
Università degli Studi di Pavia

Università della Svizzera Italiana

Joint PhD program in Computational Mathematics and Decision Sciences
XXXIV cycle

A Neural Network approach for the generation

of Transfer Operators in Multilevel Solvers

Advisor:
Prof. Rolf KRAUSE

PhD Dissertation of :
Claudio TOMASI

matr. 470004

Academic year 2020-2021





I certify that except where due acknowledgement has been given, the work
presented in this thesis is that of the author alone; the work has not been submit-
ted previously, in whole or in part, to qualify for any other academic award; and
the content of the thesis is the result of work which has been carried out since
the official commencement date of the approved research program.

Claudio Tomasi
Pavia, 12 January 2022

ii



Abstract

In this thesis, we investigate the combination of Multigrid methods and Neu-
ral Networks, starting from Finite Element discretizations of Partial Differential
Equations. Multigrid methods are among the fastest numerical methods em-
ployed to solve elliptic equations. They use different levels of approximation in
a multilevel hierarchy to compute the solution. The keypoint is to appropriately
define transfer operators to transfer information between these different levels.
These operators are crucial for fast convergence of Multigrid, but they are gen-
erally unknown.

Here, we propose Neural Network models for learning transfer operators,
and we build a multilevel hierarchy based on the output of the predictive model.
After a preliminary study in one-dimensional scenarios, we define our training
set by extracting information from geometry and operator matrices. We take
the features from the mass matrix and the target from the L2-projection. Then,
we customize the model loss function in order to include knowledge about the
transfer operators: in this way, our network solves a constrained problem, forc-
ing some domain properties on the predictions. The application of this model
in a Multigrid context results in good convergence, motivating the passage to
two-dimensional problems. Given the increased complexity of the data, we first
investigate the accuracy of the predictions, by testing it with different network
architectures and with different combinations of parameters. We focus on the
study of convergence, where we compare our strategy with existing Multigrid
methods. More specifically, we consider the Semi-Geometric Multigrid and the
Algebraic Multigrid.

A big issue that needs to be faced is the constraint given by feedforward Neu-
ral Networks of working only with fixed input and output dimensions. Therefore,
we implement and compare different solution to address this problem, by ex-
tending the node patches when the neighborhood of a node has less nodes than
expected, and by decomposing our feature extraction when the node patch is big-
ger than the network input. In order to validate this procedure in more general
settings, we test our method using several geometries, considering structured

iii



iv

and unstructured grids, but without the need of using a specific implementation
for each grid.
In the last part of this work, we focus on problems with variable diffusion coeffi-
cients, where stiffness information is added in the training process. This strategy
allows to achieve faster convergence than using transfer operators based only on
geometric data.

Future discussion should be devoted to the extension of this Neural Network
approach to three-dimensional scenarios and to the construction of grid operators
for an automatic definition of multilevel solvers, allowing a portable solution in
scientific computing.



Contents

Contents iv

List of Figures vii

List of Tables ix

Introduction 1

1 Multigrid 5
1.1 Model Problem and FE Discretization . . . . . . . . . . . . . . . . . . 6

1.1.1 Weak Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1.2 Discrete Formulation . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.1 Grid Generation . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.2 Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Multigrid Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.1 Error Smoothing procedure . . . . . . . . . . . . . . . . . . . 10
1.3.2 Coarse Grid Correction . . . . . . . . . . . . . . . . . . . . . . 12

1.4 The Multigrid Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4.1 Two-grid Method . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.4.2 Multigrid Components . . . . . . . . . . . . . . . . . . . . . . 14
1.4.3 Multigrid method . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.4.4 Multigrid Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.5 Transfer operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.5.1 Geometric Transfer Operator . . . . . . . . . . . . . . . . . . 19
1.5.2 AMG Transfer Operator . . . . . . . . . . . . . . . . . . . . . . 20
1.5.3 L2-Projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.6 Convergence and Efficiency . . . . . . . . . . . . . . . . . . . . . . . . 26

v



vi Contents

2 Deep Learning 29
2.1 Machine Learning Methods . . . . . . . . . . . . . . . . . . . . . . . . 30

2.1.1 Learning Algorithms . . . . . . . . . . . . . . . . . . . . . . . . 30
2.1.2 Capacity, Overfitting, Underfitting . . . . . . . . . . . . . . . 32
2.1.3 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.1.4 Hyperparameters and Validation Set . . . . . . . . . . . . . . 33
2.1.5 Stochastic Gradient . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2 Deep Feedforward Networks . . . . . . . . . . . . . . . . . . . . . . . 35
2.2.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.2.2 Backpropagation . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.2.3 Regularization Methods . . . . . . . . . . . . . . . . . . . . . . 39

3 Neural Multigrid 43
3.1 Training Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.1.1 Class of examples . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.1.2 One-dimensional Records . . . . . . . . . . . . . . . . . . . . 47
3.1.3 Two-dimensional Records . . . . . . . . . . . . . . . . . . . . 48
3.1.4 Methodology Details . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2 Model Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.2.1 Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.2.2 Model Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.2.3 Hyperparameters Tuning . . . . . . . . . . . . . . . . . . . . . 56

3.3 NMG Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.3.1 Mesh Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.3.2 Virtual Extension . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.3.3 Adding information from Ah . . . . . . . . . . . . . . . . . . . 60

4 Numerical Experiments 63
4.1 Technical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.1.1 MacBook Pro . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.1.2 Cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2 Libraries and Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.3 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3.1 1D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.3.2 2D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Conclusion 83

Bibliography 85



Figures

1.1 Example of conforming and nonconforming grids . . . . . . . . . . 8
1.2 Refinement procedures applied on a mesh. . . . . . . . . . . . . . . 10
1.3 Smoothing effect of the Gauss–Seidel method. . . . . . . . . . . . . 11
1.4 Error on fine mesh projected onto a coarse mesh. . . . . . . . . . . 12
1.5 Different MG cycles, increasing the number of levels. . . . . . . . . 17
1.6 Solution of a test problem on different levels of a multilevel hier-

archy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.7 Classic coarsening procedure employed in AMG. . . . . . . . . . . . 23
1.8 Intersection between 2D elements . . . . . . . . . . . . . . . . . . . . 25

2.1 Example of Neural Network. . . . . . . . . . . . . . . . . . . . . . . . 36
2.2 Example of perceptron. . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.3 Early Stopping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1 Example of one-dimensional mesh . . . . . . . . . . . . . . . . . . . . 44
3.2 Example of two-dimensional mesh . . . . . . . . . . . . . . . . . . . 45
3.3 Example of 2D mesh used to extract training set records. . . . . . . 48
3.4 2D meshes considering three different classes of records . . . . . . 50
3.5 Flow chart: training set creation . . . . . . . . . . . . . . . . . . . . . 51
3.6 Overlapping between 1D basis functions. . . . . . . . . . . . . . . . 53
3.7 Result of the mesh extension procedure. . . . . . . . . . . . . . . . . 58
3.8 Flow chart: Neural MG . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.1 Heatmap of 1D model comparison . . . . . . . . . . . . . . . . . . . . 66
4.2 Prediction accuracy 1D NN . . . . . . . . . . . . . . . . . . . . . . . . 67
4.3 Convergence of NMG in 1D increasing degrees of freedom . . . . . 68
4.4 Comparison between NMG and SGMG 1D . . . . . . . . . . . . . . . 69
4.5 Training set generation time . . . . . . . . . . . . . . . . . . . . . . . 70
4.6 Heatmap of 2D model. . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.7 Prediction accuracy 2D NN comparison . . . . . . . . . . . . . . . . . 72

vii



viii Figures

4.8 Heatmap of 2D model after hyperparameter tuning. . . . . . . . . . 74
4.9 Convergence of NMG in 2D increasing degrees of freedom . . . . . 75
4.10 Comparison between NMG and SGMG in 2D - Structured Grid . . 76
4.11 Structured square mesh. . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.12 Comparison between MG methods and NMG, solving a problem

with a variable diffusion coefficient . . . . . . . . . . . . . . . . . . . 78
4.13 Unstructured mesh of a circle. . . . . . . . . . . . . . . . . . . . . . . 79
4.14 Comparison between NMG and SGMG - Unstructured Gird: Circle 79
4.15 Unstructured mesh of a circle with circular holes. . . . . . . . . . . 80
4.16 Comparison between NMG and SGMG - Unstructured Gird: Circle

with holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.17 Unstructured mesh of a circle with a hole - Adaptive refinement. . 81
4.18 Comparison between NMG and SGMG - Unstructured Gird: Circle

with a hole, adaptive refinement . . . . . . . . . . . . . . . . . . . . . 81



Tables

4.1 Convergence comparison of NMG against SGMG using ten grids
on a 1D problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2 Hyperparameter Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.3 Numerical experiments summary . . . . . . . . . . . . . . . . . . . . 82

ix



x Tables



Introduction

The discretization of partial differential equations (PDEs) gives rise to large sys-
tems of equations. When reaching a three-dimensional scenario, more than one
million of unknowns or degrees of freedom (dofs) are not unusual. Applying
direct methods for solving systems of this size, results in prohibitively expensive
computations, other than the need of very large amount of storage. Therefore,
iterative methods are extensively used in treating numerically PDEs. A big dis-
advantage of this kind of methods is that the amount of work does not remain
proportional to the number of unknowns: the time needed to solve a problem
grows more rapidly than the size of the problem.

Multigrid (MG) methods overcome this barrier, being also among the most
successful strategies for the solution of large system of equations arising from
discretized elliptic equations. The works of Brandt [13] and Hackbusch [37, 39]
can be considered the milestones forming the historical breakdown, giving rise
to the MG theory. Today MG is used in a wide range of fields where PDEs are
solved numerically, providing a robust convergence theory, in which a mesh size
independent error decreasing is given [11, 93].

The main idea behind the Multigrid method is to combine different level of
approximation into a multilevel hierarchy to compute the solution. The algo-
rithm operates as an iterative procedure: in each level, we reduce the error us-
ing a smoother and then we move to the lower level. Once the lowest level is
reached we move upward, bringing to the upper levels the corrections provided
by the lower ones. More rigorous definitions and analysis of the MG procedure
are well treated in [15, 78, 86, 90]. In order to transfer information between the
different levels, we need to use the so-called transfer operators. Therefore, a cru-
cial point to reach fast convergence is a correct definition of these operators, but
they are generally problem-dependent. Unless the multilevel hierarchy consists
of nested meshes, the computation of the transfer operators is very expensive,
and domain knowledge is always required. Strategies to define and compute
these operators in non-nested meshes hierarchies are studied in [25, 26, 85] and
[51], where the latter gives a focus on a parallel implementation to obtain a

1



2 Introduction

speed up in the computations. On the other hands, there are strategies that put
their attention on the algebraic problem, considering only the system of equa-
tions independently of the underlining meshes. These procedures are known as
Algebraic Multigrid (AMG) methods. For a general introduction and implemen-
tation refer to [20, 72, 82, 83]. These methods have a wide application, but they
do not hold the optimal convergence property of the classic MG.

The ever-increasing application of Machine Learning (ML) as support for
methods in scientific computing, makes it a natural solution to be employed in
the definition of transfer operators, reducing the costs of their construction. ML
methods, and specifically Deep Learning, are models that aim to learn from data.
Amongst the large amount of references in the literature on this topic, we report
[62], which gives a simple introduction and implementation of NNs. For more
mathematical details and more complicated model architectures one can refer to
[8, 22, 34, 45, 60]. Starting from shallow Neural Networks (NNs), useful to pro-
vide predictions related to very simple tasks, nowadays deep learning is applied
in a wide range of scenarios, e.g., image classification, speech recognition, drug
discovery, and so on. For a complete overview on the evolution of deep learning
models refer to [77]. These systems consist of multiple connected layers and find
complex structures in large datasets, during their optimization.

Therefore, employing these models to predict transfer operators can provide
a good speed up in terms of computational time, removing the need of domain
knowledge. Different approaches tried to move in this direction. In [36], Green-
feld et al. propose a NN model between PDEs and the operators, specifically the
prolongation matrices, for a broad class of 2D diffusion problems. This solution
presented an improved convergence when tested against the widely used Black
Box MG [21, 23], which select operator-dependent prolongation operators. An-
other approach is presented in the work of Katrutsa et al. [47]: here the transfer
operators, both restriction and prolongation, are optimized while minimizing the
spectral radius of the iteration matrix of a given problem, which depends on those
two matrices. As an alternative, the method proposed by Luz et al. [59] focus on
learning the AMG transfer operators: they employ Graph NNs as learning mod-
els (see, e.g., [76]) to learn optimal sparse operators, given in input classes of
sparse symmetric positive definite (and semi-definite) matrices. Their aim is to
produce a network that solve any linear system of equations with a matrix drawn
from that class. Last but not least, the work of He and Xu [42] develops a unified
model, that recovers some convolutional NNs [5, 65] for image classification and
MG methods for solving discretized partial differential equations (PDEs), based
on connections between the two kind of methodologies.



3 Introduction

In this work, we propose a methodology based on deep NNs to define trans-
fer operators based on the concept of L2-projection, a natural way to prolongate
information from a coarse level to a finer mesh. Our strategy is to start from
a simple hierarchy consisting of two levels, a fine and a coarse mesh and focus
on the geometry. The information arising from the mesh, after a Finite Element
(FE) discretization, composes the inputs of our training set. In details we take
these data from the mass matrix assembled on the fine mesh. Then we compute
the correct transfer operator overlapping fine and coarse grids, to retrieve the
outputs of our dataset. Considering several cases of different resolution (thus,
with different dofs), we gradually construct a global training set, ready to be em-
ployed in a learning algorithm. As a support tools for implementing NNs models
we adopt the Tensorflow framework [1, 2]. During the training phase we add
to the loss function a priori knowledge about properties of transfer operators
in order to improve the generalization properties of the model. This allows our
method to results not only in predictions close to the expected results, but also in
good convergence once applied in a MG context. In the numerical experiments,
after a preliminary studies of model parameters, we compare the predicted trans-
fer operator against the computed L2-projection both applied in a MG solver on
the same test equation. Further tests on unstructured mesh present our method
against AMG, showing their differences in terms of convergence rate.

This thesis is organized as follows. In Chapter 1 we introduce the MG method.
Starting from the discretization of an elliptic model problem through the FE
method, we define the linear system of equation that we aim to solve. Then
we give a brief overview on the concept of triangulation, focusing on procedures
to create and refine meshes. After this preliminary discussion, we introduce the
idea behind the MG method, explaining its two main components and the al-
gorithmic framework to implement them. Finally, in Section 1.5 we direct our
attention to the definition of transfer operator, distinguishing between the oper-
ator in case of nested meshes, AMG transfer operator, and the L2-projection. For
the latter, we discuss the algorithm behind the computation of mesh intersection,
in order to get the resulting matrix. To close the chapter, we briefly discuss the
convergence of the MG method and its efficiency in terms of computational costs.
Chapter 2 is devoted to ML methods, in particular to NN models. We employ the
classic formalism to explain the goal of a learning algorithm applied on a train-
ing set. We focus on the definition of loss function and how its minimization
affect the prediction capacity of the model, followed by an overview of the issues
that one must take into account when designing these systems. Then, we go
into details in the NN model, its structures and the minimization algorithms em-



4 Introduction

ployed to optimize it. The last Section is dedicated to the improvements through
regularization methods. In Chapter 3 we land on the Neural Multigrid (NMG)
method, the goal of this work. Here, we make use of the concepts of the previous
chapter to introduce and define the main components of our methodology. First,
we explain how we define the training set, both in 1D and two 2D, seeing in
details what we take from the mass matrix and the transfer operator. An impor-
tant part is devoted to the critical aspects one need to consider when creating the
several scenarios from which we retrieve our dataset examples. Then, we pass to
the model training, explaining the custom loss function applied to the algorithm,
the complexity of the architecture and the correct definition of the network pa-
rameters. Finally, we explain the method implementation, with an eye on the
treatment of different patterns inside the geometry and how to address them.
The numerical results follow in Chapter 4, where first a technical specifications
on the machine architectures employed is given, followed by a presentation of
the main libraries used in coding the Neural MG method. Then we present the
results in 1D and 2D, first discussing some preliminary experiments for tuning
the various parameter of the NN models, and then in terms of CPU time spent to
obtain the predicted transfer operators and the convergence rate when we use
these operators in a MG solver.



Chapter 1

Multigrid

In this chapter, we present the main aspects of the Multigrid (MG) method, one
of the fastest methods for solving elliptic partial differential equations. The idea
behind this method, in contrast with the classic iterative schemes, is to use dif-
ferent procedures for high and low frequency parts [11, 15]. We use iterative
strategies, such as Jacobi and Gauss-Seidel [75] for smoothing the error, i.e.,
for removing its high frequency components. After a few iterations, we use a
coarse grid to to deal with the low frequency components. This strategy needs
to transfer data or information between the grids. Therefore, a crucial point for
reaching fast convergence is the definition of suitable transfer operators. Differ-
ent approaches give rise to different transfer operators, some defined through
information coming from the geometry, and others directly from the operator
matrices obtained after the problem discretization.

Introducing an elliptic model problem we propose a discretization with the
Finite Element Method (FEM) [11, 14, 19, 57, 66, 69, 97]. Once we obtain the
arisen linear system of equations to be solved, we give a brief overview on tri-
angulations strategies, to then focus on the main components of MG method:
smoothing procedure and coarse grid correction. In Section 1.4 we present the
actual algorithm, explaining how the main components are used together to ob-
tain a fast convergence in solving a discretized problem. First, we introduce the
simple two-grid method, which only considers a fine and a coarse mesh. Then,
we generalize the procedure on a hierarchy of more levels, applying the two-grid
method recursively to reach the solution. We conclude Section 1.4 briefly describ-
ing different MG cycles, showing the schemes obtained increasing the number of
levels in the hierarchy. An overview of the concept of transfer operator follows,
referring to interpolation operators in case of Geometric MG, L2-projection that
is usually employed for the Semi-Geometric MG method and transfer operators

5



6 1.1 Model Problem and FE Discretization

computed algebraically, with a focus on the Algebraic MG method. We explain
how to define them, providing some examples. To conclude the chapter, we
present a brief overview on the convergence of the method, and the efficiency of
its implementation.

