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Abstract

One of the main aims of hadronic physics is to describe the internal structure of the
nucleon in terms of its constituents, quarks and gluons (collectively called partons).
A lot of information has been collected over the past forty years concerning the dis-
tribution of partons in one dimension, encoded in the well–known collinear Parton
Distribution Functions (PDFs). In the last years, we are extending the study to the
distribution of partons in full three–dimensional momentum space, encoded in the so–
called Transverse Momentum Distributions (TMDs). This thesis describes a suite of
computing tools for the extraction of TMDs, entirely developed by our research group
over the last three years, and presents a state–of–the–art extraction of these functions
from experimental data.

The thesis first summarizes the theoretical framework for the extraction of TMDs
in two types of scattering processes: the Drell–Yan process (pp → ll̄X), and Semi—
Inclusive Deep Inelastic Scattering (lp→ lhX).

The thesis then presents the numerical framework we implemented to study TMDs.
It consists of a suite of tools, which we called NangaParbat. It is written in C++ and
is publicly available. NangaParbat can be used to extract TMDs, to produce grids for
TMDs and TMD–related observables, and to have easy access to TMD extractions,
through interpolation and convolution tools. Therefore, NangaParbat can be a very
useful asset for the scientific community working on the phenomenology of hadronic
physics.

Finally, the thesis presents our most recent extraction of TMDs, which reached
the unprecedented accuracy of Next–to–Next–to–Next–to–Leading Logarithm (N3LL).
We used Drell–Yan data from various experiments, including those at the LHC, and
spanning a wide kinematic range. We obtained a very good description of both the
shape and the normalization of the data without introducing normalization coefficients
as it was done in the literature before: this result was made possible only through
the unsurpassed perturbative accuracy of the fit and the optimized numerical and
analytical integration techniques that we used.
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Chapter 1
Introduction

There are four different forces observed in nature: the strong force, the electromagnetic
force, the weak force and the gravitational force. This thesis deals with topics related
to the strong force, the force that determines the structure of protons and neutrons
and keeps them together in the nucleus. All particles that are subject to the strong
force are called hadrons (from the Greek ἁδρός, strong) and the field of physics that
studies the strong force is called hadronic physics.

In 1964 Gell–Mann (1969 Nobel Prize) [1] and George Zweig [2], independently,
proposed that many properties of hadrons could be explained assuming they were
made of “quarks.” 1 A revolution in physics was underway, and it was later realized
that quarks come in three copies, which differ from each other only for a property that
was called “color charge”, or simply “color”. In other words, through the property of
color we describe the three different quantum states that quarks can exist in: in 1964,
Oscar W. Greenberg introduced the notion of color charge to explain how quarks could
coexist inside some hadrons in otherwise identical quantum states without violating
the Pauli exclusion principle.

The forces between quarks are due to the property of color: the strong interaction
is mediated by the exchange of massless particles called gluons (because they “glue”
quarks together) that carry the “color” charge and interact with quarks, antiquarks,
and other gluons.

Nature forces quarks to be always bound in colorless states, the hadrons, and there-
fore is not possible to observe a quark in its free state. This phenomenon is known as
color confinement, or simply confinement, and, even if it has been known for several
decades by now, there is no mathematical proof that explains it yet.

At first, it was not clear whether quarks were real particles or just mathematical

1The term “quark” was first adopted by Gell–Mann, who borrowed it from the sentence
“Three quarks for Muster Mark” in James Joyce’s Finnegans Wake.
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1. Introduction

tools useful to understand the properties of hadronic particles, especially since the
strong interaction had yet to be properly enclosed in a suitably formulated theory.

In order to investigate the dynamics obeyed by quark systems, it seemed natural
to probe the inside of hadrons (protons, for example) by applying a beam of point–
like particles, such as electrons, that act like a “sharp knife” and cut cleanly through
hadronic matter revealing its inner structure.

The first runs of this kind of experiments, to test the structure of the proton,
started in the early 1960s and were carried out at high–energy electron accelerators,
like the Stanford Linear Accelerator (SLAC), and the process was called Deep Inelastic
electron–proton Scattering (DIS). Then, an experiment performed by the SLAC–MIT
collaboration in 1967 [3] gave results that could be interpreted as direct evidence of
the physical existence of quarks [4, 5].

In 1969, Bjorken [6] noted that the functions that express the partonic structure of
hadrons, called structure functions, enjoyed a particular property: in the deep inelastic
region, where the momentum transfer squared Q2 and the energy transfer ν of leptons
are very large, structure functions in electron–nucleon scatterings depend only on the
ratio Q2/ν rather than on the two independent variables Q2 and ν. In high–energy
scattering experiments, a property of hadrons is said to scale when it is determined
not by the absolute energy of an experiment but by dimensionless kinematic quantities,
such as a scattering angle or the ratio of the energy to a momentum transfer. The claim
that the property of scaling of structure functions was expected in the deep inelastic
region, where the ratio Q2/ν is constant, was later called Bjorken scaling.

One of the simplest ways to understand Bjorken scaling was to think that the
leptons of the beam collide against almost free point–like particles inside the nucleons:
this was the idea behind the parton model, proposed in 1969 by Richard Feynman [7].
Nucleon constituents in this model were called partons : they were later identified with
quarks and gluons, since experiments demonstrated that they had the same quantum
numbers such as charges and spins.

After the first proposals of the existence of quarks, their freedom inside nucleons
and, at the same time, their property of color confinement, all the quantum theories
known at the time were examined for compatibility with the requirements of quarks
dynamics. This thorough and lengthy process led to the knowledge that a theory
that describes the interaction of quarks and gluons has to belong to the class of non–
Abelian gauge field theories [8]. The non–Abelian character is reflected in the fact
that gauge bosons themselves are carrying color charges: as a consequence, gluons are
self–coupling.

In 1973 it was shown that non–Abelian gauge theories can display the property of
asymptotic freedom: the forces between quarks become asymptotically weaker as the
energy increases. This was was a breakthrough that made it possible to formulate a

2



Quantum Field Theory of strong (colored) interactions, called Quantum Chromody-
namics (or, in short, QCD), with point–like behavior of quarks at short distance and
the strong confining force at large distance.

Non–Abelian gauge fields are characterized by symmetries described by a non–
commutative algebra: this implies that quarks must have an extra symmetry associated
with the non–Abelian gauge field describing the quark dynamics. In 1973, Fritzsch
and Gell–Mann [9] suggested that this extra symmetry was to be identified with the
color symmetry: with such recognition, most of the properties of quark systems were
explained in a natural way and QCD was finally established as the theory of strong
interactions between quarks and gluons, the force carriers of the theory.

If we were to draw a comparison between QCD and QED (Quantum Electrodynam-
ics), the Abelian gauge theory that describes electromagnetic interactions, we could say
that color is the QCD analog of the electric charge in QED. One of the main differences
between QCD and QED, though, is that while photons, the mediators of electromag-
netic interactions, do not carry any electric charge, and thus can not interact with each
other, in QCD gluon–gluon interactions are possible, since also gluons are colored.

Asymptotic freedom, which was worth the Nobel prize in 2004 [10], allows per-
turbative treatment of strong interactions at short distances. The method of using
perturbation theory in QCD is often referred to as perturbative QCD (or pQCD for
short).

Investigations of quark dynamics started right after the foundation of the parton
model. Deep inelastic scattering was the first process to which QCD was applied, in
order to provide an explanation of Bjorken scaling: this involves separating the purely
short–distance part out of the deep inelastic cross section, to assure that perturbative
rules are used in their proper regime of application. The operator product expansion
(OPE) [11] was the most powerful known tool to accomplish this task, and with it one
finds that the lowest–order result in the perturbative calculations reproduce Bjorken
scaling. In this way, the parton picture was given a solid theoretical foundation.

However, these studies also showed that the perturbative treatment is spoiled by
large logarithms, associated with the presence of a large momentum transfer in the
process: because of this, it is necessary to sum those large logarithms to all orders
using renormalization group equations (RGE).

Because of this, it was discovered that Bjorken scaling holds only in an approximate
way, namely, only at what is called leading order. The deviation from the Bjorken scal-
ing in structure functions was later confirmed by experiments of muon–nucleon scatter-
ing such as the NA2 experiment of the European Muon Collaboration (EMC) [12, 13]
and the NA4 experiment of the Bologna–CERN–Dubna–Munich–Saclay (BCDMS) Col-
laboration [14, 15], and these observations confirmed that QCD was a valid theory (see
also the review paper [16]).
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1. Introduction

QCD was promptly applied also to the process of electron–positron annihilation.
In this process is possible to define observables that are free from long–distance effects
and can be computed directly using directly perturbation theory. Perturbative calcu-
lations of the total cross section of e+e− annihilation, using RGE, began right after the
discovery of asymptotic freedom [17].

In 1977 Altarelli and Parisi published a paper [18], with the title “Asymptotic Free-
dom in Parton Language”, in which they proposed a new way to describe partons
and their interactions: this formalism conveys a clear physical meaning, since it di-
rectly involves parton densities, defined in the deep inelastic region and at all orders
of the running coupling constant for QCD, αs, called parton distribution functions
(PDFs) [19, 20] and parton fragmentation functions (FFs) [21, 22]. Later, it was re-
alized that also Dokshitzer [23] and, independently, (and even a few years earlier, in
1972) Gribov and Lipatov [24] did derive the same equations of the Altarelli–Parisi for-
malism, and QCD evolution equations were named after the initial of all their authors,
DGLAP.

In 1977 a second phase for developments in perturbative QCD started. Three main
events were particularly significant and widened the horizon of QCD applicability: the
completion of the calculation of next–to–leading–order (NLO) contributions in deep
inelastic scatterings [25–27], the introduction of a new type of processes, i.e., jets from
quarks and gluons [28–30], and the generalization of OPE to include a larger class of
short–distance processes [31–34]. Higher order terms for hadronic observables for many
processes (for example, among the others, e+e− annihilation [35–39], photon–photon
scattering [40], jets in e+e− annihilations [41, 42]) have been computed as well.

When dealing with higher order effects, it is immediate to realize that results cru-
cially depend on the method used to renormalize the diverging integrals that show up
in the calculations: this is known as renormalization scheme dependence of perturba-
tive predictions, and is a common issue in the perturbative treatment of renormalizable
quantum field theories.

In fact, renormalization scheme dependence in perturbative predictions occurs also
in quantum electrodynamics (QED): in this case, though, since the coupling constant
(the expansion parameter in perturbation series) is very small (α = e2/4π ∼ 1/137),
the effect of different choices of renormalization schemes is negligible. On the con-
trary, in QCD αs is a running coupling constant and can assume quite large values
for a perturbative expansion parameter, making the effects of renormalization scheme
dependence much more evident.

In a renormalizable perturbation series, order by order any physical quantity is a
function of three classes of variables with dimensions of mass: the kinematic energy
scale (or scales) of the scattering Q, the masses m, and a renormalization scale µ.
There is a certain freedom in the choice of the renormalization scale µ. However, µ
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will appear in ratios Q/µ and µ/m, and at high energy at least one of these ratios
is large. As a result, the perturbation series is no longer an expansion in a small
parameter: for example, if we choose µ ∼ Q, the effective coupling constant g(µ) will
generally appear in the combinations g2n(Q)lnn(Q/m) or g2n(Q)ln2n(Q/m), where n
is an integer number related to the perturbative order.

In general, a cross section is a combination of short– and long–distance behavior,
and is hence not computable directly in perturbation theory for QCD. There are, how-
ever, a few classes of processes for which it is possible to demonstrate factorization
theorems that allow us to derive predictions for cross sections by separating (factoriz-
ing) long–distance from short–distance behavior in a systematic way. In other words,
factorization theorems enable one to apply perturbative calculations to some important
processes involving hadrons (in the following denoted with h1, h2 or h): for example,
factorization is expected to hold for the Drell–Yan process NN → l+l−X (where N is
a nucleon, l± charged leptons and X unobserved hadrons), Deeply Inelastic Scattering
lh→ l′X, h1h2 → jetX, and inclusive cross sections in electron–positron annihilation
with detected hadrons, e+e− → h+X.

In Ref. [43] Collins, Soper and Sterman give explicit factorization theorems for the
cross sections of deeply inelastic scattering, single–particle inclusive annihilation and
the Drell–Yan process. Factorization is also discussed in Chapter 8 of Ref. [44], in
Ref. [45] and references therein.

Since 1978, a variety of processes, such as, among others, the Drell–Yan process [46,
47], inclusive e+e− annihilation [48, 49], e+e− → hadron +X have been analyzed.

However, although many phenomenological studies have been performed since the
birth of QCD and successful comparisons with data have been made for a variety of
hadronic observables, the structure of the most common of hadrons, the nucleon, is
still largely unknown, in particular in its spin–dependent aspects. This is partly due to
the fact that in the kinematic regions where the value of αs is too big to ensure a safe
application of perturbative methods, a significant nonperturbative input is required.

Studies of hard scattering processes whose initial state involves nucleons allow us to
gain information on their internal structure: as already briefly mentioned above, such
knowledge is encoded in parton distribution functions (PDFs).

Typically, in a high–energy collision, there is a direction along which the momentum
of the incident and scattered particles is significantly bigger: the longitudinal direction,
the one of the beam pipe along which particles are accelerated. This is the direction
considered in PDFs: collinear PDFs describe the structure of the nucleon as a function
of the nucleon longitudinal momentum fraction x carried by a parton of a certain
species.

Unpolarized collinear PDFs are indispensable building blocks in almost any pre-
diction involving high-energy hadrons, and after decades of studies they are fairly
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1. Introduction

well–known objects. They are mainly studied in proton–proton collisions and Deeply
Inelastic Scattering, a process where a lepton l scatters on a proton p that breaks off in
other undetected objects X (lp→ l′X): here the longitudinal momentum structure of
the nucleon is investigated using the collinear approximation, which means that trans-
verse degrees of freedom are not taken into account. Thanks to collinear factorization
theorems, which allow to express physical measurements in terms of hard, perturbative
subprocesses and universal (measurable) parton distributions, it is possible to give a
definition of collinear PDFs [50–52].

1.1 Transverse Momentum Distributions

As discussed above, the proton is a composite particle, and this means that its con-
stituents, quarks and gluons, have their own intrinsic momenta, which in general have
both longitudinal and transverse components (the transverse components are the two
orthogonal directions perpendicular to the longitudinal direction). The transverse mo-
mentum components of partons are still present even when the proton is accelerated
along the longitudinal direction and they have to be taken into account for a complete
description of the process: the transverse momentum of partons is a central element
in understanding the three–dimensional structure of the nucleon. Moreover, trans-
verse components are needed not only for a correct description of the nucleon, but also
because they have experimentally observable effects.

In order to accurately describe the proton internal structure, it is necessary to ex-
amine more than only one dimension, and hence the interest in the study of Transverse
Momentum Dependent Parton Distribution Functions (TMD PDFs, or more concisely,
TMDs), which represent three–dimensional maps of the proton in the momentum space
(they represent the distribution of both x and the two component of the transverse mo-
mentum, k⊥)(see, e.g., Refs. [53–55] and references therein).

In the operator product expansion of the scattering amplitude, the twist is used to
classify the operators and isolate the leading (twist–2) from the subleading (higher–
twist) contributions, which are power suppressed as Q2−twist. At leading twist, taking
into account the intrinsic transverse momentum of the quarks k⊥, eight TMDs are
needed to fully describe the nucleon [56–59]: as mentioned before, by adding trans-
verse momentum dependence to collinear PDFs, sensitivity to additional polarization
configurations is introduced, and so there are different combinations to consider, as
indicated in Tab. 1.1. There are eight quark TMDs because that is the number of
parameterizations of the correlator that remain after imposing constraints of hermitic-
ity, parity and time reversal. For more details, Refs. [60, 61] discuss how the different
contributions to the spin structure of protons appear in the general parameterization

6



1.1. Transverse Momentum Distributions

Quark polarization

U L T

Nucleon
polarization

U f1 h⊥1

L g1L h⊥1L

T f⊥1T g1T h1, h
⊥
1

Table 1.1: Quark TMD PDFs at leading twist: there are eight possible combinations to
describe the polarization of the nucleon and the polarization of the quarks. The letters U,
L, and T stand for unpolarized, longitudinally polarized and transversely polarized nucleons
(rows) and corresponding quarks (columns).

of the correlator, as well as the explicit expression for the TMD PDF correlator.
At leading order (LO), the lowest order in the expansion in αS of the terms that

appear in the explicit expression of TMDs (see Ch. 2), TMDs have a probabilistic
interpretation: for example, f1(x, k2

⊥) represents the probability density to find an
unpolarized quark of transverse momentum k⊥ and longitudinal momentum fraction x
in an unpolarized hadron.

Looking at Tab. 1.1, in addition to f1(x, k2
⊥), other two diagonal elements are the

helicity distribution g1L(x, k2
⊥), which describes longitudinally polarized quarks in a

longitudinally polarized hadron, and the so–called transversity distribution, h1(x, k2
⊥).

These distributions do not vanish when integrated in the transverse quark momentum
k⊥: they have a collinear counterpart and this favored the study of f1(x, k2

⊥) and
g1L(x, k2

⊥). At the present time, little is known about the k⊥ dependence of g1L(x, k2
⊥),

and the transversity distribution h1(x, k2
⊥) is still largely unknown.

Both the transversity h1(x, k2
⊥) and the pretzelosity function h⊥1 (x, k2

⊥) give their
contribution for transversely polarized quark in a transversely polarized hadron. Transver-
sity was first introduced in Ref. [62], but, although fundamental for the nucleon de-
scription, h1T has long remained unmeasured because of its chirally odd nature that
prevents its measurement in inclusive DIS. 2 Pretzelosity made its first appearance in
Ref. [56], even tough the name pretzelosity was proposed later [64].

Off–diagonal elements of Tab. 1.1 are “genuine” transverse–momentum–dependent
functions and vanish after k⊥ integration.

Particularly intriguing are the the correlations between quark transverse momen-
tum and nucleon transverse spin, and between quark transverse spin and its transverse
momentum in an unpolarized nucleon, which are encoded in the Sivers TMD f⊥1T(x, k2

⊥)

2The transversity distribution can only be measured in conjunction with another chiral–odd
object. One possibility is represented by Semi–Inclusive Deep Inelastic Scattering reactions,
(lN → lHX), where at least one final state hadron is detected in coincidence with the
scattered lepton. In Ref. [63] a novel way of accessing the transversity PDF is proposed.

7



1. Introduction

Quark polarization

U L T

Hadron
polarization

U D1 H⊥1

L G1L H⊥1L

T D⊥1T G1T H1T, H
⊥
1T

Table 1.2: Quark TMD FFs at leading twist: there are eight possible combinations to describe
the polarization of the outgoing hadron and the polarization of the fragmenting quarks. The
letters U, L, and T stand for unpolarized, longitudinally polarized and transversely polarized
hadrons (rows) and corresponding quarks (columns).

(introduced in Ref. [65]) and Boer–Mulders TMD h⊥1 (x, k2
⊥) (Ref. [57]). These distribu-

tions are T–odd, meaning that they violate time–reversal invariance when omitting the
presence of Wilson lines; functions that do not have this behavior are called T–even.
Given the T–odd character of both Sivers and Boer–Mulders functions, these TMDs
exhibit a peculiar process dependence: their sign is expected to be reversed when ob-
served in Semi–Inclusive Deep Inelastic Scattering (lN → lHX) or from Drell–Yan
(NN → l+l−X).

Finally, the worm–gear functions g1T(x, k2
⊥) and h⊥1L(x, k2

⊥), introduced in Ref. [62],
describe longitudinally polarized quarks in a transversely polarized hadron and trans-
versely polarized quark in a longitudinally polarized hadron respectively. “Worm–gear”
functions is an informal name, given to g1T(x, k2

⊥) and h⊥1L(x, k2
⊥) in Ref. [56]. In

Ref. [66] a way to access the functions g1T(x, k2
⊥) and h⊥1L(x, k2

⊥) was emphasized.
Tab. 1.2 is analogous to Tab. 1.1 and contains TMD Fragmentation Functions

(TMD FFs), which describe the various possible combinations for the polarization of
the fragmenting3 quark with respect to the polarization of the hadron in the final
state. When the polarization in the final state is not accounted for, only two TMD FFs
come into play: the unpolarized D1(z, P⊥) and the Collins H⊥1 (z, P⊥) fragmentation
function, where z is the energy fraction carried by the final state hadron and P⊥ is
the transverse momentum of the observed produced hadron with respect to the the
fragmenting parton.

In this work, we will focus on the unpolarized TMDs f1(x, k2
⊥) and D1(z, P⊥). In-

formation on the functional form of TMDs can be obtained from Drell–Yan (DY),
Semi–Inclusive Deep Inelastic Scattering (SIDIS) and e+e− annihilation. In fact, fac-
torization theorems allow us to write the cross section for these processes in term of
convolutions of TMDs. In particular, the DY cross section is proportional to a convolu-
tion of two TMD PDFs, the cross section of e+e− annihilation contains a convolution of

3The term “fragmentation” is used to denote a parton fragmenting into an observed hadron.
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1.1. Transverse Momentum Distributions

two TMD FFs and the SIDIS cross section can be expressed in terms of a convolution
of one TMD PDF and one TMD FF.

Moreover, TMDs contribute directly to measurable azimuthal asymmetries.
TMDs are partially computable by means of well–established perturbative methods

that take into account soft and collinear radiation to all orders. However, calculations
based on perturbative QCD become unreliable for values of transverse momentum close
to the Landau pole (ΛQCD). In this regime, nonperturbative components have to be
included and have to be determined through fits to experimental data.

Several works in the past have studied the nonperturbative components in Drell–
Yan [67–74] or in SIDIS [75, 76], without directly mentioning TMDs. More recent
works directly performed extractions of TMDs from Drell-Yan data [77–79], semi-
inclusive DIS data [80, 81] or both [82–85]. Alternatively, TMDs were determined
in the so–called parton–branching approach by solving evolution equations with an
iterative method similar to parton showers but including transverse momentum depen-
dence [86, 87].

A precise knowledge of TMDs is useful not only to investigate the structure of the
nucleon in greater detail, but also to improve the reliability of predictions involving
TMDs. At high energies, the perturbative part of TMDs may be dominant, but when
extreme precision is required, also the nonperturbative components become relevant
(see, e.g., Ref. [88]). To give an example of the need to produce precise predictions,
we observed that the inclusion in TMD fits of the recent LHC data, from the ATLAS
collaboration, already call for the maximum accuracy that theory can accomplish, as
will be discussed in this thesis.

Among the challenges of present and future collider physics there certainly is the
necessity to have computational tools able to reproduce experimental observables with
an ever increasing perturbative accuracy. This means that the optimization of the
computation of multidimensional integrals as well as the inclusion of more perturbative
terms are a fundamental part of the efforts of hadron phenomenology. Presently, there
are several tools and codes that can provide predictions and cross section computations
at different levels of accuracy. In general, numerical frameworks for the computation
of observables can differ for several aspects: for example, for the choices made for
Landau pole regularization, for intrinsic kT generation, for the approaches to transverse
momentum (qT ) resummation, for the matching to collinear PDFs at large momentum,
where TMD factorization is not expected to hold and collinear factorization is the
appropriate framework.

RadISH [89, 90] provides predictions with an accuracy of N3LL and matching to
NNLO (the presence of the matching allows us to extend predictions to large transverse
momentum). ArTeMiDe performs TMD fits, i.e, it computes predictions and calculates
the χ2 with respect to Drell–Yan and SIDIS data, using the so–called ζ–prescription,
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1. Introduction

with different accuracies (and up to what we defined, in Sec. 2.1.3, as NNLL′) [78, 85].
Other computational tools available are: DYRes/DYTURBO[74], a qT resummation

numerical program for the calculation of Drell—Yan collinear cross sections; Cute [73,
91], a C++ program to calculate the differential cross sections for electroweak gauge
boson and Higgs boson production at small transverse momentum, implementing N3LL
resummation as well as matching to NNLO fixed–order results ; ReSolve[92], a Monte
Carlo differential cross section and parton level event generator.

NangaParbat, the platform described in this thesis, can provide predictions up
to N3LL level and perform fits of Drell–Yan data using more standard prescriptions
compared to ArTeMiDe.

Looking at the future of hadronic physics, one very important opportunity to ex-
plore the internal structure of the nucleon in three dimensions will be offered by the
Electron—Ion Collider (EIC), a new facility which is about to be build at Brookhaven
National Laboratory [93].

What will make the EIC a unique accelerator is the fact that it will be colliding
polarized electrons off polarized protons and light nuclei, yielding the spin degrees of
freedom necessary to pursue an ambitious physics program driven by the exploration
of the spin structure and the acquisition of new information on multi–dimensional
tomographic images of protons and nuclei [94].

In the future EIC era, the possibility to produce precise theoretical predictions
(both from the perturbative and the nonperturbative side) is going to be crucial in the
study of future experimental data, especially considering the foreseen luminosity of the
new accelerator, coupled with its energy variability and reach.

1.2 Content of this thesis

The main topics of this thesis are: the description of the suite of computational tools
that we developed for TMD studies (NangaParbat) and the extraction of TMD PDFs
performed using NangaParbat and dubbed PV19 [95].

The author of this thesis was one of the main developers of the NangaParbat code
and one of the main authors of the PV19 TMD extraction.

The dissertation is organized as follows. In Ch. 2, the TMD theoretical framework
is illustrated, giving an introduction on the Drell–Yan process and Semi–Inclusive DIS
(SIDIS), two of the main sources of information on TMDs. For both processes we
discuss the structure of the observable, TMD evolution and their matching, resumma-
tion of large logarithms, the convention we used for the logarithmic ordering and the
choices of the nonperturbative terms. In particular, both the PV19 and the PV17 [84]
nonperturbative functional forms are discussed.
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The structure of NangaParbat, the C++ fitting framework that we created, is
illustrated in Ch. 3. At the moment of the writing of this thesis, NangaParbat has
two main purposes: performing extractions of unpolarized TMD PDF form Drell–Yan
data and generating TMD grids. The author of this thesis contributed to develop both
these aspects of NangaParbat, also creating an user–oriented Python interface of the
code.

One of the central characteristics of NangaParbat is the faithful treatment of ex-
perimental errors: the χ2 is computed taking into account the nature (correlated or
uncorrelated) of the uncertainties. Besides the implementation of the observable (the
Drell–Yan cross section) and the computation of the perturbative terms, we also illus-
trate the optimized integration techniques we used in Ref. [95]. Finally, the last part
of Ch. 3 is dedicated to the production and the interpolation of TMD and structure
function grids, based on PV17 [84] and PV19 [95] extractions. The author of this
thesis was responsible for the production and testing of the TMD PDF, TMD FF and
unpolarized structure function grids discussed in this work. These tools are important
to make predictions for observables that will be measured at the future Electron–Ion
Collider (EIC) and have been used for the preparation of the EIC Yellow Report [96].

In Ch. 4, we discuss the results of the PV19 TMD extraction: we determined the
unpolarized quark TMDs by fitting Drell–Yan data from experiments at Tevatron,
RHIC, LHC, and low–energy experiments at Fermilab, for a total of around 350 data
points. The dataset is similar to the one studied in Ref. [79], but there are some
important differences: whenever available, we use cross section measurements with-
out any normalization factor; TMD evolution is implemented in a different way; for
the first time, TMD evolution is implemented up to next–to–next–to–next–to–leading
logarithmic (N3LL) accuracy. Compared to Ref. [84], we exclude data from SIDIS,
but we greatly extend the Drell–Yan dataset, we improve the logarithmic accuracy,
we study normalizations with much greater care, and we abandon the narrow–width
approximation for Z–boson production data. In conclusion, PV19 is one of the two
state–of–the–art extractions of TMDs available at present.

Finally, Ch. 5 contains a brief overview of this thesis results.
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Chapter 2
Theoretical framework

To describe processes that are sensitive to intrinsic parton transverse momentum, TMD
factorization is needed. The theoretical framework of TMD factorization is more com-
plicated than that of collinear factorization: in the calculations that lead to collinear
factorization there are important cancellations that occur after integrations over the
parton momentum are carried out. In a TMD context, integrals over parton transverse
momentum are not performed and contributions that would cancel must be accounted
for. Collins, Soper and Sterman (CSS) devised a useful formalism [97–99] for TMD
factorization that deals with the main complications of transverse momentum depen-
dence and provides a systematic treatment of pQCD over the full transverse momentum
spectrum.

The Drell–Yan (DY) process, Semi–Inclusive Deep Inelastic Scattering (SIDIS) and
back–to–back hadron production in electron–positron annihilation at small transverse
momentum are classic examples of where CSS TMD factorization formalism can be
applied and information on the functional form of TMDs can be obtained.

For a more complete overview of TMD definitions and TMD factorization we refer
the reader to Refs. [67, 76, 100–102].

This chapter is dedicated to an introduction of the theoretical framework of Drell–
Yan and SIDIS processes. The analysis of these processes is here illustrated in the CSS
TMD factorization framework, as factorization theorems allow us to write the cross
section of these processes in terms of convolutions of TMDs.

2.1 The Drell–Yan process

In this section we describe the theoretical framework of our Drell–Yan extraction in
Ref. [95], with a brief overview of TMD factorization for the Drell–Yan process, the
evolution of TMDs and their matching onto the collinear PDFs. The perturbative or-
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2. Theoretical framework

dering we use in this thesis is also discussed, along with the perturbative elements of
the factorized formula within the particular choice of the evolution scales embraced in
this analysis. We explain the need for the introduction of a nonperturbative contribu-
tion that needs to be determined from data, and we discuss its particular functional
form.

2.1.1 Drell–Yan cross section in TMD factorization

In an inclusive Drell–Yan process,

h1(P1) + h2(P2) −→ γ∗/Z(q) +X −→ `+(l) + `−(l′) +X , (2.1)

two hadrons, denoted in Fig. 2.1 as h1 and h2, with 4–momenta P1 and P2, collide
with center–of–mass energy squared s = (P1 +P2)2 and produce a neutral vector boson
γ∗/Z with 4–momentum q and large invariant mass Q =

√
q2.1 The vector boson

eventually decays into a lepton and antilepton pair, whose 4–momenta are constrained
by momentum conservation, q = l + l′.
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Figure 2.1: Relevant momenta involved in a Drell–Yan event. In a reference frame in which
two colliding nucleons move along the z direction with 4–momenta P1 and P2, a quark with
4–momentum k1 and transverse momentum k⊥1 annihilates with a parton with 4–momentum
k2 and transverse momentum k⊥2. A (virtual) photon (or Z) is produced with 4–momentum
q and transverse momentum qT = k⊥1 + k⊥2 .

The absolute value of the transverse momentum and the rapidity of the Z boson
(or, equivalently, of the lepton pair) are defined as

qT =
√
q2
x + q2

y , y =
1

2
ln

(
q0 + qz
q0 − qz

)
, (2.2)

1In general, γ∗/Z production is always associated also with the production of other reso-
nances that can decay into a lepton–antilepton pair.
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2.1. The Drell–Yan process

where the z direction is defined by the axis of the hadronic collision (see Fig. 2.1).

In this analysis, the object of interest is the transverse momentum distribution of
the vector boson in the small–qT region (qT � Q). In this regime, the unpolarized
differential cross section factorizes and can be expressed in terms of the unpolarized
TMDs of the two hadrons as

dσ

dQdydqT
=

16π2α2
emqTP

9Q3
H(Q, µ)

∑

q

cq(Q)

×
∫
d2k⊥1 d

2k⊥2 x1f
q
1

(
x1,k

2
⊥1;µ, ζ1

)
x2f

q̄
1

(
x2,k

2
⊥2;µ, ζ2

)
δ(2)
(
k⊥1 + k⊥2 − qT

)
,

(2.3)

where αem is the electromagnetic coupling and P is the phase–space reduction factor
that accounts for possible kinematic cuts on the final–state leptons (see Appendix 3.A).

The hard factor H represents the perturbative part of the hard scattering and
depends on the hard scale Q and on the renormalization scale µ. The summation over
q in Eq. (2.3) runs over the active quarks and antiquarks at the scale Q, and cq are the
respective electroweak charges given by

cq(Q) = e2
q − 2eqVqV` χ1(Q) + (V 2

` + A2
`) (V 2

q + A2
q)χ2(Q) , (2.4)

with

χ1(Q) =
1

4 sin2 θW cos2 θW

Q2(Q2 −M2
Z)

(Q2 −M2
Z)2 +M2

ZΓ2
Z

, (2.5)

χ2(Q) =
1

16 sin4 θW cos4 θW

Q4

(Q2 −M2
Z)2 +M2

ZΓ2
Z

, (2.6)

where eq, Vq, and Aq are respectively the electric, vector, and axial charges of the flavor
q; V` and A` are the vector and axial charges of the lepton `; θW is the weak mixing
angle; MZ and ΓZ are mass and width of the Z boson.

The second line of Eq. (2.3) displays the convolution of the TMDs f q1 and f q̄1 of
the hadrons h1 and h2, respectively. It describes the annihilation of a quark q, with
longitudinal momentum fraction x1 = Qey/

√
s and transverse momentum k⊥1, with

the corresponding antiquark q̄, with longitudinal momentum fraction x2 = Qe−y/
√
s

and transverse momentum k⊥2. In the annihilation, the momentum conservation is
guaranteed by the presence of δ(2)

(
k⊥1 + k⊥2 − qT

)
(see Fig. 2.1).

As a consequence of renormalization and of the removal of the rapidity diver-
gences [44], TMDs acquire a dependence on the renormalization scale µ and on the
so–called rapidity scale ζ. Our choice for these scales is discussed in Sec. 2.1.3. Here,
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2. Theoretical framework

we just remark that the rapidity scales ζ1 and ζ2 in Eq. (2.3) must obey the kinematic
constraint ζ1ζ2 = Q4.

It is convenient to rewrite the convolution in the conjugate position space by using
the Fourier transform of each TMD, defined as2

f̃ q1
(
x, bT ;µ, ζ

)
=

∫
d2k⊥ e

ik⊥·bT f q1
(
x,k2

⊥;µ, ζ
)
, (2.7)

where bT is the absolute value of the vector bT (bT = |bT |). By using Eq. (2.7), we can
rewrite the convolution of TMDs as
∫
d2k⊥1 d

2k⊥2 x1f
q
1

(
x1,k

2
⊥1;µ, ζ1

)
x2f

q̄
1

(
x2,k

2
⊥2;µ, ζ2

)
δ(2)
(
k⊥1 + k⊥2 − qT

)

=

∫
d2bT
(2π)2

eibT ·qT x1f̃
q
1

(
x1, bT ;µ, ζ1

)
x2f̃

q̄
1

(
x2, bT ;µ, ζ2

)

=
1

2π

∫ ∞

0

dbT bT J0

(
bT qT

)
x1f̃

q
1

(
x1, bT ;µ, ζ1

)
x2f̃

q̄
1

(
x2, bT ;µ, ζ2

)
,

(2.8)

where J0 is the 0–th order Bessel function of the first kind that has the following
integral representation

J0(x) =
1

2π

∫ 2π

0

dθ eix cos θ . (2.9)

By inserting Eq. (2.8) into the cross section in Eq. (2.3), we finally get

dσ

dQdydqT
=

8πα2
emqTP

9Q3
H(Q, µ)

×
∑

q

cq(Q)

∫ ∞

0

dbT bT J0

(
bT qT

)
x1f̃

q
1

(
x1, bT ;µ, ζ1

)
x2f̃

q̄
1

(
x2, bT ;µ, ζ2

)
,

(2.10)

which is the formula actually implemented in our analysis of Drell–Yan data. More
details about how we encoded the observable in NangaParbat are discussed in Ch. 3,
Sec. 3.4.

2For simplicity, henceforth we will refer to the bT –dependent function f̃1 as to TMD but
understanding that this is in fact the Fourier transform of the actual TMD f1. Note that in
Ref. [84] the variable ξT was used in place of bT . The reason was to avoid confusion with
the impact parameter used in the GPD literature for which the symbol bT is typically used.
In this thesis, we decided to use bT as it is more common in the TMD, qT –resummation,
and SCET literature, keeping in mind that this is not the impact parameter but the Fourier
conjugate variable of qT . Finally, we notice that in Ref. [84] the Fourier transform was defined
with an extra 1/(2π) factor.
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2.1. The Drell–Yan process

2.1.2 TMD evolution and matching

In Eq. (2.10), the dependence of the TMDs f̃ q(q̄)1 on the scales µ and ζ arises from the
removal of the ultraviolet and rapidity divergences in their operator definition. Each
dependence is controlled by an evolution equation:

∂ ln f̃1

∂ lnµ
= γ(µ, ζ) ,

∂ ln f̃1

∂ ln
√
ζ

= K(µ) , (2.11)

where γ is the anomalous dimension of the Renormalization Group (RG) evolution
in µ, and K is the anomalous dimension of the Collins–Soper evolution in

√
ζ [99].

