
UNIVERSITY OF PAVIA

Cyber risk, operational risk and digital currency: An econometric analysis.

A DISSERTATION

SUBMITTED TO THE GRADUATE SCHOOL
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

for the degree

DOCTOR OF PHILOSOPHY

Electronics, Computer Science and Electrical Engineering

By

Thomas Edward Leach

Supervisor: Paolo Giudici

September 2021



ACKNOWLEDGEMENTS

I would first and foremost like to thank my supervisor Paolo Giudici for his continued guidance,

support and encouragement throughout the PhD. Not only with my research but also in improving

my 10k times as a runner.
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ABSTRACT

The chapters of this thesis comprise three separate studies on topics in cyber risk, operational

risk and digital currencies. The first chapter discusses the impact cyber risk to firms and factors that

play a role in mitigating or exacerbating costs. The second chapter focuses on the wider operational

risks that face firms in the financial sector with additional attention paid to cyber risk. In the third

chapter, I look at the design of basket-based digital currencies, their statistical properties and some

of the policy implications.

Chapter 1: The drivers of cyber risk Cyber incidents are becoming more sophisticated and

their costs difficult to quantify. Using a unique database of cyber events across sectors in the US, we

document the characteristics and drivers of cyber incidents. Cyber costs are higher for larger firms

and for incidents that impact several organisations simultaneously. Events with malicious intent

(i.e. cyber attacks) tend to be less costly, unless they are on the upper tail of the loss distribution.

The financial sector is exposed to a larger number of cyber attacks but suffers lower costs, on

average. The use of cloud services is associated with lower costs, especially when cyber incidents

are relatively small. As cloud providers become systemically important, cloud dependence is likely

to increase tail risks. Finally, we document that higher expenditure on IT is associated with future

reduced costs from cyber incidents.

Chapter 2: Operational and cyber risk in the financial sector This paper uses a unique cross-

country dataset at the loss event level to document the evolution and characteristics of banks’

operational risk. Operational risk capital varies substantially – from 2% to 12% of total gross

income – depending on the method used, and shows a growing cyber risk component. It takes, on

average, more than a year for operational losses to be discovered and recognised in the books. We
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show that operational losses depend on macroeconomic conditions and the regulatory environment.

Periods of excessively accommodative monetary policy are followed by larger operational losses.

Stronger supervision is associated with lower operational losses.

Chapter 3: Libra or Librae: Digital currency baskets. In this part of the thesis, with my

coauthors, I attempt to analyse, from an empirical viewpoint, the advantages of a stablecoin whose

value is derived from a basket of underlying currencies, against a stablecoin which is pegged to the

value of one major currency, such as the dollar. To this aim, we first study the optimal weights of the

currencies that comprise the basket. We then employ volatility spillover decomposition methods

to understand which foreign currency mostly drives the others. Our empirical findings show that

our basket based stablecoin is less volatile than all single currencies. This result is fundamental

for policy making, and especially for emerging markets with a high level of remittances: a librae

(basket based stable coin) can preserve their value during turbulent times better than a libra (single

currency based stable coin).
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LAY SUMMARY

Technological developments are continuously presenting new risks to firms and consumers. As

a society, we are growing increasingly dependent on digital technologies. Troves of information

is stored in the cloud, artificially intelligent machines may replace human workers and payments

can be made with the touch of a fingerprint on a smartphone. The papers of which this thesis is

comprised look at new, and old, risks that face firms and individuals as we move to an increasingly

digital world. Cyber threats are evolving in their sophistication and frequency, making it a vital

topic of research. Identifying factors that help firms to better protect themselves from cyber risk

can assist policy makers in encouraging firms to adopt practices that are strengthen their resilience

against such threats. Sectors of the economy that provide critical infrastructure, like the financial

sector, are core to any well-functioning economy. Finance firms have long been a target for crim-

inals and more recently cyber-criminals, as Willie Sutton was quoted, ’because that’s where the

money is’. A significant cyber attack could lead to significant losses and disruption to the econ-

omy. Incumbent banks and investment firms are also confronted with the recent rise of FinTech

and rapid financial innovations that are sparking them to undertake more investment into new tech-

nologies to keep pace with smaller agile and innovative FinTechs. A particular aspect of finance

that is undergoing considerable change is payments. The use of cash is rapidly declining across

developing countries as new digital payment technologies make it more convenient for consumers

to pay with their smartphones. Not only are FinTechs are trying to amass market share in this space

but also larger tech firms are creeping into this space, commonly referred to as BigTech. Google

and Apple already offer payment apps for mobile phone users. Facebook, has recently put forth its

own digital money scheme that leverages on the idea of a multi-currency backed asset.

The chapters that follow focus on three themes. Specifically, cyber risk, operational risk and
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digital currencies. The first chapter discusses the impact cyber risk to firms across different sectors

of the economy and the factors that are associated with mitigating or exacerbating costs. The

second chapter focuses on the wider operational risks that face banks and investment firms in the

financial sector with additional attention paid to cyber risks. The third chapter looks at the design

of basket-based digital currencies, their statistical properties and some of the policy implications.

Chapter 1 focuses on the ominous threat of cyber risk that confronts firms globally today. With

my co-authors we use a unique database of cyber incidents across all sectors in the US to document

trends in cyber risk and identify the drivers of such risks. The frequency of cyber incidents rose

strongly in the decade leading up to 2016, but has since seen a slow down. This reduction could

reflect an increased investment in cyber security, but may also be the product of delays in discovery

of events. Certain economic sectors display a greater resilience to cyber incidents: for example,

the financial sector has experienced a higher frequency of cyber incidents but appear, on average,

to be less costly. Data breaches emerge as one of the costlier types of incidents that firms face,

compounding that concern is the fact data breaches also appear to occur relatively frequently.

Using a linear regression framework we identify the key drivers contributing to the costs of

cyber-related events. Firm size – measured in terms of total revenues – is positively correlated

with the average cost of an event, implying that larger firms tend to incur larger costs, although

they are marginally decreasing. Cyber events can impact multiple firms simultaneously, creating

a contagion effect. The results of the regression suggest that events that events associated with

multiple entities are also associated with higher costs. Cyber-related incidents may occur unin-

tentionally – e.g. a bug in some internally developed software – or be caused by an actor with

malicious intent. We find, malicious cyber attacks have, on average, lower costs. However, a

quantile analysis reveals that at the tail of the sample distribution this result is reversed and in fact

malicious incidents are associated with higher costs. This finding indicates that, while most at-

5



tackers are stopped before they can do considerable harm, a successful attacker can go on to cause

extensive damage.

We then study the effects of reliance on cloud services and digital technologies more broadly.

Cloud technologies have become synonymous with cyber risk as policy institutions grapple with

the consequences of having centralised IT storage infrastructures. In principle, reliance on the same

service provider by multiple organisations can yield positive externalities by fostering economies

of scale and information sharing (Rowe, 2007). Cloud technology can thus reduce IT costs, im-

prove resilience and enable firms to scale better (Financial Stability Board, 2019). However, it also

strengthens interdependence, not least given the high concentration of the market for cloud service

providers. Our results suggest that, at present, the former effect dominates as firms that could have

higher exposure to cloud technology experience lower costs. Whilst this is a promising result for

firms adopting the technology, we urge caution as the data may not capture the real ‘tail’ of these

incidents.

This paper also uses data on the level of IT spending across sectors to assess the relationship

between investment in IT and the cost of cyber incidents. This analysis can act as a helpful indicator

to policymakers as to which sectors may be exposed due to underinvestment in their IT systems.

We find that higher expenditure in IT is associated with lower costs at the mean and at the tail

of the distribution. Sectors that appear to benefit from this higher level of spending include the

manufacturing and the finance and insurance sector. The dividend of such investments is evident

through our additional analyses, whereby an annual increase in IT investment is associated with a

reduction of costs in the subsequent year.

In Chapter 2 the focus turns to financial sector specifically and the wider set of risks under

the umbrella of operational risk. Measuring and understanding operational risk is critical for both

banks and public authorities. Operational risk currently represents a significant portion of banks’
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risk-weighted assets, second only to credit risk.1 Regulators, central banks and international organ-

isations, in turn, place the understanding and mitigation of operational risk – and subcomponents

such as cyber risk – high in their agendas. While banks use internal data to determine their reg-

ulatory capital, there is limited work to identify the relationship between operational risk and the

macroeconomic and supervisory environments – not least in an international context. Accordingly,

policy discussions on the topic at the wider macroeconomic level tend to lack substantial empirical

grounding.

This paper, contributes to filling this gap by analysing a unique cross-country dataset of opera-

tional losses. We use data at the loss event level from ORX, a consortium of financial institutions,

that facilitates the sharing operational loss risk data in an anonymised fashion in order to bench-

mark operational risk models. We document that, after a notable increase post-Great Financial

Crisis (GFC), operational risk losses in banks have been declining strongly since 2015. Digging

deeper in to the type of event behind this aggregate trend shows that one category in particular is

responsible for the pattern in cost, namely “Clients, Products & Business Practices”. This category

includes improper business practices like fiduciary breaches, aggressive sales, breaches of privacy,

account churning and misuse of confidential information. These are the type of operational risks

that characterise periods of financial excess, with mis-selling of mortgage-backed securities in the

mid-2000s being a prime example. Towards the peak of the GFC there is a significant increase in

the occurrence of this type of event (especially in North America), which were then recognised in

the books of banks a few years later. Importantly, this pattern is observed only in terms of loss

amounts and not in terms of frequency of occurrence.

Operational losses are characterised by a fat-tailed distribution.2 Accordingly, operational risk

1Up to 40% of risk-weighted assets can be attributed to operational risk in some jurisdictions (Sands et al. (2018)).
2In other words, there are a large number of inconsequential events from a cost perspective and a limited number

of very large cost events. The latter group in particular complicates the quantification of operational risks, as such low
frequency/high severity events are often cited as being “one-in-a-hundred years” events.
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capital estimates can lead to quite different results depending on the method used. Capturing the

distribution the extreme values of the distribution of operational losses is a challenge. Indeed,

our estimates for operational risk capital using methodologies from the Advanced Measurement

Approach (AMA) range from 6 2% to 7% of gross income, against the 12% benchmark of the

Basic Indicator Approach. This finding provides some support for the new regulatory framework

that proposes the adoption of the Standardised Measurement Approach (SMA) for all banks.

The stylised facts we present point to the existence of a link between operational losses and

macroeconomic conditions. Abdymomunov et al. (2017) use data for US banks to document a

contemporaneous correlation between macroeconomic conditions and operational risk losses, e.g.

operational losses rise during economic downturns. We build on this idea and use a cross-country

panel analysis to argue that the ultimate cause of the rising losses during economic downturns lies

in the excesses characterising the run-up to the downturn. In other words, favourable conditions

during periods of macroeconomic expansion and financial exuberance lead to the occurrence of

events that are only discovered when the economic tide turns, and recognised in the books of

banks even later.

Using deviations of policy rates from Taylor-rule implied benchmarks, we show that periods of

accommodative monetary policy are followed by an increase in operational losses. This appears to

be driven by the frequency rather than the severity of events. Periods of excessively accommodative

monetary policy can lead to increased risk-taking by banks, which can boost the type of improper

business practices that account for the lion’s share of operational losses. Finally, in line with the

work of De Nicolò and Lucchetta (2013), who find that banks in a higher competition environment

increase monitoring efforts and reduce risks, and with Kim (2018) who finds that banks with lower

market power take less liquidity risk, we find that periods of intense bank competition are also

associated with lower operational losses.
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Regulation can also play a role in moderating operational losses. The time pattern of losses

stemming from internal fraud and improper business practices suggests that the quality of regu-

lation and supervision can also be related to operational losses in the cross-section of countries.

Indeed, we find that better regulation and supervision – as captured by the financial reform index

of Abiad et al. (2010) and Denk and Gomes (2017) – is associated with lower operational losses.

The fallout of the financial crisis attracted attention to operational losses caused by people.

However, as society moves to a digital age, retail banks are moving from the high street to the

world wide web, intensifying interconnectedness through technology. This has led to a growing

focus and concerns regarding cyber and IT-related risks. We use the data to construct a proxy range

of cyber losses (considered as a subset of operational losses). We document that cyber losses, to

date, represent a relatively small share of operational losses. In recent years, however, losses from

cyber events saw a spike which aligns with the growing attention cyber risk has been receiving.

Despite representing a relatively small share of operational losses, cyber value-at-risk can account

for up to a third of total operational value-at-risk.

The third chapter is dedicated to the topic of digital currency and in particular digital currency

baskets. Central banks are continuing to grapple with the concept of central bank digital currencies

and continue to experiment with their implemention. Meanwhile, the private sector has already

begun offering their own solutions to digital money to the public. These are often collected under

the term stablecoin. In this part of the thesis, with my co-authros, I attempt to analyse, from

an empirical viewpoint, the advantages of a stablecoin whose value is derived from a basket of

underlying currencies, against a stablecoin which is pegged to the value of one major currency,

such as the dollar.

First, we consider the optimal weights of the basket of underlying reference currencies, such

as those included in the International Monetary fund Special Drawings Rights (SDR). After com-
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puting the optimal weights we construct the historical values of the designed stablecoin (SAC) and

compare its volatility against a set of major currencies. For the optimal allocation of weights in the

currency basket we follow Hovanov et al. (2004) to compute a currency invariant index. A partic-

ular advantage of this approach is that given a fixed set of currencies, the index of a currency will

have the same value, regardless of the base currency choice. The index is determined by minimis-

ing the variance of a portfolio of currencies, expressed in Reduced Normalised Values (RNVALs).

We construct a reference basket that contains the Dollar (USD), the Euro (EUR), the Yen (JPY),

the Renminbi (CNY) and the Pound Sterling (GBP), the same currencies that are employed for the

determination of the IMF’s Special Drawing Rights (SDR) basket. Our empirical findings show

that, overall, the stablecoin maintains the lowest volatility, thus could act as a hedge and store of

value for overseas workers savings. We also make comparison to the IMF’s SDRs, which performs

almost as well.

To gain insight into the composition of the basket, we study the currencies which drive the

volatility spillovers among exchange rates, using the framework of Diebold and Yılmaz (2014).

Specifically, we build a spillover network decomposition analysis of the currencies up to December

2020, thus including the period of the Covid-19 outbreak. Our spillover network decomposition

shows that the USD is the currency whose dynamics has the largest impact on the others, espe-

cially in terms of exporting contagion. As a consequence, a shock to USD, causes a shock on all

currencies that leads to a new lower equilibrium.
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CHAPTER 1

THE DRIVERS OF CYBER RISK

1.1 Introduction

Information technology (IT) has become a critical component of well-functioning economies, un-

derpinning economic growth over the past decades. Organisations of all sizes in both the public

and private sector are becoming ever more interconnected and reliant on IT products and services,

such as cloud-based systems and artificial intelligence. Accordingly, there is a growing exposure

to cyber risks, and public awareness of these threat has been on the rise (see Figure 1.1). Cyber

risk commonly refers to the risk of financial loss, disruption or reputational damage to an organi-

sation resulting from the failure of its IT systems.1 The increasing reliance on cloud technologies

exacerbates these risks, as it increases interdependence across firms that have shared exposures to

similar (or even the same) cloud service providers.

Firms actively manage cyber risk and invest in cyber security. However, cyber costs are difficult

to quantify.2 In the financial sector, cyber risks are a key “known unknown” tail risk to the system

and a potential major threat to financial stability.3 More broadly, cyber risk in sectors that play a

critical role in the economic infrastructure could have systemic implications and can be viewed as

1These episodes include malicious cyber incidents (cyber attacks) where the threat actor intends to do harm (e.g.
ransomware attacks, hacking incidents or data theft by employees). High-profile attacks such as the WannaCry incident
in May 2017 contributed to the growing concern around cyber risk.

2The high degree of uncertainty and variability surrounding cost estimates for cyber security incidents has conse-
quences for policy-makers. For example, it is difficult to foster robust insurance markets, as well as to make decisions
about the appropriate level of investment in security controls and defensive interventions (Biener et al., 2015; Wolff
and Lehr, 2017).

3In March 2017, the G20 Finance Ministers and Central Bank Governors noted that “the malicious use of infor-
mation and communication technologies could disrupt financial services crucial to both national and international
financial systems, undermine security and confidence, and endanger financial stability”.
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Figure 1.1: Interest on cyber risk is on a par with operational risk.

a matter of national security (Brenner, 2017). Despite such considerations, information concerning

the costs, drivers and potential mitigating factors of cyber incidents is relatively scarce.

This paper seeks to help fill this gap by using a sample of 3,705 cyber events across all eco-

nomic sectors in the US, sourced from the Advisen cyber loss database. We document a series of

stylised facts. The frequency of cyber incidents rose strongly in the decade leading up to 2016,

but has since moderated somewhat. This reduction could reflect increased investment in cyber

security, but also delays in discovery or reporting.4 We find that certain economic sectors display

a greater resilience to cyber incidents: for example, the financial sector has experienced a higher

frequency of cyber incidents but these have been on average relatively less costly. Regarding the

4This phenomena is widely recognised in the operational risk literature (see Aldasoro et al. (2020); Carrivick and
Cope (2013). The dataset used here does not allow us to accurately estimate such “end-of-sample” bias.
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type of incident, data breaches, phishing or skimming and security incidents, appear to be most

costly. Of particular concern is that data breaches are not only costly, but also relatively frequent.

The paper then documents cyber risk drivers. We first identify the key drivers contributing to

the costs of cyber-related events. Firm size – measured in terms of total revenues – is positively

correlated with the average cost of an event, implying that larger firms tend to incur larger costs.

However, the elasticity is quite low: a 1% increase in total revenues is associated with a 0.2%

increase in cyber costs. Cyber events impacting multiple firms at the same time (i.e. “connected”

events) are also associated with higher costs. Cyber-related incidents can occur unintentionally –

e.g. a bug in some internally developed software – or can also be caused by an actor with malicious

intent.5 Malicious cyber attacks have, on average, lower costs. However, a quantile analysis reveals

that at the tail of the sample distribution this relationship is reversed and in fact malicious incidents

are associated with higher costs. This finding indicates that, while most attackers are stopped

before they can do considerable harm, a successful attacker can go on to cause extensive damage.

We then study the effects of reliance on cloud services and digital technologies more broadly.