1.1 Model Problem and FE Discretization
Let us consider the following elliptic problem:

®
��u= f in ⌦,

u= 0 on @⌦,
(1.1)

where ⌦ ⇢ Rd is a bounded domain with Lipschitz continuous boundary @⌦
and f 2 L2(⌦). For discussions on the analytical solution of the boundary-value
problem, refer to [74].

1.1.1 Weak Formulation
Consider the test function v 2 V = H1

0(⌦). We multiply (1.1) by v and integrate
over ⌦:

�
Z

⌦

�uv d⌦ =
Z

⌦

f v d⌦.

Integrating by parts the left-hand side, we obtain
Z

⌦

rurv d⌦ =
Z

⌦

f v d⌦.

Problem (1.1) is then reformulated as follows

find u 2 V :

Z

⌦

rurv d⌦ =
Z

⌦

f v d⌦ 8v 2 V. (1.2)

We can rewrite the weak formulation (1.2) in a more compact way:

find u 2 V : a(u, v) = F(v) 8v 2 V, (1.3)

where a is a continuous symmetric elliptic bilinear form:

a(u, v) : V ⇥ V ! R, a(u, v) =
Z

⌦

rurv d⌦,

and F is a continuous linear functional:

F(v) : V ! R, F(v) =
Z

⌦

f v d⌦.



7 1.2 Mesh

1.1.2 Discrete Formulation
Let Vh be a family of spaces depending on h such that

Vh ⇢ V, dim(Vh) = Nh 8h> 0.

The approximate version of problem (1.3) takes the form

find uh 2 Vh : a(uh, vh) = F(vh) 8vh 2 Vh. (1.4)

Let us denote with {' j, j = 1, . . . , Nh} a basis of Vh. Since all the function in Vh

are linear combinations of the basis, we get

find uh 2 Vh : a(uh,'i) = F('i) i = 1, . . . , Nh. (1.5)

The same works for uh, being in Vh,

uh(x ) =
NhX

j=1

uj' j(x ),

where uj are unknown coefficients.
Equation (1.5) becomes

find uh 2 Vh :
NhX

j=1

uj a(' j,'i) = F('i) i = 1, . . . , Nh. (1.6)

Let us denote with A the so-called stiffness matrix with elements ai j = a(' j,'i),
and with f the vector with components fi = F('i). Then solving problem (1.6)
is equivalent to solve the linear system

Au = f , (1.7)

where u is the vector of coefficients uj.

1.2 Mesh
Let us recall the polygonal domain ⌦. We consider a non-overlapping partition
of ⌦ into elements T , and we call it triangulation Th. The discretized domain

⌦h = int
Ä [

T2Th

T
ä



8 1.2 Mesh

defined as internal part of the union of elements of Th coincides with ⌦. Here,
int(A) indicates the internal part of the set A, corresponding to the region ob-
tained by excluding the boundary from A.
When d = 1 our elements are simple sub-intervals; if d = 2 we have triangles.
Unless explicit ambiguity occurs, we will refer to the above definition equiva-
lently as mesh or grid.

1.2.1 Grid Generation

Let us consider a one-dimensional scenario, i.e., ⌦ being an interval [a, b] ⇢ R.
For simplicity, let us use a sub-interval partition using a constant step-size h. We

choose the number of elements N and we define h=
b� a

N
. Let us introduce the

points xi = a+ ih, i = 1, . . . , N ; these points are called vertices. In more general
case, we would use non-uniform partitions of interval [a, b] where we define a
spacing function H , where H (x) represents the spacing in correspondence of
point x .

Let us now consider the two-dimensional case. Given a polygonal domain
⌦ ⇢ R2, we can associate it with a partition Th of polygons. Given two distinct el-
ements, their interior does not overlap. Furthermore, we admit only conforming
triangulations. An example of conforming and non-conforming triangulations is
reported in Figure 1.1. Formally, given two elements T1 and T2 of a mesh, if their
intersection F = T1 \ T2 is non-empty, then F is either a vertex or a whole edge.
Also for the multidimensional case (d > 1), we use h to indicate the spacing of
the mesh. Let us call hT := diam(T ),8T 2 Th, where diam(T ) =maxx ,y2T |x� y |.
We set h=maxT2Th

hT .

Figure 1.1. Example of conforming (left) and nonconforming (right) grid.
Picture taken from [69].



9 1.3 Multigrid Idea

Usually we distinguish between structured and unstructured grids. A structured
grid has a regular connectivity, i.e, is a mesh where the inner nodes have the
same number of elements around them. This kind of mesh basically use quad-
rangular or triangular elements and are characterized by the fact that access to
the vertices adjacent to a given node is immediate.
On the contrary, for unstructured grids we have an irregular connectivity. They
offer a greater flexibility both from the viewpoint of a triangulation of domains
of complex shape and for the possibility to locally refine the grid. Usually they
consists of triangles.
One of the most common strategy used to generate unstructured grids is the
Delaunay triangulation [18, 55]. For a given set of vertices, a Delaunay trian-
gulation is a triangulation such that the circumscribed circle to each triangle
contains no vertex in its inside. This kind of triangulation is the one maximizing
the minimum angle of the grid triangles.

1.2.2 Refinement

Mesh refinement is a strategy to increase the accuracy of the solution of a dis-
cretized problem arising from a PDE. It works as a iterative procedure applied
to the single elements. The simplest solution is refining by bisection, which es-
sentially divides the existing elements in half. Usually the longest edge bisection
is applied, where we select the edge with the greater length. Another strategy
is mid-point refinement, which takes each triangle, compute the mid-point of
each edge and create four new elements. Figure 1.2 shows both the refinements,
starting from an initial mesh on the left, with at the center the result of bisection
and the mid-point refinement strategy on the right.
When we need to increase the accuracy of the solution only in certain regions of
the domain, we use the adaptive refinement. It increases the precision of the nu-
merical computation looking at the requirements of a specific problem in specific
areas.

1.3 Multigrid Idea

Multigrid methods [78, 84, 86, 90] come from the observation that classical iter-
ative methods result in error smoothing. The issue then is how to modify these
methods to make them effective on all error components. Starting from the fact
that performing some preliminary iterations on a coarse grid improves the initial
guess, we can think more carefully about the implication of this coarse grid. In



10 1.3 Multigrid Idea

Figure 1.2. Refinement procedures applied on a mesh (left): refinement
by bisection (center) and mid-point refinement(right).

passing from fine to coarse grid, we see more oscillatory components of the er-
ror: smooth modes on a fine grid look less smooth on a coarser grid. Therefore,
when smoothing begins to stall, it is better to move on a coarser grid.

1.3.1 Error Smoothing procedure
The argument presented in this section follows the discussion in [86]. Error
smoothing is one of the two basic principles of MG methods. Classical iterative
schemes, like Jacobi and Gauss-Seidel, have a smoothing effect on the error of
any approximation, when appropriately applied to discrete elliptic equations. Let
us consider a two-dimensional domain ⌦ ⇢ R2 and its FE discretization ⌦h. Let
us consider the discrete Poisson equation

��huh(x , y) = fh(x , y). (1.8)

We can write the error eh = eh(x , y) as

eh(x , y) =
n�1X

k,l=1

↵k,l'
k,l
h (x , y), (1.9)

where 'k,l
h (x , y) = sin k⇡x sin l⇡y are the discrete eigenfunctions of �h.

As stated above, when we apply some steps of iterative methods, the error be-
comes smooth. This means that high frequency components in (1.9), i.e.

|↵k,l | sin k⇡x sin l⇡y with k or l large

becomes small after a few iterations, while the low frequency components, i.e.

|↵k,l | sin k⇡x sin l⇡y with k and l small



11 1.3 Multigrid Idea

have not real changes.
Therefore, when we carry out the iterative (smoothing) procedure, the result
is a clear reduction in the error as long as the latter contains highly oscillatory
components. Once the error becomes smooth, the effect of the iterative method
essentially stops. Figure 1.3 shows the effect on the error components of five
iteration of Gauss–Seidel: Starting from the error related to the initial guess
(top-left), we see an evident reduction in the first iterations, followed by a lower
error decreasing until the fifth iteration (bottom-right).

Figure 1.3. Illustration of the smoothing effect of the Gauss–Seidel
method: error of the initial guess and the first five iterations. Picture
taken from [25].



12 1.3 Multigrid Idea

1.3.2 Coarse Grid Correction

After having carried out some smoothing steps, we remain with only smooth
components of the error. A quantity that is smooth on a given grid can also be
approximated on a coarser grid, through a suitable procedure. Then, a method
for solving the problem on a coarser grid is less expensive, having less grid points.
In Figure 1.4 we can better understand how a smooth quantity is approximated
on a coarser grid. It is easy to see that what appear to be smooth on a fine grid
becomes more oscillatory on the coarser one.

Figure 1.4. Error on fine mesh projected onto a coarse mesh. On the
coarse grid there is a more oscillatory behavior than on the fine grid.

Let us consider the discrete elliptic problem

Ahuh = fh (1.10)

on a mesh ⌦h, where h = 1
n . Assume Ah to be invertible. Consider now a coarse

grid ⌦H where H > h; usually H = 2h. Let ui
h be the current approximation of

the solution uh. The error at the current iteration is

ei
h := uh � ui

h.

Let us denote the residual by

r i
h := fh � Ahui

h.



13 1.4 The Multigrid Algorithm

We can now consider the residual equation

Ahei
h = r i

h, (1.11)

which is equivalent to equation (1.10) since uh = ui
h + ei

h. If we approximate Ah

by a simpler operator Âh, the solution ch of

Âhci
h = r i

h

gives a new approximation ui+1
h := ui

h + ci
h.

The idea behind the coarse grid correction is to solve equation (1.11) using an
appropriate approximation of Ah, namely AH , on the coarse grid ⌦H . Thus, we
replace the residual equation related to the fine grid with

AH ci
H = r i

H , (1.12)

where ci
H and r i

H are error and residual on the coarser grid, respectively. We
consider the following formulas

r i
H := Rri

h,

ci
h := Pci

H .

The matrix R is called restriction, and it is used to restrict the residual on ⌦H ;
matrix P is called prolongation, used to interpolate (or prolong) the correction
on ⌦h. The choice of R and P has major influence on the rate of convergence.

Algorithm 1 presents a single step of the coarse grid correction strategy.
Coarse grid correction is a nice procedure to deal with smooth error components,
but if we take it as a standalone solution it is of no use, because it is a projector
and hence it is not convergent.

1.4 The Multigrid Algorithm
The above arguments imply the necessity of combining the two procedures de-
scribed, i.e., smoothing and coarse grid correction. Therefore, we present the
so-called two-grid strategy, a simple case of the more general MG method. We
focus on the main elements needed to solve a given problem with this proce-
dure. Then, we pass to the actual MG method, a straightforward extension of
the two-grid method, where the latter is used recursively until the coarsest level
is reached. Finally, we briefly introduce the different MG cycles (schemes) that
can be employed for solving a given problem.



14 1.4 The Multigrid Algorithm

Algorithm 1: Coarse Grid correction
1 Compute the residual on fine grid r i

h = fh � Ahui
h

2 Restrict the residual r i
H = Rri

h
3 Solve on ⌦H AH ci

H = r i
H

4 Interpolate the correction ci
h = Pci

H
5 Compute new approximation ui+1

h = ui
h + ci

h

1.4.1 Two-grid Method

Let us consider a two-grid scenario, consisting of a fine and a coarse grid.
First, we carry out some smoothing steps to dump the high frequency components
of the error on the fine grid. Then we move to the coarse grid, approximating
the remaining smooth parts. Here, we solve the coarse problem and go back
on the fine grid interpolating the correction and computing a new current ap-
proximation. In the end, we apply other few steps of smoothing. Repeating this
procedure, we create an iterative method. In general, we consider more than
two grids, choosing the coarsest grid to be small enough to allow a direct solving
after the restriction of the residual. We will focus on the actual MG algorithm
ahead in this section.
We now present the complete two-grid procedure, showed in Algorithm 2. We
use SMOOTHv(ui

h, Ah, fh) to indicates v smoothing steps, independent on the it-
erative scheme selected, which take the current iterate ui

h, the operator Ah and
the right hand-side fh.

1.4.2 Multigrid Components

The choice of the components of this method has a strong influence on the re-
sulting procedure. A correct choice of the coarse grid improves the multigrid
strategy. The simplest approach is the standard coarsening, where we double
the mesh size h in every direction. In d dimensions, we can find the number of
coarse nodal points as

NH ⇡
1
2d

Nh.

Other coarsening strategies do not depend directly on the fine mesh. The most
important example is the Algebraic Multigrid (AMG), that uses algebraic rela-
tions in the operator matrix. We will talk extensively of this method in the later
sections.
Another crucial point is the coarse grid operator AH , which we can define as we



15 1.4 The Multigrid Algorithm

Algorithm 2: Two-grid Cycle
1 Pre-smoothing

Compute ūi
h: apply v1 steps of smoothing to ui

h

ūi
h = SMOOTHv1(ui

h, Ah, fh)

2 Coarse Grid correction:
Compute the residual on fine grid r̄ i

h = fh � Ahūi
h

Restrict the residual r̄ i
H = Rr̄ i

h
Solve on ⌦H AH ci

H = r̄ i
H

Interpolate the correction ci
h = Pci

H
Compute new approximation ui,new

h = ūi
h + ci

h

3 Post-smoothing
Compute ui+1

h : apply v2 steps of smoothing to ui,new
h

ui+1
h = SMOOTHv2(ui,new

h , Ah, fh)

do for the fine grid. However, several multigrid applications make use of the
so-called Galerkin coarse grid operator

AH := IH
h AhIh

H , (1.13)

with IH
h = R and Ih

H = P being appropriate transfer operators representing restric-
tion and prolongation operator, respectively. We will focus more on the choice
of different grid transfer operators in Section 1.5.

1.4.3 Multigrid method
The two-grid method is a nice approach to illustrate how MG works, but it is
of small use when applied on large-scale problems. When the number of nodal
points increases, the relative coarse problem becomes computationally heavy to
be solved by a direct solver.

Let us recall that we aim to find a correction ci
H on the coarse grid. In order for

the two-grid method to converge, it is not necessary that equation (1.12) is solved
exactly. The idea behind MG is instead to replace ci

H with an approximation ĉ i
H .

Therefore, we apply recursively the two-grid strategy: once we are on ⌦H , we
employ a still coarser grid and move there to continue the current iteration. This
is possible, since equation (1.12) is the same as the original equation (1.10). Of



16 1.4 The Multigrid Algorithm

Algorithm 3: Multigrid Cycle ui+1
k =MG(ui

k, Ak, fk, v1, v2)

1 Pre-smoothing
Compute ūi

k: apply v1 steps of smoothing to ui
k

ūi
k = SMOOTHv1(ui

k, Ak, fk)

2 Coarse Grid correction:
Compute the residual on fine grid r̄ i

k = fk � Akūi
k

Restrict the residual r̄ i
k�1 = I k�1

k r̄ i
k

Compute ĉ i
k�1 of the residual equation on ⌦k�1

Ak�1 ĉ i
k�1 = r̄ i

k�1

by

· if k = 1 then use a direct solver
· if k > 1 then ĉ i

k�1 =MG(0, Ak�1, fk�1, v1, v2)

Interpolate the correction ĉ i
k = I k

k�1 ĉ i
k�1

Compute correct approximation on ⌦k ui,new
k = ūi

k + ĉ i
k

3 Post-smoothing
Compute ui+1

k : apply v2 steps of smoothing to ui,new
k

ui+1
k = SMOOTHv2(ui,new

k , Ak, fk)

course, we can apply this recursive procedure until we obtain a suitable coarsest
grid, i.e., a grid with only a few degrees of freedom.

We now present a formal description of the multigrid strategy. Let us consider a
sequence of grids {⌦hk

}, depending by a sequence of mesh sizes {hk}Lk=0:

⌦hL
, ⌦hL�1

, . . . , ⌦h0
,

where ⌦hL
and ⌦h0

indicate finest and coarsest grid, respectively. In the following
we use index k instead of hk to lighten the notation. For each ⌦k we consider
a restriction operator I k�1

k , a prolongation operator I k
k�1 and a k-level stiffness

matrix Ak. Therefore, the original equation (1.10) to be solved now reads

ALuL = fL.



17 1.4 The Multigrid Algorithm

Having this in mind, we present the MG strategy in Algorithm 3. For complete-
ness, we report in Figure 1.6 the solution of a test problem on grids of different
approximations, to show how the accuracy of the solution changes when consid-
ering different mesh resolutions.

1.4.4 Multigrid Cycles

The procedure described in Algorithm 3 keeps restricting the problem until the
coarsest grid, and then interpolate the approximate corrections until the finest
level. A scheme of this kind takes the name of V-cycle.
Let us define a cycle index � which indicates the number of recursive calls to
the two-grid method. Of course, � = 1 indicates a V-cycle scheme; when � = 2
we refer to the so-called W-cycle scheme. Figure 1.5 shows the different cycles
when we increase the number of levels: (a) shows the classic two-grid cycle; in
(b) we have a three-grids hierarchy with � = {1,2, 3}; (c) presents four levels
with cycle index � = 1 on the left and � = 2 on the right.

Figure 1.5. Different MG cycles, increasing the number of levels. The
empty dots represent the coarsest grids. Three different hierarchies are
considered: two, three and four levels; from the three-levels example, we
show both V- and W-cycle.



18 1.4 The Multigrid Algorithm

Figure 1.6. Solution of a test problem on different levels of the multilevel
hierarchy. Starting from the coarsest level (top-left picture), we keep
refining obtaining a better grid and therefore a more precise solution,
until we reach the finest mesh (bottom picture).



19 1.5 Transfer operators

1.5 Transfer operators
Let us return to the simple two-grid strategy. To perform the coarse grid correc-
tion we need to move between fine and coarse meshes, i.e. between ⌦h and ⌦H .
The choice of the transfer operators for transport information between ⌦h and
⌦H has a major influence on the convergence rate. Furthermore, the definition of
restriction and interpolation operators IH

h and Ih
H is closely related to the coarse

grid. We start this discussion introducing the transfer operators used in the Geo-
metric multigrid method (GMG), easy to define but with the constraint of being
optimal in case of nested grids, and therefore applicable in a few cases. Then
we introduce the Algebraic Multigrid (AMG) approach, where we treat algebraic
systems without a grid-oriented background: we only look at the operator ma-
trix to retrieve connectivity information between nodes, forgetting the under-
lined geometry. Here, we briefly describe the application of AMG on problem
with a variable diffusion coefficient, seeing how it can perform better than clas-
sic geometric transfer operators. Finally we discuss the L2-Projection as transfer
operator, introducing the Semi-Geometric multigrid method (SGMG), which we
can use for more general mesh scenarios.