Notice that, for brevity, we have dropped the flavor index q and q̄. Moreover, since
in this section we will only be concerned with the dependence of f̃1 on the scales µ
and ζ, we will also temporarily drop the dependence on x and bT . In addition to the
evolution equations in Eq. (2.11), the rapidity anomalous dimension K obeys its own
RG equation:

∂K

∂ lnµ
= −γK

(
αs(µ)

)
, (2.12)

where γK is known as cusp anomalous dimension. Since the crossed double derivatives
of f̃1 must be equal, using Eqs. (2.11) and (2.12) we also get

∂γ

∂ ln
√
ζ

= −γK
(
αs(µ)

)
. (2.13)

Using the point ζ = µ2 as a boundary condition, the solution of this differential equation
is

γ(µ, ζ) = γF
(
αs(µ)

)
− γK

(
αs(µ)

)
ln

√
ζ

µ
, (2.14)

where γF (αs(µ)) ≡ γ(µ, µ2). If the TMD f̃1 is known at some starting scales µ0 and
ζ0, the solution of the evolution equations in Eq. (2.11) reads

f̃1(µ, ζ) = R
[
(µ, ζ)← (µ0, ζ0)

]
f̃1(µ0, ζ0) , (2.15)

where the so–called Sudakov form factor R accounts for the perturbative evolution of
f̃1 and it is defined as

R
[
(µ, ζ)← (µ0, ζ0)

]
= exp

{
K(µ0) ln

√
ζ√
ζ0

+

∫ µ

µ0

dµ′

µ′

[
γF (αs(µ

′))− γK(αs(µ
′)) ln

√
ζ

µ′

]}
.

(2.16)
We note that Eq. (2.16) can be implemented in various ways [103–106]. In this work, we
follow the standard approach described in [44]. Moreover, we calculate all ingredients
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2. Theoretical framework

involved in Eq. (2.16) by adopting a fully numerical approach.
An important property of the TMD f̃1 is that at small values of bT it can be matched

onto the collinear PDF. Reinstating for clarity the x and bT dependence, we can write
the initial scale TMD PDFs at small values of bT as:

f̃ i1(x, bT ;µ0, ζ0) =
∑

j=g,q(q̄)

∫ 1

x

dy

y
Cij(y;µ0, ζ0)fj

(
x

y
, µ0

)
, (2.17)

where fj are the collinear PDFs (including the gluon) and Cij are the so–called matching
functions that are perturbatively computable and are currently known up to N3LO,
i.e. O(α2

s) [107]. Then, introducing the notation

f̃1(x, bT ;µ0, ζ0) =

∫ 1

x

dy

y
C(y, bT ;µ0, ζ0)f1

(
x

y
;µ0

)
≡
[
C ⊗ f1

]
(x, bT ;µ0, ζ0) . (2.18)

where the Mellin convolution is denoted by the symbol ⊗, the sum over flavors is
implied and the matching function C has to be regarded as a matrix in flavor space
multiplying a column vector of collinear PDFs, the actual evolved TMD becomes

f̃1(x, bT ;µ, ζ) = R
[
bT ; (µ, ζ)← (µ0, ζ0)

][
C ⊗ f1

]
(x, bT ;µ0, ζ0) . (2.19)

Matching and evolution are affected by nonperturbative effects that become relevant at
large bT . In order to account for such effects, one usually introduces a phenomenological
function fNP. In the CSS approach [44], the bT–space TMDs get a multiplicative
correction that does not depend on the flavor. In addition, the perturbative content
of the TMDs is smoothly damped away at large bT by introducing the so–called b∗
prescription. These aspects are discussed in Sec. 2.1.5.

2.1.3 Perturbative content

In order to use Eq. (2.19) to insert evolved TMDs in phenomenological applications,
we need to define the values of both the initial and final pairs of scales, (µ0, ζ0) and
(µ, ζ). It turns out that in the MS renormalization scheme there exists a particular
scale,

µb(bT ) =
2e−γE

bT
, (2.20)

with γE the Euler constant, such that the rapidity anomalous dimension K and the
matching coefficient C computed at µ0 =

√
ζ0 = µb admit a pure perturbative expan-

sion free of explicit logarithms of the scales. Therefore, µb provides a natural choice
for µ0 and

√
ζ0.
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2.1. The Drell–Yan process

The final renormalization scale µ must match the one used in the hard factor H in
Eq. (2.10). Therefore, µ has to be of order Q for avoiding large logarithms in H: we
choose µ = Q. Any variation of µ with respect to this choice can be accounted for by
expanding the solution of the RG equation for the strong coupling αs. The rapidity
scales ζ1 and ζ2 in Eq. (2.10) are bound to comply with ζ1ζ2 = Q4. Therefore, the
natural choice is ζ1 = ζ2 = Q2. However, we stress that any choice that fulfills this
constraint leads to the same cross section. In fact, from Eq. (2.16) it is evident that
the evolution factors R entering the two TMDs in Eq. (2.10) combine in such a way
that the result only depends on the product ζ1ζ2.

After choosing the scales, we discuss the perturbative ingredients that result from
this particular choice. We first consider the hard function H. Up to two–loop accuracy,
its perturbative expansion is

H(Q,Q) = 1 +
2∑

n=1

(
αs(Q)

4π

)n
H(n) . (2.21)

The coefficients H(n) can be read off from, e.g., Ref. [90]. When going beyond O(α2
s),

the hard function acquires a non–trivial flavor structure (see, e.g., Ref. [108]). As
a consequence, H should in principle be moved inside the flavor sum in Eq. (2.10).
However, in the present analysis we do not consider corrections beyond O(α2

s) and
Eq. (2.10) is appropriate.

Then, we consider the matching function C introduced in Eq. (2.18). By making
the flavor and x dependencies explicit, the C have the following perturbative expansion

Cij(x, bT ;µb, µ
2
b) = δijδ(1− x) +

∞∑

n=1

(
αs(µb)

4π

)n
C

(n)
ij (x) . (2.22)

The coefficient functions C(n)
ij up to n = 2 have been computed in Refs. [109, 110]. They

have been reported also in Ref. [108], where the authors have verified the consistency of
the results. The calculation of the O(α3

s) corrections to the quark matching functions
appeared recently in Ref. [107].

As for the anomalous dimensions K, γF , and γK in the Sudakov form factor in
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Eq. (2.16), their perturbative expansions read, respectively,

K(µb) =
∞∑

n=0

(
αs(µb)

4π

)n+1

K(n) ,

γF (αs(µ)) =
∞∑

n=0

(
αs(µ)

4π

)n+1

γ
(n)
F ,

γK(αs(µ)) =
∞∑

n=0

(
αs(µ)

4π

)n+1

γ
(n)
K .

(2.23)

The coefficients K(n) are listed up to n = 3 in Ref. [110] and up to n = 2 in Ref. [108].
They differ by a factor −2 due to a different definition of K. Also the coefficients
γ

(n)
F are given in Refs. [108, 110] up to n = 2, and they differ by a minus sign due to

a different definition of the anomalous dimension. Finally, the coefficients γ(n)
K were

originally computed in Ref. [111] and are also given in Refs. [108, 110] up to n = 2,
where the differ by a factor 2. The coefficient γ(3)

K has been recently computed in
Refs. [112–114].

2.1.4 Logarithmic ordering

In this section, we discuss how to combine in a consistent way the perturbative ingre-
dients of Eqs. (2.21)-(2.23) for the computation of the cross section in Eq. (2.10) (see
also Refs. [115, 116]).

As is well known, TMD factorization provides resummation of large logarithms of
Q/qT or, equivalently, of Q/µb. The resummation is implemented in the Sudakov form
factor R in Eq. (2.16) whose perturbative expansion reads

R = 1 +
∞∑

n=1

(
αs(Q)

4π

)n 2n∑

k=1

LkR(n,k) , (2.24)

with
L = ln

Q2

µ2
b

. (2.25)

Because of the inner sum running up to 2n, Eq. (2.24) exposes the double–logarithmic
nature of the resummation. This structure can be traced back to the evolution equa-
tions in Eq. (2.11) that resum two different categories of logarithms. However, our
particular choice of the scales (µ0 =

√
ζ0 = µb and µ =

√
ζ = Q) makes the two cate-

gories to coincide, producing up to two logarithms for each power of αs. Consequently,
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2.1. The Drell–Yan process

Eq. (2.24) must include all powers of αs if the scales are such that αsL2 & 1.

The expansion (2.24) can be rearranged to define a logarithmic ordering as

R = 1 +
∞∑

k=0

RNkLL , (2.26)

with

RNkLL =
∞∑

n=1+[k/2]

(
αs(Q)

4π

)n
L2n−kR(n,2n−k) , (2.27)

where [k/2] is the integer part of k/2. According to this definition, the term k = 0

in Eq.(2.26) gives the leading–logarithmic (LL) approximation, the term k = 1 gives
the next–to–leading–logarithmic (NLL) approximation, and so on. Multiplication of
RNkLL by a power p of αs gives

(
αs(Q)

4π

)p
RNkLL =

∞∑

m=1+[(k+2p)/2]

(
αs(Q)

4π

)m
L2m−(k+2p)R(m−p,2m−(k+2p)) ∼ RNk+2pLL ,

(2.28)
where the symbol ∼ means that the left– and right–hand sides have the same loga-
rithmic accuracy. This step is relevant because in the cross section the Sudakov form
factor, Eq. (2.26), can be multiplied by some power of αs originating from the hard
factor H and/or the matching functions C.

Equation (2.28) states that, at the cross section level, the inclusion of an additional
power of αs in the perturbative expansion of H and/or C implies a contribution two
orders higher with respect to the leading term in the logarithmic expansion. For ex-
ample, at LL and NLL accuracy the functions H and C can be computed at O(1), at
NNLL and N3LL they need to include the O(αs) corrections, and so on. This logarith-
mic counting is illustrated in the left panel of Fig. 2.2: the diagonal bands represent
the terms included in each RNkLL, with H(n) the perturbative coefficients of either H
or C or a combination of the two.

The counting discussed above generally applies to any process whose amplitude
factorizes in the appropriate limit, such as DY in the qT � Q limit (TMD factorization).
However, in the specific case of DY (i.e., inclusive with respect to soft–collinear QCD
radiation) also the phase space for the emission of n real particles in bT space factorizes
(see, e.g., Ref. [117]). This feature, along with the factorization of the amplitude in
the qT � Q limit, allows one to exponentiate soft–collinear emissions such that the
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Figure 2.2: Graphical representation of logarithmic countings: in the left panel the counting
is done at the level of the cross section, in the right panel at the level of the logarithm of the
cross section.

Sudakov form factor can be written in the following general form (see, e.g., Ref. [118])3

R = exp

[
1

2
Lg(1)(αsL) +

1

2
g(2)(αsL) +

1

2
αsg

(3)(αsL) + . . .

]
, (2.29)

where the functions g(i) are such that g(i)(0) = 0. As compared to the general counting
in Eq. (2.24), exponentiation relates all the terms in Eq. (2.24) of the type αnsLm with
n + 1 < m ≤ 2n to the lower–order terms. In Eq. (2.29), the logarithmic counting is
performed at the level of the argument of the exponential. In this context, the terms
Lg(1), g(2), αsg(3), etc., resum, respectively, the LL contributions αnsLn+1, the NLL
contributions αnsLn, the NNLL contributions αnsLn−1, etc... Contrary to Eq. (2.24),
this counting is driven by the condition αsL & 1. This extends the validity of the
calculation to smaller values of qT relative to Q.

The logarithmic counting applied to the argument of the exponential is equivalent
to consider the logarithm of the cross section [90]. In fact, neglecting for simplicity the
matching functions, we schematically have

ln

(
dσ

dQdydqT

)
∝ lnH + Lg(1) + g(2) + αsg

(3) + . . . (2.30)

3The factors 1/2 in the argument of the exponential are justified by the fact that each
of the two TMDs involved in the DY cross section contains an evolution factor R. In this
way, Eq. (2.29) matches the literature on qT –resummation where the Sudakov form factor is
usually defined as the combination of both R’s.
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2.1. The Drell–Yan process

The logarithm of H can be expanded as

ln(1 + αsH
(1) + α2

sH
(2)) = αsH

(1) + α2
s

(
H(2) − H(1)2

2

)
+O(α3

s) . (2.31)

The first term αsH
(1) contributes to the tower αnsLn−1, that is the NNLL contribution.

The second term α2
s

(
H(2) −H(1)2/2

)
contributes to the αnsLn−2 tower, thus to the

N3LL contribution. The same counting applies to the matching functions C. The
conclusion is that including O(αs) contributions in H and C implies introducing NNLL
corrections, O(α2

s) contributions in H and C contribute to N3LL accuracy, and so on.
A graphical representation of this counting is sketched in the right panel of Fig. 2.2.
Again, the bands represent the logarithmic towers, while H(n) are the appropriate
coefficients of the expansion of either lnH or lnC or a combination. This logarithmic
counting has been used in several papers (see, e.g., Refs. [73, 90, 91, 119]). In this
work, we will simply denote this counting with the acronyms NLL, NNLL, and so on,
and for convenience we will refer to it as to “standard counting”.

A slightly different counting has also been widely used in the literature (see, e.g.,
Refs. [115, 120–123]). Expanding the Sudakov form factor (2.29) and multiplying it by
the expansion of the hard function in Eq. (2.21), we obtain for the cross section

dσ

dQdydqT
∝ 1 + Lg(1) + g(2) +H(1)αsLg

(1) + . . . , (2.32)

where the rightmost term stems from the combination of the first–order terms αsH(1)

and Lg(1) in both expansions. As it is clear from the previous discussion, this term
has the same form αnsL

n as g(2). Then one can argue that NLL accuracy requires
the inclusion not only of g(2) but also of H(1) [120]. This argument works to all or-
ders: at any given logarithmic accuracy, it prescribes to include one more order in the
perturbative expansion of H (and/or C) with respect to the standard counting. We
will refer to this counting as the to “primed counting”, denoting it as NLL′, NNLL′,
and so on. The apparent contradiction between the standard and primed countings
is resolved by observing that the first term of the perturbative expansion of αsLg(1)

is proportional to α2
sL

2. When considering the general expansion of the cross section
given in Eqs. (2.26)–(2.28), a term proportional to α2

sL
2 is of the form αnsL

2n−2 and
thus belongs to the NNLL tower. This is formally subleading with respect to the NLL
accuracy determined by the g(2) term in the exponent.

Accurate predictions over a wide range in qT require matching resummed calcula-
tions (valid at qT � Q) to the corresponding fixed–order calculation (valid at qT . Q).
In this context, the primed ordering turns out to be more advantageous. Indeed, the
accuracy of a fixed–order calculation is measured in terms of powers of αs relative to
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the leading term. In order to produce a Z boson with large qT , it is necessary to
produce (at least) a second object with large transverse momentum against which the
Z boson recoils, i.e., a jet. As a consequence, the leading–order (LO) contribution to
the qT distribution of the Z at fixed order is O(αs). The NLL′ prescription correctly
reproduces the small–qT limit of the LO fixed–order calculation. It is then possible to
realize the matching in an additive way by combining the NLL′ resummed calculation
with the LO fixed–order one (NLL′ + LO). The procedure can be extended to higher
orders: NNLL′ + NLO, N3LL′ + NNLO, and so on. Conversely, in the standard count-
ing the matching to the LO fixed–order calculation requires to go further to NNLL
accuracy (NNLL + LO), combining in this way a rather accurate calculation at small
qT with a poorly accurate calculation at large qT . At higher orders one has N3LL +
NLO, N4LL + NNLO, and so on. We remark that other forms of matching can be used
to overcome the limitation of the standard counting [90, 124, 125].

Finally, Tab. 2.1 summarizes the perturbative ingredients to be used for a con-
sistent computation of the cross section in Eq. (2.10) for both the standard and the
primed countings. The numbers in Tab. 2.1 give the maximum power of αs at which
the corresponding quantity is to be computed, while the last column reports the corre-
sponding accuracy in computing the evolution of the collinear PDFs and of the coupling
αs. In this analysis, we have used the PDF sets of the MMHT2014 family [126] at the
appropriate perturbative order accessed through the LHAPDF interface [127].

Accuracy H and C K and γF γK PDF and αs evolution
LL 0 - 1 -
NLL 0 1 2 LO
NLL′ 1 1 2 NLO
NNLL 1 2 3 NLO
NNLL′ 2 2 3 NNLO
N3LL 2 3 4 NNLO

Table 2.1: Truncation order in the expansions of Eqs. (2.21)-(2.23) for the two loga-
rithmic countings considered in this work (see text). The last column reports the order
used for the evolution of the collinear PDFs and αs.

In the literature, in some cases, different notations to describe perturbative levels
of accuracy are used. For example, in Refs. [120, 121, 128–130], the name NNLL refers
to the logarithmic accuracy that in this work is called NNLL′ (given by the truncations
in the second–to–last row of Tab. 2.1).

In Ref. [131], Scimemi and Vladimirov do not use the nomenclature of the first
column of Tab. 2.1: in their TMD extraction they specify the perturbative orders used

24



2.1. The Drell–Yan process

for each part of the cross section, and, for example, they consider H at NNLL′ and γF
at N3LL.

2.1.5 Nonperturbative content and its parameterization

In the previous section, we noticed that in the MS scheme the rapidity evolution kernel
K and the matching functions C can be made free of logarithms of the scales by
introducing the natural scale µb defined in Eq. (2.20). Consistently, in the perturbative
expansion of K (see first line of Eq. (2.23)) and C (see Eq. (2.22)) the strong coupling
αs must be computed at µb. For large values of bT , µb becomes small such that αs(µb)
may potentially become very large and eventually diverge when µb reaches the Landau
pole at ΛQCD. As a matter of fact, the integral in Eq. (2.10) does require accessing
large values of bT . It is then necessary to regularize this divergence by introducing a
prescription that avoids integrating over the Landau pole. Different possibilities are
available (see, e.g., Refs. [125, 132]). In this thesis, we adopt the prescription originally
proposed in Ref. [98]: we introduces the arbitrary parameter bmax that denotes the
maximum value of bT at which perturbation theory is considered reliable. Hence, bmax

must be such that
αs

(
2e−γE

bmax

)
� 1 . (2.33)

Moreover, we also want to prevent µb from becoming much larger than the hard scale
Q (µb � Q). Despite not strictly mandatory (especially when considering only small
values of qT ), this feature makes it possible to expand the cross section integrated in
qT , with the lowest–order term reproducing the lowest–order collinear result [133]. To
this end, we define

bmin =
2e−γE

Q
, (2.34)

and
bmax = 2e−γE GeV−1 ≈ 1.123 GeV−1, (2.35)

With the these choices, the scale µb is constrained between 1 GeV and Q, so that the
collinear PDFs are never computed at a scale lower than 1 GeV and the lower limit
of the integrals contained in the definition of the perturbative Sudakov factor (see
Eq. (2.16)) can never become larger than the upper limit.

Then, we introduce a monotonic function b∗(bT ) with the following asymptotic
behaviors

b∗(bT )→ bmin for bT → 0 ,

b∗(bT )→ bmax for bT →∞ .
(2.36)

In this analysis, we adopt for b∗(bT ) the same functional form chosen in Ref. [84] that
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Figure 2.3: Example of the b∗ prescription at Q = 5 GeV.

guarantees a smooth and rapid convergence towards the asymptotic limits:

b∗(bT ) = bmax




1− exp
(
− b4T
b4max

)

1− exp
(
− b4T
b4min

)




1
4

. (2.37)

There are other possible choices for the function b∗(bT ): for example, Collins, Soper
and Sterman in Ref. [98] used the following function, also discussed in [134–136]:

b∗(bT ) =
bT√

1 +
b2T
b2max

(2.38)

with bmax ∼ 0.5 GeV−1.

Now, we simply write the TMD f̃1 as

f̃1(x, bT ;µ, ζ) =

[
f̃1(x, bT ;µ, ζ)

f̃1(x, b∗(bT );µ, ζ)

]
f̃1(x, b∗(bT );µ, ζ)

≡ fNP(x, bT , ζ)f̃1(x, b∗(bT );µ, ζ) .

(2.39)

This separation effectively defines fNP. The advantage is that, due to the behavior of
b∗(bT ) for large values of bT , f̃1(x, b∗(bT ), µ, ζ) remains in the perturbative region. The
nonperturbative contributions are instead confined into fNP, that has to be determined
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2.1. The Drell–Yan process

through a fit to experimental data. However, using Eq. (2.39), we can work out some
general properties of fNP. First, fNP does not depend on the renormalization scale µ.
To see this, using Eqs. (2.15) and (2.16) with µ0 =

√
ζ0 = µb, we find

fNP(x, bT , ζ) =
f̃1(x, bT ;µ, ζ)

f̃1(x, b∗(bT );µ, ζ)
= exp

{
K(µb) ln

√
ζ

µb
−K(µb∗) ln

√
ζ

µb∗

+

∫ µb∗

µb

dµ′

µ′

[
γF (αs(µ

′))− γK(αs(µ
′)) ln

√
ζ

µ′

]}
f̃1(x, bT ;µb, µ

2
b)

f̃1(x, b∗(bT );µb∗ , µ
2
b∗

)
,

(2.40)
with µb∗ ≡ µb(b∗(bT )). The dependence on µ evidently cancels in the ratio. In addition,
for large values of bT , µb∗ saturates to some minimal value while µb becomes increasingly
small. As a consequence of this departure between µb∗ and µb, as well as between√
ζ and µb, the exponential in Eq. (2.40) tends to be suppressed, and so does fNP.

Conversely, as bT becomes small b∗ approaches bmin. Using the definition in Eq. (2.34),
it follows that µb∗ saturates to Q while µb becomes larger and larger. In this limit, we
have [133]

fNP −→
bT→0

1 +O
(

1

Qp

)
, (2.41)

where p is some positive number. Since TMD factorization applies to leading–power in
qT/Q, we can neglect the power suppressed contribution such that fNP → 1 for bT → 0.
It is important to stress that the separation between perturbative and nonperturbative
components of a TMD is arbitrary and depends on the particular choice of b∗ (or in
general on the prescription used to regularize the Landau pole). For any given choice,
only the combination in Eq. (2.39) is meaningful, and it is misleading to refer to fNP as
to the nonperturbative part of TMDs in a universal sense. Following the requirements
discussed above, we parameterize fNP as

fNP(x, bT , ζ) =

[
1− λ

1 + g1(x)
b2T
4

+ λ exp

(
−g1B(x)

b2
T

4

)]

× exp

[
−
(
g2 + g2Bb

2
T

)
ln

(
ζ

Q2
0

)
b2
T

4

]
,

(2.42)

with Q0 = 1 GeV and with the g1(x) and g1B(x) functions given by
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g1(x) =
N1

xσ
exp

[
− 1

2σ2
ln2
(x
α

)]
,

g1B(x) =
N1B

xσB
exp

[
− 1

2σ2
B

ln2

(
x

αB

)]
.

(2.43)

There are a total of 9 free parameters (λ, g2, g2B, N1, σ, α,N1B, σB, αB) to be determined
from data.

Apart from the logarithmic dependence on ζ, the functional form (2.42) is moti-
vated by empirical considerations. The first line parameterizes the “intrinsic” TMD
nonperturbative contribution and it only depends on x and bT . The second line ac-
counts for the nonperturbative correction to the perturbative evolution. Therefore, it
only depends on bT (on top of the known dependence on ζ).

The intrinsic contribution is a combination of a q-Gaussian (or Tsallis) distribution
(first term) and a standard Gaussian distribution (second term). The q–Gaussian has
a larger tail than the standard Gaussian, meaning that it gives a bigger contribution
to the TMD at small transverse momentum. We found that this combination is able
to reproduce the behavior at very small qT of the experimental distributions from the
lowest to the highest energies considered in our analysis.

The functions g1 and g1B in Eq. (2.43) are related to the width of the TMD dis-
tribution. Their are expected to depend on x on the basis of model calculations (see
Ref. [137] and references therein) and more generally from Lorentz invariance con-
straints on the proton light–front wave functions (see, e.g., the discussion in Ref. [138]).
To best describe experimental data, we found it necessary to have wider TMDs at in-
termediate x. A log–normal dependence of g1 and g1B allowed us to properly describe
the datasets differential in the boson rapidity y. In fact, as we will show below, the x
dependence of fNP is almost entirely determined by the ATLAS datasets, the only ones
differential in y. Our present results are quite different from the ones obtained through
fits to SIDIS data [84]. We expect that the addition of further datasets from DIS
experiments [139, 140] will provide more sensitivity to the x dependence and possibly
lead to different results.

The nonperturbative components of the TMDs could depend also on flavor [80, 88,
141]. However, in this work we refrain from including such dependence since DY data
are not very sensitive to it. We stress that the fact that we can achieve a good descrip-
tion of data does not exclude the presence of a flavor dependence, which is actually
expected on the basis of model calculations [142–147], lattice QCD studies [148], and
also if QED corrections are taken into account [149, 150]. Higher sensitivity to flavor
dependence may be provided again by SIDIS data with different targets and final–state
hadrons and possibly by W–boson production data [151].
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Concerning the bT dependence of the nonperturbative evolution in the second line
of Eq. (2.42), we have used a customary quadratic term [67, 71, 75, 152] with an
additional quartic term. The latter contribution appears to be useful to reproduce the
energy evolution displayed by the data. Other choices of the functional form have been
discussed in, e.g., Refs. [83, 134, 153, 154]. This contribution could be also determined
using lattice QCD [155].

2.2 Semi–Inclusive Deep Inelastic Scattering

In recent years, single–inclusive deep–inelastic scattering lepton–nucleon scattering has
emerged as an important tool to probe several aspects of perturbative and nonpertur-
bative QCD. In one–particle semi–inclusive DIS (SIDIS), a lepton ` with momentum l

scatters off a hadron target N with momentum P and mass M (the lepton mass can
be neglected). The process is:

`(l) +N(P )→ `(l′) + h(Ph) +X (2.44)

where h is the detected hadron and X is a standard notation that indicates other
products of the process that are not detected. The four–momenta associated with each
particle are indicated in parentheses. In experiments, N is either a proton or a heavier
nucleus. The data we use for nucleon’s studies come from light nuclei, like deuterium
and helium.4

It is convenient to define the momentum transfer q = l − l′ (the momentum of the
exchanged photon), the invariant momentum transfer Q as

Q2 = −q2 ≥ 0 (2.45)

and the following combinations of variables:

x =
Q2

2P · q , y =
P · q
P · l , z =

P · Ph
P · q , γ =

2Mx

Q
. (2.46)

Here x is the Bjorken scaling variable, which corresponds to the fraction of the initial
hadron momentum that is carried by the struck parton, y is the fraction of energy
transferred from the lepton to the nucleon and therefore lies between 0 and 1, z is a
variable that expresses the fractional longitudinal momentum of the detected hadron
relative to its parent quark.

The diagram in Fig. 2.4 describes the relevant momenta involved in SIDIS (see also

4Scattering on a nucleus is often approximated as scattering on an isoscalar combination
of protons and neutrons.
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Figure 2.4: Illustration of the kinematics of SIDIS. The photon momentum defines the z axis
(reference axis) and the struck quark in the nucleon has initial intrinsic transverse momentum
k⊥ (not measured) with respect to the reference axis. The kinematics of the quark fragmen-
tation process is depicted: the emitted hadron h carries a transverse momentum PhT (with
respect to the reference axis) which can be decomposed into two contributions: the quark
transfers a fraction z of its transverse momentum k⊥ to the hadron and the hadron also
acquires a further momentum P⊥ (not measured) transverse to the direction of the quark’s
momentum.

Ref. [156]). Both the longitudinal momentum fraction z and the transverse momentum
PhT of the hadron can be measured. Moreover, up to corrections of order O(k2

⊥/Q
2),

the following relation holds [157]:

PhT ≈ zk⊥ + P⊥ (2.47)

When the transverse momentum of the hadron is much smaller than the scale Q of
the process (P 2

hT � Q2) and in the kinematic limits M2 � Q2, the cross section for
SIDIS can be expressed in a factorized form in terms of TMDs. As for the Drell–Yan
case, the analysis of SIDIS in this work is done in the TMD factorization framework [44,
98]. A first application of TMD factorization to SIDIS was made in Ref. [75] and a
comparison between this theory and data from HERA collider was made in Ref. [76].

The TMD formalism is in principle valid only when |qT |2 � Q2, where qT is the
transverse momentum of the exchanged photon in the frame where the target hadron
and the observed hadron are collinear. The relation with the transverse momentum
PhT is qT = −PhT/z, so that the constraint becomes P 2

hT � z2Q2. This constraint
needs to be taken into account when calculating the structure functions, in particular
when considering the z, PhT , Q dependence.
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2.2.1 Structure of the observable

Figure 2.5: Definition of azimuthal angles for semi–inclusive deep inelastic scattering in the
target rest frame: φh the azimuthal angle of PhT relative to the lepton plane, while the angle
φS is defined as the angle between the lepton scattering plane and the target–polarization
vector S⊥ of the transversely polarized nucleon.

The unpolarized cross section for SIDIS, integrated over the azimuthal angles φS
and φh defined in Fig. 2.5, can be written as:

dσ

dxdydzd2PhT
=

4π2α2

2xQ2

y

(1− ε)
[
FUU,T (x, z, P 2

hT , Q
2) + εFUU,L(x, z, P 2

hT , Q
2)
]

(2.48)

The ratio ε of longitudinal and transverse photon flux in Eq. (2.48) is defined as

ε =
1− y − 1

4
γ2y2

1− y + 1
2
y2 + 1

4
γ2y2

, (2.49)

where y, γ are defined in Eq. (2.46). As for the notations in Eq. (2.48), FXY,Z indicates
the structure function of an hadron target with polarization Y , a lepton beam with
polarization X and a virtual photon exchanged in the polarization state Z.

In the kinematic limits M2 � Q2 and P 2
hT � Q2, the structure function FUU,L of

Eq. (2.48) can be neglected5 [158].
To express the SIDIS structure functions in terms of TMD PDFs and FFs, we rely

on factorization theorems [44, 98–101, 159–161] which at low transverse momenta
allow us to write FUU,T as (see Fig. 2.4 for a graphical representation of the involved

5It is nonzero at twist 4
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transverse momenta):

FUU,T (x, z,P 2
hT , Q

2) =
∑

q

Hq
UU,T (Q, µ) (2.50)

× x
∫
d2k⊥ d

2P⊥ f
q
1

(
x,k2

⊥;µ, ζ1

)
Dq→h

1

(
z,P 2

⊥;µ, ζ2

)
δ(2)
(
zk⊥ − PhT + P⊥

)

+ YUU,T
(
Q2,P 2

hT

)
+O

(
M2/Q2

)
.

Here Hq
UU,T is the hard scattering part; f q1 (xB,k

2
⊥;µ, ζ1) is the TMD PDF for an unpo-

larized parton of flavor q in an unpolarized proton, carrying longitudinal momentum
fraction x and transverse momentum k⊥ at the factorization scale µ2, which we choose
to be equal to Q2.

The function Dq→h
1 (z,P2

⊥;µ, ζ2) is the TMD fragmentation function for an unpolar-
ized parton of flavor q that fragments into an unpolarized hadron h (detected) carrying
longitudinal momentum fraction z and transverse momentum P⊥, at the factorization
scale µ2 = Q2.

As for the Drell–Yan case, we choose ζ1 = ζ2 = Q2.
The term YUU,T is introduced to ensure a matching to the perturbative calculations

at high transverse momentum and accounts for the large transverse momentum depen-
dence of the cross section, where the approximations needed for TMD factorization
break down. There, collinear factorization becomes the appropriate framework.

Here we limit to the case Q�MZ such that we can neglect the contribution of the
Z boson and thus the electroweak couplings are given by the squared electric charges.

Considering only the lowest order contributions (the terms at order α0
s), Eq (2.50)

can be written as

FUU,T (x, z,P2
hT ;Q2) =

∑

q

e2
[
f q1 ⊗Dq→h

1

]
(x, z,P2

hT ;Q2) (2.51)

where the convolution
[
f q1 ⊗Dq→h

1

]
is:

[
f q1 ⊗Dq→h

1

]
(x, z,P2

hT ;Q2) =

= x

∫
d2k⊥ d

2P⊥ f
q
1

(
x,k2

⊥;µ, ζ1

)
Dq→h

1

(
z,P 2

⊥;µ, ζ2

)
δ(2)
(
zk⊥ − PhT + P⊥

)
(2.52)

Elements of Eq. (2.50) can be expanded in terms of αs in a way analogous to the one
shown in Sec. 2.1.4. In particular, in this case, perturbative corrections include large
logarithms L ≡ log

(
z2Q2/P 2

hT

)
, so that αSL ≈ 1. In the analysis in Ref.[84], only

leading and next–to–leading logarithms are taken into account (NLL).
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2.2. Semi–Inclusive Deep Inelastic Scattering

In these approximations (α0
S and NLL), only the first term in Eq. (2.50) is relevant

(often in the literature this has been called W term) and we expect this term to
provide a good description of the structure function in the region where P 2

hT � Q2.
6 In Ref. [84], the most recent extraction of TMDs form the Pavia group that takes
into account SIDIS data, all corrections of order M2/Q2 have been neglected: this
assumption is called leading twist approximation.

In order to apply TMD evolution equations, we calculate the Fourier transform of
the part of Eq. (2.50) involving TMDs. The structure function thus reduces to

FUU,T (x, z, P 2
hT ;Q2) =

1

2π
x
∑

q

e2
q

×
∫ +∞

0

dbT bT J0

(
bTPhT
z

)
f̃ q1 (x, b2

T ;µ, ζ1) D̃q→h
1 (z, b2

T ;µ, ζ2) .

(2.53)

where we introduced the Fourier transforms of the TMD PDF and FF according to

f̃ q1
(
x, b2

T ;µ, ζ1

)
=

∫ ∞

0

d|k⊥||k⊥|J0

(
bT |k⊥|

)
fa1
(
x,k2

⊥;µ, ζ1

)
, (2.54)

D̃q→h
1

(
z, b2

T ;µ, ζ2

)
=

∫ ∞

0

d|P⊥|
z2
|P⊥|J0

(
bT |P⊥|/z

)
Dq→h

1

(
z,P 2

⊥;µ, ζ2

)
. (2.55)

The Bessel function of order 0-th of the first kind J0 is defined in Eq. (2.9).
As for the Drell–Yan case in Sec. 2.1.2, the single TMDs are evolved and matched

onto the respective collinear functions:

F q(x, b;µ, ζ) ≡ xf q1 (x, b;µ, ζ)

= Rq(µ0, ζ0 → µ, ζ; b)
∑

j

∫ 1

x

dy Cqj(y;µ0, ζ0)

[
x

y
fj

(
x

y
, µ0

)]
,

(2.56)

and

Dq(z, b;µ, ζ) ≡ z3Dq
1(z, b;µ, ζ)

= Rq(µ0, ζ0 → µ, ζ; b)
∑

j

∫ 1

z

dy
[
y2Cqj(y;µ0, ζ0)

] [z
y
dj

(
z

y
, µ0

)]
.

(2.57)
Low–momentum nonperturbative corrections are taken into account by introducing the

6We note that it can happen that YUU,T , defined in the standard way (see, e.g., Ref. [98]),
gives large contributions also in this region, but it is admissible to redefine it in order to avoid
this problem [133].
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monotonic function b∗(bT ), defined in Sec. 2.1.5, that behaves as:

lim
b→0

b∗(bT ) = bmin and lim
b→∞

b∗(bT ) = bmax . (2.58)

This allows us to replace the TMDs in Eq. (2.53) with their “regularized” version:

f̃1(x, bT ;µ, ζ) → f̃1(x, b∗(bT );µ, ζ)fNP(x, bT , ζ) ,

D̃1(z, bT ;µ, ζ) → D̃1(z, b∗(bT );µ, ζ)DNP(z, bT , ζ) ,

(2.59)

where we have introduced the nonperturbative functions fNP and DNP. It is important
to stress that these functions further factorize as follows:

fNP(x, bT , ζ) = f̂NP(x, bT ) exp

[
gK(bT ) ln

(
ζ

Q2
0

)]
,

DNP(z, bT , ζ) = D̂NP(x, bT ) exp

[
gK(bT ) ln

(
ζ

Q2
0

)]
.

(2.60)

The common exponential function represents the nonperturbative corrections to TMD
evolution, is flavor independent, x and z independent and is equal for TMD PDFs and
TMD FFs. The specific functional form of the nonperturbative part of the evolution
is driven by the solution of the Collins–Soper equation where Q0 is some initial scale:
the kernel can not be computed in the nonperturbative region, and hence has to be
extracted from data. The set of nonperturbative functions to be determined from fits
to data are f̂NP, D̂NP, and gK(bT ). It is worth noticing that by definition

DNP(z, bT , ζ) =
Dq(z, bT ;µ, ζ)

Dq(z, b∗(bT );µ, ζ)
, (2.61)

and similarly for fNP. Therefore, one has a partial handle on the bT -dependence of
these functions from the region in which bT is small enough to make both numerator
and denominator perturbatively computable.