In principle, reliance on the same service provider by multiple organisations can yield positive

externalities by fostering economies of scale and information sharing (Rowe, 2007). Cloud tech-

nology can thus reduce IT costs, improve resilience and enable firms to scale better (Financial

Stability Board, 2019). However, it also strengthens interdependence, not least given the high con-

centration of the market for cloud service providers. By analysing the cost-benefit trade-off, we

5The best known types of cyber attack are: man-in-the-middle attacks, cross-site scripting, denial-of-service at-
tacks, password attacks, phishing, malware and zero-day exploits. Man-in-the-middle attacks occur when attackers
insert themselves into a two-party transaction. Cross-site scripting is a web security vulnerability that allows attackers
to compromise the interactions a victim has with a vulnerable application. Denial-of-service attacks flood servers with
traffic to exhaust bandwidth or consume finite resources. Phishing is the practice of stealing sensitive data by sending
fraudulent emails that appear to be from a trustworthy source. Malware (i.e. “malicious software”) is a software de-
signed to cause damage to IT devices and/or steal data (examples include so-called Trojans, spyware and ransomware).
A zero-day exploit is an attack against a software or hardware vulnerability that has been discovered but not publicly
disclosed.
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find that the use of cloud services is associated with lower costs of cyber events. While this speaks

to the resilience of cloud technology, it should be interpreted with caution. As firms’ exposure

to cloud services continues to increase and cloud providers become systemically important, cloud

dependence is likely to increase tail risks (Danielsson and Macrae, 2019).

Finally, we use data on the level of IT spending across sectors to assess the relationship between

investment in IT and the cost of cyber incidents. This analysis can act as a helpful indicator to

policymakers as to which sectors may be exposed due to underinvestment in their IT systems.

We find that higher expenditure in IT is associated with lower costs at the mean and at the tail

of the distribution. Sectors that appear to benefit from this higher level of spending include the

manufacturing and the finance and insurance sector. For the latter this could be due to the effects

of regulation and a years of experience being a prime target for cyber criminals. The dividend

of such investments is evident through our additional analyses, whereby an annual increase in IT

investment is associated with a reduction of costs in the subsequent year.

The rest of the paper is organised as follows. Section 1.2 discusses related literature. Section

1.3 contains a description of the data. Section 1.4 discusses our baseline results. 1.5 explores

whether exposure to cloud services affects the cost of cyber events. Section 1.6 analyses the opti-

mal amount of IT spending across sectors. Finally, Section 1.7 concludes.

1.2 Related literature

Most of the few empirical studies on cyber risk rely on collected publicly available data sources.

Goldstein et al. (2011) study how the exposure to IT operational risk, or the risk of failures of

operational IT systems, could translate into significant losses in firms’ market value. Biener et al.

(2015) emphasise the distinct characteristics of cyber risks compared to other operational risks.

The presence of highly interrelated cyber losses, lack of data, and severe information asymmetries,
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hinder the development of a sustainable cyber insurance market, an essential element to encourage

improvements in cyber resilience. Romanosky (2016) and Chande and Yanchus (2019) use the

Advisen dataset to study losses from cyber events across sectors and provide an initial estimate of

firm risk by sector. Our paper builds on their work by looking at how characteristics of sectors’

management of IT resources can mitigate costs.

An important part of the cost of cyber events is arguably given by the reputational compo-

nent, which is notably hard to assess. Makridis (2020) find that for the subset of the largest data

breaches, brand power (a survey-based measure of reputation) and familiarity decrease by 5-9%

after the event (whereas they increase by 26-29% for an average data breach). Further Kamiya

et al. (2021) find that a successful data breach can decrease shareholder wealth by 1.09% in the

three-day window around the cyber attack. Their findings suggest economically large reputation

costs, in that the shareholder wealth loss far exceeds the out-of-pocket costs from the attack.

The literature highlights that the observed heterogeneity in cyber costs across sectors heav-

ily depends on the environment in which each firm operates as well as IT security investments.

Kamiya et al. (2018) find that cyber attacks are more likely in industries that face less intense prod-

uct market competition and in industries with higher growth opportunities. Moreover, controlling

for firm characteristics, they find that, among the major industries, cyber attacks are more likely

in service industries, wholesale/retail trade, and transportation and communications. Makridis and

Dean (2018) find heterogeneity in cyber attack episodes amongst sectors when it comes to data

breaches. In particular, companies in the finance, insurance, retail and merchant sectors are the

biggest targets. Makridis and Liu (2021) also suggest that higher productivity firms have fewer cy-

ber security vulnerabilities and are able to gain access to more human capital that is better capable

of mitigating cyber security vulnerabilities.

Regulation can also play a key role in firms’ motives for security investments. Based on a
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survey of more than 700 firms, Rowe and Gallaher (2006) find that the vast majority believe that

regulation has increased the overall level of security. However, some firms reject this view, because

excessive cyber security costs imposed by regulation could stifle firms’ ability to innovate (Etzioni,

2011). While our paper does not enter into the debate on who should bear the cost of cyber security,

we find that sectors with a more robust policy framework toward cyber risk tend to reap benefits

by reducing the costs of cyber incidents.

Some sectors provide critical infrastructure for the functioning of the economy. Cyber attacks

on the financial sector could create cascade failures that are not completely understood nor ade-

quately quantified by sector-specific simulations (Brenner, 2017). Kopp et al. (2017)) note that

the financial sector is frequently targeted due to its high exposure to IT and its credit intermedia-

tion role. Kashyap and Wetherilt (2019) outline some principles for regulators to consider when

regulating cyber risk in the financial sector. The Basel Committee has also published guidelines

for banks regarding best practice regarding cyber risk.6 Given that financial institutions tend to

maintain better data collection practices due to regulatory reporting, empirical studies focusing on

this sector are more developed.

Using a large cross-country panel, Aldasoro et al. (2020) find that cyber losses represent a

relatively small share of operational losses for banks. In recent years, however, losses from cyber

events saw a spike, with a corresponding increase in risk. The value-at-risk (VaR) associated with

cyber events can range from 0.2% to 4.2% of banks’ income.7 This amounts to around a third

of operational VaR, despite representing a minor share of the latter in terms of frequencies and

loss amounts. The extent of operational and cyber losses depends on the supervisory environment.

A higher quality of supervision – as measured by a financial and supervisory quality index – is

6See Basel Committee on Banking Supervision (2018a)
7Estimates by Bouveret (2018) – based on data collected from media and newspaper articles across countries –

point to sizeable potential losses in the financial sector. His estimate of value-at-risk ranges between 14% to 19% of
net income.
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associated with lower losses, in terms of both frequency and amount. Credit booms and periods

of accommodative monetary policy are associated with higher operational losses in the future, but

have no effect on cyber losses.

Duffie and Younger (2019) analyse a sample of twelve systemically important U.S. financial

institutions and suggest these firms have sufficient stocks of high-quality liquid assets to cover

wholesale funding runoffs in a relatively extreme cyber event.8 From the literature on operational

risk, the size of financial institutions is positively linked with the size of operational losses (Shih

et al., 2000; Curti et al., 2019b). A large share of banks’ operational losses can be traced to a

breakdown of internal controls (Chernobai et al., 2011). We devote particular attention to the

drivers of cyber risks in the financial sector and how these could differ from other economic sectors.

1.3 Data

The data are obtained from Advisen, a for-profit organisation which collects information from

reliable and publicly verifiable sources such as websites, newsfeeds, specialised legal informa-

tion services, multiple online data breach clearinghouses and federal and state governments in the

United States.9 The entire Advisen database contains a total of 137,164 cyber incidents. Each

cyber incident is linked to an ultimate parent company and includes, amongst others, the following

characteristics: i) case type (e.g. data breach, phishing); ii) affected count (e.g. in the event of a

data breach, how many details were stolen); iii) accident date; iv) source of the loss; v) type of loss;

vi) actor (e.g. state-sponsored, terrorist, etc); vii) loss amount; viii) company size (proxied by total

revenues); ix) company type (e.g. government, private); x) number of employees; xi) North Amer-

8Using a broader network of US banks, Eisenbach et al. (2021) find that the impairment of any of the five most
active US banks will result in significant spillovers to other banks, with 38 percent of the network affected on average.

9Most cyber incidents go unreported. Typically, only the larger and the more relevant ones become public and are
included in the Advisen database.
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ican Industry Classification System (NAICS) code identifying the sector of the firm that suffered

the cyber incident; and xii) geography (i.e. the area where the incident occurred).

The majority of events reported in the database occur in the Americas region (North, Central

and South America). In particular, 86 per cent of the episodes took place in the United States. This

is largely due to the fact that information regarding cyber losses is easier to collect there as a result

of a higher degree of freedom of information. To remove unobserved country heterogeneity from

our analysis we focus on the incidents in the database that occurred in the United States, which

leaves a sample of 116,387 incidents. This is the dataset we use when reporting stylised facts

that do not require information on loss amounts. However, due to the nature of how the data are

collected, it is not possible to obtain all information desirable for each event.

Data on actual loss amounts per event represent only a subset of the larger database. The cost

of cyber events can be categorised into three components (Anderson et al., 2019). The direct cost

is the value of loss, damage and other suffering incurred by the victim of the cyber incident. The

indirect costs are the losses and opportunity costs borne by society as a consequence of a cyber

incident.10 Firms also bear mitigation costs, which include inter alia investment in IT personnel

or in security products such as antivirus or cyber threat awareness training for staff. The data

from Advisen can best be interpreted as a measure of direct costs to a firm as a result of a cyber

incident. Individual components of each loss (e.g., fines or penalties from regulators, payments

made to a plaintiff in the event of a claim and financial damages) are provided in the data, but

are rarely populated in sufficient detail to allow for a meaningful analysis. For our regression

analysis, we remove observations missing such critical data, which leaves us with a sample of

10Examples of direct costs are those related to the time and effort of repairing IT systems damaged as a result of
an incident, the ransom paid to attackers in a successful cyber attack or regulatory fines and penalties. Indirect costs
could in turn include reduced uptake by citizens of electronic services whether from companies or governments due to
the perceived threat of a cyber incident or the losses incurred by an individual after having their personal data stolen.
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3,705 observations for our baseline empirical analysis.11

The frequency and costs of cyber events differ across sectors (see Table A.1.2 in the appendix

for summary statistics).12 By frequency, “Financial and insurance activities” (FI) is the most af-

fected sector. However, it shows some resilience, as despite being subject to many attacks, the

average cost of a cyber incident is not as high as for other sectors. The sector with the highest

average costs is “Wholesale Trade”, followed by “Transportation and storage” and “Professional,

Scientific and Technical” (PST). The standard deviation of costs across sectors is quite large, im-

plying that most likely the distribution of losses has a heavy tail.
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Figure 1.2: Frequency and cost of cyber incidents across sectors

11As we note below, the sample used for the regression analysis (i.e., which includes loss data) is not biased to any
particular type of cyber event or sector. This can be seen by comparing the summary statistics from the regression
sample (Table 1.1) with those from the full sample (Table A.1.1 in the annex).

12The sectors are based on NAICS. For details, see https://www.census.gov/eos/www/naics/.
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Figure 1.2 shows how events are distributed by sector over time. The overall distribution across

sectors in terms of frequency remains relatively stable. Much of the growing frequency of events

can be attributed to the FI sector as well as the “Administrative and Support Service” sector. In-

creases in the frequency of cyber incidents in the FI sector following the great financial crisis may

be partly driven by targeted attacks on banks. The peak in costs in 2012 was shared largely amongst

the FI and “Information and communication technology” (ICT) sectors.
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Figure 1.3: Frequency and cost of cyber incidents by case type

Figure 1.3 depicts the distribution by case type through time.13 Privacy violations are the

frequent type (44 per cent of the cases). This is likely due to the fact that reporting requirements

have been in place for a longer period for such incidents, as well as the relative ease of assigning

13Case types are based on the definitions of Romanosky (2016) and are used as fixed effects in our regression
(see Section 1.4 for details). Further categorisations are possible, though they do not provide enough variation for
econometric analysis.
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conclusive responsibility when they occur (Chande and Yanchus, 2019). Data breaches have been

responsible for a significant portion of costs over time. The total cost of a data breach grows with

the amount of records stolen. Therefore, if hackers are able to obtain large volumes of records, the

costs can soar as millions of individuals can be affected.

In terms of frequency, the overall trend has been positive, in line with the growing concern over

cyber risks.14 This is likely driven by a few factors. First, several frameworks and legislation have

come into place that encourage the reporting of cyber incidents. Second, the barrier to carrying

out cyber attacks has become lower as competent computing skills are no longer required to carry

out attacks. The reduction in more recent years could represent the effects of increased investment

in cyber security, but should be taken with caution due to the above mentioned reporting bias. Re-

garding the distribution by frequency over time, the increase has largely been attributed to privacy

violations. Costs, on the other hand, peaked in 2011, largely due to spikes in privacy violations

and data breaches.

1.4 Identifying the drivers of cyber costs

1.4.1 Empirical approach

Our analysis aims to explain the costs of cyber events by a series of event and firm/sector charac-

teristics.15 We model the direct costs of a cyber incident through the following regression:

14As noted earlier, the most recent end of the data is probably subject to an under-reporting bias, as it takes time
for incidents to be discovered and acknowledged. Therefore, we expect the numbers in the most recent years of our
sample to increase as more information becomes available in the future.

15These include observable direct costs from cyber events. Costs are likely to be a lower bound for a number of
reasons. For one, there are many costs associated to any event, which may either be not easily quantifiable nor publicly
reported, even if the event has some cost reported. Furthermore, as discussed earlier the costs of cyber events can also
be indirect: these refer to the losses and opportunity costs borne by society as a consequence of a cyber incident, and
may include hard-to-quantify damage to the reputation of a firm. Finally, companies may also incur mitigating costs.

29



Ci,f,g = βZi,f,g + λWf,g + θXg + ηk + αt + ui,f,g (1.1)

where, i denotes the individual incident (Ni = 3705), f denotes the firm at which the incident

took place (Nf = 2445) and g the sector of the firm (Ng = 19), based on the NAICS sector cate-

gorisation. Ci,f,g denotes the cost of the incident; Xg denotes sector-level controls; Wf,g denotes

firm-level variables and Zi,f,g stands for variables that vary at the individual incident level. We

control for year fixed effects (αt) and for fixed effect for incident types (ηk). Finally, ui,f,g denotes

the random error term. For clustering of standard errors we take a conservative approach in our

baseline estimation by clustering at the sector level.16

Firm size is proxied by the revenues of the firm that suffered a cyber incident.17 Shih et al.

(2000) hypothesise a relationship between firm size and costs stemming from operational risks of

the form: C = RαF (θ), where C denotes costs, R stands for the revenues of the firm, θ for a

vector of unobserved risk factors that explain the variation in costs not attributed to revenues, and

α for the degree of returns to scale in terms of costs.18 The authors estimate (in log form) an α̂ of

0.15, with a low R2 (0.05). Replicating this equation, we estimate α̂ to be 0.23 and similarly a low

R2 of 0.09. The α < 1 indicates a decreasing marginal cost with respect to increases in revenues.

Inspection of the residuals of this equation does not indicate obvious signs of heterogeneity across

firm size or non-normality of the residuals (see the plot of the residuals in Figure A.1.1 in the

16The inclusion of Wf,g and Xg implies perfect correlation within firm and sector level. Consequently, the error
term will be perfectly correlated within clusters, which could lead to bias. This type of clustering has a nested structure,
i.e., firm within a sector. The conventional wisdom suggests clustering at the highest level of aggregation, in this case
the sector (Cameron and Miller, 2015). We present robustness to alternative clustering choices in the appendix.

17We test the robustness of our results by performing regressions using number of employees as an alternative proxy
for firm size. Results are unaffected by this choice.

18With equation (1.1) we aim to capture some of the unexplained variance (θ) with the inclusion of control variables
discussed below. Shih et al. (2000) posit that the unexplained part of this regression could be attributed to variation
in firms’ attributes regarding risk management, e.g. nature of the business, quality of internal controls, etc. Firm size
may implicitly capture the difference in corporate structures and variation in management.
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appendix). Contrary to some of the literature (Biener et al., 2015), we do not find evidence in

favor of the existence of a U-shape relationship between firm size and the average costs from cyber

incidents (details can be found in the annex).

Cyber incidents are likely to exhibit features of contagion: a failure in a firms’ IT systems

could have spillover effects on other firms (Baldwin et al., 2017; Eisenbach et al., 2021; Crosignani

et al., 2020). Incidents that impact multiple firms could contribute to greater costs in the aggregate

through other means as well. Affected firms could for instance seek damages and respond by

pursuing litigation against the firm at which the incident originated, increasing the costs for the

firm that originally suffered the incident. On the other hand, costs could be distributed across firms,

thus lowering the average cost across affected firms. We include a variable, connected events, that

captures how many firms were linked to one specific cyber incident to investigate this effect. To

illustrate, if a hacker infiltrated one firm and subsequently managed to penetrate the system of

another firm, and both firms recognise they have been affected by the same hacking incident, the

connected events variable would be 2.19

We collect sector level data to estimate the impact of differences in the adoption of information

technologies across firms from different sectors. We obtain two variables from the Digital Module

of the 2018 Annual Business Survey undertaken by the Bureau of Economic Analysis (BEA). The

first variable proxies the digital share of business activity. The survey asks: In 2017, how much of

each type of information was kept in digital format at this business? We collect the percentage of

firms that responded that more than 50% of their information is kept in digital format. Therefore, a

higher value in this variable indicates a sector with a stronger dependence on digital technologies

for its storage of information. Firms with a higher dependence on IT and digital technologies may

19The variable does not provide information on the relationship between the root cause and the affected parties. We
note that this variable likely acts as a lower bound on the number of related incidents, as some are unable to be traced
to a root cause or may have gone unnoticed or unreported by some firms.
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expose themselves to more cyber risk (Florakis et al., 2020).20

Cloud technologies have become synonymous with cyber risk as policy institutions grapple

with the consequences of having centralised IT storage infrastructures. Incidents that involve cloud

technology could lead to significant ”spillover costs”. The survey from BEA also includes data

gathered on the penetration of cloud services across sectors. The survey asks: Considering the

amount spent on each of these [IT functions] how much was spent on cloud services services

[provided by a third party on–demand via the internet]? We take an average across all IT functions

and collect data on firms that indicated 50-100% was spent on cloud services. The variable proxies

an indicator of sectors with a higher exposure to cloud technologies.

Cyber incidents include a broad set of malicious and non-malicious events. We test whether

cyber attacks (malicious) cause more damage or whether inadvertent incidents are equally dam-

aging. We divide the categorical variable of case types (e.g. DDoS attack, accidental data leak,

IT processing error) into two broad categories, malicious and non-malicious, based on whether

the incident was done with intent to cause damage or occurred as a result of an accident. Based

on this categorisation, we construct a dummy variable labelled Malicious, which is equal to one

if the event resulted from malicious intent. Around 44% of the incidents recorded fall within this

category.