1.5.1 Geometric Transfer Operator
A GMG approach operates on predefined grid hierarchies. Usually we obtain the
hierarchy using simple refinement or coarsening strategies; the latter will be ex-
plained better in the next sections. This means that the refinement (coarsening)
process is fixed and kept simple. When we fix the grid hierarchy, we require par-
ticular requirements on properties of the smoothing method employed, in order
to have a fast convergence in combining smoothing and coarse grid correction.
Let us consider a basis for ⌦h, i.e. {'h

i }
Nh
i=1, and let {'H

i }
NH
i=1 be a basis for ⌦H .

Since we obtain the grid hierarchy with a refinement (coarsening) process we
can state ⌦H ⇢ ⌦h. Then, there exists a relation

'H
j =
X

i

a ji'
h
i , (1.14)

where the coefficients aji compose the restriction matrix IH
h of dimension NH⇥Nh.

The examples of operators here reported are taken from [39], where they are dis-
cussed more in details. Let us now define some of the transfer operators used in
this context. The simplest choice for the restriction operator is the trivial injec-
tion:

(Rinj rh)(x) = rh(x) 8x 2 ⌦H ,



20 1.5 Transfer operators

where we only consider those nodes present on the coarse grid. This restriction
operator is simple, but brings disadvantages. Therefore, it is better to take into
account also the components rh(x): x 2 ⌦h \ ⌦H . We thus define a weighted
restriction operator, whose relative matrix is

Rw =
1
4

2
6666664

1 2 1

1 2 1 0
...

0 1 2 1
1 2 1

3
7777775

.

Regarding the prolongation operator, for describing the coarse-to-fine interpola-
tion, we consider the piece-wise linear one:

(PcH)(x) =

®
cH(x) if x 2 ⌦H ,

[cH(x � h) + cH(x + h)]/2 otherwise.
(1.15)

P can then be represented by the rectangular Nh ⇥ NH matrix

P =
1
2

2
666666666666664

1

2 0
1 1

2
...

2
1 1

0 2
1

3
777777777777775

.

Usually, in real applications, we can define the restriction operator to be the
transpose of the prolongation operator, i.e. R= P>, without the need of defining
a new matrix from scratch.

1.5.2 AMG Transfer Operator

In contrast to geometrically based multigrid, in AMG we do not require a specific
problem to be defined on a mesh. The algorithm works directly on algebraic



21 1.5 Transfer operators

equations of the type:

Au= f or
nX

j=1

ai juj = fi, i = 1, . . . , n

In AMG there is no need of knowing a priori a multilevel hierarchy. Its construc-
tion is part of the algorithm itself, where we define also the coarsening process
and the transfer operators. The only data required are the algebraic information
contained in a given system of equations. For this reason, AMG and its range
of applicability are more general, and it provides an attractive multilevel variant
whenever GMG is difficult to apply.

The main difference with GMG is that the latter employs fixed grids, and
therefore it needs to ensure a good interplay between smoothing and coarse grid
correction. On the contrary, AMG fixes the smoother and enforce an efficient
interplay with coarse grid correction choosing the coarser levels and interpola-
tion appropriately. Another difference is the setup cost: in GMG we already have
a hierarchy of meshes and pre-defined transfer operators, we only consider the
solution phase. The algebraic approach needs to analyze the problem, to con-
struct the coarse levels and the operators, and only then we can start the solution
phase.
The coarsening process is fully automatic. We present a simple AMG algorithm,
introduced by Beck [7]. Other strategies can be taken into account, e.g., the
Ruge-Stüben method [72], which takes into account also the notation of strong
connection between nodes, the Smoothed Aggregation method [87] and a coars-
ening procedure that uses Gaussian processes [35].
Let us consider the re-written system

Ahuh = f h or
X

j2⇤h

ah
i ju

h
j = f h

i , i 2 ⇤h, (1.16)

where ⇤h denotes the index set {1, . . . , n}. In order to derive the coarse-level
system from (1.16), we split⇤h in two disjointed subset: ⇤h = Ch[Fh; Ch denotes
the variables contained in the coarse level, Fh is its complementary set. Thus,
we define the coarse level ⇤H to correspond to Ch. Without entering into much
details, we report a classical strategy for creating the Fh and Ch sets. We use the
operator matrix to obtain a connection matrix S, which makes us understand the
connections between nodes. We put all the node indexes into a set of remaining
nodes R. We then apply the following procedure:

1. Choose an index i from R; usually it corresponds to the smallest value in
R.



22 1.5 Transfer operators

2. Add i in Ch and remove it from R

3. Find all neighbors of i inside S, i.e. all those nodes k such that S(i, k) 6= 0

4. Put all nodes k in Fh and remove them from R

5. If there are still nodes remaining in R restart from 1.

As a post-process, we check for any fine-fine node connections which do not have
a common coarse node. If any such nodes are found, one of the fine nodes will
be made a coarse node. Now we can define the transfer operators. We fill the
prolongation operator row-wise. If i is a coarse node, then the ith row of the
operator correspond to the identity. On the contrary, if i is a fine node, then we
compute the weighs, based on its connection to the coarse nodes. At the end of
this process, we set the restriction operator to be the inverse of the prolongation
operator, and we can thus solve the given linear system using the MG strategy.
In Figure 1.7 we see the coarsening process previously illustrated, where the red
dots indicate the coarse nodes, while the blue ones goes into the fine set.

We conclude the AMG discusion by pointing out its applicability to a certain
class of equations. Let us consider the following PDE

� div(k(x)ru(x)) = f (x), (1.17)

where k(x) is the diffusion coefficient. In case k(x) is a constant function, the
above equation can be written as Equation (1.1). Since they are based on ge-
ometry, GMG methods do not take into account this coefficient, and they could
degrade if the diffusion coefficient is highly variable. On the contrary, AMG only
consider the stiffness matrix, that actually contains data on k(x). Therefore, AMG
reaches convergence faster when applied on this kind of problems.

1.5.3 L2-Projection

We now define a multilevel framework based on non-nested meshes. The nota-
tion and calculations used here are reviewed from [85]. Let us consider a domain
⌦ ⇢ R2 and the space V = H1

0(⌦). Let V� and V' be two finite-dimensional sub-
space of V , spanned by the basis {�i}nj=1 and {' j}mj=1, respectively. Let u be a
member of V�. The best approximation in the L2-norm of u onto V' is given by
the orthogonal projection u⇤. Then u⇤ must satisfy

(u� u⇤, v)L2 = 0 8v 2 V', (1.18)



23 1.5 Transfer operators

Figure 1.7. Classic coarsening procedure employed in AMG: the coarse
nodes are shown in red, while the fine nodes are in blue.

where (x , y)L2 =
R
⌦

x y d⌦ represents the L2-inner product.
Since u is a member of V�, we can write it as a linear combination of its basis,
i.e. u =
Pn

j=1 uj� j. The same goes for u⇤ which we write as u⇤ =
Pm

j=1 u⇤j' j.
Therefore, rewriting (1.18) as a linear combination of basis functions, yields to

mX

j=1

(u⇤j' j,'i)L2 =
nX

j=1

(uj� j,'i)L2 , i = 1, . . . , m.

This allows us to define the L2-projection in terms of a linear system. Let us set
u = (u1, . . . , un)>. Then we have

Mu⇤ = Bu, (1.19)



24 1.5 Transfer operators

where u⇤ = (u⇤1, . . . , u⇤n)
> are the unknown coefficients. M represents the so-

called mass matrix, where its entries are Mi j =
R
'i' j for i, j = 1, . . . , m. B is a

rectangular coupling matrix (projection matrix), whose entries are Bi j =
R
� j'i,

for i = 1, . . . , m and j = 1, . . . , n. From (1.19) we can easily derive a construction
for the projection operator:

u⇤ =Qu,

where Q := M�1B is the actual discrete L2-projection.
As a last remark, it is worth mentioning that when we follow the above argument
in case of nested meshes, the L2-projections assumes the characteristics of the
geometric interpolation operator.

Computing the Operator. Here we focus on the computation of the coupling
operator B, the trickiest part of the procedure. We need first to limit our finite
element spaces to use only Lagrange basis functions. Furthermore, we only con-
sider meshes generated through Delaunay triangulation. Let T � and T

' denotes
the triangulations related to V� and V', respectively.

We consider the L2-inner product between the basis functions � 2 V� and
' 2 V', as stated in the expression for computing B. Let I� be the set of indexes
such that i 2 I� if Ti ⇢ supp(�); define I' similarly. Given that each basis
function is nonzero only on neighboring elements, the inner product (� j,'i)L2

will be nonzero if and only if there exists Ti 2 T � and T̂j 2 T ' such that Ti\ T̂j 6=
0, where i 2 I� and j 2 I'. More intuitively, if two elements T 2 T � and T̂ 2 T '
do not intersect, the product between the basis functions related to their vertices
must be zero. On the contrary, if they intersect the product must be nonzero only
over the region of intersection.
In the following we describe an example of procedure to assemble the B matrix,
which is detailed described in [51]. Let us consider the two triangulations T �

and T
'. We proceed as follows:

• Determine all pairs of intersecting elements hTi, T̂ji such that Ti 2
T
� and T̂j 2 T

'. An example of algorithm to carry out this operation
can be found in [30].

• For each pair hTi, T̂ji we compute the intersection I and we mesh it.

• We define the quadrature point for integrate in the intersecting region I .

• Finally, we compute the local element-wise contributions using numerical
quadrature, obtaining the operator B.



25 1.5 Transfer operators

Figure 1.8. Intersection between 2D elements. picture taken from [51]

Figure 1.8 presents an example of intersection between elements. We overlap
the elements finding their intersection region I , then we mesh it and generate
the quadrature points for the following numerical integration.

Now, in order to obtain the actual transfer operator Q, we need to invert the
mass matrix M . The inversion of a matrix is generally expensive, and in the case
of the mass matrix, the resulting M�1 is a dense matrix. Therefore, the compu-
tation of Q itself becomes computationally expensive. To address this issue, we
define the transfer operator by lumping the mass matrix M . In numerical prac-
tice, this results in lighter computations from which we get a sparse operator. An
operator of this kind is called L2-quasi-projection, which is extensively defined in
[25, 26].

Finally, a remark on the computational costs of determining the intersections.
Let us consider, for simplicity, a two-dimensional scenario. A trivial solution is to
check every element of T� with every element of T '. If both meshes have N ele-
ments, this operation requires O(N 2) in terms of computational time. Therefore
we adopt a smarter solution:

• Consider the number of nodes of the smaller mesh, i.e., Np.

• Generate a square grid with
p

Np points in each dimension, so that in total
we would have Np nodes. The grid nodes must be evenly spaced. Each
element of the grid is a square, to which we associate an index. Since the



26 1.6 Convergence and Efficiency

grid is regular, given a point we can say in constant time the square index
in which it belongs.

• For each node x� of T�, we find the grid square index i in which it belongs,
and we associate i with x�.

• We do the same for each T'.

• For each grid square i, we intersect those elements of the two meshes,
which have nodes belonging to i.

This has a complexity of O(Np), thus is linear in the number of nodes of the
mesh. This gives a great speed up need to intersect several meshes. Of course
this argument can be extended in 3D, where instead of a grid consisting of square
elements we consider cube elements.

1.6 Convergence and Efficiency
MG methods are among the fastest methods to solve elliptic PDE. Here we briefly
present the efficiency and convergence of this class of method. As asserted in
[11] MG iterations provide a relative error decreasing independent on the mesh
size h. In order to obtain this result, various convergence proofs (starting from
the work of Hackbusch [39]) focus on two separate parts: a smoothing property
is combined with an approximation property. The first is related to the iterative
method employed as smoother, and reads

kSv(uh � u0
h)kH1  h�1

v
kuh � u0

hkL2 ,

where Sv indicates v steps of the smoother S, k · kH1 the H1-norm and k · kL2 the
L2-norm. The second part describes the interaction of the different levels of the
MG hierarchy and can be expressed as:

kuh � uHkL2  2hkuhkH1 .

In other words, the latter indicates the quality of the coarse grid correction. With-
out entering in details, convergence proofs use these two expressions and pro-
duces an estimate of a relative error decreasing independent of h. This states that
the method converges and its convergence rate does not depend on the mesh size.
For a more rigorous explanation and in depth analysis, refer to [12, 38, 92, 93].

The rate of convergence for MG iterations is bounded by a value independent of



27 1.6 Convergence and Efficiency

the level. This means that the number of iterations for solving a given equation
up to a certain accuracy is bounded from above by a constant not dependent on
the number of the levels, i.e, one needs on each grid level essentially the same
number of iterations to solve the problem. This behavior is in contrast to the
classical iteration schemes, where the number of iterations increases, when the
grid is refined. Let Nl be the number of degrees of freedom of a problem related
to level l. It can be shown that the number of operations per multigrid cycle
behaves like O(Nl). Since the number of multigrid cycles for solving the linear
system is bounded uniformly, i.e., independently of level l, it follows that also
the solution of the linear system requires O(Nl) operations.



28 1.6 Convergence and Efficiency



Chapter 2

Deep Learning

The problem of retrieving representation of data is fundamental nowadays [8,
54, 68, 96]. In this chapter, we focus on Deep Learning (DL), a particular class of
Machine Learning (ML) algorithms. DL allows computational models consisting
of multiple layers to learn the representation of information with multiple levels
of abstraction. Employing these systems, we can define solutions for speech and
object recognition [24, 29], image classification [58], drug discovery [17] and
for many other domains. DL models find complex structures in large datasets by
optimizing its internal parameters, used to compute the representation in each
layer, taking in input the representation in the previous layer. The goal of these
methods is the construction of a pattern-recognition system that transforms the
raw data (e.g. pixel values of an image) into a suitable internal representation of
feature vectors from which the learning model could detect patterns in the input.

Here, we present the artificial Neural Network (NN) model, a common su-
pervised learning method widely used for classification and regression tasks. We
give an initial overview on ML methods, distinguishing between unsupervised
[6, 32] and supervised [50, 79] approaches, beginning with a definition of learn-
ing algorithm. Discussing their ability to learn from data, we see the input and
output structure related to such a method. Then, we focus on the approximation
of a target function, essential to the correct optimization of these algorithms.
As support to reach this goal, we introduce the concept of loss function, which
aims to measure the prediction error. A section dedicated to the learning method
properties follows, where we give the main definitions of generalization abilities,
overfitting and underfitting. We briefly talk about dataset normalization, useful
to make the method more stable. Before passing to the actual NNs, we discuss
the parameters of the model not dependent on the learning itself, which control
the algorithm behavior. Ending the section, we describe the stochastic gradient

29



30 2.1 Machine Learning Methods

descent method, used for the model optimization. Then we focus on NN mod-
els in Section 2.2, giving the basic concepts and going into details discussing
their structure and the learning algorithms. We describe both the forward step
and the backpropagation of the error. To end the chapter, we introduce regu-
larization methods, employed to increase the NN ability to perform well on the
non-training examples.

2.1 Machine Learning Methods

A ML algorithm is an algorithm that is able to learn from data [34, 60]. A system
of this kind is said to learn from experience, with respect to some task, if its ability
to perform that task improves with experience. ML allows to consider tasks which
are generally difficult or expensive to solve with fixed programs. We define a task
in terms of how the ML system should process an example. Depending on the
learning algorithm we consider the examples differently: in case of unsupervised
learning, we aim to discover patterns, without any pre-existing expected results
related to the inputs; on the contrary, supervised learning works with both input
and expected output, in order to learn the map between them. In the following,
we always refer to supervised learning methods.

2.1.1 Learning Algorithms

We define an example as a couple (x,y), where x 2 Rn is the feature set and
y 2 Rm is the target. A feature is a measured quantity coming from some object
or event that we want the learning system to process. Each entry xi 2 x rep-
resents a single feature. For example, considering an image as the input to the
learning algorithm, its features are the values of the pixels. On the other hand,
the target is the expected result associated to a given features set. Usually, before
defining the actual feature set, there is a process of feature selection, which sim-
plifies a ML problem by choosing which subset of the available features should
be used. It is desirable to reduce the number of features to both reduce the com-
putational cost of modeling and to improve the performance of the model. More
details on this process are described in [46, 49].
ML methods allow us to tackle several kinds of task. Classification is one of the
most common operation we perform in supervised learning. The algorithm is
asked to output in which category some input belongs to. We ask the model to
approximate a function f : Rn ! {1, . . . , k}, where k is the number of possible
categories. A classic example is object recognition, where we input images and



31 2.1 Machine Learning Methods

get from the system a numeric code corresponding to the identified object.
Another task broadly addressed, is regression [28]. We ask the system to pre-
dict continuous values given the input. The model is asked to output a function
f : Rn! Rm. When m> 1 we talk of multi-target regression [89]. An example is
the prediction of house prices for a specific real estate market. In the following,
we mostly refer to the task of regression when talking about learning algorithms.

In order to evaluate the learning abilities of a specific algorithm, we define a
measure of its performance. Usually the measure directly depends on the task
we aim to solve. For an algorithm which learn to perform classification, we use
the accuracy of the model. Accuracy is simply the proportion of the examples
correctly predicted. For regression, we adopt the Mean Squared Error (MSE)
metric to measure how well our model is performing.
Let us consider the simple example of linear regression. Our goal is to define a
model that takes a vector x 2 Rn in input and predict a scalar y . Let ypred be the
prediction of our model. Then we define the output as

ypred =w>x,

where w 2 Rn is a vector of parameters. The parameters are the values which
define the actual behavior of our model. We call w the vector of weights. The
weights determine how each feature in x affects the predictions. The above ex-
pression describes our task: we want to predict y by predicting ypred =w>x.
Now we only need a measure of the model performance. We consider another
set of examples that are not used for training the model, namely the test set. Let
m be the cardinality of this set. Also for the test set we have both features and
target. We define the following metric to measure the goodness of our system:

L (ypred,y) =
1
m

X

i

(ypred � y)2i ,

which can be written as

L (ypred,y) =
1
m
kypred � yk2

2. (2.1)

We call L (ypred,y) the loss function (or cost function). This measure decreases to
0 when ypred = y. Therefore, to design a ML algorithm, we need to optimize the
wights w in a way that reduces L (ypred,y). More details on the minimization
of the loss function will follow in Section 2.1.5. As a last remark, it is worth



32 2.1 Machine Learning Methods

noting that we usually consider more sophisticated models with an additional
parameters, i.e., an intercept term b:

ypred =w>x+ b.

