction operator RF ; we

define the deluxe average induced by the bilinear form q(·, ·) across F as

ūQ,F =
(
Q

(j)
F +Q

(k)
F

)−1 (
Q

(j)
F uj,F +Q

(k)
F uk,F

)
.

Also in this case, we have denoted with ūj,F the mean value of uj over the face F , while, if we
omit the index j, we denote the deluxe average.

The action of (Q
(j)
F + Q

(k)
F )−1 can be computed by solving a Dirichlet problem over the two sub-

domains, by extending to zero the right-hand side entries associated with the interior nodes.

In a similar fashion, if we consider an edge E , where a node is common to at least two elements,
it is possible to define the deluxe average induced by the symmetric bilinear form q(·, ·) across E .
Suppose for simplicity that E is shared by only three subdomains with indices j1, j2 and j3; the
extension to more than three subdomains is immediate. Let uj,E = REuj be the restriction of uj
to the edge E through the restriction operator RE and define

Q
(j123)
E = Q

(j1)
E +Q

(j2)
E +Q

(j3)
E ;
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then, the deluxe average induced by the bilinear form q(·, ·) across an edge E is given by

ūQ,E =
(
Q

(j123)
E

)−1 (
Q

(j1)
E uj1,E +Q

(j2)
E uj2,E +Q

(j3)
E uj3,E

)
.

Then, like in the previous proof, instead of proving the bound for the projection operator ED, we
prove it for the complementary projection PD and we focus on the local contributions. Thus, for
all u ∈ W̃Γ

R∂Ωj
PDu = R∂Ωj

u∆ −
∑

∗={F,E}

RT∗ ū∗

 ,

that leads to

|R∂Ωj
PDu|2Q(j)

Γ

≤ |Ξ∗j |
∑

∗={F,E}
∗∈Ξ∗j

|RT∗
(
ui,e,wj,∗ − ū

i,e,w
Q,∗

)
|2
Q

(j)
Γ

,

where Ξ∗j is the index set containing the indices of the subdomains that share the face F or the

edge E . We will denote by ūi,e,w·,G =
(
ūi·,G , ū

e
·,G , 0

)
the vector containing the mean value of the intra-

and extra-cellular potentials over G = {F , E} on the subdomain · and null value corresponding to
the gating component. Let us distinguish between face and edge contributions.

Face contribution Suppose that the face F is shared by subdomains Ωj and Ωk. Then, by
simple algebra, it follows

uj,F − ūQ,F = uj,F −
(
Q

(j)
F +Q

(k)
F

)−1 (
Q

(j)
F uj,F +Q

(k)
F uk,F

)
=
(
Q

(j)
F +Q

(k)
F

)−1

Q
(k)
F (uj,F − uk,F )

=
(
Q

(j)
F +Q

(k)
F

)−1

Q
(k)
F

[(
uj,F − ūi,e,wj,F

)
−
(
uk,F − ūi,e,wk,F

)
+
(
ūi,e,wj,F − ū

i,e,w
k,F

)]
.

Therefore, it follows

|RTF (uj,F − ūQ,F ) |2
Q

(j)
Γ

= (uj,F − ūQ,F )
T
Q

(j)
F (uj,F − ūQ,F )

= (uj,F − uk,F )
T
Q

(k)
F

(
Q

(j)
F +Q

(k)
F

)−1

Q
(j)
F

(
Q

(j)
F +Q

(k)
F

)−1

Q
(k)
F (uj,F − uk,F )

≤
(
uj,F − ūi,e,wj,F

)T
Q

(k)
F

(
Q

(j)
F +Q

(k)
F

)−1

Q
(j)
F

(
Q

(j)
F +Q

(k)
F

)−1

Q
(k)
F

(
uj,F − ūi,e,wj,F

)
+

+
(
uk,F − ūi,e,wk,F

)T
Q

(k)
F

(
Q

(j)
F +Q

(k)
F

)−1

Q
(j)
F

(
Q

(j)
F +Q

(k)
F

)−1

Q
(k)
F

(
uk,F − ūi,e,wk,F

)
+

+
(
ūi,e,wj,F − ū

i,e,w
k,F

)T
Q

(k)
F

(
Q

(j)
F +Q

(k)
F

)−1

Q
(j)
F

(
Q

(j)
F +Q

(k)
F

)−1

Q
(k)
F

(
ūi,e,wj,F − ū

i,e,w
k,F

)
≤ 2|uj,F − ūi,e,wj,F |

2

Q
(j)
F

+ 2|uk,F − ūi,e,wk,F |
2

Q
(k)
F

+ |
(
S

(j)
F +Q

(k)
F

)−1

Q
(k)
F

(
ūi,e,wj,F − ū

i,e,w
k,F

)
|2
Q

(j)
F
,

∀uj,F ∈ W̃Γ, where in the last line we use the two inequalities

Q
(k)
F

(
Q

(j)
F +Q

(k)
F

)−1

Q
(j)
F

(
Q

(j)
F +Q

(k)
F

)−1

Q
(k)
F ≤ Q

(j)
F

Q
(k)
F

(
Q

(j)
F +Q

(k)
F

)−1

Q
(j)
F

(
Q

(j)
F +Q

(k)
F

)−1

Q
(k)
F ≤ Q

(k)
F .

(5.6)

These relations follow from the generalized eigenvalue problem Q
(j)
F φ = λQ

(k)
F φ and by observing

that all eigenvalues are non-negative.
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It is sufficient now to estimate |uj,F−ūi,e,wj,F |2Q(j)
F

and |
(
Q

(j)
F +Q

(k)
F

)−1

Q
(k)
F

(
ūi,e,wj,F − ū

i,e,w
k,F

)
|2
Q

(j)
F

;

we note that, where the subdomain faces averages are included in the primal space, the last term
is zero. Thanks to the definition of ūi,e,wj,F , we obtain

|uj,F − ūi,e,wj,F |
2

Q
(j)
F

= q(j)
(
Hcj
(
uj,F − ūi,e,wj,F

)
,Hcj

(
uj,F − ūi,e,wj,F

))
≤ (χCm + τKM,I) ||H∆

j

(
ui,ej − ū

i,e
j,F

)
||2L2(Ωj)+

+ τ
∑
?=i,e

σ?M |H∆
j

(
u?j,F − ū?j,F

)
|2H1(Ωj)

+ (1− τKM,R) ||Eext,Ωju
w
j,F ||2L2(Ωj)

.
[
τσi,eM +H2 (χCm + τKM,I)

]
|ui,ej,F − ū

i,e
j,F |

2
H1/2(Γ(j))

+ (1− τKM,R) ||uwj ||2L2(Ωj),

by using the ellipticity Lemma 2.6, and the Poincaré-Friedrichs inequality (Prop. 3.1) combined
with the Trace theorem (Thm 3.1). Here we are already taking in consideration the discrete

restriction of a function uj ∈ W̃Γ on the face F . In this way the notations uj − ūi,e,wj,F and

Ih(ΘF (uj − ūi,e,wj,F )) are essentially the same. Therefore, it is possible to apply Lemma 3.3 and the
Trace theorem to have

|uj,F − ūi,e,wj,F |
2

Q
(j)
Γ

.
[
τσi,eM +H2 (χCm + τKM,I)

](
1 + log

H

h

)2

|ui,ej |
2
H1/2(∂Ωj) + (1−KM,R) ||uwj ||2L2(Ωj)

∼
[
τσi,eM +H2 (χCm + τKM,I)

](
1 + log

H

h

)2

|H∆
j uj |2H1(Ωj) + (1−KM,R) ||uwj ||2L2(Ωj),

(5.7)

Regarding the term |
(
Q

(j)
F +Q

(k)
F

)−1

Q
(k)
F

(
ūi,e,wj,F − ū

i,e,w
k,F

)
|2
Q

(j)
F

, let E ⊂ ∂F be a primal edge,

such that ūi,e,wj,E = ūi,e,wk,E . Then,

|
(
Q

(j)
F +Q

(k)
F

)−1

Q
(k)
F

(
ūi,e,wj,F − ū

i,e,w
k,F

)
|2
Q

(j)
F
≤ 2 |

(
Q

(j)
F +Q

(k)
F

)−1

Q
(k)
F

(
ūi,e,wj,E − ū

i,e,w
j,F

)
|2
Q

(j)
F

+

+ 2 |
(
Q

(j)
F +Q

(k)
F

)−1

Q
(k)
F

(
ūi,e,wk,E − ū

i,e,w
k,F

)
|2
Q

(j)
F

≤ 2 |ūi,e,wj,E − ū
i,e,w
j,F |

2

Q
(j)
F

+ 2 |ūi,e,wk,E − ū
i,e,w
k,F |Q(k)

F
,

by using the two inequalities in (5.6). It is sufficient now to estimate the first term on the right-
hand side, as we can deal with the other in the same fashion. Combining the result of ellipticity
(Lemma (2.6) ), the Poincaré-Friedrichs inequality (Prop. 3.1) and the Trace theorem (Thm. 3.1),
we have

|ūi,e,wj,E − ū
i,e,w
j,F |

2

Q
(j)
F

= q(j)
(
Hcj
(
ūi,e,wj,E − ū

i,e,w
j,F

)
, Hcj

(
ūi,e,wj,E − ū

i,e,w
j,F

))
= q(j)

(
Hcj
(
uj − ūi,e,wj,F

)
j,E
, Hcj

(
uj − ūi,e,wj,F

)
j,E

)
≤ (χCm + τKM ) ||H∆

j

(
ui,ej − ū

i,e
j,F

)
j,E
||2L2(Ωj) +

+ (1− τKM,R) ||Eext,Ωj

(
uwj − ūwj,F

)
j,E
||2L2(Ωj)

+ τ
∑
?=i,e

σ?M |H∆
j

(
ui,ej − ū

i,e
j,F

)
j,E
|2H1(Ωj)

.
∑
?=i,e

[
τσ?M +H2 (χCm + τKM )

]
|
(
ui,ej − ū

i,e
j,F

)
j,E
|2H1(Ωj),
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where in the last inequality we use the fact that ūwj,E and ūwj,F are zero by construction. Regarding
the intra- and extracellular components, by using Lemma (3.2) and Lemma (3.4), it follows

‖ (uj − ūj,F )j,E ‖
2 ≤ CH−1||uj − ūj,F ||2L2(E)

≤ C
(

1 + log
H

h

)
|uj − ūj,F |2H1/2(∂Ωj)

≤ C
(

1 + log
H

h

)3

|uj |2H1/2(∂Ωj).

This means that

|ūi,e,wj,E − ū
i,e,w
j,F |

2

Q
(j)
F
≤ C

(
1 + log

H

h

)3 ∑
?=i,e

[
τσ?M +H2 (χCm + τKM,I)

]
|ui,ej |

2
H1/2(∂Ωj)

∼ C
(

1 + log
H

h

)3 ∑
?=i,e

[
τσ?M +H2 (χCm + τKM,I)

]
|H∆

j uj |2H1(Ωj).

(5.8)

To conclude, the face contribution is given by considering the inequalities (5.7), (5.8) and Lemma
2.6:

|PDu|2Q(j)
Γ

.
∑
?=i,e

∑
F∈ΞFj

[
τσ?M +H2 (χCm + τKM,I)

](
1 + log

H

h

)3

|H∆
j uj |2H1(Ωj)

+
∑
F∈ΞFj

(1− τKM,R) ||uwj ||2L2(Ωj)

=
∑
?=i,e

∑
F∈ΞFj

τσ?M +H2 (χCm + τKM,I)

σ?m

(
1 + log

H

h

)3

σ?m|H∆
j uj |2H1(Ωj)

+
∑
F∈ΞFj

(1− τKM,R) ||uwj ||2L2(Ωj)

≤ max
?=i,e

∑
F∈ΞFj

τσ?M +H2 (χCm + τKM,I)

τσ?m

(
1 + log

H

h

)3

|u?j |2Q̃(j)
Γ

+
∑
F∈ΞFj

1− τKM,R

1− τKm,R
|uwj |2Q̃(j)

Γ

≤
∑
F∈ΞFj

[
max
?=i,e

τσ?M +H2 (χCm + τKM,I)

τσ?m
+

1− τKM,R

1− τKm,R

](
1 + log

H

h

)3

|uj |2Q̃(j)
Γ

.

Edge contribution For simplicity, suppose that an edge E is shared only by three subdomains,
with indexes j1, j2 and j3. The extension to the case of more subdomains is then similar. Define

Q
(j123)
E as

Q
(j123)
E := Q

(j1)
E +Q

(j2)
E +Q

(j3)
E .

Then, we recall that the average operator is given by

ūQ,E :=
(
Q

(j123)
E

)−1 (
Q

(j1)
E uj1,E +Q

(j2)
E uj2,E +Q

(j3)
E uj3,E

)
.

Proceeding in the same fashion as for the face contribution, it follows

uj1,E − ūQ,E =
(
Q

(j123)
E

)−1 [(
Q

(j2)
E +Q

(j3)
E

)
uj1,E −Q

(j2)
E uj2,E −Q

(j3)
E uj3,E

]
,
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which leads to

|RTE (uj1,E − ūQ,E) |2Q(j1)

Γ

= (uj1,E − ūQ,E)
T
RE Q

(j1)
Γ RTE (uj1,E − ūQ,E)

= (uj1,E − ūQ,E)
T
Q

(j1)
E (uj1,E − ūQ,E)

≤ 3uTj1,E

(
Q

(j2)
E +Q

(j3)
E

)T (
Q

(j123)
E

)−1

Q
(j1)
E

(
Q

(j123)
E

)−1 (
Q

(j2)
E +Q

(j3)
E

)
uj1,E +

+ 3uTj2,EQ
(j2)T
E

(
Q

(j123)
E

)−1

Q
(j1)
E

(
Q

(j123)
E

)−1

Q
(j2)
E uj2,E +

+ 3uTj3,EQ
(j3)T
E

(
Q

(j123)
E

)−1

Q
(j1)
E

(
Q

(j123)
E

)−1

Q
(j3)
E uj3,E

≤ 3uTj1,EQ
(j1)
E uj1,E + 3uTj2,EQ

(j2)
E uj2,E + uTj3,EQ

(j3)
E uj3,E

where we use analogous inequalities as in the face case. The first term can be bounded by taking

into account the matrices Q
(j1)
E and Q

(j2)
E +Q

(j3)
E in the generalized eigenvalue problem

Q
(j1)
E φ = λ

(
Q

(j2)
E +Q

(j3)
E

)
φ.

The second and third expressions follow similarly, by first bounding them from above with (see for
example the second term)

3uTj2,EQ
(j2)T
E

(
Q

(j123)
E

)−1 (
Q

(j1)
E +Q

(j2)
E

)(
Q

(j123)
E

)−1

Q
(j2)
E uj2,E

and then considering the generalized eigenvalue problem

Q
(j2)
E φ = λ

(
Q

(j1)
E +Q

(j3)
E

)
φ.

By adding and subtracting ūi,e,wj1,E (which assume the same value over the three subdomain, since
we have included the edge averages into the primal space) we obtain the analogous estimate for
the egdes, thanks to Lemma 3.2

uTj1,EQ
(j1)
E uj1,E ≤ |uj1,E − ū

i,e,w
j1,E |

2

Q
j1
Γ

.
[
τσi,eM +H2 (χCm + τKM,I)
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2
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](
1 + log

H

h

)
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2
H1(Ωj)

+ (1− τKM,R) ||uwj1,E ||
2
L2(Ωj).

In conclusion, applying again Lemma 2.6, the edge contribution for the estimate of |PDu|2
Q

(j)
Γ

is

given by

|PDu|2Q(j)
Γ

.
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≤ max
?=i,e
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E∈ΞEj
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Γ
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1 + log
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Γ

.

where the index j collects all contributions from the subdomains that share the edge E .

5.2 Convergence rate for the coupled non-symmetric prob-
lem

The convergence rate of the preconditioned GMRES iteration can be obtained using the result in
Reference [40] and following the proof techniques proposed in Ref. [121].

Theorem 5.1. Let H be the subdomain size and let the mesh size h be small enough.
Assume, for u ∈ ŴΓ, that there exists two positive constants c and C such that

c〈u, u〉QΓ
≤ 〈u, Tu〉QΓ

〈Tu, Tu〉QΓ
≤ C〈u, u〉QΓ

(5.9)

hold, with c =
c0
K2

and C = Φ?,k(H,h) K2, where

c0 = 1−K4 H2

h
max

k=1,...,N
?=i,e

[
σ
?(k)
M

] 1
2

√
τσ

?(k)
m

Φ?,k(H,h)
[
Φ?,k(H,h)− 1

] 1
2 ,

Φ?,k(H,h) =

 max
k=1,...,N
?=i,e

τσ
?(k)
M +H2 (χCm + τKM,I)

τσ
?(k)
m

+
1− τKM,R

1− τKm,R

(1 + log
H

h

)n
,

K2 =
1

4

τ2 |CIw − CRv
|2

(χCm + τKm,I) (1− τKm,R)
,

where n = 2, 3 depends on the ρ-scaling or deluxe scaling adopted and T is the Bidomain precon-
ditioned operator

T = M−1
BDDC S̃Γ = R̃TD,ΓS̃

−1
Γ R̃D,ΓR̃ΓSΓR̃

T
Γ .

Then
|rm|QΓ

|r0|QΓ

≤
(

1− c2

C

)m
2

,

where rm is the residual at the m-th iteration.

5.2.1 Proof of the upper bound of Theorem 5.1

For the proof of the upper bound 〈Tu, Tu〉QΓ
≤ C〈u, u〉QΓ

, we need the following results.

Lemma 5.2. There exists a constant C1 > 0 such that ∀uj , vj ∈W (j) with j = 1, . . . , N ,

|z(j) (uj , vj) | ≤ C1 K|uj |Q(j) |vj |Q(j) ,

|a(j) (uj , vj) | ≤ C1 K|uj |Q(j) |vj |Q(j) ,

where

K2 =
1

4

τ2 |CIw − CRv
|2

(χCm + τKm,I) (1− τKm,R)
.
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Proof. Using the ellipticity Lemma 2.6, we can bound from below the norm

|uj |2Q(j) = q(j) (uj , uj)

Lemma
2.6
≥ 2

[
(χCm + τKm,I) ||uij − uej ||2L2(Ωj) +

+ (1− τKm,R) ||uwj ||2L2(Ωj)+

+ τσim|uij |2H1(Ωj) + τσem|uej |2H1(Ωj)

]
≥ 2

[
(χCm + τKm,I) ||uij − uej ||2L2(Ωj) +

+ (1− τKm,R) ||uwj ||2L2(Ωj)

]
.