Following Refs. [71, 72, 76], the nonperturbative Sudakov factor in PV17 (Ref. [84])
is

gK(bT ) = −g2b
2
T/2 (2.62)

with g2 a free parameter. Several alternative forms have been proposed [134, 153].
Also, recent theoretical studies aimed at calculating this term using nonperturbative
methods [162].

In PV17 analysis, for the collinear PDFs fa1 the GJR08FFnloE set [163] was adopted,
obtained through the LHAPDF library [127], and for the collinear fragmentation func-
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2.2. Semi–Inclusive Deep Inelastic Scattering

tions the DSS14 NLO set for pions [164] and the DSS07 NLO set for kaons [165] were
chosen.

SIDIS multiplicities

In order to extract fNP and DNP, a fit to data is necessary. For semi–inclusive DIS the
available data released from the COMPASS [166] and HERMES [139] collaborations
refer to hadron multiplicities, namely to the differential number of hadrons produced per
corresponding inclusive deep–inelastic scattering event, like In terms of cross sections,
the multiplicities can be expressed as [80]:

mh
N(x, z,P2

h⊥, Q
2) =

d6σhN/dxdzdP
2
h⊥dQ

2

d3σDIS/dxdQ2
(2.63)

where dσhN is the differential cross section for the semi–inclusive DIS process and dσDIS
is the corresponding inclusive one.

In the single photon exchange approximation, assuming a complete integration over
the azimuthal angle φs of the detected hadron, multiplicities can be written as ratios
of structure functions

mh
N(x, z,P2

h⊥, Q
2) =

πFUU,T (x, z,P2
h⊥, Q

2) + πεFUU,L(x, z,P2
h⊥, Q

2)

FT (x,Q2) + εFL(x,Q2)
(2.64)

In the denominator, only the photon polarization is explicitly written (T , L), as usu-
ally done in the literature. The structure function FL in the denominator contains
contributions involving powers of the strong coupling constant αS at an order that
goes beyond the level reached in the analysis in Ref. [84]; hence, it is neglected (for
measurements and estimates of the FL structure function see, e.g., Refs. [167, 168] and
references therein).

2.2.2 Nonperturbative functions

We illustrate here the choices of Ref. [84] for the nonperturbative terms fNP and DNP

of Eq. (2.60). The notation used here is slightly different from the one used in Ref. [84],
in order to be consistent with the definition of the Fourier–Bessel transform in Eq. (2.9)
and with the definitions of nonperturbative functions in Eq. (2.60). The function fNP

in PV17 is:

f qNP(x, b2
T ) = e

−g2
b2T
2

ln

(
ζ

Q2
0

)
e−g1q

b2T
4

(
1− λg2

1q

1 + λg1q

b2
T

4

)
, (2.65)
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while the nonperturbative part of the TMD FF is:

Dq→h
NP (z, b2

T ) = e
−g2

b2T
2

ln

(
ζ

Q2
0

)

×
g3q→h e

−g3q→h
b2T
4z2 +

(
λF/z

2
)
g2

4q→h

(
1− g4q→h

b2T
4z2

)
e−g

2
4q→h

b2T
4z2

z2
(
g3q→h +

(
λF/z2

)
g2

4q→h

) .

(2.66)

In the nonperturbative Sudakov factor, which is the same for both expressions, we
made use of Eq. (2.62); the scale ζ is chosen equal to Q2 and Q0 = 1 GeV.

The dependence on the fractional longitudinal momentum x of the TMD Gaussian
width of the TMD in PV17 is given by

g1(x) = N1
(1− x)α xσ

(1− x̂)α x̂σ
, (2.67)

where α, σ, and N1 (≡ g1(x̂) with x̂ = 0.1), are free parameters. Similarly, for frag-
mentation functions we have

g3,4(z) = N3,4
(zβ + δ) (1− z)γ

(ẑβ + δ) (1− ẑ)γ
, (2.68)

where β, γ, δ, and N3,4 (≡ g3,4(ẑ) with ẑ = 0.5) are free parameters.
There are a total of 11 parameters, 4 for the TMD PDF (g1, α, σ, λ), 6 for the TMD

FF (g3, β, δ, γ, λF , g4) and one for the nonperturbative part of the evolution (g2), to be
determined from data.

In principle, the parameters g1, g3, g4, which determine the Gaussian width of the
TMD distributions, may depend on the parton flavor q [80, 146, 147]: however, in the
PV17 analysis they are assumed to be flavor independent since most of the data that
are considered in the PV17 extraction are not sufficiently sensitive to flavor differences.

The TMD extraction of Ref. [84] is based on Monte Carlo replicas, and the best–
fit values of the parameters of the functions in Eqs. (2.65)-(2.68) are reported in
Tabs. 2.2 2.3, where the label ‘Replica 105’ refers to the replica that better approx-
imates the average values computed considering all the 200 replicas. In particular,
Replica 105 has been chosen as the replica whose parameter values are closer to their
mean values. It does not have a specific statistical significance, but it is quoted for
convenience, in case one wants to reproduce only one example.
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2.2. Semi–Inclusive Deep Inelastic Scattering

bmax [GeV−1] bmin [GeV−1] g2 [GeV2]
(fixed) (fixed)

All replicas 2e−γE 2e−γE/Q 0.13± 0.01

Replica 105 2e−γE 2e−γE/Q 0.128

Table 2.2: Values of parameters common to TMD PDFs and TMD FFs.

TMD PDFs g1 α σ λ
[GeV2] [GeV−2]

All replicas 0.28± 0.06 2.95± 0.05 0.17± 0.02 0.86± 0.78

Replica 105 0.285 2.98 0.173 0.39

TMD FFs g3 β δ γ λF g4

[GeV2] [GeV−2] [GeV2]
All replicas 0.21± 0.02 1.65± 0.49 2.28± 0.46 0.14± 0.07 5.50± 1.23 0.13± 0.01

Replica 105 0.212 2.10 2.52 0.094 5.29 0.135

Table 2.3: 68% confidence intervals of best–fit values for the parameterizations in
Eqs. (2.65)-(2.68) at Q = 1 GeV. We remark that these parameters have been obtained
through a simultaneous fit of SIDIS and Drell–Yan data.
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Chapter 3
NangaParbat: a framework of tools

We created a suite of tools, called NangaParbat, written in C++, that can be used
for two main tasks: fitting unpolarized TMD PDFs on Drell-Yan data and generating
grids for TMD PDFs, FFs and for the structure function FUU,T(x, z, qT , Q

2). The fit
can be performed with different functional forms, but we will mainly refer here to the
choice we adopted for our most recent TMD extraction [95], which will be denoted as
PV19. The grids can be produced in principle from any TMD extraction compatible
with NangaParbat prescriptions. We implemented grids based on the PV19 extraction
and also on the previous extraction of Ref. [84], which will be denoted as PV17.

In this chapter we are going to describe the structure of NangaParbat and the
implementation of its various functions, objects and integration tools.

The initial part of this chapter is dedicated to the description of the steps necessary
to extract TMDs from data, while a second part will be devoted to explaining how the
code to create grids works.

A stable version of the NangaParbat fitting framework is publicly available in the
GitHub repository:

https://github.com/MapCollaboration/NangaParbat

In particular, the version of the first public release which we used to obtain results
in Ref. [95] is v1.4.0. Updated instructions for the installation of NangaParbat are
reported in the README.md available in the GitHub repository.

3.1 NangaParbat directory structure

The repository includes several directories, and some of them will be illustrated in the
next sections. Apart from some folders related to more technical aspects of C++, like
bin/ and inc/, NangaParbat also contains:
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3. NangaParbat

� cards/ - contains configuration files for the fit: their use will be explained in
Sec. 3.4.

� cli/ - stands for “command line interface”. The programs in this directory have
been conceived as Python 3 wrappers, to simplify users access to NangaParbat.
For example, running fit.py will help the user to set up and perform a TMD fit
with the available datasets, as will be explained in Sec. 3.2.

� doc/ - contains useful “how to” documents for the use of NangaParbat as well
as some files, like ConvTablesPrefactors.md with information on the origin of
prefactors included in the computation of the perturbative part of the extracted
TMDs (discuss in Sec. 3.4).

� FitResults/ - when downloading NangaParbat, in addition to the code, there
are also has the raw results of the PV19 fit: in this folder the output of the code
after the fitting procedure is stored. Note that, when a new fit is performed with
NangaParbat, the output will have the same structure and format as the directory
FitResults/, with one sub–folder for each replica generated in the extraction.

� rawdata/ - contains data tables exactly as they can be downloaded from HEPData
(https://www.hepdata.net/). The content of this folder will be discussed in
Sec. 3.3, along with the directory data/.

� run/ - contains the main codes needed for fitting and gird creation. Its content
will be broadly explained across all sections in this chapter.

� src/ - contains the source code is, the core of NangaParbat for calculations and
function implementations. Also this directory will be cited throughout the course
of this chapter.

� tables/ - contains precomputed convolution tables for all orders of accuracy
that we considered. They will be discussed in Sec. 3.4. They are created by
NangaParbat and used in the fit.

� tests/ - is a collection of stand–alone test programs.

� tools/ - contains all the codes that perform convolutions and interpolations of
TMD and structure functions grids.

For the sake of completeness, it should be noted that there is also the folder resources/,
which, however, has nothing to do with the computational part of NangaParbat, since
it contains tools to modify the code style and to visualize the progresses of the GitHub
repository.
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3.2 Fit with NangaParbat

To run a fit with NangaParbat, the user has two equivalent choices: the first option is
to manually modify the appropriate configuration files1 and then launch run/RunFit,
which gets its input information from the terminal command line, as specified in the
help section of the program.

The second option is more user–friendly: the command line interface Python 3
program cli/fit.py allows a custom configuration of the fitting procedure through a
series of pre–defined questions and launches the minimization with the selected setup.

3.2.1 Fit with command line interface: cli/fit.py

The program fit.py is designed to be an easy access to the code performing fits.
When starting, the user is asked to choose the name of the directory where the

output files will be stored. Such directory must be new, not present in the main folder:
2 if a folder with that same name (and path) already exists, fit.py will be suspended,
giving the user the possibility to change the name into one not already assigned to other
directories. Making sure that the output of each fit will be put in a different folder
is a useful feature to avoid overwriting results. When writing the results, everything
related to the setup and the characteristics of the fit will be copied in the output folder,
so that the output directory contains all the information to exactly reproduce the fit,
leaving no ambiguities about specific settings.

Then, fit.py runs a filter program (run/Filter.cc) over the files present in
rawdata/ in order to produce data tables in the correct format to be read by
NangaParbat. More details about this process are given in Sec. 3.3.1. In this second
step the user can choose from a list which datasets to include in the fit. After this
selection, fit.py writes the names of the designated datasets in data/datasets.yaml,
which will serve as input when the actual fit will be launched at the end of the program.
The data tables of the selected datasets are copied into the output folder.

The third step concerns the choice of the perturbative accuracy, which selects the
precomputed convolution tables among those available in tables/. The characteristics
of these tables, their meaning and how they are computed are discussed in Sec. 3.4.1
and also in Ch. 4. An overview of the characteristics of the selected tables is presented

1Specifically, those file are: the configuration file in cards/ relative to the chosen param-
eterization (i.e. fitPV19x.yaml for PV19), data/datasets.yaml.

2If users want the output folder not to be at the main level of the NangaParbat directory,
they can also give a relative path as answer to this first question. A folder corresponding
only to the last name of the path will be created and not the whole path (meaning that if the
given path is, for example, not_here/but_here, the directory not_here/ has to exist prior
to running fit.py).

41



3. NangaParbat

to the user in the next step: the information shown is the content of the config.yaml
file corresponding to the chosen perturbative accuracy. For example, if the user chooses
N3LL accuracy, such file is tables/N3LL/config.yaml.

At this point, users can confirm or deny their choice: in the latter case, fit.py
stops and the user has to run it again from the beginning. Again, tables used for the
fit are copied (or, in this case, symbolically linked, to save disk space3) in the output
directory.

Next step of the fit setup is the choice of parameterization, which, as the previ-
ous features, can be done selecting the desired parameterization name from the au-
tomatically generated list. Such list is created by fit.py by running the program
run/AvailableParameterisations.cc, which reads the map:
1 const std::map <std::string , Parameterisation*> AvPars
2 {
3 {"DWS", new NangaParbat ::DWS{}},
4 {"PV17", new NangaParbat ::PV17{}},
5 {"PV19b", new NangaParbat ::PV19b{}},
6 {"PV19x", new NangaParbat ::PV19x {}}
7 };

in inc/NangaParbat/nonpertfuncions.h.
The name of the parameterization of our latest fit [95] is PV19x. Parameterizations

will be discussed in more details in Sec 3.4.2.
From here on, questions of the command line interface program are about the

content of the main configuration file, which is stored in cards/ and has the same
name of the selected parameterization. Once the parameterization is chosen, a preview
of its corresponding configuration file is shown: if users wish to start from a different
default file, they have to indicate the relative path of the new configuration file.

For each question there is a default answer: if the user presses enter for each one of
them, the fit runs with the same setup reported in the default configuration file, which
is copied, unaltered, in the output folder.

Otherwise, users can modify any of the following:

� the text line to put as a description for the fit;

� whether or not to minimize: to skip minimization and have only predictions
with the default parameters select none. It is worth mentioning here that is also
possible to perform a scan in parameter space at the end of the minimization,
to see if a (relative) minimum has really been reached: to use this option, select
scan as choice of minimizer (it calls the Root Minuit2 scanner function). More
details on the characteristics of minimizers are discussed in Sec. 3.7;

3Our precomputed convolution tables have a variable size, which spaces from ∼ 300 KB
to ∼ 25 MB.
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� the random-number seed for the generation of the Monte Carlo replicas (to guar-
antee replicability of the results, using the same seed will give exactly the same
results);

� the maximum value of qT/Q allowed in the fit (see Ch. 4 for more details);

� the percentile cut [%] used for the report that can be generated with the program
cli/report.py (for more details see Sec. 3.2.3);

� whether or not to use the t0 prescription (see Sec. 3.6);

� whether or not to fluctuate the initial parameters, to explore a wider range in
parameter space;

� the default starting parameters: the code presents the values of the default con-
figuration file, but any of them can be changed;

� the default starting t0 parameters (it works analogously to the previous point);

� the number of Monte Carlo replicas to run;

� whether to run the fit locally, on the machine used to run cli/fit.py, or on a
Linux cluster with SLURM system (note that this second option has to be cus-
tomized, since it is presently made for the cluster of the INFN Theory Group in
Pavia). If the fits are launched on a cluster, they are run in parallel, otherwise
they are performed one by one.

3.2.2 Set up and launch run/RunFit

To see what are the necessary inputs for RunFit, type ./RunFit –-help. Running
./Runfit without the proper number of elements required in the input line will result
in an automatic display of the help banner. To run a fit, users can also choose to
manually configure the necessary files: in other words, they have to perform all the
operations carried out by cli/fit.py.

The program run/RunFit requires five different inputs form the command line on
the terminal:

1 ./ RunFit <output dir > <fit configuration file > <path to data
folder > <path to tables folder > <replica ID>

Unlike for cli/fit.py, the output folder <output dir > has to exist before launching
./RunFit.

The main information that guides the choice of <fit configuration file > is
the parameterization. Some configuration file examples are located in cards/ and are
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named after the parameterization they contain. From those files run/RunFit reads
some of the key features of the fit: the minimizer; the seed used with the random–
number generator for the generation of the Monte Carlo replicas; the cut on qT/Q;4

the percentile cut on the distribution of χ2s, error functions and parameters used to
identify outliers when running cli/report.py; whether to use the t0 prescription and
with what parameters, the name of the parameterization, the values of the relative
parameters and whether or not to fluctuate them.

Besides the parameterization of the nonperturbative part that we selected for our
TMD extraction in Ref. [95], PV19x, in NangaParbat a few other possible choices
are implemented, with different functional forms. It is also possible to create new
parameterizations, to expand and improve the fit, and to extract also other TMDs (for
example, the Sivers TMD). To do so, one can follow the steps described at the end of
Sec. 3.4.2.

The requested path to the data folder is the relative path of the data directory
with respect to where the user is running RunFit.cc from. For example, to repro-
duce the same results of [95], or simply to use the same datasets, <path to data
folder > has to be the path to data/. Data selection is done based on the content of
data/datasets.yaml: all the datasets listed in such file are going to be included in
the fit.

When running run/RunFit, without using cli/fit.py, the program run/Filter
is not executed and the fit uses directly the tables stored in data/, without considering
rawdata/. In the end, this should not matter, as the result of running the filter on
rawdata to produce data tables in the right format for NangaParbat is always the same.
However, to be on the safe side and to avoid the use of data files potentially corrupted
by accident, it is advisable run run/Filter.cc every time before launching a fit.

As for <path to tables folder >, this is the relative path to the directory
where precomputed convolution tables are stored. For example, to perform a fit with
a perturbative accuracy of N3LL, such path has to be the path to tables/N3LL.

Every sub–directory of tables/ contains config.yaml, which specifies important
features of the convolution tables in that sub–directory. Among the features in
config.yaml there are: the set of collinear PDFs and (if needed) the set of collinear
FFs, the name of the b∗ prescription (see Ch. 2), the perturbative order of the com-
putation, the initial and final scale–variation factors around µb = 2e−γE/b and Q, the
reference value of αem (the electromagnetic coupling constant), the maximum value
allowed for the ratio qT/Q for the computation of the tables (which must be greater or
equal to the value of such qT/Q cut in the fit).

4This has to be smaller than the production cut used to produce the precomputed con-
volution tables, which is qT /Q < 0.3, as can be seen in every config.yaml file in each
sub–directory of tables/.
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Entries of config.yaml should not be changed: they describe with what configura-
tion the perturbative part was calculated. For example, if the tables were precomputed
using the MMHT2014nnlo68cl collinear PDFs set, the fit should be consistently done
with the same set. We chose to precompute tables with perturbative terms in or-
der to speed up the computation. Such tables are calculated for every dataset, and
the advantage of producing them is that the computation is done once and for all.
However, one disadvantage of this method is that, whenever the user wants to change
one of the features in the config.yaml file described above, all the tables have to
be computed again. It is also possible to customize the convolution tables contained
in tables/, by changing the desired features in the config.yaml relative to the re-
quested perturbative accuracy and then running the program cli/tables.py, which
uses run/CreateTables.cc to produce new convolution tables. More details about
the computation of the convolution tables are given in Sec. 3.4.1.

Finally, the last input required by ./RunFit is a number to use as the identification
of the replica associated with the fit that is performed. As <replica ID> the user
has to provide an integer number. Contrary to what happens in cli/fit.py, where
the number provided by the user is the amount of fits that the user wants to run, here
the <replica ID> serves (also) the purpose of labeling for the result of the fit:5 when
using run/RunFit, is not possible to launch multiple fits, the user can perform the fit
for only one replica at a time.

3.2.3 Create a report from NangaParbat output using
cli/report.py

The command line interface program cli/report.py produces a report of the fit results
containing a general statistical analysis of the extractions obtained after running a fit
and some plots that are particularly meaningful for our studies.

When running cli/report.py, the first element needed by the program is the
path of a NangaParbat fit output folder. Such folder is assumed to have the structure
illustrated in Fig. 3.1. Highlighted files and folders are the ones which are actually used
by report.py: in particular, note that there must be a directory named “replica_0”
and that there must be more than only one replica present in the output folder.

Then, cli/report.py selects the replicas that can be used for statistical analysis.
A first step in the replica selection is done by looking at the status indicator in each
of the replica reports (/Report.yaml): only replicas that converged6 (Status: 1) are

5The <replica ID> is also used as a proper integer number in functions and classes
present in NangaParbat, in particular in src/data/datahandler.cc. More details about it
are given in Sec. 3.3.2.

6The convergence of a replica is determined by the algorithms of the selected minimizer
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Output Folder

fitconfig.yaml

data

replica_0

replica_n

tables

experiment name

datasets.yaml

config.yaml

} fitconfig.yaml

Report.yaml

relative data tables

perturbative tables

…

Figure 3.1: Structure of a NangaParbat output. Names in boxes refer to directories, whereas
names without boxes are simple files; italic text generically describes the content at that level
of the structure, while labels not in italic are literal expressions needed for such directories and
files. Finally, highlighted files and directories indicate the elements for which cli/report.py
explicitly searches: if those items are not in the right place or do not exist, cli/report.py
stops.
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considered in the following steps of the study. An update on the discarded replicas is
printed on terminal: for each of them the identification number and their global χ2 are
indicated.

As a further step in the replica selection, depending on which percentage has been
indicated as Percentile cut in fitconfig.yaml certain replicas are identified as
outliers according to the χ2, error function, and parameters distributions and they
are removed from the list of usable replicas. For example, if Percentile cut: 5,
then all the replicas whose global χ2 or error function or (even only) one parameter
value belongs to the lowest 5% or the highest 5% of their respective distributions are
discarded. The percentile cut is chosen arbitrarily, following a rule of thumb that
suggests to eliminate replicas with very high or very low χ2, which is likely due to
numerical fluctuations in the minimization. Moreover, when choosing the number to
use as a threshold, one has to keep in mind that a very high percentile might discard
useful replicas in the tail of the χ2 distribution, while if the value of the percentile cut
is too small it might not be effective in excluding outliers.

In the next step the mean replica is calculated, since part of the resulting analysis
will be based on comparisons of the behavior of the replicas within respect to their av-
erage. To do this, cli/report.py launches run/ComputeMeanReplica, which uses the
code in src/parameterisation/meanreplica.cc: the mean replica is computed point
by point, averaging the values of all the replicas in the kinematic points corresponding
to the data of each experiment.

We stress that the mean replica is created numerically, it does not correspond to
a specific set of parameters, but it is a valid figure of merit to evaluate fit results, as
discussed in Ch. 4, where some of the features of the statistical analysis performed by
cli/report.py are described.

The code run/ComputeMeanReplica, once called, also computes the χ2 of the mean
replica (without minimization) and produces a directory, mean_replica/, with the
relative Report.yaml in it.

Then, the subsequent part of cli/report.py is dedicated to the production of
plots, some of which are commented in Ch. 4. The following figures are created: a
plot for the global χ2 distribution, one for the error function distribution and one for
the distribution of each of the fitted parameters; a colored table to show correlations
between parameters; three plots of TMDs in momentum space in three different kine-
matic regions; one plot for each experiment, displaying predictions compared with data
points and also, on another panel, the χ2 distribution for that particular dataset.

As part of the statistical analysis, the report also includes tables of the single
experiments χ2 distributions of the central replica (replica_0, the one obtained without

(those available in NangaParbat are Minuit2 and ceres-solver).
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data fluctuations), the mean replica and the average over the replicas. The distributions
of the single parameters, with their mean value and standard deviations, are also
reported.

At the end of the analysis, the final report is available in the directory Report/,
created by cli/report.py inside the fit output folder, in various formats (markdown,
pdf, HTML and LATEX)7.

3.3 Data preprocessing

Before any fit, data tables have to be generated. Starting from the official data of
the various experiments, available to the community through HEPdata, NangaParbat
is able to produce data tables adapted to the needs of the fitting procedure through a
program that acts like a filter.

Ideally, the procedure that converts original data tables (rawdata) to data tables
that can be used in NangaParbat should be done every time a fit is performed: in this
way there is the certainty that no human error can enter the data tables that serve as
a base for the fit.

In the next section, the data filter is described and the procedure to add new data
and make them available for a NangaParbat fit is explained.

3.3.1 Filter

The data filter consists of a collection of codes, run by run/Filter.cc, which from
the content of rawdata/ produces from scratch another directory, data/, with the
NangaParbat data tables, stored in src/preprocessing/.

Each code in src/preprocessing/ is named after the experiment it refers to, and
each experiment has its own tailored function that transforms the original data table (or
data tables, as there can be more than one set of data available for a single experiment)
into the corresponding NangaParbat data table. The output can consist in more than
one table, depending on the characteristics of the data, i.e., the presence of a binning
in rapidity calls for separate tables, one for each bin.

The structure of the data filter can be described in the following way: each
src/preprocessing/preprocessEXPERIMENT.cc contains a function, named
PreprocessEXPERIMENT, that is called by the program run/Filter.cc. Such program
takes as inputs the path to rawdata folder (rawdata/) and the path where the folder

7The conversion from markdown to the other formats is done through a tool called Pandoc,
whose files are copied into the final report folder by cli/report.py itself.
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of the processed data will be placed (data/).8

As already mentioned before, the output of run/Filter are data tables in yaml
format, with the correct headers and variables to be read by NangaParbat itself, plus
a file, data/datasets.yaml, which contains the list of all the available datasets that
have been processed. All the datasets included in data/datasets.yaml are considered
when performing a fit (either with run/RunFit or with cli/fit.py).

The datasets available in NangaParbat v1.4.0 are those discussed in Ch. 4.
In order to add new datasets, the following steps are necessary:

� download the new data folder from HEPData and put it in rawdata/;

� create a file in src/preprocessing/, i.e., preprocessingNEWEXP.cc, and add
its name in src/preprocessing/CMakeLists.txt;

� encode in preprocessingNEWEXP.cc the function that reads rawdata and creates
the appropriate NangaParbat datasets;

� create the function PreprocessNEWEXP in inc/NangaParbat/preprocessing.h,
following the structure of other similar functions already present there, such as:

1 std:: string PreprocessATLAS8TeV(std:: string const&
RawDataPath , std:: string const& ProcessedDataPath , bool
const& PDFError = true);

� add in run/Filter.cc the call to the newly created function;

� re–compile and install the NangaParbat library;

� run run/Filter to produce new data tables in the correct format.

3.3.2 Data Handler

Data tables are read by objects of the NangaParbat :: DataHandler class, which is
defined in inc/NangaParbat/datahandler.h and encoded in
src/data/datahandler.cc. The DataHandler class provides a common interface to
all datasets: it provides methods to get kinematics, central values, uncertainties and
labels used for plotting and to compute and handle the covariance matrix, its Cholesky
decomposition, the fluctuation of the initial parameters of a fit and the use of t0 pa-
rameters (see Sec. 3.6 for more information regarding these last two functionalities).

8The directory of the processed data is created each time, so in principle is not neces-
sary to call it data/. When cli/fit.py is used, the filter program is automatically run
with os.system(RunFolder + "/Filter " + RunFolder + "/../ rawdata/
" + outfolder + "/data").
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From the point of view of the structure of NangaParbat, one of the two elements
that are needed for the χ2 computation has to belong to the DataHandler class. This
can be seen, for example, in the last part of run/RunFit.cc:

1 // Open datasets.yaml file that contains the list of datasets
2 // to be fitted and push the corresponding pairs of
3 // "DataHandler" and "ConvolutionTable" objects into the a

vector.
4 const YAML::Node datasets = YAML:: LoadFile(std:: string(argv

[3]) + "/datasets.yaml");
5 for (auto const& exp : datasets)
6 for (auto const& ds : exp.second)
7 {
8 std::cout << "Reading table for " << ds["name"].as<std::

string >() << "..." << std::endl;
9

10 // Convolution table
11 const std:: string table = std:: string(argv [4]) + "/" +

ds["name"].as<std::string >() + ".yaml";
12 const NangaParbat :: ConvolutionTable ct{YAML:: LoadFile(

table), fitconfig["qToQmax"].as<double >()};
13 //ct.NumericalAccuracy(NPFunc ->Function ());
14

15 // Datafile
16 const std:: string datafile = std:: string(argv [3]) + "/"

+ exp.first.as<std::string >() + "/" + ds["file"].as<
std::string >();

17 const NangaParbat :: DataHandler dh{ds["name"].as<std::
string >(), YAML:: LoadFile(datafile), rng , ReplicaID ,

18 (fitconfig["
t0prescription"].as
<bool >() ? ct.
GetPredictions(
NPFunc ->Function ())
: std::vector <

double >{})};
19

20 // Add chi2 block
21 chi2.AddBlock(std:: make_pair(dh, ct));
22 }

DataHandler acts as a bridge between data tables and χ2 computation:
src/data/datahandler.cc encodes the way to properly read the uncertainties taken
into account in the computation of the covariance matrix, which is also done in this
part of the code. More details about the meaning of the different types of uncertainties
and their role in the calculations of the covariance matrix can be found in Sec. 3.6.
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The Datahandler constructor, encoded in inc/NangaParbat/datahandler.h, is:

1 DataHandler(std:: string const& name , YAML::Node const&
datafile , gsl_rng* rng = NULL , int const& fluctuation = 0,
std::vector <double > const& t0 = {});

It takes five arguments: the the name associated to the data set, the YAML::Node with
the interpolation table, a GSL random number object, the ID of the fluctuation (i.e.,
Monte-Carlo replica ID, 0 means no fluctuations) and a vector of predictions to be used
for the t0 prescription. In particular, the vector with the t0 coefficients is needed for
the computation of the covariance matrix, as explained in Sec. 3.6.2.

DataHandler is also responsible for the fluctuation of initial data. If the user chooses
to run Nrep replicas of the fit, with Nrep > 1, or if the user would like to have a TMD
extraction corresponding to a specific replica ID, then DataHandler fluctuates each
dataset and creates an ensemble of pseudodata to fit.9 Such pseudodata are univocally
linked to the replica identification number, to guarantee that a fit for a certain replica
ID will always give the same result when there are the same initial conditions, even if
random fluctuations of data are involved in the process of generating the pseudodata to
fit. This is achieved using the replica ID and the random–number generator gsl_rng
* rng initialized with the seed number provided in the initial fit settings.

In the call to the DataHandler constructor, int const& fluctuation is set
equal to the replica ID. Then, for each dataset, the full dataset is fluctuated
fluctuation times, and only the last fluctuation is kept. This is not efficient but, as
mentioned above, it serves the purpose of identifying a given random replica by its ID
and the random seed given in the initial fit settings.

The statistical sample ofNrep replicas is obtained by generating artificial data points
following a Gaussian distribution centered on each data point with a variance given by
the experimental uncertainty.

To determine the standard deviation of the Gaussian used for the random shift of
each point, the implemented formulas take into account all uncertainties, according to
their nature. The technique used is inspired by the one reported in Ref. [169]. For each
dataset, the fluctuated i-th data point for the k-th replica, F (k)

i , is given by:

F
(k)
i = F

(k)
i,mult ·mi

(
1 + F

(k)
i,add + F

(k)
i,unc

)
(3.1)

where mi is the measured experimental value (the original, non fluctuated i-th point
in the dataset), F (k)

mult is the multiplicative correlated uncertainty fluctuation, F (k)
add the

additive correlated uncertainty fluctuation and F (k)
unc the uncorrelated uncertainty fluc-

9If, with cli/fit.py, the fit is launched for only one replica, then the the ID of such replica
is 0 and the only replica produced is replica_0, also called central replica in the analysis done
by cli/report.py

51



3. NangaParbat

tuation. The correlated contributions to the fluctuations are:

F
(k)
i,mult =

Nm∏

l

(
1 + δ

(l)
i,multr

(k)
l,mult

)
F

(k)
i,add =

Na∑

l

δ
(l)
i,addr

(k)
l,add (3.2)

where Nm (and Na) are the numbers of multiplicative (or additive) uncertainties for
each experimental point,10 δ

(l)
i,mult and δ

(l)
i,add are the relative multiplicative and additive

uncertainties associated with the i-th data point and r
(k)
l,mult and r

(k)
l,add are univariate

Gaussian random numbers, i.e., random numbers extracted from a Gaussian distribu-
tion with unitary standard deviation and mean equal to zero, N(µ = 0, σ = 1).

The uncorrelated contribution F (k)
i,unc is:

F
(k)
i,unc =

r(k)si
mi

(3.3)

where si is the sum in quadrature of all the uncorrelated uncertainties associated with
the data point mi and, as before, r(k) is a number, randomly extracted from a standard
Gaussian distribution (N(µ = 0, σ = 1)), associated with the replica identification
number k. Since si are the absolute values of the uncorrelated uncertainties and not the
relative values as it happens for the multiplicative and additive uncertainties, denoted
with δ

(l)
i,add, in Eq. (3.3) si is divided by the experimental measurement mi (see also

Sec. 3.6.2).
For each replica k, if two experimental points have the same correlated systematic

uncertainties, the fluctuations due to the correlated systematic uncertainties will be the
same for both points. A similar statement can be made for normalization uncertainties,
which are are properly taken into account in F (k)

i,mult.
One of the tasks of DataHandler is also preparing inputs for integrations: it reads

the bin boundaries for every variable involved in the process and stores them for later
use in the integrals to build the observable. DataHandler is organized to take into
account integrations in qT , and other two or three variables, depending on the process
(DY or SIDIS): the invariant–mass (for DY) or virtuality (for SIDIS) Q, the rapidity
y (for DY) or the Bjorken–x x (for SIDIS) and z (only for SIDIS).

Each of these variables, in addition to upper and lower values for the bins, also
has a boolean flag associated with it. For example, if in the header of the data table
there is integrate: true such variable is integrated over, otherwise, if integrate
: false, then NangaParbat considers the mean value of the variable, calculated as
the arithmetic average between the upper and lower bound of the bins. For qT , if the

10A data point can have more than one uncertainty per type: for example, it can have two
different additive errors and one normalization error, and in this case, Nm = 1 and Na = 2.
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keys low and high are present, the data point is integrated over the qT bin.

3.4 Building the observable

In Ch. 2 we described the theoretical framework to obtain the results in Ref. [95].
The main purpose of this section is to illustrate how such theoretical framework is
implemented in the structure of NangaParbat.

For greater clarity, we restate here the formula written in Eq. (2.10), which expresses
the fully differential cross section for lepton–pair production in the region where it is
possible to apply TMD factorization, i.e. qT � Q:

dσ

dQdydqT
=

8πα2
emqTP

9Q3
H(Q, µ)

×
∑

q

cq(Q)

∫ ∞

0

dbT bT J0

(
bT qT

)
x1f̃

q
1

(
x1, bT ;µ, ζ1

)
x2f̃

q̄
1

(
x2, bT ;µ, ζ2

)
,

(3.4)

where Q, y, and qT are the invariant mass, rapidity, the transverse momentum of the
lepton pair, respectively, while α is the electromagnetic coupling, H is the appropriate
QCD hard factor, cq are the effective electroweak charges, and P is the phase–space
reduction factor, which is discussed in Appendix 3.A.

Considering Eq. (2.18) and Eq. (2.39), where the b∗ prescription is introduced
(see also Sec. 2.1.5), the expression for the TMD PDF f̃1(x, bT ;µ) in bT–space can
be schematically written as

f̃ i1(x, bT ;µ) =
∑

j=g,q,q̄

(
Cij ⊗ f j

)
(x, b∗;µb)e

R(b∗;µb,µ)fNP(x, bT ). (3.5)

where Cij (i = q, q̄) are the matching functions to the collinear PDFs f j, eR(b∗;µb,µ) is
the Sudakov form factor (see Sec. 2.1.3) and fNP(x, bT ) is a phenomenological function
that is introduced to account for nonperturbative effects that become relevant at large
bT in TMD evolution and matching. In Eq. (3.4) and (3.5), the hard factor, the
matching functions and the Sudakov factor can be perturbatively computed, while fNP

represents the nonperturbative TMD components of the unpolarized TMD f̃ i1 and has
to be extracted from data.

As it has been shown in Ch. 2, Eq. (2.39, when extracting TMDs two contributions
can be identified, perturbative and nonperturbative. This section is divided in two
parts: Sec. 3.4.1 is dedicated to terms that can be precomputed in a TMD extraction,
while Sec. 3.4.2 describes the implementation in NangaParbat of the nonperturbative
function fNP.
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As the calculation of the terms that can be precomputed heavily relies on integra-
tion techniques, some of the formulas that are actually implemented in our code are
discussed in a separate section, Sec. 3.5, dedicated to integrations in NangaParbat.

3.4.1 Precomputed terms: convolution tables

In order to extract the unpolarized TMD f̃1(x, bT ;µ, ζ) from data, a fitting procedure
is necessary: this requires multiple calls to the computation of the observable, which in
this case is the cross section given by Eq. (2.10). Since during the fit the cross section
has to be evaluated many times (up to thousands), using the expression in Eq. (2.10)
every time to compute the observable turns out to be an highly expensive task in terms
of computational time and resources.

It is thus optimal to use an approach that separates the computation of known parts
from the nonperturbative terms that need to be extracted. Therefore, in order to speed
up the fit of the nonperturbative function fNP, Eq. (2.39), we make use of interpolation
techniques inspired by those employed for collinear–factorization predictions [170–174].
For instance, programs like FastNLO [175], APPLgrid[172] and APFELgrid [176] are used
for collinear PDF fits, 11 and demonstrate how to separate perturbative and nonper-
turbative contributions. Within this approach, all the terms that can be precomputed
are calculated once and for all and then stored in suitable tables.

The explicit formulas given in Sec. 3.5 show how the transverse nonperturbative
terms can be decoupled from other contributions during the computation of the cross
section in Eq. (3.4).