This makes the mapping from features to predictions an affine function. The
intercept term is often called bias.

2.1.2 Capacity, Overfitting, Underfitting
The crucial point in ML is defining and training models that perform well on
previously unseen examples [34, 61]. The ability to provide good results on un-
observed inputs is called generalization. When we compute some error measure
on the training set, to then reduce this error we are apply a classic optimization
technique. In addition, in ML we aim also to reduce the generalization error
(or test error), i.e., the error measured on new inputs. We make use of a test
set to compute the generalization error. Usually, the test set consists of records
that are collected separately from the training set. Therefore, we train the model
minimizing the training error, but we actually care about the test error. In or-
der to improve the model performance and being able to reduce the test error,
we need to make assumptions on how both training and test set are collected.
We generate training and test data using a probability distribution over datasets.
Then, the examples in these datasets must be independent from each other, and
the training and test set must be identically distributed, drawn from the same
probability distribution.

The ML method optimizes its parameters using the examples in the training
set, and then it considers new sampled examples for the test set to compute the
generalization error. This implies that the test error is greater than or equal to
the training error. We then consider two factors to determine the goodness of
a learning algorithm: making the training error small, and reduce the gap be-
tween training and test error. To these two challenges correspond, respectively,
underfitting and overfitting (for further reading refer to [27, 34, 41]). We ex-
periment underfitting when the model training does not provide a low training
error. Overfitting happens when the gap between training and test error is too
large. Focusing on the model’s capacity, we can control if the algorithm is likely
to overfit or underfit. The capacity of a model is its ability to fit a wide variety of
functions. Intuitively, low capacity models struggles to fit the training set; high
capacity models, on the contrary, could overfit, memorizing training set proper-
ties that do not serve them well on test data.
In order to control the model’s capacity we choose its hypothesis space, i.e., the



33 2.1 Machine Learning Methods

set of functions that the algorithm is allowed to select as solution. Let us consider
again the linear regression examples, i.e, ypred = b + wx . Its hypothesis space
consists of all linear function of its inputs. We can increase the model capacity
by including also polynomials in the hypothesis space: ypred = b + w1 x + w2 x2.
This remains a function of the inputs, thus we can still train the model as before.

ML methods have good results when their capacity is appropriate for the com-
plexity of a specific task. Models with insufficient capacity result in a low ability
to solve complex tasks. Model with high capacity are good in solving complex
tasks, but they may overfit if the capacity is higher than the task complexity.

2.1.3 Preprocessing
A central point in learning from data is feature normalization. Scaling the input
values improves the numerical stability of the model. Furthermore, it may speed
up the training process. We focus on two strategies for normalize the data: Max-
Min normalization and standardization.
Max-Min normalization is the simplest method, and consists in rescaling the fea-
tures range in a target range, usually [0,1]. If we call x our features set, then

x0 =
x�min(x)

max(x)�min(x)
,

where x0 indicates the scaled set, min and max two functions which return a
vector with the minimum and maximum value of each feature, respectively.
Standardization rescales the distribution of features values making the mean 0
and the standard deviation 1. It can be though as centering the values. We
rescale the dataset as

x0 =
x�µ(x)
�(x)

,

where µ(x) and �(x) represent the mean value and standard deviation of the
features set, respectively. Standardization can be of help when we have input
values with different scales.

2.1.4 Hyperparameters and Validation Set
Models in ML learn to optimize their parameters to improve their predictions and
their generalization ability. On the contrary, there are certain parameters that are
not adapted by the models themselves, but they are set by the model architect.
These settings are called hyperparameters. Through these properties we can con-
trol the behavior of the learning algorithm. If we consider the regression task, an



34 2.1 Machine Learning Methods

example of hyperparameter is the degree of the polynomial we select, which acts
as capacity hyperparameter. Another example can be a parameter which control
penalty terms inside the loss function, as we will see in Section 2.2.3.

In order to learn hyperparameters, we need a validation set of examples that
is not used by the training algorithm. This set of examples is not related to the
test set we discussed above: it is important that the examples in the test set
are not used to make choices about the model, including the hyperparameters.
Therefore, we construct the validation set from the training data, splitting the
training sets into two disjointed subsets. One of the two is used to learn the
model parameters, the other is our validation set, that we use to estimate the
generalization error after the training allowing to update the hyperparameters
accordingly.

2.1.5 Stochastic Gradient

Most ML algorithms aim to minimize a cost function y = f (w) during the learn-
ing process. We are interested in improving the value w such that it minimizes
y . The derivative of f si therefore useful to minimize f (w) because it tells how
to change the values of the input w to make small improvements in y . In the
context of ML, we usually optimize functions with many local minima that are
not optimal. When the input is multidimensional, the optimization becomes re-
ally difficult to be carried out. Therefore, we settle for finding a low value of f ,
even if it is not minimal.

A widely used method for iteratively find a minimal point is the method of
gradient (or steepest) descent [71]. Intuitively, we decrease the value of f by
moving in the direction of the negative gradient. If we start with a value of the
inputs w0, our first gradient descent iteration reads as

w1 =w0 �⌘r f (w0),

where ⌘ > 0 is the learning rate, used to determine the size of the step.
As far as concern ML methods, we need to compute the optimization of the loss
function using large training sets, that are necessary to reach good generaliza-
tion. Of course, large training sets mean expensive computations, and therefore
a heavy slow-down of the training algorithm.

Let us consider the loss function L (y(i)pred,y(i)), where y(i)pred is the prediction
corresponding to the ith input x(i) and y(i) is the ith target in the training set.
The cost function often decomposes as a sum over training examples of some
per-example loss function. Therefore, being N the size of the training set, the



35 2.2 Deep Feedforward Networks

gradient descent algorithm requires to compute

1
N

NX

i=1

rw L (y(i)pred,y(i)).

The complexity of this operation is O(N), which becomes prohibitively when the
training set has billions of records. Therefore, we employ the so-called Stochastic
Gradient Descent (SGD) method [9, 10]. The idea behind this method is to use
a small set of examples instead of all the training set. On each iteration of the
method, that in this context takes the name of epoch, we sample mini-batch of
records of size N 0 drawn from the training set. Usually N 0 is relatively small and
it is fixed as N grows. Now, the gradient computation becomes

g=
1
N 0
rw

N 0X

i=1

L (y(i)pred,y(i)).

We then update the parameters using

wi+1 wi �⌘g.

Although SGD has good performance in optimizing a cost functions, there are
challenges to face, related to the magnitude of the updating in each iterations
and the learning rate applied. In order to deal with these issues, there are some
gradient descent optimization algorithm that can help us. One of the best meth-
ods is the Adaptive Moment Estimation (Adam), which inherits its idea from Ada-
grad and RMSProp. For a more detailed discussion refer to [48, 71, 94, 95].

2.2 Deep Feedforward Networks
Deep Feedforward Networks are one of the most common methods in supervised
ML. The aim of a network is to approximate some function f . In the example
of a classifier, y = f (x) maps a vector input x to a category y . A feedforward
network defines a mapping y= f (x;w), where w are the parameters to learn so
that they provide the best function approximation. We call these models ‘feedfor-
ward’ because the information flows from the input x through the intermediate
computations used to define f and finally to the output y. The output does not
go back into the model. Unless explicitly ambiguity occurs, through this thesis
we denote with the generic term Neural Networks (NNs) this particular kind of



36 2.2 Deep Feedforward Networks

Figure 2.1. Example of Neural Network as an acyclic directed graph.

methods.
We represent NNs with direct acyclic graphs, which describe how different func-
tions are composed together to generate the predictions.
In Figure 2.1 we see an example of NN. On the left we have the so-called input
layer, while on the right we have the output layer. The layers in the middle, i.e.,
h1 and h2, are called hidden layers.
The records used to train a NN specify what the output layer should do for each
input x, i.e, it must produce a result close to the given target. On the contrary,
we do not specify the behavior of the other layers through the data. The training
algorithm specifies how to use these layers for approximating the target function.

We proceed this section giving an overview of architecture and components of
a NN, focusing on the predictions computation obtained through the activation
functions of the several layers. Then, we present the backpropagation method,
based on a local information transfer backwards from output to input, employed
to update the network parameters during the loss function minimization.

2.2.1 Architecture

Let us consider the simplest neural network model, i.e. a perceptron, reported
in Figure 2.2. Here, the output y is given by the applying an activation function



37 2.2 Deep Feedforward Networks

Figure 2.2. Example of perceptron.

� on the weighted sum of the inputs, i.e.,

y = �(
3X

i=1

wi xi + b),

where b indicates the bias. Several perceptrons stacked in different layers form
a deep NN, as the one shown in Figure 2.1. Each neuron of a layer is connected
to all the neurons of the next layer through weighted synapses. Each layer takes
in input the result of the previous layer computation and apply an activation
function on each of its neurons. The combination of these activation functions
makes the model able to approximate complex target functions. In a model with
two hidden layers, with respectively n1 and n2 neurons, we have, for each output
neuron k:

yk = �2

Ä n2X

j=1

w(2)k j �1

� n1X

i=1

w(1)ji xi + b(1)
�
+ b(2)
ä
.

Here, the weights related to each layer l are grouped together into a matrix W(l),
where the generic element w(l)i j represents the weight connecting the jth neuron
of layer l � 1 to the ith neuron of layer l.

Activation Functions. A crucial point in designing a NN model is the choice of
the hidden units to use in the hidden layers, i.e., which activation functions are
better for the specific task we are considering. Designing hidden units is an active
area of research (see [4, 70]) and there are not definitive guiding theoretical
principles. Recently, the most common choice of hidden unit is the so-called
Rectified Linear Unit (ReLU). For further reading refer to [3, 91]. These units use
the activation function

�(z) =max{0, z}.
Other choices of hidden units are possible: prior to the introduction of ReLU,
most models used the logistic sigmoid function or the hyperbolic tangent func-
tion. For a comparison between different activation functions, refer to [63].



38 2.2 Deep Feedforward Networks

2.2.2 Backpropagation
In Section 2.1.5 we introduced the gradient descent algorithm to minimize a
cost function in a general ML algorithm. Now, we aim to find a technique for
evaluating the gradient of L (ypred,y) for a NN. This can be done using a local
message passing strategy, in which the information travel forward and backward
through the network. For this reason, we call it backpropagation ([44, 73]). This
training method works as an iterative procedure which adjusts the weights in
a sequence of steps. At each step, we distinguish two parts. First, we evaluate
the derivatives of the loss function with respect to the weights. In this stage we
propagate the error backwards through the network. In the second part, we use
the derivatives to compute the weight adjustments.

In the following, we present the backpropagation algorithm for a general NN.
Let us consider a loss function computed on a arbitrary example n of the training
set, i.e., L (y(n)pred,y(n)). For simplicity, let us denote it with L

(n). Each unit of the
network computes a weighted sum of its input

aj =
X

i

w jizi, (2.2)

where zi is the output of a unit i that sends a synapses to unit j, and wji is the
weight associated to that synapses. We then apply an activation function on aj:

zj = �(aj). (2.3)

One or more of variables zi in (2.2) could be an input, as well as a unit j in (2.3)
could be an output.
We now consider the evaluation of the derivative of L

(n) with respect to a weight
wji. We note that L

(n) depends on wji only via aj. Therefore, by applying the
chain rule for partial derivatives we get

@L
(n)

@ wji
=
@L

(n)

@ aj

@ aj

@ wji
. (2.4)

Let us introduce the notation

� j ⌘
@L

(n)

@ aj
. (2.5)

From (2.2) we can write
@ aj

@ wji
= zi. (2.6)



39 2.2 Deep Feedforward Networks

Using (2.5) and (2.6) into (2.4) we get

@L
(n)

@ wji
= � jzi. (2.7)

Hence, in order to compute the derivatives, we need to compute � j for each
hidden and output units, and then apply (2.7). For the output unit, the error
is simply the distance between the output value y(n)pred and the target y(n). For
evaluating the �’s for hidden units we use again the chain rule,

� j ⌘
@L

(n)

@ aj
=
X

k

@L
(n)

@ ak

@ ak

@ aj
, (2.8)

where the sum consider all the units k to which unit j sends connection. Finally,
substituting the definition of � given by (2.5) in (2.8) and use (2.2) and (2.3),
we get the following backpropagation formula

� j = �0(aj)
X

k

wk j�k. (2.9)

Equation (2.9) tells that the value of � for a particular unit can be computed by
propagating the �’s backwards from units ahead in the network.

2.2.3 Regularization Methods
A crucial point in ML is improving the ability of an algorithm to perform well on
non-training examples. Other than increasing or decreasing the model capacity
manipulating its hypothesis space, we can give the learning algorithm a prefer-
ence for one solution over another. In order to do so, we add penalty terms in the
loss function. This addition, together with other ways of expressing preferences
for different solutions, is called regularization. More specifically, we refer to reg-
ularization when we apply any modification to a learning algorithm intended to
reduce its generalization error.
A classic example is the inclusion of weight decay (or L2 regularization) [52] into
the cost function. Instead of considering the standard loss function MSE(ypred,y)
we add a criterion that expresses a preference on the choice of the weights, i.e.,

L (ypred,y) = MSE(ypred,y) +�w>w,

where � is a value which controls the strength of our preference for small
weights. Therefore, when we minimize L (ypred,y), we aim to obtain a choice of



40 2.2 Deep Feedforward Networks

weights that make a trade-off between fitting the data and being small.
More in general we denote a regularized loss function as

Lp(ypred,y) =L (ypred,y) +↵p(w),

where ↵ 2 [0,1) is an hyperparameter weighting the contribution of the
penalty term p.

A consequence of using the regularized cost function is that we can minimize
a function subject to constraints. We only need to add the constraints to the loss
function as penalty terms. For example, if we want a constraint p(w) to be less
than a constant k, we add the penalty term ↵(p(w)� k).

Additionally, to directly manipulate the loss function, there are other regu-
larization strategies that can be employed. To end the chapter, we describe two
methods, which allow the model to better generalize its predictions: early stop-
ping and dropout.

Early Stopping. During the training phase of a NN model, we often observe
that the training error keeps decreasing over time, while the validation error,
after decreasing for some time, begins to rise again, as shown in Figure 2.3.

Figure 2.3. Early Stopping point1

This means that after a while, our model starts to overfit, preferring training
examples and losing its ability to perform well when applied on the validation
set. Therefore, we can obtain a model with better validation error (and hopefully

1Ananda Mohon Ghosh (2020, February 9). Early Stopping with PyTorch to Restrain your
Model from Overfitting. https://medium.com

https://medium.com/analytics-vidhya/early-stopping-with-pytorch-to-restrain-your-model-from-overfitting-dce6de4081c5


41 2.2 Deep Feedforward Networks

with better test error), by returning to the parameters setting at the point in time
with the lowest validation set error. We keep track of the model parameters each
time the validation error improves. When the training phase terminates, we go
back to the best set of parameters, rather then the latest state of the model.
Early stopping is a simple form of regularization, that requires almost no change
in the training algorithm. More details in applying this strategy can be found in
[16, 67].

Dropout. When we are dealing with NNs with a large number of parameters,
overfitting becomes a serious issue to be addressed. Given the large number
of parameters, these models are slow to be used, and this makes inefficient the
combination of predictions resulted from different model architectures. Dropout
provides a computationally inexpensive solution to this problem (see [80, 81]).
It can be thought as training and evaluating multiple models on each test exam-
ple. The main idea is to randomly drop non-output units, together with their
connections, during the training phase. This results in training a collection of
thinned networks which share the weights values. Each unit has a probability to
be included during a specific training step. This probability acts as hyperparam-
eter and it is fixed before the training begins.



42 2.2 Deep Feedforward Networks



Chapter 3

Neural Multigrid

In this chapter, we introduce a ML approach in the context of MG methods: we
propose a NN model able to predict transfer operators. In particular we aim
to obtain the L2-projection. We give a definition for patch of a node, both in a
geometrical context, thus on the mesh, and in the discrete operator. The extrac-
tion of the patches allows the construction of a training set, used to optimize
the model parameters to then predict a suitable transfer operator. We define the
procedure to obtain a correct data distribution, focusing on the correct geomet-
ric (mesh) scenarios. To make the NN able to predict appropriate values for a
multigrid solver procedure, we focus on the definition of the loss function to be
minimized. We add a priori knowledge about properties of the transfer opera-
tors, in order to improve the generalization abilities of the learning algorithm.
Once the model is optimized, we employ it as a black box for solving linear sys-
tem of equations in a MG fashion. We call this newly defined procedure Neural
Multigrid (NMG) method.

NMG works as follows: we apply a coarsening procedure on the operator ma-
trix, which contains the connection information of the nodes; for each identified
coarse node, we retrieve its information and we use it to ask the NN to predict a
part of the transfer operator. Once the full operator is defined, we can start with
the MG solving procedure.

This chapter starts with a discussion on the methodology behind the creation
of the training set. We consider one- and two-dimensional scenarios: we provide
the definition of node patch in both cases, presenting their differences. After
the definition of features and target, we explain the subdivision of examples into
classes: this concept is crucial to avoid overfitting and produce suitable transfer
operators. A brief description of the extraction of examples follows, with a fo-
cus on 2D geometries, which need more attention during the scenarios creation.

43



44 3.1 Training Set

Then, a section is dedicated to the procedure details, to better explain our choices
and decisions in building this strategy.

Before addressing our attention on the actual implementation of NMG, in
Section 3.2 we explain the training of the model, where the custom loss function
obtained through regularization is defined. Finally, the last section illustrates
the main coding aspects that must be taken into account, to use our method in
general cases and with more general and complicated grids.

3.1 Training Set

In order to construct a model employable for any problem size, i.e., a method
independent of the mesh dimension, we need to localize the data that compose
the training set. If a specific problem is considered in its global form, we would
need several models, each created ad-hoc for a specific dimension. Therefore, we
consider local parts of the problems, focusing on the concept of neighborhood of
a node. Given a subset of pre-identified coarse nodes, obtained with a coarsening
procedure, we extract a record for each of them. Let j be a coarse node. A record
contains information that comes from the patch of node j, that we indicate with
⇢( j); here, ⇢( j) is the set consisting of node j together with its neighbors. We
define the patch-size (or patch-dimension) of a node j to be the cardinality of
the set ⇢( j).