Therefore, ∀uj , vj ∈W (j)

|uj |2Q(j) |vj |2Q(j) ≥ 4 (χCm + τKm,I)
2 ||uij − uej ||2L2(Ωj)||v

i
j − vej ||2L2(Ωj)+

+ 4 (1− τKm,R)
2 ||uwj ||2L2(Ωj)||v

w
j ||2L2(Ωj)+

+ 4 (χCm + τKm,I) (1− τKm,R)×[
||uij − uej ||2L2(Ωj)||v

w
j ||2L2(Ωj) + ||uwj ||2L2(Ωj)||v

i
j − vej ||2L2(Ωj)

]
≥ 4 (χCm + τKm,I) (1− τKm,R)×[

||uij − uej ||2L2(Ωj)||v
w
j ||2L2(Ωj) + ||uwj ||2L2(Ωj)||v

i
j − vej ||2L2(Ωj)

]
,

from which

|uj |Q(j) |vj |Q(j) ≥ 2 (χCm + τKm,I)
1
2 (1− τKm,R)

1
2 ×√

||uij − uej ||2L2(Ωj)||v
w
j ||2L2(Ωj) + ||uwj ||2L2(Ωj)||v

i
j − vej ||2L2(Ωj).

We estimate the bound for the skew-symmetric bilinear form as

|z(j) (uj , vj) | ≤ τ |CIw − CRv
| · |||uij − uej ||L2(Ωj)||vwj ||L2(Ωj) + ||uwj ||L2(Ωj)||vij − vej ||L2(Ωj)|

≤ 1

2

τ |CIw − CRv |
(χCm + τKm,I)

1
2 (1− τKm,R)

1
2

|uj |Q(j) |vj |Q(j) .

The bound for the bilinear form a(·, ·) follows easily from its decomposition

a(j) (uj , vj) =
1

2
q(j) (uj , vj) +

1

2
z(j) (uj , vj)

and from the continuity of both symmetric and skew-symmetric forms.

Lemma 5.3. There exists a constant C2 > 0 such that ∀u, v ∈ Ŵ

|z(u, v)| ≤ C2 K|u|Q||v||L2(Ω),

with K defined in Lemma 5.2.

Lemma 5.4. Let C3, C4 > 0 be two positive constants, independent from H and h, such that
∀uΓ, vΓ ∈ W̃Γ

(i) |〈uΓ, vΓ〉Z̃Γ
| ≤ C3 K |uΓ|Q̃Γ

|vΓ|Q̃Γ

(ii) |〈uΓ, vΓ〉S̃Γ
| ≤ C4 K |uΓ|Q̃Γ

|vΓ|Q̃Γ

(5.10)

where K is defined in Lemma 5.2.
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Proof. (i) From Definition 5.2 and Lemma 5.2, ∀uΓ, vΓ ∈ W̃Γ,

|〈uΓ, vΓ〉Z̃Γ
| = |〈uA,Γ, vA,Γ〉Z̃ | = |z̃ (uA,Γ, vA,Γ) |
≤ K|uA,Γ|Q̃|vA,Γ|Q̃ = K|uΓ|Q̃Γ

|vΓ|Q̃Γ
.

(ii) By using [121, Lemma 7.2] and 5.2, we obtain

|〈uΓ, vΓ〉S̃Γ
| = |〈uA,Γ, v〉Ã| = |ã (uA,Γ, v) |
≤ K|uA,Γ|Q̃|v|Q = K|uΓ|Q̃Γ

|vΓ|Q̃Γ
.

We are now ready to prove the upper bound of Theorem 5.1.

Given uΓ ∈ ŴΓ, by defining wΓ = S̃−1
Γ R̃D,ΓuΓ and using [121, Lemmas 7.2 and 7.9] and

Lemmas 5.1, 5.4

〈TuΓ, TuΓ〉QΓ
= 〈TuΓ, TuΓ〉SΓ

= 〈R̃TD,ΓS̃−1
Γ R̃D,ΓuΓ, R̃

T
D,ΓS̃

−1
Γ R̃D,ΓuΓ〉SΓ

= 〈R̃TD,ΓwΓ, R̃
T
D,ΓwΓ〉SΓ

= 〈R̃TD,ΓwΓ, SΓR̃
T
D,ΓwΓ〉

= 〈R̃TD,ΓwΓ, R̃
T
Γ S̃ΓR̃ΓR̃

T
D,ΓwΓ〉

= 〈R̃ΓR̃
T
D,ΓwΓ, R̃ΓR̃

T
D,ΓwΓ〉S̃Γ

= 〈EDwΓ, EDwΓ〉S̃Γ
= |EDwΓ|2S̃Γ

= |EDwΓ|2Q̃Γ

≤ Φ?,k(H,h) |wΓ|2Q̃Γ

= Φ?,k(H,h) 〈uΓ, TuΓ〉SΓ

≤ Φ?,k(H,h)K |uΓ|QΓ
|TuΓ|QΓ

= Φ?,k(H,h)K 〈uΓ, uΓ〉1/2QΓ
〈TuΓ, TuΓ〉1/2QΓ

,

from which we conclude

〈TuΓ, TuΓ〉QΓ
≤ Φ?,k(H,h)K2 〈uΓ, uΓ〉QΓ

,

where

Φ?,k(H,h) =

 max
k=1,...,N
?=i,e

τσ
?(k)
M +H2 (χCm + τKM,I)

τσ
?(k)
m

+
1− τKM,R

1− τKm,R

(1 + log
H

h

)n
, n = 2, 3

K2 =
1

4

τ2 |CIw − CRv |2

(χCm + τKm,I) (1− τKm,R)
.

5.2.2 Proof of the lower bound of Theorem 5.1

Conversely, for the proof of the lower bound, we need Lemma 7.9 from Ref. [121] and the following
results.

Lemma 5.5. There exists a constant C5 > 0 such that ∀uΓ, vΓ ∈ ŴΓ,

|〈uΓ, vΓ〉ZΓ
| ≤ C5 K|uΓ|QΓ

||vA,Γ||L2(Ω),

with K defined in Lemma 5.2.
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Lemma 5.6. Given wΓ = S̃−1
Γ R̃D,ΓSΓuΓ for uΓ ∈ ŴΓ, there exists a constant C6 > 0 such that

|wΓ|2Q̃Γ
≤ C6 K

2Φ?,k(H,h) |uΓ|2QΓ
,

with K defined in Lemma 5.2 and

Φ?,k(H,h) =

 max
k=1,...,N
?=i,e

τσ
?(k)
M +H2 (χCm + τKM,I)

τσ
?(k)
m

+
1− τKM,R

1− τKm,R

(1 + log
H

h

)n
, n = 2, 3.

Proof. We make use of Lemmas 5.1 and 5.4, in addition to [121, Lemmas 7.2, 7.9]:

〈TuΓ, TuΓ〉QΓ = 〈TuΓ, TuΓ〉SΓ

= 〈R̃TD,ΓS̃−1
Γ R̃D,ΓSΓuΓ, R̃

T
D,ΓS̃

−1
Γ R̃D,ΓSΓuΓ〉SΓ

= 〈R̃TD,ΓwΓ, R̃
T
D,ΓwΓ〉SΓ

= |EDwΓ|2S̃Γ

= |EDwΓ|2Q̃Γ

≤ C6Φ?,k(H,h)|wΓ|2Q̃Γ

= C6Φ?,k(H,h) 〈uΓ, TuΓ〉SΓ

≤ C6 KΦ?,k(H,h) 〈uΓ, uΓ〉1/2QΓ
〈TuΓ, TuΓ〉1/2QΓ

,

which means
〈TuΓ, TuΓ〉QΓ

≤ C6 K
2
[
Φ?,k

]2
(H,h) 〈uΓ, uΓ〉QΓ

.

It is straightforward to conclude, by applying [121, Lemma 7.9] and Lemma 5.4

|wΓ|2Q̃Γ
= 〈uΓ, TuΓ〉SΓ

≤ K|uΓ|QΓ |TuΓ|QΓ

≤ C6 K
2Φ?,k(H,h)|uΓ|2QΓ

.

Lemma 5.7. Let wΓ = S̃−1
Γ R̃D,ΓSΓuΓ, for uΓ ∈ ŴΓ. Then, the following property holds

〈wA,Γ, v〉Q̃ = 〈R̃uA,Γ, v〉Q̃,

for all v ∈ R̃(Ŵ ).

Proof. Given v ∈ R̃(Ŵ ), we denote by vΓ ∈ R̃Γ(ŴΓ) its continuous interface part. Then, given

uΓ ∈ ŴΓ, by using Lemma 7.2 from Ref. [121] and the identity R̃ΓR̃
T
D,ΓvΓ = vΓ, we get

〈wA,Γ, v〉Q̃ = 〈wΓ, vΓ〉S̃Γ
= vTΓ S̃ΓwΓ

= vTΓ S̃ΓS̃
−1
Γ R̃D,ΓSΓuΓ

= vTΓ R̃D,ΓSΓuΓ

= vTΓ R̃D,ΓR̃ΓR̃
T
D,ΓSΓuΓ

= vTΓ R̃D,ΓR̃ΓS̃ΓR̃ΓuΓ

= 〈R̃ΓuΓ, R̃ΓR̃
T
D,ΓvΓ〉S̃Γ

= 〈R̃ΓuΓ, vΓ〉S̃Γ

= 〈R̃ΓuA,Γ, v〉Q̃
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Lemma 5.8. For h sufficiently small, given wΓ = S̃−1
Γ R̃D,ΓSΓuΓ for uΓ ∈ ŴΓ, there exists a

positive constant C7 > 0 such that ∀uΓ ∈ ŴΓ

||wA,Γ − uA,Γ||2L2(Ω) ≤ C7 H
2 K2 max

k=1,...,N
?=i,e

Φ?,k(H,h)− 1

τσ?,km
|uΓ|QΓ

,

with K and Φ defined in Lemmas 5.2 and 5.6 respectively.

Proof. It is useful to observe that, being uΓ ∈ ŴΓ, by defining R̃ : Ŵ −→ W̃ , then R̃uΓ ∈ R̃
(
Ŵ
)

.

By using the Poincaré-Friedrichs inequality (Prop. 3.1), the ellipticity Lemma 2.6 and [121, Lemma
7.2], we obtain

||wA,Γ − uA,Γ||2L2(Ω) ≤ CH
2|wA,Γ − uA,Γ|2H1(Ω)

≤ CH2 max
k=1,...,N
?=i,e

1

τσ?,km
|wA,Γ − R̃uA,Γ|2Q̃

The right-hand side is:

|wA,Γ − R̃uA,Γ|2Q̃ = 〈wA,Γ − R̃uA,Γ, wA,Γ − R̃uA,Γ〉Q̃
= 〈wA,Γ − R̃uA,Γ, wA,Γ〉Q̃ − 〈wA,Γ − R̃uA,Γ, R̃uA,Γ〉Q̃.

We treat separately the two terms.

(i) Using Lemma 5.6 and [121, Lemma 7.2],

〈wA,Γ − R̃uA,Γ, wA,Γ〉Q̃ = |wA,Γ|2Q̃ − 〈R̃uA,Γ, wA,Γ〉Q̃
= |wΓ|2Q̃Γ

− |R̃uA,Γ|2Q̃
= |wΓ|2Q̃Γ

− |uA,Γ|2Q
= |wΓ|2Q̃Γ

− |uΓ|2QΓ

≤ C
[
K2Φ?,k(H,h)− 1

]
|uΓ|2QΓ

,

where we observe that, for uA,Γ ∈ Ŵ , R̃uA,Γ ∈ R̃(Ŵ ) and, since Q̃ is symmetric, Lemma 5.7
holds:

〈R̃uA,Γ, wA,Γ〉Q̃ = 〈wA,Γ, R̃uA,Γ〉Q̃ = 〈R̃uA,Γ, R̃uA,Γ〉Q̃.

(ii) From Lemma 5.7, it holds

〈wA,Γ − R̃uA,Γ, R̃uA,Γ〉Q̃ = 0,

since R̃uA,Γ ∈ R̃(Ŵ ).

Then

|wA,Γ − R̃uA,Γ|2Q̃ ≤ C
[
K2Φ?,k(H,h)− 1

]
|uΓ|2QΓ

,

which leads to

||wA,Γ − uA,Γ||2L2(Ω) ≤ C H2 K2 max
k=1,...,N
?=i,e

[
Φ?,k(H,h)− 1

τσ?,km

]
|uΓ|2QΓ

.



5.2. CONVERGENCE RATE FOR THE COUPLED NON-SYMMETRIC PROBLEM 81

Lemma 5.9. Given vΓ = R̃TD,ΓwΓ for wΓ ∈ W̃Γ, there exists a positive constant C > 0 such that

||vA,Γ||2L2(Ω) ≤ C
H2

h2
max

k=1,...,N
?=i,e

σ?,kM
σ?,km

[
Φ?,k(H,h)

]2 ||wA,Γ||2L2(Ω),

with Φ defined in Lemma 5.6.

Proof. As the quantity vA,Γ − wA,Γ has zero average on the interface, ∀wΓ ∈ W̃Γ, then thanks
to Poincaré-Friedrichs inequality, the ellipticity Lemma 2.6, Lemma 5.1 and [121, Lemma 7.2], we
have

||vA,Γ − wA,Γ||2L2(Ω) ≤ C H2|vA,Γ − wA,Γ|2H1(Ω)

≤ max
k=1,...,N
?=i,e

C
H2

τσ?,km
|vA,Γ − wA,Γ|2Q̃

= max
k=1,...,N
?=i,e

C
H2

τσ?,km
|vΓ − wΓ|2Q̃Γ

≤ max
k=1,...,N
?=i,e

C
H2

τσ?,km

[
Φ?,k(H,h)

]2 |wΓ|2Q̃Γ

≤ max
k=1,...,N
?=i,e

CH2 τσ?,kM
τσ?,km

[
Φ?,k(H,h)

]2 |wA,Γ|2H1(Ω)

≤ max
k=1,...,N
?=i,e

C
H2

h2

σ?,kM
σ?,km

[
Φ?,k(H,h)

]2 ||wA,Γ||2L2(Ω)

where we used the definition of projection ED,

vΓ − wΓ =
(
I − R̃TD,Γ

)
wΓ = EDwΓ,

and an inverse inequality.

Lemma 5.10. Set vΓ = TuΓ − uΓ, for uΓ ∈ ŴΓ. For h sufficiently small, there exists a positive
constant C > 0 such that for uΓ ∈ ŴΓ,

||vA,Γ||2L2(Ω) ≤ C K2H
4

h2
max

k=1,...,N
?=i,e

σ?,kM

τ
(
σ?,km

)2

[
Φ?,k(H,h)

]2 [
Φ?,k(H,h)− 1

]
|uΓ|2QΓ

,

with K and Φ defined in Lemmas 5.2 and 5.6 respectively.

Proof. Since TuΓ = R̃TD,ΓwΓ and R̃TD,ΓR̃Γ = I, then

vΓ = TuΓ − uΓ

= R̃TD,ΓwΓ − R̃TD,ΓR̃ΓuΓ

= R̃TD,Γ

(
wΓ − R̃ΓuΓ

)
.

Therefore, by Lemmas 5.9 and 5.8,

||vA,Γ||2L2(Ω) ≤ C
H2

h2
max

k=1,...,N
?=i,e

σ?,kM
σ?,km

[
Φ?,k(H,h)

]2 ||wA,Γ − R̃ΓuA,Γ||2L2(Ω)

≤ C K2 H4

h2
max

k=1,...,N
?=i,e

σ?,kM

τ
(
σ?,km

)2

[
Φ?,k(H,h)

]2 [
Φ?,k(H,h)− 1

]
|uΓ|2QΓ

.
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Finally, we are able to conclude the proof of Theorem 5.1 by proving the lower bound of the in-
equality (5.9).

By using Lemma 5.4 and [121, lemmas 7.2 and 7.9],

〈uΓ, uΓ〉QΓ
= 〈uΓ, uΓ〉SΓ

= uTΓSΓuΓ

= uTΓ R̃
T
Γ R̃D,ΓSΓuΓ

= uTΓ R̃
T
Γ S̃ΓS̃

−1
Γ R̃D,ΓSΓuΓ

= uTΓ R̃
T
Γ S̃ΓwΓ

≤ K|wΓ|Q̃Γ
|R̃ΓuΓ|Q̃Γ

= K〈uΓ, TuΓ〉1/2SΓ
〈uΓ, uΓ〉1/2QΓ

,

which means
〈uΓ, uΓ〉QΓ

≤ K2〈uΓ, TuΓ〉SΓ
. (5.11)

From [121, Lemma 7.2] and 〈uΓ, uΓ〉ZΓ
= 0, we obtain

〈uΓ, TuΓ〉SΓ = 〈uΓ, TuΓ〉QΓ + 〈uΓ, TuΓ〉ZΓ − 〈uΓ, uΓ〉ZΓ

= 〈uΓ, TuΓ〉QΓ + 〈uΓ, TuΓ − uΓ〉ZΓ .

Therefore, (5.11) becomes

〈uΓ, uΓ〉QΓ
≤ K2〈uΓ, TuΓ〉QΓ

+K2〈uΓ, TuΓ − uΓ〉ZΓ
.

However, thanks to Lemmas 5.5 and 5.10,

〈uΓ, TuΓ − uΓ〉ZΓ
≤ K|uΓ|QΓ

||vA,Γ||L2(Ω)

≤ C K2H
2

h
max

k=1,...,N
?=i,e

[
σ?,kM

]1/2
τ

1
2σ?,km

Φ?,k(H,h)
[
Φ?,k(H,h)

]1/2 〈uΓ, uΓ〉QΓ
,

from which it follows

〈uΓ, uΓ〉QΓ ≤ K2〈uΓ, TuΓ〉QΓ + C K4H
2

h
max

k=1,...,N
?=i,e

[
σ?,kM

]1/2
τ

1
2σ?,km

Φ?,k(H,h)
[
Φ?,k(H,h)

]1/2 〈uΓ, uΓ〉QΓ .

In conclusion, we have the lower bound

c0〈uΓ, uΓ〉QΓ
≤ K2〈uΓ, TuΓ〉QΓ

,

where

c0 = 1−K4H
2

h
max

k=1,...,N
?=i,e

[
σ?,kM

]1/2
τ

1
2σ?,km

Φ?,k(H,h)
[
Φ?,k(H,h)

]1/2
.



Chapter 6

Parallel Numerical Tests

In this Chapter we present extensive parallel numerical experiments related to the solution strate-
gies proposed in Chapters 4 and 5. The ionic model which has been considered as benchmark is
the Rogers-McCulloch ionic model (see Chap. 2), but some preliminary tests using the Luo-Rudy
phase 1 and the Ten Tusscher-Panfilov 2006 models (Chap. 2 and Appendix A) have been reported
for the decoupled approach. Further investigations using these complex ventricular ionic models
should be carried out, in order to confirm the robustness of the proposed solver.