Schematically, in our TMD study, we reduce the computation of the cross section
in Eq. (3.18) for a given kinematic bin to the weighted sum

dσ

dqT
'
∑

n,α,τ

WnατfNP(x
(α,τ)
1 , b

(n)
T , ζ(τ))fNP(x

(α,τ)
2 , b

(n)
T , ζ(τ)) , (3.6)

where the discrete variables x(α,τ)
1,2 , b(n)

T , and ζ(τ) run over appropriately defined grids.
Specifically, the index n refers to the points of the Ogata quadrature method [180],
used to compute integrals needed to obtain the weights W (see also Sec. 3.5.2), while
α and τ run respectively over x and Q grids.

The computationally expensive part of the calculation is isolated into the weights
Wnατ that are precomputed and stored in yaml tables. Such tables, called convolution
tables in this work, are stored in tables/: there is a folder for each logarithmic order
(LL, NLL, NLL′, NNLL, NNLL′, N3LL) and each of these directories contains a table

11FastNLO is used by various global PDF fitting groups, like MSTW [177], CTEQ [178],
while NNPDF [179] relies on APFELgrid and APPLgrid.
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for each dataset that is possible to include in a NangaParbat fit.
This procedure makes the computation of predictions very fast and thus suitable

for a fit that requires a large number of iterations.
To compute the NangaParbat convolution tables the Python program,

cli/tables.py configures and runs run/CreateTables (that can also be executed
independently from the command line interface script, in a similar way to run/RunFit.

Contrary to what happens for the generation of the NangaParbat data tables (see
Sec. 3.3), the production of convolution tables has to be done only once, before starting
the fit.12

Among the initial inputs of run/CreateTables there is a configuration file,
config.yaml, which specifies the characteristics necessary to compute the weights
Wnατ . Such configuration file serves as input to allocate and initialize a FastInter-
face object, as the FastInterface constructor needs an input card, config.yaml, from
which it reads the parameters to compute the convolution terms at the desired level of
accuracy. For example, this is what tables/N3LL/config.yaml looks like:

1 # Collinear PDF set and member to be used for the generation
2 # of the tables. They are assumed to be in the LHAPDF format.
3 pdfset:
4 name: "MMHT2014nnlo68cl"
5 member: 0
6

7 # Collinear FF set and member to be used for the generation
8 # of the tables. They are assumed to be in the LHAPDF format.
9 ffset:

10 name: "DSS14_NLO_PiSum"
11 member: 0
12

13 # Name of the b* prescription. This name has to correspond to
14 # a function in inc/NangaParbat/bstar.h
15 bstar: "bstarmin"
16

17 # Perturbative order of the computation. 0: LL, 1: NLL ,
18 # 2: NNLL , 3: NNNLL , -1: NLL ’, -2: NNLL’
19 PerturbativeOrder: 3
20

21 # Initial and final scale -variation factors around
22 mub = 2e^{-gamma_E} / b and Q, respectively.
23 TMDscales:
24 Ci: 1
25 Cf: 1

12It is suggested to generate data tables every time, but it is not mandatory to do so.
Viceversa, it should be avoided to produce convolution tables more than once, because they
are extremely time–consuming.
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26

27 # Reference value of alpha_em.
28 alphaem:
29 aref: 0.00776578395589
30 Qref: 91.1876
31 run: true
32

33 # Parameters of the x-space subgrids on which collinear PDFs
34 # are tabulated.
35 xgridpdf:
36 - [60, 1e-4, 3]
37 - [60, 1e-1, 3]
38 - [50, 6e-1, 3]
39 - [50, 8e-1, 3]
40

41 # Parameters of the x-space subgrids on which collinear FFs
42 # are tabulated.
43 xgridff:
44 - [60, 1e-2, 3]
45 - [50, 6e-1, 3]
46 - [50, 8e-1, 3]
47

48 # Maximum number of Ogata -quadrature points (no more than
1000).

49 nOgata: 200
50

51 # Number of points , interpolation degree , and integration
52 # accuracy of the grid in Q.
53 Qgrid:
54 n: 10
55 InterDegree: 3
56 eps: 1e-3
57

58 # Number of points , interpolation degree , and integration
59 # accuracy of the grid in xi = exp(y) or xF
60 # (depending on the observable).
61 xigrid:
62 n: 10
63 InterDegree: 3
64 eps: 1e-3
65

66 # Maximum value allowed for the ratio qT / Q.
67 # This has to be intended as a "generation -level" cut meaning
68 # that only data points with qT / Q below this value are
69 # generated. Those above are simply set to zero.
70 # However , a more restrictive cut can still be applied
71 # at the fit level.
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72 # This avoids computing predictions for points whose
73 # kinematics is such that TMD factorisation is not valid.
74 qToverQmax: 0.3

Note that, the configuration file also specifies the collinear PDF sets, which are
treated as inputs in our TMD fit and needed to compute the convolution with the
matching coefficients,

∑
j (Cij ⊗ f j) (x, b∗;µb), in Eq. (3.5).

The version v1.4.0 of NangaParbat can analyze only Drell–Yan data and there-
fore only TMD PDFs can be extracted. For this reason, only the collinear PDF set
MMHT2014nnlo68cl plays a role in the production of convolution tables13. So, precom-
puted tables also depend on the chosen sets of collinear PDFs and FFs, and, in case a
study or a fit with different PDFs (or FFs) has to be performed, the convolution tables
have to be computed again.

In order to control the behavior of the TMDs at large bT , a b∗ prescription is
introduced, as discussed in Ch. 2 Sec. 2.1.5. In particular, our convolution tables are
computed with the so–called bstarmin prescription, which is given by Eq. (2.36)and is
implemented in src/utilities/bstar.cc.

In NangaParbat it is also possible to use different prescriptions to deal with the
high– and low–bT region: once the functional form has been implemented in
src/utilities/bstar.cc (and in inc/NangaParbat/bstar.h), the selection of the
b∗ prescription to use in the fit is done in config.yaml. At the moment, beside
the bstarmin prescription, also a function à la Collins–Soper–Sterman (CSS) [98] is
implemented14.

The computation of the convolution tables relies on APFEL++ [181, 182], a PDF
evolution library in C++, and is done in src/fastinterface/fastinterface.cc,
while src/fastinterface/convolutiontable.cc contains functions and methods to
read such tables and make predictions.

In particular, run/CreateTables.cc calls the function
FastInterface :: ComputeTables , whose header is reported here from
inc/NangaParbat/fastinterface.h:

1 /**
2 * @brief Function that computes the interpolation tables
3 * given as an input vector of "DataHandler" objects.
4 * @param DHVect: vector of "DataHandler" objects.
5 * @return a vector of "YAML:: Emitter" objects containing
6 * as many tables as elements of "DHVect ".
7 */

13However, even if it is not used, an entry for ffset: is required bt NangaParbat.
14The CSS prescription implemented in NangaParbat as bstarCSS is b∗ = b/

√
1 + (b/bmax)2

.
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8 std::vector <YAML::Emitter > ComputeTables(std::vector <
DataHandler > const& DHVect) const;

The argument of this function is a DataHandler object (see Sec. 3.3.2) that contains
the datasets for which convolution tables have to be produced.

Since the main goal of FastInterface :: ComputeTables is to store in tables
all the elements that concur to the calculation of the cross section in Eq. (3.4) and
that can be precomputed, also the hard factor H(Q, µ) is taken into account. Accord-
ing to the information written in data files, the hard factor and the proper prefactors
with the correct electroweak charges for the process are considered in the compu-
tation of the weights: convolution tables are therefore process–dependent. In par-
ticular, the hard factor is called from APFEL++ by the constructor of the FastInter-
face class, and is used in src/fastinterface/fastinterface.cc in the functions
FastInterface :: LuminosityDY or FastInterface :: LuminositySIDIS , which
are called by FastInterface :: ComputeTables accordingly to the process to study.

Moreover, in FastInterface :: ComputeTables , depending on the indications
written in the datafile regarding kinematic variables (see Sec 3.3), there is the possibility
to choose whether to integrate over the bins or to consider only the mean values of
x,Q and qT .

If the selected choice is to integrate over the bins, such task is performed exploiting
the the techniques explained in Sec. 3.5. For our fit in Ref. [95], convolution tables
have been computed integrating over all the variables, x,Q and qT .

Although to integrate over all the possible kinematic bins is the recommended
choice, in some cases the possibility to perform calculations using the mean values
(average over the bin, calculated with (Qmax − Qmin)/2, for example) can come in
handy. For example, in order to estimate the uncertainties given by the collinear
PDFs using the Hessian method, one convolution table for each member of the PDF
set has to be computed (for all the datasets). Such task is very time–consuming and
therefore, for the case of Z–boson production, we produced convolution tables using
the narrow–width approximation, which implies not integrating over Q but considering
only Q = MZ. More details about the narrow–width approximation can be found in
Appendix 3.C.

The function FastInterface :: ComputeTables takes also into account the phase–
space reduction factor P (see Appendix 3.A) that appears among the prefactors in
Eq. (3.4). Since such prefactor is qT dependent, it can not be completely factored out
of the integration over qT bins: however, making use of considerations and approxima-
tions explained in Sec. 3.5.1, a clever workaround to efficiently compute integrals with
the presence of kinematic cuts on the leptons final states can be found.

Through the use of Q and x grids, specified with the entries Qgrid and xigrid
in config.yaml and with the Ogata parameters also included in the configuration
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file under nOgata, the weights W are calculated and written in specific yaml tables.
The formulas that are actually implemented in our code and that exploit the Ogata
quadrature method for integrations are discussed in Sec. 3.5.2.

The ConvolutionTable class (declared in
inc/NangaParbat/convolutiontable.h) implements the methods for the numerical
convolution of the interpolation tables with user–given nonperturbative functions.

Making use of convolution tables, predictions are obtained in
src/fastinterface/convolutiontable.cc through the function GetPredictions

1 /**
2 * @brief This function returns a vector of predictions given
3 * a single user -given non -perturbative function.
4 * @param fNP: the non -perturbative input functions

parameterised by an index
5 * @return a vector of predictions.
6 */
7 virtual std::vector <double > GetPredictions(std::function <

double(double const&, double const&, double const&)> const&
fNP) const;

which calls the function Convolute :

1 std::map <double , double > ConvolutionTable :: Convolute(std::
function <double(double const&, double const&, double const
&)> const& fNP1 , std::function <double(double const&, double
const&, double const&)> const& fNP2) const

which implements Eq. (3.40) and takes as argument the nonperturbative functions to
fit, fNP.

At the end of run/CreateTables.cc there is also the possibility to check the quality
of the convolution tables that have been produced in the first part of the program.
Such accuracy control is triggered by an argument in the terminal line used to run the
program:

1 ./ CreateTables <configuration file > <path to data folder > <
output folder > <test tables? [y/n]> [optional selected
datasets]

If the boolean fourth entry of the command line is true, predictions obtained with an
interpolation of the convolution tables are compared with the result of a direct calcula-
tion. Direct computation is implemented in src/fastinterface/fastinterface.cc,
in

1 /**
2 * @brief Function that computes the predictions corresponding

to
3 * a set of "DataHandler" objects as direct integration.

59



3. NangaParbat

4 * @param DHVect: vector of "DataHandler" objects.
5 * @param fNP1: the first non -perturbative input function
6 * @param fNP2: the second non -perturbative input function
7 * @param epsQ: the integration accuracy in Q
8 * @param epsxi: the integration accuracy in xi
9 * @param sameOgata: whether to use the same number of Ogata

points or reach the required accuracy
10 * @return a vector of vectors , each containing the

predictions
11 * associated to the corresponding "DataHandler" object
12 */
13 std::vector <std::vector <double >> DirectComputation(
14 std::vector <DataHandler >

const& DHVect ,
15 std::function <double(double const&, double const&, double

const&)> const& fNP1 ,
16 std::function <double(double const&, double const&, double

const&)> const& fNP2 ,
17 double const& epsQ = 1e-7,
18 double const& epsxi = 1e-7,
19 bool const& sameOgata = true) const;

3.4.2 Nonperturbative part: parameterization

The function fNP, in Eq. (3.5), has to be extracted from data, and to do this a functional
form depending on a set of parameters has to be chosen. Many different parameteri-
zations can be proposed, and our choice for fNP is expressed in Eq. (2.42) and (2.43),
that have been discussed in Ch. 2, Sec. 2.1.5.

In NangaParbat, we called such parameterization PV19x and its functional form is
implemented in inc/NangaParbat/PV19x.h. Other parameterizations are also avail-
able, including in particular the functional form chosen for Ref. [84]
(in inc/NangaParbat/PV17.h).

From the point of view of the code, each parameterization is a different class, de-
rived from the parent class NangaParbat::Parameterisation. The “Parameterisation”
class is encoded in inc/NangaParbat/parameterisation.h and contains some ba-
sic functions, implemented in src/parameterisation/parameterisation.cc, that,
among other functions, set the free parameters of the parameterization and evaluate
fNP whenever it is called in the fit.

For every parameterization that can be used in a NangaParbat extraction there is
a specific configuration card in cards/. This yaml file contains, besides the general
features of the fit, the starting values of the free parameters of the parameterization
(this is the reason of why a different configuration file is needed for each functional
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form: not all of them have the same parameters or even the same number of free
inputs).

For example, this is the configuration file cards/fitPV19x.yaml that we used to
obtain our nominal result in Ref. [95]:

1 # Short description of the fit that will appear in the report
2 # of the fit
3 Description: PV19 version x
4

5 # Minimiser to be used for the fit. Possible options so far
6 # are ’minuit ’, ’ceres ’, and ’none ’.
7 Minimiser: minuit
8

9 # Seed used with the random -number generator for the
10 # generation of the Monte Carlo replicas
11 Seed: ’1234’
12

13 # Cut on qT / Q. This has to be smaller than the production
14 # cut used to produce the tables.
15 qToQmax: ’0.2’
16

17 # Percentile cut (in percent) on the distribution of chi2’s,
18 # error functions and parameters used to identify outliers.
19 Percentile cut: ’5’
20

21 # Enable or disable the t0 prescription for the treatment of
22 # normalisation uncertantities and define the set
23 # of parameters to be used to compute the corresponding
24 # predictions (used only if the t0 prescription is enabled).
25 # They have to be as many and ordered as the "Parameters"
26 # below.
27 t0prescription: true
28 t0parameters: [0.02351590841248 , 0.9422997060112 ,

0.2036619541611 , 0.326688434032 , 0.6715638120608 ,
0.04591270083373 , 0.06702302432024 , 0.4193674275496 ,
0.01624238607691]

29

30 # Parameterisation to be fitted to data.
31 # This has to correspond to a derivation of the
32 # "Parameterisation" class.
33 Parameterisation: PV19x
34

35 # Fluctuate initial parameters according to their step
36 Paramfluct: false
37

38 # List of parameters to be fitted to data. This requires that
the
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39 # number and order of parameters matches those expected by the
40 # particular parameterisation being used.
41 Parameters:
42 - {name: g2 , starting_value: 0.02351590841248 , step:

0.006586509 , fix: false}
43 - {name: N1 , starting_value: 0.9422997060112 , step:

0.405145610 , fix: false}
44 - {name: alpha , starting_value: 0.2036619541611 , step:

0.011498155 , fix: false}
45 - {name: sigma , starting_value: 0.326688434032 , step:

0.060998937 , fix: false}
46 - {name: lambda , starting_value: 0.6715638120608 , step:

0.111466055 , fix: false}
47 - {name: N1B , starting_value: 0.04591270083373 , step:

0.011244147 , fix: false}
48 - {name: alphaB , starting_value: 0.06702302432024 , step:

0.010590214 , fix: false}
49 - {name: sigmaB , starting_value: 0.4193674275496 , step:

0.113316907 , fix: false}
50 - {name: g2B , starting_value: 0.01624238607691 , step:

0.002416170 , fix: false}

Many of the entries in cards/fitPV19x.h have a self-explanatory description al-
ready present in the file. In particular, the keys t0prescription, t0parameters refer to
the prescription explained in Sec. 3.6.2, Seed, qToQmax refer to data points and replica
generation (see Sec. 3.3), Percentile cut is a parameter needed to produce the report
(Sec. 3.2.3), Description and Minimiser are general features of the fit (Sec. 3.2.1). The
entries that are related to the parameterization are: Parameterisation, Paramfluct and
the list Parameters.

The starting value of the parameters in the file shown above has been determined
through previous fits, as well as the step associated with them, which is the error
(relative to each parameter) estimated by Minuit215.

When Paramfluct:true, all the free parameters (fix: false) are randomly shifted
with a Gaussian noise whose standard deviation is equal to their step. Otherwise,
the initial value of each parameter is equal to starting_value. The fluctuation of
the initial parameters is not to be confused with the fluctuation of the data points of
each dataset (see Sec. 3.3): both the procedures are based on random oscillations with
Gaussian distribution, but the former is an optional feature of the fit that can help
the exploration of the parameter’s phase-space, while the latter is the method through
which our Monte Carlo TMD replicas are generated.

15This assumes a trial–and–error procedure: the values in the parameter list of
cards/fitPV19x.h are those for which we observed that no further minimization could be
obtained.
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If no minimization is required when running the fit, the output of NangaParbat are
predictions obtained with the values starting_value of the parameters and the χ2 is
computed accordingly, without any variation of the transverse nonperturbative part.

It is useful to mention here that also the t0 parameters are determined a posteri-
ori : as discussed in Sec. 3.6.2, for a consistent treatment of the uncertainties in the
computation of the χ2, one of the possible choices that can be made is to use the
so–called t0 prescription with parameters equal to theoretical predictions. In this case,
the values t0parameters in cards/fitPV19x.h are outputs of a previous fit, and each
t0 parameter is equal to the starting point of the corresponding fNP parameter.

Finally, it is possible to add user–made parameterizations to the ones already exist-
ing in NangaParbat. To create a new parameterization for fNP, the desired functional
form has to be implemented in an header file in inc/NangaParbat/ following the ex-
ample of inc/NangaParbat/PV19x.h.

Moreover, to make the new fNP appear as a possible choice when running cli/fit.py,
the file inc/NangaParbat/nonpertfuncions.h has to be modified accordingly, insert-
ing the name of the parameterization in:

1 /**
2 * @brief Map of currently available parameterisations.
3 * Each of them must correspond to a header file
4 * containing a class deriving from the
5 * NangaParbat :: Parameterisation mother class.
6 */
7 const std::map <std::string , Parameterisation*> AvPars
8 {
9 {"DWS", new NangaParbat ::DWS{}},

10 {"PV17", new NangaParbat ::PV17{}},
11 {"PV19x", new NangaParbat ::PV19x {}}
12 };

3.5 Numerical integrations in NangaParbat

The aim of this section is to give a general overview of the numerical implementation
in NangaParbat of the theoretical formulas in Ch. 2. In particular, we discuss here the
explicit formulas encoded in our framework. NangaParbat uses APFEL++ [181, 182] as
an engine for the computation of the theoretical predictions.

From Eq. (2.10), the Drell–Yan cross section can be written in terms of TMDs, as

dσ

dQdydqT
=

16πα2
emqT

9Q3
H(Q, µ)

∑

q

cq(Q)

∫
d2b

4π
eib·qTF q(x1,b;µ, ζ)F q̄(x2,b;µ, ζ) ,

(3.7)
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where we used the short–hand notation

F q(x,b;µ, ζ) ≡ xf̃ q1 (x,b;µ, ζ) , (3.8)

As discussed in Ch. 2, the scales µ and ζ are introduced as a consequence of the removal
of ultraviolet and rapidity divergences in the definition of the TMDs and are typically
set equal to the vector boson’s virtuality, µ =

√
ζ = Q.

The integral that represents the computationally–intensive part of Eq.(3.7) is:

Iij(x1, x2, qT ;µ, ζ) =

∫
d2b

4π
eib·qTF i(x1,b;µ, ζ)F j(x2,b;µ, ζ) . (3.9)

where F i(j) are combinations of evolved TMD PDFs. For convenience, the indexes
i and j do not coincide with q and q̄ but they are linked through a simple linear
transformation (see Eq. (3.14).

As can be seen from Eq. (3.9), in principle a bidimensional integral has to be
computed. However, F i(j) only depend on the absolute value of b, |b| = bT , and using
Eq (2.9) we can write:

Iij(x1, x2, qT ;µ, ζ) =
1

2

∫ ∞

0

dbT bTJ0(bT qT )F i(x1, bT ;µ, ζ)F j(x2, bT ;µ, ζ) . (3.10)

where J0 is the zero-th order Bessel function of the first kind. Then, using the b∗
prescription introduced in Sec. 2.1.5 and including the nonperturbative function defined
in Eq. (2.39), Eq. (3.10) becomes:

Iij(x1,x2, qT ;µ, ζ) =

∫ ∞

0

dbT J0(bT qT )

[
bT
2
F i(x1, b∗(bT );µ, ζ)F j(x2, b∗(bT );µ, ζ)

fNP(x1, bT , ζ)fNP(x2, bT , ζ)

]

=
1

qT

∫ ∞

0

dbT J0(bT )

[
bT
2qT

F i(x1, b∗

(
bT
qT

)
;µ, ζ)F j(x2, b∗

(
bT
qT

)
;µ, ζ)

fNP

(
x1,

bT
qT
, ζ

)
fNP

(
x2,

bT
qT
, ζ

)]

(3.11)

The integral in Eq. (3.11) is a Hankel transform and can be efficiently computed us-
ing the so–called Ogata quadrature [180], which is an interpolation–type quadrature
formula based on the zeros of the Bessel function Jν and is particularly suited for
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integrations of oscillatory functions over infinite intervals.
Then, the computation of the integral in Eq. (3.9) is achieved through the weighted

sum:

Iij(x1, x2, qT ;µ, ζ) ' 1

qT

N∑

n=1

w
(0)
n z

(0)
n

2qT
F i

(
x1, b∗

(
z

(0)
n

qT

)
;µ, ζ

)

× F j

(
x2, b∗

(
z

(0)
n

qT

)
;µ, ζ

)
fNP

(
x1,

z
(0)
n

qT
, ζ

)
fNP

(
x2,

z
(0)
n

qT
, ζ

)
,

(3.12)
where the unscaled coordinates z(0)

n and the weights w(0)
n can be precomputed in terms

of the zeros of the Bessel function J0 and one single parameter 16 (see Ref. [180] for
more details, specifically Eqs. (5.1) and (5.2) or Appendix 3.B for the relevant formula
to compute the unscaled coordinates and the weights).

One of the advantages of Eq. (3.12) is that the infinite sum that approximates the
integral can be truncated fairly soon, after a small number of function evaluations (see
Ref. [180], in particular Sec.5, for the proof of this statement and for more details).
Based on the (empirically verified) assumption that the absolute value of each term
in the sum in the right hand side of Eq. (3.12) is smaller than that of the preceding
one, the truncation number N is chosen dynamically in such a way that the (N + 1)-
th term is smaller in absolute value than a user–defined cutoff relatively to the sum
of the preceding N terms. This dynamical truncation procedure is implemented in
src/fastinterface/convolutiontable.cc, in ConvolutionTable::Convolute.

To compute the sum in Eq. (3.12), we employ the expression in Eq. (2.17) for the
TMD PDF F j, that we reproduce here:

F i(x, b;µ0, ζ0) =
∑

j=g,q(q̄)

x

∫ 1

x

dy

y
Cij(y;µ0, ζ0)fj

(
x

y
, µ0

)
. (3.13)

It is useful to mention here that in QCD the most convenient basis for the matching in
Eq. (3.13) is the so–called evolution basis (i.e. Σ, V , T3, V3, etc.). In fact, in this basis
the operator matrix Cij is almost diagonal with the only exception of crossing terms
that couple the gluon and the singlet Σ distributions [183].

Since TMDs in Eq. (3.7) appear in the so–called physical basis (i.e. d, d̄, u, ū, etc.),

16The superscript 0 in z(0)
n and w(0)

n indicates that here we are performing an Hankel trans-
form that involves the Bessel function of order zero J0. This is useful in view of Sec. 3.5.1,
in which the integration over qT gives rise to a similar Hankel transform with J0 replaced by
J1. The Ogata quadrature algorithm can be applied also in that case, but coordinates and
weights will be different.
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we need to rotate Fi(j) from the evolution basis, over which the indices i and j run,
to the physical basis. This is done by means of an appropriate constant matrix T , so
that:

F q(x1, b;µ, ζ) =
∑

i

TqiFi(x1, b;µ, ζ) , (3.14)

and similarly for F q̄
17.

Putting all pieces together, one can conveniently write the cross section in Eq. (3.7)
as:

dσ

dQdydqT
'

N∑

n=1

w(0)
n

z
(0)
n

qT
S

(
x1, x2,

z
(0)
n

qT
;µ, ζ

)
fNP

(
x1,

z
(0)
n

qT
, ζ

)
fNP

(
x2,

z
(0)
n

qT
, ζ

)
,

(3.15)
with:

S(x1, x2, b;µ, ζ) =
8πα2

9Q3
H(Q, µ)

∑

q

Cq(Q)
[
F q (x1, b∗(b);µ, ζ)

] [
F q̄ (x2, b∗(b);µ, ζ)

]
.

(3.16)
With Eq. (3.15) it is possible to precompute the weights S in such a way that the
differential cross section in Eq. (3.7) can be calculated as a simple weighted sum of
the transverse non-perturbative contribution. The fact that in Eq. (3.16) S has five
arguments can be misleading: in fact, such variables are not independent of each other
and S actually depends only on three variables. The two arbitrary scales µ and ζ are
usually set to be proportional to Q by a constant factor. In addition, x1 and x2 depend
on Q and y through

x1,2 =
Q√
s
e±y . (3.17)

Therefore, the full dependence on the kinematics of the final state of Eq. (3.7) can be
specified by Q, y and qT .

Despite the fact that Eq. (3.15) provides a powerful tool for a fast computation of
cross sections, it is often not sufficient to allow for a direct comparison with experimen-
tal data. In fact, experimental measurements of differential distributions are usually
delivered as integrated over finite regions of the final–state kinematic phase space, and
so the basic quantity to be compared to data is:

dσ

dqT
=

1

qT,max − qT,min

∫ ymax

ymin

dy

∫ Qmax

Qmin

dQ

∫ qT,max

qT,min

dqT

[
dσ

dQdydqT

]
, (3.18)

where the ranges [ymin: ymax], [Qmin: Qmax], and [qT,min: qT,max] define the phase-space
17In NangaParbat, this transformation is done in src/fastinterface/fastinterface.cc,

FastInterface::LuminosityDY, calling the appropriate function from APFEL++.
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integration region and the integrand is given in Eq. (3.7). As a consequence, in order to
compare theoretical predictions to data, it is necessary to carry out these integrations.
These nested integrals, if evaluated numerically, represent a heavy task that makes an
extraction of TMDs from Drell-Yan data computationally very intensive and thus slow.
While the integrals over Q and y do need to be computed numerically, the integration
in qT can be carried out analytically, and this greatly reduces numerical computations
and the amount of time required.

3.5.1 Integrating over qT

The integration over bins in qT can be carried out analytically exploiting the following
property of Bessel functions:

d

dx
[xmJm(x)] = xmJm−1(x) , (3.19)

This property connects two Bessel functions of consecutive orders, and in particular
we can write:

∫
dx xJ0(x) = xJ1(x) ⇒

∫ x2

x1

dx xJ0(x) = x2J1(x2)− x1J1(x1) . (3.20)

Then, considering Eqs. (3.7), (3.9) and (3.10) and neglecting for the moment the de-
pendence on qT of the phase–space reduction factor P18(see the following section on
kinematic cuts), we observe that the Drell–Yan differential cross section has the fol-
lowing structure:

dσ

dQdydqT
∝
∫ ∞

0

dbT qTJ0(bT qT )S(bT ) (3.21)

where S is a function that does not depend on qT . So we can apply Eq. (3.20) and the
integration over the qT bin can be written as:

∫ qT,max

qT,min

dqT

[
dσ

dQdydqT

]
∝
∫ ∞

0

dbT

∫ qT,max

qT,min

dqT qTJ0(bT qT )S(bT ) =

=

∫ ∞

0

dbT
b2
T

S(bT )

∫ bT qT,max

bT qT,min

dx xJ0(x)

=

∫ ∞

0

dbT
bT

[qT,maxJ1(bT qT,max)− qT,minJ1(bT qT,min)]S(bT ) .

(3.22)

18Neglecting P dependence on qT is strictly correct for inclusive observables in the final–
state leptons.
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where, between the first and the second line, the change of variable x = bT qT was
needed in order to have the integrand in the form xJ0(x) and to be able to apply
Eq. (3.20). Then, defining K(Q, y, qT ) as the indefinite integral over qT of the cross
section in Eq. (3.7),

K(qT ) ≡
∫
dqT

[
dσ

dQdydqT

]
, (3.23)

we can write:
∫ qT,max

qT,min

dqT

[
dσ

dQdydqT

]
= K(Q, y, qT,max)−K(Q, y, qT,min) , (3.24)

Looking at Eq. (3.7) and at the last term of Eq. (3.22), we can see that the explicit
expression for K is:

K(Q, y, qT ) =
��>

8
16πα2qT

9Q3
H(Q, µ)

×
∫ ∞

0

dbT

��2bT
��bT J1(bT qT )

∑

q

cq(Q)F q(x1, b;µ, ζ)F q̄(x2, b;µ, ζ)fNP(x1, b, ζ)fNP(x2, b, ζ)

(3.25)

The integral in Eq. (3.25), then can be computed using the Ogata quadrature as:

K(Q, y, qT ) '
N∑

n=1

w(1)
n S

(
x1, x2,

z
(1)
n

qT
;µ, ζ

)
fNP

(
x1,

z
(1)
n

qT
, ζ

)
fNP

(
x2,

z
(1)
n

qT
, ζ

)
,

(3.26)
with S defined in Eq. (3.16). The unscaled coordinates z(1)

n and the weights w(1)
n

can again be precomputed and stored in terms of the zeros of the Bessel function J1.
Eq. (3.24) reduces the integration in qT to a calculation completely analogous to the
unintegrated cross section. This is particularly convenient because it allows us to avoid
the computation of a numerical integration.

Kinematic cuts

In the presence of kinematic cuts, such as those on the final–state leptons, the analytic
integration over qT discussed above cannot be directly performed. The reason is that
the implementation of these cuts effectively introduces the qT–dependent function P
in the integral

dσ

dQdydqT
=

∫ ∞

0

dbT S(bT )P(qT )qTJ0(bT qT ) , (3.27)
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where, as in Eq. (3.21), S(bT ) indicates the remaining terms which do not depend on
qT . The fact that the coefficient that expresses the kinematic cuts on the final–state
leptons is qT–dependent19 prevents the direct use of Eq. (3.20). However, taking into
account the following considerations, it is still possible to achieve a (semi) analytical
integration over the qT bins.

We note that P is a slowly-varying function of qT over the typical bin size: this
allows one to approximate the integral over the bins in qT as
∫ qT,max

qT,min

dqT qTJ0(bT qT )P(qT ) ' P
(
qT,max + qT,min

2

)∫ qT,max

qT,min

dqT qTJ0(bT qT )

= P
(
qT,max + qT,min

2

)
1

bT
[qT,maxJ1(bT qT,max)− qT,minJ1(bT qT,min)] .

(3.28)

Unfortunately, this structure is inconvenient because it mixes different bin bounds and
prevents a recursive computation. However, it is possible to go further and, assuming
that the bin width is small enough, P can be expanded in the following two equivalent
ways:

P
(
qT,max + qT,min

2

)
=

{ P (qT,min + ∆qT ) ' P (qT,min) + P ′ (qT,min) ∆qT
P (qT,max −∆qT ) ' P (qT,max)− P ′ (qT,max) ∆qT

, (3.29)

with
∆qT =

qT,max − qT,min

2
. (3.30)

Plugging the expansions above into Eq. (3.28), we find

bT

∫ qT,max

qT,min

dqT qTJ0(bT qT )P(qT ) ' qT,maxJ1(bT qT,max) [P (qT,max)− P ′ (qT,max) ∆qT ]

− qT,minJ1(bT qT,min) [P (qT,min) + P ′ (qT,min) ∆qT ] .
(3.31)

The advantage of this formula as compared to Eq. (3.28) is that each of the terms in
the right hand side depends on one single bin bound in qT rather than on a combination
of two consecutive bounds. This allows for a recursive computation of predictions in
neighboring bins in qT .

Therefore, in the presence of kinematic cuts, the actual form of the primitive func-

19The function P also depends on the invariant mass Q and on the rapidity y of the lepton
pair, so it needs to be integrated also over those variables. Such integrations are discussed in
the following section, Sec. 3.5.2.

69



3. NangaParbat

tion K defined in Eq. (3.24) and given explicitly in Eq. (3.25) is:

K(Q, y, qT ) =
8πα2qT

9Q3
H(Q, µ) [P (Q, y, qT )± P ′ (Q, y, qT ) ∆qT ]

×
∫ ∞

0

db J1(bqT )
∑

q

Cq(Q)F q(x1, b;µ, ζ)F q̄(x2, b;µ, ζ)fNP(x1, b, ζ)fNP(x2, b, ζ) ,

(3.32)
where we have explicitly reinstated the dependence of the function P and its derivative
with respect to qT , P ′, on Q and y. In the square bracket in Eq. (3.32), the minus
sign applies when qT is the upper bound of the bin and the plus sign when it is the
lower bound (see Eq. (3.31)). As discussed in Sec. 3.5.2, when integrating over bins
in Q and y, one should also integrate the functions P and P ′. However, it can be
shown that, with in the interpolation procedure discussed in Sec. 3.5.2, these functions
can be extracted from the integrals in Q and y in a proper manner in such a way to
avoid computing the expensive function P many times. Moreover, the interpolation
procedure simplifies enormously the structure of the resulting interpolation tables.

3.5.2 Numerical integrations

As a final step, we need to perform the integrals over Q and y defined in Eq. (3.18).
To compute these integrals we can rely only on numerical methods. Having reduced
the integration in qT to the difference of the two terms in the right hand side of
Eq. (3.24)(20), we can focus on integrating the function K over Q and y for a fixed
value of qT :

K̃(qT ) =

∫ Qmax

Qmin

dQ

∫ ymax

ymin

dy K(Q, y, qT ) . (3.33)

In this way, the cross section

σ̃ =

∫ Qmax

Qmin

dQ

∫ ymax

ymin

dy

∫ qT,max

qT,min

dqT

[
dσ

dQdydqT

]
(3.34)

can be calculated as
σ̃ = K̃(qT,max)− K̃(qT,min) . (3.35)

To explain how the integrals in Eq. (3.33) are performed, it is convenient to make
explicit the dependence of x1 and x2 on Q and y using Eq. (3.17). In addition, for
sake of simplicity we will identify the scales µ and

√
ζ with Q (possible scale variations

20For the moment, the complication introduced by the presence of cuts on the lepton final
state discussed in Sect. 3.5.1 is omitted. This issue is addressed at the end of this section.

70



3.5. Numerical integrations in NangaParbat

can be easily reinstated at a later stage) and thus drop one of the arguments from the
TMD distributions F and from the hard factor H. This yields

K̃(qT ) =
8πqT

9

∫ ∞

0

dbT J1(bT qT )

∫ Qmax

Qmin

dQ

∫ eymax

eymin

dξ

ξ

× 1

Q3
α2(Q)H(Q)

∑

q

Cq(Q)F q

(
Q√
s
ξ, b∗(bT );Q

)
F q̄

(
Q√
s

1

ξ
, b∗(bT );Q

)

× fNP

(
Q√
s
ξ, bT ;Q

)
fNP

(
Q√
s

1

ξ
, bT ;Q

)
,

(3.36)
where we have performed the change of variable ey = ξ. Now we define one grid in
ξ, {ξα} with α = 0, . . . , Nξ, and one grid in Q, {Qτ} with τ = 0, . . . , NQ, each of
which with a set of interpolating functions I associated. In addition, the grids are
such that: ξ0 = eymin and ξNξ = eymax , and Q0 = Qmin and QNQ = Qmax. This allows us
to interpolate the pair of functions fNP in Eq. (3.36) for generic values of ξ and Q as:

fNP

(
Q√
s
ξ, bT ;Q

)
fNP

(
Q√
s

1

ξ
, bT ;Q

)
'

'
Nξ∑

α=0

NQ∑

τ=0

Iα(ξ)Iτ (Q)fNP

(
Qτ√
s
ξα, bT ;Qτ

)
fNP

(
Qτ√
s

1

ξα
, bT ;Qτ

)
.

(3.37)

Plugging the equation above into Eq. (3.36) we obtain:

K̃(qT ) ' 8πqT
9

∫ ∞

0

dbT J1(bT qT )

NQ∑

τ=0

Nξ∑

α=0

[∫ Qmax

Qmin

dQ Iτ (Q)
1

Q3
α2(Q)H(Q)

×
∫ eymax

eymin

dξ Iα(ξ)
1

ξ

∑

q

Cq(Q)F q

(
Q√
s
ξ, b∗(bT );Q

)
F q̄

(
Q√
s

1

ξ
, b∗(bT );Q

)]

× fNP

(
Qτ√
s
ξα, bT ;Qτ

)
fNP

(
Qτ√
s

1

ξα
, bT ;Qτ

)
.