We include in equation (1.1) a set of dummy variables, ηk, for different types of incidents,

based on the classifications in Romanosky (2016). Security incident relates to an incident that

compromises or disrupts corporate IT systems (computers or networks) or their intellectual prop-

erty – examples include hacking and extorting corporate information or a denial of service (DoS)

attack. Data breach includes unintended disclosure of information (e.g. accidental public dis-

20The effect of this variable likely manifests in two ways. First, a higher ”digital presence” widens the surface of
attack to cyber-criminals, which may increase the likelihood of being attacked. Moreover, it suggests which sectors
maintain more of their assets in digital format and thus stand to lose more given a cyber incident.
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closure of customer data, improper disposal of information) and/or theft of computers containing

personal information of employees or customers of a firm. Phishing/skimming are the sending of

emails purporting to be from reputable sources in order to convince individuals to reveal personal

information to subsequently commit identity theft and the illegal copying of information from the

magnetic strips found on credit and debit cards (usually via hardware devices on ATM machines).

Privacy violation refers to unauthorised collection, use or sharing of personal information – ex-

amples include unauthorised collection from cell phones, GPS devices, cookies, web tracking or

physical surveillance. This is distinguished from data breaches as an act committed by the firm as

opposed to against the firm. Other denote cyber-related losses that were not attributed to one of

the above categories.

Table 1.1 contains summary statistics of the variables used in our regressions.21 The mean cost

incurred by a firm is $10.4 million, with a median of $117,000 and standard deviation of $122

million. This implies a high coefficient of variation and is indicative of the heavy-tailed nature of

cyber risks. Cyber risk can be considered a subset of firms’ operational risk (Aldasoro et al., 2020).

The severity of operational losses is typically characterised by a set of long-tailed distributions,

including the log-normal, such that ln(Ci,f,g) ∼ N (µ, σ2). Figure A.1.2 in the appendix shows the

density of the costs after the log transformation has been applied. There appears to be bi-modality

around the mean, but the data are approximately normally distributed.

The mean of the digital share implies that 14.8% of firms across all sectors’ maintain more

than 50% of their information in digital format. The value ranges from 9-24%, with sectors at the

lower end of the spectrum including Construction and Transportation and Warehousing, and at the

top end Manufacturing and Management of Companies and Enterprises. In turn, the average of the

cloud variable is 18.6%: roughly a fifth of firms across all sectors spend upwards of 50% of their IT

21For comparison, in Table A.1.1 of the appendix, we provide summary statistics based on the full sample where
data are available (i.e., including data without loss amounts).
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budgets on cloud services. The value ranges from 6 to 26%. Sectors with a lower exposure include

Agriculture, Forestry, Fishing and Hunting and Mining, Quarrying, and Oil and Gas Extraction.

Those at the other end of the spectrum include Health Care and Social Assistance; Finance and

Insurance; Professional, Scientific, and Technical Services; and Information.

Mean Median Std. dev. Minimum Maximum

Variables varying at individual event level

Costs ($ mil) 10.4 0.117 122 0a 5000

Connected events 4.90 2.00 9.75 0 79.0

Variables varying at firm level

Firm size (Revenues $ mil) 12,800 27.0 41,700 0a 521,000

Variables varying at sector level

Digital share of business activity 14.8 15.2 2.28 9.23 24.3

Cloud service purchases 18.6 20.1 5.66 5.60 26.2

Binary variables at event level

Malicious Indicator 0.437 0 0.496 0 1.00

Security Incidents 0.0815 0 0.274 0 1.00

Data Breaches 0.427 0 0.495 0 1.00

Phishing / Skimming 0.0494 0 0.217 0 1.00

Privacy Violations 0.436 0 0.496 0 1.00

Other incidents 0.00648 0 0.0802 0 1.00

Notes: a Zeros are a consequence of rounding accuracy. The top panel reports the variables from equation (1.1) that
vary with each individual event in the sample. The second panel contains variables from equation (1.1) that vary by
each firm contained in the sample. The third panel are the variables from equation (1.1) that vary at the sector level
and obtained from the US census Bureau 2018 Annual Business Survey. The bottom panel are dummy variables that
indicate the type of the incident.

Table 1.1: Summary of variables used in the regression
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1.4.2 Baseline results

The results of the baseline regressions are presented in Table 1.2. The cost of a cyber attack is

positively correlated with both firm size and the number of connected events. Columns I-III report

the baseline regression with and without sector and year effects. We favour the regressions with

their inclusion as the coefficients remain robust to unobserved heterogeneity across sectors and

variation common to all firms (e.g., the macroeconomic environment).22 The point estimate of

firm size – the logarithm of firm revenues – in Column III is 0.231. A coefficient smaller than 1

suggests the marginal cost is decreasing with respect to revenues, i.e. costs don’t increase linearly

with the size of the firm.23 The partial elasticity between firm size and costs implies that for a 1%

increase in size there is an increase in the expected cost of 0.23%. Incidents that affect multiple

firms – i.e. connected events – are similarly associated with higher expected costs: a unit increase

in the number of affected firms translates to approximately a 2.6% increase in expected costs.24

Finally, in column IV we show that these results are robust the inclusion of mare granular sector

fixed effects.

Events with malicious intent are associated with a lower expected cost. Taking the estimate

from the third column suggests that on average malicious events are associated with costs 66%

lower than other event types.25 This is perhaps surprising, given the significant press coverage that

22As discussed above the standard errors are clustered at the sector level. The results with Ecker-White errors and
firm-level clustering are reported in the appendix. The magnitude of standard errors varies, although this has little
impact on the precision of the estimates.

23An alternative way to see this is to correct for firm size on the costs variable, i.e. using a ratio of costs to firm
size. We present the results of this regression in Table A.1.4 in the appendix. They confirm that the losses are not
proportionate to firm size, and are decreasing relative to firm size.

24Revenues, like various measures of firm size, could be heterogeneous across sectors. Sector fixed effects should
go some way into controlling for this. In untabulated results available upon request, we construct a dummy variable
that equals 1 if firm revenues are above the median within that sector, such that we have a within-sector measure of
small versus large firms. Including this in the regression confirms the robustness of our original result.

25The percentage change is calculated using the bias correction of Kennedy (1981), g = exp(β̂ − 1
2V (β̂))− 1.
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Dependent Variable: Log(Cost)

Regressor I II III IV

log(Firm Size)
0.241***

(0.0300)

0.220***

(0.0228)

0.231***

(0.0234)

0.220***

(0.0222)

Connected events
0.0176**

(0.00740)

0.0257***

(0.00555)

0.0257***

(0.00548)

0.0238***

(0.00661)

Malicious
-1.31***

(0.230)

-1.33***

(0.179)

-1.20***

(0.207)

-1.09***

(0.324)

Security Incident
11.0***

(0.338)

13.0***

(0.631)

13.6***

(0.676)

13.8***

(0.632)

Data Breach
11.6***

(0.186)

14.1***

(0.469)

14.6***

(0.477)

14.8***

(0.603)

Phishing/Skimming
12.7***

(0.486)

14.7***

(0.573)

15.1***

(0.554)

15.4***

(0.683)

Privacy Violation
10.8***

(0.387)

13.2***

(0.708)

14.0***

(0.755)

14.3***

(0.701)

Other
12.6***

(0.405)

14.4***

(0.636)

15.3***

(0.666)

15.2***

(0.895)

Year Fixed Effects N Y Y Y

Sector Fixed Effects N N Y N

Sub Sector Fixed Effects N N N Y

R2 0.11 0.19 0.21 0.25

N 3705 3705 3705 3705

Notes: Results from estimating equation (1.1). *, ** and *** denote significance at the 10, 5 and 1 percent level
respectively. Standard errors (reported in parentheses) are clustered by sector. Column I is an OLS regression without
controls for Year or Sector fixed effects. Column II is an OLS regression without Sector fixed effects. Column III is an
OLS regression including both fixed effects. Column IV replaces the sector fixed effects with the finer categorisation
of sub-sector.

Table 1.2: The drivers of cyber risk - baseline results

cyber attacks get and the concern expressed by multiple organisations.26 Looking more closely

26A number of other factors may help explain this finding. For one, cyber security actions adopted by many firms
protect them from the effects of malicious cyber incidents. There are various well-developed tools that are built to
predict and manage cyber attacks, which may be less effective against events that occur as a result of human error
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at the distribution of costs within each category can provide evidence as to what may be the key

driver. In Figure A.1.3 of the annex, we show the distribution of costs per case type, malicious

versus non-malicious. Security incidents and data breaches are the only case types with variation

across both malicious and non-malicious events. Within security incidents in particular there is a

stark contrast between the distribution of malicious and non-malicious events, with the latter being

significantly more costly.27 Finally, while on average the cost of malicious events may be lower, it

may still be the case that when focusing at the worst type of events in terms of losses – i.e. when

looking at the right tail of losses – malicious events regain prominence. Our finding should thus

not be taken as a reason to gloss over the threat that is posed by malicious cyber attacks, as we

show in the next section.

1.4.3 Beware of the tails

Losses stemming from operational and cyber incidents are typically characterised by a set of

“heavy-tailed” distributions (Cohen et al., 2019). Therefore, it is reasonable to assume that the

conditional distribution is not homogeneous across cost quantiles. Of particular interest in this

context is the tail of this distribution, which characterises events of low frequency but high sever-

ity. Identifying the features of such events is important to policy-makers and supervisors as they

carry the potential to generate substantial economic losses and systemic disruption.

Figure 1.4 displays the estimates of the coefficients of firm size, connected events, and mali-

cious events at quantiles ranging between the 0 and 100th percentile. Estimates do vary at different

inside firms. Moreover, well coordinated cyber attacks can go undiscovered for a long time, in which case the cost of
the attack can be difficult to estimate or even identify. Finally, some cyber attacks potentially carry large reputational
costs that are hard to quantify and are hence not adequately reflected in loss data.

27Non-malicious security incidents include events such as network failures or software bugs that can be very costly.
Network outages could be caused by operator errors, surge or usage spike, hardware infrastructure failure, or loss of
electrical power. Firms could expect to face 1.6 hours of downtime every week, which has been estimated to cost
them, on average, $5,600 per minute (Knobbe, 2020).
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quantiles. The estimate of firm size has a lower magnitude at the both ends of the distribution,

i.e. it shows an inverted U pattern. Connected events have larger estimates towards the upper

end of the distribution. Most interestingly, we observe that as the malicious variable approaches

the 90th percentile the coefficient trends upwards, towards zero, and eventually into positive ter-

ritory. Malicious events thus do exhibit a significantly different behaviour at the tail-end of the

distribution.

Turning the attention to the tail of the distribution, we next present the results of cost quantile

regressions between the 95th and 99.5th percentiles. The specification of the regression is anal-

ogous to the baseline regression in Table 1.2 (Column III). Firm size and connected events are

both lower than their mean estimates. The malicious indicator has a positive coefficient across

all the upper quantiles. A significant effect is observed at the 99.5% level. This result suggests

that, ceteris paribus, the tail of the loss distribution is more sensitive to shocks from malicious

events. Well coordinated malicious attacks – that happen less frequently – are likely to exceed the

costs of non-malicious cyber events. These estimates should be taken with some caution: with

limited observations, estimates of what occurs in quantiles can be subject to bias (Chernozhukov

and Umantsev, 2001). Nonetheless, uncovering this relationship reveals an important caveat of

only studying the central measures of the distribution. While our benchmark regression may show

that malicious events are less damaging, sophisticated hacks can actually exacerbate costs at the

tail end of the distribution. Understanding the potential damage of high-frequency, low-probability

events is paramount from a policy perspective.
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Notes: The plot shows the change in selected coefficients as cost quantiles vary. The specification of the
regression is analogous to the baseline regression of Table 1.2 (Column III). The grey shading highlights
the 90% confidence interval of the coefficient and red lines denote the estimate of the conditional mean by
OLS.

Figure 1.4: Selected coefficients from cost quantile regressions

1.5 Digitalisation and cloud-based technologies

Until not so long ago, firms looking to adopt digital technology had to invest in their own data

infrastructure and hardware. With the advent of cloud technologies, this has dramatically changed.

Cloud technology enables firms to rent computing power and storage from service providers, turn-

ing some fixed costs into marginal costs and giving firms more flexibility in handling their op-

erations in a potentially more protected environment. This can be particularly advantageous for

smaller firms with fewer resources to spend on IT.28 Cloud computing also exhibits positive exter-

nalities such as the reduction of energy consumption and carbon emissions (Etro, 2015). Evidence

suggests that firms increasingly take advantage of these benefits, as adoption of digital technology

continues to trend upwards (Chen and Srinivasan, 2019).

Digital technologies also pose risks and challenges. Networked production facilities, vehicles,

28However, firms are still responsible for the configuration of machines and safe storage of sensitive data while
interfacing with external applications.
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Dependent Variable: Log(Cost)

Regressor 95% 97.5% 99% 99.5%

Panel A: Wild Bootstrap

log(Firm size)
0.184***

(0.0170)

0.149***

(0.0167)

0.115***

(0.0225)

0.153***

(0.0416)

Connected events
0.0381***

(0.00763)

0.0241***

(0.00756)

0.0187**

(0.00768)

0.00301

(0.0179)

Malicious
0.0508

(0.309)

0.525*

(0.316)

0.247

(0.347)

0.342

(1.11)

Panel B: Clustered Bootstrap

log(Firm size)
0.184***

(0.0177)

0.149***

(0.0140)

0.115***

(0.0202)

0.153***

(0.00303)

Connected events
0.0381***

(0.00592)

0.0241***

(0.00370)

0.0187***

(0.00473)

0.00301***

(0.000870)

Malicious
0.0508

(0.239)

0.525

(0.335)

0.247

(0.454)

0.342***

(0.102)

Year Fixed Effects Y Y Y Y

Sector Fixed Effects Y Y Y Y

Case Type Fixed Effects Y Y Y Y

Notes: Results from estimating equation (1.1) at different quantiles. *, ** and *** denote significance at the 10, 5 and
1 percent level, respectively. In Panel A, the standard errors (reported in parentheses) are calculated using the wild
bootstrap method proposed by Feng et al. (2011). In Panel B, the standard errors are calculated using the method of
Hagemann (2017). Both methods are computed using the R Package quantreg. For the definition of the regressors,
see Table 1.1.

Table 1.3: Quantile regressions

transport infrastructure, and a host of other devices connected to the internet present new oppor-

tunities to cyber criminals. The growing complexity of digital infrastructures could increase the

likelihood of failures and interruptions, as well as the attendant costs. Cloud service providers

have recently drawn the attention of regulators due to the risks associated to their operations, not

least given the high degree of concentration in the sector that increases the risk of single points of
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failure. Tail-risks associated with an outage of a cloud service provider could lead to substantial

losses and potentially bring the economy to a halt (Danielsson and Macrae, 2019).29

Dependent Variable: Log(Cost)

Regressor I II III IV V

log(Firm size)
0.222***

(0.0224)

0.221***

(0.0224)

0.220***

(0.0228)

0.454***

(0.128)

0.450***

(0.126)

Connected events
0.0256***

(0.00550)

0.0256***

(0.00549)

0.0258***

(0.00549)

0.0253***

(0.00523)

0.0254***

(0.00525)

Share of digital
-0.0142

(0.0445)

0.0554

(0.0484)

0.0461

(0.0631)

0.114*

(0.0671)

log(Firm size) × Share of digital
-0.0156*

(0.00858)

-0.0154*

(0.00846)

Share of cloud
-0.0211

(0.0154)

-0.0378**

(0.0188)

-0.0371*

(0.0198)

Malicious
-1.33***

(0.172)

-1.33***

(0.173)

-1.33***

(0.171)

-1.34***

(0.171)

-1.34***

(0.169)

Year Fixed Effects Y Y Y Y Y

Sector Fixed Effects N N N N N

Case Type Fixed Effects Y Y Y Y Y

R2 0.19 0.19 0.19 0.19 0.20

N 3705 3705 3705 3705 3705

Notes: Results from estimating equation (1.1). *, ** and *** denote significance at the 10, 5 and 1 percent level,
respectively. All standard errors (reported in parentheses) are clustered by sector to account for the correlation in the
sector-level variables. Firm size refers to the firm revenues; Share of digital is the percentage of firms per sector that
keep more than 50% of information stored in digital format; Share of cloud is the percentage of firms per sector that
keep more than 50% of their data in a dedicated cloud storage. Sector controls are dropped in all regressions due to
multicollinearity with the sector-level variables.

Table 1.4: Regressions including the sector level cloud and digital storage variables

The jury is still out on whether the benefits outweigh the risks, or vice versa. To date, there is

29For a wider discussion of the benefits and risks of cloud computing, see for example Catteddu (2009) and Carr
et al. (2019).
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little empirical evidence to support either claim. We contribute to this discussion by extending our

regression framework with variables that proxy for firms’ exposure to digital and cloud services.

In particular, we consider share of digital and share of cloud, which capture sector-level exposure

to digital technologies and cloud technology, respectively. To avoid multicollinearity between

sector-level variables and sector fixed effects, we drop the sector controls.

We present the results of the regressions in Table 1.4.30 Our results suggest that firms in sectors

with a higher exposure to cloud technologies benefit from a mitigating effect on expected costs

stemming from cyber incidents. To interpret the magnitude of coefficients, recall how the digital

and cloud variables are constructed: the proportion of firms that stated over 50% of their infor-

mation was stored digitally and of their IT spending was on cloud technology, respectively. The

measures loosely reflect the probability that any given firm within a sector has more of its data

stored digitally and the probability that the firm has a higher spending on cloud services. The vari-

ables are recorded on a 0-100 percentage scale. Consider Column V in Table 1.4: a one percent

increase in the probability of firms spending more than 50% of their IT budgets on cloud services

is associated with a reduction of around 4% in expected costs. A stronger dependence on digital

services appears to have no statistically significant effect, if considered in isolation (Column II).

However, when we add an interaction term between firm size and digital dependence in Column

V, we find a mitigating effect. Figure 1.5 plots the surface of this mitigating effect on costs as a

function of firm size and digital dependence. As firm size increases, more exposure to digital tech-

nologies appears to have a mitigating effect on costs. A possible explanation for this relationship

could be that as firms expand so do their resources and investment in personnel that ensure that

digital technologies are safely maintained.