We investigate two important properties of the proposed solvers, namely scalability and opti-
mality (see [116, Definitions 1.3 and 1.2]).

Definition 6.1 (Scalability). A domain decomposition iterative algorithm for the solution of a
linear system is said to be scalable if its rate of convergence does not deteriorate when the number
of subdomains grows. This typically means that the convergence does not deteriorate when H, the
typical subdomain size, becomes small.

Computationally, this property can be translated as, while fixing the local mesh size h (diameter
of the finite elements) and increasing the number of subdomains 1/H (being H the diameter of a
typical subdomain), the average number of linear iterations does not increase uncontrolled. In our
tests, we always assign one subdomain to each processor.

Definition 6.2 (Optimality). An iterative method for the solution of a linear system is said to be
optimal if its rate of convergence to the exact solution is independent of the size of the system.

In this sense, we have theoretically proved that the condition number of the preconditioned opera-
tor for the decoupled strategy (Thm 4.1) and the residual of the GMRES iterations in the coupled
approach (Thm 5.1) are bounded by a polylogarithmic term depending from the ratio H/h. There-
fore, we expect to numerically confirm scalability and quasi-optimality properties.

Lastly, we also compute and study the speedup, in order to evaluate the efficiency of the
proposed solvers. The speedup usually indicates a measure of the relative performance of two
systems processing the same task. Throughout this Thesis, we will refer to the speedup Sp as the
ratio between the runtime needed by p processors and the average runtime needed by N processors
to complete the task.

Sp =
Tp
TN

.

All the codes are written in C, with the usage of the Portable, Extensive Toolkit for Scientific
computation (PETSc), from the Argonne National Laboratory [3]. This library provides structures
and many linear (KSP) and non-linear (SNES) solver routines for the parallel solution of scientific
applications.
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Architectures. We describe here the hardware used for all the numerical experiments.

1. Linux Cluster, Eos. At the University of Pavia, a Linux Infiniband cluster with 21 nodes,
each carrying 2 processors Intel Xeon Gold 6130 2.1 GHz with 16 cores each, for a total of
672 cores.

2. Linux Cluster, Marconi. Supercomputer of Cineca centre, an Intel OmniPath cluster
with 3600 nodes, each with 68 1.40 GHz Intel Xeon Phi 7250 Knights Landing (KNL) cores
and 16 GB/node, for a total 244 800 cores.

3. Linux Cluster, Galileo. Supercomputer of Cineca centre, a Linux Infiniband cluster
equipped with 1084 nodes, each with 36 2.30 GHz Intel Xeon E5-2697 v4 cores and 128
GB/node, for a total 39 024 cores.

4. Linux Cluster, Indaco. At the University of Milano, a Linux infiniband cluster with 16
nodes, each carrying 2 processors Intel Xeon E5-2683 V4 2.1 GHz with 16 cores each, for a
total amount of 512 cores.

For each set of experiments we will specify the cluster employed.

Domain geometry. All numerical experiments are carried both on a thin slab and on a idealized
left ventricular geometry, modeled as a half truncated ellipsoid (see Fig. 6.1). The latter is
described in ellipsoidal coordinates by the parametric equations

x = a(r) cos θ cosϕ, θmin ≤ θ ≤ θmax,

y = b(r) cos θ sinϕ, ϕmin ≤ ϕ ≤ ϕmax,

z = c(r) sinϕ, 0 ≤ r ≤ 1,

where a(r) = a1 + r(a2 − a1), b(r) = b1 + r(b2 − b1) and c(r) = c1 + r(c2 − c1) with a1,2, b1,2 and
b1,2 given coefficients defining the main axes of the ellipsoid.

Figure 6.1: Computational domains. Portion of left ventricle, idealized as a truncated ellipsoid (left) and slab
geometry (right).

The fibers rotate intramurally linearly with the depth for a total amount of 120o proceeding
counterclockwise from epicardium (r = 1, outer surface of the truncated ellipsoid) to endocardium
(r = 0, inner surface). More precisely, where not otherwise specified, the geometry is settled with
the parameters reported in Table 6.1.

Conductivity coefficients and parameters. Regarding the physiological coefficients in Table
6.2, we refer to the original paper Ref. [105] for the parameters of the Roger-McCulloch ionic
membrane model, while for the Bidomain and Monodomain model to Ref. [27]. For Luo-Rudy
phase one and ten Tusscher-Panfilov 2006 ionic models, we refer to References [80, 81, 114, 115]
and Appendix A for the equations and constant values.
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Parameter Value Parameter Value

a1 1.5 θmin −π2
a2 2.7 θmax

π
2

b1 1.5 ϕmin −π8
b2 2.7 ϕmax

π
8

c1 4.4

c2 5.0

Table 6.1: Geometries parameters.

Bidomain conductivity coeff. Ionic parameters

σil 3× 10−3Ω−1 cm−1 G 1.2 Ω−1 cm−2

σit 3.1525× 10−4Ω−1 cm−1 η1 4.4 Ω−1 cm−1

σin 3.1525× 10−5Ω−1 cm−1 η2 0.012

σel 2× 10−3Ω−1 cm−1 vth 13 mV

σet 1.3514× 10−3Ω−1 cm−1 vp 100 mV

σen 6.757× 10−4Ω−1 cm−1 Cm 1 mF/cm2

Table 6.2: Conductivity coefficients for the Bidomain model and physiological parameters for the Rogers-McCulloch
ionic model.

Time setting and stimulation site. If otherwise not specified, the external stimulus Iapp

needed for the potential to start propagating is applied for 1 ms to the surface of the domain
representing the endocardium, with intensity 100 mA/cm3. On the other hand, if a thin slab is
considered, the stimulus is applied in one corner of the domain, over a spheric (or circular) area
of radius 0.1 cm. The boundary conditions are for an insulated tissue, while the initial conditions
represent a resting potential.

The time step is fixed τ = 0.05 ms. Indeed, increasing it might slightly affect the solver perfor-
mance, but we would loose accuracy in the final solution, especially during the activation phase.
On the other hand, decreasing the time step means to rise the computational costs, without a
significant improvement in terms of accuracy.

Figures 6.2 and 6.3 show the time evolution of the extracellular and transmembrane potentials
respectively, from the epicardial view of a portion of the idealized left ventricle when the external
stimulus Iapp is applied on the surface of the ellipsoid representing the epicardium layer.
The staggered propagating wavefront seems to indicate an insufficient mesh resolution, despite the
usage of a fine mesh (192 × 96 × 48 elements): this further motivates the need of efficient solvers
which can be both accurate and computationally competitive.

As another example, we report in Figures 6.4 and 6.5 the time evolution of the transmembrane
and extracellular potentials respectively from the endocardial side of the portion of the half trun-
cated ellipsoid. The external stimulus Iapp is applied on five different sites on the endocardium
layer, positioned at the apex of the idealized left ventricle.

Nonlinear solver. The outer Newton loop is implemented both:

• as an exact Newton method, with an absolute convergence test on the reduction of a weighted
Euclidean norm of the residual, setting a tolerance of 10−4, if not otherwise specified;

• by taking advantage of the non-linear solvers component SNES (Scalable Nonlinear Equations
Solvers) from PETSc library, which by default implements an inexact Newton method with
cubic backtracking linesearch. The default tolerances are reported in Table 6.3.

Linear Solver. The linear systems arising from the discretization of the Jacobian problems at
each Newton step are solved with
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t = 10 ms

t = 25 ms

t = 40 ms

t = 15 ms

t = 30 ms

t = 45 ms

t = 20 ms

t = 35 ms

t = 50 ms

Figure 6.2: Snapshots (every 5 ms) of extracellular potential ue time evolution. For each time frame, we report
the epicardial view of a portion of the left ventricle, modeled as a truncated ellipsoid.

1. the Conjugate Gradient (CG) method, if the resulting system is symmetric (decoupled case);

2. the Generalized Minimal Residual (GMRES) or the BiConjugate Gradient Stabilized (BiCGStab)
methods, if the resulting system is not symmetric (coupled case).

We employ the linear solvers component KSP from PETSc library, which provides a user-ready in-
terface for the combination of a Krylov subspace iterative method and a preconditioning technique.
CG, GMRES and BiCGStab are employed with the default values from PETSc implementation
(so e.g. with restart value = 30 for GMRES). If not otherwise specified, we adopt the tolerances
from Table 6.3.
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t = 10 ms

t = 25 ms

t = 40 ms

t = 15 ms

t = 30 ms

t = 45 ms

t = 20 ms

t = 35 ms

t = 50 ms

Figure 6.3: Snapshots (every 5 ms) of transmembrane potential v time evolution. For each time frame, we report
the epicardial view of a portion of the left ventricle, modeled as a truncated ellipsoid.

The Jacobian matrix is always computed analytically in all the experiments, both for the
decoupled and the coupled problem; we tested (but not reported in this Thesis) an approximation
of the Jacobian via automatic differentiation, but without gaining substancial differences.

KSP rtol = 1e−08 atol = 1e−10 dtol = 1e+04

SNES rtol = 1e−04 atol = 1e−08 stol = 1e−08

Table 6.3: PETSc SNES and KSP tolerances. rtol is the relative convergence tolerance, atol is the absolute
convergence tolerance, dtol is the KSP divergence convergence tolerance and stol is the convergence tolerance related
to the solution change between Newton steps.
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t = 10 ms

t = 25 ms

t = 40 ms

t = 15 ms

t = 30 ms

t = 45 ms

t = 20 ms

t = 35 ms

t = 50 ms

Figure 6.4: Snapshots (every 5 ms) of transmembrane potential v time evolution. For each time frame, we report
the epicardial view of a portion of the left ventricle, modeled as a truncated ellipsoid.

Preconditioner. In order to accelerate the convergence of the linear solver, a preconditioner is
needed. We always compare the efficiency of our dual-primal preconditioners to more standard
ones. In particular, in our tests we use

• Balancing Domain Decomposition with Constraints (BDDC) preconditioner, from PETSc
implementation;

• Finite Element Tearing and Interconnecting Dual-Primal (FETI-DP) preconditioner, from
PETSc implementation;

• Block Jacobi (BJ) preconditioner, from PETSc implementation;
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t = 10 ms

t = 25 ms

t = 40 ms

t = 15 ms

t = 30 ms

t = 45 ms

t = 20 ms

t = 35 ms

t = 50 ms

Figure 6.5: Snapshots (every 5 ms) of extra-cellular potential ue time evolution. For each time frame, we report
the epicardial view of a portion of the left ventricle, modeled as a truncated ellipsoid.

• Algebraic MultiGrid (GAMG), from PETSc implementation;

• Boomer Algebraic MultiGrid (bAMG), from the Hypre library [41].

In the latter, we use the default Hypre parameters, such as strong threshold 0.25, number of
smoothing levels 25 and number of aggressive coarsening 0. Since the focus of this Thesis is
on dual-primal Domain Decomposition preconditioners, we have not investigated the behavior of
bAMG with different parameters. As concerns BDDC and FETI-DP preconditioners (as not oth-
erwise specified) we employ the default primal space with only vertices and edge averages, and we
set a direct solver for BDDC coarse problem with a LU factorization.
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Since we are employing BDDC and FETI-DP with default settings from PETSc implementation,
sometimes they can differ in terms of performance (both CPU time and average number of linear
iterations). A further tuning of the parameters could be done in order to obtain the same behavior,
but it is beyond the scope of this Thesis.

6.1 Decoupled Monodomain tests

We start by reporting here a number of parallel numerical tests that validate the decoupled
bound Thm 4.1 for the Monodomain problem, solved with a decoupling strategy from the Rogers-
McCulloch ionic model (see Chapter 2 and 4 for more details). As the resulting Jacobian linear
system is symmetric, we can use the Preconditioned Conjugate Gradient (PCG) method for its
resolution.

These preliminary tests does not show the entire potential of the proposed dual-primal solvers,
as they seem to be comparable to the standard Block-Jacobi in terms of average number of nonlin-
ear and linear iterations; actually, BDDC preconditioner presents higher timings. However, since
the results show a constant behavior for the average number of nonlinear and linear iterations,
these experiments can be considered as indicator of a good behavior of the proposed dual-primal
solvers on more complex and singular problems, like the Bidomain problem.

All the values reported in the following Tables are an average over the time steps of the related
quantity: in particular, the number of nonlinear and linear iterations are rounded to the nearest
integer. Moreover, since the Monodomain problem is non-singular, when considering a simple ge-
ometry such as the slab domain, the overall system is well conditioned. This explains the reported
condition number almost near 1.0: we report a mean value, but the actual range of values oscillates
around that value.

Throughout these experiments for the Monodomain decoupled problem, the tolerances for KSP
solver are set as follows: relative convergence tolerance 10−5, absolute convergence tolerance 10−50

and divergence tolerance 104.

Scalability on slab domain

These sets of experiments are performed on the Linux cluster Eos at the University of Pavia. We
focus on a thin slab domain during the initial activation phase ([0, 2] ms), which is discretized with
fixed time steps of 0.05 ms, for a total of 40 time steps.

Weak scalability on slab domain. In this test, we fix the local mesh size to 32 ·32 ·32 elements
and we vary the number of subdomains from 8 to 256; thus, we consider increasing geometries,
where the dimension of the slab increases from 0.48× 0.48× 0.48 cm3 to 7.68× 3.84× 0.96 cm3.
As shown in Table 6.4, all quantities seem to be independent of the number of processors, show-
ing that the preconditioned solver is scalable. Moreover, the average number of linear iterations
per nonlinear step of the dual-primal preconditioners is lower than the standard Block-Jacobi.
Reported average CPU times per time step display a faster performance of the CG solver pre-
conditioned with Block-Jacobi as compared to BDDC or FETI-DP: this behavior may be due to
the implementation of vector and matrix structures within PETSc library, which involves several
communications between processors, thus slowing down the overall computational time.

Strong scalability on slab domain. We fix the global mesh size to 256 · 256 · 2 elements and
we increase the number of processors from 16 to 256, thus reducing the local problem dimensions.
The average CPU times and the average number of nonlinear iterations per time step for the
Block-Jacobi preconditioner is now comparable to the FETI-DP; thus, focusing on the average
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procs
Block-Jacobi BDDC FETI-DP

time nlit lit cond time nlit lit cond time nlit lit cond

8 3.98 3 2 1.0027 297.0 2 2 1.0 6.72 2 1 1.0

16 4.17 3 2 1.0027 297.75 2 2 1.0 5.92 2 1 1.0

32 3.68 3 2 1.0027 302.25 2 2 1.0 7.1 2 1 1.0

64 4.19 3 2 1.0027 302.0 2 2 1.0 7.14 2 1 1.0

128 4.49 3 2 1.0027 310.0 2 2 1.0 7.51 2 1 1.0

256 4.47 3 2 1.0027 311.25 2 2 1.0 7.51 2 1 1.0

Table 6.4: Weak scalability on slab domain for the Monodomain decoupled solver. Fixed local mesh size 32 ·32 ·32
and increasing number of processors from 8 to 256. Rogers-McCulloch ionic model. Comparison between average
CPU time per time step in seconds (time), (rounded) average number of nonlinear iteration per time step (nlit),
(rounded) average linear PCG iterations and average condition number per Newton step (lit and cond). Performed
on Eos cluster.

number of linear iterations per Newton step, we can observe a better performance of the dual-
primal preconditioners, confirmed by the average condition number estimate per nonlinear step
(Table 6.5).

procs
Block-Jacobi BDDC FETI-DP

time nlit lit cond time nlit lit cond time nlit lit cond

16 0.35 2 2 1.0004 1.25 2 2 1.0 0.36 2 1 1.0

32 0.2 2 2 1.0004 2.22 2 2 1.0 0.21 2 1 1.0

64 0.1 2 2 1.0004 1.89 2 2 1.0 0.13 2 1 1.0

128 0.06 2 2 1.0003 5.77 2 2 1.0 0.11 2 2 1.0

256 0.04 2 3 1.133 0.22 2 2 1.0 0.14 2 2 1.0

Table 6.5: Strong scalability on slab domain for the Monodomain decoupled solver. Fixed global mesh size 256·256·2
and increasing number of processors from 16 to 256. Rogers-McCulloch ionic model. Comparison between average
CPU time per time step in seconds (time), (rounded) average number of nonlinear iteration per time step (nlit),
(rounded) average linear PCG iterations and average condition number per Newton step (lit and cond). Performed
on Eos cluster.

Scalability on ellipsoidal domain

These sets of experiments are performed on the Linux cluster Galileo at Cineca centre. We consider
a truncated ellipsoidal domain, which models an idealized left ventricular geometry during the
initial activation phase ([0, 2] ms), with fixed time step of 0.05 ms, for a total of 40 steps.

Weak scalability on ellipsoidal domain. As already done for the slab domain, in this weak
scaling test we fix the local mesh size to 16 ·16 ·16 elements and we vary the number of subdomains
from 4 to 256, thus resulting in an increasing ellipsoidal geometry.
As shown in Table 6.6, all quantities (average number of nonlinear and linear iterations, average
CPU times) remain bounded independently of the number of processors, revealing that the pre-
conditioned solvers are scalable.
In contrast to the analogous test on the slab, here we do not see any relevant improvements of the
dual-primal preconditioners with respect to the Block-Jacobi, neither in terms of average number
of cumulative linear iterations or average nonlinear steps.
We observe an increase in the average number of nonlinear iterations, probably due to the addi-
tional complexity of solving the problem on an ellipsoidal domain. This not so relevant, as this
quantity remains bounded.

Reported average CPU times display a faster performance of the solver preconditioned with
Block-Jacobi and FETI-DP as compared to BDDC (see also Fig. 6.6, left). In particular, the
almost-identical timings of Block-Jacobi and FETI-DP while increasing the number of processors
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is a good indicator that the preconditioned dual-primal solver may behaves well on more complex
and singular problems, like the Bidomain system.

procs
Block-Jacobi BDDC FETI-DP

time nlit lit cond time nlit lit cond time nlit lit cond

8 0.36 6 2 1.0034 2.53 5 2 1.0052 0.42 6 1 1.0

16 0.32 5 3 1.0315 2.35 5 2 1.1680 0.41 5 2 1.0004

32 0.31 5 3 1.0342 2.61 4 2 1.2161 0.47 5 2 1.0005

64 0.30 4 4 1.1358 2.37 4 2 1.0992 0.44 4 2 1.0061

128 0.28 4 4 1.1440 2.30 4 2 1.0078 0.48 4 2 1.0080

256 0.34 3 4 1.1428 1.96 3 2 1.0076 0.49 3 2 1.0072

Table 6.6: Weak scalability on ellipsoidal domain for the Monodomain decoupled solver. Fixed local mesh size
16 · 16 · 16 and increasing number of processors from 8 to 256. Rogers-McCulloch ionic model. Comparison between
average CPU time per time step in seconds (time), (rounded) average number of nonlinear iteration per time step
(nlit), (rounded) average linear PCG iterations and average condition number per Newton step (lit and cond).
Performed on Galileo cluster.