Figure 3.1. Example of one-dimensional mesh.

Let us consider the one-dimensional scenario reported in Figure 3.1. We
adopt the convention of increasing nodes indexes from left to right. In this ex-
ample, ⇢( j) = { j � 1, j, j + 1}. In practice, we define ⇢( j) directly from the
mass matrix Mh, considering the set of those nodes i 6= j such that Mh( j, i) 6= 0.
The one-dimensional case is trivial, but the above definition holds also in the
two-dimensional scenario. Let us refer to Figure 3.2 where the nodes are indi-
cated with numbers, for simplicity. The patch of node 30 is highlighted, namely
⇢(30)= {30,14, 23,28, 36,46, 48}.

Let us now focus on the records. For each coarse node j, we define a couple
(features, target), using the information related to ⇢( j). For each node k 2 ⇢( j),



45 3.1 Training Set

1423

2830
36

46
48

1423

2830
36

46
48

Figure 3.2. Example of two-dimensional mesh: here we zoom on a small
portion of the mesh in order to underline the patch of a specific node.

we define the features and target as the non-zero entries of the rows k of Mh and
the coupling matrix Bh, respectively. More details on the choices of the records
components will follow in Section 3.1.4.

In general, for each coarse node j, we define the features as the triplet

Ä
Mh( j, j), � r

Mh
( j), N ( j)
ä
,

where

• � r
Mh
( j) :=
¶

Mh( j, k) : k 2 ⇢( j)\{ j}
©

,

• N ( j) :=
¶

Mh(k, w) : k 2 ⇢( j)\{ j}^ w 2 ⇢(k)\{ j}
©

.

In order to define the target, we need more focus on the operator Bh.
Let Nh be the number of nodes in a mesh; then Bh 2 RNh⇥NH , where NH(< Nh)

corresponds to the number of coarse nodes. We introduce two sets, C and F ,
which contain the indexes of coarse and fine nodes, respectively. In this con-
text, F only contains those nodes which are not present in the C , i.e., F is the



46 3.1 Training Set

complement of C . We set a map, �( j), which converts the indexes in C to the
indexes enumeration of the coarse mesh. Let us consider Figure 1.4, focusing
only on the two grids and ignoring the error functions. Applying �(·) on nodes
of the fine grid belonging to C , e.g., {4, 6,10}, we obtain their indexes on the
coarse grid, i.e., �({4, 6,10}) = {2, 3,5}. Furthermore, we define a function
⇢C( j) := ⇢(�( j))\{�( j)}, which returns the coarse indexes of the neighbors of
fine node j. To obtain them, we consider ⇢( j) and extend it, taking recursively
⇢(k) for all the neighbors k of j. From the resulting set, we extract only the
coarse nodes, obtaining ⇢C( j). Returning again on Figure 1.4, if we consider
fine node 6, then ⇢C(6) consists of coarse nodes 2 and 4.

Now we can define the target as the quadruplet

Ä
Bh

�
j,�( j)
�
, � c

Bh
( j), � r

Bh
( j), � r

Bh
(⇢( j))
ä
,

where

• � c
Bh
( j) :=
¶

Bh

�
k,�( j)
�

: k 2 ⇢( j)\{ j}
©

,

• � r
Bh
( j) :=
¶

Bh

�
j, k
�

: k 2 ⇢C( j)
©

,

• � r
Bh
(⇢( j)) :=
¶

Bh

�
k, z
�

: z 2 ⇢C(k)^ k 2 ⇢( j)
©

.

It is important to always maintain the same order of the values in the features
and target fields. For examples, in the features Mh( j, j) must be always in the
first position. This is crucial for the actual implementation of the custom loss
function, as we will see ahead in the chapter.

3.1.1 Class of examples
In order to allow the NN to learn, we provide a large number of examples. These
examples must come from different meshes, in terms of elements dimension and
dofs, in order to consider values of different magnitude when filling the training
set. Furthermore, we need several different examples to be sure of avoiding over-
fitting, occurring when the model predictions correspond too closely or exactly
to a particular set of data. Thus, we define classes of examples, and we choose
a fixed amount of records for each class. This allows us to create an unbiased
training set, without preferring some classes over others. The definition of class
is related to the mesh from which we extrapolate the records. We set a number of
elements N ; all the records coming from meshes with N elements belong to class
CN . Then we pass to the next class, increasing N , and we repeat the generation



47 3.1 Training Set

and extraction procedure. How we pass from a class to the next is crucial for
reaching good accuracy in the training phase, as we will see for both one- and
two-dimensional scenarios.

We consider different examples of two grids hierarchies, where each fine
mesh is associated to only one coarse mesh. Doing so, we obtain an actual func-
tion which relates fine and coarse grids. This function is the one that the NN
model has to approximate during its optimization. Since we consider several ex-
amples for the same class CN , we need to make them different from each other, to
avoid duplication inside the dataset. To reach this result, we take the fine mesh,
and we move the nodes along the edges by a random quantity proportional to the
step size h. This produces different elements, and consequently different records.
Since NN models allow only fixed input and output dimension, we define distinct
models for 1D and 2D scenarios.

3.1.2 One-dimensional Records
The records related to one-dimensional meshes are extracted from scenarios ob-
tained by coarsening: starting from a random generated fine mesh, we decide
which nodes to keep for defining the coarse grid. Here, ⇢( j) consists only of j it-
self, together with its left and right neighbors. For each coarse node, we take the
information on ⇢( j) from Mh and Bh, following the strategy explained in Section
3.1, to define each example. In summary, we adopt the following steps:

1. Given a domain [a, b] ⇢ R, define a uniform mesh with exactly N elements,
i.e., with a step-size h= b�a

N .

2. Perturb randomly the N � 1 internal nodes: we sample a uniform distri-
bution in [l, r] ⇢ (�h

2 , h
2), obtaining a collection {vj}N�1

j=1 of values, one for
each node j. Then, we shift these nodes applying j = j + vj.

3. Split the nodes in coarse and fine.

4. For each coarse node j, extract data related to ⇢( j) from Mh (features) and
from Bh (target).

5. When enough records are generated, increase N .

6. Restart from 1.

Given that each node has the same patch-size, the generation and extraction
processes work fine. We will seen for the two-dimensional case how to deal with
nodes with different patch-sizes.



48 3.1 Training Set

3.1.3 Two-dimensional Records

In the NNs context, each record must have the same number of features and
target, since this kind of models have a fixed dimension in input and output.
Therefore, dealing with two-dimensional meshes becomes more difficult when
we need to build a training set. Let us consider again Figure 3.2; there is not
some restriction on the patch-size of the nodes.

As starting point, we consider grids where the nodes have a fixed patch-
dimension. We will focus on dealing with different patch-sizes in Section 3.3.1.
The left picture in Figure 3.3 shows a mesh with nodes which have a fixed patch-

Figure 3.3. Example of 2D mesh used to extract training set records:
on the left we have the fixed coarse mesh, on the right the result of the
refinement and shifting procedure.

size. Of coarse, the boundaries have less neighbors, but for the moment we focus
on internal nodes. Using this kind of structure, each record has always the same
number of features and target. The training set is then constructed extracting
information from grids that follow this rule.

Contrary to the 1D case, here, to create the multilevel scenario we generate
the coarse mesh and proceed by refinement. After refining, we shift the nodes
randomly, creating elements of different shapes. The result is shown in Figure
3.3 on the right.

A crucial point is to find a correct distribution of data in the training set, in
terms of magnitude of the values. Since the NN should not prefer some examples
- thus, some classes - over others, we need an even filling of the dataset. As a
first approach, we relate the concept of class to the refinement procedure. When
we need to pass to a new class, we refine our mesh, obtaining a new coarse mesh



49 3.1 Training Set

rom which we start to generate new examples. Applying a training algorithm
on these data results in a poor ability of approximation and a large prediction
error, making a NN model unfit to work in a MG setting. The refinement pro-
cedure makes the number of elements to scale by a factor of 2 (bisection) or 4
(mid-point). In terms of domain of training examples this means that the initial
classes of records, i.e., CN with N small, are close to each other, while their dis-
tance grows when N increases. This turns out to produce an uneven training set,
without a good balance in terms of data distribution. For this reason we need a
linear increasing in the number of elements. If the classes of examples are evenly
spaced in terms of domain, the network does not prefer some classes over others.
Therefore, a second approach changes the definition of class, independent of the
concept of refinement: we start from a number N , and we create a mesh having
exactly N elements; once we extract enough records, we pass to the next class,
increasing N by a constant factor K , and create new grids with N + K elements.
In details, the generation procedure works as follows:

1. Given a domain [a, b]⇥[c, d] ⇢ R2, define a coarse mesh with exactly N el-
ements. To reach this result, we start by considering rectangular elements
instead of triangles. Therefore, we need a mesh with Nr =

N
2 elements.

We factorize Nr as a product of two integer values, he and ve, that indi-
cate the number of edges in which we uniformly divide [a, b] and [c, d],
respectively. Using these values, we create our grid, and then divide each
rectangle into two triangles.

2. Refine the obtained mesh, using mid-point refinement or longest-edge bi-
section. The refinement strategy must be the same for each class CN .

3. Perturb each new node by a random quantity, sampled from a uniform
distribution in [l, r] ⇢ (0,1): let us consider, for example, the longest-
edge bisection procedure, applied on the Nr edges, each joining the points
(x j

1, y j
1) and (x j

2, y j
2), j = 1, . . . , Nr . The normal application of bisection

would result in a new point for each edge j, namely pj =
�

1
2(x

j
1+x j

2),
1
2(y

j
1+

y j
2)
�
. Here, we consider the collection {vj}Nr

j=1 of random generated value
and define the new point as

pj =
�
vj(x

j
1 + x j

2), (1� vj)(y
j
1 + y j

2)
�
.

This strategy produces a series of coarse grids as the ones in Figure 3.4, where
we start with N = 32 (on the left) and we choose K = 32. Following this simple
procedure, the resulting training set is effectively unbiased and with a good dis-
tribution of the examples. A learning algorithm applied on these data produces



50 3.1 Training Set

the expected good approximation.

Figure 3.4. Changing class of meshes: on the left we start with 32 ele-
ments, and then we change class two times, with K = 32. This produces
a grid of 64 elements (center) and then a mesh of 96 elements.

To conclude the description of the training set creation, we report in Figure 3.5
an activity diagram to better present how we create the scenarios and extract the
data we need for the model to learn. The black dot represents the starting point;
the diamonds represent conditional statements.

3.1.4 Methodology Details
This section is dedicated to present the details of our method. In particular, we
discuss the motivations in defining features, target, the geometries considered
and additional information that could be useful to produce a working model.

Definition of features and target: Our goal is to produce a transfer operator ap-
plicable in a multigrid contest. If we extract the target directly from the transfer
operator, i.e. the L2-projection, the neural network is not able to learn. We know
that for computing the transfer operator, we multiply the inverse of Mh (or its
lumped version) with Bh. Therefore, we decide to predict Bh and only then we
compute the actual transfer operator.
Regarding the features, the choice is between Ah and Mh, the operators we usu-
ally obtain after a FE discretization. Using only the stiffness matrix, the trained
NN results in low accuracy and a poor property of approximate the components
of Bh. Selecting Mh in input makes the model work. We find the reason in the
definition of two operators: the stiffness matrix has gradient information, while
the mass matrix has direct information about the geometry. Since the coupling
operator is computed through the quadrature on intersections between elements,
there exist a relation between Mh and our target. Lastly, we select values coming



51 3.1 Training Set

Figure 3.5. Flow chart of training set creation.



52 3.1 Training Set

from both mass and stiffness matrix. This solution allow our model to better
deal with variable diffusion coefficients, since this information is inside Ah. More
details on this implementation will follow in Section 3.3.3.

Relation fine-coarse: A NN model, as other ML supervised methods, aims to
approximate a function. Thus, we need to fill the training set with couples (fea-
tures, target) that provide this kind of relation. As first approach, to generate
different scenarios, we define fine and coarse mesh independently. This strategy
produces uncorrelated features and target, from which the neural network is not
able to learn. Therefore, we define a second procedure for creating the several
scenarios: we start from a coarse (or fine) grid and proceed by refinement (or
coarsening), to always have a relation between the two meshes.

Patch learning: In order to predict parts of Bh and then obtain the actual transfer
operator, we consider several possibilities. A simple attempt is to consider only
rows of Bh as target. Regarding the input, we consider the rows of Mh separately,
without any distinction between fine and coarse nodes. This procedure does not
have the necessity of paying attention on the filling procedure, since for each
prediction we fill a single row in Bh. The creation of the training set is easier, but
the results after the model optimization are not promising, providing a really
slow convergence in a multigrid context. The main reason behind the poor re-
sults is the lack of information about the coarse nodes: predicting rows puts the
focus on the fine nodes, considering only a part of the coarse nodes data in each
target. Therefore, to give more focus to the coarse nodes, we redefine the target
as a column in Bh. Consequently, we consider patches of Mh to take into account
sets of fine nodes at a time. These grouped fine nodes are the ones transferring
their information to the target coarse node, identified by that specific column of
Bh. The accuracy of the NN gets better, leaving only issues when the operator
is applied in a multigrid algorithm. Since we want our model to preserve some
properties of the transfer operator, we enlarge the parts of Bh considered, includ-
ing also rows of the coupling operator. These new data have a main role in the
optimization of our custom loss function, as we will explain in the next section.
This addition makes the predictions suitable for the multigrid method.

Choice of the classes: A main point is defining how to pass from a class to the
next, and how many examples for each class we need. If we choose a small K
and a large amount of example for each class, we have a lot of examples close to
each other; this can make the network preferring a subset of examples over oth-
ers, causing overfitting and decreasing its generalization capability. On the other
hand, if K is large and we have only a few examples for each class, the model



53 3.1 Training Set

is not able to approximate the target function, resulting in a poor accuracy in
the predictions. Therefore, the choice of these values is crucial in making the
network suitable as a solution for multigrid solvers. In 2D, for example, we find
a working choice of parameters, selecting K = 32 and a thousand of examples
for each class.

High correlation between records: When we randomly move the nodes in cre-
ating a mesh we transform all the elements so that their shapes differ. The values
of the features highly depend on how the random component is handled. A small
movement of the node is allowed, but does not create much difference between
the mesh elements. A large movement can create elements with very acute an-
gles (from 2D ahead); this can cause a large overlap between basis functions of
neighboring nodes, resulting in similar values inside Mh. In terms of training set
this translates in having different records with high correlated features, causing
possible overfitting during the model optimization. Figure 3.6 shows a 1D ex-
ample of overlapping between basis function. Considering nodes j�1 and j, the
overlap between their relative basis function, ' j�1 and ' j, is the underlined gray
area.

Predict distances: In studying how to improve the model accuracy, we also take
into account the distances between the nodes in a single patch. For each coarse
nodes j, we take information of ⇢( j) together with the Euclidean distance from j
to each of its neighbors. We aim, with these new data, to add information about
the positions of the neighbors of j and therefore to create an ordering between
the nodes in the patch. The neural network shows no real improvement, making
these new data useless to reach our goal.

Ordering of features: In 1D, the actual order of the nodes follows the enumer-

Figure 3.6. Overlapping between 1D basis functions: we indicate it with
the gray area.



54 3.2 Model Training

ation on the mesh, and we always know the position of a neighbor in respect
to a specific coarse node. From the two-dimensional scenario, we can have dif-
ferent enumeration for the same mesh, and we lose the ordering information of
the nodes in a patch. Following this argument, we try to put more “stability”
in each record, fixing an ordering for each node based on its position inside the
patch. Once obtained an ordering, we can also remove duplicates inside the fea-
tures field: it can happen that two nodes k and w, belonging to the same patch
of node j, are neighbors themselves; thus, when we extract entries from Mh we
create a duplicate, taking both Mh(k, w) and Mh(w, k). The resulting training set
is less complex and its application allows a reduction in the number of param-
eters of the network, although we spent more time in preparing the input. The
predictions accuracy is not affected by these changes, which is why we prefer to
ignore the ordering issue, making the patch extraction faster.

3.2 Model Training

A NN model optimizes its parameters during the training phase. This optimiza-
tion process aims to reduce the prediction error and get better results when we
test the model on never seen examples. To optimize the parameters we select
a suitable loss function to be minimized. Since our goal is to produce contin-
uous values, performing a regression, we employ the MSE cost function. This
results in predictions close to the actual targets, but when we compose the full
transfer operator and we employ it as part of a MG method, we obtain slow con-
vergence. Therefore, the loss function needs to consider also properties of the
operator, in order to make the model closer to the correct approximation that we
want to reach. Regularization helps us overcome this issue, reducing the hypoth-
esis space and allowing the NN to choose a better function to approximate. We
consider penalty terms related to the domain knowledge. These terms force con-
straints during the training phase, in order to respect properties that the transfer
operator must satisfy.

3.2.1 Regularization

During the construction of the training set we take, for each coarse node j, infor-
mation of ⇢( j) from Mh and Bh. We use these data to define the penalty terms.
Let us denote Mj, Bj and Q j to be the jth rows of Mh, Bh and Q, respectively. We
define the jth predicted and actual rows of Q as



55 3.2 Model Training

Qpred
j =

1P
Mj

Bpred
j , Qtrue

j =
1P
Mj

Btrue
j . (3.1)

We know that the predicted transfer operator must preserve constants (more
details can be found in [25]). Furthermore, given that we can compute the rows
of Q for each record during the training phase, we also require that Qpred

j is as
close as possible to Qtrue

j . Hence, we consider the following penalty terms to
specialize our loss function:

kQpred
j · 1H � 1hk2

, kQpred
j �Qtrue

j k2
, (3.2)

where k · k
2

denotes the Euclidean norm, 1H and 1h the all-ones vectors of di-
mensions NH and Nh, respectively. We then define, for all the nodes k 2 ⇢( j),

pk =
1
↵
kQpred

k · 1H � 1hk2
+

1
�
kQpred

k �Qtrue
k k2

, (3.3)

where 0< ↵,� < 1.
We can now define the new loss function as

L (ytrue, ypred) = MSE(ytrue, ypred) +
X

k

pk. (3.4)

3.2.2 Model Details

We use a classic splitting for our dataset: 20% for test and 80% for training,
where the latter is divided again in 20% for the validation set and the remain-
ing for the training phase. To have reliable results for a wide range of problem
dimension, we need around 250 thousands examples. We try both the two ap-
proaches in the training set pre-processing explained in Section 2.1.3; given that
the standardization brings better accuracy in the predictions, our dataset is then
rescaled using this strategy. For both one- and two-dimensional models we adopt
Adam as optimizer, and we initialize the weights in our models using a normal
distribution. Regarding the architecture, we will discuss it in details in Chapter
4, testing the accuracy provided by various model architecture. Finally, consider-
ing regularization strategies, good results has been noticed by putting a dropout
layer just before the output layer. Furthermore, we apply the early stopping pro-
cedure, waiting ten epochs before ending the training process.