Overall, a higher exposure to digital and cloud infrastructures is associated with a mitigating

30The case type dummies displayed in previous output are subsumed into the Case Type Fixed Effects indicator.
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Figure 1.5: The expected joint effect of firm size and dependence on digital technology on firms
costs

effect on costs, which is also firm-size dependent. Given data limitations, it is challenging to derive

an exact identification strategy that enables us to define the causal relationship between firms’ use

of digital technologies and cyber risk. That said, our findings represent a first-pass analysis for a

better understanding of the role that digital technologies and in particular cloud technology have

to play in shaping cyber risk.

1.5.1 Revisiting the tails

In this section, we briefly revisit the behaviour of cyber costs at the tails of the loss distribution

in relationship to our digital and cloud variables. Reliance on cloud services in particular has

the potential to increase tail-risks (Danielsson and Macrae, 2019). If such risk would be present

in our dataset, we would expect to observe a similar relationship to that seen for the malicious

variable. That is, the coefficients on cloud and digital become trend upwards as we move right in

the distribution, eventually becoming positive.
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Figure 1.6 shows the estimates for the cloud (left) and digital (right) variables across quantiles.

The estimate for the cloud variable shrinks from negative toward zero at the upper quantiles, but

does not reach positive territory. The mitigating effect found in the baseline regression is reduced

at the tails, but does not turn into a factor that could exacerbate tail risks. The digital variable

shows a positive relationship with cyber costs that tend to decline towards the upper quantiles (this

confirms the sign of the interaction term in Column V of Table 1.4).
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Notes: The graphs show the change in selected coefficients as quantiles vary. The specification of the
regression is analogous to the baseline regression of Table 1.4 (Column III). The grey shading highlights
the 90% confidence interval of the coefficients and red lines denote the estimate of the conditional mean
by OLS.

Figure 1.6: Selected coefficients from quantile regressions

1.6 Dealing with cyber risk: is current IT investment enough?

In this section we analyse if investment in IT can help to mitigate costs from cyber incidents.31 In-

vestment in IT security arguably has obvious benefits, yet to date there appears to be little evidence

31According to Gartner (2021), worldwide IT spending is projected to total $4.2 trillion in 2021, with information
security and risk management technology and services expected to grow 12.4% to reach $150.4 billion.
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that the continually increasing size of IT budgets and spending are correlated with the mitigation

of costs stemming from cyber-related incidents, despite IT security being considered an increas-

ingly critical part of business continuity plans. Evidence that IT spending yields a beneficial return

on investment could alter the perspective of firms that are reluctant to invest in IT security as it is

viewed as a ”sunk” cost. Roner et al. (2021) provide some evidence that cyber security investments

can reduce losses arising from a cyber breach. We provide further support to this argument with

alternative data.

We use a database constructed by Kennedy and Stratopoulos (2017) based on the Information-

Week IW500 survey. The survey gathers data on IT spending from 500 firms based in the US,

across various sectors. The survey focuses on firms that are the most innovative IT users, i.e. to be

included in the list a firm had to demonstrate sophisticated use and deployment of IT (Lim et al.,

2011).32 The IW500 dataset provides us with an estimate of firms’ IT expenditures as a percentage

of revenues. Figure A.1.5 in the appendix displays the trend in IT spending across sectors for the

period 2002-2013. The finance and insurance sector is consistently one of the largest investors in

IT, whereas construction and mining are at the lower end of the spectrum. Overall, the investment

in IT tends to be relatively stable over time.

Table 1.5 summarises costs across sectors and the implied spending on IT. To compare the

typical annual cost of cyber incidents to firms across sectors, we remove outliers using the in-

terquartile range method (we are interested in these outliers and will return to them later in this

section). On average, non-malicious incidents appear to have a higher average costs. Retail Trade

and Finance and Insurance are the implied largest spenders on IT. These sectors along with In-

formation and Manufacturing are inferred to spend upwards of a billion dollars annually on IT. In

32Previous studies have used the IW500 data to examine the relationship between IT expenditures and various
aspects of firm activity and performance. However, there is little evidence on the impact that this investment has
towards reducing the risk of losses.
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Notes: The panel on the left hand side shows the average annual costs for malicious incidents by sector normalised
by the average revenues for firms within that sector on the y-axis. On the x-axis, we plot the spending as a percentage
of revenues. The panel on the right hand side shows the average annual costs for non-malicious incidents by sector
normalised by the average revenues for firms within that sector on the y-axis. On the x-axis, we plot the spending as a
percentage of revenues.

Figure 1.7: Spending in IT relative to optimal and costs of cyber events per unit of revenue.

Figure 1.7 we show the relationship between spending and the typical annual costs for malicious

and non-malicious incidents. For both, there is a weakly implied negative relationship, i.e. higher

spending is correlated with lower costs when correcting for average firm size.33 Sectors with an

implied lower spending on IT appear to incur higher costs for malicious relative to non-malicious

events. Thus there appears to be evidence that higher levels of IT spending are effective at protect-

ing firms from non-malicious incidents, even if we cannot be certain about causality. For example,

investment into new hardware may not be a direct investment in security, but may lead to fewer

unintended failures that could be caused by old hardware.

One-off events that lead to significant damage and disruption are of particular interest. In Fig-

ure 1.8, we show a similar plot to the previous but using the 90th percentile of the distribution of

33Without normalising the costs by firm size (revenues) we would simply observe the fact that larger sectors have
higher costs.
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Sector Revenues Costs (all) Costs (non-mal) Costs (mal) IT Spending

Accommodation and Food (AFS) 1,512.75 1.58 3.99 0.43 38.12
Admin., Support, WM (ASW) 659.86 0.65 0.62 0.36 30.48
Agriculture (AGR) 82.74 0.01 0.00 0.01 2.53
Arts and Entertainment (AE) 112.11 0.59 0.10 0.52 3.49
Construction (CON) 39.18 0.65 0.82 0.20 0.69
Educational Services (ED) 725.13 0.24 0.41 0.27 29.50
Finance and Insurance (FI) 21,362.75 5.52 7.69 4.18 1,288.88
Health Care (HC) 920.09 2.68 4.72 0.71 33.18
Information (ICT) 21,735.79 20.49 21.06 12.49 1,000.99
Manufacturing (MAN) 14,483.91 8.56 7.56 3.55 1,081.79
Mining (MQO) 1,621.28 2.45 0.05 7.00 28.53
Other Services (OTH) 31.73 0.04 0.03 0.06 1.15
Professional, Sci. and Tech. (PST) 388.15 0.97 0.36 3.76 15.09
Real Estate (RRL) 953.15 4.16 5.17 3.26 36.40
Retail Trade (RT) 33,325.43 12.70 1.74 27.63 1,344.87
Transportation and Warehousing (TW) 13,208.20 1.69 3.16 0.21 724.57
Utilities (UT) 1,892.43 1.37 1.04 1.69 40.14
Wholesale Trade (WT) 1,726.54 1.84 1.58 2.55 34.16

Total 6,376.73 3.88 3.34 3.83 318.59

Notes: The table summarises revenues, costs and IT spending across sectors. Revenues in the first column denote the
average revenue of a firm within each sector. The three cost columns report the average annual cost of cyber incidents
incurred by firms in the Advisen database. We remove outliers using the interquartile range method. We report the
average for all incidents in the second column and then distinguish between non-malicious and malicious incidents in
the third and fourth columns. The final column reports the implied total IT spending by sector (Revenues × IW500
measure). All figures are expressed in millions of US dollars. Sector abbreviations are denoted in parenthesis next to
the sector.

Table 1.5: Summary of costs and spending by sector

costs across each sector for malicious and non malicious events. First we note a similar relation-

ship, higher spending is associated with lower costs per unit of revenue at the 90th percentile. The

estimated regression lines (in red) are similar. Finance and Insurance, Transportation and Ware-

housing and Manufacturing are some of the highest spenders as a percentage of revenue and appear

to benefit from a reduction in relative costs at the mean and at the 90th percentile.

We next look at the difference between spending and costs at firm level. Figure A.1.6 in the
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Notes: The panel on the left hand side shows the logarithm of the 90th percentile annual costs for malicious incidents
by sector normalised by the average revenues for firms within that sector on the y-axis. On the x-axis, we plot the
spending as a percentage of revenues. The panel on the right hand side shows the logarithm of the 90th percentile for
non-malicious incidents by sector normalised by the average revenues for firms within that sector on the y-axis. On
the x-axis, we plot the spending as a percentage of revenues.

Figure 1.8: Spending in IT relative to optimal and costs of cyber events per unit of revenue (90th
percentile).

appendix shows the histogram of the difference in percentage of revenues spent on IT and the

annual costs of cyber incidents as a percentage of revenues. The bulk of observations are cen-

tered around 0, indicating that spending and costs are approximately similar, as also noted by

Romanosky (2016). However, we observe a longer left tail that point to the annual cost of cyber

incidents sometimes exceeding investment in IT, and occasionally quite significantly. Of course,

firms would not expect cyber incidents of such nature to occur with certainty every year and thus

the optimal investment requires some balance over time. This leaves open the question of the

optimal amount that firms should invest into IT security. The seminal work of Gordon and Loeb

(2002) suggest that this should be where the marginal benefit of investment (reduction in costs) is

equal to the marginal cost (dollars invested). Such work requires consideration of the distribution

of cyber losses for firms and how to incorporate external information from databases similar to the
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one used within this analysis. We leave this issue for future research.

Dependent Variable: Log(Cost)

Regressor I II III IV V

log(Firm size)
0.228***

(0.0232)

0.228***

(0.0232)

0.228***

(0.0197)

0.228***

(0.0197)

0.230***

(0.0190)

Connections
0.0159

(0.0101)

0.0159

(0.0101)

0.0245***

(0.00679)

0.0245***

(0.00679)

0.0251***

(0.00708)

Malicious
-1.12***

(0.350)

-1.12***

(0.350)

-1.02***

(0.288)

-1.02***

(0.288)

IT spending
-29.2

(30.5)

-29.2

(30.5)

IT spending lag
-41.3*

(22.6)

-41.3*

(22.6)

-35.6*

(21.5)

IT spending lag × Malicious
-22.9***

(7.69)

Share of cloud
0.0217

(0.158)

-1.13***

(0.135)

-1.13***

(0.128)

Share of digital
-0.286

(0.188)

1.34***

(0.152)

1.37***

(0.153)

Year Fixed Effects Y Y Y Y Y

Sector Fixed Effects Y Y Y Y Y

Case Type Fixed Effects Y Y Y Y Y

R2 0.2 0.2 0.2 0.2 0.21

N 2611 2611 2953 2953 2953

Notes: Results from estimating equation (1.1). *, ** and *** denote significance at the 10, 5 and 1 percent level,
respectively. All standard errors (reported in parentheses) are clustered by sector to account for the correlation in the
sector-level variables. Firm size refers to the firm revenues; Share of digital is the percentage of firms per sector that
keep more than 50% of information stored in digital format; Share of cloud is the percentage of firms per sector that
keep more than 50% of their data in a dedicated cloud storage. IT spending denotes the percentage of revenue spent
on IT within each sector per year.

Table 1.6: Regressions including the sector level cloud and digital storage variables

We attempt to identify if there is a significant effect of IT investment on reducing the costs of
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a cyber incident.34 We match our IW500 spending data with the sector and years of observations

available in our sample. Data on spending ranges from 2002-2013 therefore we drop observations

beyond 2013. We then include the level of spending as a variable in our regression. Table 1.6

displays the results. In columns I and II we match the spending year with the year in which

the incident occurred. In III, IV, and V we match the year in which the incident with the lag of

spending.35

The regressions using the contemporaneous spending measure indicate no effect of spending

on the costs of cyber incidents. However, when including the lag there is a negative impact (i.e.,

mitigating effect). The magnitude of the estimate suggests that a 1% increase in IT spending is

correlated with a decrease of 34% in costs the subsequent year. This is an important result and also

echoes that of Roner et al. (2021). IT investments can take time to mature and the benefits may not

be observed immediately, e.g. investment in staff training does not pay dividends until staff have

acquired sufficient knowledge.

1.7 Conclusions

The digital revolution has increased the interconnectivity and complexity of the economic system.

The use of technology and internet have improved firms’ productivity, but also exposes them to

cyber attacks. Moreover, the greater use of cloud services exposes further important economic

sectors to common risks.

Despite the large and growing exposure to cyber risks, cyber costs are difficult to quantify.

Using a unique database at the firm level for the US, we document the characteristics of cyber

incidents and help quantify cyber risk. The average cost of cyber events has increased over the last

34Using UK based data Roner et al. (2021) show that investments in IT security lead to a reduction in the amount
of a loss from a cyber incident.

35Here we gain observations from 2014 and lose those from 2002, hence the changing sample size in the regressions.

50



decade. These costs are higher for larger firms and more connected events, and relatively lower

for cyber events with malicious intent (cyber attacks), but only if the attack is not conducted on a

large scale: malicious events can be more costly in the upper tail of the distribution.

The financial sector experiences the highest number of cyber incidents (especially of a mali-

cious type, privacy and lost data incidents). However, banks and insurance companies incur more

limited losses relative to other sectors, likely due to the effects of regulation and higher investment

in cyber security.

We document that developing technological skills helps firms mitigate the costs of cyber inci-

dents, as does more reliance on cloud services. This last result should be taken with caution and

qualified. As cloud connectivity increases and cloud providers become systemically important,

cloud dependence is also likely to increase tail risks.

Finally, we document some evidence on the effect that spending on IT has on the costs of cyber

incidents. We observe a negative relationship between spending in IT and the cost of cyber-events.

This result provides some evidence of the ”unobserved” return on investment into IT and security

and may encourage firms that are reluctant to invest into IT, as the returns on additional expendi-

tures are hard to measure. While our analysis does not account for the systemic implications of

failures in specific critical sectors, the results can inform policymakers as to where to direct their

attention in order to improve the economy’s overall cyber resilience.
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CHAPTER 2

OPERATIONAL AND CYBER RISK IN THE FINANCIAL SECTOR

2.1 Introduction

Operational risk emerged as a distinct risk category in the mid 1990s, following events such as

the Nick Leeson’s “rogue” trader case at Barings bank. Not long after, the Basel II standards

introduced operational risk capital requirements, with operational risk defined as “the risk of losses

resulting from inadequate or failed internal processes, people, systems or from external events”

(Basel Committee on Banking Supervision (2003)).1

Measuring and understanding operational risk is critical for both banks and public authorities.

Operational risk currently represents a significant portion of banks’ risk-weighted assets, second

only to credit risk.2 Regulators, central banks and international organisations, in turn, place the

understanding and mitigation of operational risk – and subcomponents such as cyber risk – high in

their agendas. While banks use internal data to determine their regulatory capital, there is limited

work to identify the relationship between operational risk and the macroeconomic and supervisory

environments – especially in an international context. Accordingly, policy discussions on the topic

at the wider macroeconomic level tend to lack substantial empirical grounding. The prevalence of

work-from-home arrangements in the wake of the Covid-19 pandemic only heightens the need to

quantify and understand operational and cyber risks for financial institutions.

In this paper, we contribute to filling this gap by analysing a unique cross-country dataset of

1Before Basel II, losses stemming from operational risks were covered by capital provisions set aside from credit
and market risk.

2Up to 40% of risk-weighted assets can be attributed to operational risk in some jurisdictions (Sands et al. (2018)).
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operational losses. We present stylised facts on the evolution of operational losses since 2002;

compute operational risk capital through different methods; use proportional hazards models to

study the lag between occurrence, discovery and recognition of operational loss events; and link

losses to the macroeconomic and supervisory environment. Finally, we construct a proxy for cyber

losses using the event type categorisation of Basel II, document their evolution and compute an

estimate of “cyber risk capital”.

We use data at the loss event level from ORX, a consortium of financial institutions. The con-

sortium was founded by banks with the aim of sharing operational loss risk data in an anonymised

fashion in order to benchmark operational risk models. The sample we use contains over 500,000

operational loss events from 2002 until end-2016 for a group of 74 large banks across the globe.

This makes our paper the most comprehensive in terms of its time series and, especially, cross-

country coverage.

We document that, after a notable increase post-Great Financial Crisis (GFC), banks’ opera-

tional risk losses have shown signs of decline since 2015. One category in particular is responsible

for this pattern, namely “Clients, Products & Business Practices”. It includes improper business

practices like fiduciary breaches, aggressive sales, breaches of privacy, account churning and mis-

use of confidential information. These are the types of operational risks that characterise periods

of financial excess, with mis-selling of mortgage-backed securities in the mid-2000s being a prime

example. Towards the peak of the GFC there was a significant increase in the occurrence of this

type of events (especially in North America), which were then recognised in the books of banks a

few years later. Importantly, this pattern is observed only in terms of loss amounts and not in terms

of frequency of occurrence.

Operational losses are characterised by a fat-tailed distribution.3 Accordingly, estimates of

3In other words, there are a large number of inconsequential events from a cost perspective and a limited number
of very costly events. The latter group in particular complicates the quantification of operational risks, as such low
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operational risk capital can lead to notably different results depending on the method used and how

well it captures what happens at extreme values of the distribution of operational losses. Indeed,

our estimates for operational risk capital using methodologies from the Advanced Measurement

Approach (AMA) range from 1% to 7.5% of gross income, against the 12% benchmark of the Basic

Indicator Approach. This finding may provide some support for the new regulatory framework that

proposes the adoption of the Standardised Measurement Approach (SMA) for all banks. This has

two practical effects. First, it reduces heterogeneity in the application of different AMAs and the

need for regulators to validate these models. Second, it simplifies the regulation, while at the same

time preserving capital adequacy to cover operational risks.4

Operational losses, on average, take over a year to be discovered an recognised in banks’ books.

The time between occurrence, discovery and recognition, however, varies across event types, bank

size and jurisdictions. From our summary statistics of duration times, we see that Internal fraud and

Clients and business practices are the incidents that, on average, take the longest to be discovered

and eventually accounted for. Two facts could explain this. First, perpetrators of internal fraud do

their best to cover their tracks such that the event goes unnoticed for longer. Second, “business

practices” events are often settled through lengthy legal proceedings that delay loss recognition.

Large banks, in turn, tend to be slower in discovering and recognising operational losses in their

books. Finally, we also find substantial heterogeneity across jurisdictions: banks in North America

are the quickest to discover losses, whereas those in Eastern Europe are the slowest. Different

approaches to regulation and supervision across jurisdictions may play a role in these results, and

we note that a strengthening of quality in supervision is associated with shorter duration times.

frequency/high severity events are often cited as being “one-in-a-hundred years” events.
4That being said, it should be noted that the SMA may not entirely reduce the heterogeneity across estimates.