Strong scalability on ellipsoidal domain. Lastly, we fix the global mesh size to 256 · 128 · 32
elements and we increase the number of processors from 16 to 512, thus reducing the local problem
dimensions.

The average number of nonlinear iterations per time step for Block-Jacobi preconditioner case
is comparable to the dual-primals (Table 6.7); thus, focusing on the average number of linear
iterations per Newton step, we can easily see a better performance of dual-primal preconditioners,
confirmed by the average condition number estimate per nonlinear step (Table 6.7).
FETI-DP preconditioner, when increasing the number of processors, has a good performance on
the computational time point of view, almost comparable to Block-Jacobi (Fig. 6.6, right).

No remarkable differences are measured between the ρ-scaling or the deluxe scaling, applied to
BDDC preconditioner, which again presents higher timings with respect to the other two precon-
ditioners.

procs
Block-Jacobi FETI-DP

time nlit lit cond time nlit lit cond

16 3.05 3 4 1.1202 9.18 3 2 1.0073

32 1.57 3 3 1.0714 5.22 3 2 1.0064

64 0.81 3 3 1.1341 1.64 3 2 1.0

128 0.45 3 3 1.1243 0.72 3 2 1.0073

256 0.28 3 4 1.1428 0.33 3 2 1.0072

512 0.18 3 4 1.1432 0.24 3 2 1.0079

procs
BDDC ρ scaling BDDC deluxe scaling

time nlit lit cond time nlit lit cond

16 436.75 3 2 1.0414 447.0 3 2 1.0400

32 247.87 3 2 1.0185 262.5 3 2 1.0186

64 41.25 3 2 1.1351 35.17 3 2 1.4206

128 9.75 3 2 1.0073 8.72 3 2 1.0072

256 2.13 3 2 1.0076 2.13 3 2 1.0076

512 out of memory out of memory

Table 6.7: Strong scalability on ellipsoidal domain for the Monodomain decoupled solver. Fixed global mesh size
256 · 128 · 32 and increasing number of processors from 16 to 512. Rogers-McCulloch ionic model. Comparison
between average CPU time per time step in seconds (time), (rounded) average number of nonlinear iteration per
time step (nlit), (rounded) average linear PCG iterations and average condition number per Newton step (lit and
cond). Performed on Galileo cluster.
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Figure 6.6: Weak scalability (left) and strong scalability (right) on ellipsoidal domain for the Monodomain decou-
pled solver. Fixed local mesh size 16 · 16 · 16 and increasing number of processors from 8 to 256 for weak scaling;
fixed global mesh size 256 · 128 · 32 and increasing number of processors from 16 to 512 for strong scaling. Rogers-
McCulloch ionic model. Average CPU time per time step in seconds. Performed on Galileo cluster.

6.2 Decoupled Bidomain tests

In this section we report extensive parallel numerical experiments related to the decoupled solu-
tion strategy presented in Chapter 2 applied to the Bidomain equations. These tests validate the
theoretical bound for the condition number of the preconditioned operator (see Chap. 4).

As in the previous section, the resulting Jacobian system using the Rogers-McCulloch ionic
model is symmetric and positive semi-definite, thus allowing us to solve it with the CG method,
along with BDDC and FETI-DP preconditioners from PETSc library [3]. We compare their per-
formance with the Boomer Algebraic Multigrid (bAMG) from the Hypre library [41].

Both weak and strong scaling tests contain also a comparison between different ionic models: the
Rogers-McCulloch (which has been used so far as benchmark for our experiments), the Luo-Rudy
phase 1 and the ten Tusscher-Panfilov ionic models. Since the resulting Jacobian system when
using the last two ionic models is not positive semi-definite, the Generalised Minimal Residual
(GMRES) method is applied instead of the CG.

We clarify that, in the Tables where the number of nonlinear iterations is 1, the actual values
oscillates between 1 and 2. For simplicity, we report an average value rounded to the nearest
integer.

Weak scalability on slab and ellipsoidal domains. The first set of tests we report is a weak
scalability test on both slab and ellipsoidal domain, performed on Galileo cluster. For both cases,
we fix the local mesh size to 16·16·16 finite elements and we increase the number of processors (thus
subdomains) from 32 to 2048, thus resulting in an increasing slab geometry and in an increasing
portion of ellipsoid. Tables 6.8 and 6.9 show how BDDC and FETI-DP have a better performance
than bAMG: the average number of linear iteration per Newton iteration (lit) is clearly lower and
does not increase with the number of subdomains, except for BDDC on the slab domain, where the
linear iterations increase unexpectedly. Moreover, the reported average CPU times (in seconds) per
nonlinear step (see also Fig. 6.7) are slightly better for the BDDC and FETI-DP preconditioners,
except for FETI-DP on the slab domain and 2048 processors. In the harder ellipsoidal tests, both
BDDC and FET-DP are scalable and outperform bAMG when the number of processors increases
past 128, indicating lower computational complexity and interprocessor communications.

Additionally, we perform the weak scalability test comparing the performances of the Newton-
Krylov solvers in case realistic human ionic ventricle models are included. Tables 6.10 and 6.11
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procs mesh dofs
bAMG BDDC FETI-DP

nit lit time nit lit time nit lit time

32 64 · 64 · 32 278,850 1 106 4.9 1 22 6.1 1 10 6.0

64 128 · 64 · 32 553,410 1 132 6.8 1 27 6.2 1 11 6.0

128 128 · 128 · 32 1,098,306 1 180 9.4 1 32 7.6 1 10 7.4

256 256 · 128 · 32 2,188,098 1 237 15.2 1 39 7.2 1 10 7.9

512 256 · 256 · 32 4,359,234 1 318 20.0 1 48 10.1 1 10 11.1

1024 512 · 256 · 32 8,701,506 1 405 29.6 1 63 13.8 1 10 18.7

2048 512 · 512 · 32 17,369,154 1 536 40.3 1 78 33.5 1 10 63.2

Table 6.8: Weak scalability on slab domain for the Bidomain decoupled solver. Local mesh of 16 · 16 · 16 elements.
Simulations of 2 ms of cardiac activation with dt = 0.05 ms, for a total amount fo 40 time steps. Comparison of
Newton-Krylov solvers with boomerAMG (bAMG), BDDC and FETI-DP preconditioners. Rogers-McCulloch ionic
model. Average Newton iterations per time step (nit); average conjugate gradient iterations per Newton iteration
(lit); average CPU solution time per time step (time) in seconds. Performed on Galileo cluster.

procs mesh dofs
bAMG BDDC FETI-DP

nit lit time nit lit time nit lit time

32 64 · 32 · 64 278,850 1 86 3.3 1 30 5.4 1 20 4.7

64 64 · 64 · 64 549,250 1 124 6.0 1 37 6.2 1 20 6.5

128 64 · 128 · 64 1,090,050 1 207 11.3 1 26 7.5 1 19 6.6

256 64 · 256 · 64 2,171,650 1 348 22.2 1 25 8.7 1 17 10.7

512 128 · 256 · 64 4,309,890 1 335 21.3 1 27 10.5 1 18 11.4

1024 256 · 256 · 64 8,586,370 out of memory 1 28 12.5 1 19 11.0

2048 512 · 256 · 64 17,139,330 out of memory 1 28 26.6 1 19 21.4

Table 6.9: Weak scalability on ellipsoidal domain for the Bidomain decoupled solver. Local mesh of 16 · 16 · 16
elements. Simulations of 2 ms of cardiac activation with dt = 0.05 ms, for a total amount fo 40 time steps.
Comparison of Newton-Krylov solvers with boomerAMG (bAMG), BDDC and FETI-DP preconditioners. Rogers-
McCulloch ionic model. Average Newton iterations per time step (nit); average conjugate gradient iterations per
Newton iteration (lit); average CPU solution time per time step (time) in seconds. Performed on Galileo cluster.
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Figure 6.7: Weak scalability on slab (left) and ellipsoidal (right) domains for the Bidomain decoupled solver. Local
mesh of 16 · 16 · 16 elements. Simulations of 2 ms of cardiac activation with dt = 0.05 ms, for a total amount fo 40
time steps. Rogers-McCulloch ionic model. Comparison of average CPU time per time step in seconds. Performed
on Galileo cluster.

report a comparison between the algebraic multigrid and the dual-primal preconditioners, while
employing the Luo-Rudy phase 1 and Ten Tusscher-Panfilov ionic models (LR1 and TP06, respec-
tively). The local mesh size is fixed to 12 · 12 · 12 and the number of processors is increased from
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4 to 256, thus resulting in an increasing number of dofs from 16,250 to 926,786. GMRES iterative
solver is employed, due to the loss of positive semidefinite property.

We observe an overall raise in the average number of nonlinear iterations, with lower values for
the TP06 case for both geometries; as above, this parameter seems to be affected by the increasing
complexity of the ellipsoidal domain, as it presents slightly higher values.

The performance of BDDC and FETI-DP in terms of average CPU time show robustness of
the preconditioned solver, since this quantity remains bounded while increasing the number of
subdomains; this trend cannot be found for bAMG, which presents higher and increasing values,
as shown in Fig. 6.8.

For what concerns the average number of linear iterations, on the slab geometry we observe the
same trend as for the average CPU timings: for both ionic models, BDDC and FETI-DP’s values
are lower and remain almost constant, while for bAMG these values increase with the number
of processors. On the ellipsoidal geometry, we have some fluctuations for BDDC and FETI-DP,
although the average number of linear iterations remains bounded; the multigrid case presents
higher values with respect to its corresponding cases on the slab.

Luo-Rudy phase 1

procs mesh dofs
bAMG BDDC FETI-DP

nit lit time nit lit time nit lit time

4 24 · 24 · 12 16,250 3.0 48.7 1.5 3.0 10.0 3.8 3.0 7.0 3.6

8 24 · 24 · 24 31,250 2.9 62.1 2.3 2.9 13.0 3.7 2.9 8.5 3.5

16 48 · 24 · 24 61,250 2.9 72.2 3.3 2.9 14.0 13.0 2.9 9.2 3.6

32 48 · 24 · 48 120,050 2.8 99.3 4.6 2.8 13.0 3.1 2.8 8.6 2.8

64 48 · 48 · 48 235,298 2.8 118.1 5.7 2.8 13.0 4.1 2.8 8.4 3.7

128 48 · 96 · 48 465,794 2.8 259.3 17.3 2.8 13.0 4.3 2.8 8.4 3.9

256 48 · 192 · 48 926,786 2.8 622.0 41.5 2.8 13.0 4.6 2.8 8.4 4.3

Ten Tusscher-Panfilov

procs mesh dofs
bAMG BDDC FETI-DP

nit lit time nit lit time nit lit time

4 24 · 24 · 12 16,250 1.8 49.1 0.9 1.85 10.0 1.8 1.8 7.4 1.7

8 24 · 24 · 24 31,250 1.8 62.8 1.5 1.87 12.9 2.4 1.8 8.6 2.3

16 48 · 24 · 24 61,250 1.8 73.2 2.2 1.87 14.0 2.5 1.8 9.3 2.3

32 48 · 24 · 48 120,050 1.8 98.9 2.9 1.82 13.2 1.9 1.8 8.7 1.7

64 48 · 48 · 48 235,298 1.8 119.5 3.7 1.82 13.0 2.6 1.8 8.7 2.4

128 48 · 96 · 48 465,794 1.8 261.2 11.2 1.82 13.0 2.7 1.8 8.6 2.5

256 48 · 192 · 48 926,786 1.8 629.1 26.6 1.82 13.0 2.9 1.8 8.7 2.7

Table 6.10: Weak scalability on slab domain for the Bidomain decoupled solver. Local mesh of 12 ·12 ·12 elements.
Simulations of 2 ms of cardiac activation with dt = 0.05 ms, for a total amount fo 40 time steps. Comparison
of Newton-Krylov solvers with boomerAMG (bAMG), BDDC and FETI-DP preconditioners. Luo-Rudy phase 1
(LR1) and Ten Tusscher-Panfilov 2006 (TT06) ionic models. Average Newton iterations per time step (nit); average
conjugate gradient iterations per Newton iteration (lit); average CPU solution time per time step (time) in seconds.
Performed on Indaco cluster.

Strong scalability on slab and ellipsoidal domains. We now perform a strong scaling test
for the two geometries on the cluster Indaco.

For the thin slab geometry, we fix the global mesh to 192 · 192 · 32 elements (for a total of
2,458,434 dofs) and we increase the number of subdomains from 32 to 256. We fix the global mesh
to 128 · 128 · 64 elements for the portion of ellipsoid instead (thus resulting in 2,163,3360 dofs).

When the local number of dofs decreases, the preconditioner with the better balance in term
of average linear iterations and CPU time per time step is FETI-DP, as reported in Tables 6.12
and 6.13.
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Luo-Rudy phase 1

procs mesh dofs
bAMG BDDC FETI-DP

nit lit time nit lit time nit lit time

4 24 · 24 · 12 16,250 3.4 520.2 4.1 3.4 9.8 3.5 3.4 6.9 3.2

8 24 · 24 · 24 31,250 3.3 791.3 8.9 3.3 15.4 4.9 3.3 10.7 3.3

16 48 · 24 · 24 61,250 3.9 720.4 16.2 3.9 21.3 6.1 3.9 14.6 5.4

32 48 · 24 · 48 120,050 4.3 720.0 22.9 4.3 34.0 6.5 4.3 23.2 5.2

64 48 · 48 · 48 235,298 3.8 560.1 20.1 3.8 21.5 6.4 3.8 14.9 5.7

128 48 · 96 · 48 465,794 4.1 604.7 34.3 4.1 15.3 6.6 4.1 10.2 5.9

256 48 · 192 · 48 926,786 4.4 526.4 51.7 4.4 14.4 7.6 4.4 9.4 6.9

Ten Tusscher-Panfilov

procs mesh dofs
bAMG BDDC FETI-DP

nit lit time nit lit time nit lit time

4 24 · 24 · 12 16,250 3.3 516.5 3.8 3.3 9.8 3.4 3.3 6.9 3.1

8 24 · 24 · 24 31,250 3.0 867.2 8.4 3.0 15.7 4.7 3.0 11.1 3.0

16 48 · 24 · 24 61,250 2.8 731.1 12.5 2.8 21.8 4.5 2.8 15.9 4.1

32 48 · 24 · 48 120,050 3.1 736.5 16.9 3.1 34.4 4.6 4.3 23.2 3.7

64 48 · 48 · 48 235,298 2.9 542.1 14.7 2.9 21.7 4.8 2.9 15.1 4.3

128 48 · 96 · 48 465,794 3.0 597.0 25.2 3.0 15.4 4.9 3.0 10.1 4.5

256 48 · 192 · 48 926,786 2.9 498.0 32.8 2.9 14.6 5.1 2.9 9.5 4.7

Table 6.11: Weak scalability on ellipsoidal domain for the Bidomain decoupled solver. Local mesh of 12 · 12 · 12
elements. Simulations of 2 ms of cardiac activation with dt = 0.05 ms, for a total amount fo 40 time steps.
Comparison of Newton-Krylov solvers with boomerAMG (bAMG), BDDC and FETI-DP preconditioners. Luo-
Rudy phase 1 (LR1) and Ten Tusscher-Panfilov 2006 (TT06) ionic models. Average Newton iterations per time
step (nit); average conjugate gradient iterations per Newton iteration (lit); average CPU solution time per time step
(time) in seconds. Performed on Indaco cluster.
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Figure 6.8: Weak scalability on slab (left) and ellipsoidal (right) domains for the Bidomain decoupled solver.
Local mesh of 12 · 12 · 12 elements. Simulations of 2 ms of cardiac activation with dt = 0.05 ms, for a total amount
fo 40 time steps. Comparison of average CPU time per time step in seconds between Luo-Rudy phase 1 (LR1) and
Ten Tusscher-Panfilov 2006 (TT06) ionic models. Performed on Indaco cluster.

However, in both cases, BDDC and FETI-DP preconditioners outperform the ideal speedup,
while bAMG is sub-optimal (see Fig. 6.9). Indeed, since we are working with a low number of
processors, the local problem sizes are high, thus requiring lot of time for the LU factorization of
the matrices.

Moreover we compare the performance of the Newton-Krylov solver with BDDC preconditioner
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using different ionic models: the Rogers-McCulloch (RMC), the Luo-Rudy phase 1 (LR1) and the
Ten Tusscher-Panfilov 2006 (TP06) ionic models in Tables 6.14 and 6.15. In this case the Jacobian
linear system is solved with the GMRES method, as it loses the positive semidefinite property.
By increasing the complexity of the ionic current, we observe an increasing in the average number
of nonlinear iterations from 1-2 per time step using the RMC model to 2-3 per time step with
LR1 and TP06 models. On the other hand, the average numbers of linear iterations per time step
for the three ionic models are comparable, indicating that our dual-primal solver retains its good
convergence properties even for more complex ionic models. As a consequence, the CPU times
for LR1 and TP06 model increase due to the increase of nonlinear iterations, but the associated
parallel speedups of the models are comparable.

procs
bAMG BDDC FETI-DP

nit lit time S32 S64 nit lit time S32 S64 nit lit time S32 S64

32 1.25 250 116.0 - - 1.0 27 348.2 - - 1.25 11 352.2 - -
64 1.25 252 62.7 1.8 - 1.22 32 59.5 5.8 - 1.25 17 53.0 6.6 -

128 1.25 252 33.6 3.5 1.8 1.22 37 21.9 15.8 2.7 1.25 21 19.9 17.6 2.6
256 1.25 252 18.6 6.2 3.4 1.22 22 10.4 33.5 5.7 1.25 13 8.9 39.7 5.9

Table 6.12: Strong scalability on slab domain for the Bidomain decoupled solver. Global mesh of 192 · 192 · 32
elements, 2,458,434 dofs. Simulations of 2 ms of cardiac activation with dt = 0.05 ms, for a total amount fo 40 time
steps. Rogers-McCulloch ionic model. Comparison of Newton-Krylov solvers with boomerAMG (bAMG), BDDC
and FETI-DP preconditioners. Average Newton iterations per time step (nit); average conjugate gradient iterations
per Newton iteration (lit); average CPU solution time per time step (time) in seconds; parallel speedup with respect
to 32 (S32) and 64 (S64) processors. Performed on Indaco cluster.

procs
bAMG BDDC FETI-DP

nit lit time S32 S64 nit lit time S32 S64 nit lit time S32 S64

32 1.92 311 188.4 - - 1.92 36 571.8 - - 1.92 14 558.2 - -
64 1.92 310 113.4 1.7 - 1.92 30 129.1 4.4 - 1.92 19 129.7 4.3 -

128 1.92 310 60.5 3.1 1.9 1.92 40 40.2 14.2 3.2 1.92 24 42.4 13.2 3.1
256 1.92 311 32.2 5.8 3.1 1.92 23 15.1 37.9 8.5 1.92 14 19.0 29.4 6.8

Table 6.13: Strong scalability on ellipsoidal domain for the Bidomain decoupled solver. Global mesh of 128·128·64
elements, 2,163,330 dofs. Simulations of 2 ms of cardiac activation with dt = 0.05 ms, for a total amount fo 40 time
steps. Rogers-McCulloch ionic model. Comparison of Newton-Krylov solvers with boomerAMG (bAMG), BDDC
and FETI-DP preconditioners. Average Newton iterations per time step (nit); average conjugate gradient iterations
per Newton iteration (lit); average CPU solution time per time step (time) in seconds; parallel speedup with respect
to 32 (S32) and 64 (S64) processors. Performed on Indaco cluster

procs
RMC LR1 TP06

nit lit time S32(64) nit lit time S32(64) nit lit time S32(64)

32 1.25 16.9 220.2 - (-) 2.85 16.9 502.2 - (-) 1.85 17.0 326.2 - (-)
64 1.25 19.9 62.1 3.5 (-) 2.85 19.6 140.9 3.5 (-) 1.85 19.7 91.9 3.5 (-)
128 1.25 15.3 19.2 11.5 (3.2) 2.85 15.0 43.9 11.4 (3.2) 1.85 15.0 28.4 11.4 (3.2)
256 1.25 17.4 5.8 37.9 (10.7) 2.85 29.5 17.0 38.1 (10.6) 1.85 17.1 8.6 37.6 (10.6)

Table 6.14: Strong scalability on slab domain for the Bidomain decoupled solver, comparison between ionic models.
Global mesh 192 · 192 · 32 elements, 2,458,434 dofs. Simulations of 2 ms of cardiac activation with dt = 0.05 ms
(40 time steps). Comparison of Newton-Krylov solvers with BDDC preconditioner using Rogers-McCulloch (RMC),
Luo-Rudy phase 1 (LR1) and ten Tusscher-Panfilov 2006 (TP06) ionic models. Average Newton iterations per time
step (nit); average conjugate gradient iterations per Newton iteration (lit); average CPU solution time per time step
(time) in seconds; parallel speedup (Sp) computed with respect to p = 32 and p = 64 processors.