(3.38)
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Finally, the integration over bT can be performed using the Ogata quadrature as dis-
cussed above, so that:

K̃(qT ) '
N∑

n=1

NQ∑

τ=0

Nξ∑

α=0

[
8π

9
w(1)
n

∫ Qmax

Qmin

dQ Iτ (Q)
1

Q3
α2(Q)H(Q)

×
∫ eymax

eymin

dξ Iα(ξ)
1

ξ

∑

q

Cq(Q)F q

(
Q√
s
ξ, b∗

(
zn
qT

)
;Q

)
F q̄

(
Q√
s

1

ξ
, b∗

(
zn
qT

)
;Q

)]

× fNP

(
Qτ√
s
ξα,

zn
qT

;Qτ

)
fNP

(
Qτ√
s

1

ξα
,
zn
qT

;Qτ

)
.

(3.39)

In conclusion, if we define:

Wnτα(qT ) ≡ w(1)
n

8π

9

∫ Qmax

Qmin

dQ Iτ (Q)
α2(Q)

Q3
H(Q)

×
∫ eymax

eymin

dξ Iα(ξ) 1
ξ

∑
q Cq(Q)F q

(
Q√
s
ξ, b∗

(
zn
qT

)
;Q
)
F q̄

(
Q√
s

1
ξ
, b∗

(
zn
qT

)
;Q
)
,

(3.40)
the quantity K̃(qT ) can be computed as:

K̃(qT ) '
N∑

n=1

NQ∑

τ=0

Nξ∑

α=0

Wnτα(qT )fNP

(
Qτ√
s
ξα,

zn
qT

;Qτ

)
fNP

(
Qτ√
s

1

ξα
,
zn
qT

;Qτ

)
. (3.41)

The advantage of Eq. (3.41) is that the weights Wnατ , that clearly depend on qT but
also on the intervals [Qmin : Qmax] and [ymin : ymax], can be precomputed once and
for all for each of the experimental points included in a fit and used to determine the
function fNP. This provides a fast tool for the computation of predictions that makes
the extraction of the non-perturbative part of the TMDs much easier.

We address now the issue of how the weights defined in Eq. (3.40) are affected by
the presence of cuts as discussed in Sect. 3.5.1. In principle, the function between
square brackets in Eq. (3.32) should be inside the integrals in Eq. (3.40) and integrated
over the variable Q and ξ = ey. However, this turns out to be numerically problematic
because the phase–space–reduction function P is expensive to compute. On top of this,
the fact that the factor between square brackets in Eq. (3.32) depends on whether qT
is a lower or an upper integration bound would lead to a duplication of the weights to
compute.

In order to simplify the computation, we assume that the function P and its deriva-
tive P ′ are slowly varying functions of Q and y over the typical grid interval of the
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grids in Q and ξ. In addition, the interpolating functions Iτ (Q) and Iα(ξ) are strongly
peaked at Qτ and ξα, respectively. These considerations allow us to avoid integrating
explicitly P and P ′ over Q and ξ and to replace the weights in Eq. (3.40) with

Wnτα(qT )→ [P (Qτ , ln(ξα), qT )± P ′ (Qτ , ln(ξα), qT ) ∆qT ]Wnτα(qT ) . (3.42)

In conclusion, the only additional information required to implement cuts on the final
state is the value of the phase–space reduction function P and its derivative P ′ on all
points of the bidimensional grid in Q and ξ for all qT bin bounds: Eq. (3.42) then
allows one to use the weights computed over the full phase–space.

Cross section differential in xF

In some cases, the Drell-Yan differential cross section may be presented as differential
in the invariant mass of the lepton pair Q and, instead of the rapidity y, of the Feynman
variable xF defined as

xF =
Q√
s

(
ey − e−y

)
=

2Q√
s

sinh y = x1 − x2 . (3.43)

This is the case of data of the E605 experiment for low energy Drell–Yan, for example.
From the definition of xF we have:

dxF
dy

=
2Q√
s

cosh y = x1 + x2 . (3.44)

Therefore:

dσ

dQdxFdqT
=

dy

dxF

dσ

dQdydqT
=

√
s

2Q cosh y

dσ

dQdydqT
=

1

x1 + x2

dσ

dQdydqT
(3.45)

with:

y(xF , Q) = sinh−1

(
xF
√
s

2Q

)
= ln

[√
s

2Q

(
xF +

√
x2
F +

4Q2

s

)]
, (3.46)

so that:

x1 =
1

2

(
xF +

√
x2
F +

4Q2

s

)
and x2 =

Q2

sx1

. (3.47)

Therefore, we can compute the integral:

Ĩ(qT ) =

∫ Qmax

Qmin

dQ

∫ xF,max

xF,min

dxF I(Q, xF , qT ) , (3.48)
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where I is the primitive in qT of the cross section differential in xF :

I(Q, xF , qT ) =

∫
dqT

[
dσ

dQdxFdqT

]
, (3.49)

following the same steps of Sect. 3.5.2, for the (numerical) integration over Q and y.
This leads to:

Ĩ(qT ) '
N∑

n=1

NQ∑

τ=0

Nx∑

α=0

W nτα(qT )fNP

(
x1,ατ ,

zn
qT

;Qτ

)
fNP

(
x2,ατ ,

zn
qT

;Qτ

)
, (3.50)

with:

W nτα(qT ) ≡ w(1)
n

8π

9

∫ Qmax

Qmin

dQ Iτ (Q)
1

Q3
α2(Q)H(Q)

×
∫ xF,max

xF,min

dxF Iα(xF ) 1
x1+x2

∑
q Cq(Q)F q

(
x1, b∗

(
zn
qT

)
;Q
)
F q̄

(
x2, b∗

(
zn
qT

)
;Q
)
,

(3.51)
where x1 and x2 are functions of xF and Q through Eq. (3.47). In addition, we have
defined a grid in xF , {xF,α} with α = 0, . . . , Nx, that allowed us to define x1(2),ατ ≡
x1(2)(xF,α, Qτ ).

3.6 Computation of χ2

The figure of merit used to determine the quality of the agreement between experimen-
tal data and theoretical predictions is the χ2 value. This object is also the quantity that
gets minimized during a fitting procedure, and it is therefore of the utmost importance
to be able to implement its computation efficiently.

The χ2 definition, for a certain dataset with n data points, is:

χ2 =
n∑

i,j=1

(mi − ti)V −1
ij (mj − tj) , (3.52)

where {ti} is a set of theoretical predictions for the given experiment, {mi} are the
measurements central values, and Vij is the covariance matrix. Different kinds of
uncertainties can be distinguished based on their experimental origin. In general, we
can write:

mi ± σi,unc ± σ(1)
i,corr ± · · · ± σ(k)

i,corr , (3.53)

where σi,unc are the uncorrelated uncertainties and σ(1)
i,corr ± · · · ± σ(k)

i,corr are correlated
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uncertainties associated with the central value mi.

In case there is more than one uncorrelated statistical uncertainty, σi,unc is the
square root of the sum in quadrature of all the uncorrelated systematic uncertainties
associated with the data point mi.

Also, Eq. (3.53) assumes that the systematic errors are all symmetric: since this is
not always the case, we should note that, in order to use the notation above, the sys-
tematic errors provided by the experiments have to be symmetrized and the measured
central values ought to be consistently shifted according to Eqs.(27)–(28) of Ref. [184].

When the information on the nature of the uncertainties is available, the covariance
matrix, that enters in Eq. (3.52), can be computed, and it may be written as

Vij =
(
σ2
i,stat + σ2

i,unc

)
δij +

k∑

l=1

σ
(l)
i,corrσ

(l)
j,corr . (3.54)

Further details about this formula for V are discussed in Sec. 3.6.2.

3.6.1 Effective χ2 computation

According to Eq. (3.52), in order to compute the χ2 value, one has to invert the
covariance matrix. This operation is computationally expensive to perform, in terms
of time required and numerical calculations, since V has several rows and columns (one
for each data point). Therefore, implementing the inversion of the covariance matrix
of Eq. (3.52) with numerical methods is not an optimal choice in a fitting framework.

An alternative method to implement the computation of the inversion of the ex-
perimental covariance matrix V required to evaluate the χ2 relies on the so–called
Cholesky decomposition. This is an iterative procedure that exploits the fact that V
is a symmetric matrix, as can be seen from Eq. 3.54.

It can be proven that any symmetric and positive definite matrix V can be decom-
posed in terms of a lower triangular matrix L as

V = L · LT , (3.55)

The entries of L are obtained recursively from those of the covariance matrix as follows:
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Lkk =

√√√√Vkk −
k−1∑

j=1

L2
kj ,

Lik =
1

Lkk

(
Vik −

k−1∑

j=1

LijLkj

)
, k < i ,

Lik = 0 , k > i .

(3.56)

Writing the χ2 definition 3.52 in the matrix, it can be clearly seen that, defining
yi ≡ mi − ti, we have:

χ2 = yT ·V−1 · y =
∣∣L−1 · y

∣∣2 . (3.57)

We notice that the vector x ≡ L−1 · y is the solution of the linear system:

L · x = y , (3.58)

where L and y are known, so that x can efficiently be found by forward substitution.21

Then, the χ2 may also be written as

χ2 = |x|2 . (3.59)

Therefore, with the Cholesky decomposition, there is no need to perform explicitly
the inversion of the covariance matrix V. This simplifies significantly the computa-
tion of the χ2. The procedure described above is implemented in NangaParbat in
src/chi2/chisquare.cc and src/chi2/linearsystems.cc.

3.6.2 Additive and multiplicative uncertainties

To have a faithful treatment of the correlated uncertainties in the computation of
the χ2, particular attention has to be payed to the distinction between additive and
multiplicative uncertainties. This is due to the fact that they play a different role in the
entries of the covariance matrix, and, specifically, including multiplicative uncertainties
in the wrong way can result in the so-called D’Agostini bias [185].

The nature of each uncertainty is typically provided by experimental collaborations
in their official releases of the datasets. A multiplicative uncertainty is an uncertainty

21Forward substitution is a modification of the general substitution method and is the
procedure that solves a linear system L · x = y with a lower triangular coefficient matrix L.
Its algorithm can be implemented in a code by simple steps: 1) xi = yi 2) xi = xi−

∑
j<i Lijxj

3) xi = xi/Lii .
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that affects the normalization of the data. An example is the luminosity uncertainty.
Now, let us express all the correlated systematic uncertainties σ(l)

i,corr as relative to
their central value mi, so that we define22

σ
(l)
i,corr ≡ δ

(l)
i,corrmi , (3.60)

and let us also define s2
i ≡ σ2

i,stat + σ2
i,unc so that Eq. (3.54) can be rewritten as

Vij = s2
i δij +

(
k∑

l=1

δ
(l)
i,corrδ

(l)
j,corr

)
mimj . (3.61)

Then, we split the correlated systematic uncertainties into ka additive uncertainties
and km multiplicative uncertainties, such that ka + km = k. This way Eq. (3.61) takes
the form:

Vij = s2
i δij +

(
ka∑

l=1

δ
(l)
i,addδ

(l)
j,add +

km∑

l=1

δ
(l)
i,multδ

(l)
j,mult

)
mimj . (3.62)

This definition of the covariance matrix, though, is problematic: if Eq. 3.62 was to be
used in a fitting procedure, it would induce a bias. Such bias is called the D’Agostini
bias, after Ref. [185, 186], where it was studied, and it is a downward shift of the fitted
theoretical predictions with respect to the data.

The bias concerns specifically datasets with large normalizations uncertainties and
causes predictions that largely undershoot the data. As a consequence, such shift
influences indirectly the quality of the whole fit. The direct effect of the bias is much
milder in case N experiments are considered.

The magnitude of the downward shift depends on the differences mi −mj, on the
size of the normalization error and on the number of data points considered.

In order to comprehend the origin of the D’Agostini bias, it is useful to consider a
simple example. Let m1 ± s1 and m2 ± s2 be two measurements of the same physical
quantity t, 23, from a single experiment with uncorrelated uncertainties s1 and s2.
Suppose that they only have one correlated uncertainty, a common normalization error
δ1,mult = δ2,mult ≡ δ .

22Note that this redefinition does not change the nature of the uncertainties, additive un-
certainties remain additive as well as multiplicative uncertainties remain multiplicative.

23For simplicity, here we suppose that we have only one quantity t to be determined.
In TMD extractions (as well as in PDFs fits) the situation is more complicated, as t is
some nontrivial function (i.e., the cross section) of many fitted parameters that describe the
distribution of interest. This further complication does not concern the issue at hand, and
considering only one t for illustration purposes takes nothing away from the nature of the
bias.

77



3. NangaParbat

In this case, the covariance matrix calculated with Eq. (3.62) is

V =

(
s2

1 + δ2m1 δ2m1m2

δ2m1m2 s2
2 + δ2m2

)
. (3.63)

With this covariance matrix, using Eq. (3.52), we can calculate χ2(t). After minimizing
χ2(t) with respect to t, we obtain that the best value of t is

t =
s2

1m2 + s2
2m1

s2
1 + s2

2 + (m1 −m2)2 δ2
=

w

1 + (m1−m2)2

s21+s22
δ2
. (3.64)

With respect to the weighted average w = (s2
1m2 + s2

2m1)/(s2
1 + s2

2) , Eq. (3.64) has
a new term in the denominator, (m1 −m2)2 δ2. If this term is negligible with respect
to the squared sum of the uncorrelated and statistic uncertainties, we get a value very
close to the weighted average of the two measurement, otherwise a smaller theoretical
prediction is obtained. In other words, as soon as there is a disagreement between the
data points, if their normalization error is different from zero, the result for t tends to
be shifted to small values.

It can be shown [185, 187] that the bias gets worse as the number of data points
gets bigger. For n measurements the theoretical prediction is

t =
w

1 +
∑n

i=1
(mi−w)2

s2i
δ2
, (3.65)

where w is the weighted average.
Therefore, in presence of large overall uncertainties on the scale, in order to min-

imize the χ2 the fitting procedure tends to underestimate the absolute value of the
predictions, preferring normalization factors smaller than 1 (within the range allowed
by the relative normalization error).

Ultimately, what leads to incorrect predictions when performing a fit using Eq. (3.62)
is the presence, in the covariance matrix, of the term

∑km
l=1 δ

(l)
i,multδ

(l)
j,multmimj, and specif-

ically the multiplication for the central values of the measurements mimj.
Since the bias is exacerbated when the differences between the data points are siz-

able, or when data are inconsistent with each other, a possible solution to the problem
is to use theoretical predictions instead of experimental values when treating multi-
plicative uncertainties. In fact, theoretical predictions are, by construction, a more
precise estimator of the observable than mi, as they level out the discrepancies in the
central value of the different data points.

This is the so–called t0 prescription [187], where the experimental central value mi

in the multiplicative term is replaced by a fixed theoretical predictions t(0)
i .
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Applying the t0 prescription, the covariance matrix takes the form:

Vij = s2
i δij +

ka∑

l=1

δ
(l)
i,addδ

(l)
j,addmimj +

km∑

l=1

δ
(l)
i,multδ

(l)
j,multt

(0)
i t

(0)
j . (3.66)

The value of t0 must be fixed beforehand: it has to be tuned to be consistent with the
theoretical prediction t resulting from the fit, but there is no standard procedure to
determine it in a self–consistent way during the minimization.

In our analysis, as coefficients t(0)
i (one for each parameter resulting from the fit)

we use the values of the parameters computed in a previous fit. 24

The implementation in NangaParbat of Eq. (3.66) was essential to take care of
the large normalization uncertainties of the dataset from the fixed–target Drell–Yan
experiments.

The definition in Eq. (3.66) of the covariance matrix gives a χ2 function that can
be used to produce unbiased fits.

3.6.3 Systematic shifts

In order to visualize the effect of systematic uncertainties, it is instructive to compute
the systematic shift generated by the systematic uncertainties. To do so, we need to
write the χ2 in terms of the so-called “nuisance parameters” λα:

χ2 =
n∑

i=1

1

s2
i

(
mi − ti −

k∑

α=1

λασ
(α)
i,corr

)2

+
k∑

α=1

λ2
α . (3.67)

This is an alternative definition of the χ2, and it can be demonstrated that Eq. (3.67)
is equivalent to Eq. (3.52) [188].

An important characteristic of the nuisance parameters is that their optimal value
is determined minimizing the χ2 with respect to them. Since the (3.67) dependence on
λα is quadratic, the best value for the nuisance parameters can be found analytically
by imposing:

∂χ2

∂λβ
= 0 . (3.68)

Solving Eq. (3.68) means finding the solution to the system:

k∑

β=1

Aαβλβ = ρα , (3.69)

24If the value chosen for t0 is not consistent with the datasets, this may lead to an incorrect
fit; however, the dependence on t0 of the χ2 is rather weak, as is shown in Ref. [187]
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where:

Aαβ = δαβ +
n∑

i=1

σ
(α)
i,corrσ

(β)
i,corr

s2
i

and ρα =
n∑

i=1

mi − ti
s2
i

σ
(α)
i,corr . (3.70)

In this way, starting from the correlated uncertainties of the experimental datasets, we
determine the values of λβ. Every source of uncertainty has its nuisance parameter λβ
which follows the standard normal distribution.

Now, looking at Eq. (3.67), we find it is useful to define two quantities:

di =
k∑

α=1

λασ
(α)
i,corr (3.71)

that can be interpreted as a shift induced by the correlated systematic uncertainties;
and the shifted predictions t̄:

ti = ti + di , (3.72)

With these elements at hand, the χ2 may be rewritten as:

χ2 =
n∑

i=1

(
mi − ti
si

)2

+
k∑

α=1

λ2
α . (3.73)

This expression for the χ2 contains explicit information about the value of the nuisance
parameters (at the best fit).

It can be noticed that Eq. (3.73) is similar to the form of the definition of the
χ2 where only uncorrelated uncertainties are present: with respect to the latter, in
(3.73) there is an extra term, called penalty term, given by the sum of the nuisance
parameters.

Names in this case are particularly evocative: the penalty term, in fact, is the price
to pay to recover the uncorrelated form of the χ2 formula, and the nuisance parameters
have to be small. As a rule of thumb, the penalty term is expected to be of modest
size, and, although there is no specific rule that says that it has to be smaller than the
uncorrelated contribution, if the nuisance parameters dominate the χ2, this may be an
indication of a poor fit.

In NangaParbat, (in src/chi2/chisquare.cc), both (3.66) and (3.73) are imple-
mented, and during the fitting procedure the numerical equivalence between the χ2

computed in terms of the nuisance parameters and that computed using the covariance
matrix is carefully checked by the code.

Shifted theoretical predictions are an optimal tool to ascertain the agreement be-
tween theoretical predictions and data. For this reason, in Sec 4.3, we chose to show
in the plots the comparison between central experimental measures mi and shifted
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predictions t̄i in units of the uncorrelated uncertainty si.

3.7 Minimization

In order to fit the function fNP of Eq. (3.15) to data, we used two independent codes:
Minuit2 [189] as implemented in ROOT, and Ceres Solver [190] (from now on simply
Ceres in this work). While the first (Minuit) has been used for this kind of tasks for
many years, the second (Ceres) is relatively new and typically used for more complex
problems such as image recognition, 3D modeling, etc...

Recently, the xFitter Collaboration [191] has used Ceres Solver for fitting collinear
PDFs [192], showing that this tool is suitable also for this kind of tasks. Having two
independent codes within the same framework turned out to be particularly useful to
cross check our results: to obtain the nominal results for PV19 we tried both minimizing
procedures and made sure that we obtained the same values for the final parameters of
fNP. While the fact that two minimizers based on different techniques give us the same
results does not guarantee that the minimization was successful in finding the absolute
minimum for the functional form of fNP, it does demonstrate a certain stability of our
results.

3.7.1 Minimizers and implementation

When running a fit in NangaParbat, the choice of the minimizer is read from the
input card selected in cards/ (see Sec. 3.4.2). The interfaces between NangaParbat
and Minuit2 and Ceres are implemented in src/minimisation/ and then called in
run/RunFit.cc, as shown in the snippet of code below:

1 // Allocate "Parameterisation" derived object
2 NangaParbat :: Parameterisation *NPFunc = NangaParbat ::

GetParametersation(fitconfig["Parameterisation"].as<std::
string >());

3

4 // Define "ChiSquare" object with a given qT / Q cut
5 NangaParbat :: ChiSquare chi2{* NPFunc };
6

7 // Set parameters for the t0 predictions using "t0parameters"
8 // in the configuration card only if the the t0 has been
9 // enabled and the central replica is not being computed.

10 if (fitconfig["t0prescription"].as<bool >())
11 NPFunc ->SetParameters(fitconfig["t0parameters"].as<std::

vector <double >>());
12

13 // Open datasets.yaml file that contains the list of datasets
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14 // to be fitted and push the corresponding pairs of
15 // "DataHandler" and "ConvolutionTable" objects into the
16 // a vector.
17 const YAML::Node datasets = YAML:: LoadFile(std:: string(argv

[3]) + "/datasets.yaml");
18 for (auto const& exp : datasets)
19 for (auto const& ds : exp.second)
20 {
21 std::cout << "Reading table for " << ds["name"].as<std::

string >() << "..." << std::endl;
22

23 // Convolution table
24 const std:: string table = std:: string(argv [4]) + "/" + ds[

"name"].as<std::string >() + ".yaml";
25 const NangaParbat :: ConvolutionTable ct{YAML:: LoadFile(

table), fitconfig["qToQmax"].as<double >()};
26 //ct.NumericalAccuracy(NPFunc ->Function ());
27

28 // Datafile
29 const std:: string datafile = std:: string(argv [3]) + "/" +

exp.first.as<std::string >() + "/" + ds["file"].as <std::
string >();

30 const NangaParbat :: DataHandler dh{ds["name"].as<std::
string >(), YAML:: LoadFile(datafile), rng , ReplicaID ,

31 (fitconfig["
t0prescription"].as<
bool >() ? ct.
GetPredictions(NPFunc
->Function ()) : std::
vector <double >{})};

32

33 // Add chi2 block
34 chi2.AddBlock(std:: make_pair(dh, ct));
35 }
36 // Report time elapsed
37 t.stop();
38

39 // Minimise the chi2 using the minimiser indicated in the
input card

40 t.start();
41 bool status;
42 if (fitconfig["Minimiser"].as<std::string >() == "none")
43 status = NoMinimiser(chi2 , fitconfig["Parameters"]);
44 else if (fitconfig["Minimiser"].as<std::string >() == "minuit")
45 status = MinuitMinimiser(chi2 , fitconfig["Parameters"], (

fitconfig["Paramfluct"].as<bool >() ? rng : NULL));
46 else if (fitconfig["Minimiser"].as<std::string >() == "ceres")
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47 status = CeresMinimiser(chi2 , fitconfig["Parameters"], (
fitconfig["Paramfluct"].as<bool >() ? rng : NULL));

48 else if (fitconfig["Minimiser"].as<std::string >() == "scan")
49 status = MinuitScan(chi2 , fitconfig["Parameters"], std::

string(argv [1]));
50 else
51 throw std:: runtime_error("[RunFit ]: Unknown minimiser");
52

53 // Print the total chi2 on screen
54 std::cout << "Total chi2 = " << chi2() << "\n" << std::endl;
55

56 // Produce the output
57 YAML:: Emitter out;
58 out << chi2;
59 std:: ofstream rout(OutputFolder + "/Report.yaml");
60 rout << "Status: " << status << std::endl;
61 rout << out.c_str() << std::endl;
62 rout.close();

As this is where the fit effectively takes place, it is worth to briefly comment the
structure of the code above, that in a certain sense reflects the structure of NangaParbat
and allows a better comprehension of the entire fitting framework.

The core of run/RunFit.cc is a ChiSquare class object of the, NangaParbat::
ChiSquare chi2, that needs the parameterization of the nonperturbative function as
an input. In order to compute the χ2, NangaParbat::ChiSquare chi2 needs also a
pair consisting in an object of the ConvolutionTable class (perturbative input, see also
Sec. 3.4.1) and one of the DataHandler class (for more details see Sec. 3.3.2): for each
experiment, they are initialized and then added to chi2 through the AddBlock method.

Then, using chi2, the selected minimization procedure is called. There are four
options available: two of them are actual minimizations, with Minuit2 or with Ceres,
"none" corresponds to the choice of computing the χ2 without minimization 25 while
with scan NangaParbat computes the χ2 without minimization and performs also a
scanning of the phase–space of each parameter.

The scan option is particularly useful in the early stages of the fit, to see if each
parameter is reasonably near its minimium or if a further minimization is possible
with more iterations, changing the initial parameters in cards/ accordingly. In fact,
sometimes the minimizer reaches a minimum (determined considering some internal
parameters for the accuracy) but a further minimization is still possible. In these
cases, it is customary to take the output values of the parameters and feed them to

25In this case, Minuit2 is called anyway, but no minimization is performed and
the final parameters are put equal to the initial ones. The implementation of bool
NoMinimiser(ChiSquare const& chi2, YAML::Node const& parameters) can be found in
src/minimisation/minimisation.cc.
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the fit as a new starting point of the minimization. Such operation is done replacing
the parameters in the input card (either manually or using the corresponding option
in cli/fit.py). The parameter scan is implemented exploiting the function Scan
available in Minuit2. If such option is chosen when running the fit with cli/fit.py
a plot for each parameter is also produced.

The object chi2 also takes care of producing the output once the fitting procedure
is finished. Besides printing some salient characteristics of the fit on the terminal,
NangaParbat stores the output for each replica in a yaml file called Report.yaml
and placed in NameOfOutputFolder/replica_N/ (where N is the replica identification
number). In particular, the first line of Report.yaml indicates if the minimization
procedure for the relative replica was successful or not (Status: 1 means that the
replica converged).

The output of NangaParbat in Fig. 3.1, with its directories and sub–directories, is
the baseline to create a proper report of the fit using cli/report.py.

As final remark, we mention that besides the final value of the parameters Minuit2
also gives an estimate on their errors. However, the uncertainties on the final param-
eters of our fNP extraction that we discuss in Ch. 4 do not correspond to with the
Minuit2 computed errors, as in our statistical analysis the estimate of a parameter
uncertainty is related to the spread of the Monte Carlo replicas around the central
value (which is the final value of the parameter). As mentioned in Sec. 3.4.2, the errors
estimated by Minuit are used in the input card to set the initial step for the eventual
fluctuation of the initial values of the parameters.

3.8 Grid production

The suite of tools NangaParbat can be also used to produce grids in which results of fits
are encoded. Grids are particularly useful to make TMD extractions available to the
community. To access the information contained in them, NangaParbat also provides
interpolation tools, discussed in Sec. 3.9.

We produced grids for both TMD extractions currently implemented in NangaParbat,
PV17 [84] and PV19 (the extraction discussed in Ch. 4, and published in Ref. [95]). In
particular, the following sets of grids are available:

� PV19 unpolarized TMD PDFs, f1

� PV17 unpolarized TMD PDFs, f1

� PV17 unpolarized TMD FFs, for Dh→π+

1

� PV17 TMD FFs, Dh→π−
1
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� PV17 structure function F h→π+

UU,T

� PV17 structure function F h→π−
UU,T

In order to have the possibility of producing a grid for a specific parameterization,
such parameterization has to be implemented in NangaParbat, which means that its
analytical form has to be encoded in a file in inc/NangaParbat/ and a directory with
the replicas’ results with the style of a NangaParbat output (see Fig.3.1) has to exist.

Our grids are in yaml format and are optimized to have a manageable size: in fact,
one of the main problems when tabulating functions in three or four dimensions is that
the final size of the files can be huge and thus not suitable for an easy transfer and
usage.26

NangaParbat grids in principle can be used with every interpolator that is capable
of reading tables structured as is specified in this section. However we suggest the
use of the interpolator included in NangaParbat. In fact, the philosophy behind grid
production in NangaParbat is to have grids as light as possible, with points coarsely
span the spectrum of each variable, and to provide a good interpolator that allows the
user to get sufficiently good results from such grids.

The grids we provide have been thoroughly tested using the NangaParbat inter-
polator, comparing results obtained from grids with direct calculations of the TMDs
(see Sec. 3.9.1). Results obtained using other interpolators may significantly differ
from predictions obtained with direct calculation and may depend on the choice of
interpolator.

Grids produced by the Pavia group are presently available on TMDlib and TMD-
plotter [193, 194]. In particular, they can be downloaded from:

https://syncandshare.desy.de/index.php/s/GjjcwKQC93M979e?path=%2FTMD%
20grid%20files

and they can be plotted though the TMDplotter web interface at:
http://tmdplotter.desy.de/TMDplotter.php?mode=default&type=tmdkt.
In the following sections, the implementation and the structure of our grids are

illustrated.

3.8.1 TMD grids

As mentioned in the introduction, once a TMD fit has been performed with NangaParbat,
starting from the output it is possible to encode the results of such extraction in three–
dimensional grids.

26When considering the size of grids relative to a given extraction, one should also consider
the number of Monte Carlo replicas available for such extraction: for example, there are 200
replicas both in PV17 and PV19, so the final size of the grid folder is equal to around 200
times the size of a single grid.
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In accordance with NangaParbat’s structure, the program to launch to produce
TMD grids is run/CreateGrids, which takes the fit output folder as an input from the
terminal line and calls the function NangaParbat::ProduceTMDGrid. The second input
that run/CreateGrids takes is whether to produce TMD PDF grids or TMD FF grids:
in case of PV19, only TMD PDF can be considered, but for PV17 the user can choose
between those two options.

The functions NangaParbat::ProduceTMDGrid and NangaParbat::EmitTMDGrid (the
second one is called by the first) are responsible for the computation of the grid and
its production in yaml format. Such functions are implemented in
src/tmdgrid/createtmdgrid.cc, while in inc/NangaParbat/createtmdgrid.h the
NangaParbat structure dedicated to three–dimensional grids, struct ThreeDGrid, is
encoded.

The output of run/CreateGrids is a folder, whose name is chosen by the user (it
is the third element in the terminal input line, without it the program does not run).
The folder contains a grid for each replica plus an info file, with the same name of the
grid, where the most important features of the extraction and the grid are written As
reference, we show the info files for the PV19 TMD PDF extraction and for PV17 FF
for hadron in π+. For PV19 f1 we have:

1 SetDesc: Set produced with NangaParbat + APFEL++ (please cite
arXiv:1912.07550 and arXiv:1708.00911)

2 Authors: A. Bacchetta , V. Bertone , C. Bissolotti , G. Bozzi , F.
Delcarro , F. Piacenza , M. Radici

3 Reference: arXiv:1912.07550
4 SetIndex: 000000
5 SetName: PV17nll
6 TMDType: pdf
7 CollDist: MMHT2014nnlo68cl
8 CollDistMember: 0
9 Format: TMDlib2

10 DataVersion: 1
11 OrderQCD: NNNLL
12 AlphaS_OrderQCD: 2
13 Regularisation: bstarmin
14 NumMembers: 216
15 ErrorType: Monte Carlo
16 FlavorScheme: LHAPDF style
17 Flavors: [-5, -4, -3, -2, -1, 1, 2, 3, 4, 5]
18 NumFlavors: 5
19 XMin: 1e-05
20 XMax: 1
21 QMin: 1
22 QMax: 200
23 KtoQMin: 0.0001
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24 KtoQMax: 2.001

while the info file produced for PV17 FF Dh→π+

1 is:

1 SetDesc: Set produced with NangaParbat + APFEL++ (please cite
arXiv:1912.07550 and arXiv:1708.00911)

2 Authors: A. Bacchetta , F. Delcarro , C. Pisano , M. Radici , A.
Signori

3 Reference: arXiv:1703.10157
4 SetIndex: 000000
5 SetName: PV17nll
6 TMDType: ff
7 CollDist: DSS14_NLO_Pip
8 CollDistMember: 0
9 Format: TMDlib2

10 DataVersion: 1
11 OrderQCD: NLL
12 AlphaS_OrderQCD: 0
13 Regularisation: bstarmin
14 NumMembers: 201
15 ErrorType: Monte Carlo
16 FlavorScheme: LHAPDF style
17 Flavors: [-5, -4, -3, -2, -1, 1, 2, 3, 4, 5]
18 NumFlavors: 5
19 XMin: 0.1
20 XMax: 1
21 QMin: 1
22 QMax: 100
23 KtoQMin: 0.0001
24 KtoQMax: 5

In NangaParbat, TMD grids have the format of a (yaml) map of vectors of vectors.
This means that a grid is composed by objects with the structure:

flavor :

Q1︷ ︸︸ ︷[ [
[kt1 , . . . , ktNkt

], . . . , [kt1 , . . . , ktNkt
]
]

︸ ︷︷ ︸
x1

, . . . ,
[

[kt1 , . . . , ktNkt
], . . . , [kt1 , . . . , ktNkt

]
]

︸ ︷︷ ︸
xNx

, . . . . . . ,

QNQ︷ ︸︸ ︷[ [
[kt1 , . . . , ktNkt

], . . . , [kt1 , . . . , ktNkt
]
]

︸ ︷︷ ︸
x1

, . . . ,
[

[kt1 , . . . , ktNkt
], . . . , [kt1 , . . . , ktNkt

]
]

︸ ︷︷ ︸
xNx

(3.74)
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The key of the map is the flavor number, that, as shown in the information file, can
go from −5 to 5 (we follow LHAPDF notation and the zero is skipped because it
corresponds to the gluon).

A vector of vectors is associated to each flavor, i.e., there is a structure like Eq. (3.74)
for each flavor. In each vector of vectors the outer layer corresponds to different values
of Q (in Eq. (3.74), Q = Q1, . . . , QNQ), the second layer to values of x (or z, in the
case of FFs, x = x1, . . . , xNx) and the inner layer to values of kT (or pT for FFs,
kt = kt1 , . . . , ktNkt

).
A detail concerning fragmentation functions is particularly worth of notice: usu-

ally, the FF D1 is expressed with a dependence on P⊥, the transverse momentum
of final hadron within respect to virtual photon, as D1(z, P⊥;Q), while in our grids
is D1(z, p⊥;Q), where p⊥ is the transverse momentum of the parton. So, to obtain
D1(z, P⊥;Q) from our PV17 FFs grids, a change of variable is necessary:

P⊥ = −zp⊥ (3.75)

To create the grids, a choice for [Q1, . . . , QNQ], [x1, . . . , xNx] and [kt1 , . . . , ktNkt
] has to

be made: we used the points specified in inc/NangaParbat/createtmdgrid.h in the
function ThreeDGrid Inter3DGrid(std::string const& pf), which returns a ThreeD-
Grid object grid better tuned for PDFs or FFs according to the input string.

Grid points have been chosen through optimization tests that used PV17 and PV19
as functional forms: in order to determine the number of points and where such points
should be in the Q, x, kT spectrum, we performed several comparisons between the
direct calculation of the TMD itself and the result of grid interpolation. More details
about interpolation tools and their accuracy are given in Sec. 3.9, but a few more words
on the motivation of our choices are appropriate here.

The number of points to put in the grids has been chosen taking into account also
the size of the files that are produced, as this is a very important quality for a product
that to be used has to be easy to share. We managed to obtain a good compromise
between the size of the files and the accuracy of the grids, and a TMD PDF grid (for
a single replica) is ∼ 16 MB, while a FF grid is ∼ 10 MB (for each replica).

As for the choice of the values of Q, x and kT to grid, the selection of the specific
points may be dependent on the functional form of the extraction that is tabulated. We
found that the values reported above work well for both PV17 and PV19, which present
different functional forms; however, should NangaParbat be used for the production of
grids for different extractions, we advise the users to run a few test on the accuracy of
the interpolation to see if the grid points in inc/NangaParbat/createtmdgrid.h suite
their needs.

Note that in the grids the kT points are expressed as kT/Q: this is more convenient
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within respect the use of a simple vector in kT , as it allows us to specify only once the
spacing of the points over the range in kT , while if we put specific values for kT we
would need to have a vector of values of kT for every value of Q.

If the necessity to have different kinematic points in TMD grids arises, the re-
quired changes to the standard choice (which is the one present above) can be done
directly in inc/NangaParbat/createtmdgrid.h, or, a better option that does not dis-
rupt the NangaParbat structure is to create another function, equivalent to ThreeDGrid
Inter3DGrid(std::string const& pf), which contains the desidered Q, x, kT values,
and then use such function in NangaParbat::ProduceTMDGrid in
src/tmdgrid/createtmdgrid.cc.

The values of the kinematic points in the grids do not matter for the interpolation:
the crucial characteristic that all grids must have to be used with the NangaParbat
interpolator is the YAML structure, which must be the one shown in Eq. (3.74). The
kinematic points we chose for TMD grids are reported in Appendix 3.D.