Regulators across jurisdictions will have the option to apply a loss component to the calculation of the capital ratio,
which, if applied, will rely on calculations based on previous losses. Thus, estimates across banks may still vary based
on their internal historical losses.
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These findings can inform policy discussions regarding the principles for executive compensation

packages.

The stylised facts we present point to the existence of a link between operational losses and

macroeconomic conditions. Abdymomunov et al. (2017) use data for US banks to document a

contemporaneous correlation between macroeconomic conditions and operational risk losses, e.g.

operational losses rise during economic downturns. We build on this idea and use a cross-country

panel analysis to argue that the ultimate cause of the rising losses during economic downturns lies

in the excesses characterising the run-up to the downturn. In other words, favourable conditions

during periods of macroeconomic expansion and financial exuberance lead to the occurrence of

events that are only discovered when the economic tide turns, and recognised in the books of

banks even later.

Using deviations of policy rates from Taylor-rule implied benchmarks, we show that periods of

accommodative monetary policy are followed by an increase in operational losses. This appears to

be driven by the frequency rather than the severity of events. Periods of excessively accommodative

monetary policy can lead to increased risk-taking by banks, which can boost the type of improper

business practices that account for the lion’s share of operational losses. Finally, in line with the

work of De Nicolò and Lucchetta (2013), who find that banks in a higher competition environment

increase monitoring efforts and reduce risks, and with Kim (2018) who finds that banks with lower

market power take less liquidity risk, we find that periods of intense bank competition are also

associated with lower operational losses.

Regulation can also play a role in moderating operational losses. The time pattern of losses

stemming from internal fraud and improper business practices suggests that the quality of regu-

lation and supervision can also be related to operational losses in the cross-section of countries.

Indeed, we find that better regulation and supervision – as captured by the financial reform index
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of Abiad et al. (2010) and Denk and Gomes (2017) – is associated with lower operational losses.

Finally, we provide estimates of cyber losses. Growing interconnectedness and reliance on

technology has led to a growing focus and concerns regarding cyber and IT-related risks. These

are most prominent for the financial system, given its critical role. We use the data to construct a

proxy range of cyber losses (which are a subset of operational losses). We document that cyber

losses, so far, represent a relatively small share of operational losses. In recent years, however,

losses from cyber events saw a spike which aligns with the growing attention cyber risk has been

receiving. Despite representing a relatively small share of operational losses, cyber risk capital can

account for up to a third of total operational value-at-risk.

The paper is organised as follows. The next section reviews the related literature. Section 2.3

describes the data and documents the duration between occurrence, discovery and recognition of

loss events. Section 2.4 uses the analytic and loss distribution approaches to estimate operational

value-at-risk. The link between operational losses and the macroeconomic environment is the

focus of Section 2.5, whereas Section 2.6 presents our estimate of cyber risks, a very important

class of emerging risks in the financial sector. The last section discusses the main conclusions.

2.2 Related Literature

Research on operational risk intensified after 2001, when the BCBS introduced an amendment to

the Basel Capital Accord to support operational risk with regulatory capital. Early work on the sub-

ject focused on issues related to how to conceptualise and quantify these risks (Power (2005), Cor-

nalba and Giudici (2004), Chavez-Demoulin et al. (2006), Antonini et al. (2009), Jarrow (2008)).

The literature points to links between the characteristics of financial institutions and operational

risk. Shih et al. (2000) and Curti et al. (2019b) find a positive relationship between size and

operational losses. Chernobai et al. (2011) uses data for US financial institutions and finds that
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most operational losses can be traced to a breakdown of internal controls. Firms suffering from

these losses tend to be younger and more complex, and have higher credit risk, more anti-takeover

provisions, and CEOs with higher stock option holdings and bonuses relative to salary. Operational

losses can also pose risks for the financial system at large (i.e. systemic risks). Berger et al. (2018)

find that operational risk at large US bank-holding companies is statistically and economically

positively linked to standard measures of bank systemic risk.

Fraud and employee misconduct have contributed to operational losses and have come under

scrutiny from regulators, often resulting in sizeable financial penalties. This can also affect bank

returns (Byrne et al., 2017; Köster and Pelster, 2017).5 Altunbaş et al. (2018) find that banks are

more likely to engage in misconduct when their CEOs have a long tenure. Eshraghi et al. (2015)

study regulatory enforcement actions issued against US banks to show that both board monitoring

and advising are effective in preventing misconduct by banks. Fich and Shivdasani (2007) study

whether external directors suffer reputational penalties if the firms they serve on were accused of

financial fraud.

Operational risk could also be intertwined with business and financial cycles. Carrivick and

Cope (2013) and Hess (2011) look at the consequences of the GFC on operational risk losses in the

financial sector. Abdymomunov et al. (2017) provide additional evidence of a relationship between

operational losses in US banks and macroeconomic conditions. We build on this literature and in-

vestigate why such relationships are observed. Sakalauskaite (2018) shows that banks’ misconduct

has been relevant over our sample period and that its intensity correlates with the business cycle.

Interestingly, the study finds that misconduct initiation is related to bank remuneration schemes,

increasing with CEO bonuses in periods of high economic growth and when bank leverage is high.

Growing concerns around the economic and social impact of cyber risk in financial institutions

5A related strand of literature investigates the link between operational losses and bank returns (Biell and Muller,
2013; Sturm, 2013; Gillet et al., 2010; Cummins et al., 2006; Allen and Bali, 2007).
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contrasts with a relatively thin literature in the topic. Data on cyber incidents are scarce and thus

quantitative analyses on the impact of cyber events is challenging. The absence of common agreed

standards to record such events further complicates the analysis.6 We devise a proxy for cyber-

related incidents from the categorisation of different event types. Kopp et al. (2017) examines the

current regulatory framework and supervisory approaches, and identifies information asymmetries

and other inefficiencies that hamper the detection and management of systemic cyber risk. Kashyap

and Wetherilt (2019) outline some principles for regulators to consider when regulating cyber risk

in the financial sector. From a perspective of the wider economy, Romanosky (2016) analyse the

characteristics of cyber incidents across different sectors.

Bouveret (2018) estimates that average losses due to cyber-attacks could amount to USD 97

billion or 9 percent of banks net income. Duffie and Younger (2019) analyse a sample of 12

systemically important U.S. financial institutions and suggest that these firms have sufficient stocks

of high quality liquid assets to cover wholesale funding run-offs in a relatively extreme cyber event.

However, Eisenbach et al. (2021) estimate that the impairment of any of the five most active U.S.

banks could result in significant spillovers to other banks, with 38 percent of the network affected

on average.

2.3 Data

2.3.1 Operational loss data

Our analysis is based on a database that collects operational losses reported by financial firms

across the globe. The data are owned and managed by ORX, the largest operational risk association

in the financial services sector. The association, established in 2002, is primarily a platform for

6Facchinetti et al. (2019) propose ordinal measures to evaluate cyber risk in the presence of lack of data regarding
the severity of such events.
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the secure and anonymous exchange of high-quality operational risk loss data, with the objective

of improving the management and measurement of operational risk.7

Data on losses are submitted to ORX on a voluntary basis. Data are anonymised, so as to

protect the identity of the institution which suffered the loss. This process removes the incentive

for members to under-report their losses, a problem which affects public databases.8 However,

this comes at the cost of making the analysis of individual institutions more complicated (Ames

et al., 2015). The full sample comprises over 700,000 observations of operational loss events

occurring between Q1 2002 and Q3 2018. We will work predominantly with a sample of 521,082

incidents which is obtained after combining individual loss data with region and bank size data and

truncating our data at Q4 2016, the reason for which we outline below. This is still considerably

larger than other available data-sets on operational risk and has the added appeal – relative to

detailed data-sets at the country level such as the one available to U.S. regulators – that it includes

a cross-section of countries over a large period. Our sample size is substantially larger than in

vendor data-sets reported by Algo FIRST and SAS OpRisk Global Data, which are commonly

used in the literature. For example, Chernobai et al. (2011) use the sample of data with 2,426 loss

event reported by the Algo FIRST dataset. Hess (2011) uses data reported by SAS OpRisk Global

Data with around 7,300 loss events from the banking industry. Cope et al. (2012) also use the ORX

Global Loss Data Database, which at the time had approximately 180,000 loss events.

Members report losses based on the operational risk reporting standards established by ORX.

These standards follow the event type and business line classification defined in the operational risk

framework of the BCBS.9 To be included in the data, operational events need to have an associated

7For details on the ORX consortium, see: https://managingrisktogether.orx.org/about.
8Furthermore, as the ORX consortium was set-up by financial institutions themselves, it would run counter to the

very initiative of being part of the consortium to under- or mis-report data.
9For details on the ORX reporting standards, see: https://managingrisktogether.orx.org/standards. For the BCBS

classification, see: https://www.bis.org/basel framework/chapter/OPE/30.htm.
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monetary cost reflected in the books of the banks, above a minimum of EUR 20,000. After data

anonymisation by ORX, individual losses can only be identified by geography, business line and

event type. Table 2.1 provides an example of how the data are structured.

RefID Region Business Line Event Type Gross Loss Amount . . . Loss Occurrence Loss Discovery

123XYZ Asia/Pacific BL0101 EL0101 20000 . . . ddmmyyyy ddmmyyyy
...

...
...

...
... . . .

...
...

Table 2.1: Example of the data structure

Each loss event is associated with an event type category. In line with Basel II definitions, there

are seven event type (level 1) loss categories. Table 2.2 provides an overview of these categories

and their definition. They include a wide array of potential causes of operational losses, such as

internal/external fraud, disasters, improper business practices related to either clients or products,

IT related, etc. Most of our analysis will be done at the level 1 category. However, the data also

include a subdivision of each loss into level 2 event types, allowing for even more granular analysis.

We will make use of the level 2 event type information to proxy for cyber-related events in Section

2.6.

Loss events are also associated with a business line. The business line classification, which

again follows pre-specified standards, comprises nine business lines, including asset management,

clearing, retail banking and trading & sales, among others. Table B.2.1 in the Appendix provides

a detailed description. The intersection between business line and event types is important for the

calculation of operational risk capital, as discussed further in Section 2.4.

The data are also partitioned into macro-regions. These include North America, Latin America

& Caribbean, Eastern Europe, Western Europe, Asia/Pacific and Africa. For some of the regions

that are more densely populated in terms of bank coverage, a further division into sub-regions is

possible (see Table B.2.2 in the Appendix for details). While data are collected so as to preserve
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Event Type Description

Internal fraud Losses due to acts of a type intended to defraud, misappropriate property
or circumvent regulations, the law or company policy, excluding diversity/
discrimination events, which involves at least one internal party.

External fraud Losses due to acts of a type intended to defraud, misappropriate property
or circumvent the law, by a third-party

Employee related Losses arising from acts inconsistent with employment, health or safety
laws or agreements, from payment of personal injury claims, or from diver-
sity / discrimination events

Clients, products and business prac-
tices

Losses arising from an unintentional or negligent failure to meet a pro-
fessional obligation to specific clients (including fiduciary and suitability
requirements), or from the nature or design of a product.

Disasters Losses arising from disruption of business or system failures.

Technology and infrastructure System failures (hardware or software), disruption in telecommunication,
and power failure can all result in interrupted business and financial loss.

Transactions and processing Losses from failed transaction processing or process management, from
relations with trade counterparties and vendors.

Notes: The definitions of event types used by ORX are mapped to those used under the Basel II framework.

Table 2.2: Overview of event types based on the operational risk reporting standards of ORX

bank anonymity, each loss event has a tag for bank size. This indicator variable divides financial

institutions based on income into large, medium and small.

Finally, each loss event has three associated dates. The date of occurrence captures the date

when the loss event was deemed to have taken place. The date of discovery captures the point in

time at which staff became aware of the event that lead to the operational loss. Finally, the date

of recognition represents the date when the loss was recorded in the accounts of the bank. Figure

2.1 depicts the timeline of a loss. We explore the factors that determine the duration of losses in

Section 2.3.4. However, this also brings us to an important juncture regarding completeness of the

data, which we discuss next.
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Date of Occurrence

Date of Discovery

Date of Recognition

t1 t2

t3

Figure 2.1: Loss timeline and key dates

2.3.2 Data bias and completeness

Given how data are collected, it is necessary to perform some adjustments to ensure that losses are

comparable through time, especially when presenting aggregate figures. In particular, this refers

to changes in the composition of the consortium membership and differences in the degree of

completeness of the data across periods.

Figure B.2.1 in the online annex reports the evolution of the ORX consortium, in terms of total

income and frequency of the reported losses. The number of banks in the consortium has grown

over time, which could bias assessments of the evolution of operational losses when aggregating

them over time. To account for this trend, when making comparisons over time, we divide gross

losses and the frequency of events by the total income of the banks in the consortium for the given

period. This adjusts for the growing number of banks in the sample, but also for their size. This

second point is important, as simply dividing by the number of banks in the sample would fail to

capture potential heterogeneity in banks’ size.

In addition, Carrivick and Cope (2013) (herein CC) note that some losses are not reported to the

consortium until long after the event has occurred. This is not related to wilful under-reporting of

events, but is merely an artifact of the time it takes for events to be discovered and recognised. For

example, legal proceedings can continue for years before a settlement is made. This is quite typical
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for event types that include employment practices and workplace safety, and clients, products and

business practices (see Section 2.3.4). While this issue affects in principle the whole sample (i.e.

one cannot rule out that an event in, say, 2004, is yet to be discovered and recognised), it bites

especially at the most recent end of the database. CC construct an approximate bias factor, which

estimates the proportion of events that are unobserved in the data and use this to correct for the

recent end of the sample. An alternative to this approach is to truncate the portion of the data that

is most affected – a choice that can be underpinned by an analysis of how long it takes on average

for events to be discovered and recognised in the books of banks. We follow this approach and in

what follows consider observations until year end of 2016. We address this issue and our approach

in more detail in Section 2.3.4.10

2.3.3 Additional data

For the analysis of the link between operational losses, macroeconomic conditions and regulatory

characteristics, we complement the operational risk data with data from a variety of sources.

We proxy for the build-up of financial imbalances by using credit-to-GDP gap data from the

Bank for International Settlements.11 We obtain quarterly data for the credit-to-GDP gap across

various regions from 2002Q1 until 2016Q4.

To capture competition in the banking sector, we use the Boone indicator (Boone, 2008), re-

trieved from the World Bank.12 This measure proxies bank competition by the elasticity of profits

to marginal costs. The elasticity is calculated by regressing the logarithm of profits on the loga-

rithm of marginal costs.13 The indicator is based on the premise that higher profits are achieved by

10In unreported results, available upon request, we also compute bias factors as in CC, and also confirm with
aggregate data until December 2021 that the our choice of truncation gets rid of the period with the most pervasive
under-reporting.

11See https://www.bis.org/statistics/c gaps.htm.
12See https://datacatalog.worldbank.org/boone-indicator.
13The estimates of the Boone indicator in this database are based on the approach used by Čihák and Schaeck
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more efficient banks, thus a more negative Boone indicator implies a higher degree of competition.

We obtain annual data on the Boone indicator between 2002 and 2014 for various regions.

To measure the stance of monetary policy we use deviations of monetary policy rates from

implied rates based on country-specific Taylor rules. The measure is constructed by subtracting

the implied policy rate by the Taylor rule from the actual policy rate:

ϕ̃t = it − ϕt (2.1)

where it is the observed policy rate, ϕt denotes the rate implied by the Taylor rule, and ϕ̃ denotes

the deviation of the actual rate from the implied one. Central bank policy rates are sourced from

the Bank for International Settlements and the implied Taylor rule rates are computed following

Bogdanova and Hofmann (2012):

ϕ = r∗ + π∗ + 1.5(π − π∗) + 0.5y (2.2)

where, π denotes inflation, y captures the output gap, π∗ is the inflation target and r∗ is the

long-run level of the real interest rate. We use quarterly data on deviations from the Taylor rule

across various regions from 2002Q1 until 2016Q4.

Finally, to assess regulation and supervision in the cross-section of countries, we use an index

of regulation and bank supervision, originally presented in Abiad et al. (2010) and extended in

Denk and Gomes (2017). The full data-set is used to construct a measure of financial reforms

across countries. To do so, various indicators are aggregated into a single index calculated as the

simple average of the following seven dimensions: credit controls, interest rate controls, banking

sector entry barriers, capital account controls, state ownership of banks, regulation of securities

(2010), but use marginal costs rather than average costs.
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markets, and prudential regulation and bank supervision. The main variable of interest in our work

is the measure of regulation and supervision. This variable takes into account the following four

factors, i) Has a country adopted a capital adequacy ratio based on the latest Basel standard?; ii)

Is the banking supervisory agency independent from executives’ influence?; iii) Does the banking

supervisory agency conduct effective supervision through on-site and off-site examinations? ; and,

iv) Does a country’s banking supervisory agency cover all financial institutions without exception?

We use these questions to calculate an index at the regional level to be matched with the ORX

data (an example of how this is done can be found in Section 2.5). The index runs from 0 to 1,

whereby a score of 0 indicates a repressed regulatory and supervisory framework and a score of

1 a well-developed and liberalised framework. The series is provided annually from 2002 up to

2015. For further details, we refer the reader to Denk and Gomes (2017).

For each of these variables, we construct composite measures by weighting based on the banks

in the sample.14 For example and to fix ideas using the case of credit gaps, if the region Western

Europe were made up of two UK banks, three German banks and four French banks, we would

compute the statistic for the region as follows:

CreditGapWE =
2× CreditGapUK + 3× CreditGapDE + 4× CreditGapFR

9

Against the background of limited data to underpin discussions of operational risk in the finan-

cial sector, we start by presenting stylised facts.

Table 2.3 displays summary statistics of operational risk losses by event type, region and bank

size. A general observation is the large standard deviations in the data, an indicator of the heavy

14While we cannot associate a specific loss with any given bank, we know which banks comprise the sample at any
given point in time.
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tailed nature of the distribution of the data. From the perspective of event types (Panel A), on

average the most costly events come from ”Clients, products and business practices”, which also

contains the incident with the largest loss in the database. These types of events are ”big ticket”

items and, as we will see, are a common feature of losses stemming from the GFC. The largest

losses tend to occur in Western Europe and North America (Panel B). Finally, the largest losses

also appear to occur at larger banks, followed by small banks (Panel C).