Optimality tests on slab and ellipsoidal domains. Tables 6.16 and 6.17 report the results
of optimality tests employing RMC ionic model, for both slab and ellipsoid geometries, carried on
Eos cluster. We fix the number of processors (subdomains) to 4 · 4 · 4 and we increase the local
size H/h from 8 to 24, thus reducing the finite element size h.

We focus only on the behavior of the BDDC preconditioner, as the FETI-DP has been proven to
be spectrally equivalent. We consider both scalings (ρ-scaling on top, deluxe scaling at bottom of
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procs
RMC LR1 TP06

nit lit time S32(64) nit lit time S32(64) nit lit time S32(64)

32 2 21.1 436.5 - (-) 3.95 20.5 862.2 - (-) 2.5 21.1 488.0 - (-)
64 2 26.9 99.3 4.4 (-) 3.95 25.9 194.9 4.4 (-) 2.5 26.5 122.7 3.9 (-)
128 2 21.4 27.3 16.0 (3.6) 3.95 20.8 53.5 16.1 (3.6) 2.5 21.3 33.8 14.4 (3.6)
256 2 30.0 8.2 53.4 (12.1) 3.95 29.5 16.1 53.6 (12.1) 2.5 29.9 10.1 48.3 (12.1)

Table 6.15: Strong scalability on ellipsoidal domain for the Bidomain decoupled solver, comparison between ionic
models. Global mesh 128 · 128 · 64 elements, 2,163,330 dofs. Simulations of 2 ms of cardiac activation with dt = 0.05
ms (40 time steps). Comparison of Newton-Krylov solvers with BDDC preconditioner using Rogers-McCulloch
(RMC), Luo-Rudy phase 1 (LR1) and ten Tusscher-Panfilov 2006 (TP06) ionic models. Average Newton iterations
per time step (nit); average conjugate gradient iterations per Newton iteration (lit); average CPU solution time per
time step (time) in seconds; parallel speedup (Sp) computed with respect to p = 32 and p = 64 processors.
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Figure 6.9: Strong scalability for the Bidomain decoupled solver. Left: strong scaling test on slab domain, with
global mesh of 192 · 192 · 32. Right: strong scaling test on ellipsoidal domain, with global mesh of 128 · 128 · 64.
Simulations of 2 ms of cardiac activation with dt = 0.05 ms, for a total amount fo 40 time steps. Rogers-McCulloch
ionic model. Comparison of actual parallel speedup (ideal speedup dotted). Performed on Indaco cluster.

each table) and we test the solver for increasing primal spaces: V includes only vertex constraints,
while V+E and V+E+F include vertex and edge constraints or vertex, edge and face constraints.

The simulations time is 2 ms of cardiac activation with time step dt = 0.05 ms, for a total
amount fo 40 time steps.

Similar results hold for both geometries. Despite an higher average CPU time using the deluxe
scaling, all the other parameters are quite similar between the two scalings.

We observe almost linear dependence of the condition number if the coarsest primal space (only
V) is chosen (see also Figures 6.10, 6.11 bottom), while we can obtain quasi-optimality if we enrich
the primal space by adding edge (V+E) and face (V+E+F) constraints.

We report in Tables 6.18 and 6.19 the optimality results in case LR1 and TP06 ionic models
are employed. As for the RMC tests, these results are independent of the scaling chosen.

The average number of nonlinear iterations increases to 2-4 in case of the LR1 ionic model and
to 2-3 for the TP06, with higher values for the ellipsoid, as already observed in the scalability tests.
This parameter seems to be dependent only on the local size of the problems, but independent of
the coarse space. As confirmed by Fig. 6.12, the average number of linear iterations per time step
deteriorates while increasing the local problem size, if the coarse space is made up only of vertices.
Instead, by enriching the primal space by adding edge (V+E) and face (V+E+F) constraints, this
quantity remains bounded and with lower values.

The average CPU times are almost identical if we consider the richest primal spaces (V+E and
V+E+F).
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ρ-scaling

H/h
V V+E V+E+F

nlit lit time cond nlit lit time cond nlit lit time cond

4 1 26 1.7 8.4 1 11 0.9 1.9 1 9 0.9 1.7

8 1 47 3.4 24.1 1 14 1.4 2.6 1 12 1.4 2.5

12 1 66 10.3 42.9 1 18 6.4 3.2 1 15 4.5 3.2

16 out of memory 1 20 11.9 3.7 1 20 11.6 3.7

20 out of memory 1 22 34.2 4.2 1 20 32.5 4.2

24 out of memory 1 23 83.1 4.6 1 21 80.5 4.5

deluxe scaling

H/h
V V+E V+E+F

nlit lit time cond nlit lit time cond nlit lit time cond

4 1 26 1.9 8.4 1 11 0.9 1.9 1 9 1.0 1.7

8 1 47 4.1 24.0 1 14 1.7 2.6 1 12 1.8 2.5

12 1 65 14.7 42.7 1 18 5.5 3.2 1 15 7.8 3.2

16 1 80 30.0 63.7 1 20 19.1 3.7 1 20 21.4 3.7

20 1 90 93.8 86.3 1 22 73.9 4.2 1 20 70.0 4.2

24 1 99 211.9 110.1 1 24 205.8 4.5 1 21 247.3 4.5

Table 6.16: Optimality tests on slab domain for the Bidomain decoupled solver. Fixed number of subdomains
4 · 4 · 4. Increasing local size from 4 · 4 · 4 to 24 · 24 · 24. Rogers-McCulloch ionic model. CG solver preconditioned
by BDDC. Comparison between different scaling and different primal sets (V = vertices, E = edges, F = faces).
Average non-linear iterations (nlit), average number of linear iteration, average CPU time in seconds and average
condition number per time step. Performed on Eos cluster.
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Figure 6.10: Optimality test on slab domain for the Bidomain decoupled solver. Fixed number of subdomains
4 · 4 · 4. Increasing local size from 4 · 4 · 4 to 24 · 24 · 24. Rogers-McCulloch ionic model. CG solver preconditioned
by BDDC. Comparison between different scaling (dash-dotted ρ-scaling, continuous deluxe scaling) and different
primal sets (V = vertices, E = edges, F = faces). Comparison average number of linear iteration (right) and average
condition number (left) per time step. Performed on Eos cluster.

Strong scaling on a full activation-recovery interval. In this last set of tests (performed on
Indaco cluster), we compare the performance of our dual-primal and the multigrid preconditioner
during a complete activation-recovery interval over the computational domains.

We fix the number of subdomains to 128 = 8 · 8 · 2 and the global mesh size to 192 · 96 · 24, thus
resulting in local problems with 8,450 dofs.

We consider a time interval of [0, 170] ms for a total of 3400 time steps for a portion of ellipsoid
defined by ϕmin = −π/2, ϕmax = 0, θmin = −3/8π and θmax = π/8, while on the slab of dimensions
1.92× 1.92× 0.48 cm3 we performed the tests for 2400 time steps, on [0, 120] ms.
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ρ-scaling

H/h
V V+E V+E+F

nlit lit time cond nlit lit time cond nlit lit time cond

8 2 50 5.5 30.1 2 17 2.4 4.3 2 16 2.4 4.0

12 2 66 11.8 54.6 2 19 5.6 5.4 2 18 5.6 4.9

16 2 80 33.9 80.6 2 21 16.9 6.3 2 21 16.9 5.7

20 2 91 90.3 108.2 2 22 44.7 6.9 2 21 44.9 6.3

24 2 100 206.3 137.2 2 24 109.3 7.5 2 23 84.0 6.8

deluxe scaling

H/h
V V+E V+E+F

nlit lit time cond nlit lit time cond nlit lit time cond

8 2 49 6.7 31.0 2 17 3.1 4.3 2 16 3.0 4.0

12 2 54 27.2 54.6 2 19 9.6 5.4 2 18 9.6 4.9

16 2 79 54.1 80.6 2 21 32.1 6.2 2 21 32.7 5.7

20 2 90 142.4 108.2 2 22 125.8 7.0 2 21 111.1 6.3

24 2 99 329.3 137.1 2 24 236.7 7.5 2 22 247.1 6.8

Table 6.17: Optimality tests on ellipsoidal domain for the Bidomain decoupled solver. Fixed number of subdomains
4 · 4 · 4. Increasing local size from 8 · 8 · 8 to 24 · 24 · 24. Rogers-McCulloch ionic model. CG solver preconditioned
by BDDC. Comparison between different scaling and different primal sets (V = vertices, E = edges, F = faces).
Average non-linear iterations (nlit), average number of linear iteration, average CPU time in seconds and average
condition number per time step. Performed on Eos cluster.
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Figure 6.11: Optimality tests on ellipsoidal domain for the Bidomain decoupled solver. Fixed number of subdo-
mains 4·4·4. Increasing local size from 8·8·8 to 24·24·24. Rogers-McCulloch ionic model. CG solver preconditioned
by BDDC. Comparison between different scaling (dash-dotted ρ-scaling, continuous deluxe scaling) and different
primal sets (V = vertices, E = edges, F = faces). Comparison average number of linear iteration (right) and average
condition number (left) per time step. Performed on Eos cluster.

In Figures 6.13 and 6.14 we report the trend of the average number of linear iteration per
time step during the simulation. The average number of linear iterations remains bounded and
almost constant during the test. Moreover, we notice a huge difference between the multigrid
preconditioner and the dual-primal preconditioners, with a reduction of more than 90% for the
latter.

If we focus on the trend of the dual-primal preconditioners average number of linear iterations
(Figures 6.13 and 6.14, on the right), we can notice that for both domains FETI-DP is affected
by the different phases of the action potential: there is an initial peak matching to the activation
phase, followed by an increase in the number of linear iterations as the potential propagates in the
tissue and by a slow decrease as wider portions of tissue return to resting. Similar behavior can be
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LR1 ionic model, ρ-scaling

H/h
V V+E V+E+F

nlit lit time nlit lit time nlit lit time

4 2.92 70.4 0.3 2.92 29.3 0.2 2.92 26.1 0.3

8 2.85 113.8 1.1 2.85 34.9 0.6 2.85 31.1 0.8

12 2.87 147.1 4.9 2.87 37.7 3.3 2.87 34.4 3.5

16 2.90 167.7 21.5 2.90 40.6 16.1 2.90 36.8 16.6

20 2.90 195.9 67.9 2.90 42.6 51.6 2.90 38.1 52.1

24 2.92 222.9 194.6 2.92 43.9 149.5 2.92 40.8 152.0

LR1 ionic model, deluxe scaling

H/h
V V+E V+E+F

nlit lit time nlit lit time nlit lit time

4 2.92 70.2 0.5 2.92 29.2 0.2 2.92 26.0 0.3

8 2.85 112.9 2.3 2.85 34.8 1.8 2.85 30.8 1.7

12 2.87 145.5 17.3 2.87 37.5 14.3 2.87 34.5 14.6

16 2.90 167.6 88.4 2.90 40.6 79.6 2.90 37.2 79.8

20 2.90 196.8 335.7 2.90 42.2 304.5 2.90 38.3 307.0

24 2.92 221.2 1014.3 2.92 43.8 950.0 2.92 40.9 951.5

TP06 ionic model, ρ-scaling

H/h
V V+E V+E+F

nlit lit time nlit lit time nlit lit time

4 1.90 45.4 0.2 1.90 19.0 0.1 1.90 16.7 0.2

8 1.85 72.2 0.8 1.85 22.2 0.4 1.85 19.6 0.4

12 1.82 93.3 3.2 1.82 23.7 2.2 1.82 21.6 2.3

16 1.80 104.5 13.6 1.80 25.2 10.4 1.80 22.6 10.5

20 1.80 121.7 43.2 1.80 26.5 32.2 1.80 23.7 32.5

24 1.82 139.4 121.2 1.82 27.4 93.6 1.82 25.5 93.9

TP06 ionic model, deluxe scaling

H/h
V V+E V+E+F

nlit lit time nlit lit time nlit lit time

4 1.90 45.4 0.2 1.90 19.0 0.2 1.90 16.6 0.2

8 1.85 71.7 1.6 1.85 22.2 1.1 1.85 19.4 1.1

12 1.82 92.3 10.9 1.82 23.7 9.1 1.82 21.7 9.2

16 1.80 104.0 54.9 1.80 25.2 49.3 1.80 22.8 49.6

20 1.80 122.5 207.5 1.80 26.3 189.6 1.80 23.8 190.2

24 1.82 137.8 632.0 1.82 27.4 592.2 1.82 25.5 593.5

Table 6.18: Optimality tests on slab domain for the Bidomain decoupled solver, LR1 and TP06 ionic models.
Fixed number of subdomains 4 · 4 · 4. Increasing local size from 4 · 4 · 4 to 24 · 24 · 24. GMRES solver preconditioned
by BDDC. Luo-Rudy phase 1 (LR1) and Ten Tusscher-Panfilov (TP06) ionic models. Comparison between different
scaling and different primal sets (V = vertices, E = edges, F = faces). Average non-linear iterations (nlit), average
number of linear iteration, average CPU time in seconds and average condition number per time step. Performed
on Indaco cluster.

observed for BDDC preconditioner on the slab domain: there is an initial peak corresponding to
the activation phase, followed by a constant period, as the tissue turn to resting. This trend is not
appreciable for BDDC on the ellipsoidal domain, probably due to the complexity of the geometry.

We also observe a better performance of dual-primal preconditioners in terms of average CPU
time per time step (see Table 6.20).
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LR1 ionic model, ρ-scaling

H/h
V V+E V+E+F

nlit lit time nlit lit time nlit lit time

4 3.60 122.0 0.6 3.60 61.0 0.4 3.60 57.8 0.4

8 3.17 162.2 1.4 3.17 64.8 0.9 3.17 62.4 0.9

12 3.85 245.6 8.1 3.85 83.6 5.4 3.85 79.5 5.7

16 4.22 323.5 37.6 4.22 98.0 26.8 4.22 93.2 28.0

20 4.20 369.6 116.4 4.20 103.2 83.9 4.20 97.9 84.9

24 4.17 425.8 319.0 4.17 107.4 238.7 4.17 101.9 242.3

LR1 ionic model, deluxe scaling

H/h
V V+E V+E+F

nlit lit time nlit lit time nlit lit time

4 3.60 124.9 0.6 3.60 60.8 0.4 3.60 57.7 0.5

8 3.17 162.3 3.1 3.17 64.9 2.4 3.17 62.3 2.5

12 3.85 245.6 26.0 3.85 83.9 21.9 3.85 79.5 22.1

16 4.22 321.8 144.1 4.22 97.5 126.8 4.22 92.9 128.1

20 4.20 370.5 524.5 4.20 102.8 477.3 4.20 97.3 479.5

24 4.17 422.3 1561.3 4.17 106.8 1449.2 4.17 101.1 1453.2

TP06 ionic model, ρ-scaling

H/h
V V+E V+E+F

nlit lit time nlit lit time nlit lit time

4 3.50 117.6 0.5 3.50 58.6 0.4 3.50 56.6 0.4

8 2.82 144.8 1.2 2.82 57.6 0.7 2.82 55.3 0.8

12 2.90 185.5 6.1 2.90 63.4 4.0 2.90 60.0 4.3

16 3.05 234.7 26.9 3.05 71.3 20.1 3.05 68.0 20.8

20 2.90 257.7 80.7 2.90 71.9 58.3 2.90 68.5 59.2

24 2.45 252.5 183.9 2.45 63.9 140.8 2.45 60.6 142.4

TP06 ionic model, deluxe scaling

H/h
V V+E V+E+F

nlit lit time nlit lit time nlit lit time

4 3.50 120.8 0.6 3.50 58.7 0.4 3.50 56.0 0.5

8 2.82 144.9 2.9 2.82 57.6 2.1 2.82 55.2 2.2

12 2.90 185.7 19.5 2.90 63.6 16.5 2.90 60.0 16.5

16 3.05 233.9 104.6 3.05 71.1 91.6 3.05 67.7 92.4

20 2.90 259.6 362.2 2.90 71.7 329.7 2.90 68.1 331.0

24 2.45 249.7 918.7 2.45 63.8 997.5 2.45 60.1 852.0

Table 6.19: Optimality tests on ellipsoidal domain for the Bidomain decoupled solver, LR1 and TP06 ionic models.
Fixed number of subdomains 4 · 4 · 4. Increasing local size from 4 · 4 · 4 to 24 · 24 · 24. GMRES solver preconditioned
by BDDC. Luo-Rudy phase 1 (LR1) and Ten Tusscher-Panfilov (TP06) ionic models. Comparison between different
scaling and different primal sets (V = vertices, E = edges, F = faces). Average non-linear iterations (nlit), average
number of linear iteration, average CPU time in seconds and average condition number per time step. Performed
on Indaco cluster.