As mentioned above, the total size of the bundle of grid files is particularly im-
portant for TMD delivery: keeping a reasonable size of the grids is mandatory for the
release of a TMD ensemble, which is typically made of one grid for each TMD replica
available. We tackled the problem of storage space by selecting carefully the interpolat-
ing grid, in such a way that a good accuracy is preserved without increasing too much
the number of interpolating points. Other solutions to this crucial point have been
conceived: for example, in Ref. [195], the authors study a compression algorithm for
Monte Carlo PDF sets. The scope of such algorithm is to find a subset of the original
set of replicas such that delivers a probability distribution as indistinguishable from
the one of the whole set of replicas set as possible. In particular, Ref. [195] shows that,
with the use of an optimal compression strategy, it is possible to obtain an ensemble
of Nrep replicas with the same statistical features of the Ñrep � Nrep original replicas
with sufficient accuracy for most relevant application.

3.8.2 Structure function grids

To compute the SIDIS cross section, the structure function FUU,T is needed. The struc-
ture function FUU,T is a convolution a TMD PDF, f1, and a TMD FF, D1. Ideally, a
user could compute the structure function directly, by interpolating the two appropriate
TMD grids and convolute them using the tools provided by NangaParbat. However,
for experimental studies it could be preferable to have directly FUU,T grids. Therefore,
we made them available in NangaParbat.

We produced FUU,T grids starting from TMDs extracted in PV17 [84], since in
PV19 we analyzed only Drell–Yan data and thus we did not have access to the TMD
FFs D1. For the moment, we provide structure functions for the production of π+ and
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π−, denoted as F h→π+

UU,T and F h→π−
UU,T . In the future, other final–state hadrons will be

included.
The unpolarized structure function could be directly computed in bT–space, as done

during the fit. However, using TMD grids has the advantage of avoiding some problems
that could arise if TMD PDFs and TMD FFs are treated in different ways.

The NangaParbat implementation of structure functions grid production is very
similar to that of TMDs: run/CreateStructGrids calls the function NangaParbat::
ProduceStructGrid, implemented in src/tmdgrid/createstructgrid.cc, that com-
putes a four dimensional grid (in x, z, qT and Q).

To run, run/CreateStructGrids needs the following inputs:

1 ./ CreateStructGrids <main fit directory with TMD grids > <name
of TMD PDF set > <name of TMD FF set > <output > <[optional]
replica ID>

In particular, the names of the two NangaParbat TMD grids are needed, one for the
PDF and one for the FF. This choice has been made because an incompatibility of
quark thresholds in the two different collinear sets used (MMHT2014lo68cl for PDFs
and DSS14NLO for FFs) caused problems in the definition of the active flavors at cer-
tain values of Q (specifically between Q = 4.3GeV, mass of the bottom in DSS14NLO,
and Q = 4.75GeV mass of the bottom in MMHT2014lo68cl). Due to how the direct
calculation of FUU,T is implemented in NangaParbat, these problems arise when per-
forming the computation in bT–space, while they are not present when convoluting two
TMD grids.

The tool that performs the convolution, implemented in
src/tmdgrid/createtmdgrid.cc is discussed in Sec. 3.9.3.

Analogously to TMD grids, also in the structure function case an information file
is produced by the function NangaParbat::EmitStructInfo:

1 SetDesc: Set produced with NangaParbat + APFEL++ (please cite
arXiv:1912.07550 and arXiv:1708.00911)

2 Authors: A. Bacchetta , F. Delcarro , C. Pisano , M. Radici , A.
Signori

3 Reference: arXiv:1703.10157
4 SetIndex: 000000
5 StructFuncType: FUUT
6 Target: proton
7 FinalStateHadron: Pip
8 TMDPDF: PV17nll
9 TMDFF: PV17nll

10 Format: TMDlib2
11 DataVersion: 1
12 OrderQCD: NLL
13 NumMembers: 200
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14 ErrorType: Monte Carlo
15 NumFlavors: 5
16 XMin: 1e-05
17 XMax: 0.8
18 ZMin: 0.1
19 ZMax: 0.8
20 QMin: 1
21 QMax: 100
22 KtoQMin: 0.0001
23 KtoQMax: 1

The C++ structure that supports the production of four–dimensional grids in
NangaParbat is struct FourDGrid, in inc/NangaParbat/createstructgrid.h.

The structure of FUU,T grids can be deduced from the function that creates them,
NangaParbat::EmitStructGrid in src/tmdgrid/createstructgrid.cc where the ob-
ject

1 std::vector <std::vector <std::vector <std::vector <double >>>> SFs

is filled following the indexes order SFs[iQ][ix][iz][iqT]:

SFs[Q1, . . . , QNQ][x1, . . . , xNx][z1, . . . , zNz][qt1 , . . . , qtNkt
] (3.76)

Since to obtain FUU,T there is a sum over all the flavors, the structure of these grids is
simply in the format of vectors of vectors, without the flavor map (needed for TMDs).
With this exception, the structure of FUU,T is analogous to the one in Eq. (3.74) with
the addition of the index z, as shown in Eq. (3.76).

Also in the case of FUU,T grids, we performed tests optimized the choice kinematic
points in view of the use of such grids with the NangaParbat interpolator. For more
details about these tests see also the following section, Sec. 3.9. The kinematic points
we included in the grids are reported in Appendix 3.D. Currently FUU,T grids have a
size of 31 MB and there are 200 replicas available.

3.9 Tools

In order to best exploit the information contained in our grids, we created a few tools
to use them. These tools are contained in the tools/ section of NangaParbat and
consist in functions that interpolate three–dimensional and four–dimensional grids and
convolute two TMD grids.

The interpolation of the grids can be done with TMDGridInterpolation.cc for
TMDs and with tools/StructGridInterpolation.cc for structure functions, while
GridsConvolution.cc performs the convolution between a TMD PDF grid and a
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TMD FF grid. The input files, where the user can choose the kinematic points for the
interpolation and the convolution, are in tools/inputs/.

NangaParbat makes use of the APFEL++ interpolator to get results from grids: in
Sec. 3.9.1, a brief overview of the formulas implemented in APFEL++ is given, as well as
some plots of the tests we run on the grid interpolation.

In Sec. 3.9.3 the convolution tool is discussed.

3.9.1 Interpolation

Interpolation is an extremely powerful tool that allows to reconstruct, within some
accuracy, continuous functions when knowing them only in a finite number of points.
Unsurprisingly, interpolation techniques are massively used in numerical codes.

In order to make the best of interpolation, APFEL++ has been designed around a
specific choice of the interpolation strategy. Specifically, the very computational core
of APFEL++ relies on Langrange polynomials and their properties. Despite Langrange
polynomials do not enjoy the smoothness of splines, they enjoy a number of very useful
properties that allow extending the use of Lagrange polynomials from just interpolation
to derivation and integration.

Lagrange interpolation

In this section we will derive a general expression for the Lagrange interpolating func-
tions w.

Suppose one wants to interpolate the test function g in the point x using a set of
Lagrange polynomials of degree k. This requires a subset of k+1 consecutive points on
an interpolation grid, for example {xα, . . . , xα+k}. The relative position between the
point x and the subset of points used for the interpolation is arbitrary. It is convenient
to choose the subset of points such that xα < x ≤ xα+k. 27 However, the ambiguity
remains because there are k possible choices according to whether xα < x ≤ xα+1, or
xα+1 < x ≤ xα+2, and so on. For now we assume that:

xα < x ≤ xα+1 , (3.77)

but this assumption can be released later. Using the standard Lagrange interpolation

27Actually, it is not necessary to impose the constraint xα < x ≤ xα+k. In case this
relation is not fulfilled one usually speaks about extrapolation rather than interpolation. If
not necessary, this option is typically not convenient because it may lead to a substantial
deterioration in the accuracy with which g(x) is determined.
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procedure, one can approximate the function g in x as:

g(x) =
k∑

i=0

`
(k)
i (x)g(xα+i) , (3.78)

where `(k)
i is the i–th Lagrange polynomial of degree k which can be written as:

`
(k)
i (x) =

k∏

m=0
m 6=i

x− xα+m

xα+i − xα+m

. (3.79)

Since we have assumed that xα < x ≤ xα+1 (see Eq. (3.77)), Eq. (3.78) can be written
as:

g(x) = θ(x− xα)θ(xα+1 − x)
k∑

i=0

g(xα+i)
k∏

m=0
m 6=i

x− xα+m

xα+i − xα+m

. (3.80)

In order to make Eq. (3.80) valid for all values of α, one just has to sum over all Nx+1

nodes of the global interpolation grid {x0, . . . , xNx}, that is:

g(x) =
Nx−1∑

α=0

θ(x− xα)θ(xα+1 − x)
k∑

i=0

g(xα+i)
k∏

m=0
m 6=i

x− xα+m

xα+i − xα+m

. (3.81)

Defining β = α + i, one can rearrange the equation above as:

g(x) =
Nx+k−1∑

β=0

w
(k)
β (x)g(xβ) , (3.82)

that leads to the definition of the interpolating functions:

w
(k)
β (x) =

k∑

i=0
i≤β

θ(x− xβ−i)θ(xβ−i+1 − x)
k∏

m=0
m 6=i

x− xβ−i+m
xβ − xβ−i+m

. (3.83)

Notice that the condition i ≤ β comes from the condition α ≥ 0. It is important to
observe that the sum in Eq. (3.82) extends up to the (Nx + k− 1)–th node. Therefore,
the original grid needs to be extended by k − 1 nodes. However, the range of validity
of the interpolation remains that defined by the original grid, i.e. x0 ≤ x ≤ xNx .

Typically, only a small number of terms in the sum in Eq. (3.82) is different from
zero. For any given value of x, it is possible to determine the values of the index
β for which the interpolating functions w(k)

β are different from zero, reducing (often
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dramatically) the amount of sums required to carry out an interpolation. The range of
β is easily determined by observing that in Eq. (3.80) the summation extends on the
nodes between xα and xα+k. But since β is defined like α + i this exactly defines the
range in β:

α(x) ≤ β ≤ α(x) + k , (3.84)

where the function α(x) is implicitly defined through Eq. (3.77). Therefore, Eq. (3.82)
becomes:

g(x) =

α(x)+k∑

β=α(x)

w
(k)
β (x)g(xβ) , (3.85)

Since interpolation functions w(k)
β (x) often appear inside integrals, it is very useful

to use the fact that they are different from zero only over a limited interval, specifically:

w
(k)
β (x) 6= 0 ⇔ xβ−k < x < xβ+1 . (3.86)

This allows one to optimize integrations, such as the one to obtain the weights in
Eq. (3.42), restricting the integration region only to where the interpolating functions
are different from zero.

Generalized interpolation

Sometimes it may be useful to release this assumption: for example, a situation in which
this is advantageous is in the presence of non-smooth or discontinuous functions (such
as PDFs and FFs as function of the factorization scale µ in correspondence of the heavy-
quark thresholds). When interpolating these functions one should not interpolate over
the discontinuities. To do so and yet retain a given interpolation degree, one can release
the assumption in Eq. (3.77). Specifically, we generalize it to:

xα+t < x ≤ xα+t+1 with t = 0, . . . , k − 1 , (3.87)

such that the interpolation formula becomes:

g(x) =
Nx−t−1∑

α=−t

θ(x− xα+t)θ(xα+t+1 − x)
k∑

i=0

g(xα+i)
k∏

m=0
m 6=i

x− xα+m

xα+i − xα+m

, (3.88)

that can be rearranged as:

g(x) =
Nx+k−t−1∑

β=−t

w
(k)
β,t (x)g(xβ) , (3.89)
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with:

w
(k)
β,t (x) =

k∑

i=0,i≤β

θ(x− xβ−i+t)θ(xβ−i+t+1 − x)
k∏

m=0,m 6=i

x− xβ−i+m
xβ − xβ−i+m

, (3.90)

being the generalized interpolation functions. We observe that the support region of
w

(k)
β,t is:

w
(k)
β,t (x) 6= 0 ⇔ xβ+t−k < x < xβ+t+1 , (3.91)

that generalizes Eq. (3.86). The generalized interpolation functions can be used to
avoid interpolating over some particular grid nodes. In order to avoid interpolation
over a specific node of the grid, t can be chosen dynamically in such a way that β + t

in Eq. (3.90) never corresponds to that particular node.

This mechanism is implemented (in APFEL++) as follows. The interpolation grid is
chosen to have two nodes in correspondence of the threshold xT , but slightly displaced
up and down by an “infinitesimal” amount ε to keep them separate, that is:

{x0, . . . , xαt−1, xαt , . . . , xNx} with xαt−1 = xT − ε and xαt = xT + ε . (3.92)

The aim is then to avoid interpolating over the nodes xαt−1 and xαt . By default
we assume t = 0 in Eq. (3.90) so that we automatically reduce to Eq. (3.83). In
this situation, we are assuming Eq. (3.77) where effectively the index α is determined
dynamically according to the values of x. Therefore, we can effectively write:

xα(x) < x ≤ xα(x)+1 , (3.93)

which implicitly defines the function α(x). Eq. (3.80) then requires summing over the
k+ 1 nodes of the grid {xα(x), . . . , xα(x)+k}. However, when the point x approaches xT
from below, the range {xα(x), . . . , xα(x)+k} may end up enclosing both nodes xαt−1 and
xαt . To avoid this, we promote the index t in Eq. (3.87) to a function of x defined
through the inequalities:





x < xT ,

xαt−2 < xα(x)−t(x)+k ≤ xαt−1 ,

(3.94)

that translate into:




α(x) ≤ αt − 2 ,

αt − 2 < α(x)− t(x) + k ≤ αt − 1 .

(3.95)
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Imposing the unnecessary but convenient constraint t(x) ≥ 0, finally gives:

t(x) = max [min [α(x), αt − 2]− αt + k + 1, 0] , (3.96)

that also obeys:
0 ≤ t(x) ≤ k − 1 , (3.97)

as required. In addition, as in Eq. (3.85), the summation over β in Eq. (3.89) can be
restricted to a range of k + 1 nodes as:

g(x) =

α(x)−t(x)+k∑

β=α(x)−t(x)

w
(k)
β,t (x)g(xβ) . (3.98)

3.9.2 Grid interpolation tests

We tested the grid we produced with NangaParbat (Sec. 3.8) with the in interpolator
based on APFEL++ described above. To test TMD grids (and the interpolator) we used
the program tests/GridProduction.cc, which compares results obtained from the
grids with the direct computation of the TMD in bT–space. The four–dimensional in-
terpolator and the FUU,T grids have been tested with tests/FUUTGridProduction.cc,
analogous to the TMD one.

The results of the tests are shown in plots in Appendix 3.E. We iteratively modified
the number of points to include in the grids and the spacing between them until the
relative discrepancy between direct computation and interpolation from the grids was
below 2%.

The program tools/TMDGridInterpolation allows the user to interpolate
NangaParbat TMD grids, which have to be downloaded separately (they are not in-
cluded in the NangaParbat framework, but they can be downloaded at the link reported
in the introduction of this section). The program is executed with the command:

1 ./ TMDGridInterpolation <grid main folder > <grid name > <n. repl
.> <output >

where the first input is the relative path to the folder where the user has stored the
grids, the second input consists in the name of the grid set to interpolate. Then, the
number of the replicas that the user wants to consider is specified and also a name for
the output folder, where the values of the TMD in the desired points will be stored, is
to be indicated.

In tools/TMDGridInterpolation.cc, grids are initialized with

1 NangaParbat :: TMDGrid* TMDs = NangaParbat ::mkTMD(Name , Folder ,
ReplicaNumber);
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and interpolated with TMDs->Evaluate(x , kToQ * Q , Q).at(ifl), where ifl is a num-
ber that indicates the flavor that the user wants to consider and x, kToQ andQ are read
form the input card in tools/inputs/TMDGridInterpolation.yaml which the users
can modify to suit their needs. The program tools/StructGridInterpolation.cc
works in a similar way, and the function Evaluate in this case calls the four–dimensional
interpolator.

The output of both programs is a yaml file.
As a final remark it is important to stress that the interpolator called in

tools/TMDGridInterpolation.cc and tools/StructGridInterpolation.cc does not
necessarily need a grid created with NangaParbat: grids created with any program
that have the same structure of the grids illustrated in Sec. 3.8 are compatible with
the NangaParbat interpolator.

3.9.3 Convolution

Besides the interpolator, NangaParbat offers another tool to manipulate grids: in order
to compute structure functions, a convolution between two TMDs is required, and this
operation is done by the program tools/GridsConvolution.cc, which is run in the
following way:

1 ./ GridsConvolution <directory with TMD grids > <name of TMD
PDF set > <name of TMD FF set > <replica ID>

where, as in tools/TMDGridInterpolation.cc, <directory with TMD grids> is the
relative path to the folder where the grids are, the second and third inputs are the
names of the grids to convolute and <replica ID> is the replica to consider.

The convolution between two TMD grids is implemented in
src/tmdgrid/factories.cc in the function:

1 /**
2 * @brief Function that performs the convolution of two TMD
3 * distributions in kT space.
4 * @param TMD1: first distribution
5 * @param TMD2: second distribution
6 * @param Charges: to be used as weights of the partonic

combinations
7 * @param kTCutOff: cutoff on the integration in kT relative

to Q (default: 1)
8 * @param IntEps: integration relative accuracy (default: 1e

-5)
9 */

10 std::function <double(double const&, double const&, double
const&, double const&)>

11 Convolution(TMDGrid const* TMD1 ,
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12 TMDGrid const* TMD2 ,
13 std::function <std::vector <double >( double const&)>

const& Charges ,
14 double const& kTCutOff = 1,
15 double const& IntEps = 1e-5);

The formula encoded in NangaParbat::Convolution is:

TMD1 ⊗ TMD2 =
∑

q

cq(Q)

×
∫ ∞

0

dkT kT

∫ 2π

0

dθTMD1(x1, kT ;µ, ζ)TMD2(x2,
√
q2
T + k2

T − 2qTkT cos θ;µ, ζ)

(3.99)

and takes into account if the convolution is computed between two distributions of the
same type (as for Drell–Yan and e+e− annihilation) or between one TMD PDF and
one TMD FF (SIDIS case).
1 // Changes q and qbar in order to properly compute the

luminosity.
2 int sgn = 1; // SIDIS
3 if (TMD1 ->GetInfoNode ()["TMDType"].as<std::string >() == TMD2 ->

GetInfoNode ()["TMDType"].as<std::string >())
4 sgn = -1; // DY, e+e-
5

6 return [=] (double const& x1, double const& x2, double const&
Q, double const& qT) -> double

7 {
8 const std::vector <double > Bq = Charges(Q);
9 apfel:: Integrator integrandKT{

10 [=] (double const& kT) -> double
11 {
12 apfel:: Integrator integrandTheta{
13 [=] (double const& theta) -> double
14 {
15 const std::map <int , double > d1 = TMD1 ->Evaluate(x1,

kT, Q);
16 const std::map <int , double > d2 = TMD2 ->Evaluate(x2,

sqrt( pow(kT, 2) + pow(qT, 2) - 2 * kT * qT * cos
(theta) ), Q);

17 double lumi = 0;
18 for (int i = 1; i <= 5; i++)
19 lumi += Bq[i-1] * ( d1.at(i) * d2.at(sgn * i) + d1

.at(-i) * d2.at(-sgn * i) );
20 return lumi;
21 }
22 };
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Figure 3.2: Dependence of the numerically computed convolution formula on the kT space
cut–off.

23 return kT * integrandTheta.integrate(0, 2 * M_PI , IntEps);
24 }
25 };
26 return 2 * M_PI * integrandKT.integrate (0, kTCutOff * Q,

IntEps);

In particular, when we convolute f1 and D1, we have:

FUU,T(x, z, qT , Q) =
∑

q

c(Q)f q1 ⊗Dq→π±
1 (x, z, qT , Q) (3.100)

Our F h→π±
UU,T grids have been obtained performing the convolution between our PV17 f1

and Dh→π±
1 grids.

Note that in Eq. (3.99) the integral in kT extends up to infinity. In practice, such
integral in order to be computed numerically needs a cut–off over the momenta. For
its numerical computation, a kT cut–off is applied. It follows that the implementation
of Eq. (3.99) has a dependence on such cut–off, as it is shown in Fig. 3.2 where we can
observe that, at Q = 5 GeV, truncating the integral too soon, at kcut

T /Q = 0.5 , for
example, can result in a discrepancy of more than 2% between the integral computed
numerically with Eq. (3.99) and the same integral in computed in bT–space.

Therefore, discrepancies between direct calculation and numerical integration can
be significant, even though, looking at the superimposed curves in the upper panel of
Fig. 3.2, it might seem otherwise. In particular, considering that even with kcut

T /Q = 1
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there is a loss of ∼ 1% and that the discrepancies vary with the kinematic region
in which the convolution is computed, to produce our FUU,T grids we adopted the
conservative choice kcut

T /Q = 5 .

3.A Appendix - Cuts on the final-state leptons

In this section, we derive the explicit expression of the phase-space reduction factor P .
This factor is defined as28

P(q) =

∫

fid. reg.
d4p1d

4p2 δ(p
2
1)δ(p2

2)θ(p1,0)θ(p2,0)δ(4)(p1 + p2 − q)L⊥(p1, p2)

∫
d4p1d

4p2 δ(p
2
1)δ(p2

2)θ(p1,0)θ(p2,0)δ(4)(p1 + p2 − q)L⊥(p1, p2)
, (3.101)

where p1 and p2 are the four-momenta of the outgoing leptons. The integral in the nu-
merator extends over the fiducial region defined by the cuts on the final-state leptons.
The quantity L⊥ is defined as

L⊥ = gµν⊥ Lµν , (3.102)

where Lµν is the (parity-conserving part of the) leptonic tensor that, assuming massless
leptons, reads

Lµν = 4(pµ1p
ν
2 + pµ2p

ν
1 − gµνp1p2) , (3.103)

while the transverse metric is given by

gµν⊥ = gµν + zµzν − tµtν . (3.104)

The vectors zµ and tµ, in the Collins-Soper frame, are defined as

zµ = (sinh y,0, cosh y) , tµ =
qµ

Q
, (3.105)

and they are such that z2 = −1, t2 = 1 and (z · q) = 0. The effect of integrating over
the fiducial region in the numerator of Eq. (3.101) can be implemented by defining a
generalised θ-function, Φ(p1, p2), that is equal to one inside the fiducial region and zero
outside. This allows one to integrate also the numerator over the full phase-space of the
two outgoing leptons. Next, we integrate out one of the momenta, say p2, exploiting

28In Eq. (3.101) a parity-violating term is neglected. We will argue in Sec. 3.A.1 that its
contribution is negligible for realistic cuts.
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the momentum-conservation δ-function:

P (q) =

∫
d4pδ(p2)δ((q − p)2)θ(p0)θ(q0 − p0)L⊥(p, q − p)Φ(p, q − p)
∫
d4pδ(p2)δ((q − p)2)θ(p0)θ(q0 − p0)L⊥(p, q − p)

, (3.106)

where we have renamed p = p1. The remaining δ-functions can be used to constrain
two of the four components of the momentum p. The first, δ(p2), is typically used to
set the energy component of p, p0, on the mass shell. Since the leptons are massless,
this produces
∫
d4pδ(p2)θ(p0) =

∫
d4p δ(p2

0− |p|2)θ(p0) =

∫
dp0d

3p

2|p| δ(p0− |p|) =

∫
d3p

2|p| . (3.107)

Of course, the four-momentum p appearing in the rest of the integrand has to be set
on shell (p0 = |p|). Now we express the three-dimensional measure d3p in terms of
the transverse momentum pT , the pseudo-rapidity η, and the azimuthal angle φ of the
lepton: ∫

d3p

2|p| =

∫
d|pT |2

4
dη dφ . (3.108)

Now we consider the second δ-function, δ((q − p)2), in Eq. (3.106). It is convenient to
express the vectors q and p in terms of the respective invariant mass, pseudo-rapidity,
and transverse momentum:

q = (M cosh y,qT ,M sinh y) ,

p = (|pT | cosh η,pT , |pT | sinh η) ,
(3.109)

withM =
√
Q2 + |qT |2. Without loss of generality, we assume that the two-dimensional

vector qT is aligned with the x axis so that pT · qT = |pT ||qT | cosφ.29 This leads to

δ((q − p)2) = δ
(
Q2 − 2|pT | [M cosh (η − y)− |qT | cosφ]

)
, (3.110)

29In the general case in which qT forms an angle β with the x axis, the scalar product
would result in |pT ||qT | cos(φ−β). However, for observables inclusive in azimuthal angle, the
angle β can always be reabsorbed in a redefinition of φ.
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so that

P(q) =

∫
d|pT |2

4
dη dφ δ

(
Q2 − 2|pT | [M cosh (η − y)− |qT | cosφ]

)
L⊥(p, q − p)Φ(p, q − p)

∫
d|pT |2

4
dη dφ δ

(
Q2 − 2|pT | [M cosh (η − y)− |qT | cosφ]

)
L⊥(p, q − p)

,

(3.111)
where the vector p is understood to be on-shell. Now we compute L⊥(p, q−p) contract-
ing Lµν in Eq. (3.103) with the transverse metric gµν⊥ in Eq. (3.104) using Eq. (3.109):

L⊥(p, q − p) = 2Q2

[
1 + 4 sinh2(y − η)

|pT |2
Q2

]
. (3.112)

We can now integrate out one of the variables in the integrals in Eq. (3.111) by mak-
ing use of the remaining δ-function. Somewhat counterintuitively, it is convenient to
integrate over |pT |. This produces

P (q) =

∫ ∞

−∞
dη

∫ 2π

0

dφ

[
2p2

T

Q2
+ 2 sinh2(y − η)

p4
T

Q4

]
Φ(p, q − p)

∫ ∞

−∞
dη

∫ 2π

0

dφ

[
2p2

T

Q2
+ 2 sinh2(y − η)

p4
T

Q4

] , (3.113)

where pT is defined as

pT =
Q2

2|qT |
1[

M cosh(η−y)
|qT |

− cosφ
] . (3.114)

and p symbolises the on-shell vector p with the absolute value of the transverse com-
ponent set equal to Eq. (3.114). Next we turn to consider the integral in φ. To this
end, the following relation

∫ 2π

0

dφ f(cosφ) =

∫ 1

−1

dx√
1− x2

[f(x) + f(−x)] , (3.115)

along with the indefinite integrals

∫
dx

(a± x)2
√

1− x2
=

√
1− x2

(a2 − 1)(x± a)
± a

(a2 − 1)3/2
tan−1

(
1± ax√

a2 − 1
√

1− x2

)
,

(3.116)
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and
∫

dx

(a± x)4
√

1− x2
=

√
1− x2 [(11a2 + 4)x2 ± 3a(9a2 + 1)x+ (18a4 − 5a2 + 2)]

6(a2 − 1)3(x± a)3

± a(2a2 + 3)

2(a2 − 1)7/2
tan−1

(
1± ax√

a2 − 1
√

1− x2

)
,

(3.117)
enable us to compute analytically the primitive function of the integrals in φ in Eq. (3.113).
Eqs. (3.116) and (3.117) are particularly useful because they allow us to compute the
integral over φ analytically also in the presence of cuts. Let us first compute the inte-
gral in the denominator of Eq. (3.113), i.e. the integral of L⊥ over the full phase-space.
To do so, using Eqs. (3.116) and (3.117), we compute the following definite integrals

∫ 1

−1

dx

(a± x)2
√

1− x2
=

πa

(a2 − 1)3/2
, (3.118)

and: ∫ 1

−1

dx

(a± x)4
√

1− x2
=
πa(2a2 + 3)

2(a2 − 1)7/2
. (3.119)

Using these results, and finally integrating over η, gives the well-known result
∫
d4p1d

4p2 δ(p
2
1)δ(p2

2)θ(p1,0)θ(p2,0)δ(4)(p1 + p2 − q)L⊥(p1, p2) =
4π

3
Q2 . (3.120)

In order to compute the numerator of Eq. (3.113), we need to insert the appropriate
function Φ. Typically, in DY production the kinematic cuts are imposed independently
on the same variables for both the final-state leptons. Therefore, the function Φ fac-
torises into two identical functions acting on each lepton momentum:

Φ(p1, p2) = Θ(p1)Θ(p2) . (3.121)

We are specifically interested in kinematic cuts on the rapidity and on the transverse
momentum of the following kind

ηmin < η1(2) < ηmax and |pT,1(2)| > pT,min . (3.122)

Therefore
Θ(p) = ϑ(η − ηmin)ϑ(ηmax − η)ϑ(|pT | − pT,min) . (3.123)
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Using Eqs. (3.109) and (3.114) gives

Φ(p, q − p) = ϑ(η − ηmin)× ϑ(ηmax − η)

× ϑ(cosφ− f (2)(η, pT,min))

× ϑ(f (3)(η, ηmin)− cosφ)× ϑ(f (3)(η, ηmax)− cosφ)

× ϑ(f (4)(η, pT,min)− cosφ) ,

(3.124)

with

f (2)(η, pT,cut) =
2MpT,cut cosh(η − y)−Q2

2pT,cut|qT |
,

f (3)(η, ηcut) =
M cosh(η − y)

|qT |
− Q2 (sinh(η − y) coth(y − ηcut) + cosh(η − y))

2|qT |M
,

f (4)(η, pT,cut) =
M cosh(η − y)(Q2 − 2p2

T,cut + 2|qT |2)−Q2
√
M2 sinh2(η − y) + p2

T,cut

2|qT |
(
M2 − p2

T,cut

) .

(3.125)
Now the question is identifying the integration domain on the (η, cosφ)-plane defined
by Φ(p, q − p) in Eq. (3.124). Considering that −1 ≤ cosφ ≤ 1, Eq. (3.124) can be
written in an more convenient way as

Φ(p, q − p) = ϑ(η − ηmin)ϑ(ηmax − η)

× ϑ(cosφ−max[f (2)(η, pT,min),−1])

× ϑ(min[f (3)(η, ηmin), f (3)(η, ηmax), f (4)(η, pT,min), 1]− cosφ) .

(3.126)

Now we use Eq. (3.115) to change cosφ into x. This way, the double integral at the
numerator of Eq. (3.113) reads

∫ ∞

−∞
dη

∫ 1

−1

dxΦ(p, q − p) · · · =
∫ ηmax

ηmin

dη ϑ(x2(η)− x1(η))

∫ x2(η)

x1(η)

dx . . . . (3.127)

with
x1(η) = max[f (2)(η, pT,min),−1]

x2(η) = min[f (3)(η, ηmin), f (3)(η, ηmax), f (4)(η, pT,min), 1] .
(3.128)

As an example, Fig. 3.3 shows the integration domain of the numerator of Eq. (3.113)
for pT,min = 20 GeV and −ηmin = ηmax = 2.4 at Q = 91 GeV, |qT | = 10 GeV, and y = 1.
The grey band corresponds to the region −1 ≤ cosφ ≤ 1. The θ-functions in the first
line of Eq. (3.126) limits the region to the vertical strip defined by ηmin < η < ηmax

(black vertical lines), the θ-function in the second line defines the region above the red
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Figure 3.3: The red area indicates the integration domain of the numerator of the phase-space
reduction factor Eq. (3.113) for pT,min = 20 GeV and −ηmin = ηmax = 2.4 at Q = 91 GeV,
|qT | = 10 GeV, and y = 1.

line, finally the θ-functions in the third line defines the region below the blue and green
lines. The intersection of all regions gives the red-shaded area corresponding to the
integration domain.

Gathering all pieces, the final expression for the phase-space reduction factor reads

P(q) = P(Q, y, qT ) =

∫ ηmax

ηmin

dη ϑ(x2(η)− x1(η))
[
F (x2(η), η)− F (x1(η), η)

]
. (3.129)

The function F is given by the combination

F (x, η) =
3

4
F (x, η) +

1

4
G(x, η) , (3.130)

with

F (x, η) =
1

4π

Q2

E2
q − q2

T

{
q2
Tx
√

1− x2

x2q2
T − E2

q

− Eq√
E2
q − q2

T


tan−1


 qT − xEq√

E2
q − q2

T

√
1− x2


− tan−1


 qT + xEq√

E2
q − q2

T

√
1− x2





}
,

(3.131)
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and

G(x, η) =
1

16π
sinh2(y − η)

Q4

(E2
q − q2

T )3

{
√

1− x2qT

×
[

(11E2
q q

2
T + 4q4

T )x2 + 3EqqT (9E2
q + q2

T )x+ (18E4
q − 5E2

q q
2
T + 2q4

T )

(xqT + Eq)3

+
(11E2

q q
2
T + 4q4

T )x2 − 3EqqT (9E2
q + q2

T )x+ (18E4
q − 5E2

q q
2
T + 2q4

T )

(xqT − Eq)3

]

− 6Eq(2E
2
q + 3q2

T )√
E2
q − q2

T

[
tan−1


 qT − xEq√

E2
q − q2

T

√
1− x2




− tan−1


 qT + xEq√

E2
q − q2

T

√
1− x2



]}

,

(3.132)

where we have defined Eq = M cosh(η − y) and qT = |qT |. Interestingly, in the limit
y = qT = 0 and assuming ηmin = −ηmax, P can be computed analytically. The result is

P(Q, 0, 0) = ϑ(Q− 2pT,min) tanh(max[ηmax, η])

[
1− 1

4 cosh2(max[ηmax, η])

]
, (3.133)

with η defined as

η = cosh−1

(
Q

2pT,min

)
. (3.134)

The relation above can be written more explicitly as

P(Q, 0, 0) =





0 Q < 2pT,min ,(
1− p2T,min

Q2

)√
1− 4p2T,min

Q2 2pT,min ≤ Q < 2pT,min cosh ηmax ,

tanh(ηmax)
[
1− 1

4 cosh2(ηmax)

]
Q ≥ 2pT,min cosh ηmax .

(3.135)

3.A.1 Parity-violating contribution

In the presence of cuts on the final-state leptons and for invariant masses around the Z
mass or above, parity-violating effects arise that were neglected in our approach [196].
These contributions stem from interference of the antisymmetric contributions to the
lepton tensor, proportional to pµ1pν2εµνρσ, and to the hadronic tensor, proportional to
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εµν⊥ defined as
εµν⊥ ≡ εµνρσtρzσ , (3.136)

where tµ and zµ are given in Eq. (3.105). Therefore, the contributions we are after
result from the contraction of the following Lorentz structures

LPV ≡ pµ1p
ν
2εµνρσε

ρσ
⊥ =

2|pT |2
Q

sinh(y − η) [M cosh(y − η)− |qT | cosφ] . (3.137)

Due to the presence of sinh(y − η), Eq. (3.137) is such that
∫ ∞

−∞
dη LPV = 0 . (3.138)

Therefore, for observables inclusive in the lepton phase space, the parity-violating
term does not give any contribution. Conversely, the presence of cuts on the final-state
leptons may prevent Eq. (3.138) from being satisfied, leaving a residual contribution. In
order to quantify this effect, we have taken the same steps performed above to integrate
LPV over the fiducial region. It turns out that, for realistic cuts, the numerical size
of PPV relative to the parity-conserving P is never larger than O(10−6). We conclude
that the impact of parity-violating effects in the present analysis is negligible.

3.B Appendix - Ogata quadrature

In this section we limit ourselves to write the formulas for the computation of the
unscaled coordinates z(ν)

n and weights w(ν)
n required to compute the following integral:

Iν(qT ) =

∫ ∞

0

dbJν(bqT )f (b) =
1

qT

∫ ∞

0

db̄Jν(b̄)f

(
b̄

qT

)
' 1

qT

∞∑

n=1

w(ν)
n f

(
z

(ν)
n

qT

)

with ν = 0, 1, . . . ,

(3.139)

using the Ogata-quadrature algorithm. More details can be found in Ref. [180]. There
relevant formulas are:

z(ν)
n =

π

h
ψ

(
hξνn
π

)
,

w(ν)
n = π

Yν(ξνn)

Jν+1(ξνn)
Jν(z

(ν)
n )ψ′

(
hξνn
π

)
.