Mean Std. Dev. Max Min

Panel A: By Event Type

Internal fraud (EL01) 829,092 31,785,312 4,056,523,958 20,000

External Fraud (EL02) 148,384 2,537,026 500,000,000 20,000

Employee related (EL03) 121,266 1,075,761 174,382,494 20,000

Clients, products & business practices (EL04) 2,263,937 104,938,864 23,705,540,000 20,000

Disasters (EL05) 241,954 4,454,072 402,538,834 20,000

Technology and infrastructure (EL06) 623,200 21,597,528 2,224,579,168 20,000

Transactions and processing (EL07) 375,694 6,901,914 1,444,000,321 20,000

Panel B: By Region

Africa 284,169 5,650,503 470,874,828 20,000

Asia / Pacific 491,863 7,202,508 814,464,293 20,000

Eastern Europe 498,447 6,782,258 500,000,000 20,000

Latin America & Caribbean 96,859 780,985 123,198,198 20,000

North America 990,052 59,807,389 20,180,094,936 20,000

Western Europe 747,111 54,789,230 23,705,540,000 20,000

Panel C: By Size

Large 674,064 55,400,088 23,705,540,000 20,000

Medium 391,835 7,708,470 947,475,504 20,000

Small 519,024 15,605,569 2,744,201,136 20,000

Notes: The table presents summary statistics of losses by various categorisations. The summary statistics are based
on 609,854 observations in total. We report information on the mean, standard deviation, maximum and minimum.
Figures are in Euros.

Table 2.3: Summary statistics of loss events by categories
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In Figure 2.2 we present evolution of the annual value and frequency where each year of losses

is partitioned by event type (normalised by income, as per the discussion above). In terms of

Date of Occurrence (upper panels), Clients, products and business practices clearly dominate in

terms of loss amounts and featured heavily through the Great Financial Crisis. Transactions and

process management in turn dominate in terms of frequency. This is consistent with the former

being a high severity item, largely attributable to fines and regulatory actions, and the latter a high-

frequency item, arising from thousands of daily operations taking place in banks. Contrasting the

upper panels with the lower panels, which aggregate data based on the Date of Recognition, there

is some initial evidence of a visible lag in the accumulation of losses. In the upper left panel, the

peak arrives at around 2008 at the time of the GFC, whereas in the lower left panel the peak is

in 2011. This lag is indicative of the fact that many losses in the Clients, products and business

practices category face protracted legal proceedings before they are eventually settled and reflected

in the accounts of the bank.

Figure 2.3 focuses on a geographic breakdown of loss events. North America and Western

Europe clearly dominate in terms of the value of the losses. This is where the majority of the

worlds’ largest banks are headquartered, which were particularly affected by the events leading up

to, and after, the GFC.

Figure B.2.2 in the appendix shows the losses and frequency but normalised by the income

level of the bank (large, medium and small). The frequency of events tends to be quite stable

across bank sizes. In terms of gross losses, there is much more variability, in particular in larger

banks. Moreover, a large proportion of the losses that were realised around the crisis period can

be attributed to large banks. This is in line with the increased scrutiny of large banks (including

domestic and global systemically important banks – DSIBs and GSIBs respectively) for their role

in events alleged to have taken place in the run-up to the crisis, such as the Libor scandal and the
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Figure 2.2: Loss and frequency of operational losses by event type

mis-selling of mortgage-backed securities.

2.3.4 How long does it take for discovery and recognition of losses?

The time it takes for a loss to be discovered, reported and finally accounted for in banks’ books

can reveal important information regarding operational risks. Operational risk data suffers from an

under-reporting bias, especially acute in more recent periods (Carrivick and Cope, 2013). That is,

some events may have occurred but due to the fact they are not discovered or settled and accounted
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Figure 2.3: Loss and frequency of operational losses by event type

for, they are not observed in the database. Examples of such ‘unobserved’ incidents could be

fraudulent activities that were well hidden by the perpetrator. In other cases, legal proceedings can

take time to reach a settlement. The quantification of these lags is particularly relevant for CEO

compensation and provides support for the introduction of the FSB’s Principles and Standards on

Sound Compensation (Cerasi et al., 2020). We follow up on this aspect below.

We study the duration of the three intervals defined in Figure 2.1, namely t1 = discovery −

occurrence, t2 = recognition− discovery, and t3 = t1 + t2 = recognition− occurrence. The
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average duration of the three time intervals varies across different dimensions. Table B.2.3 in the

appendix provides summary statistics for the duration of events by different categories.

In Panel A we show the breakdown by event types. Internal fraud and Clients and business

practices are the incidents that, on average, take the longest to be discovered and eventually ac-

counted for. This result is intuitive, as inside actors are likely to take steps to hide their illegal acts,

which may be unearthed only when pressure from management and regulators intensifies. It is

worth noting that t1 and t3 have a long tailed distribution: many incidents were discovered quickly,

but a few extraordinary events which took a long time to be discovered and accounted for lead to

a skew of the distribution. This is evident by the median often being well below the mean, as well

as the high 95th quantile.

Panel B shows a summary by region. Regional differences could be driven by different reg-

ulatory approaches towards operational risk. This is more likely to manifest itself through Pillar

II of the Basel capital framework, which leaves more room for supervisory discretion (i.e. how

frequently are on-site inspections conducted, how efficiently is the supervisor communicating with

banks). Moreover, different legal systems also affect the time to the booking of the loss in the

bank’s balance sheet. For example, on average, losses in North America are discovered more

quickly than in Western Europe, possibly due to more pressure from supervisors and more di-

rect supervision on operational loss problems after the GFC. However, on average, the time from

discovery to recognition (t2) is longer in North America than Western Europe, which may be an

indication that the legal proceedings in North America are more protracted than those in Western

Europe. Furthermore, banks of different size could face varying degrees of attention and scrutiny

from regulators due to their different contribution to systemic risk. Panel C shows that, on average,

larger banks face a longer duration of incidents.
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Size of the data bias. As previously mentioned, the time to discovery and recognition has con-

sequences for the completeness of the data reported. To obtain a proxy of how large the under-

reporting bias might be, we can use the survival curve of the duration of time from occurrence to

recognition. Since we focus on heterogeneity across regions in our regressions in Section 2.5, we

look at the size of the bias by region. In Figure B.2.4 we show the survival probability by region by

estimating the Kaplan-Meier curve from occurrence to recognition (t3). This survival probability

can be best interpreted as the probability of an event being accounted for after occurring. Estimat-

ing the Kaplan-Meier survival curve suggests that, depending on the region, there is approximately

between 8-25% chance that an event is still unaccounted for after two years. To illustrate, Northern

Europe, if an event took place in a bank in Northern Europe on the 1st January 2017, we estimate

there is around 8% chance it has still not been accounted for in the books of the firm by 1st of

January 2019. As the curve in Figure B.2.4 shows, this probability wanes over time.

To assess the implications of this for our data, we need to work backwards. Our granular loss

data are in principle available until 2018Q3. Periods closer to this date will be associated with a

higher incidence of events that have not been accounted for. By using the estimate of the survival

curve, we can produce an approximate factor by which our sample could be biased. In Figure

B.2.5 we show the bias factor proposed by Carrivick and Cope (2013), split by region. In the most

recent year of the sample, the data could be underrepresented by around 30-100%, dependent on

the region. We can apply this factor to our data by region to obtain an estimate of where the trend

in frequency and losses should lie. In Figure B.2.6 we show how the annual trends in different

regions might look with the correction factor.

Two approaches could remedy this problem. First, one could truncate the data to remove the

years most affected by the bias. Regardless of where the database is truncated, there will be an

under-reporting bias across all years, but by removing the most recent years we truncate the part of
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the sample when the bias is most pervasive. Alternatively, one could use the bias factor to adjust

the time series. This is not without its shortcomings, however. First, applying the correction factor

may still underestimate or overestimate the actual size of unobserved losses. Moreover, it only

tells us approximately how many incidents are unobserved but not much about the distribution of

the losses associated with them in monetary terms. In light of this, in the next sections we opt for

truncating the most recent 7 quarters of data such that the series ends at 2016Q4 (included). In

this way we remove the years that are likely to misrepresent the actual losses and frequency. To

maintain comparability across regressions we avoid using the correction factor.

The effect of supervision. Differences in the implementation of the Basel framework across

regions could partly explain the heterogeneity in duration times in Panel A of Table B.2.3. To

investigate this, we look at the cross-regional impact of regulation and supervision of banks on

duration times, using the index of prudential regulation and bank supervision described in Section

2.3.

We model the duration of each ti, accounting for the variation across these multiple dimen-

sions, by employing a proportional hazards model as in Cox (1972). In a proportional hazards

regression model, the measure of effect is the hazard rate, which is generally interpreted as the risk

or probability of incurring the event of interest, conditional on the individual/entity of interest not

having incurred the event up to a certain time. In our application, the hazard rate of each of the

intervals can be interpreted as follows:

• λ(t1): probability of the loss being discovered at time t conditional on having occurred but

being undiscovered until time t1 − 1.

• λ(t2): probability of the loss being recognised in the books at time t, conditional on being

discovered but not accounted for until time t2 − 1.
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• λ(t3): probability of the loss being recognised in the books at time t, conditional on having

occurred and remaining unaccounted for until time t3 − 1.

For each of the intervals defined above, we estimate the following equation,

λ(ti|Xi) = λ0(t) exp(Xiβ + FE) (2.3)

where λ0(t) denotes the baseline hazard function, Xi is a vector of explanatory variables whose

effect on the hazard is captured by the β coefficients. The explanatory variable in the vector X is

our supervisory index. We include a yearly, regional, and event type fixed effects in the equation,

denoted by FE. To construct X , we assign a score from the index to each observation given the

year and the region in which it occurred. We have data on the supervisory index up until 2015, such

that naturally losses beyond 2015 will be dropped from data used for analysis (hence the portion

of our sample most affected by potential under-reporting bias is also not considered). We multiply

the supervisory index by 100 to obtain a scale of 0-100, which makes the coefficients easier to

interpret – a one unit increase in the supervisory index translates to a β̂ increase in the likelihood

of the event occurring.15 We present the results of the regression in Table 2.4.

The estimated coefficients in the Cox proportional hazards regression model denote the change

in the expected log of the hazard ratio relative to a one unit change in the independent variable,

holding all other variables constant. Our results imply that increases in the supervisory index are

associated with a rise in the likelihood of discovery and recognition of events. Focusing on the

time from occurrence to recognition (t3), a one unit increase in the supervisory index is associated

15To be clear, we do not uncover a causal relationship with this exercise. While we include various fixed effects
to take into account unobserved factors that vary across years, bank size and regions, there are variables that we are
not able to observe. For example, individual banks risk management and reporting practices. Moreover, we are not
able to rule out reverse causality in the relationship between duration times and supervision. Supervision may become
tougher if firms are lax with respect to reporting losses in a time frame deemed acceptable by supervisors.
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Dependent variable

t1 t2 t3

Regressor β̂ exp(β̂) β̂ exp(β̂) β̂ exp(β̂)

Supervisory Index
0.086***
(0.0011)

1.09
0.05***
(0.001)

1.05
0.1***

(0.0011)
1.11

Year FE Y Y Y
Region FE Y Y Y
Event Type FE Y Y Y

N 508,595 508,595 508,595

Notes: The table contains the results of estimating a proportional hazards model. The dependent variables are the
various duration measures. Standard errors are reported in parentheses. *, ** and *** denote significance at the 10, 5
and 1 percent level, respectively. We also show the exponent of the coefficient which denotes the hazard ratio.

Table 2.4: Proportional Hazard Models with Supervisory Index

with a hazard ratio 1.11 times higher than the baseline, i.e. the likelihood the event will be recog-

nised at any date. This supports the guidance issued in Financial Stability Board (2014) regarding

supervisors’ interactions with financial institutions on the subject of risk culture. The report notes

that since the GFC, supervisors are tending towards a more direct and intense approach to improve

the resilience of the financial system. Our result supports the notion that this shift in approach

should ensure that ex-post emerging risks are recognised, assessed, and addressed in a timely man-

ner. This effect takes place not only over time, but also in the cross-section of regions. Financial

institutions in regions with more effective supervisory frameworks are more likely to recognise

and address operational risks in a timely manner. We note, however, that these results should be

interpreted with caution, not least because we cannot claim a causal relationship given potential

omitted variable and reverse causality bias.
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2.4 Operational risk capital

The GFC laid bare two main shortcomings of the operational risk framework. Capital requirements

for operational risk proved insufficient to cover operational risk losses incurred by some banks.

Furthermore, the nature of these losses – covering events such as misconduct, and inadequate

systems and controls – highlighted the difficulty associated with using internal models to estimate

capital requirements for operational risk (Basel Committee on Banking Supervision, 2017).

The Basel II accord allowed three methods for calculating the capital charge assigned to op-

erational risk. These are: i) the Basic Indicator Approach (BIA); ii) the Standardised Approach

(TSA); and iii) the Advanced Measurement Approach (AMA). These methods vary in their in-

creasing sophistication and risk sensitivity. Under the BIA, banks have simply to keep at least

15% of their gross income in the form of capital, averaged over the past three years. The TSA

calculation is similar, but allows the percentage to vary according to different business lines. The

AMA allows for a more sophisticated suite of methodologies to estimate the appropriate level of

capital, often making use of historical loss data.

The approach in Basel III aims to streamline the operational risk framework. The three ap-

proaches in Basel II will be replaced with a single, risk-sensitive, standardised approach to be

used by all banks. In this section, we outline the approaches to calculate operational risk and

subsequently quantify and compare operational risk capital using the various approaches.

2.4.1 Basic indicator and standardised approaches

The simplest method that banks could use to calculate operational risk capital is the BIA. Banks

that adopt the BIA must hold capital equivalent to the average over the past three years of a fixed

percentage of gross income.16 Formally, under the BIA, operational risk capital is calculated as
16Years of negative or zero income are excluded from the calculation.
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follows,

KBIA = α
1

n

3∑︂
j=1

max(Ij, 0)

where Ij is the annual gross income, n is the number of previous years in which income is

positive (expected to be three); and α = 0.15.

Under the Basel II framework the TSA extends the BIA by adjusting the α terms for various

bank business lines (see in Table B.2.1). These are known as the β factors. Operational risk capital

per business line is then calculated as follows:

KSA =
1

3

3∑︂
j=1

max

(︄
7∑︂

k=1

βkIj,k, 0

)︄

where k denotes the business line.

2.4.1 Basel III standardised approach

The standardised approach methodology aims to converge on a risk measure that combines the sim-

plicity of the BIA and TSA, but also makes use of banks’ historical loss information. The measure

is based on the following components: (i) the Business Indicator (BI), a financial-statement-based

proxy for operational risk; (ii) the Business Indicator Component (BIC), which is calculated by

multiplying the BI by a set of regulatory determined marginal coefficients; and (iii) the Internal

Loss Multiplier (ILM), which is a scaling factor that is based on a bank’s average historical losses

and the BIC. The final capital measure is calculated as,

KSMA = BIC × ILM

where the ILM is defined as:
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ILM = ln

(︃
exp(1)− 1 +

LC

BI

)︃
and the Loss Component (LC) is calculated as the sum of seven times the average annual

loss, seven times the average annual loss for events above 10 million Euro and 5 times average

losses above 100 million Euro. The distinction in terms of various size losses aims to differenti-

ate between banks with different loss distribution tails but with similar average loss totals (Basel

Committee on Banking Supervision, 2018c).

2.4.2 Advanced measurement approaches

The AMA allows banks to use their own internal models to estimate the appropriate level of op-

erational risk capital. Banks must demonstrate to regulators the accuracy of their internal models.

Given the flexibility allowed by the AMA, the range of practices across banks has been quite broad.

In Europe, the methodological focus of most banks was on using scenario analysis, while in the

US the focus was on internal and external loss data (Cruz et al., 2015).

Three frameworks for calculating operational risk capital were proposed under the scope of

AMA: i) Internal Measurement Approach (IMA); ii) Score Card Approach; and iii) Loss Distri-

bution Approach. Below, we detail approaches i) and iii) to calculating operational risk from the

available options under the AMA. We do not look at the Score Card Approach in great detail as it

is based on subjective measures. In brief, the methodology takes a baseline level of capital which

is modified based on a qualitative ranking or scoring various risks. We calculate operational risk

capital based on an extension of the IMA and two LDA approaches, which we describe in detail in

Appendix A. Below we describe the idea behind the LDA.
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2.4.2 Loss Distribution Approach

The LDA aims to explicitly model the annual distribution of losses. In this framework, the fre-

quency and severity of losses are each independently assumed to follow a statistical distribution,

whose parameters are estimated directly from the data. The convolution of these two distributions

is then used to compute the annual distribution of losses:

Z =
N∑︂
i=1

X

where Z denotes the annual loss, N the number of annual operational incidents and X the

severity of losses. The operational risk capital is then defined as the 0.999 value-at-risk (VaR),

which is the 99.9th quantile (q) of the distribution of the annual loss:17

KLDA = VaRq = inf{z ∈ R : Pr[Z > z] ≤ 1− q}

The VaR indicates the level of risk to which a firm, a portfolio or a single position may be

exposed to over a given time period. Figure 2.4 displays an example of the distribution of annual

losses, the relevant risk measures and their location on the distribution.18

2.4.3 Evaluating operational risk measures

As noted, at present (under Basel II), a variety of methodologies can be used to calculate a banks’

operational risk capital. Under Basel III, these will be put aside in favour of a single standardised

17Basel II rules require banks to calculate their regulatory capital requirement as the sum of expected and unexpected
losses (i.e. the 99.9th percentile). However, if a bank can demonstrate that it is adequately capturing expected losses
in its internal business practices, it may base the minimum regulatory capital requirement on unexpected losses alone.

18VaR as an appropriate risk measure for capital has been challenged. Artzner et al. (1999) suggest that expected
shortfall (ES) is better suited for risk management as it provides information not only about the probability of default
but also about its severity. However, the use of VaR for capital allocation warrants justification from a regulator’s point
of view when considering minimisation of the possible shortfall and cost of capital (Cruz et al., 2015).
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Figure 2.4: Distribution of losses and risk measures

measure. Proponents of such move suggest it will simplify the framework and provide adequately

conservative measures that are not subject to gaming by participants (Tarullo, 2008; Admati, 2016).

However, others suggest that the SMA may still be flawed. It is argued that practitioners would

favour the granularity of the AMA approach, as without a clear regulatory requirement to keep

collecting loss data at a detailed level, budgets to relevant departments could be at risk (Peters

et al., 2016).

Migueis (2018) lays out some properties of an ideal approach to operational risk capital. These

include, conservatism of the measure, robustness to gaming, risk sensitivity, comparability, sta-

bility, and simplicity. In this subsection, we perform a simple exercise to evaluate the different

measures against these properties. Using a rolling window of 5 years of historical losses, we es-

timate the operational risk capital for our sample of banks based on various approaches. We then

compare these estimates against the subsequent year’s observed losses. Note that our estimates are

not to be taken as a robust measure of operational capital. The objective here is simply to com-
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pare the properties of the various estimates and we do not try to make any suggestion as to which

measure is optimal for individual banks to adopt.