6.2.1 Transmural ischemic tests

In this Section, we test the robustness of our dual-primal Bidomain decoupled solver also in case
of jumps in the diffusion coefficients, modelling pathological conditions such as myocardial is-
chemia. In particular, we consider here a transmural ischemic region located at the center of both
geometries.

The ischemia is modeled by decreasing the diffusion coefficents σil and σit along and across
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Figure 6.12: Optimality tests on ellipsoidal domain for the Bidomain decoupled solver. Fixed number of subdo-
mains 4 · 4 · 4. Increasing local size from 4 · 4 · 4 to 24 · 24 · 24. GMRES solver preconditioned by BDDC. Luo-Rudy
phase 1 (LR1) and Ten Tusscher-Panfilov (TP06) ionic models. Comparison between different scaling (dash-dotted
ρ-scaling, continuous deluxe scaling) and different primal sets (V = vertices, E = edges, F = faces). Comparison of
average number of linear iteration per time step. Performed on Indaco cluster.
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Figure 6.13: Strong scalability on slab domain for the Bidomain decoupled solver. Fixed number of subdomains
8 ·8 ·2 and fixed global mesh of 192 ·96 ·24. Simulation of a full activation-recovery cycle: time interval of [0, 120]ms,
2400 time steps. Rogers-McCulloch ionic model. Comparison between preconditioners of the average number of
linear iterations per time step (left). Zoom over dual-primal preconditioner (right). Performed on Indaco cluster.
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Figure 6.14: Strong scalability on ellipsoidal domain for the Bidomain decoupled solver. Fixed number of sub-
domains 8 · 8 · 2 and fixed global mesh of 192 · 96 · 24. Simulation of a full activation-recovery cycle: time interval
of [0, 170]ms, 3400 time steps. Rogers-McCulloch ionic model. Comparison between preconditioners of the average
number of linear iterations per time step (left). Zoom over dual-primal preconditioner (right). Performed on Indaco
cluster.

procs dofs
bAMG BDDC FETI-DP

nlit lit time nlit lit time nlit lit time

slab 128 8,450 2 185 11.28 2 19 8.02 2 12 7.62

ellipsoid 128 8,450 2 328 13.24 2 30 8.85 2 21 8.05

Table 6.20: Strong scalability for the Bidomain decoupled solver. Fixed number of subdomains 8 · 8 · 2 and fixed
global mesh of 192 · 96 · 24. Simulation of a full activation-recovery cycle: time interval of [0, 170] ms, 3400 time
steps for the ellipsoidal domain and time interval of [0, 120] ms, 2400 time steps for the slab. Rogers-McCulloch
ionic model. Comparison of average Newton steps, average linear iterations and average CPU time (in sec.) per
time step. Performed on Indaco cluster.

the fibers as shown in Table 6.21. In case the Rogers-McCulloch ionic model is employed, we
reduce the ionic current by 30%; in case of the Ten Tusscher-Panfilov ionic model, we increase the
extracellular concentration of potassium Ko from 5.4 mV to 8 mV, and we decrease the sodium
conductance GNa by 30%, simulating a mild ischemic event.

Normal tissue Ischemic tissue - RMC Ischemic tissue - TP06

σil 3× 10−3Ω−1 cm−1 1.5× 10−3Ω−1 cm−1 1.5× 10−3Ω−1 cm−1

σit 3.1525× 10−4Ω−1 cm−1 5.2541× 10−5Ω−1 cm−1 1.57625× 10−4Ω−1 cm−1

Table 6.21: Conductivity coefficients for the Bidomain model: physiological and ischemic tissue for Rogers-
McCulloch (RMC) and Ten Tusscher - Panfilov (TP06) ionic models.

Figures 6.15, 6.16, 6.17 and 6.18 show the time evolution of the transmembrane potential v and
the extracellular potential ue from the epicardial surfaces respectively, with a transmural ischemic
region in the middle of the slab and the ellipsoidal geometries.

The simulations time is 2 ms of cardiac activation with time step dt = 0.05 ms, for a total
amount fo 40 time steps. The external stimulus of 100 mA/cm3 is applied for 1 ms on a small area
of the endocardium.

The discontinuity of the diffusion coefficients on the boundaries of the ischemic region impairs
the condition of the linear systems, thus requiring robust solvers.

We report in the following paragraphs several numerical tests investigating the scalability and
optimality of the dual-primal decoupled solver. Due to the loss of positive semidefinite property
in case of the inclusion of TP06 ionic model, we employ GMRES iterative solver also for RMC. In
this experiments we employ PETSc implementation of algebraic multigrid (GAMG). All the tests
are performed on Indaco cluster from the University of Milan.
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Figure 6.15: Snapshots (every 2 ms) of transmembrane potential v time evolution in presence of an ischemic
transmural region. For each time frame, we report the epicardial side of slab domain.

Weak scalability on slab and ellipsoidal domains. Transmural ischemic region. We
perform the weak scalability tests in presence of a transmural ischemic region by comparing the
performances of the Newton-Krylov solvers in case RMC and TP06 ionic models are employed.
Tables 6.22 and 6.23 report a comparison between the algebraic multigrid and the dual-primal
preconditioners, with both ionic models and geometries. The local mesh size is fixed to 14 · 14 · 14
and the number of processors is increased from 4 to 256, thus resulting in an increasing number of
dofs from 25,230 to 1,462,050.

As expected from the previous comparison between ionic models in normal physiological cases
(see for example Tables 6.10 or 6.11), for both geometries the average number of nonlinear iterations
rises as the ionic model becomes more stiff; moreover also in this case, this parameter seems to be
affected by the increasing complexity of the ellipsoidal domain.

As concerns the slab geometry, we observe a good behavior of BDDC and FETI-DP in terms of
average number of linear iterations, since this quantity remains bounded while increasing the prob-
lem’s size, while GAMG’s iterations increase. The ellipsoidal geometry presents more fluctuations
for all preconditioners, but the dual-primal solvers present lower values.

BDDC and FETI-DP perform slightly worse in terms of average CPU time, since their timings
are higher than GAMG (probably due to the higher need of interprocessors communication).
In contrast to these higher values, GAMG presents an increasing trend, while the dual-primal
preconditioners remain constant.
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Figure 6.16: Snapshots (every 2 ms) of extracellular potential ue time evolution in presence of an ischemic
transmural region. For each time frame, we report the epicardial side of slab domain.

Strong scalability on slab and ellipsoidal domains. Transmural ischemic region. We
report here the strong scalability experiments in presence of a transmural ischemic region.

As in the normal physiological case, for the slab geometry, we fix the global mesh to 192 ·192 ·32
elements (for a total of 2,458,434 dofs) and we increase the number of subdomains from 32 to 256.
We fix the global mesh to 128 · 128 · 64 elements for the portion of ellipsoid instead (thus resulting
in 2,163,3360 dofs).

We have an increasing in the average number of nonlinear iterations by increasing the complexity
of the ionic current, as happened in Table 6.14:as reported in Tables 6.24 and 6.25, this parameter
increase from 1-2 per time step using the RMC model to 2-3 per time step with TP06 model.

The average number of linear iterations are comparable for all the preconditioners and for both
ionic models, thus indicating robustness of the solvers and that our dual-primal solver retains its
good convergence properties even for more complex ionic model. Again, as a consequence, the CPU
times of TP06 model increase (with respect to RMC) due to the increase of nonlinear iterations,
but the associated parallel speedups of the models are comparable. As in the previous strong
scalability tests (Tables 6.12 and 6.13), since we are working with a low number of processors,
BDDC and FETI-DP outperform the ideal speedup (both with respect to 32 and 64 processors).

Optimality tests on slab and ellipsoidal domains. Transmural ischemic region. Tables
6.26 and 6.27 report the results of optimality tests, for both RMC and TP06 ionic models, for both
geometries. We fix the number of processors (and subdomains) to 64 = 4 · 4 · 4 and we increase
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Figure 6.17: Snapshots (every 5 ms) of transmembrane potential v time evolution in presence of an ischemic
transmural region. For each time frame, we report the epicardial side of a portion of half truncated ellipsoidal
domain.

the local size H/h from 4 to 24, thus reducing the finite element size h.

Also in presence of the transmural ischemic region, we focus only on the behavior of the BDDC
preconditioner, as the FETI-DP has been proven to be spectrally equivalent. For both ionic models,
we consider both scalings (ρ-scaling on top, deluxe scaling at bottom of each table) and we test the
solver for increasing primal spaces: V includes only vertex constraints, while V+E and V+E+F
include vertex and edge constraints or vertex, edge and face constraints.

Similar results hold for both geometries, independently of the ionic model employed or the
scaling chosen. Despite higher average CPU timings for the deluxe scaling, all the other parameters
are similar between the two scalings (the average number of nonlinear iterations are the same, for
each ionic model).

If we consider the coarsest space (with only vertices V), we observe that the number of linear
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Figure 6.18: Snapshots (every 5 ms) of extracellular potential ue time evolution in presence of an ischemic
transmural region. For each time frame, we report the epicardial side of a portion of half truncated ellipsoidal
domain domain.

iterations increase by increasing the local size, see Figure 6.19. On the other hand, if we enrich
the primal space by adding edge and (V+E) and face (V+E+F) constraints, we can obtain quasi-
optimality, where this quantity remain bounded, except for the slab geometry with TP06 ionic
model, where the ρ-scaling with the full primal space (V+E+F) behaves as the coarsest (only V).

6.3 Coupled Monodomain tests

In the case of the coupled strategy, we implement ”by hand” the Newton method, with stopping
criterion based on the decresing of the L2-norm of the residual with tolerance 10−4.

The non-symmetric linear system arising from the discretization of the Jacobian problem at
each Newton step is solved with the Generalized Minimal Residual (GMRES) and the stabilized
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RMC ionic model, slab

procs mesh dofs
GAMG BDDC FETI-DP

nit lit time nit lit time nit lit time
4 28 · 28 · 14 25,230 1.2 16.4 0.35 1.2 10.5 2.03 1.2 7.8 1.92
8 28 · 28 · 28 48,778 1.2 18.9 0.41 1.2 13.8 2.09 1.2 9.6 1.93

16 56 · 28 · 28 95,874 1.2 18.5 0.63 1.2 14.8 2.34 1.2 10.4 2.12
32 56 · 28 · 56 188,442 1.2 20.8 0.72 1.2 14.7 2.63 1.2 10.4 2.38
64 56 · 56 · 56 370,386 1.2 20.9 0.89 1.2 13.9 2.88 1.2 9.7 2.64

128 56 · 112 · 56 734,274 1.2 22.0 1.09 1.2 13.7 3.09 1.2 9.6 2.84
256 56 · 224 · 56 1,462,050 1.2 22.9 1.89 1.2 13.7 3.52 1.2 9.5 3.20

TP06 ionic model, slab

procs mesh dofs
GAMG BDDC FETI-DP

nit lit time nit lit time nit lit time
4 28 · 28 · 14 25,230 2.0 16.1 0.67 2.0 10.2 3.46 2.0 7.2 3.27
8 28 · 28 · 28 48,778 2.1 18.0 0.68 2.1 13.4 3.69 2.1 9.1 3.42

16 56 · 28 · 28 95,874 2.2 18.0 1.17 2.2 14.6 4.19 2.2 9.7 3.78
32 56 · 28 · 56 188,442 2.2 20.1 1.34 2.2 14.7 3.93 2.2 9.6 4.28
64 56 · 56 · 56 370,386 2.2 20.8 1.56 2.2 14.1 5.06 2.2 9.4 4.72

128 56 · 112 · 56 734,274 2.2 22.0 2.13 2.2 13.8 5.48 2.2 9.4 5.07
256 56 · 224 · 56 1,462,050 2.2 22.4 3.03 2.2 13.9 6.21 2.2 9.4 5.42

Table 6.22: Weak scalability on slab domain for the Bidomain decoupled solver, transmural ischemic region. Local
mesh of 14·14·14 elements. Simulations of 2 ms of cardiac activation with dt = 0.05 ms, for a total amount fo 40 time
steps. Comparison of Newton-Krylov solvers with GAMG, BDDC and FETI-DP preconditioners. Rogers-McCulloch
(RMC) and Ten Tusscher-Panfilov (TP06) ionic models, in presence of transmural ischemic region. Average Newton
iterations per time step (nit); average conjugate gradient iterations per Newton iteration (lit); average CPU solution
time per time step (time) in seconds. Performed on Indaco cluster.

RMC ionic model, ellipsoid

procs mesh dofs
GAMG BDDC FETI-DP

nit lit time nit lit time nit lit time
4 28 · 28 · 14 25,230 2.0 26.6 0.62 2.0 9.6 2.96 2.0 6.8 3.46
8 28 · 28 · 28 48,778 2.0 41.5 0.85 2.0 16.8 3.86 2.0 12.2 3.55

16 56 · 28 · 28 95,874 2.0 59.5 1.80 2.0 23.3 4.42 2.0 17.3 3.87
32 56 · 28 · 56 188,442 2.0 78.1 2.41 2.0 39.7 5.85 2.0 26.7 4.66
64 56 · 56 · 56 370,386 2.0 56.0 2.13 2.0 22.9 5.42 2.0 16.2 4.77

128 56 · 112 · 56 734,274 1.4 34.6 1.39 1.4 16.5 3.82 1.4 12.5 3.47
256 56 · 224 · 56 1,462,050 1.1 30.5 1.24 1.1 15.6 3.77 1.4 11.7 3.13

TP06 ionic model, ellipsoid

procs mesh dofs
GAMG BDDC FETI-DP

nit lit time nit lit time nit lit time
4 28 · 28 · 14 25,230 3.7 25.8 1.32 3.7 9.6 7.01 3.7 6.3 6.62
8 28 · 28 · 28 48,778 3.3 45.3 1.64 3.3 17.0 6.68 3.3 11.6 6.09

16 56 · 28 · 28 95,874 3.4 57.7 2.96 3.4 22.9 7.65 3.4 16.1 6.67
32 56 · 28 · 56 188,442 3.7 81.1 4.73 3.7 37.9 10.80 3.7 24.9 8.72
64 56 · 56 · 56 370,386 3.5 54.6 3.66 3.5 23.1 9.34 3.5 15.5 8.11

128 56 · 112 · 56 734,274 3.2 35.8 3.63 3.2 16.4 8.82 3.2 10.9 7.94
256 56 · 224 · 56 1,462,050 2.9 31.5 3.85 2.9 15.7 8.95 2.9 10.3 8.11

Table 6.23: Weak scalability on ellipsoidal domain for the Bidomain decoupled solver, transmural ischemic region.
Local mesh of 14 ·14 ·14 elements. Simulations of 2 ms of cardiac activation with dt = 0.05 ms, for a total amount fo
40 time steps. Comparison of Newton-Krylov solvers with GAMG, BDDC and FETI-DP preconditioners. Rogers-
McCulloch (RMC) and Ten Tusscher-Panfilov (TP06) ionic models, in presence of transmural ischemic region.
Average Newton iterations per time step (nit); average conjugate gradient iterations per Newton iteration (lit);
average CPU solution time per time step (time) in seconds. Performed on Indaco cluster.

Biconjugate Gradient (BiCGStab) method, preconditioned by BDDC preconditioner (included in
the PETSC library) and Boomer Algebraic MultiGrid (bAMG, from the Hypre library [41]).

Since the main focus of the work is to apply the proposed solver to the Bidomain model, we provide
here only few preliminary experiments for the Monodomain problem with the Rogers-McCulloch
ionic model: in particular, we propose only weak scalability tests on a portion of half truncated



110 CHAPTER 6. PARALLEL NUMERICAL TESTS

RMC ionic model, slab

procs
GAMG BDDC FETI-DP

nit lit time S32 S64 nit lit time S32 S64 nit lit time S32 S64

16 1.2 19.9 19.28 - - 1.2 22.7 679.75 - - 1.2 22.7 680.00 - -
32 1.2 19.9 10.14 - - 1.2 16.9 220.9 - - 1.2 16.9 220.80 - -
64 1.2 20.0 5.17 1.96 - 1.2 20.0 62.77 3.52 - 1.2 20.0 63.22 3.49 -

128 1.2 19.9 2.93 3.46 1.76 1.2 15.3 20.06 11.01 3.13 1.2 15.3 19.90 11.09 3.17
256 1.2 19.9 1.84 5.51 2.81 1.2 17.4 6.79 32.55 9.25 1.2 17.4 6.53 33.80 9.67

TP06 ionic model, slab

procs
GAMG BDDC FETI-DP

nit lit time S32 S64 nit lit time S32 S64 nit lit time S32 S64

16 2.2 20.1 35.62 - - out of memory out of memory
32 2.2 19.7 18.68 - - 2.2 17.8 386.75 - - 2.2 17.8 387.00 - -
64 2.2 20.2 9.32 2.0 - 2.2 20.9 109.37 3.54 - 2.2 20.9 110.42 3.51 -

128 2.2 19.6 5.36 3.48 1.74 2.2 15.8 35.72 10.83 3.06 2.2 15.8 35.22 10.98 3.14
256 2.2 20.0 3.88 4.81 2.41 2.2 17.8 11.60 33.33 9.43 2.2 17.8 11.48 33.71 9.62

Table 6.24: Strong scalability on slab domain for the Bidomain decoupled solver, transmural ischemic region.
Global mesh of 192 · 192 · 32 elements (2,458,434 dofs). Simulations of 2 ms of cardiac activation with dt = 0.05
ms, for a total amount fo 40 time steps. Comparison of Newton-Krylov solvers with GAMG, BDDC and FETI-
DP preconditioners. Rogers-McCulloch (RMC) and Ten Tusscher-Panfilov (TP06) ionic models, in presence of
transmural ischemic region. Average Newton iterations per time step (nit); average conjugate gradient iterations
per Newton iteration (lit); average CPU solution time per time step (time) in seconds; parallel speedup with respect
to 32 (S32) and 64 (S64) processors. Performed on Indaco cluster.