56 3.3 NMG Implementation

3.2.3 Hyperparameters Tuning

The creation and employment of the training set during a model optimization,
provides the optimal values of the network parameters. They are part of the
equation to be minimized in order to obtain better accuracy in approximating
the target. On the contrary, hyperparameters are set manually, to help the model
optimization during the training phase. There are two main important hyperpa-
rameters: the learning rate and the regularization parameters. We also consider
the batch size and a reduce_lr variable. The latter makes the learning rate smaller
when the learning stagnates after a certain amount of epochs. The most common
strategies for tuning these hyperparameters are Grid search and Random search.
The first use a preset list of values for each hyperparameter and the model is
evaluated for every combination of the values in this list. In Random search, we
don’t provide a preset list of hyperparameters. Instead, we give the searcher a
distribution for each hyperparameter. The search algorithm tries random combi-
nations of values to find the best one. For large sets of hyperparameters, random
search is a lot more efficient.
We adopt the Grid search strategy, testing different combinations of hyperparam-
eters. The results make us choose the best model setting to obtain better accuracy
in the predictions, and they will be presented in Chapter 4.

3.3 NMG Implementation

In the above sections, we focused on making the problem local, extracting only
parts of the global problem, and put them in a dataset. When we extract patches
from Mh and Bh we follow a certain order to fill the features and target fields. Let
us consider two neighbors of a coarse node j, namely k and w. If we consider
first node k, then its information goes in the features field before w, and the same
must happen for the target field. During the construction of the training set this
is easily respected.

Once we have a working model, able to predict parts of Bh, we also take into
account where the prediction must be put inside the full coupling operator. Thus,
additionally to the patches information, we fill a structure to save the location
of the predicted values. We are able to find these indexes looking directly in
Mh, enlarging the node patch and intersecting it with the coarse node list, as
explained in Section 3.1, i.e., we need to look at ⇢C( j).
Following the indexes structure we compose the global Bh, from which we get
the transfer operator Q. Doing so, we are able to use it inside the MG method,



57 3.3 NMG Implementation

Algorithm 4: Extract Patches
1 Find coarse nodes C = coarsening(Mh)
2 Prepare empty lists patches = [], indices = []
3 For each cnode in C:
4 Initialize arrays to �1 ⇢(i), idxi = array(-1)
5 Extract patch info and indices ninf o, nid x = extract(Mh, cnode)
6 Insert patch into array ⇢(i).insert(ninf o)
7 Insert indices into array idxi.insert(nid x)
8 Append full patch to list patches .append(⇢(i))
9 Append full indices to list indices.append(idxi)

and study the resulting convergence.
In order to create the multilevel hierarchy we recursively apply this procedure to
define coarser problems: at each level we predict the transfer operator Q and we
apply it in the Galerkin operator, i.e., MH = Q>MhQ. MH will be a new input for
our NN, to produce a transfer operator to pass information to an even coarser
grid.
Algorithm 4 presents a simple procedure for extracting the patches information
together with the positions to respect when we fill the coupling operator. For
each coarse node we prepare two arrays containing only �1. In 1D they are
entirely overridden, since we always have the same patch-size to deal with. On
the contrary, in 2D, based on the neighborhood of the coarse nodes, we could
end up with �1 values after the procedure. This indicates missing information,
which must be addressed to obtain full patches for each examined node. In
order to obtain this missing data, as a first attempt we extend the mesh, as we
explain more in details in the next Section. Furthermore, in order to create a
more flexible procedure independent on the mesh structure, we implement a
virtual extension method, presented in Section 3.3.2.

3.3.1 Mesh Extension
As we mentioned before, in 2D we deal with different patch-sizes. Therefore
we need a strategy to overcome the non-fixed structure of these node patches.
Let us start by considering the boundary nodes of simple meshes, like the one in
Figure 3.3 on the left. To define the records for the training phase, we consider
the internal nodes, so that each patch has the same dimension. Thus, when we
create the NN input for nodes near the boundary, we need to add information.

The first solution requires an extension of the mesh on the boundaries. The



58 3.3 NMG Implementation

Figure 3.7. Mesh extension procedure: on the left we have the starting
mesh, on the right we have the result of the extension, where in red we
denote the new nodes and elements.

idea is to make the boundary nodes of the original mesh, internal nodes in a new
extended grid. The procedure is simple: for each boundary node, we create a
new point outside the mesh. Figure 3.7 shows the result of this procedure, where
in black we denote the original mesh, and in red the extended components.

During the prediction of the coupling operator Bh we need to consider both
these meshes. A first procedure runs on the original mesh, and for those nodes
with smaller patches, i.e., near the boundaries, we remain with missing data in
the features list. This “holes” are then filled by a second run of the same proce-
dure on the extended mesh. Algorithm 5 present this strategy: after the mesh
extension, we replace the values �1 that we initialized in the previous algorithm,
and we put the newly computed values from the extended mass matrix.

Now that we have a full patch structure, we ask the NN model to compute the
predictions. Since we stored in the list indices the positions that must be filled by
the predictions, we simply ignore those related to the extended mesh, and finally
obtain the coupling operator Bh.

3.3.2 Virtual Extension

Mesh extension allows our NN model to work also for boundary nodes. The
transfer operator can be composed and applied in creating the multilevel hier-
archy. However, this strategy presents two problems to be addressed. First, it
requires heavy computations: when the problem dimension increases, we need
to create several new nodes and elements for extending the grid, and compute a



59 3.3 NMG Implementation

Algorithm 5: Mesh Extension
1 Extract patches from Mh patches = extract_patches(Mh)
2 Find boundary nodes border = boundary(mesh)
3 For each border edge:
4 Create new rectangular element el
5 Divide el into two triangles and add them to meshex t

6 Compute mass matrix M ex t
h on extended mesh

7 Extract patches from M ex t
h patchesex t = extract_patches(M ex t

h )
8 For each patch in patches:
9 Replace values �1 with patchesex t values

bigger mass matrix, as well as completing the patches extraction. Furthermore,
it only works for patches that have less neighbors than the fixed input of the NN.
Let P be the fixed patch-size of the nodes used for training the model. When we
extend the mesh, we can only address those nodes having less than P neighbors.

Let us start by addressing the first issue. We need to fill the missing part of the
features field, with data somehow connected to the values inside the mass matrix.
Let us consider a structured mesh obtained by mid-point refinement. We compare
patches of an internal node i with a patch of a boundary node j. We notice that
the values Mh(i, w), w 2 ⇢(i), result from scaling the value Mh(i, i) by a factor
f1. The same happens for the values Mh( j, z), z 2 ⇢( j), with respect to Mh( j, j),
but with a different scaling factor f2 < f1. Thus, depending on the patch-size of
the considered node, we need a certain scaling factor f ⇤. Let us remark that the
unknown values we are looking for are just fictitious mass matrix entries needed
to fill all the features field. The NN output strictly related to them are ignored
when assembling Bh. Therefore, even if using the factor f ⇤ to scale Mh( j, j)
results in approximations, we obtain reasonable values, of the same order of
magnitude of ⇢( j), and that is enough to make our method work.

Let us move to the second point. Let us consider an unstructured mesh, ob-
tained through Delaunay triangulation. There could be a node w with P + 1
neighbors. We need a strategy to obtain the components of Bh considering all
the P + 1 neighbors. The model input accepts nodes with maximum P neigh-
bors. Therefore, we proceed by considering two subsets of the neighborhood of
w, both with P neighbors. More precisely, we exclude a node in each subset, and
define two different NN input for node w. Once we have the two predictions, the
components related to the nodes in common between the subsets are averaged,
while the ones present in only one subset are entered normally.



60 3.3 NMG Implementation

Algorithm 6: Virtual Extension
1 For each j in C:
2 IF |neigh( j)|< P :
3 Find scaling factors f ⇤= scaling(|neigh( j)|)
4 Create new nodes nodev = create(Mh( j, j), f ⇤ )
5 IF |neigh( j)|> P :
6 Find nodes to add additional = |neigh( j)|�P
7 For i in {1, . . . ,additional}:
8 Extract neighborhood subset set = neigh( j)(i : i + P)
9 Extract patch related to sub

Finally, we consider a generic node with P+ Z neighbors. In this case, we define
Z+1 subsets which give rise to Z+1 predictions, which we put in Bh in the same
way as for simpler P + 1 case. Algorithm 6 reports the main steps to reach this
goal. For each coarse node we verify if we need to “add” or “remove” nodes. We
did not report the part related to a correct patch dimension, that stays the same
as explained in the previous algorithms.

Figure 3.8 shows an activity diagram describing the main behavior of our
method: after an initial pre-processing in which we either load or define a prob-
lem, we proceed in creating the multilevel hierarchy and then to the solver phase.

3.3.3 Adding information from Ah

In 3.1.4 we underline the poor results obtained by a given model, if trained with
data coming from the stiffness matrix. Although we solve the issue focusing on
the mass matrix, we do not consider information about the diffusion of a specific
problem, since it is specified in the equation and not related to the geometry.
Let us consider Equation (1.17); given different non-constant functions k(x),
our method will always produce the same transfer operator, since it ignores the
diffusion coefficients. Therefore, we define a new model, following the same
workflow illustrated along this chapter, such that it would include also data from
the stiffness matrix. The training set creation now takes into account also values
from Ah, following the same indexes as for Mh. The implementation of Neural
MG considers also patches in Ah when constructing the model input. We consider
this matrix before the application of the boundary conditions when we extract
its values. In Chapter 4 we report a test using this last defined NN, showing the
convergence when applied on a problem with a variable diffusion coefficient.



61 3.3 NMG Implementation

Figure 3.8. Flow chart of Neural MG.



62 3.3 NMG Implementation



Chapter 4

Numerical Experiments

In this chapter, we present the performance of the NMG method, introduced in
the previous chapter. First, we give an overview of the machines employed for
running the numerical experiments, and the libraries which supported the im-
plementation of our method. Then, we present the actual numerical tests. We
distinguish the results between one- and two-dimensional scenarios. For both of
them, we start with a preliminary study, comparing the prediction errors given
by different architectures, in terms of number of layers and neurons. Subse-
quently, we study the predictions while changing the dataset employed during
the training phase: we consider a badly distributed one, showing the incapacity
of the network to approximate the desired function, and then an evenly filled
set, showing the related goodness when tested on examples not used during the
training. Finally, we test the model in a MG context, using the NN to provide
transfer operators actually employed to restrict and prolong data between grids.
We start testing the model on one-dimensional scenarios, reporting its behavior
when applied on a set of problems with increasing dimension, and then against
the SGMG method, focusing on the CPU time spent to assemble the transfer op-
erators. Then, we try out the two grid and the more general MG method. There-
fore, we test NMG in two-dimensional scenarios. Here, we have to deal with
more complex data and models. Thus, we start by finding the correct values
of hyperparameters. After the test on CPU time and convergence using prob-
lems of increasing dimension we consider two kinds of comparison for the NMG
method: against SGMG for structured grids, and against AMG for unstructured
grids. Regarding the latter experiments, we consider the Poisson equation as
model problem. We are aware that algebraic systems arising from more com-
plex problems will require an accurate choice of the smoother. However, since
this Thesis focuses on comparing the application of different transfer operators,

63



64 4.1 Technical Specifications

we do not perform a pre-processing for choosing the best smoothing strategy, and
we select the standard Gauss-Seidel for each MG method tested. For structured
grids, we also report a test using a model which takes into accounts also the
stiffness matrix, as explained in the previous chapter. We show a convergence
comparison between AMG, SGMG, NMG and NMG with the addition of stiffness
data, when applied on a Poisson problem with variable diffusion coefficient.

4.1 Technical Specifications

In this section, we describe the hardware used to carry out the various experi-
ments and computations required to define and test our method.

4.1.1 MacBook Pro

Since running on a cluster is expensive, when there is no need to have produce a
large amount of data, we use a MacBook Pro. The MacBook Pro has the following
hardware: a CPU Intel Core i9 2.9 GHz with 6 cores, and a RAM of 16 GB, 2400
MHz DDR4. We employ this machine for tests on training set creation, correlation
studies between records, comparison of different dataset distribution and small
problems simulation to have a first look on the state of our method.

4.1.2 Cluster

The heavy computations are carried out on the cluster of the Institute of Com-
putational Science1. We distinguish two type of computations: the training of
the NNs and the tests of MG methods using the predicted transfer operators.
In addition, a small portion of tests is addressed to the hyperparameter tuning,
testing several combinations of values. The nodes considered for grid search and
MG tests are the ones named Xeon Phi nodes, which in total include 8 different
usable nodes. The detailed hardware installed on these nodes is:

• CPU: 2 x Intel Xeon E5-2650 v3 @ 2.30GHz, 20 (2 x 10) cores

• RAM: 128GB DDR4 @ 2133MHz

• HDD: 1 x 1TB SATA 6Gb

1https://intranet.ics.usi.ch/HPC

https://intranet.ics.usi.ch/HPC


65 4.2 Libraries and Coding

The training phase is carried out on nodes specific for GPU computations. Their
hardware is equivalent to the one above, with in advance two kind of GPU (de-
pending on the specific node selected):

• GPU: 1 x NVIDIA GeForce GTX 1080, Founders Edition 8GB GDDR5, 2560
CUDA cores

• GPU: 2 x NVIDIA GeForce GTX 1080 Ti, Titan 11GB GDDR5X, 3584 CUDA
cores

4.2 Libraries and Coding
We present here, without entering too much in details, the main libraries we em-
ploy to implement the Neural MG method. Our framework2 is written in Python3.
It handles the numerical solver part of the method: it implements smoother pro-
cedures, mesh definitions, direct and iterative solvers, and the three MG methods
we use in this context: GMG, SGMG and NMG, which are coded directly in the
library. The main libraries we use as support are NumPy [40] for arrays and ma-
trices math, and SciPy [88] for the sparse objects. When we need to use AMG we
make use of pyAMG [64], a framework of Algebraic Multigrid solvers for Python.
NMG, as well as the training algorithms outside of our library, uses Tensorflow
[1, 2, 31] to interface with NN models. This framework provides a simple and
transparent control over the networks, allowing to customize loss functions, op-
timizations methods and gradient computations. Regarding the creation of the
training set, we adopt MATLAB. With it, we implement a small suite for FE dis-
cretization: it allows mesh definition, coarsening, refinement, and assembling of
operator matrices and right-hand side. For details on FEM implementations, one
can refer to [33, 53, 56]. Furthermore, this library provides functions to compute
intersections between grids, coupling operators and the actual L2-projection. To-
gether, these modules allow a simple implementation for creating different train-
ing set, based on parameters given as input. Lastly, we generate the unstructured
grids employed for the tests with FreeFem++ [43], a C++ PDE solver for non-
linear multi-physics systems in 1D, 2D, 3D and 3D border domains.

4.3 Numerical Results
In this section, we show the main results obtained with our strategy, both in 1D
and 2D scenarios. Since the 1D model has less parameters and it is simpler to

2https://bitbucket.org/ctomasi/learn_multigrid/src/master/

https://bitbucket.org/ctomasi/learn_multigrid/src/master/


66 4.3 Numerical Results

Figure 4.1. Heatmap of 1D model: comparison between different archi-
tectures to find the best solution in terms of validation error.

handle, we put only a few important tests to show the success of the proposed
method. Presenting the two-dimensional part, we first show the result of the grid
search algorithm for hyperparameter tuning, in order to define a starting point
for the NNs construction. Then, we report a comparison between NMG and other
existing MG methods, showing their differences in computational time and con-
vergence. Regarding the latter we distinguish between structured and unstruc-
tured mesh. For the structured ones, we test against the SGMG method. For
unstructured grids, we test NMG against AMG. All the plots regarding conver-
gence and CPU time comparisons adopt the logarithmic scale for the y-axis.

4.3.1 1D

First, we present the preliminary results which guarantee the applicability of our
method. They include the variability of the network loss value while chang-
ing the structure of the model, and the prediction accuracy while changing the
tested training set. Figure 4.1 reports a comparison between different network
architectures, showing the validation loss value for each of them. We consider
an amount of layers between seven and ten, and a number of neurons for each
layer between 300 and 700. Each value at the intersections (n⇤, l⇤) represents
the prediction error obtained with a model with l⇤ layers, each one with n⇤ neu-
rons. Smaller values mean better predictions for the network, and are colored in



67 4.3 Numerical Results

Figure 4.2. Prediction accuracy 1D NN: on the left a network trained
on a baldy defined dataset; on the right the training is on a correctly
distributed dataset.

green; the bigger error values are showed in red.
On the other hands, in terms of prediction accuracy, we present in Figure

4.2 a comparison between two models: one defined on a poorly constructed
training set, with an uneven amount of examples for each class (left), and the
other referring to a correctly defined dataset (right). This shows how crucial is
the dataset definition. In both plots, each point is defined by a couple given by
the actual value together with the predicted value. Of course, more points are
close to the diagonal and lower is the prediction error.