(3.140)
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where:

� h is a free parameter of the algorithm that has to be typically small (we choose
h = 10−3),

� ξνn are the zero’s of Jν , i.e. Jν(ξνn) = 0 ∀n,

� Jν and Yν are the Bessel functions of first and second kind, respectively, of degree
ν,

� ψ is the following function:

ψ(t) = t tanh
(π

2
sinh t

)
(3.141)

and its derivative:
ψ′(t) =

πt cosh t+ sinh(π sinh t)

1 + cosh(π sinh t)
. (3.142)

3.C Appendix - Narrow–width approximation

A possible alternative to the numerical integration in Q when the integration region
includes the Z-peak region is the so–called narrow–width approximation (NWA). In
the NWA one assumes that the width of the Z boson, ΓZ , is much smaller than its
mass, MZ . This way one can approximate the peaked behaviour of the couplings
Cq(Q) around Q = MZ with a δ-function, i.e., Cq(Q) ∝ δ(Q2 −M2

Z). Therefore, the
integration over Q can be done analytically. The exact structure of the electroweak
couplings is the following:

Cq(Q) = e2
q − 2eqVqVeχ1(Q) + (V 2

e + A2
e)(V

2
q + A2

q)χ2(Q) , (3.143)

with:
χ1(Q) =

1

4 sin2 θW cos2 θW

Q2(Q2 −M2
Z)

(Q2 −M2
Z)2 +M2

ZΓ2
Z

,

χ2(Q) =
1

16 sin4 θW cos4 θW

Q4

(Q2 −M2
Z)2 +M2

ZΓ2
Z

.
(3.144)

In the limit ΓZ/MZ → 0, the leading contribution to the coupling in Eq. (3.143) comes
from the region Q 'MZ and is that proportional to χ2:

Cq(Q) ' (V 2
e + A2

e)(V
2
q + A2

q)χ2(Q) , Q 'MZ . (3.145)
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In addition, in this limit one can show that:

1

(Q2 −M2
Z)2 +M2

ZΓ2
Z

→ π

MZΓZ
δ(Q2 −M2

Z) =
π

2M2
ZΓZ

δ(Q−MZ) . (3.146)

Therefore, considering that:

ΓZ =
αemMZ

sin2 θW cos2 θW
, (3.147)

the electroweak couplings in the NWA have the following form:

Cq(Q) ' πMZ(V 2
e + A2

e)(V
2
q + A2

q)

32αem sin2 θW cos2 θW
δ(Q−MZ) = C̃q(Q)δ(Q−MZ) . (3.148)

Therefore, using Eq. (3.145) the integral of the cross section over Q under the condition
that Qmin < MZ < Qmax has the consequence of fixing the couplings and setting
Q = MZ in the computation. This yields:
∫ Qmax

Qmin

dQ
dσ

dQdydqT
=

16πα2
emqT

9M3
Z

H(MZ ,MZ)
∑

q

C̃q(MZ)Iqq̄(x1, x2, qT ;MZ ,M
2
Z) ,

(3.149)
where we are also assuming that µ =

√
ζ = MZ . As a final step, one may want to let

the Z boson decay into leptons. At leading order in the EW sector and assuming an
equal decay rate for electrons, muons, and tauons, this can be done by multiplying the
cross section above by three times the branching ratio for the Z decaying into any pair
of leptons, 3Br(Z → `+`−).

3.D Appendix - NangaParbat grid points

In this Appendix we report the actual choice of grid points corresponding to the two
extractions implemented in NangaParbat, PV19 and PV17. In the following, grid is a
ThreeDGrid object. For TMD PDFs (both PV19 and PV17) we chose:

1 grid.Qg = std::vector <double >
2 {
3 1.000000e+00, 1.118034e+00, 1.224745e+00, 1.400000e+00,
4 1.581139e+00, 1.788854e+00, 2.000000e+00, 2.236068e+00,
5 2.529822e+00, 2.828427e+00, 3.162278e+00, 3.464102e+00,
6 4.750000e+00, 5.099020e+00, 6.324555e+00, 7.100000e+00,
7 8.000000e+00, 1.000000e+01, 1.118034e+01, 1.224745e+01,
8 1.400000e+01, 1.581139e+01, 1.788854e+01, 2.000000e+01,
9 2.236068e+01, 2.529822e+01, 2.828427e+01, 3.162278e+01,
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10 3.464102e+01, 4.750000e+01, 5.099020e+01, 6.324555e+01,
11 7.100000e+01, 8.000000e+01, 1.000000e+02, 1.118034e+02,
12 1.224745e+02, 1.400000e+02, 1.581139e+02, 1.788854e+02,
13 2.000000e+02
14 };
15 grid.xg = std::vector <double >
16 {
17 1.000000e-05, 2.000000e-05, 4.000000e-05, 6.000000e-05,
18 8.000000e-05, 1.000000e-04, 2.000000e-04, 4.000000e-04,
19 6.000000e-04, 8.000000e-04, 1.000000e-03, 1.500000e-03,
20 2.000000e-03, 2.500000e-03, 3.000000e-03, 3.500000e-03,
21 4.000000e-03, 4.500000e-03, 5.000000e-03, 5.500000e-03,
22 6.000000e-03, 6.500000e-03, 7.000000e-03, 7.500000e-03,
23 8.000000e-03, 8.500000e-03, 9.000000e-03, 9.250000e-03,
24 9.500000e-03, 9.750000e-03, 1.000000e-02, 1.500000e-02,
25 2.000000e-02, 2.500000e-02, 3.000000e-02, 3.500000e-02,
26 4.000000e-02, 4.500000e-02, 5.000000e-02, 5.500000e-02,
27 6.000000e-02, 6.500000e-02, 7.000000e-02, 7.500000e-02,
28 8.000000e-02, 8.500000e-02, 9.000000e-02, 9.250000e-02,
29 9.500000e-02, 9.750000e-02, 1.000000e-01, 1.500000e-01,
30 2.000000e-01, 2.500000e-01, 3.000000e-01, 3.500000e-01,
31 4.000000e-01, 4.500000e-01, 5.000000e-01, 5.500000e-01,
32 6.000000e-01, 6.500000e-01, 7.000000e-01, 7.500000e-01,
33 8.000000e-01, 8.500000e-01, 9.000000e-01, 9.250000e-01,
34 9.500000e-01, 9.750000e-01, 1.000000e+00
35 };
36 grid.qToQg = std::vector <double >
37 {
38 0.0001 , 0.0010 , 0.0025 , 0.0050 , 0.0075 , 0.0100 , 0.0200 ,
39 0.0300 , 0.0400 , 0.0500 , 0.0600 , 0.0700 , 0.0800 , 0.0900 ,
40 0.1000 , 0.1250 , 0.1500 , 0.1750 , 0.2000 , 0.2250 , 0.2500 ,
41 0.2750 , 0.3000 , 0.3500 , 0.4000 , 0.4500 , 0.5000 , 0.5500 ,
42 0.6000 , 0.6500 , 0.7000 , 0.8000 , 0.9000 , 1.0000 , 1.1000 ,
43 1.2000 , 1.3000 , 1.4000 , 1.5000 , 1.6000 , 1.7000 , 1.8000 ,
44 1.9000 , 2.0010
45 };

while for FFs we have:

1 grid.Qg = std::vector <double >
2 {
3 1.000000e+00, 1.080000e+00, 1.118034e+00, 1.170000e+00,
4 1.224745e+00, 1.300000e+00, 1.400000e+00, 1.581139e+00,
5 1.788854e+00, 2.000000e+00, 2.236068e+00, 2.529822e+00,
6 2.828427e+00, 3.162278e+00, 3.464102e+00, 4.750000e+00,
7 5.099020e+00, 6.324555e+00, 7.100000e+00, 8.000000e+00,
8 1.000000e+01, 1.118034e+01, 1.224745e+01, 1.400000e+01,
9 1.581139e+01, 1.788854e+01, 2.000000e+01, 2.236068e+01,
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10 2.529822e+01, 2.828427e+01, 3.162278e+01, 3.464102e+01,
11 4.750000e+01, 5.099020e+01, 6.324555e+01, 7.100000e+01,
12 8.000000e+01, 1.000000e+02
13 };
14 grid.xg = std::vector <double >
15 {
16 1.000000e-01, 1.250000e-01, 1.500000e-01, 1.750000e-01,
17 2.000000e-01, 2.250000e-01, 2.500000e-01, 2.750000e-01,
18 3.000000e-01, 3.250000e-01, 3.500000e-01, 3.750000e-01,
19 4.000000e-01, 4.250000e-01, 4.500000e-01, 4.750000e-01,
20 5.000000e-01, 5.250000e-01, 5.500000e-01, 5.750000e-01,
21 6.000000e-01, 6.250000e-01, 6.500000e-01, 7.000000e-01,
22 7.500000e-01, 8.000000e-01, 8.500000e-01, 9.000000e-01,
23 9.500000e-01, 1.000000e+00
24 };
25 grid.qToQg = std::vector <double >
26 {
27 0.0001 ,
28 0.0010 , 0.0025 , 0.0050 , 0.0075 , 0.0100 , 0.0200 , 0.0300 ,
29 0.0400 , 0.0500 , 0.0600 , 0.0700 , 0.0800 , 0.0900 , 0.1000 ,
30 0.1100 , 0.1200 , 0.1300 , 0.1400 , 0.1500 , 0.1600 , 0.1700 ,
31 0.1800 , 0.1900 , 0.2000 , 0.2200 , 0.2400 , 0.2600 , 0.2800 ,
32 0.3000 , 0.3200 , 0.3400 , 0.3600 , 0.3800 , 0.4000 , 0.4500 ,
33 0.5000 , 0.5500 , 0.6000 , 0.6500 , 0.7000 , 0.8000 , 0.9000 ,
34 1,
35 1.1000 , 1.2000 , 1.3000 , 1.4000 , 1.5000 , 1.6000 , 1.7000 ,
36 1.8000 , 1.9000 , 2,
37 2.1000 , 2.2000 , 2.3000 , 2.4000 , 2.5000 , 2.6000 , 2.7000 ,
38 2.8000 , 2.9000 , 3,
39 3.2000 , 3.4000 , 3.6000 , 3.8000 , 4,
40 4.2000 , 4.4000 , 4.6000 , 4.8000 , 5
41 };

For FUU,T grids, the standard choice of points in the function FourDGrid Inter4DGrid
(std::string const& pf) in inc/NangaParbat/createstructgrid.h is (in the follow-
ing grid is a FourDGrid object):

1 grid.Qg = std::vector <double >
2 {
3 1.000000e+00, 1.080000e+00, 1.118030e+00, 1.170000e+00,
4 1.224740e+00, 1.300000e+00, 1.400000e+00, 1.581140e+00,
5 1.788850e+00, 2.000000e+00, 2.236070e+00, 2.529820e+00,
6 2.828430e+00, 3.162280e+00, 3.464100e+00, 4.750000e+00,
7 5.099020e+00, 6.324560e+00, 7.100000e+00, 8.000000e+00,
8 1.000000e+01, 1.118030e+01, 1.224750e+01, 1.400000e+01,
9 1.581140e+01, 1.788850e+01, 2.000000e+01, 2.236070e+01,

10 2.529820e+01, 2.828430e+01, 3.162280e+01, 3.464100e+01,
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11 4.750000e+01, 5.099020e+01, 6.324560e+01, 7.100000e+01,
12 8.000000e+01, 1.000000e+0
13 };
14 grid.xg = std::vector <double >
15 {
16 1.000000e-05, 2.000000e-05, 4.000000e-05, 6.000000e-05,
17 8.000000e-05, 1.000000e-04, 2.000000e-04, 4.000000e-04,
18 6.000000e-04, 8.000000e-04, 1.000000e-03, 1.500000e-03,
19 2.000000e-03, 2.500000e-03, 3.000000e-03, 3.500000e-03,
20 4.000000e-03, 4.500000e-03, 5.000000e-03, 5.500000e-03,
21 6.000000e-03, 6.500000e-03, 7.000000e-03, 7.500000e-03,
22 8.000000e-03, 8.500000e-03, 9.000000e-03, 9.250000e-03,
23 9.500000e-03, 9.750000e-03, 1.000000e-02, 1.500000e-02,
24 2.000000e-02, 2.500000e-02, 3.000000e-02, 3.500000e-02,
25 4.000000e-02, 4.500000e-02, 5.000000e-02, 5.500000e-02,
26 6.000000e-02, 6.500000e-02, 7.000000e-02, 7.500000e-02,
27 8.000000e-02, 8.500000e-02, 9.000000e-02, 9.250000e-02,
28 9.500000e-02, 9.750000e-02, 1.000000e-01, 1.500000e-01,
29 2.000000e-01, 2.500000e-01, 3.000000e-01, 3.500000e-01,
30 4.000000e-01, 4.500000e-01, 5.000000e-01, 5.500000e-01,
31 6.000000e-01, 6.500000e-01, 7.000000e-01, 7.500000e-01,
32 8.000000e-01
33 };
34 grid.zg = std::vector <double >
35 {
36 0.100, 0.125, 0.150, 0.175,
37 0.200, 0.225, 0.250, 0.275,
38 0.300, 0.325, 0.350, 0.375,
39 0.400, 0.425, 0.450, 0.475,
40 0.500, 0.525, 0.550, 0.575,
41 0.600, 0.625, 0.650, 0.700,
42 0.750, 0.80
43 };
44 grid.qToQg =
45 {
46 0.0001 , 0.0010 , 0.0025 , 0.0050 , 0.0075 , 0.0100 , 0.0200 ,
47 0.0300 , 0.0400 , 0.0500 , 0.0600 , 0.0700 , 0.0800 , 0.0900 ,
48 0.1000 , 0.1100 , 0.1200 , 0.1300 , 0.1400 , 0.1500 , 0.1600 ,
49 0.1700 , 0.1800 , 0.1900 , 0.2000 , 0.2200 , 0.2400 , 0.2600 ,
50 0.2800 , 0.3000 , 0.3200 , 0.3400 , 0.3600 , 0.3800 , 0.4000 ,
51 0.4500 , 0.5000 , 0.5500 , 0.6000 , 0.6500 , 0.7000 , 0.8000 ,
52 0.9000 , 1
53 };
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3.E Appendix - Grid interpolation

In this Appendix we show some results on the comparison between direct calculation
of TMDs and interpolation from the corresponding grids. As mentioned in Sec. 3.8,
we choose the number of points and the values to put in the grids in order to obtain
a satisfactory agreement between direct computation in bT–space and interpolation of
the grid done with the NangaParbat interpolator.

In Figs. 3.4–3.7, we show the PV19 and PV17 PDFs, PV17 FF and PV17 unpo-
larized structure function. To plot the functional forms, we used the central replica
of PV19 extraction and the 105th replica of PV17. The motivation of PV17 choice of
replica to plot has its roots in Ref. [84], where replica 105 was selected as the most
representative of the whole set of replicas. PV17 fNP parameters can be found in
Sec. 2.2.2, while the parameter values of PV19 central replica are reported in Tab. 3.1.

Parameter Central replica value
g2 0.0379
N1 0.5188
α 0.2031
σ 0.3733
λ 0.5797
N1B 0.0396
αB 0.0677
σB 0.3631
g2B 0.0112

Table 3.1: Final values of fNP free parameters for (see Eq. (2.42) and (2.43)) of the
central replica (replica 0) of the PV19 extraction.

A few comments on the general characteristics of Figs. 3.4–3.7 are in order. In
the plots shown in this Appendix, direct computation (in blue) is plotted with a line
thicker than the one of grid interpolation in order to make both lines visible when
they are superimposed. The graphical representation of the functions in Figs. 3.4–3.7
is obtained connecting with straight lines the points resulting from grid interpolation
and computation in bT–space: in order not to introduce any bias in the comparisons,
we did not perform any further intepolation at the plot level to smoothen sharp edges.
The lower panels show the ratio between the direct computation and the interpolation.

We stress that the kinematical points shown in the plots do not correspond to the
values of Q, x, z, k⊥ or p⊥ for which we computed the grids: in order to test the quality
of the multi–dimensional interpolation, we choose on purpose values that do not match
the tabulated ones. In fact, we remind that in case the intepolator is called exactly in
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3. NangaParbat

the points (Q, x, k⊥) (or the equivalent for the TMD FF and structure function), the
interpolation consists of a mere reading of the grid.

In Fig.3.4 we present the functional form of the PV19 unpolarized TMD PDF
extraction for two different choices of x and Q. In particular, at low Q and small
x (Q = 3 Gev and x = 0.00015), the Gaussian and q–Gaussian that compose fNP

(see Eq. (2.42)) are clearly visible, while the function becomes smoother as Q and x

increase. The agreement between direct computation and f1 grid interpolation is very
good, as shown by the ratios shown in the lower panels. This level of accuracy is stable
over a wide kinematic range, i.e, for all the (k⊥, x,Q) points in the range specified
in the grid info file , with only a slight degradation at large k⊥, where it follows the
same behavior discussed for the PV17 TMD FF below. We note that for PV19 TMDs
the relative difference between direct calculation and grid interpolation deteriorates,
reaching values up to 5%, around k⊥ ∼ 1.5 GeV, where the TMD displays a concavity.
This deteriorioration is due to the peculiarity of the shape of the TMD, which is very
challenging for the interpolation, and, in principle, it could be avoided by increasing
significantly the density of the grid points. However, since the problem seems well
confined (it is only at k⊥ ∼ 1.5 GeV), we decided not to increase the number of points,
as it would have meant a significant increase also in the size of all grids.

In Fig. 3.5 we show a selection of plots for PV17 TMD PDF. We remind that PV17
extraction included also SIDIS data (while in PV19 we only fitted Drell–Yan data) and
the selected functional form for fNP is significantly different from PV19 (see Eq.(2.60)).
The difference in the two parameterizations can be clearly seen at low Q and low x:
comparing the upper plot of Fig.3.4 with the upper plot of Fig. 3.5, which show PV17
and PV19 f1 in the same kinematical point, we observe that in PV17 case the PV19
bump is absent and PV17 it has a smoother behaviour overall. Also for PV17 TMD
PDF the agreement between direct computation and f1 grid interpolation is optimal,
as shown in the lower panels of Fig. 3.5, where the ratios do not exceed 1%.

In Fig. 3.6 we show direct computation and grid interpolation of the PV17 TMD
FF Du→π+

1 (z, p⊥;Q2). The agreement between the two different methods is very good,
under one or two per thousand, except, in some cases, at large transverse momentum,
where the discrepancies between direct calculation and grid interpolation are of the
order of a few percent. However, the impact of such discrepancy on the calculation of
structure functions, necessary to build experimental observables and obtain predictions,
is very small, as shown in Fig. 3.7, and therefore we consider the accuracy of our grids
acceptable.

Note that the TMD FF given by the NangaParbat interpolator is a function of
the transverse momentum of fragmenting parton with respect to the observed hadron
p⊥, and not of the transverse momentum of the observed hadron with respect to the
fragmenting parton P⊥, as usually indicated in the literature. The reason behind this
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choice is that, following Refs. [44, 84, 95, 197], to compute the grids we calculate the
Fourier Transform of the TMD FF with respect to the partonic transverse momen-
tum p⊥, even though the unpolarized TMD FF D1 is understood to have a density
interpretation in terms of the hadronic transverse momentum P⊥. We remind that the
relation between the two transverse momenta is P⊥ = −zp⊥, which can be obtained
from the Lorentz transformation connecting the frames where the fragmenting parton
or the produced hadron have no transverse momentum [44, 198].

The plots in Fig. 3.7 are a combined test of both NangaParbat interpolation and
convolution tools. As discussed in Sec. 3.9.3, the grids for the structure function
F h→π±

UU,T are obtained through the convolution (see Eq. (3.99)) of two TMD grids (PV17
f1 and D1). The interpolation of this four–dimensional grid is compared with the direct
calculation of F h→π±

UU,T and the results are illustrated in Fig. 3.7. We can see that F h→π±
UU,T

is very well encoded in the grids we produced, as the discrepancy between the two lines
in Fig. 3.7 is of the order of per thousand at Q ∼ 1 GeV. At higher values of Q the
relative difference between direct calculation and grid interpolation degrades slightly,
settling around 1%. As this is an interpolation on four dimensions, we still consider
this to be a good result. This discrepancies could be cured by increasing the number
of points present in the grids, but that would be at the expense of the size of the grid
files, which we managed to keep reasonable and suited for sharing. For analyses that
require an accuracy higher than 1% or 2%, we recommend using the convolution tool
illustrated in Sec. 3.9.3, which convolutes two TMD grids and gives results where the
discrepancies with respect to direct calculation are below 1%. F h→π±

UU,T is here plotted
as a function of (x, z, qT ;Q2): we remind that qT is the transverse momentum of the
exchanged photon in the frame where the target hadron and the observed hadron are
collinear, and the relation with the transverse momentum PhT is qT = −PhT/z.
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Figure 3.4: The unpolarized TMD PDF fu1 (x, k⊥;Q
2) of the PV19 extraction[95], shown here

multiplied by x as is often done in the literature.
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Figure 3.5: The unpolarized TMD PDF fu1 (x, k⊥;Q
2) of the PV17 extraction[84], shown here

multiplied by x as is often done in the literature.
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Figure 3.6: PV17 TMD FF Dq→π+

1 (z, p⊥;Q
2), plotted here for the up quark (q = u) and for

two different values of Q and z.
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Figure 3.7: Structure function F h→π+

UU,T . The agreement between direct computation and the
results obtained through the convolution (see Eq. (3.99)) of PV17 f1 and D1 grids is very
good at Q = 1 and is under 2% for higher values of Q.
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Chapter 4
TMD PDF extraction at N3LL

In this chapter, we report the results of our most recent DY fit, which in this work we
will refer to as the PV19 fit. In particular, in Sec. 4.1, we discuss the datasets that we
selected for our analysis, in Sec. 4.2, the uncertainties treatment is briefly illustrated;
in Sec. 4.3, we present the quality of the fit at N3LL, the best accuracy we can presently
reach, and we discuss the TMDs extracted from the nominal fit and their parameters;
in Sec. 4.4, we discuss the convergence of the perturbative corrections; in Sec. 4.5, we
focus on the x dependence of the TMDs and we argue that it is mostly constrained by
the y–differential ATLAS cross sections; in Sec. 4.6, we assess the range of validity of
TMD factorization by considering the fit quality as a function of the cut on qT/Q.

4.1 Drell–Yan experimental data

We considered qT distributions in DY production from many different datasets. Some
of these were already considered in the analysis of Ref. [84]: the low–energy fixed
target experiments E605 [199] and E288 [200],1 and the Tevatron experiments CDF
Run I [201], Run II [202], D0 Run I [203] and Run II [204]. We refer the reader
to Ref. [84] for more details about these datasets. In the PV19 fit, we included the
following new datasets:

� Z → µ+µ− distribution from D0 Run II [205],

� forward Z-production data from the LHCb experiment at 7 [205], 8 [206], and
13 [207] TeV,

� Z-production data from the CMS experiment at 7 [208] and 8 [209] TeV,

1The fixed–target Drell–Yan data from the E288 and E605 experiments used a copper
target. In our analysis, such target is considered perfectly isoscalar.
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4. PV19 Drell–Yan fit

� Z-production data differential in rapidity from the ATLAS experiment at 7 [208]
and 8 [210] TeV,

� off-peak (low- and high-mass) DY data from the ATLAS experiment at 8 TeV [210],

� preliminary Z-production data from the STAR experiment at 510 GeV [211].2

We did not include measurements from the PHENIX experiment at the center–of–mass
energy of 200 GeV [212] because, due to the cut on qT/Q discussed below, only two
data points from this dataset would be included in the fit.

In Tab. 4.1 all the datasets we included in our analysis are shown. For visualization
purposes, in Fig. 4.1 we show the kinematic coverage of each dataset in the x1 vs. x2

plane. The shaded areas are determined considering the corresponding ranges in Q

and y, and the center–of–mass energy
√
s, according to x1,2 = Qe±y/

√
s. It should be

kept in mind that Fig. 4.1 only provides an approximated view of the real coverage,
strictly true only at tree level. The reason is that x1 and x2 are just the lower bounds of
convolution integrals (see, e.g., Eq. (2.18)). Therefore, the effective region of sensitivity
actually extends between x1,2 and 1.

E605 and E288, being fixed target experiments with fixed rapidity, are just lines in
this pictorial representation, while all other datasets are shown as rectangles with their
proper range in Q and y. As expected, the lower–energy experiments (E605, E288, and
STAR) are placed in the large–x region (x & 0.1). Particularly important are the new
STAR measurements that cover a kinematic region that is scarcely populated.

The Tevatron experiments, CDF and D0, cover a particularly wide kinematic region
at intermediate values of x. These experiments (except D0 Run II with muons) provide
data extrapolated over the full range in rapidity y, thus extending across the full
available phase space.

Finally, the LHC experiments (LHCb, CMS, and ATLAS) are placed at lower values
of x. The LHCb datasets are peculiar within respect to the others, in a region in which
x1 is particularly small and x2 particularly large: this is due to the fact that the data is
taken in the forward region, 2 < y < 4.5. The ATLAS datasets are binned in rapidity
(in Fig. 4.1 y–bins are the boxes on the upper–right–to–lower–left diagonal) and thus
are expected to be particularly sensitive to the x dependence of the TMDs.

Since our analysis is based on the TMD factorization formula in Eq. (2.10), that
is expected to hold for qT � Q, we aim to describe only data at small qT . Hence,
some rule to exclude measurements with large qT is needed: we chose to impose a cut
on qT , requiring qT/Q < 0.2. We remark that such cut is imposed a priori and both
the value (0.2) and the variable (qT/Q) on which the cut is imposed are arbitrary.

2We thank the STAR Collaboration for providing us with the data, which at the time of
publication of the PV19 fit [95] were preliminary.
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Figure 4.1: Kinematic coverage on the x1 vs. x2 plane of the datasets included in the present
analysis.

Different choices can be made, as for example in Ref. [85]. The impact of the choice of
such cut on fit results is discussed in Sec. 4.6. Since the measurements are delivered in
transverse-momentum bins [qT,min: qT,max] integrated over some range in invariant mass
[Qmin: Qmax], the cut is conservatively imposed on the ratio qT,max/Qmin. The second
column in Tab. 4.1 reports the number of data points (Ndat) for each dataset that pass
this cut: the total number of points included in our analysis is 353.

An important feature of all the new datasets listed above is that the cross sections
are given within a certain fiducial region. In particular, in order to be properly con-
sidered in the phenomenological analysis, experimental data, due to the construction
of the detectors and their acceptance, impose kinematic cuts on transverse momentum
pT` and pseudo–rapidity η` of the final–state leptons. The values of the cuts for each
dataset are shown in the next–to–last column of Tab. 4.1. Our predictions are corrected
by means of the phase–space reduction factor P introduced in Eq. (2.10), which takes
into account these cuts, as explained in Appendix 3.A.

As evident from the “Observable” column of Tab. 4.1, experimental cross sections
are released in different forms. In addition, some of them are normalized to the total
(fiducial) cross section while others are not. In our analysis, we expressed all the
absolute cross sections in terms of the observable given in Eq. (2.10) (details on the
transformations between different observables can be found in Ref. [84]).

When necessary, the total cross section σ required to normalize the differential
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4. PV19 Drell–Yan fit

cross sections is computed using DYNNLO [213, 214] with the MMHT2014 collinear PDF
sets [126], taking into account the selection cuts and consistently with the perturbative
order of the differential cross section. More precisely, the total cross section is computed
at LO for NLL accuracy, at NLO for NLL′ and NNLL, and at NNLO for NNLL′ and
N3LL. The values of the total cross sections at different orders are reported in Tab. 4.2.

We stress that in this analysis no additional normalizations have been applied,
with the consequence that both the shape and the normalization of the experimental
distributions have an impact on the fit.
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Experiment Ndat Observable
√
s [GeV] Q [GeV] y or xF Lepton cuts Ref.

E605 50 Ed3σ/d3q 38.8 7 - 18 xF = 0.1 - [199]
E288 200 GeV 30 Ed3σ/d3q 19.4 4 - 9 y = 0.40 - [200]
E288 300 GeV 39 Ed3σ/d3q 23.8 4 - 12 y = 0.21 - [200]
E288 400 GeV 61 Ed3σ/d3q 27.4 5 - 14 y = 0.03 - [200]

STAR 510 7 dσ/dqT 510 73 - 114 |y| < 1
pT` > 25 GeV
|η`| < 1

[211]

CDF Run I 25 dσ/dqT 1800 66 - 116 Inclusive - [201]
CDF Run II 26 dσ/dqT 1960 66 - 116 Inclusive - [202]
D0 Run I 12 dσ/dqT 1800 75 - 105 Inclusive - [203]
D0 Run II 5 (1/σ)dσ/dqT 1960 70 - 110 Inclusive - [204]

D0 Run II (µ) 3 (1/σ)dσ/dqT 1960 65 - 115 |y| < 1.7
pT` > 15 GeV
|η`| < 1.7

[205]

LHCb 7 TeV 7 dσ/dqT 7000 60 - 120 2 < y < 4.5
pT` > 20 GeV
2 < η` < 4.5

[206]

LHCb 8 TeV 7 dσ/dqT 8000 60 - 120 2 < y < 4.5
pT` > 20 GeV
2 < η` < 4.5

[207]

LHCb 13 TeV 7 dσ/dqT 13000 60 - 120 2 < y < 4.5
pT` > 20 GeV
2 < η` < 4.5

[215]

CMS 7 TeV 4 (1/σ)dσ/dqT 7000 60 - 120 |y| < 2.1
pT` > 20 GeV
|η`| < 2.1

[208]

CMS 8 TeV 4 (1/σ)dσ/dqT 8000 60 - 120 |y| < 2.1
pT` > 15 GeV
|η`| < 2.1

[209]

ATLAS 7 TeV
6
6
6

(1/σ)dσ/dqT 7000 66 - 116
|y| < 1

1 < |y| < 2
2 < |y| < 2.4

pT` > 20 GeV
|η`| < 2.4

[216]

ATLAS 8 TeV
on-peak

6
6
6
6
6
6

(1/σ)dσ/dqT 8000 66 - 116

|y| < 0.4
0.4 < |y| < 0.8
0.8 < |y| < 1.2
1.2 < |y| < 1.6
1.6 < |y| < 2
2 < |y| < 2.4

pT` > 20 GeV
|η`| < 2.4

[210]

ATLAS 8 TeV
off-peak

4
8 (1/σ)dσ/dqT 8000 46 - 66

116 - 150 |y| < 2.4
pT` > 20 GeV
|η`| < 2.4

[210]

Total 353 - - - - - -

Table 4.1: Datasets included in this analysis. For each dataset, the table includes
information on: the number of data points (Ndat) that survive the nominal cut on
qT/Q, the observable delivered, the center of mass energy

√
s, the range(s) in invariant

mass Q, the angular variable (either y or xF ), possible cuts on the single final-state
leptons, and the public reference (when available). The total number of data points
amounts to 353. Note that for E605 and E288 400 GeV we have excluded the bin in Q
containing the Υ resonance (Q ' 9.5 GeV).
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Experiment LO [pb] NLO [pb] NNLO [pb]
D0 Run II 170.332 242.077 253.573

D0 Run II (µ) 100.765 119.002 124.675
CMS 7 TeV 291.977 384.569 398.853
CMS 8 TeV 340.132 456.337 473.411

ATLAS 7 TeV
|y| < 1

1 < |y| < 2
2 < |y| < 2.4

196.457
135.511
12.568

251.296
181.267
17.091

253.781
181.466
17.104

ATLAS 8 TeV
on-peak

|y| < 0.4
0.4 < |y| < 0.8
0.8 < |y| < 1.2
1.2 < |y| < 1.6
1.6 < |y| < 2
2 < |y| < 2.4

89.531
89.120
85.499
69.018
43.597
14.398

113.650
112.853
109.800
91.884
59.114
19.574

116.766
115.738
112.457
95.187
62.127
20.937

ATLAS 8 TeV
off-peak

46 GeV < Q < 66 GeV
116 GeV < Q < 150 GeV

15.199
3.805

14.449
5.317

14.368
5.521

Table 4.2: Total (fiducial) cross sections computed with DYNNLO [213, 214] using the
central member of the MMHT2014 collinear PDF sets [126] and required for the compu-
tation of the normalized differential cross sections at the different perturbative orders.
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4.2 Experimental uncertainties

One of the characteristics of the PV19 fit is the treatment of uncertainties, as discussed
in Ch. 3, Sec. 3.6.

Most of the considered experimental datasets are released with a set of uncorrelated
and correlated uncertainties. We remark that such nature of the uncertainties, as it is
related to how the particular experiment was devised and how the specific dataset was
extracted, has to be specified by experimental collaborations with the release of each
dataset.

As already pointed out in Ref. [79], a proper treatment of the experimental uncer-
tainties is crucial to achieve a reliable extraction of TMDs, and particular care has to
be taken with normalization errors, in order to avoid the D’Agostini bias [185, 186]
(see Sec. 3.6.2). Different prescriptions have been devised to avoid this problem [188]:
in this analysis we adopt the so–called iterative t0-prescription [187].

This topic, as well as the actual implementation of the χ2, is extensively discussed
in Ch. 3, Sec. 3.6. It is useful, though, to remind the reader the concept of shifted
prediction, which is what will be plotted in Sec. 4.3. In the presence of correlated
uncertainties, the χ2 can be written as [188]

χ2 = χ2
D + χ2

λ , (4.1)

where χ2
D has an uncorrelated structure (diagonal) while χ2

λ is a penalty term related
to the presence of correlations [79](see Sec. 3.6.3).

For the computation of χ2
D, theoretical predictions are properly shifted to take into

account the effect of the correlated uncertainties. In fact, shifted predictions are a
better representation of the fit for visual comparisons to experimental data. Therefore,
in the following it is understood that all plots will display shifted predictions.

Another important aspect, that was not taken into account in Ref. [84], is the
use of collinear PDFs to estimate the uncertainties due to the collinear theoretical
terms (which are not fitted in this analysis). In previous studies, such as Ref. [84],
experimental errors of the selected datasets used for TMD extraction were of the order
of %, thus bigger than uncertainties coming from other sources (i.e. PDF uncertainties
or theoretical uncertainties). In this analysis, though, the inclusion of LHC data,
with their very small errors (ATLAS data have very small uncertainties, much lower
than 1%), required a more careful study of other types of uncertainties. We noticed, for
example, that uncertainties coming from the chosen collinear PDF set were comparable
with ATLAS experimental errors, and thus we decided to include them in our analysis.

In order to extract fNP defined in Eq. (2.39), it is necessary to assume a given set
of collinear PDFs (in the PV19 analysis, we used MMHT2014 PDF sets).
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4. PV19 Drell–Yan fit

PDF uncertainties indirectly reflect the experimental uncertainty of the dataset
used for their extraction and have to be included in the calculation of the χ2.

To do so, we computed the PDF errors, using the Hessian method [217], as rela-
tive to the central value. The advantage of computing relative uncertainties is that
of minimizing the dependence on the nonperturbative function fNP. The impact of
PDF uncertainties on the observable X (the Drell–Yan cross section in our case) was
calculated using the Hessian formula:

∆X =
1

2

(
Np∑

i=1

[
X(S+

i )−X(S−i )
]2
) 1

2

(4.2)

where Np is the number of hessian couples present in the PDF set and S+
i , S

−
i are

respectively the upper and lower member of the hessian couple. The authors of the
hessian PDF set have to specify which members are to be considered as S+

i and which
ones as S−i . In order to compute the cross sections X(S+

i ), X(S−i ) some approximations
have been made (see Ch. 3, Sec. 3.4.1). We also point out that the calculation of PDF
uncertainties does include the uncertainty on the total cross sections when normalized
distributions are considered. PDF uncertainties calculated in this way are included in
the experimental covariance matrix as uncorrelated uncertainties.

The computation of the experimental covariance matrix is done in NangaParbat,
as explained in Ch. 3, Sec. 3.6.1- 3.6.2.

The propagation of the resulting experimental uncertainty into the fitted TMDs is
achieved through a Monte Carlo method. Specifically, starting from the actual data, we
generate pseudo–data, shifting each experimental point by a random amount calculated
with Gaussian distribution. The standard deviation of this Gaussian distribution is
obtained taking into account all the uncertainties.

In this way, we obtain Nrep (& 200) replicas of the original dataset and then perform
a fit on each single replica. The number of replicas is chosen so that the mean and
standard deviation of the set of replicas accurately reproduces the original data points.
In particular, in we choose to select 200 replicas as in the PV17 analysis, since we found
that such number of replicas is sufficient for the purpose. The resulting ensemble of
distributions can be used to compute central values and uncertainties as averages and
correlations, respectively.

4.3 Fit quality

In this section, we discuss the quality of the PV19 nominal fit at N3LL [95]. In order
to show our results and to quantify the agreement of our predictions with experimental
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4.3. Fit quality

data, we chose to evaluate the χ2s using the mean of the TMDs extracted from the
Monte Carlo replicas of the data. Denoting the Monte Carlo ensemble of TMDs with
{f̃ q,[k]

1 }, k = 1, . . . , Nrep (Nrep being the number of replicas), the mean is defined as

f̃ q1 (x, bT ;µ, ζ) =
1

Nrep

Nrep∑

k=1

f̃
q,[k]
1 (x, bT ;µ, ζ) . (4.3)

Other choices are possible, such as the median or the mode of the ensemble. In fact,
only the full ensemble of replicas carries the full statistical information.

Tab. 4.3 reports the breakdown of the χ2s normalized to the number of data points,
Ndat, for each dataset. The uncorrelated (χ2

D) and the correlated (χ2
λ) contributions to

the total χ2 (see Eq. (4.1)) are also reported. The global χ2 is shown at the bottom of
the table.