RMC ionic model, ellipsoid

procs
GAMG BDDC FETI-DP

nit lit time S32 S64 nit lit time S32 S64 nit lit time S32 S64

16 1.1 37.1 19.98 - - 1.1 27.0 862.50 - - 1.1 27.0 863.0 - -
32 1.1 36.8 10.19 - - 1.0 20.5 240.57 - - 1.1 20.5 240.60 - -
64 1.1 38.2 5.63 1.81 - 1.1 26.7 55.05 4.37 - 1.1 26.7 55.40 4.34 -

128 1.1 36.5 3.15 3.23 1.78 1.1 21.4 15.56 15.46 3.54 1.1 21.4 15.91 15.12 3.48
256 1.1 38.5 1.86 38.5 3.02 1.1 31.4 5.39 44.63 10.21 1.1 44.1 5.46 44.04 10.12

TP06 ionic model, ellipsoid

procs
GAMG BDDC FETI-DP

nit lit time S32 S64 nit lit time S32 S64 nit lit time S32 S64

16 2.9 38.5 53.47 - - out of memory out of memory
32 2.9 38.3 28.45 - - 2.9 20.2 628.75 - - 2.9 20.2 629.00 - -
64 2.9 39.4 15.15 1.88 - 2.9 26.3 114.47 4.35 - 2.9 26.3 144.35 4.36 -

128 2.9 37.3 8.22 3.46 1.84 2.9 20.7 40.97 15.35 3.53 2.9 20.7 41.22 15.26 3.51
256 2.9 39.8 5.69 5.0 2.66 2.9 29.7 13.54 46.44 10.67 2.9 29.7 14.07 44.9 10.31

Table 6.25: Strong scalability on ellipsoidal domain for the Bidomain decoupled solver, transmural ischemic
region. Global mesh of 128 · 128 · 64 elements (2,163,330 dofs). Simulations of 2 ms of cardiac activation with
dt = 0.05 ms, for a total amount fo 40 time steps. Comparison of Newton-Krylov solvers with GAMG, BDDC and
FETI-DP preconditioners. Rogers-McCulloch (RMC) and Ten Tusscher-Panfilov (TP06) ionic models, in presence
of transmural ischemic region. Average Newton iterations per time step (nit); average conjugate gradient iterations
per Newton iteration (lit); average CPU solution time per time step (time) in seconds; parallel speedup with respect
to 32 (S32) and 64 (S64) processors. Performed on Indaco cluster.

ellipsoidal domain. The good results can be considered as a good indicator of well behavior of the
solvers on the Bidomain problem.
This set of tests are run on the Linux cluster Marconi, at Cineca centre.

Weak scalability on ellipsoidal domain. We report a mean of nonlinear iteration number
nlit over integration time, while lit and cond denote the average cumulative linear iterations and
the mean condition number per Newton step respectively. time denotes the average CPU time per
nonlinear iteration.

We fix the local mesh size to 16 · 16 · 16 and we increase the number of processors from 32 to
512, thus increasing the global number of dofs from 131,072 to 2,097,152. The integration time is
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RMC ionic model, ρ-scaling

H/h
V V+E V+E+F

nlit lit time nlit lit time nlit lit time

4 1.35 32.9 0.15 1.35 13.6 0.09 1.35 12.1 0.12

8 1.25 50.4 0.45 1.25 15.6 0.25 1.25 14.0 0.29

12 1.25 64.2 2.24 1.25 16.8 1.45 1.25 15.3 1.56

16 1.25 73.7 9.98 1.25 17.5 7.22 1.25 16.2 7.81

20 1.25 85.6 0.10 1.25 18.6 21.84 1.25 16.8 22.41

24 1.25 98.7 83.42 1.25 18.8 63.02 1.25 17.4 63.82

RMC ionic model, deluxe scaling

H/h
V V+E V+E+F

nlit lit time nlit lit time nlit lit time

4 1.35 32.3 0.18 1.35 13.6 0.12 1.35 12.1 0.19

8 1.25 49.7 0.99 1.25 15.4 0.74 1.25 13.8 0.84

12 1.25 64.1 7.54 1.25 16.6 6.22 1.25 15.1 6.34

16 1.25 73.5 38.27 1.25 17.5 34.17 1.25 16.2 34.32

20 1.25 86.0 143.80 1.25 18.7 131.35 1.25 17.1 132.27

24 1.25 96.9 432.70 1.25 18.8 404.75 1.25 17.5 407.25

TP06 ionic model, ρ-scaling

H/h
V V+E V+E+F

nlit lit time nlit lit time nlit lit time

4 1.9 44.2 0.22 1.9 19.0 0.13 1.9 44.2 0.20

8 2.1 83.6 0.80 2.1 26.3 0.45 2.1 83.6 0.87

12 2.1 110.0 3.81 2.1 29.1 2.55 2.1 110.0 3.79

16 2.1 129.1 16.90 2.1 31.1 12.47 2.1 129.1 16.93

20 2.1 153.0 52.40 2.1 33.6 38.40 2.1 153.1 52.37

24 2.2 174.9 147.92 2.2 35.7 113.45 2.2 174.9 149.37

TP06 ionic model, deluxe scaling

H/h
V V+E V+E+F

nlit lit time nlit lit time nlit lit time

4 1.9 43.8 0.25 1.9 18.9 0.17 1.9 15.8 0.28

8 2.1 82.9 1.79 2.1 26.1 1.36 2.1 23.1 1.36

12 2.1 108.5 12.79 2.1 29.1 10.74 2.1 26.8 10.85

16 2.1 126.6 65.27 2.1 31.1 58.52 2.1 28.2 58.82

20 2.1 151.7 248.40 2.1 33.5 227.37 2.1 30.7 227.75

24 2.2 171.2 762.50 2.2 35.8 715.50 2.2 33.6 717.00

Table 6.26: Optimality tests on slab domain for the Bidomain decoupled solver, transmural ischemic region. Fixed
number of subdomains 4 · 4 · 4. Increasing local size from 4 · 4 · 4 to 24 · 24 · 24. GMRES solver preconditioned
by BDDC. Rogers-McCulloch (RMC) and Ten Tusscher-Panfilov (TP06) ionic models, in presence of transmural
ischemic region. Comparison between different scaling and different primal sets (V = vertices, E = edges, F =
faces). Average non-linear iterations (nlit), average number of linear iteration, average CPU time in seconds and
average condition number per time step. Performed on Indaco cluster.

[0, 5] ms, with a time step of 0.05 ms, for a total of 40 time steps.

Similar results hold independently of the employed preconditioner, as shown in Table 6.28.
The average number of nonlinear iterations per time step remains bounded for both GMRES and
BiCGStab methods; the average number of cumulative linear iterations per time step is slightly
lower in case BiCGStab is used and, more generally, is lower for the multigrid preconditioner.
This is not a limitation, as for BDDC this value remains bounded and actually it decreases while
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RMC ionic model, ρ-scaling

H/h
V V+E V+E+F

nlit lit time nlit lit time nlit lit time

4 1.95 73.6 0.36 1.95 36.7 0.19 1.95 34.7 0.23

8 2.05 106.7 0.89 2.05 42.6 0.55 2.05 40.7 0.59

12 2.0 131.3 4.17 2.0 44.8 2.82 2.0 42.3 2.95

16 2.0 156.4 18.53 2.0 46.9 12.99 2.0 44.4 13.18

20 2.0 177.4 55.37 2.0 49.4 40.25 2.0 46.4 40.37

24 1.85 187.8 137.15 1.85 47.3 105.07 1.85 44.7 105.80

RMC ionic model, deluxe scaling

H/h
V V+E V+E+F

nlit lit time nlit lit time nlit lit time

4 1.95 75.6 0.37 1.95 38.6 0.26 1.95 34.7 0.26

8 2.05 104.3 1.99 2.05 42.1 1.46 2.05 40.3 1.61

12 2.0 129.1 13.62 2.0 43.7 11.42 2.0 41.4 11.45

16 2.0 153.6 58.27 2.0 45.7 60.00 2.0 43.4 60.10

20 2.0 175.8 248.97 2.0 49.2 227.17 2.0 45.4 228.00

24 1.85 185.4 692.00 1.85 46.7 641.25 1.85 43.7 643.50

TP06 ionic model, ρ-scaling

H/h
V V+E V+E+F

nlit lit time nlit lit time nlit lit time

4 3.9 140.2 0.66 3.9 69.6 0.50 3.9 65.7 0.46

8 3.4 173.9 1.54 3.4 69.5 0.92 3.4 67.3 0.98

12 3.35 246.2 6.96 3.35 74.3 4.76 3.35 71.1 4.96

16 3.25 252.9 29.65 3.25 77.3 21.10 3.25 73.2 21.89

20 3.05 271.0 84.77 3.05 76.1 61.42 3.05 71.6 62.00

24 2.8 293.2 218.90 2.8 74.5 164.32 2.8 70.3 165.95

TP06 ionic model, deluxe scaling

H/h
V V+E V+E+F

nlit lit time nlit lit time nlit lit time

4 3.9 144.8 0.80 3.9 72.3 0.55 3.9 65.8 0.59

8 3.4 173.8 3.40 3.4 70.4 2.47 3.4 66.4 2.64

12 3.35 214.8 22.80 3.35 74.8 19.12 3.35 70.7 19.16

16 3.25 249.1 111.40 3.25 76.6 97.60 3.25 72.6 98.30

20 3.05 268.1 380.00 3.05 75.1 346.25 3.05 71.2 348.25

24 2.8 291.7 1076.80 2.8 73.8 997.75 2.8 69.7 999.25

Table 6.27: Optimality tests on ellipsoidal domain for the Bidomain decoupled solver, transmural ischemic region.
Fixed number of subdomains 4 · 4 · 4. Increasing local size from 4 · 4 · 4 to 24 · 24 · 24. GMRES solver preconditioned
by BDDC. Rogers-McCulloch (RMC) and Ten Tusscher-Panfilov (TP06) ionic models, in presence of transmural
ischemic region. Comparison between different scaling and different primal sets (V = vertices, E = edges, F =
faces). Average non-linear iterations (nlit), average number of linear iteration, average CPU time in seconds and
average condition number per time step. Performed on Indaco cluster.

increasing the number of subdomains. The average CPU time per time step for the dual-primal
preconditioner is higher, again maybe due to the higher need of communication between processors.
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Figure 6.19: Optimality tests on ellipsoidal domain for the Bidomain decoupled solver, transmural ischemic
region. Fixed number of subdomains 4 · 4 · 4. Increasing local size from 4 · 4 · 4 to 24 · 24 · 24. GMRES solver
preconditioned by BDDC. Rogers-McCulloch (RMC) and Ten Tusscher-Panfilov (TP06) ionic models, in presence
of transmural ischemic region. Comparison between different scaling (dash-dotted ρ-scaling, continuous deluxe
scaling) and different primal sets (V = vertices, E = edges, F = faces). Comparison of average number of linear
iteration per time step. Performed on Indaco cluster.
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Figure 6.20: Weak scalability on ellipsoidal domain for the Monodomain coupled solver. Fixed local mesh size
16 · 16 · 16 and increasing number of processors. Average number of cumulative linear iterations per nonlinear step
(left) and average CPU time per time step in seconds (right). Performed on Marconi cluster.



114 CHAPTER 6. PARALLEL NUMERICAL TESTS

procs Glob. mesh
GMRES - bAMG GMRES - BDDC

time nlit lit cond time nlit lit cond

32 64 · 64 · 32 1.2 2 6 1.0 49.1 2 4 3.5

64 64 · 64 · 64 2.3 2 4 1.0 48.8 2 6 3.2

128 128 · 128 · 32 6.6 2 4 1.0 61.2 out of memory

256 128 · 128 · 64 59.9 1 3 1.0 56.1 1 3 1.1

512 256 · 256 · 32 38.4 1 2 1.0 47.1 1 2 1.0

procs Glob. mesh
BiCGStab - AMG BiCGStab - BDDC

time nlit lit cond time nlit lit cond

32 64 · 64 · 32 1.3 2 4 1.0 46.7 2 3 1.0

64 64 · 64 · 64 2.2 2 2 1.0 49.4 2 4 1.0

128 128 · 128 · 32 8.3 2 2 1.0 66.1 2 4 1.0

256 128 · 128 · 64 28.6 1 1 1.0 57.6 1 2 1.0

512 256 · 256 · 32 44.4 1 1 1.0 51.6 1 2 1.0

Table 6.28: Weak scalability on ellipsoidal domain for the Monodomain coupled solver. Fixed local mesh size
16 · 16 · 16 and increasing number of processors. Comparison between average CPU time per nonlinear step in
seconds (time), (rounded) average number of nonlinear iteration per time step (nlit), (rounded) average cumulative
linear iterations and average condition number per Newton step (lit and cond). Perfomed on Marconi cluster.

6.4 Coupled Bidomain tests

As for the Monodomain coupled solver, we implement ”by hand” the Newton method, with stop-
ping criterion based on the decresing of the Euclidean norm of the residual with tolerance 10−4.
For the Bidomain model, we solve with the Generalized Minimal Residual (GMRES) method the
non-symmetric linear system arising from the discretization of the Jacobian problem at each New-
ton step, preconditioned by BDDC preconditioner (included in the PETSC library) and Boomer
Algebraic MultiGrid (bAMG, from the Hypre library [41]). The employed ionic model is the
Rogers-McCulloch. All these experiments have been run on the cluster Galileo at Cineca center.

Weak scalability on slab and ellipsoidal domains. These set of tests is a weak scalability test
on both slab and ellipsoidal domains. For both geometries, we fix the local mesh size to 12 · 12 · 12
and we increase the number of subdomains from 32 to 256, thus resulting in an increasing slab
geometry and in an increasing portion of half ellipsoid. In this way, the dofs are increasing from
180k up to 1 million and a half. Tables 6.29 and 6.30 show how the dual-primal algorithm has a
better behavior respect to the bAMG: the average number of linear iteration per nonlinear step
(lit) does not increase while increasing the number of subdomains and is clearly lower. Indeed, for
the slab geometry we observe an increasing reduction rate from 85% up to 93% for the average
number of linear iterations, while for the ellipsoidal geometry it varies between 65% and 90%. In
contrast, BDDC’s average CPU time is higher than bAMG CPU time (we do not have a clear
explanation of this fact), maybe due to the interprocessor communications: however, we remark
that BDDC timings do not increase significantly when the number of processors is increased from
32 to 256, while bAMG timings more than double.

Strong scalability on slab and ellipsoidal domains. We perform a strong scaling test for
the two geometries: we fix the global mesh to 128 · 128 · 24 elements (resulting in more than 1
millions of dofs) and we increase the number of subdomains from 32 to 256.

We observe from Table 6.31 that, as the number of processors increases, the local number of
dofs and BDDC’s average number of linear iterations decrease and the latter parameter is certainly
lower than bAMG’s. Timings of the multigrid preconditioner are lower than BDDC timings, even
if they decrease less than expected.

We test the efficiency of the proposed solver on the parallel architecture by computing the
parallel speedup Sp =

Tp

TN
. In both cases, BDDC preconditioner outperforms the ideal speedup,
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subds. global mesh dofs
bAMG BDDC

nit lit time nit lit time

32 48 · 48 · 24 180,075 1 100 0.6 1 16 3.2

64 96 · 48 · 24 356,475 1 127 0.9 1 16 3.4

128 96 · 96 · 24 705,675 1 168 1.3 1 17 3.4

256 192 · 96 · 24 1,404,075 1 243 1.9 1 17 4.3

Table 6.29: Weak scalability on slab domain for the Bidomain coupled solver. Local mesh of 12 · 12 · 12 elements.
Simulations of 2 ms of cardiac activation with dt = 0.05 ms (40 time steps). Comparison of Newton-Krylov solvers
preconditioned by bAMG and BDDC. Average Newton iterations per time step (nit); average GMRES iterations
per Newton iteration (lit); average CPU solution time per time step (time) in seconds. Performed on Galileo cluster.

subds. global mesh dofs
bAMG BDDC

nit lit time nit lit time

32 48 · 48 · 24 180,075 2 142 1.5 2 45 6.8

64 96 · 48 · 24 356,475 2 145 1.9 2 32 6.9

128 96 · 96 · 24 705,675 2 158 2.1 2 23 7.0

256 192 · 96 · 24 1,404,075 2 212 3.2 2 23 8.5

Table 6.30: Weak scalability on ellipsoidal domain for the Bidomain coupled solver. Local mesh of 12 · 12 · 12
elements. Simulations of 2 ms of cardiac activation with dt = 0.05 ms (40 time steps). Comparison of Newton-
Krylov solvers preconditioned by bAMG and BDDC. Average Newton iterations per time step (nit); average GMRES
iterations per Newton iteration (lit); average CPU solution time per time step (time) in seconds. Performed on
Galileo cluster.
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Figure 6.21: Weak scalability on slab (left) and ellipsoidal (right) domains for the Bidomain coupled solver. Local
mesh of 12 ·12 ·12 elements. Simulations of 2 ms of cardiac activation with dt = 0.05 ms (40 time steps). Comparison
of average CPU time per time step, in seconds. Performed on Galileo cluster.

while bAMG is sub-optimal (see Fig. 6.22). Again, this can be explained by the low number of
processors employed, thus by the high local problem sizes which increase the time spent for the
LU factorization.

Optimality tests on slab and ellipsoidal domains. Tables 6.32 and 6.33 report the results
of optimality experiments, for both slab and ellipsoid geometries.

We fix the number of subdomains to 4 · 4 · 4 and we increase the local size H/h from 4 to 24,
thus reducing the finite element size h. We consider both ρ-scaling (on top of each table) and
deluxe scaling (at the bottom of each table) and we test the solver for increasing primal spaces: V
includes only vertex constraints, V+E includes vertex and edge constraints, and V+E+F includes
vertex, edge and face constraints. The deluxe scaling tests are up to a local size of 20 · 20 · 20
elements, due to limited computational resources. Similar results hold for both geometries. The



116 CHAPTER 6. PARALLEL NUMERICAL TESTS

Slab domain

subds.
bAMG BDDC

nit lit time S32 nit lit time S32

32 1 183 9.5 - 1 20 98.7 -

64 1 196 5.4 1.7 (2) 1 23 30.8 3.2 (2)

128 1 201 2.9 3.2 (4) 1 17 10.7 9.1 (4)

256 1 232 1.9 4.9 (8) 1 19 3.7 26.3 (8)

Ellipsoidal domain

subds.
bAMG BDDC

nit lit time S32 nit lit time S32

32 2 187 15.1 - 2 37 189.3 -

64 2 222 9.2 1.6 (2) 2 44 59.1 3.2 (2)

128 2 240 5.3 2.8 (4) 2 29 20.1 9.4 (4)

256 2 280 3.2 4.7 (8) 2 46 10.2 18.5 (8)

Table 6.31: Strong scalability on slab (top) and ellipsoidal (bottom) domains for the Bidomain coupled solver.
Global mesh of 128 · 128 · 24 elements, 1,248,075 dofs. Simulations of 2 ms of cardiac activation with dt = 0.05 ms,
for a total amount fo 40 time steps. Comparison of Newton-Krylov solvers with bAMG and BDDC preconditioners.
Average Newton iterations per time step (nit); average GMRES iterations per Newton iteration (lit); average CPU
solution time per time step (time) in seconds; parallel speedup w.r.t. 32 processors S32, with ideal speedup in
brackets. Performed on Galileo cluster.
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Figure 6.22: Strong scalability on slab (left) and ellipsoidal (right) domains for the Bidomain coupled solver.
Global mesh of 128 · 128 · 24, 1,248,075 dofs. Simulations of 2 ms of cardiac activation with dt = 0.05 ms, for a
total amount fo 40 time steps. Comparison of actual parallel speedup (ideal speedup dotted). Performed on Galileo
cluster.

deluxe solver seems to be more robust while increasing the local mesh size, both in terms of average
linear iterations (see also Figure 6.23 ) and average CPU time per time step.