Finally, we pass to the convergence of the method. In order to consider our
procedure suitable for an application in general cases, we need it to reach con-
vergence in the same number of iterations, independently from the degrees of
freedom of a specific problem. Therefore, considering only the NMG method,
we keep increasing the dimension of a test problem to solve with our strategy,
retrieving the iterations needed to reach a residual below 1e-09. The pre- and
post-smoothing phases in the MG algorithm employ Gauss-Seidel as iterative pro-
cedure, and we use three steps before and after the coarse grid correction. We
adopt as test problem the Poisson equation, i.e., ��u = f , which we discretize
and then solve. Figure 4.3 shows the number of iterations needed for NMG to
reach convergence, increasing the problem size. The convergence rate is between
0.006 and 0.01, where with convergence rate we mean the ratio with whom the
norm of the residual decreases from one iteration to the next, i.e.,

kri+1k2
krik2

.
The second convergence test shows the computational time needed to create



68 4.3 Numerical Results

Figure 4.3. Convergence of NMG in 1D, showing the number of iterations
needed for solving test problems of increasing dimension.

the transfer operator. We compare the time needed to predict the transfer oper-
ator against the computation of the actual L2-projection, increasing the problem
dimension. Figure 4.4 (left) shows this comparison. For our method we take into
account patches extraction, predictions, assembly of Bh and computation of the
operator. For computing the actual L2-projection, we consider the intersections
definition between fine and coarse meshes, triangulation for each intersecting
polygon and numerical integration. We see that our method is faster, providing
the transfer operator in a time of smaller order of magnitude than the one com-
puted through intersections and quadrature. Regarding our strategy, different
components can be optimized. First, each patch extraction can be carried out in-
dependently from each other. Therefore, we can make this part parallel, saving
computational time. Another aspect to consider is the redundancy of the extrac-
tion procedure of some nodes: coarse node not far from each other could have
patches with a non-empty intersection. In other terms, given two fine nodes,
they could belong to two different patches, thus we only need to consider them
only one time when we extract their information from the mass matrix.

Finally, we test our method against the SGMG method on an example of
around 100 thousands degrees of freedom. First we compare the two strate-



69 4.3 Numerical Results

Figure 4.4. Comparison between NMG and SGMG: on the left CPU time
comparison between the prediction and the computation of the transfer
operator; on the right convergence comparison of NMG against SGMG
using two grids method, applied on a 1D problem with 100 thousands
degrees of freedom. Both plots have the y-axis in logarithmic scale.

gies using only a two-grid method. Figure 4.4 (right) shows this comparison.
We see the two lines representing the residual decreasing of both methods being
almost the same. This result allows us to pass to the general MG method with
hierarchies consisting of several levels of approximation. The fine test problem
considered is the same as in the two-grid method. We report the results of the
methods on a hierarchy of ten levels, only in tabular form (Table 4.1), since both
the residual norms are too similar to visualize their comparison in a plot.

Summarizing, we see our method resulting in a good compromise between
computational time and convergence. Even in a simple one-dimensional sce-
nario, using a NN for predicting the transfer operator instead of actual comput-
ing it provides a great speed up. While the classic computation is basic on the
geometry, and therefore requires intersection research and quadrature, our ap-
proach only depends on the problem dimension, since it produces a prediction
for each coarse node identified. Therefore, the presented algorithm for predict-
ing transfer operators scales linearly with the degrees of freedom of the specific
problem taken into account.
Regarding the convergence, we have good results for both the simple two-grid
method and the general MG method. This makes us confident of pursuing the
study of this methodology in the two dimensional scenario.



70 4.3 Numerical Results

Iteration NMG SGMG
0 2.26e02 2.26e02
1 2.95e-01 3.02e-01
2 2.05e-03 2.14e-03
3 1.97e-05 2.00e-05
4 2.89e-07 2.89e-07
5 5.43e-09 5.42e-09
6 2.20e-10 2.01e-10

Table 4.1. Convergence comparison of NMG against SGMG using ten
grids, applied on a 1D problem with around 100 thousands degrees of
freedom.

Figure 4.5. CPU time spent in generating a specific training set, showing
how the time grows, when the degrees of freedom increase.

4.3.2 2D

Before discussing the actual numerical tests, in Figure 4.5 we report the time
spent in constructing a working training set, showing how the required time
increases when we increase the degrees of freedom of the problem. Each point in



71 4.3 Numerical Results

the plot represents the time spent for generating a certain class of examples. We
start with the first classes of examples, taking around four seconds for each, until
we reach the bigger dimensions, that take around seven minutes to be generated.
In this specific training set, we consider 624 different classes, starting from 81
dofs until 80 thousands, for a total generation time of 32.2 hours.

Regarding the actual numerical results, as in 1D, we first report the prelim-
inary tests in constructing the best distributed dataset, and the NN architecture
that provide better prediction accuracy. Studying these characteristics, we do not
aim to already find the best model, but only a starting point. In Figure 4.6 we
show the heatmap related to the error, comparing the different network archi-
tectures. We maintain the same coloring as before, showing in green the better
results, and in red the bigger errors. Compared to the previous case, here we
have a range of layers between 11 and 16, and the number of neurons between
300 and 1200. Thus, we need a more complex architecture to reach suitable
results in terms of accuracy. This is shown also inside the heatmap, with error
values generally bigger than the one in 4.1. Since we add information, given that
the patch-sizes of nodes are bigger in 2D, it is natural to obtain worse results.

Figure 4.7 shows a comparison between two 2D training sets used during a
training algorithm: on the left we consider an uneven dataset with badly dis-
tributed data; on the right we have a correctly distributed training set. It is clear
from these plots, that also in 2D a good data definition is crucial to generate

Figure 4.6. Heatmap of 2D model: comparison between different archi-
tectures to find the best solution in terms of validation error.



72 4.3 Numerical Results

Figure 4.7. Prediction accuracy 2D NN: on the left a network trained
on a baldy defined dataset; on the right the training is on a correctly
distributed dataset.

working models.
After having selected the best architecture and training set, we pass to adjust

the various network parameters. As mentioned at the beginning of Section 4.3,
in 2D we deal with several more data when defining the NN model. Therefore,
we perform a parameters tuning using the grid search algorithm. The consid-
ered parameters are ↵,� , i.e., the penalty terms in the custom loss function,
the initial learning rate of the optimization algorithm, the batch-size, amount
of random taken examples used for a single training step (or epoch), and the
reduce_lr parameter. The latter helps the training algorithm when the optimiza-
tion is stucked on a certain result for a fixed number of epochs. It is a scalar
that is multiplied with the learning rate, to obtain a new smaller learning rate
with whom continue the optimization of the model. Table 4.2 shows the main
results of this tuning. We do not report the entire list of combination tried out,
which is of great length, but only a few combinations to show the sensitivity of
the model, when we change these parameters. Since some combinations give
the same results in term of validation loss and validation MSE, we group them
together, using the interval notation [a, b].

From Table 4.2, it is clear that the best solution is the one reported on the
last line, with a validation loss of 0.97. Therefore, we adopt that combination
of values for setting the model hyperparameters during the learning algorithm.
Once the setting is complete, we compare again the different architectures. The
result of the comparison is presented as a heatmap in Figure 4.8. We changed



73 4.3 Numerical Results

↵ � lr reduce_lr batch_size val_loss val_mse
1 1e-03 1e-04 [0.5, 0.9] [32, 128] 1313.83 1.4e-07
1 1e-03 1e-05 0.5 128 3.39 1.06e-09
1 1e-03 1e-05 0.7 128 17.07 1.5e-09
1 1e-03 1e-04 0.9 64 3.38 5.34e-10
1 1e-03 1e-05 0.5 32 1.03 1.68e-10
1 1e-03 1e-05 0.9 32 5.36 4.42e-10
1 1e-03 1e-04 [0.5, 0.9] [32, 128] 7600 1.67e-08
1 1e-03 1e-05 0.7 128 25.72 1.62e-09
1 1e-03 1e-05 0.5 64 5.37 9.73e-10
1 1e-03 1e-05 0.5 32 10.56 1.58-e09

1e-02 1e-03 1e-04 [0.5, 0.9] [32, 128] 1313.8 1.4e07
1e-02 1e-03 1e-05 0.5 128 1.76 2.03e-10
1e-02 1e-03 1e-05 0.9 128 4.03 4.9e-10
1e-02 1e-03 1e-05 0.5 64 0.97 1.42e-10

Table 4.2. Hyperparameter Tuning

the ranges of layers and neurons number: we do not consider anymore models
with 300 neurons per layer, since employing that amount results in poor approx-
imation. Furthermore, we test a larger number of layers, now going from 11 to
19. We can see that with a correct choice of hyperparameters, the overall per-
formance of the various architecture gets better.
The NN that gives the best approximations consists of 17 layers and 1200 neu-
rons per layer. It results in good predictions, but it brings a big complexity, with
around 20 millions of parameters. Therefore, we prefer to employ lesser compli-
cated models, even if they provide an higher prediction error.

Finally, having a working model, we test the convergence of the two-
dimensional Neural MG method. First, we study the convergence rate, increas-
ing the size of a specific problem. The pre- and post-smoothing phases consist
of three steps of Gauss-Seidel. The test problem considered is again the Poisson
equation. Each fine level mesh in this test is a structured mesh, for simplicity
in the comparison. The results are presented in Figure 4.9. We see that our
method reaches convergence in 6 - 7 iterations, independently of the degrees
of freedom. Reaching bigger dimensions, we notice that the convergence rate
increases, passing from 0.03 for small problems, to 0.08 for bigger ones. This is
due to the range of examples considered during the training phase. If we gen-
erate two-grid scenario examples until one hundred thousands dofs, the tested



74 4.3 Numerical Results

Figure 4.8. Heatmap of 2D model: comparison between different archi-
tectures after having set the model hyperparameters, to find the best
solution in terms of validation error.

examples of a bigger dimension will result in a worse convergence rate, since
they provide values outside the training set domain. Nevertheless, the method
provides a small number of iteration even in bigger problems.

Then, we test our method against the other MG methods. First, we compare
the CPU time spent in providing the transfer operators. We compare the compu-
tation of the operator predicted against the L2-projection calculation. The results
are shown in Figure 4.10 (bottom). Also in 2D, we see our method to gain an
order of magnitude. Furthermore, the rate between the two CPU times is not
constant, and grows bigger while increasing the problem dimension.

Subsequently, we compare NMG against SGMG in examples of structured
meshes. Figure 4.11 shows an example of the kind of grids considered. The last
part of the Chapter is dedicated to show the results of our method applied on
unstructured meshes and tested against the AMG method; more in details, we
configure AMG to work with the Ruge-Stüben method, using the LU decomposi-
tion provided by SciPy as direct method on the coarsest grid. For the unstructured
grid tests, we report grid pictures with a few elements, to show their structure,
while for each actual test we indicate the actual amount of dofs used.

Structured We compare the methods first on a two-grid scenario, and then
applied on a hierarchy of five levels. The result presented are obtained on a



75 4.3 Numerical Results

Figure 4.9. Convergence of NMG in 2D, showing the number of iterations
needed for solving test problems of increasing dimension.

test problem of 1000651 degrees of freedom. The kind of meshes considered
are structured square grids as the one in Figure 4.11. Figure 4.10 shows the
comparison of the two methods. On the top-left picture, we have the two-grids
convergence. Our method perform well with only two levels: it reaches conver-
gence in five iterations, one less than the SGMG method. On the top-right plot,
we have the convergence on a hierarchy of five meshes. Here, the NMG method
reaches convergence in six iterations, with a similar residual decreasing as the
SGMG method.

Figure 4.12 presents a last test on the same structured grid. Our model prob-
lem is a Poisson equation with a variable diffusion coefficient. In this specific
case k(x) = x2 + y2, where x = [x , y]. The plot reports Neural MG and SGMG
reaching convergence in ten iterations, while the other two methods are faster.
AMG only takes four steps, NGM with the addition of stiffness information six
steps, showing an improvement from the initial NMG.
Given the promising results, we pass to unstructured grids examples, where the
virtual extension algorithm presented in Section 3.3.2 is employed to address the
problem of the different patch-sizes of nodes.



76 4.3 Numerical Results

Figure 4.10. Comparison between NMG and SGMG: convergence com-
parison using two grids method (top-left) and a hierarchy of five levels
(top-right), applied on a 2D structured grid with 1000651 degrees of free-
dom. On the bottom, CPU time comparison between prediction and
computation of the transfer operator, increasing the dofs.



77 4.3 Numerical Results

Figure 4.11. Structured square mesh.

Unstructured We consider different meshes of different complexity. The num-
ber of degrees of freedom is around 100 thousands. The grids used in the fol-
lowing tests are generated with FreeFem++ [43]. We consider three examples of
grid: a circle with 1040997 dofs, in Figure 4.13, a circle with holes with 1070934
dofs, in Figure 4.15 and a circle with a hole, obtained through an adaptive re-
finement procedure with 1060322 dofs, in Figure 4.17. For the three tests, we
consider first a two-grid scenario and then a hierarchy of five levels. Let us start
with the simple circle. We see the convergence comparison in Figure 4.14. On
the left we have the convergence of the two-grid method. Our strategy gains a
couple of iteration against AMG. Increasing the number of levels, we have on
the right the comparison on five levels: NMG reaches convergence in 17 itera-
tions, three steps more than before. On the contrary, AMG pass from 16 to 26
iterations.

Then, we test on the holed circle mesh. Again we test our NMG method
against AMG. The resulting convergence comparison is shown in Figure 4.16,
distinguishing between two-grid (left) and five levels (right). We can see a similar
trend as in the previous example, with NMG reaching convergence in 15 and 16
iterations. Instead, the AMG method takes 17 iterations with two grid, and 34
using the five levels.

Concerning the last test, the convergence of the two methods is presented in



78 4.3 Numerical Results

Figure 4.18. With this kind of mesh, our procedure reaches convergence in 14
and 19 iterations, when tested on a two and a five levels hierarchy, respectively.
AMG takes 15 steps applying the two-grid method, and grows to 24 iterations
for reaching convergence when applied on five levels.

In summary, we tested our methodology with several examples. The numeri-
cal results show the robustness of our method, both with problems of increasing
degrees of freedom and also on hierarchy of increasing size. Especially in the sce-
nario of the circle with holes, we only need a single additional iteration to reach
convergence, passing from two to five levels, while AMG takes several more.
Table 4.3 reports the convergence tests, where for each mesh, we report the
number of iterations to reach convergence and the average of the convergence
rate, considering the different hierarchy configurations. We do not consider here
the variable diffusion coefficient problem, being it the only one solved with four
different MG methods.

Figure 4.12. Convergence comparison of NMG, AMG, SGMG and NMG
with the addition of data from the stiffness matrix, using two grids
method, applied on a 2D structured grid with 1000651 degrees of free-
dom. The problem considers a variable diffusion coefficient.



79 4.3 Numerical Results

Figure 4.13. Unstructured mesh of a circle.

Figure 4.14. Convergence comparison of NMG against AMG using two
grids method (left) and a hierarchy of five levels (right), applied on a 2D
unstructured grid of a circle, with 1040997 degrees of freedom.



80 4.3 Numerical Results

Figure 4.15. Unstructured mesh of a circle with circular holes.

Figure 4.16. Convergence comparison of NMG against AMG using the
two grids method (left) and a hierarchy of five levels (right), applied on a
2D unstructured grid of a circle with circular holes, with 1070934 degrees
of freedom



81 4.3 Numerical Results

Figure 4.17. Unstructured mesh of a circle with a hole - Adaptive refine-
ment.

Figure 4.18. Convergence comparison of NMG against AMG using the
two grids method (left) and a hierarchy of five levels (right), applied on a
2D unstructured grid of a circle with a hole, obtained through adaptive
refinement, with 1060322 degrees of freedom



82 4.3 Numerical Results

Mesh type #dofs #levels
#iterations Convergence Rate (AVG)

SGMG NMG AMG SGMG NMG AMG

1D 100’000
2 5 5 - 0.0073 0.0077 -

10 6 6 - 0.017 0.018 -

2D

100’651

2 6 5 - 0.046 0.025 -

5 6 6 - 0.047 0.046 -

104’997

2 - 14 16 - 0.24 0.29

5 - 17 26 - 0.32 0.48

107’034

2 - 15 17 - 0.26 0.32

5 - 16 34 - 0.31 0.58

106’322

2 - 14 15 - 0.27 0.28

5 - 19 24 - 0.39 0.49

Table 4.3. Numerical experiments summary: for each dimension, for
each kind of mesh and for each hierarchy tested, the table reports the
number of iterations needed to solve the problem and the average of the
convergence rates. These tests are related to the Poisson equation with
a constant diffusion coefficient.



Conclusion

In this thesis, we presented the definition of a methodology for creating transfer
operators with the aid of Neural Network models. The final aim of this work
was to provide a working operator that would give rise to a fast convergence
in reaching the solution of a specific problem, when employed in a Multigrid
context. Therefore, starting from one-dimensional scenarios, we focused our
attention on the construction of a training set containing domain information,
together with the target operator. After several attempts, we defined the features
as components extracted from the mass matrix Mh, while the target is part of
the coupling operator Bh. Furthermore, each dataset example refers to a single
coarse node patch. Using these ingredients, we were able to construct an initial
working model, that showed good results when applied as part of a MG solver.
This made us confident in generalizing the methodology to bigger dimensions.
Thus, we investigated the two-dimensional scenarios, giving enough background
to extend our method to a N -dimensional case. In 2D we had to address several
issues, having more complicated geometries to taken into account. Initially we
emulated the previous case when creating the various records for the training
set. Unfortunately, this did not result in employable NN models. Changing the
data distribution of the records solved the problem, and provided working mod-
els. The other main difference with the 1D scenario, was the variability of the
patch-sizes, major problem we had to deal with, given that NNs allow only a fixed
dimension for input and output. Implementing an extension algorithm, we dealt
with those nodes having a smaller patch-size than the training examples. On
the contrary, for those nodes with more neighbors than the ones considered for
training, we needed to divide patches in subsets, and considering each of them
distinctly, as explained in details in Section 3.3.2. At this point, our methodology
provided a working model also in the two-dimensional case. Hence, we tested
it on problems of increasing dimension, to check its generalization abilities. Ob-
tained convergence in few iterations independently of the problem size, we fo-
cused on different geometries, to test the flexibility of the model. We considered
first structured meshes, and then unstructured grids. We obtained promising

83



84 Conclusion

results in both cases, especially for the unstructured ones, with our Neural MG
method reaching convergence before the Algebraic MG, providing a strong ro-
bustness when the number of levels in the multigrid hierarchies increased. A
brief mention regards also to the results obtained on the variable diffusion prob-
lem, where the introduction of stiffness information inside the training algorithm
allowed our method to improve its convergence.