In Figure 2.5, we plot the estimated operational risk capital for each year versus the observed

level of operational risk losses. We use five different measures of operational risk capital, the first

two are the Basic Indicator Approach (detailed above) and a proxy of the Standardised Measure-

ment approach.19 We then use three models taken from the AMA framework. These include an

analytical estimator proposed by Alexander (2008), a Monte Carlo approach to estimate the annual

loss distribution, denoted as the Lognormal LDA, and a Bayesian approach to estimate the annual

loss distribution, denoted as the Bayesian LDA. The details of the three approaches are contained

in the online annex, in addition to the confidence intervals of each measure, where possible (see

Figure B.2.3).

The BIA appears to be the most conservative estimate, as the observed losses never exceed

the capital suggested by this measure. The SMA closely follows, with only a few spikes in losses

exceeding the capital estimate. At the other end of the spectrum, the Lognormal LDA approach

consistently underestimates a suitable level of capital. This is most likely due to a mis-specification

of the severity distribution – the lognormal distribution fitted to the severity may not capture ef-

fectively the shape of the tail. The Bayesian LDA, which uses a generalised Pareto distribution,

appears to explore more effectively the tail of the distribution and produces more conservative es-

timates. The analytical approach is reasonably conservative, although during the crisis period may

have underestimated losses.

The degree of simplicity of measures varies significantly. Methodologies adopted under the

AMA framework require significant statistical and mathematical expertise and are not straightfor-

19To calculate this proxy, we replace the Business Indicator with the BIA estimate, since we do not have granular
information on the income components of banks in the sample. This puts the BI into the appropriate magnitude for
computing the capital estimate. We also use a 5-year rolling window of losses rather than the proposed 10 in the Basel
Committee on Banking Supervision (2018c) guidance.
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Figure 2.5: Implied capital by various approaches

ward to calculate. On the other hand, the BIA and TSA are much more clearly defined and are

relatively easy to calculate. The SMA strikes a balance across the two. Simplicity also leaves

banks’ less scope to manipulate estimates to minimise their capital allocation. Moreover, simpler

methodologies make for an easier comparability of estimates across institutions.

Risk sensitivity and the stability of capital requirements are closely related. Volatile estimates

of capital can be costly for banks and arguably estimates should not be overly sensitive to risk,

potentially leading to large swings in the allocation of capital (Heid, 2007). That said, capital

should adjust appropriately to changes in the risk environment. As we see from our estimates, the
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BIA remains relatively stable and has a coefficient of variation of 0.1, on par with the 0.13 of the

SMA. In contrast, the Analytical, Lognormal and Bayesian estimates have coefficients of variation

of 0.32, 0.18, 0.46, respectively. However, the cost of an overly conservative stable estimate is

noted as methodologies from the LDA approach appear to adjust more appropriately with the

decline in losses post 2012.

2.5 Operational losses and macroeconomic conditions

The increased risk-taking taking place during upswings in the financial cycle could be associated

with operational losses surfacing down the line. Moreover, during these periods the operating envi-

ronment and control structure of financial institutions could be weaker, and the implementation of

controls could be viewed as restrictions to growth and entrepreneurship (European Systemic Risk

Board, 2015). Abdymomunov et al. (2017) find evidence that operational losses for US banks are

contemporaneously correlated with domestic macroeconomic conditions (i.e. operational losses

increase in recessions). They argue that during economic downturns, banks are subject to pres-

sures that translate into an increased likelihood of discovering losses that occurred in the past.

We extend their analysis by looking at the effect of lagged macroeconomic variables on the

realisation of operational losses. We let the analysis in Section 2.3.4 guide our choice for the

length of lags. In particular, we are interested in the time at which losses materialise in banks’

balance sheets. However, given the significant lags between event occurrence and recognition seen

in the previous section, we expect that the financial and economic environments that are conducive

to risk-taking precede the actual financial impact. Looking at the survival curves for the duration

between incident occurrence and recognition suggests that within two years, 87% of the incidents

that occurred will have been accounted for (on average across regions). We therefore look at

the cumulative effect of one and two year lags. Studying the intertemporal relationship between

82



operational losses and macroeconomic conditions strengthens the argument that it is in fact the

excesses that take place during the upswing that lead to the occurrence of operational risk events

with large associated costs, which only materialise in the books of banks a few years later.20

We use the lags of three different financial indicators and a supervisory index to study whether

economic and financial conditions are correlated with future losses. Our variables are constructed

as outlined in Section 2.3. We provide a summary of the variables in Table 2.5.

We use the credit-to-GDP gap as a measure of the build-up of financial imbalances, as also

done for example in the context of the countercyclical capital buffer. The aim is to assess whether

periods of excessive lending could be associated with a build up of operational risks. The average

credit-to-GDP gap in our sample is around 3.04, which indicates that Credit-to-GDP ratio was, on

average, above its long term trend across regions in our sample.

There has been a notable debate in the banking literature on the impact of bank competition on

financial stability (Allen and Gale (2004)). We test this relationship by looking at whether periods

of higher competitiveness in the banking sector are followed by periods of less/more frequent or

severe operational losses. To this end, we use the Boone indicator – discussed in Section 2.3 –

as the dependent variable. The average value of the Boone indicator is -0.087 with a standard

deviation of 0.15.

Low interest rate environments may also influence bank risk-taking via two channels. First, low

interest rates affect banks measures of risk through valuations, incomes and cash flows. Second,

low yields on risk-free assets may increase financial institutions’ appetite for taking on more risk.

Altunbaş et al. (2014) show that low levels of short-term interest rates over an extended period

of time lead to an increase in bank risk. Against this backdrop, we evaluate to what extent the

monetary policy stance may be linked with a build-up of operational risk losses. To do so, we use

20We corroborate the findings of Abdymomunov et al. (2017) and our own by running regressions to study the
contemporaneous effect of macroeconomic variables on losses. These results are available upon request.
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deviations of policy rates from implied Taylor rule rates as a proxy for periods in which monetary

policy has been too accommodative. The mean of the deviations from the Taylor Rule is -1.29,i.e.

for our sample monetary policy has been more accommodative than a Taylor rule would imply.

Bank supervision and regulation is an integral part of the Basel framework, which ultimately

aims to minimise risk in the financial sector, including operational risk. We look at the cross-

regional impact of regulation and supervision of banks on operational risk using an index of pru-

dential regulation and bank supervision. We expect the effects of regulatory/supervisory reforms

not to be observed immediately, as there is a period of adjustment for banks to comply with new

standards.

N Mean Std. Dev. Min Max Start Date End Date

Panel A: Quarterly Variables

Loss per Income 598 0.0031 0.012 0 0.17 2002Q1 2016Q4

Frequency per Income (millions) 600 0.0045 0.0055 0 0.035 2002Q1 2016Q4

Credit to GDP Gap 584 3.04 11.3 -33.2 35 2002Q1 2016Q4

Deviations from Taylor Rule 600 -1.29 2.58 -15.28 13.65 2002Q1 2016Q4

Panel B: Yearly Variables

Loss per Income 150 0.0031 0.0069 0 0.044 2002 2016

Frequency per Income (millions) 150 0.0045 0.0055 0 0.029 2002 2016

Boone Indicator 127 -0.087 0.16 -0.67 0.41 2002 2014

Supervisory Index 140 0.87 0.15 0.56 1 2002 2015

Notes: The table presents a summary of the variables used in our regressions. Panel A reports a summary of our
quarterly variables and Panel B the yearly variables. For each series we report information on the total number of
observations, mean, standard deviation, maximum and minimum. We also provide the start and end dates for which
each series were used in our regressions.

Table 2.5: Summary of regression variables

We estimate several panel regressions at the quarterly frequency for the credit-to-GDP gap

and the deviations from the Taylor rule, and at a yearly frequency for the Boone indicator and

regulatory and supervisory index. The regressions take the following form:
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ln(Yit) =
∑︂
k

βkXi,t−k + αi + γt +
∑︂
k

ϵi,t−k (2.4)

where Yit, indicates the dependent variable in region i at time t, Xit denotes our main inde-

pendent variable (either the credit-to-GDP gap, Boone indicator, deviations from the Taylor rule,

or financial and supervisory index), αi is a regional fixed effect and γt is a time fixed effect. We

look at three dependent variables: namely the gross loss amount, the frequency of losses, and the

severity of losses (which results from dividing gross losses by frequency), all normalised by gross

income.

We start by looking at contemporaneous effects, before moving into the main regressions with

lagged variables. We aggregate quarterly variables to their annual counterparts and combine them

in a single regression. Table B.2.4 presents the results using models that include regional and

time fixed effects. We consider the contemporaneous effect on losses aggregated at the recognition

date (Panel A) and occurrence date (Panel B). Deviations from the Taylor rule have the most

significant effect on operational losses, consistently across regressions. When the rule suggests

monetary policy is too accommodative (too restrictive) there is an increase (decrease) in losses and

the frequency of events. This holds both when doing the analysis by date of occurrence and date of

recognition. Our results also suggest that more intense bank competition is associated with lower

operational losses. Finally, the supervisory index is insignificant -– although this may be subject to

reverse causality bias, as an increase in losses may prompt a tightening of supervisory measures.

Table 2.6 present the main results of this section, looking at the link between the lagged vari-

ables discussed above and operational losses.21 When interpreting these results, it is important

to bear in mind that they may be subject to omitted variable and reverse causality issues – hence

21The coefficients are the cumulative effect of the lagged dependent variables. The standard errors reported in
parentheses are the standard error of the sum of the coefficients.
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one should be careful not to give a causal interpretation. While we do control for instance for

region and time fixed effects, as well as rely on lagged variables, this may not fully eliminate such

concerns.

Gross losses and event frequencies are both positively correlated with the credit-to-GDP gap

(Panel A), but not statistically significant. The results in Panel B suggest that more intense bank

competition is associated with lower operational losses in subsequent periods. Recall that the

more negative the Boone indicator the higher the competition in the banking sector, therefore a

one standard deviation decrease in the Boone indicator (indicative of a more competitive market)

is associated with a cumulative 29% decrease in annual operational losses as a fraction of income.

In Panel C, we see the results from the regressions including the deviations from the Taylor rule.

The results suggest that following periods of overly accommodative monetary policy, operational

losses increase in frequency and value. This provides support to the notion that risk-taking in low-

yield environments can lead to a build-up of operational losses. A one standard deviation decrease

in the Taylor gap is associated with a 20% increase of operational losses in the following four

quarters and 28% after 8 quarters.

Panel D contains the results for the financial and supervisory index. Higher scores on the

index are associated with lower gross amounts and frequency of operational losses per unit of

income. The index ranges between 0.56 and 1 in the sample, and it is slow-moving because it

depends on institutional characteristics. Operational losses are very sensitive to changes in the

index: A 0.1 increase in the supervisory score is associated with a decrease in the gross loss

(frequency) per unit of income of around 40% (26%) one year after. The cumulative effect of a 0.1

increase in two subsequent years rises in excess of 35% (20%) for gross loss (frequency) per unit of

income. The severity of incidents also appears to fall after two years. Our results suggest that more

stringent supervisory frameworks may help offset operational risks by reducing the frequency of
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Dependent variable

TotalLoss
Income

Frequency
Income

Severity
Income

Panel A

Credit-GDP-Gap - 4 Lags
0.0094
(0.011)

0.010
(0.011)

-0.0011
(0.0053)

Credit-GDP-Gap - 8 Lags
0.010

(0.010)
0.0086

(0.0096)
0.0019

(0.0048)

Panel B

Boone Ind. - 1 Lag
1.8*

(0.95)
1.1**
(0.50)

0.76
(0.80)

Boone Ind. - 2 Lags
1.4

(1.0)
0.72

(0.60)
0.67

(0.92)

Panel C

Taylor Rule Dev. - 4 Lags
-0.079***

(0.022)
-0.086**
(0.035)

0.0070
(0.026)

Taylor Rule Dev. - 8 Lags
-0.11***
(0.036)

-0.13*
(0.070)

0.018
(0.043)

Panel D

Supervision Index - 1 Lag
-3.9*
(2.0)

-2.6**
(1.1)

-1.3
(0.99)

Supervision Index - 2 Lags
-3.5*
(1.8)

-2.0*
(1.0)

-1.6*
(0.92)

Regional Fixed Effects Y Y Y
Time Fixed Effects Y Y Y

Notes: The table is divided into four panels summarising the results from 24 panel regressions. Each column denotes
the dependent variables used, which are lagged. The coefficients shown are the sum of the lagged variables, i.e. the
cumulative effect – for example at 4 lags the coefficient reported is,

∑︁4
i=1 β̂i. A robust sum of standard errors is

reported in parenthesis. The sum of standard errors is calculated as
√
L′V L, where L is a (0,1) vector that denotes the

linear combination of regressors and V is the estimated robust covariance matrix. We test that the sum of coefficients
is significantly different from zero. The asterisks denote the significance as follows: * p < 0.1 , ** p < 0.05, ***
p < 0.01. All regressions are two-way fixed effects models, including a regional and time effect. In Panels A and C
the time unit is quarters, in Panels B and D the time unit is years.

Table 2.6: Operational losses, macroeconomic conditions and the regulatory environment

their occurrence, as presumably they lead banks to implement better risk management strategies.
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2.6 Cyber risks in the financial sector

Cyber and related IT risks can be seen as a subset of operational risks and are frequently cited as

a prominent threat to the financial system (Kopp et al., 2017; Kashyap and Wetherilt, 2019). In

March 2017, the G20 Finance Ministers and Central Bank Governors noted that “the malicious

use of information and communication technologies (ICT) could disrupt financial services cru-

cial to both national and international financial systems, undermine security and confidence, and

endanger financial stability”. In December 2018 the Basel Committee on Banking Supervision

published a report on the range of cyber-resilience practices (Basel Committee on Banking Su-

pervision (2018b)). The Covid-19 pandemic may have opened up new possibilities for attacks.

Given the widespread use of work-from-home arrangements, especially in the financial sector,

threat actors are able to leverage operational uncertainty and the use of personal devices (Dingel

and Neiman, 2020; Aldasoro et al., 2021).

An accurate quantification of cyber risks is challenging, as there is no precise definition of

cyber events. This naturally also applies to the ORX database. We thus need to rely on a number

of assumptions. In particular, we make use of event type definitions and consider as cyber events a

subclass of operational risks events. Table 2.7 describes the event categories that are most likely to

be associated with cyber events. As discussed above, we use the level 2 event type classification in

order to compute a proxy range for cyber events. Given the nature of the classification, we are not

able to accurately capture all events. Other categories not included could in principle have some

cyber events within them. Similarly, some events included in the categories we consider might not

be cyber-related, especially for the upper bound estimate. This approach is largely in line with

the classification used by Curti et al. (2019a). We diverge slightly by not taking into account the

Transactions and processing (EL07) category. This category is quite widely defined and it would
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be very difficult to filter the non-cyber related incidents out. The full list presented in Table 2.7

(i.e. bold plus non-bold) constitutes our upper bound estimate for cyber events. We highlight in

bold the event types we consider as a lower bound to approximate cyber events, after discussions

with risk management experts acquainted with the event type categorisation.

Event Type Level 1 Event Type Level 2 Description

Internal Fraud Unauthorised activity e.g. Rogue trading, unreported transaction, mis-
marking positions

Internal theft e.g. Forgery, theft, extortion, embezzlement,
bribes/kickbacks

System security (internal) Intentional damage to systems by internal staff
External Fraud External theft and fraud e.g. Robbery, Forgery, Cheque Kiting

System security (external) Wilful Damage e.g. Hardware/Software, Hacking
Damage, Theft of Data

Technology and infras-
tructure failures

- Losses arising from disruption of business or sys-
tem failures

Notes: The table denotes the definitions of event types that could proxy for cyber related incidents. Taken together
presents our upper bound on cyber risk and in bold are those that are used as our lower bound definition of cyber risk.

Table 2.7: Definitions of cyber event types

We first present summary statistics to provide a comparison of cyber losses with other op-

erational losses. Table 2.8, presents statistics on the total number of incidents, mean, standard

deviation and maximum values, by cyber and non cyber events. We provide summaries for both

our lower bound and upper bound. There are 13,561 cyber events within the database according to

our lower bound definition, which is a minor fraction of all losses, around 2%. The upper bound

captures a much wider range of events and is roughly representative of a third of the incidents in the

database. The true number of cyber incidents likely lies somewhere in between that range. When

considering features of the distribution of cyber losses, the lower bound may be a better guide as

the upper bound is likely to be populated with a significant amount of noise. Across both bounds

we see a higher average cost for non-cyber events and also a larger standard deviation.
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N Mean Standard Deviation Max

Panel A: Lower Bound

Non-Cyber 596,293 627,195 49,844,267 23,705,540,000

Cyber 13,561 476,541 19,710,650 2,224,579,168

Panel B: Upper bound

Non-Cyber 397,439 841,028 60,666,399 23,705,540,000

Cyber 212,415 217,484 10,615,633 4,056,523,958

Notes: The table presents summary statistics for losses by cyber and non-cyber events. Panel A presents summary
statistics for the lower bound of cyber losses versus non-cyber losses. Panel B presents summary statistics for the up-
per bound of cyber losses versus non-cyber losses. With the exception of the first column, figures reported are in Euros.

Table 2.8: Cyber losses – summary statistics

We also present a time series of frequencies and amounts in Figure 2.6, as well a breakdown

of losses and frequency by region, “cyber” event types and bank size, reported in Figures B.2.7-

B.2.9 in the appendix.22 The dominating event type is Technology & Infrastructure. Since ”system

security (external)” captures damage from hacking, we assume that these are typically failures that

are out of the control of the firm – a typical example being a power outage. Damages from hacking

appear to be low. In a companion paper, we show, using a different dataset which focuses only

on cyber events, that the financial sector is relatively more resilient than other sectors in riding out

attacks with malicious intent, most likely thanks to investments in security practices done by banks

also under the auspices of regulators (Aldasoro et al. (2022)).

In terms of regions, Western Europe suffers more cyber losses than other regions, with the

exception of 2016, when considerable cyber losses occurred in the U.S. When doing the split by

bank size, in turn, the share across banks appears to be relatively stable. The peak in 2016, however,

can be largely attributed to small and medium-sized banks. This could be an indicator that larger

budgets and thus more investment in security pays dividends for larger banks.

22For the sake of space, we report these only for the lower bound estimate of cyber losses.