Strong scaling on a full activation-recovery interval. Lastly, we compare the performance
of the dual-primal and the multigrid preconditioners during a full activation-recovery interval.

We fix the number of subdomains to 128 = 8 · 8 · 2 and the global mesh size to 128 · 96 · 24,
considering local problems of 8,619 dofs. We consider a time interval of [0, 200] ms for a total of
4000 time steps for a portion of ellipsoid defined by ϕmin = −π/2, ϕmax = π/2, θmin = −3/8π and
θmax = π/8, while on the slab of dimensions 1.92× 0.96× 0.96 cm3 we perform the tests for 3000
time steps, on the time interval [0, 150] ms.

Fig. 6.24 reports the trend of the average number of linear iteration per time step during
the simulation. We notice a huge difference between bAMG and BDDC preconditioners, with



6.4. COUPLED BIDOMAIN TESTS 117

ρ-scaling

H/h
V V+E V+E+F

nlit lit time nlit lit time nlit lit time

4 1 29 0.2 1 16 0.1 1 18 0.2

8 1 48 0.8 1 17 0.7 1 16 0.6

12 1 65 4.5 1 19 3.4 1 18 3.6

16 1 77 20.6 1 21 15.8 1 19 16.5

20 1 99 70.0 1 23 52.5 1 21 54.4

24 1 219 256.2 1 24 156.4 1 22 158.6

deluxe scaling

H/h
V V+E V+E+F

nlit lit time nlit lit time nlit lit time

4 1 29 0.3 1 14 0.2 1 16 0.2

8 1 46 1.1 1 15 0.6 1 15 0.6

12 1 59 5.4 1 17 3.2 1 15 3.1

16 1 67 21.8 1 17 13.3 1 16 13.2

20 1 73 66.7 1 18 42.6 1 17 42.5

Table 6.32: Optimality tests on slab domain for the Bidomain coupled solver. 4 · 4 · 4 subdomains, increasing local
size from 4 · 4 · 4 to 24 · 24 · 24 (up to 20 · 20 · 20 for the deluxe scaling). Comparison between different scalings
and different primal sets (V = vertices, E = edge averages, F = face averages). Average non-linear iterations (nlit),
average number of linear iterations (lit) and average CPU time in seconds per time step. Performed on Galileo
cluster.

ρ-scaling

H/h
V V+E V+E+F

nlit lit time nlit lit time nlit lit time

4 2 57 0.3 2 27 0.9 - - -

8 2 113 1.6 2 58 1.4 2 56 1.4

12 2 139 8.7 2 67 6.4 2 65 4.5

16 2 228 47.2 2 75 11.9 2 75 11.6

20 2 277 144.6 2 82 34.2 2 81 32.5

24 2 477 494.5 2 75 83.1 2 87 80.5

deluxe scaling

H/h
V V+E V+E+F

nlit lit time nlit lit time nlit lit time

4 2 45 0.3 2 25 0.3 2 24 0.3

8 2 86 1.8 2 40 1.2 2 40 1.2

12 2 118 9.8 2 53 6.9 2 46 6.3

16 2 138 39.8 2 50 25.1 2 51 25.2

20 2 172 130.8 2 60 81.6 2 62 83.5

Table 6.33: Optimality tests on ellipsoidal domain for the Bidomain coupled solver. 4 ·4 ·4 subdomains, increasing
local size from 4 · 4 · 4 to 24 · 24 · 24 (up to 20 · 20 · 20 for the deluxe scaling). Comparison between different scalings
and different primal sets (V = vertices, E = edge averages, F = face averages). Average non-linear iterations (nlit),
average number of linear iterations (lit) and average CPU time in seconds per time step. Performed on Galileo
cluster.

a reduction of more than 85% for the latter. The average number of linear iterations remains
bounded during the test. We observe a significant difference in performance of bAMG between
Tables 6.31 and 6.34. This can be explained by the different geometry considered: in Table 6.34
we enlarge the portion of truncated ellipsoid considered, both in height and in width, and this can
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Figure 6.23: Optimality tests on slab (left) and ellipsoidal (right) domains for the Bidomain coupled solver.
Different scalings (dash-dotted ρ-scaling, continuous deluxe scaling) and primal sets (V = vertices, E = edge averages,
F = face averages). Slab (left) and ellipsoidal (right) domains, 4 · 4 · 4 subdomains, increasing local size from 4 · 4 · 4
to 24 · 24 · 24. Average number of linear iterations per time step. Performed on Galileo cluster.

affect the performance of the solver.
Both preconditioned solvers seem to affected by the different stages of the action potential:

an initial peak during the activation phase is followed by a constant elevated number of linear
iterations as the electric signal propagates in the cardiac tissue, ending with a lower - but always
constant - number of linear iterations during the resting phase.

Despite similar qualitative trends between the two geometries, it is undeniable that there are
differences from the quantitative point of view, due to the complexity of the domain taken in
consideration. Comparable performances in terms of average CPU time per time step (see Table
6.34) hold for both preconditioners.
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Figure 6.24: Strong scalability for the Bidomain coupled solver. Time interval [0, 150]ms, 3000 time steps for the
slab (on the left) and time interval [0, 200]ms, 4000 time steps for the ellipsoid (on the right). Fixed number of
subdomains 8 · 8 · 2 and fixed global mesh 128 · 96 · 24. Comparison between bAMG and BDDC average number of
linear iterations per time step. Performed on Galileo cluster.



procs dofs
bAMG BDDC

nlit lit time nlit lit time

slab 128 8,619 1 235 3.65 1 34 20.66

ellipsoid 128 8,619 6 1,134 9.54 6 96 8.27

Table 6.34: Strong scalability for the Bidomain coupled solver. Time interval [0, 150] ms, 3000 time steps for the
slab and time interval [0, 200] ms, 4000 time steps for the ellipsoidal domain. Fixed number of subdomains 8 · 8 · 2
and fixed global mesh 128 · 96 · 24. Comparison of average Newton steps, average linear iterations and average CPU
time (in sec.) per time step. Performed on Galileo cluster.
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Chapter 7

Conclusions

In this Thesis, we have presented and theoretically analyzed two different strategies for the solution
of the nonlinear system arising from fully implicit time discretization of the Bidomain model. These
discretization schemes avoid numerical stability issues and provide a valid alternative to operator
splittings or semi-implicit time discretizations. In particular, we have explored the potential of
dual-primal Domain Decomposition (DD) preconditioners in the improvement of the convergence.

The first strategy we have investigated relies on a decoupling (or segregated) approach, where
at each time step the ionic model is solved first, and its solution vector is then employed within the
Bidomain system. Instead of applying a nonlinear DD approach, where the decomposition is made
before the linearization, we wrap the nonlinear system within a Newton method and we linearize
the algebraic system, resulting in a symmetric problem. We have constructed and analyzed BDDC
and FETI-DP methods for the Jacobian linear system, in order to accelerate the convergence of
the Preconditioned Conjugate Gradient method. We have proved a novel theoretical bound for
the projection operator, using the deluxe scaling; this bound has been employed in the proofs of
the upper bound for the condition number of the preconditioned operator, for both dual-primal
algorithms, showing a theoretical quasi-optimality property.

Secondly, we have explored a coupled (or monolithic) solution strategy, where the ionic model
is solved all-at-once with the Bidomain system. In this case, the Jacobian system, arising from the
linearization of the coupled problem, is non-symmetric and we are forced to employ the General-
ized Minimal Residual (GMRES) method for its solution. In the literature, BDDC preconditioners
for non-symmetric problems have not been largely studied yet: therefore we provide an ad-hoc
theoretical analysis for the convergence of the solver. This analysis exploits a classical result for
the upper bound for the residual of GMRES iterations, together with a proof technique recently
proposed for BDDC applied to advection-diffusion problems.

Both these quasi-optimality conditions have been validated numerically through extensive par-
allel experiments. We have tested the robustness of the proposed solvers also in case of realistic
human ventricular ionic models, such as LR1 and TP06, as well as in presence of an ischemic
transmural region, meaning jumps in the diffusion coefficients. The results indicate scalability and
robustness of the solvers, as well as optimality.
The results presented in this Thesis enlarge the class of solvers for fully implicit time discretiza-
tions of the Bidomain model; surely the nonlinear approach requires attentions, in order to reduce
the computational workload. In this perspective, optimization of the codes and employment of
quasi-Newton methods should improve the numerical performance.

Possible future discussions should be devoted to the development and theoretical analysis of
nonlinear dual-primal DD solvers for this system, and a numerical comparison of the performances
between these two nonlinear approaches, both for segregated and monolithic solution strategies.

Potential interesting applications could be the employment of these nonlinear solvers in the
simulation of cardiac diseases, such as arrythmias or ischemic events.
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Appendix A

Ionic models

We report here the equations and the constants values for the ionic models described in Chapter 2
and implemented in the simulations presented in Chap. 6. The original formulations and detailed
explanation can be found in the works [80, 114, 115].

We remind the reader that, given a gating variable y, its dynamics is described by

dy

dt
= αy(1− y)− βy y

and by setting

y∞ =
αy

αy + βy
, τy =

1

αy + βy
,

we can rewrite the gating equation as dy
dt = y∞−y

τy
, whose solution can be easily obtained as

y(t) = y∞ ·
(
1− e−t/τy

)
. Moreover, with the notation EX = RT

F log
(

[X]e
[X]i

)
we indicate the reverse

potential of ion X, being R, T and F the universal gas constant, the absolute temperature and
the Faraday constant respectively.

A.1 Luo-Rudy phase 1

The ionic concentrations for standard preparations are

[K]e = 5.4 mM [Na]e = 140 mM [Ca]e = 1.8 mM

[K]i = 145 mM [Na]i = 18 mM [Ca]i = 2 · 10−4 mM

Inward currents

Fast sodium current
INa = 23 m3hj(v − ENa).

For v ≥ −40 mV

αh = αj = 0.0

βh =
1

0.13
(
1 + e(v+10.66)/−11.1

)
βj =

0.3 · e−2.535·10−7v

1 + e−0.1(v+32)

For v ≤ −40 mV

αh = 0.135 · e(80+v)/−6.8
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αj =

(
−1.2714 · 105 · e0.2444v − 3.474 · 10−5 · e−0.04391v

)
(v + 37.78)

1 + e0.311(v+79.23)

βh = 3.56 · e0.079v + 3.1 · 105 · e0.35v

βj =
0.1212 · e−0.01052v

1 + e−0.1(v+47.13)

For all range of v

αm =
0.32(v + 47.13)

1− e−0.1(v+47.13)
βm = 0.08 · e−v/11

Slow inward current

Isi = 0.9 d f(v − Esi),

with Esi = 7.7− 13.0287 log ([Ca]i)

αd =
0.095 · e−0.01(v−5)

1 + e−0.072(v−5)

βd =
0.07 · e−0.017(v+44)

1 + e0.05(v+44)

αf =
0.012 · e−0.008(v+28)

1 + e0.15(v+28)

βf =
0.0065 · e−0.02(v+30)

1 + e−0.2(v+30)

Calcium uptake:
d[Ca]i
dt

= −10−4 · Isi + 0.07
(
10−4 − [Ca]i

)
Outward currents

Time-dependent potassium current

IK = GK ·X ·Xi · (v − EK), with GK = 0.282

√
[K]e
5.4

.

Xi =

2.837
e0.04(v+77) − 1

(v + 77) · e0.04(v+35)

1

αX =
0.0005 · e0.083(v+50)

1 + e0.057(v+50)

for v > −100mV

for v ≤ −100mV

βX =
0.0013 · e−0.06(v+20)

1 + e−0.04(v+20)

Time-independent potassium current

IK1 = GK1 ·K1∞ · (v − EK1), with GK1 = 0.6047

√
[K]e
5.4

.

αK1 =
1.02

1 + e0.2385(v−EK1−59.215)
βK1 =

0.49124 · e0.08032(v−EK1+5.476) + e0.06175(v−EK1−594.31)

1 + e−0.5143(v−EK1+4.753)

Plateau potassium current

IKp = 0.0183 ·Kp · (v − EKp), Kp =
1

1 + e(7.488−v)/5.98
with EKp = EK1.

Background current

Ib = 003921(v + 59.87).
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A.2 Ten Tusscher - Panfilov 2006

This model is structurally the same as the model from 2004 (we refer to [114, Table 1] for all the
numerical constants) with few modifications in the calcium dynamics, in the L-type Ca2+ and in
the slow delayed rectifier currents. In this case, the reverse potential for the slow delayed rectifier

current is in the form EKs = RT
F log

(
Ke+pKNaNae

Ki+pKNaNai

)
.

.

Fast Na+ current

INa = GNam
3hj(v − ENa)

m∞ =
1(

1 + e(−56.86−v)/9.03
)2

αm =
1

1 + e(−60−v)/5

βm =
0.1

1 + e(+35)/5
+

0.1

1 + e(v−50)/200

τm = αmβm

h∞ =
1(

1 + e(v+71.55)/7.43
)2

αh =

{
0.0 v ≥ −40

0.057 · e−(v+80)/6.8 otherwise

βm =


0.77

0.13
(
1 + e−(v+10.66)/11.1

) v ≥ −40

2.7 · e0.079v + 3.11̇05 · e0.3485v

τm =
1

αmβm

j∞ =
1

1
(
1 + e(v+71.55)/7.43

)2
αj =


0.0 v ≥ −40(
−2.5428 · 104 · e0.2444v−
6.948 · 10−6 · e−0.04391v

)
(v + 37.78)

1 + e0.311(v+79.23)

βj =


0.6 · e0.057v

1 + e−0.1(v+32)
v ≥ −40

0.0242 · e−0.01052v

1 + e−0.1378(v+40.14)
otherwise

τm =
1

αmβm

L-type Ca2+ current

ICaL = GCaLd f f2 fcass4
(v − 15)F 2

RT
×

0.25CaSSe
2(v−15)F/RT − Cao

e2(v−15)F/RT − 1

d∞ =
1

1 + e(−8−v)/7.5

αd =
1.4

1 + e(−35−v)/13
+ 0.25

βd =
1.4

1 + e(v+5)/5

γd =
1

1 + e(50−v)/20

τd = αdβd + γd

f∞ =
1

1 + e(v+20)/7

αf = 1102.5 · e−( v+27
15 )

2

βf =
200

1 + e(13−v)/10

γf =
180

1 + e(v+30)/10
+ 20

τf = αf + βf + γf

f2∞ =
0.67

1 + e(v+35)/7
+ 0.33

αf2 = 600 · e−
(v+25)2

170

βf2 =
31

1 + e(25−v)/10

γf2 =
16

1 + e(v+30)/10

τf2 = αf2 + βf2 + γf2

fcass∞ =
0.6

1 +
(

CaSS

0.05

)2 + 0.4

τfcass =
80

1 +
(

CaSS

0.05

)2 + 2
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Transient outward current

Ito = Gtors(v − EK)

For all cell types

r∞ =
1

1 + e(20−v)/6

τr = 9.5 · e−(v+40)2/1800 + 0.8

For epicardial and M cells

s∞ =
1

1 + e(v+20)/5

τs = 8.5 · e−(v+45)2/320 +
5

1 + e(v−20)/5
+ 3

For endocardial cells

s∞ =
1

1 + e(v+28)/5

τs = 103 · e−(v+67)2/1000 + 8

Slow delayed rectifier current

IKs = GKsx
2
s(v − EKs)

xs∞ =
1

1 + e(−5−v)/14

αxs =
1400√

1 + e(5−v)/6

βxs =
1

1 + e(v−35)/15

τxs = αf2βf2 + 80

Rapid delayed rectifier current

IKr = GKr

√
Ko

5.4
xr1xr2(v − EK)

xr1∞ =
1

1 + e(−26−v)/7

αxr1 =
450

1 + e(−45−v)/10

βxr1 =
6

1 + e(v+30)/11.5

τxr1 = αxr1βxr1

xr2∞ =
1

1 + e(v+88)/24

αxr2 =
3

1 + e(−60−v)/20

βxr2 =
1.12

1 + e(v−60)/20

τxr2 = αxr2βxr2

Inward rectifier K+ current

IK1 = GK1

√
Ke

5.4
xK1∞(v − EK)

αK1 =
0.1

1 + e0.06(v−EK−200)

βk1 =
3 · e0.0002(v−EK+100) + e0.1(v−EK−10)

1 + e−0.5(v−EK)

xK1∞ =
αK1

αK1 + βK1

Na+ / Ca2+ echanger current

INaCa = kNaCa
eγvF/RTNai

3Cae − e(γ−1)vF/RTNae
3Caiα(

K3
mNai + Nae

3
)

(KmCa + Cae)
(
1 + ksate(γ−1)vF/RT

)
Na+ / K+ pump current

INaK = PNaK×
KeNai

(Ke + KmK) (Nai +KmNa)
(
1 + 0.1245e−0.1vF/RT + 0.0353e−vF/RT

)
IpCa = GpCa

Cai
KpCa + Cai

IpK = GpK
v − EK

1 + e(25−v)/5.98

Background currents

IbNa = GbNa(v − ENa)

IbCa = GbCa(v − ECa)

Calcium dynamics

Ileak = vleak (CaSR − Cai)

Iup =
vmaxup

1 +K2
up/Cai

2

Irel = vrel (CaSR − CaSS)

Ixfer = vxfer (CaSS − Cai)

O =
k1CaSS

2R̄

k3 + k1CaSS
2

dR̄

dt
= −k2CaSSR̄+ k4(1− R̄)

k1 =
k1′

kcasr

k2 = k2′kcasr

kcasr = max
sr
− maxsr−minsr

1 + (EC/CaSR)2

Caibufc =
Cai × Bufc
Cai +Kbufc
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dCaitotal

dt
= − IbCa + IpCa − 2INaCa

2vcF
+
vsr

vc
(Ileak − Iup) + Ixfer

Casrbufsr =
Casr × Bufsr

Casr +Kbufsr

dCaSRtotal

dt
= Iup − Ileak − Irel

Cassbufss =
Cass × Bufss

Cass +Kbufss

dCaSStotal

dt
= − ICaL

2vSSF
+
vsr

vss
Irel −

vc

vss
Ixfer

Sodium and Potassium dynamics

dNai
dt

= − INa + IbNa + 3INaK + 3INaCa

vcF

dKi

dt
= − IK1 + Ito + IKr + IKs − 2INaK + IpK + Istim − Iax

vcF
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