Given the results, future works should be devoted on the definition of a model to
be adopted in three-dimensional scenarios. The workflow follows the 2D case,
with an obvious increasing complexity due to the larger neighborhoods of each
node. Therefore, the difference would be only the computational time spent in
creating examples and defining more complex neural networks, with a number
of parameters suitable for those kind of records. Another aspect to consider is
the increasing of the dataset domain, i.e., taking into account a wider range of
scenarios, until a number of degrees of freedom acceptable for 3D problems.
Additionally, the overall performance of the method could be improved further,
investigating more on the data distribution of the examples and improving the
architecture and the hyperparameters settings, considering more combinations
of values during the preliminary tuning of the model. Furthermore, the inclusion
of stiffness data in the model showed the possibility to consider also information
related to a specific equation, in addition to the geometry. Thus, forthcoming
works will follow this line of research, to create better model and improving the
convergence of the NMG method.



Bibliography

[1] M. Abadi, A. Agarwal, et al. TensorFlow: Large-scale machine learning on
heterogeneous systems, 2015. Software available from tensorflow.org.

[2] M. Abadi, P. Barham, et al. Tensorflow: A system for large-scale ma-
chine learning. In 12th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 16), pages 265–283, Savannah, GA, Nov. 2016.
USENIX Association.

[3] A. F. Agarap. Deep Learning using Rectified Linear Units (ReLU). arXiv
preprint arXiv:1803.08375, 2018.

[4] F. Agostinelli, M. Hoffman, P. Sadowski, and P. Baldi. Learning Ac-
tivation Functions to Improve Deep Neural Networks. arXiv preprint
arXiv:1412.6830, 2014.

[5] S. Albawi, T. A. Mohammed, and S. Al-Zawi. Understanding of a Convo-
lutional Neural Network. In 2017 International Conference on Engineering
and Technology (ICET), pages 1–6. IEEE, 2017.

[6] H. B. Barlow. Unsupervised learning. Neural computation, 1(3):295–311,
1989.

[7] R. Beck. Graph-Based Algebraic Multigrid for Lagrange-Type Finite Ele-
ments on Simplicial Meshes. Technical Report SC-99-22, ZIB, Takustr. 7,
14195 Berlin, 1999.

[8] C. M. Bishop. Pattern Recognition and Machine Learning (Information Sci-
ence and Statistics). Springer, 2006.

[9] L. Bottou. Large-Scale Machine Learning with Stochastic Gradient Descent.
In Proceedings of COMPSTAT’2010, pages 177–186. Springer, 2010.

85



86 Bibliography

[10] L. Bottou. Stochastic gradient descent tricks. In Neural networks: Tricks of
the trade, pages 421–436. Springer, 2012.

[11] D. Braess. Finite elements: Theory, fast solvers, and applications in solid
mechanics. Cambridge University Press, 2007.

[12] D. Braess and W. Hackbusch. A new convergence proof for the multi-
grid method including the V -cycle. SIAM Journal on Numerical Analysis,
20(5):967–975, 1983.

[13] A. Brandt. Multi-level adaptive solutions to boundary-value problems.
Mathematics of computation, 31(138):333–390, 1977.

[14] S. C. Brenner and L. R. Scott. The mathematical theory of finite element
methods, volume 15 of Texts in Applied Mathematics. Springer, third edition,
2008.

[15] W. L. Briggs, V. E. Henson, and S. F. McCormick. A multigrid tutorial. Society
for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, second
edition, 2000.

[16] R. Caruana, S. Lawrence, and L. Giles. Overfitting in Neural Nets: Back-
propagation, Conjugate Gradient, and Early Stopping. Advances in neural
information processing systems, pages 402–408, 2001.

[17] H. Chen, O. Engkvist, Y. Wang, M. Olivecrona, and T. Blaschke. The rise of
deep learning in drug discovery. Drug discovery today, 23(6):1241–1250,
2018.

[18] S.-W. Cheng, T. K. Dey, and J. R. Shewchuk. Delaunay mesh generation.
Chapman & Hall/CRC Computer and Information Science Series. Chapman
& Hall/CRC, Boca Raton, FL, 2013.

[19] P. G. Ciarlet. The finite element method for elliptic problems, volume 40 of
Classics in Applied Mathematics. Society for Industrial and Applied Mathe-
matics (SIAM), Philadelphia, PA, 2002.

[20] A. J. Cleary, R. D. Falgout, V. E. Henson, J. E. Jones, T. A. Manteuffel, S. F.
McCormick, G. N. Miranda, and J. W. Ruge. Robustness and scalability of
algebraic multigrid. volume 21, pages 1886–1908. 2000. Iterative methods
for solving systems of algebraic equations (Copper Mountain, CO, 1998).



87 Bibliography

[21] P. M. de Zeeuw. Matrix-dependent prolongations and restrictions in a black-
box multigrid solver. Journal of Computational and Applied Mathematics,
33(1):1–27, 1990.

[22] M. P. Deisenroth, A. A. Faisal, and C. S. Ong. Mathematics for Machine
Learning. Cambridge University Press, 2020.

[23] J. E. Dendy, Jr. Black box multigrid. Journal of Computational Physics,
48(3):366–386, 1982.

[24] L. Deng, G. Hinton, and B. Kingsbury. New types of deep neural network
learning for speech recognition and related applications: An overview. In
2013 IEEE international conference on acoustics, speech and signal processing,
pages 8599–8603. IEEE, 2013.

[25] T. Dickopf. On multilevel methods based on non-nested meshes. PhD Thesis,
2010.

[26] T. Dickopf and R. Krause. Weak information transfer between non-matching
warped interfaces. In Domain decomposition methods in science and engi-
neering XVIII, volume 70 of Lect. Notes Comput. Sci. Eng., pages 283–290.
Springer, 2009.

[27] T. Dietterich. Overfitting and Undercomputing in Machine Learning. ACM
computing surveys (CSUR), 27(3):326–327, 1995.

[28] S. Dreiseitl and L. Ohno-Machado. Logistic regression and artificial neural
network classification models: a methodology review. Journal of biomedical
informatics, 35(5-6):352–359, 2002.

[29] A. Eitel, J. T. Springenberg, L. Spinello, M. Riedmiller, and W. Burgard.
Multimodal deep learning for robust RGB-D object recognition. In 2015
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 681–687. IEEE, 2015.

[30] M. J. Gander and C. Japhet. An Algorithm for Non-Matching Grid Projec-
tions with Linear Complexity. In Domain decomposition methods in science
and engineering XVIII, pages 185–192. Springer, 2009.

[31] A. Géron. Hands-on machine learning with Scikit-Learn, Keras, and Tensor-
Flow: Concepts, tools, and techniques to build intelligent systems. O’Reilly
Media, 2019.



88 Bibliography

[32] Z. Ghahramani. Unsupervised Learning. In Summer School on Machine
Learning, pages 72–112. Springer, 2003.

[33] M. S. Gockenbach. Understanding and implementing the finite element
method. Society for Industrial and Applied Mathematics (SIAM), 2006.

[34] I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. Adaptive Com-
putation and Machine Learning. MIT Press, Cambridge, MA, 2016.

[35] H. Gottschalk and K. Kahl. Coarsening in algebraic multigrid using Gaus-
sian processes. Electron. Trans. Numer. Anal., 54:514–533, 2021.

[36] D. Greenfeld, M. Galun, R. Basri, I. Yavneh, and R. Kimmel. Learning to
Optimize Multigrid PDE Solvers. In International Conference on Machine
Learning, pages 2415–2423. PMLR, 2019.

[37] W. Hackbusch. On the Multi-Grid Method Applied to Difference Equations.
Computing, 20(4):291–306, 1978.

[38] W. Hackbusch. On the convergence of multi-grid iterations. In Beiträge zur
Numerischen Mathematik Band 9, pages 213–239. 1981.

[39] W. Hackbusch. Multi-Grid Methods and Applications, volume 4. Springer
Science & Business Media, 2013.

[40] C. R. Harris, K. J. Millman, et al. Array programming with NumPy. Nature,
585(7825):357–362, Sept. 2020.

[41] D. M. Hawkins. The Problem of Overfitting. Journal of chemical information
and computer sciences, 44(1):1–12, 2004.

[42] J. He and J. Xu. MgNet: a unified framework of multigrid and convolutional
neural network. Science China. Mathematics, 62(7):1331–1354, 2019.

[43] F. Hecht. New development in freefem++. J. Numer. Math., 20(3-4):251–
265, 2012.

[44] R. Hecht-Nielsen. Theory of the Backpropagation Neural Network. In Neu-
ral networks for perception, pages 65–93. Elsevier, 1992.

[45] A. K. Jain, J. Mao, and K. M. Mohiuddin. Artificial Neural Networks: A
Tutorial. Computer, 29(3):31–44, 1996.



89 Bibliography

[46] M. Karagiannopoulos, D. Anyfantis, S. Kotsiantis, and P. Pintelas. Feature
Selection for Regression Problems. Proceedings of the 8th Hellenic European
Research on Computer Mathematics & its Applications, Athens, Greece, 2022,
2007.

[47] A. Katrutsa, T. Daulbaev, and I. Oseledets. Black-box learning of multi-
grid parameters. Journal of Computational and Applied Mathematics,
368:112524, 12, 2020.

[48] D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. arXiv
preprint arXiv:1412.6980, 2014.

[49] K. Kira and L. A. Rendell. A Practical Approach to Feature Selection. In
Machine learning proceedings 1992, pages 249–256. Elsevier, 1992.

[50] S. B. Kotsiantis. Supervised machine learning: a review of classification
techniques. Informatica. An International Journal of Computing and Infor-
matics, 31(3):249–268, 2007.

[51] R. Krause and P. Zulian. A parallel approach to the variational transfer of
discrete fields between arbitrarily distributed unstructured finite element
meshes. SIAM Journal on Scientific Computing, 38(3):C307–C333, 2016.

[52] A. Krogh and J. A. Hertz. A Simple Weight Decay Can Improve Generaliza-
tion. In Advances in neural information processing systems, pages 950–957,
1992.

[53] M. G. Larson and F. Bengzon. The finite element method: theory, implemen-
tation, and applications, volume 10 of Texts in Computational Science and
Engineering. Springer, 2013.

[54] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. nature, 521(7553):436–
444, 2015.

[55] D. T. Lee and B. J. Schachter. Two algorithms for constructing a Delaunay
triangulation. International Journal of Computer and Information Sciences,
9(3):219–242, 1980.

[56] J. Li and Y.-T. Chen. Computational partial differential equations using
MATLAB®. Textbooks in Mathematics. CRC Press, Boca Raton, FL, [2020]
©2020. Second edition of [ 2460670].



90 Bibliography

[57] G.-R. Liu and S. S. Quek. The Finite Element Method: a Practical Course.
Butterworth-Heinemann, 2013.

[58] D. Lu and Q. Weng. A survey of image classification methods and techniques
for improving classification performance. International journal of Remote
sensing, 28(5):823–870, 2007.

[59] I. Luz, M. Galun, H. Maron, R. Basri, and I. Yavneh. Learning Algebraic
Multigrid Using Graph Neural Networks. In International Conference on
Machine Learning, pages 6489–6499. PMLR, 2020.

[60] T. M. Mitchell et al. Machine Learning. 1997.

[61] T. M. Mitchell, R. M. Keller, and S. T. Kedar-Cabelli. Explanation-Based
Generalization: A Unifying View. Machine learning, 1(1):47–80, 1986.

[62] M. A. Nielsen. Neural Networks and Deep Learning, volume 25. Determina-
tion press San Francisco, CA, 2015.

[63] C. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall. Activation Func-
tions: Comparison of Trends in Practice and Research for Deep Learning.
arXiv preprint arXiv:1811.03378, 2018.

[64] L. N. Olson and J. B. Schroder. PyAMG: Algebraic multigrid solvers in
Python v4.0, 2018. Release 4.0.

[65] K. O’Shea and R. Nash. An Introduction to Convolutional Neural Networks.
arXiv preprint arXiv:1511.08458, 2015.

[66] D. W. Pepper and J. C. Heinrich. The Finite Element Method: Basic Concepts
and Applications with MATLAB, MAPLE, and COMSOL. CRC press, 2017.

[67] L. Prechelt. Early Stopping - but when? In Neural Networks: Tricks of the
trade, pages 55–69. Springer, 1998.

[68] J. Qiu, Q. Wu, G. Ding, Y. Xu, and S. Feng. A survey of machine learning
for big data processing. EURASIP Journal on Advances in Signal Processing,
2016(1):1–16, 2016.

[69] A. Quarteroni. Numerical models for differential problems, volume 2 of
MS&A. Modeling, Simulation and Applications. Springer-Verlag Italia, Mi-
lan, 2009.



91 Bibliography

[70] P. Ramachandran, B. Zoph, and Q. V. Le. Searching for Activation Functions.
arXiv preprint arXiv:1710.05941, 2017.

[71] S. Ruder. An overview of gradient descent optimization algorithms. arXiv
preprint arXiv:1609.04747, 2016.

[72] J. W. Ruge and K. Stüben. Algebraic multigrid. In Multigrid methods, vol-
ume 3 of Frontiers Appl. Math., pages 73–130. SIAM, Philadelphia, PA,
1987.

[73] D. E. Rumelhart, R. Durbin, R. Golden, and Y. Chauvin. Backpropagation:
The basic theory. Backpropagation: Theory, architectures and applications,
pages 1–34, 1995.

[74] S. Salsa. Partial differential equations in action: From modelling to theory,
volume 99 of Unitext. Springer, third edition, 2016.

[75] T. Sauer. Numerical Analysis. Pearson, second edition, 2012.

[76] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini.
The Graph Neural Network Model. IEEE transactions on neural networks,
20(1):61–80, 2008.

[77] J. Schmidhuber. Deep learning in neural networks: An overview. Neural
networks, 61:85–117, 2015.

[78] V. V. Shăıdurov. Multigrid methods for finite elements, volume 318 of Math-
ematics and its Applications. Kluwer Academic Publishers Group, 1995.

[79] A. Singh, N. Thakur, and A. Sharma. A review of supervised machine learn-
ing algorithms. In 2016 3rd International Conference on Computing for Sus-
tainable Global Development (INDIACom), pages 1310–1315. IEEE, 2016.

[80] N. Srivastava. Improving Neural Networks with Dropout. University of
Toronto, 182(566):7, 2013.

[81] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. Journal
of Machine Learning Research (JMLR), 15:1929–1958, 2014.

[82] K. Stüben. Algebraic multigrid (AMG): experiences and comparisons. Ap-
plied Mathematics and Computation, 13(3-4):419–451, 1983.



92 Bibliography

[83] K. Stüben. A review of algebraic multigrid. volume 128, pages 281–309.
2001. Numerical analysis 2000, Vol. VII, Partial differential equations.

[84] K. Stüben and U. Trottenberg. Multigrid methods: fundamental algorithms,
model problem analysis and applications. In Multigrid methods (Cologne,
1981), volume 960 of Lecture Notes in Math., pages 1–176. Springer, 1982.

[85] R. A. Thompson. Galerkin projections between finite element spaces, 2015.

[86] U. Trottenberg, C. W. Oosterlee, and A. Schüller. Multigrid. Academic Press,
Inc., San Diego, CA, 2001.

[87] P. Vaněk, J. Mandel, and M. Brezina. Algebraic multigrid by smoothed ag-
gregation for second and fourth order elliptic problems. volume 56, pages
179–196. 1996.

[88] P. Virtanen, R. Gommers, et al. SciPy 1.0: Fundamental Algorithms for
Scientific Computing in Python. Nature Methods, 17:261–272, 2020.

[89] W. Waegeman, K. Dembczyński, and E. Hüllermeier. Multi-target predic-
tion: a unifying view on problems and methods. Data Mining and Knowl-
edge Discovery, 33(2):293–324, 2019.

[90] P. Wesseling. An introduction to multigrid methods. Pure and Applied Math-
ematics (New York). John Wiley & Sons, Ltd., Chichester, 1992.

[91] B. Xu, N. Wang, T. Chen, and M. Li. Empirical Evaluation of Rectified Acti-
vations in Convolutional Network. arXiv preprint arXiv:1505.00853, 2015.

[92] J. Xu. Iterative methods by space decomposition and subspace correction.
SIAM Review. A Publication of the Society for Industrial and Applied Mathe-
matics, 34(4):581–613, 1992.

[93] H. Yserentant. Old and new convergence proofs for multigrid methods. In
Acta numerica, 1993, Acta Numer., pages 285–326. Cambridge Univ. Press,
Cambridge, 1993.

[94] M. D. Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint
arXiv:1212.5701, 2012.

[95] Z. Zhang. Improved Adam Optimizer for Deep Neural Networks. In 2018
IEEE/ACM 26th International Symposium on Quality of Service (IWQoS),
pages 1–2. IEEE, 2018.



93 Bibliography

[96] G. Zhong, L.-N. Wang, X. Ling, and J. Dong. An overview on data represen-
tation learning: From traditional feature learning to recent deep learning.
The Journal of Finance and Data Science, 2(4):265–278, 2016.

[97] O. C. Zienkiewicz, R. L. Taylor, and J. Z. Zhu. The finite element method: its
basis and fundamentals. Elsevier/Butterworth Heinemann, seventh edition,
2013.


	Contents
	List of Figures
	List of Tables
	Introduction
	Multigrid
	Model Problem and FE Discretization
	Weak Formulation
	Discrete Formulation

	Mesh
	Grid Generation
	Refinement

	Multigrid Idea
	Error Smoothing procedure
	Coarse Grid Correction

	The Multigrid Algorithm
	Two-grid Method
	Multigrid Components
	Multigrid method
	Multigrid Cycles

	Transfer operators
	Geometric Transfer Operator
	AMG Transfer Operator
	L2-Projection

	Convergence and Efficiency

	Deep Learning
	Machine Learning Methods
	Learning Algorithms
	Capacity, Overfitting, Underfitting
	Preprocessing
	Hyperparameters and Validation Set
	Stochastic Gradient

	Deep Feedforward Networks
	Architecture
	Backpropagation
	Regularization Methods


	Neural Multigrid
	Training Set
	Class of examples
	One-dimensional Records
	Two-dimensional Records
	Methodology Details

	Model Training
	Regularization
	Model Details
	Hyperparameters Tuning

	NMG Implementation
	Mesh Extension
	Virtual Extension
	Adding information from Ah


	Numerical Experiments
	Technical Specifications
	MacBook Pro
	Cluster

	Libraries and Coding
	Numerical Results
	1D
	2D


	Conclusion
	Bibliography