The value of the global χ2 is very close to one (1.02), indicating that the fit is able
to describe measurements over a wide energy range, from the low–energy fixed–target
datasets to the LHC ones. It is important to stress that a substantial contribution to
the global χ2 is given by the correlated penalty term, χ2

λ/Ndat = 0.14. This highlights
the importance of a correct treatment of the correlated uncertainties. More specifically,
the systematic shifts induced by correlations are often large, indicating that the fit does
need to adjust the predictions within the experimentally correlated ranges.

Concerning the single experiments, we observe that the low–energy data (E605,
E288, and STAR) have generally lower χ2s than the Tevatron (CDF and D0) and
LHC (LHCb, CMS, and ATLAS) high–energy data. This is mostly due to the fact
that the experimental uncertainties of the former are typically larger than the latter.
In particular, the low–energy data are affected by large normalization (correlated)
uncertainties (up to 15% in some cases). Consequently, the relative importance of the
correlated contribution χ2

λ to the total χ2 is generally larger for the low–energy datasets
than for the high–energy ones.

It is interesting to comment on the quality of the fit of the new datasets from RHIC
and the LHC that were not included in the analysis of Ref. [84]. The preliminary
measurements from STAR have a χ2 equal to 0.836. This is particularly encouraging
because, as clear from Fig. 4.1, this dataset covers a scarcely populated kinematic
region and shows no tension with other data.

Also the LHC datasets extend the kinematic coverage of the DY data considered
in Ref. [84]. These measurements are particularly precise and thus very effective in
constraining TMDs. We observe that the LHCb datasets are very nicely described
with χ2s that never exceed 1.3. The CMS data, despite having slightly larger χ2, are
also well described. The CMS 7 TeV experiment is the only one that does not provide
information on correlated errors, and this reflects in the χ2

λ/Ndat = 0 in Tab. 4.3, The
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4. PV19 Drell–Yan fit

Experiment χ2
D/Ndat χ2

λ/Ndat χ2/Ndat

E605

7 GeV < Q < 8 GeV
8 GeV < Q < 9 GeV

10.5 GeV < Q < 11.5 GeV
11.5 GeV < Q < 13.5 GeV
13.5 GeV < Q < 18 GeV

0.419
0.995
0.191
0.491
0.491

0.068
0.034
0.137
0.284
0.385

0.487
1.029
0.328
0.775
0.877

E288 200 GeV

4 GeV < Q < 5 GeV
5 GeV < Q < 6 GeV
6 GeV < Q < 7 GeV
7 GeV < Q < 8 GeV
8 GeV < Q < 9 GeV

0.213
0.673
0.133
0.254
0.652

0.649
0.292
0.141
0.014
0.024

0.862
0.965
0.275
0.268
0.676

E288 300 GeV

4 GeV < Q < 5 GeV
5 GeV < Q < 6 GeV
6 GeV < Q < 7 GeV
7 GeV < Q < 8 GeV
8 GeV < Q < 9 GeV

11 GeV < Q < 12 GeV

0.231
0.502
0.315
0.056
0.530
1.047

0.555
0.204
0.063
0.030
0.017
0.167

0.785
0.706
0.378
0.086
0.547
1.215

E288 400 GeV

5 GeV < Q < 6 GeV
6 GeV < Q < 7 GeV
7 GeV < Q < 8 GeV
8 GeV < Q < 9 GeV

11 GeV < Q < 12 GeV
12 GeV < Q < 13 GeV
13 GeV < Q < 14 GeV

0.312
0.100
0.018
0.437
0.637
0.788
1.064

0.065
0.005
0.011
0.039
0.036
0.028
0.044

0.377
0.105
0.029
0.477
0.673
0.816
1.107

STAR 0.782 0.054 0.836
CDF Run I 0.480 0.058 0.538
CDF Run II 0.959 0.001 0.959
D0 Run I 0.711 0.043 0.753
D0 Run II 1.325 0.612 1.937
D0 Run II (µ) 3.196 0.023 3.218
LHCb 7 TeV 1.069 0.194 1.263
LHCb 8 TeV 0.460 0.075 0.535
LHCb 13 TeV 0.735 0.020 0.755
CMS 7 TeV 2.131 0.000 2.131
CMS 8 TeV 1.405 0.007 1.412

ATLAS 7 TeV
0 < |y| < 1
1 < |y| < 2
2 < |y| < 2.4

2.581
4.333
3.561

0.028
1.032
0.378

2.609
5.365
3.939

ATLAS 8 TeV
on-peak

0 < |y| < 0.4
0.4 < |y| < 0.8
0.8 < |y| < 1.2
1.2 < |y| < 1.6
1.6 < |y| < 2
2 < |y| < 2.4

1.924
2.342
0.917
0.912
0.721
0.932

0.337
0.247
0.061
0.095
0.092
0.348

2.262
2.590
0.978
1.006
0.814
1.280

ATLAS 8 TeV
off-peak

46 GeV < Q < 66 GeV
116 GeV < Q < 150 GeV

2.138
0.501

0.745
0.003

2.883
0.504

Global 0.88 0.14 1.02

Table 4.3: The χ2/Ndat using the mean replica in Eq. (4.3). Ndat in each case is listed
in Tab. 4.1. The uncorrelated (χ2

D) and correlated (χ2
λ) contributions and their sum

χ2 are shown (see Eq. (4.1)).
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4.3. Fit quality

two CMS datasets provide only eight points in total and thus their impact on the fit
is modest. The ATLAS datasets, among the LHC ones, are by far the most abundant.
We observe that the ATLAS 8 TeV datasets are well described, except for the first two
low–rapidity bins. The 7 TeV ones present larger values of χ2, above 2. Given the
extremely high precision of these datasets, even small effects (e.g., power corrections)
could give a significant contribution to χ2 in these conditions. We consider it already
a success to obtain a value of χ2 for these datasets that does not affect too much the
global χ2. We note that a key feature of these datasets (except the off-peak ones) is
that they are differential in the vector-boson rapidity y. As we will see in Sec. 4.5, the
x dependence of fNP plays a crucial role in improving the χ2.

In order to provide a visual assessment of the fit quality, Fig. 4.2 displays the
data/theory comparison for a representative selection of datasets. We remind the
reader that in each plot theoretical predictions are appropriately shifted to account for
correlated uncertainties [79], while the experimental error bars are given by the sum
in quadrature of the uncorrelated uncertainties. The upper panel of each plot shows
the absolute qT distribution, while the lower panel shows the ratio to data. The plots
in the upper row of Fig. 4.2 refer to one invariant–mass bin of E288 and D0 Run I
already considered in Ref. [84]. The remaining plots refer to some of the new datasets,
namely STAR, LHCb 7 TeV, ATLAS 7 TeV on–peak at 1 < |y| < 2, ATLAS 8 TeV
on–peak at 0.8 < |y| < 1.2 and 1.2 < |y| < 1.6 and ATLAS 8 TeV off-peak at 116
GeV < Q < 150 GeV. As expected, there is a very good agreement between data and
theory, for both the old and the new datasets. Finally, it is interesting to observe that
the uncertainties of E288, D0, STAR and LHCb in Fig. 4.2 are larger than the ATLAS
ones in the bottom rows. This is due to the fact that the ATLAS distributions are
normalized to the total cross section leading to a cancellation of some uncertainties,
such as those due to luminosity and collinear PDFs.
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Figure 4.2: Comparison between experimental data and theoretical predictions obtained at
N3LL accuracy for a representative subset of the datasets included in this analysis. The upper
panel of each plot displays the absolute qT distributions, while the lower panel displays the
same distributions normalized to the experimental central values. The blue bands represent
the 1–σ uncertainty of the theoretical predictions.

132



4.3. Fit quality

4.3.1 Fit parameters

In order to assess the sensitivity of the experimental dataset to fNP, it is interesting
to look at the values of the free parameters obtained from the fit. For the reader
convenience, we rewrite here our choice of parameterization in the PV19 fit:

fNP(x, bT , ζ) =

[
1− λ

1 + g1(x)
b2T
4

+ λ exp

(
−g1B(x)

b2
T

4

)]

× exp

[
−
(
g2 + g2Bb

2
T

)
ln

(
ζ

Q2
0

)
b2
T

4

]
,

(4.4)

with Q0 = 1 GeV and with the g1(x) and g1B(x) functions given by

g1(x) =
N1

xσ
exp

[
− 1

2σ2
ln2
(x
α

)]
,

g1B(x) =
N1B

xσB
exp

[
− 1

2σ2
B

ln2

(
x

αB

)]
.

(4.5)

In Tab. 4.4 the average of each parameter over the Monte Carlo replicas, along with the
respective standard deviation, is reported. All parameters are well constrained. We

Parameter Value
g2 0.036 ± 0.009
N1 0.625 ± 0.282
α 0.205 ± 0.010
σ 0.370 ± 0.063
λ 0.580 ± 0.092
N1B 0.044 ± 0.012
αB 0.069 ± 0.009
σB 0.356 ± 0.075
g2B 0.012 ± 0.003

g2 N1 α σ λ N1B αB σB g2B

g2

N1

α

σ

λ

N1B

αB

σB

g2B

Correlation matrix

−1

−0.5

0

0.5

1

Table 4.4: Average and standard deviation over the Monte Carlo replicas of the free
parameters fitted to the data and graphical representation of the correlation matrix.

stress that the parameters reported in Tab. 4.4 are not a direct result of any of our fits:
they do not match any specific replica. It is interesting to observe that the parameter
λ, that measures the relative weight of Gaussian and q-Gaussian in Eq. (2.42), is close
to 0.5 indicating that these contributions weigh approximately the same. Concerning
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4. PV19 Drell–Yan fit

the values of the parameters g2 and g2B associated to the nonperturbative contribution
to TMD evolution, we find that the coefficient g2B of the quartic term is small but
significantly different from zero, as can be also seen in Fig. 4.3. This seems to suggest
that higher–power corrections to the commonly assumed quadratic term g2 may be
required by the data.

A visual appraisal of the quality of the determination of the parameters are can be
also done looking at Fig. 4.3, where we show how the parameter values of the PV19
200 replicas are distributed. In other words, Fig. 4.3 reflects the content of Tab. 4.4.

Figure 4.3: A selection of plots that represent the distributions of PV19 free parameters.
The values of the 200 replicas plotted here are compatible with Gaussian distributions whose
standard deviations are reported in Tab. 4.4. The situation is the same also for the other five
free parameters.

Further insight concerning the appropriateness of the functional form in Eqs. (2.42)-
(2.43) can be gathered by looking at the statistical correlations between parameters.
In the right panel of Tab. 4.4, we show a graphical representation of the correlation
matrix of the fitted parameters. The first observation is that (off–diagonal) correlations
are generally not very large. There is however one exception: the parameters σ and λ
seem to be strongly anti–correlated, and this may indicate that the interplay between

134



4.3. Fit quality

q-Gaussian and Gaussian may be significantly x dependent.
To conclude this section, we show the results of a scan in the parameter space

performed with the MINUIT function ROOT::Minuit2::MnScan. The plots in Fig. 4.4
are created when running fit.py with the option “scan”and are an evidence of the
fact that the parameter values we obtained are stable. The scan is performed in the
following way: all parameters, except a selected one, are kept frozen at their final value;
the selected parameter is then varied in an interval of ∼ 2 standard deviations around
its final value and the χ2 is computed. In Fig. 4.4, we can see that the final parameters
correspond to a minimum of the χ2. In particular, we show that there are no flat
directions in the parameter space, and therefore the minimum is particularly stable.

λ

χ2

σ

χ2

σB

χ2

N1B

χ2

Figure 4.4: A selection of plots that represent how the χ2 changes as fNP parameters are varied
one at a time. For this scan in the parameter space we used the values of the central replica
(replica_0). “Starting value” refers to the value of the parameter before performing the scan,
i.e, the final value of the parameter after the fit converged. The parameters g2, g2B, α, αB and
N1 present a situation of minimum similar to the one showed here, where it is clear that there
are no flat directions in the parameter space and consequently the minimum appears stable.
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4.3.2 TMD distributions

We discuss now the TMD distributions extracted from our reference N3LL fit. We
stress once again that only the combination in the right hand side of Eq. (2.39) is
meaningful.
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Figure 4.5: The TMD of the up and down quarks at different values of µ =
√
ζ = Q [GeV] as

a function of the partonic transverse momentum k⊥ for different values of x. The bands give
the 1-σ uncertainty.

In Fig. 4.5 we show the up and down quark TMDs at Q = 2 GeV, Q = 8 GeV and
Q = 15 GeV as a function of the partonic transverse momentum k⊥ for different values
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of x. The 1-σ uncertainty bands are also shown. We show the same values of Q and
x, allowing a direct comparison between the two. As can be observed comparing the
plots in the first and in the last row of Fig. 4.5, the value at the peak of the curves
decreases and the distributions become broader as Q increases. As expected, TMDs are
suppressed as k⊥ grows and the suppression becomes relatively stronger as Q increases.

4.4 Perturbative convergence

In the previous section we discussed the quality of our fit at N3LL, which is the best
accuracy presently available. In this section we show how the inclusion of perturbative
corrections is crucial to achieve a better description of the experimental data. To this
end, we performed fits at NLL′, NNLL, and NNLL′ (see Sec. 2.1.4), and compared
them to the N3LL fit. We did not consider LL and NLL accuracies because in both
cases the description of the data is very poor (χ2 & 20).

NLL′ NNLL NNLL′ N3LL

Global χ2 1126 571 379 360

Table 4.5: Values of the global χ2 of the fits at NLL′, NNLL, NNLL′, and N3LL
accuracy.
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Figure 4.6: Graphical representation of Tab. 4.5.

Tab. 4.5 reports the values of the global χ2 for each of the four accuracies consid-
ered. In order to appreciate the significance of the differences,3 we have reported the

3Note that a difference of n units at the level of the global χ2 roughly means a separation
of around

√
n standard deviations.
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Figure 4.7: Comparison between experimental data for the ATLAS 7 TeV measurements in
the bin 66 GeV < Q < 116 GeV and 0 < |y| < 1 and the theoretical predictions obtained
from the fits to all perturbative orders considered in this analysis, i.e., NLL′, NNLL, NNLL′,
and N3LL (see Sec. 2.1.4). The layout of the plot is the same as in Fig. 4.2.

absolute values of the χ2 without dividing by the number of data points Ndat. Fig. 4.6
shows a graphical representation of Tab. 4.5. The global quality of the fit improves
significantly as the perturbative accuracy increases. In addition, Fig. 4.6 shows that
the convergence rate decreases when going to larger perturbative orders. On the one
hand, we conclude that it is necessary to include higher perturbative corrections to
obtain a good description of the data and that N3LL corrections are still significant.
On the other hand, it appears that the perturbative series is nicely converging and
N3LL accuracy seems appropriate within the current experimental uncertainties.

In order to quantify the numerical impact of higher–order corrections, in Fig. 4.7 we
compare the predictions for all the available perturbative orders to the ATLAS 7 TeV
data in the bin 66 GeV < Q < 116 GeV and 0 < |y| < 1. This plot shows how the
inclusion of higher–order corrections improves the shape of the predictions, particularly
around the peak region.

4.5 Reduced dataset and x dependence

The nonperturbative function fNP, Eq. (2.39), accounts for the large–bT behavior of
TMDs and it is in general a function of bT , ζ, and x. While the asymptotic depen-
dence on bT is driven by first–principle considerations (see Sec. 2.1.5) and the evolution
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4.5. Reduced dataset and x dependence

with ζ is determined by the Collins–Soper equation (2.11), the dependence on x is to-
tally unknown. Moreover, a direct access to the x dependence is particularly difficult
to achieve because it requires cross section data finely binned in rapidity y. In the
dataset considered here, only the ATLAS experiment delivers data differential in ra-
pidity. Therefore, one would expect that these datasets provide most of the sensitivity
to the x dependence of TMDs.

In order to test this conjecture, we employed a particularly simple x–independent
parameterization of the nonperturbative function:

fDWS
NP (bT , ζ) = exp

[
−1

2

(
g1 + g2 ln

(
ζ

2Q2
0

))
b2
T

]
, (4.6)

with two free parameters, g1 and g2, and Q2
0 = 1.6 GeV2 (inspired by the pioneering

work of Davies, Webber, and Stirling. [67]). Using Eq. (4.6) we first performed a fit at
N3LL to the full dataset. Then we excluded the ATLAS datasets differential in rapidity
(but we kept the off–peak ATLAS 8 TeV datasets because inclusive in rapidity). The

Full dataset No y-differential data
Global χ2/Ndat 1.339 0.895

g1 0.304 0.207
g2 0.028 0.093

Table 4.6: The values of the global χ2 normalized to the number of data points Ndat

from the fit to the full dataset and to a reduced dataset without the y–differential
ATLAS datasets, both using the parameterization in Eq. (4.6). For completeness, we
also report the best–fit values of the parameters g1 and g2.

resulting χ2s normalized to the number of data points are reported in Tab. 4.6. For
completeness, we also show the best–fit values of the parameters g1 and g2.

Firstly, the χ2 of the fit to the full dataset using Eq. (4.6) is equal to 1.339 and
is significantly larger than that obtained using the parameterization in Eqs. (2.42)-
(2.43) (1.020). This suggests that an x–dependent fNP is required to obtain a good
description of the data. Secondly, the χ2 of the fit without the y–differential ATLAS
data comes out to be particularly low (0.895). We conclude that at N3LL accuracy the
x dependence of the TMDs extracted from the currently available DY data is mostly
required by the ATLAS data differential in the boson rapidity y. We note however
that the agreement with the very precise ATLAS data may be influenced also by other
small corrections (e.g. power corrections).
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4. PV19 Drell–Yan fit

0.100 0.125 0.150 0.175 0.200 0.225 0.250 0.275
Cut on qT/Q

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

G
lo

b
a
l
χ

2
/
N

d
a
t

N
d
a
t

=
16

3

N
d
a
t

=
18

7

N
d
a
t

=
23

0

N
d
a
t

=
26

1

N
d
a
t

=
28

5

N
d
a
t

=
31

9 N
d
a
t

=
35

0

N
d
a
t

=
36

6

N
d
a
t

=
40

0

N
d
a
t

=
42

3Nominal cut (qT/Q < 0.2)

Figure 4.8: The global χ2/Ndat as a function of the cut on qT /Q. The blue point corresponds
to the reference cut used in this analysis.

4.6 Dependence on the cut on qT/Q

As discussed in Ch. 2, our analysis is based on TMD factorization whose validity is
restricted to the region qT � Q. As a consequence, we consider only measurements
that respect this constraint. More precisely, we require that the maximum value of
the ratio qT/Q for a point to be included in the fit be 0.2 (see Sec. 3.3). Despite this
particular value seems to be generally recognized in the literature (see, e.g., Ref. [78]),
it is interesting to study how the global description of the dataset changes by varying
this cut. This can also help us assess more quantitatively the validity range of TMD
factorization.

Fig. 4.8 displays the behavior of the global χ2/Ndata for the N3LL fit as a function
of the qT/Q cut ranging between 0.1 and 0.28 in steps of 0.02. As expected, the quality
of the fit tends to degrade as the cut on qT/Q increases. Of course, it is impossible
to draw a line between validity and non–validity regions. However, this study gives a
quantitative justification for choosing the value 0.2 for the qT/Q cut.

4.7 PV19 fit results

In Fig. 4.9 we show the χ2 values of the 200 Monte Carlo replicas of the PV19 TMD
PDF extraction. As expected, the shape of the histogram is a χ2 distribution. The
fact that such distribution has its peak in a value very close to 1 is an indication of
optimal fit quality.
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Figure 4.9: Distribution of the χ2 values of the 200 Monte Carlo replicas of the PV19 TMD
extraction.

In Tab. 4.7 we show the χ2s computed as an average over the 200 replicas we
considered in our fit and its standard deviation. In this case, separating uncorrelated
and correlated contributions to the total χ2 is not useful, as 〈χ2

λ〉+ 〈χ2
D〉 6= 〈χ2

tot〉.
The value of the total χ2 is, as expected, slightly different from the χ2 computed

with respect to the mean of the ensemble of replicas (in Tab. 4.3): the fact that also
the average χ2 is very close to 1 (1.07), suggests a good stability of our results and is
another indicator of the goodness of our TMD PDF extraction. Note that the global
χ2 distribution in Fig. 4.9 is peaked around 1.07, the value of 〈χ2

λ〉 reported in Tab. 4.3.

As for the χ2 values of each experiment, the same considerations done in Sec. 4.3
for the case of χ2 computed with respect to to the mean replica hold also for Tab. 4.7.
In general, LHC data, and in particular ATLAS data, have higher values of χ2, but,
given the extremely high precision of these datasets, the χ2 values reported in Tab. 4.7
are to be considered a very good result.

Finally, we report a selection of plots (Fig. 4.10–Fig. 4.21) that show all the Monte
Carlo replicas and the distribution of their χ2 for single experiments. In the left panels,
the χ2 are calculated with respect to the mean replica, which is highlighted in red in the
right panels: the histograms approximate χ2 distributions peaked around the values
reported in Tab. 4.3. In the right panels, the black line refers to the central replica,
i.e, replica 0. Note that, for low–energy experiments, the width of the replica bundle is
bigger than replicas are more spread for high–energy experiments (see LHC plots, for
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4. PV19 Drell–Yan fit

Experiment Q[GeV], y χ2

E605

7 GeV < Q < 8 GeV
8 GeV < Q < 9 GeV

10.5 GeV < Q < 11.5 GeV
11.5 GeV < Q < 13.5 GeV
13.5 GeV < Q < 18 GeV

0.69 ± 0.11
1.54 ± 0.22
0.55 ± 0.07
1.39 ± 0.11
2.04 ± 0.11

E288 (200)

4 GeV < Q < 5 GeV
5 GeV < Q < 6 GeV
6 GeV < Q < 7 GeV
7 GeV < Q < 8 GeV
8 GeV < Q < 9 GeV

1.43 ± 0.29
1.67 ± 0.20
0.42 ± 0.08
0.43 ± 0.14
0.60 ± 0.07

E288 (300)

4 GeV < Q < 5 GeV
5 GeV < Q < 6 GeV
6 GeV < Q < 7 GeV
7 GeV < Q < 8 GeV
8 GeV < Q < 9 GeV

11 GeV < Q < 12 GeV

1.09 ± 0.27
0.94 ± 0.14
0.46 ± 0.13
0.12 ± 0.04
0.58 ± 0.10
0.61 ± 0.03

E288 (400)

5 GeV < Q < 6 GeV
6 GeV < Q < 7 GeV
7 GeV < Q < 8 GeV
8 GeV < Q < 9 GeV

11 GeV < Q < 12 GeV
12 GeV < Q < 13 GeV
13 GeV < Q < 14 GeV

0.32 ± 0.08
0.11 ± 0.03
0.08 ± 0.05
0.50 ± 0.08
0.60 ± 0.14
0.57 ± 0.04
0.70 ± 0.05

STAR 0.93 ± 0.05
CDF RunI 0.59 ± 0.02
CDF RunII 0.90 ± 0.07
D0 RunI 0.67 ± 0.03
D0 RunII 1.70 ± 0.22

D0 RunII(µ) 3.21 ± 0.44
LHCb (7 TeV) 1.28 ± 0.04
LHCb (8 TeV) 0.67 ± 0.13
LHCb (13 TeV) 0.85 ± 0.07
CMS (7 TeV) 2.13 ± 0.01
CMS (8 TeV) 1.43 ± 0.05

ATLAS (7 TeV)
0 < |y| < 1
1 < |y| < 2
2 < |y| < 2.4

2.71 ± 0.24
5.29 ± 0.09
3.92 ± 0.11

ATLAS (8 TeV))

0 < |y| < 0.4
0.4 < |y| < 0.8
0.8 < |y| < 1.2
1.2 < |y| < 1.6
1.6 < |y| < 2
2 < |y| < 2.4

2.36 ± 0.13
2.50 ± 0.09
0.99 ± 0.08
1.04 ± 0.15
0.80 ± 0.24
1.05 ± 0.22

ATLAS (8 TeV) 46 GeV < Q < 66 GeV
116 GeV < Q < 150 GeV

2.99 ± 0.12
0.50 ± 0.01

Total 1.07

Table 4.7: Values of χ2 computed as an average over the 200 replicas we considered in
our fit. 142



4.7. PV19 fit results

example): this is due to the fact that E288 and E605 are affected by large normalization
errors.

Figure 4.10: The left panels show the data points with their error bars and the 200 replicas of
the PV19 fit for one selected dataset of E288 at 200 GeV and of E288 at 300 GeV: the red line
refers to the mean replica, while the black line is the central replica, i.e the replica that fits
the original, non–fluctuated data points. In the right panels we display the χ2 distribution of
all the replicas for the selected datasets.
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4. PV19 Drell–Yan fit

Figure 4.11: The left panel shows the data points with their error bars and the 200 replicas
of the PV19 fit for one selected dataset of E288 at 400 GeV: the red line refers to the mean
replica, while the black line is the central replica, i.e the replica that fits the original, non–
fluctuated data points. In the right panel we display the χ2 distribution of all the replicas for
the selected dataset.
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4.7. PV19 fit results

Figure 4.12: The left panels show the data points with their error bars and the 200 replicas
of the PV19 fit for two selected dataset of E605 at different values of Q: the red line refers
to the mean replica, while the black line is the central replica, i.e the replica that fits the
original, non–fluctuated data points. In the right panels we display the χ2 distribution of all
the replicas for the selected datasets.
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4. PV19 Drell–Yan fit

Figure 4.13: The left panels show the data points with their error bars and the 200 replicas of
the PV19 fit for two y–bins of ATLAS at 7 TeV: the red line refers to the mean replica, while
the black line is the central replica, i.e the replica that fits the original, non–fluctuated data
points. In the right panels we display the χ2 distribution of all the replicas for the datasets.
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4.7. PV19 fit results

Figure 4.14: The left panels show the data points with their error bars and the 200 replicas
of the PV19 fit for the highest y–bin available for ATLAS at 7 TeV and the central y–bin of
ATLAS at 8 TeV: the red line refers to the mean replica, while the black line is the central
replica, i.e the replica that fits the original, non–fluctuated data points. In the right panels
we display the χ2 distribution of all the replicas for the datasets.
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4. PV19 Drell–Yan fit

Figure 4.15: The left panels show a comparison between the data points with their error bars
and the 200 replicas of the PV19 fit for two of the y–bins available for ATLAS at 8 TeV:
the red line refers to the mean replica, while the black line is the central replica, i.e the
replica that fits the original, non–fluctuated data points. In the right panels we display the
χ2 distribution of all the replicas for the datasets.
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4.7. PV19 fit results

Figure 4.16: The left panels show a comparison between the data points with their error
bars and the 200 replicas of the PV19 fit for ATLAS at 8 TeV off–peak: the red line refers
to the mean replica, while the black line is the central replica, i.e the replica that fits the
original, non–fluctuated data points. In the right panels we display the χ2 distribution of all
the replicas for the datasets.
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4. PV19 Drell–Yan fit

Figure 4.17: The left panels show a comparison between the data points with their error bars
and the 200 replicas of the PV19 fit for CDF Run I and CDF Run II: the red line refers
to the mean replica, while the black line is the central replica, i.e the replica that fits the
original, non–fluctuated data points. In the right panels we display the χ2 distribution of all
the replicas for the datasets.
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4.7. PV19 fit results

Figure 4.18: The left panels show a comparison between the data points with their error bars
and the 200 replicas of the PV19 fit for D0 Run I and D0 Run II with muons: the red line
refers to the mean replica, while the black line is the central replica, i.e the replica that fits
the original, non–fluctuated data points. In the right panels we display the χ2 distribution of
all the replicas for the datasets.
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4. PV19 Drell–Yan fit

Figure 4.19: The left panel shows a comparison between CMS at 8 TeV data points and the
200 replicas of the PV19 fit: the red line refers to the mean replica, while the black line is the
central replica, i.e the replica that fits the original, non–fluctuated data points. In the right
panel we display the χ2 distribution of all the replicas for the dataset.

152



4.7. PV19 fit results

Figure 4.20: The left panels show a comparison between the data points with their error
bars and the 200 replicas of the PV19 fit for LHCb at 8 TeV and 13 TeV: the red line refers
to the mean replica, while the black line is the central replica, i.e the replica that fits the
original, non–fluctuated data points. In the right panels we display the χ2 distribution of all
the replicas for the datasets.
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4. PV19 Drell–Yan fit

Figure 4.21: The left panel shows a comparison between the STAR data points we considered
and the 200 replicas of the PV19 fit: the red line refers to the mean replica, while the black
line is the central replica, i.e the replica that fits the original, non–fluctuated data points. In
the right panel we display the χ2 distribution of all the replicas for the dataset.
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Chapter 5
Conclusions

The main topics of this thesis were the description of the suite of computational tools
that we developed for TMD studies (NangaParbat) and the extraction of TMD PDFs
performed using NangaParbat and dubbed PV19 [95]. The author of this thesis was
one of the main developers of the NangaParbat code and one of the main authors of
the PV19 TMD extraction.

In this thesis, we studied the description of two processes: Drell–Yan, which is lep-
ton pair production through virtual photon or Z–boson exchange, h1(P1) + h2(P2) −→
γ∗/Z(q) + X −→ `+(l) + `−(l′) + X, and Semi–Inclusive Deep Inelastic Scattering
(SIDIS), an inelastic scattering of an high–energy lepton on an hadron target where
one hadron in the final state is detected, `(l) +N(P )→ `(l′) + h(Ph) +X.

Factorization theorems allow us to write the cross section of these processes in terms
of Transverse Momentum Distributions (TMDs), as discussed in Ch. 2, where both per-
turbative and nonperturbative aspects of TMDs have been examined. In particular, we
illustrated TMD evolution equations, discussing our choices for the values of the scales
(µ = Q and ζ1 = ζ2 = Q2), and we examined the perturbative ingredients that result
from this particular choice. We explained how the resummation of large logarithms
of Q/qT is treated and how we defined the logarithmic ordering that quantifies the
perturbative accuracy of a TMD extraction.

Then we considered the nonperturbative part of TMDs fNP and its parameteriza-
tion, introducing the b∗–prescription to regularize the behavior of the TMDs at large bT
and discussing two different nonperturbative functional forms: the one we used in our
TMD Parton Distribution Function (TMD PDF) extraction in Ref. [95] and the choices
made for the TMD PDF and TMD Fragmentation Function (TMD FF) extraction in
Ref. [84] (PV17).

To perform the PV19 TMD PDF fit, we developed a C++ suite of tools for TMD
physics, which we called NangaParbat and is publicly available at the GitHub reposi-
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tory:

https://github.com/MapCollaboration/NangaParbat

The structure of NangaParbat is illustrated in Ch. 3. The purpose of NangaParbat is
two–folded: it can be used to perform TMD extractions and to produce and interpolate
TMD and structure function grids.

We illustrated how the TMD theoretical framework necessary to perform a TMD
extraction is implemented in NangaParbat. In order to speed up the fit we precom-
puted and stored all perturbative (and collinear nonperturbative) terms. Thanks to
this method, we reduced by a factor of ∼ 200 the computation time required for the
fit. Moreover, we discussed the processing of experimental data, the treatment of the
uncertainties and the computation of the χ2, which are crucial features of NangaParbat
and were fundamental in obtaining a very good agreement with experimental data.

NangaParbat uses APFEL++ as engine for calculations and makes use of advanced and
optimized computation tools, which allowed us to perform exactly the multidimensional
integrals necessary to produce predictions comparable with experimental data.

In Ch. 3 we also illustrated the NangaParbat tools that allow us to produce, in-
terpolate and convolute TMD grids. In particular, NangaParbat is able to produce
grids for unpolarized TMD PDFs, TMD FFs and for the unpolarized structure func-
tion FUU,T . At the moment of the writing of this thesis, the following grids, which the
author of this thesis significantly contributed to produce, are publicly available: PV19
TMD PDFs, PV17 TMD PDFs, PV17 TMD FFs for π+ and π− and PV17 structure
function FUU,T (x, z, qT , Q) for π+ and π− as hadrons detected in the final state. All
these grids have been thoroughly tested and, together with the NangaParbat interpo-
lator, have been included in TMDlib [193, 194], a library for TMD extractions. The
grids can be found at

https://syncandshare.desy.de/index.php/s/GjjcwKQC93M979e?path=%2FTMD%
20grid%20files

TMDlib has a plotting interface, TMDplotter, which can be used at

http://tmdplotter.desy.de/TMDplotter.php?mode=default&type=tmdkt .

In Ch. 4 we presented an extraction of TMDs from Drell-Yan data accurate up
to N3LL. We considered unpolarized observables that are accessible in a relatively
large number of experiments and that allow us to extract the quark unpolarized TMD
distributions and the NP part of TMD evolution. The dataset used in this analysis
includes low–energy data from FNAL (E605 and E288) and RHIC (STAR) and high–
energy data from Tevatron (CDF and D0) and the LHC (LHCb, CMS, and ATLAS),
for a total of 353 data points.
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5.1. Outlook

The fit was performed with a proper treatment of the experimental uncertainties,
which were propagated into the fitted TMD distributions by means of the Monte Carlo
sampling method. This allowed us to obtain a very good description of the entire
dataset (χ2/Ndat = 1.02) without the need of introducing ad hoc normalizations. A
more detailed analysis of the fit quality shows that both low– and high–energy datasets
are separately well described. This is a remarkable achievement given the very high
precision of the LHC datasets, especially those from ATLAS.

A particularly interesting aspect of our analysis concerns the QCD convergence of
the perturbative series. We performed fits at NLL′, NNLL, NNLL′, and N3LL accuracy
and showed that the fit quality improves significantly going from NLL′ to N3LL. The
difference between the highest orders, i.e., NNLL′ and N3LL, is moderate but still
significant. This shows at the same time that the perturbative series is converging,
but also that N3LL corrections are relevant in relation to the current experimental
uncertainties.

We parameterized the nonperturbative contributions by adopting a reasonably flex-
ible functional form: all nine free parameters turned out to be well constrained, with
moderate correlations among them. An important feature of our parameterization of
the nonperturbative contribution fNP is its explicit x dependence. We proved that
the x–dependent part of fNP is mostly constrained by the rapidity–dependent on–peak
data at 7 and 8 TeV from ATLAS. While on the one hand, this was to be expected
because the x dependence is strictly connected with the rapidity y, on the other hand
it also demonstrates that most of the datasets are not sensitive to the x dependence of
TMDs.

Finally, we studied the validity range of TMD factorization in Drell–Yan by varying
the cut on qT/Q. In line with the literature, we found that the region qT . 0.2Q is
appropriate when working within the TMD factorization framework.

5.1 Outlook

In this thesis we set the foundation for a number of future studies. In the first place, we
plan to extend the fitted dataset by including the abundant and precise Semi-Inclusive
DIS data from HERMES [139] and COMPASS [140, 166], as well as future data from
Jefferson Lab at 12 GeV [218]. In Fig. 5.1 we show the kinematic coverage in the
x–Q2 plane of the Drell–Yan data we analyzed in this thesis and some of the present
and future datasets from Semi–Inclusive DIS experiments. The Semi–Inclusive DIS
data from the HERMES and COMPASS collaborations shown in Fig. 5.1 are already
available and have been included in unpolarized TMD extractions in the literature [78,
84, 85]. As for future datasets, we report the expected kinematic range of the data
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Figure 5.1: Kinematic coverage on the x vs. Q2 plane of the some of the present and future
(JLAB 12 and EIC) datasets for TMD extractions.

from Jefferson Lab at 12 GeV and from the Electron–Ion Collider with
√
s = 141 GeV.

On top of providing access to TMD fragmentation functions, we expect that the
inclusion of Semi–Inclusive DIS data will have an impact on the determination of the x
dependence of TMD PDFs and will make it possible to determine the flavor dependence
of the nonperturbative function fNP. We remark that a better knowledge of TMDs will
be important not only to obtain a deeper knowledge of hadron structure and QCD, but
also for precision studies in high–energy processes involving hadrons, for instance for
the determination of critical Standard Model parameters such as theW mass [88, 141].

In the future, the Electron–Ion Collider (EIC) will provide an unprecedented oppor-
tunity to make progress in the determination of TMDs [94, 219]. The US Department
of Energy officially started the EIC project by establishing in December 2019. The re-
alization of the EIC, which will be led jointly by Brookhaven National Laboratory and
Thomas Jefferson National Accelerator Facility, is expected to take roughly a decade,
with beam operations starting in the early 2030s.

The EIC will be capable of colliding beams of polarized electrons with polarized
beams of light ions at an intensity, resolution and versatility never achieved before by
an experimental apparatus [96].

Even though data from the EIC are to be expected after the late 2030s, the impact
that they will have on the imaging of the nucleon in momentum space can be estimated
using pseudodata based on PYTHIA simulations [220] and performing impact studies like
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the ones illustrated in the EIC Yellow Report [96] and in references therein.
TMDs at the EIC will be accessed through Semi–Inclusive DIS and the studies

presented in this thesis, as well as future developments of our numerical framework
NangaParbat, will be very useful in the analysis of future data.
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