90



0.00

0.05

0.10

0.15

0.20

0.00

0.02

0.04

0.06

2005 2010 2015
Year

S
ha

re
 o

f t
ot

al
 o

pe
ra

tio
na

l l
os

se
s

G
ross loss per unit incom

e

0.0

0.1

0.2

0.3

0.4

0

20

40

60

2005 2010 2015
Year

S
ha

re
 o

f t
ot

al
 o

pe
ra

tio
na

l l
os

se
s

F
requency per bn units of incom

e

Cyber loss range (lhs) Total operational losses (rhs)

Notes: The left hand axis of the plots shows the estimated range of cyber losses across years as a share of all operational
losses, which is shown by the red area in the graphs. The right y-axis in the left (right) panel gross losses (frequency)
per unit of income. Events are aggregated by the date of recognition.

Figure 2.6: Operational and cyber events

2.6.1 Cyber risk capital

As a sub-component of operational risk, a proportion of capital should be allocated to account

for losses stemming from cyber incidents. To complement the analysis in Section 2.4, we also

compute estimates of cyber risk capital. We perform a similar exercise, by computing the cyber

risk capital over time, but focusing solely on the Bayesian methodology. We compute estimates

for both the lower and upper bounds as defined above. The results are summarised in Figure 2.7,

which includes the estimate for total operational risk (red line) as a benchmark.

We use the Value-at-Risk (VaR) as the measure of appropriate capital from the estimated cyber

loss distributions. The value of the VaR for the distribution of cyber losses is only a fraction of

total operational VaR if the calculation is based on the analytical approach. At the lower bound,
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Figure 2.7: Operational and cyber value-at-risk

the value ranges between 0.04-0.8% of the gross income of the consortium, which corresponds to

around 338 EUR millions and 7.8 EUR billions, respectively. At the upper bound this can jump up

to around 2.5% at the peak in 2012. These figures reflect that cyber risk is a small fraction of total

operational risks, as discussed above. At the time of the peak this would have represented around

a third of total operational losses. These results should be interpreted with caution, not least in that

they should be taken to underplay the threat of cyber risks. First, by construction the definition

of operational risk is much broader and encapsulates cyber risk and thus will naturally be larger.

Second, cyber is an emerging risk and reporting cyber-related losses is not always mandatory

– thus their true distribution is very challenging to estimate. Accordingly, not all the costs of

cyber events may be covered in our approximation. Third, our estimates group losses across the

entire consortium and thus represent the total impact of cyber incidents on the financial sector as

a whole. However, an isolated incident that leads to the business disruption of a large financial
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institution and/or market infrastructure could have dire consequences for the institution and pose a

significant systemic risk due to risk concentration and the lack of substitutes in the case of financial

market infrastructures. Potential scenario analyses include cyber-attacks affecting the availability

of a major payments system, or a breach that compromises the confidentiality of key financial

or personal data, or corrupts the data of a major financial institution or data provider (Boer and

Vazquez, 2017; Monetary Authority of Singapore, 2018; European Systemic Risk Board, 2020).

One key finding is that intentional data manipulation could be especially damaging, as it may erode

confidence, triggering feedback loops, and require a prolonged recovery period.

2.7 Conclusions

The GFC drew the attention of regulators and academics towards operational risk. Moreover,

the shift to the new Standardised Approach in Basel III and especially the threat of cyber events

feature prominently in policy debates around operational risk. We contribute to the debate by using

a unique cross-country dataset at the operational loss event level for over 14 years and more than

70 large banks.

We provide stylised facts as a basis for discussions of operational risk in the financial sector.

After a spike in operational losses in the immediate aftermath of the GFC, operational losses de-

clined. The post-crisis spike is to a large extent accounted for by the severity of losses related to

improper business practices that occurred in large banks in the run-up to the crisis, which materi-

alised only later. An example of such event is the mis-selling of mortgage-backed securities that

took place around 2005/2006 but was crystallised as a loss in the books of banks only a few years

later, when heavy fines were imposed.

We compute operational value-at-risk and show it can vary substantially depending on the

methodology. The average VaR for the financial institutions in the sample ranges from 1% to
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7.5% of total gross income, depending on whether the method used is better able to capture the

heavy-tailed nature of the data. These numbers are consistent with actual capital requirements, but

notably smaller than the basic indicator approach. Our results provide some support for the shift to

the standardised approach in Basel III. First, this would reduce heterogeneity of estimates across

banks that come from various AMA methodologies. Moreover, the simplified approach could also

free up resources at banks and supervisory authorities.

We document a substantial lag between the dates of discovery and recognition of loss events.

On average, it exceeds one year, but it varies across regions, business lines, event types, and bank

size. Internal fraud events and failures due to improper business practices are less likely to be

discovered than other events, especially when the size of the financial firm is small. These findings

can inform policy discussions on compensation practices.

We show that operational losses are higher after periods of excessively accommodative mon-

etary policy. In other words, the link between monetary policy, and bank risk-taking found in the

literature also extends to operational risk-taking. A higher quality of financial regulation and su-

pervision is associated with lower operational risk losses. We also find that periods of increased

bank competition correlate with future reductions in operational losses.

Finally, we use the categorisation of operational loss events to compute a proxy range of cyber

events, a subset of operational events. Cyber losses represent a relatively small portion of overall

operational risk losses, especially in terms of frequency. That said, recent years saw a notable

increase in losses due to cyber events, with a strong peak in 2016. We note that a higher quality

of financial regulation and supervision is also associated with lower cyber losses. Despite repre-

senting a relatively minor share of operational losses, cyber losses can account for up to a third of

total operational risk capital. Better estimating the cost of cyber events for financial institutions is

an important area for future research.
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CHAPTER 3

LIBRA OR LIBRAE: DIGITAL CURRENCY BASKETS

3.1 Introduction

Carney (2019) posed the question of whether a Synthetic Hegemonic Currency (SHC) would be

best provided by the public sector. The rationale behind is that a global currency, underpinned by a

basket of reserve assets, could better support global outcomes. For example, a SHC could dampen

the dominating influence of the US dollar on global trade, alleviate spillovers to exchange rates

from shocks to the US economy, and trade across countries would become less dependent on the

dollar.

Discussions around global currencies have been reignited in the overarching debate around

central bank digital currency (CBDC) and stablecoins. From the private sector, Facebook, amongst

numerous others, have announced plans for their own privately issued stablecoin that could emulate

the characteristics of a SHC. In the most recent iteration of Facebooks proposition, the idea is to

supply digital tokens that are pegged to major currencies, i.e. LibraUSD would be pegged to the

US dollar.1 In addition, there will be another token whose value is derived from a weighted basket

of the currencies provided on the platform. The exact composition of this underlying basket and

its targeted exchange rate is unspecified. In this paper, we assume that the objective is to devise a

digital currency whose exchange rate fluctuations are minimised against several currencies of the

worlds major currencies.

Facebook’s plans have been met with some resistance from regulators and will face intense

1The project has since rebranded to the Diem Association: https://www.diem.com/en-us/association/
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scrutiny before receiving any kind of regulatory approval. Why have regulators reacted with such

caution to Facebook’s plans to issue a stablecoin? Firstly, as a tech-giant Facebook can push Libra

to its vast user-base, approximately 2.41 billion monthly active users.2 To put this into perspective,

currently it is estimated there are around 40 million bitcoin wallets and 1 million daily users.3

Facebook would have to successfully penetrate 2% of its user base to match what is an upper bound

on a proxy for the size of bitcoin’s user base, the most frequently used cryptoasset. A subsequent

concern was for the basket based currency to potentially interfere with monetary sovereignty and

monetary policy, leading to a form of dollarisation.

Against this background, we investigate the empirical aspects of the design of a currency basket

i.e. ”Librae” in the sense that the value is composed of several currencies. First, we consider the

optimal weights of the basket of underlying reference currencies, such as those included in the

International Monetary fund Special Drawings Rights (SDR). After computing the optimal weights

we construct the historical values of the designed stablecoin (SAC) and compare its volatility

against a set of major currencies. For the optimal allocation of weights in the currency basket we

follow Hovanov et al. (2004) to compute a currency invariant index. A particular advantage of

this approach is that given a fixed set of currencies, the index of a currency will have the same

value, regardless of the base currency choice. The index is determined by minimising the variance

of a portfolio of currencies, expressed in Reduced Normalised Values (RNVALs). We construct

a reference basket that contains the Dollar (USD), the Euro (EUR), the Yen (JPY), the Renminbi

(CNY) and the Pound Sterling (GBP), the same currencies that are employed for the determination

of the IMF’s Special Drawing Rights (SDR) basket. We use daily foreign exchange rate data from

January 2002 up until December 2020.

2https://newsroom.fb.com/company-info/
3The number of bitcoin wallets: https://www.statista.com/statistics/647374/worldwide-blockchain-wallet-users/

and the number of active wallets: https://coinmetrics.io/.
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By construction, our basket based currency should have the lowest variance in comparison to

those contained in the basket and our results confirm this. However, it is of interest to see how

our basket fares against currencies outside of the basket, for example against the currencies of

the most important remittance markets. We investigate whether the properties of the basket based

stablecoin offer a hedge or alternative utility to foreign workers dependent on remittance markets.

The association’s white paper, Libra Association (2020), the use of the basket currency coin is

motivated as follows:

For countries that do not have a single-currency stablecoin on the Libra network, we

believe LBR is a neutral and low-volatility alternative that could ensure users in such

regions can benefit from accessing the network and increased financial inclusion. In

this context, LBR could operate as a settlement coin in cross-border transactions, and

people and businesses could convert the LBR they receive into local currency to spend

on goods and services through third-party financial service providers. [...]

It is evident that the association has identified an opportunity for the basket-based currency to

have a role to play in remittance markets. To provide an initial empirical study in evaluating the

effectiveness of the basket to function as a tool in remittance markets, we first reconstruct the price

of our SAC in base dollar. We then recompute the RNVALs, including the SAC and extending the

currencies to those of major remittance markets, namely the Indian Rupee, the Mexican Peso, the

Philippine Peso and the Nigerian Naira. Our empirical findings show that, overall, the stablecoin

maintains the lowest volatility, thus could act as a hedge and store of value for overseas workers

savings. We also make comparison to the IMF’s SDRs, which performs almost as well.

To gain insight into the composition of the basket, we finally study the currencies which drive

the volatility spillovers among exchange rates, using the framework of Diebold and Yılmaz (2014).
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Specifically, we build a spillover network decomposition analysis of the currencies up to December

2020, thus including the period of the Covid-19 outbreak. Our spillover network decomposition

shows that the USD is the currency whose dynamics has the largest impact on the others, especially

in terms of exporting contagion, although in the latest period CNY has begun overtaking, and the

Covid-19 crisis has disrupted the pre-existing equilibria. As a consequence, a shock to USD,

expressed by a one standard deviation decrease in its normalised value with respect to the other

currencies, causes a shock on all currencies and, through high order contagion, on the USD itself,

leading to a new lower equilibrium. Differently, a shock in the value of the SAC, caused by a

shock of a currency in the basket, is offset by the diversification effect and, therefore, the starting

equilibrium is maintained. This implies that remittances converted in basket based stablecoin better

maintain their value, with respect to those converted in dollars (or dollar based stablecoins).

3.2 Related Literature

Cryptocurrencies were primarily conceived under the advent of Bitcoin, outlined in Nakamoto

(2008). This was the first decentralized payment system based on maintaining a public transac-

tion ledger. Since then, as many as 5,500 cryptocurrencies exist as of 24 May 2020. Several

authors have dealt with the description and functioning of cryptocurrencies (Segendorf, 2014;

Dwyer, 2015). Legal concerns that have arisen through cryptocurrencies are discussed in Mur-

phy et al. (2015). Cheng and Dai (2020) study the inflow capital control evasion phenomenon

in cryptocurrencies and show that the relative CNY to USD bitcoin price, which indicates capital

inflow volumes, of those with high excessive currency conversion profit reacts more negatively to

carry trade returns.

Several studies have analysed cryptocurrencies statistical properties. Corbet et al. (2018) in-

vestigate the dynamic spillovers of cryptocurrencies with other financial assets, and find that the
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two categories of financial instruments are isolated. Using a similar approach, Giudici and Pag-

nottoni (2019) and Giudici and Pagnottoni (2020) explore the dynamic relationship of Bitcoin

exchanges and show their relative importance in transmitting information of fundamental Bitcoin

price changes. The latter studies complement the findings achieved in the field of price discovery

on Bitcoin (and cryptocurrency) exchanges – see Brandvold et al. (2015), Pagnottoni and Dimpfl

(2019) and Dimpfl and Peter (2020). Katsiampa et al. (2019) examine the volatility interaction of

eight cryptocurrencies through the diagonal BEKK and Asymmetric Diagonal BEKK methodolo-

gies and find that despite shocks in Bitcoin are most persistent, the cryptocurrency is not dominant.

Bouri et al. (2019) and Resta et al. (2020) evaluate the effectiveness of several technical trading

rules in cryptocurrency markets and provide support to the best performances of moving average

based strategies. Other contributions in the field use network models and neural networks for

cryptocurrency portfolio management and Bitcoin option pricing – see Giudici et al. (2020) and

Pagnottoni (2019).

Research on stablecoins is a growing topic. The Financial Stability Board (2019) defines a

’stablecoin’ as a crypto-asset designed to maintain a stable value relative to another asset (typically

a unit of currency or commodity) or a basket of assets. Bullmann et al. (2019) make distinctions

between stablecoins based on the collateral that underpins them, varying from cash in commercial

bank accounts to the use cryptocurrencies like used in the MakerDao project. The Libra association

has outlined plans to invest the funds that are received in return for stablecoins into ”safe” assets

e.g. sovereign debt. Stablecoins are close substitutes for cash, similarly to electronic money. This

is not the first time that electronic money has been on the agenda for central banks and policy

makers, after a flurry of innovations in this space, in 1996 and 1998 respectively the BIS and ECB

published reports addressing the regulation of e-money and the implications for monetary policy

(European Central Bank, 1998; Bank for International Settlements, 1996). However, these forms
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of e-money never really gathered sufficient traction to trouble the initial concerns of policy makers

of the time4.

Keynes originally suggested the bancor as a unit of account of his proposed International Clear-

ing Union, intended to fix to the dual dollar gold system. The solution was eventually conceived

by the IMF who approved the SDR in 1967. The IMF’s issuance of SDR could be seen as a supra-

national currency issued by central banks, although the SDR does not fulfil all functions of money.

Whilst serving as a store of value and unit of account, SDRs are only used by some central banks

and international institutions as a means of exchange to pay each other (Ocampo, 2019). For this,

they may not be strictly considered as a“true” global currency.

A boost to the importance of SDRs was given in 2009, when China called for reforms to the in-

ternational monetary system by adopting the SDR as a reserve asset. Against these developments,

Humpage (2009) suggests that while the adoption of the SDR as a reserve asset is technically fea-

sible, it would not reduce the dollar’s role any time soon. Many foreign-exchange transactions,

even excluding US residents, are denominated and settled in dollars. Producers typically invoice

their products in dollars, which keeps their prices in line with their competitors and simplifies

cross-border price comparisons among producers (Gopinath et al., 2016). Given the persistent

importance of the US dollar, the question is whether this will remain so under the fintech transfor-

mation that is changing the financial world. And, in particular, whether a dollar based stablecoin

is more likely to be adopted than a basket based one.

Flore (2018) recently notes the impact that blockchain could have on reducing costs in remit-

tance markets. As previously mentioned a stablecoin backed by a basket of currencies could be

an attractive asset for foreign workers that depend on remittances. Under the status quo, an ap-

preciation in the value of the domestic currency can reduce the remittances ratio because workers

4For example, see Levene (2006)
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want to to keep the additional earning from the appreciation of the currency. On the other hand,

workers based in foreign countries, where the value of the domestic currency is declining, may

remit money on an urgent basis. A basket based currency could dampen some of these effects

as it is less susceptible to appreciation and depreciation of the domestic and foreign currencies.

However, the effects are likely to be ambiguous and depend on how the stablecoin is used. If it

gains acceptability in the home currency this could lead to new episodes of dollarisation, whereas

if the currency is only used as a medium of exchange the effect could be negligible.

One specific challenge for countries that face large inflows of worker remittances could lead

to the emergence of ”Dutch disease,” that is, remittance inflows could result in an appreciation

of the equilibrium real exchange rate that would tend to undermine the international competitive-

ness of domestic production, particularly that of nontraditional exports. Barajas et al. (2011) note

that reasonable modifications in the modelling of the factors driving remittances, or in the various

macroeconomic roles that remittances could moderate or even reverse the expected impact of re-

mittance flows on the equilibrium value of the real exchange rate. Acosta et al. (2009) discuss two

mechanisms by which this occurs, the first mechanism is demonstrated in the Salter-Swan-Conder-

Dornbusch model, which points to a “spending effect,” by which the increase in wealth follow-

ing higher capital inflows from remittances, combined with exogenous tradable prices, causes the

prices of nontradable goods and services to rise. The second mechanism is that remittances tend

to increase household aggregate wealth. An increase in household wealth may lead to a decrease

in labor supply as households substitute more leisure for work. A shrinking labor supply, in turn,

puts upward pressure on wages. Rising wages raise production costs, and higher production costs

can lead to a further contraction of the tradable sector.
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3.3 Methodology

In this section we outline the methodologies employed in our empirical application. Firstly, we

describe the optimal control problem which yields the optimal stablecoin weights. Secondly, we

introduce our VAR model and, based upon which, we study the spillover effects across the curren-

cies in the basket to determine their interconnectedness to understand which are the most relevant

ones in terms of shock transmission.

3.3.1 Optimal control problem

We aim to build a basket of predetermined (reference) currencies with optimal weights, namely,

weights which minimise the variability of a basket based stablecoin. This translates into an optimal

control problem which takes as an objective function minimising the variance of the value of the

basket by finding the optimal combination of weights assigned to the basket.

Hovanov et al. (2004) show that the values of any given currency depends on the base currency

chosen. The latter fact creates ambiguity in evaluating the currency itself and its dynamics. To

overcome this issue, Hovanov et al. (2004) proposed a reduced (to the moment t0) normalized

value in exchange (RNVAL) of the i-th currency:

RNVALi (t/t0) =
cij(t)

n
√︁∏︁n

k=1 ckj(t)
/

cij (t0)
n
√︁∏︁n

k=1 ckj (t0)
= n

⌜⃓⃓⎷ n∏︂
k=1

cik(t)

cik (t0)
(3.1)

where cij(t) denotes the exchange rate between currencies i, j at time t, with i; j = 1, ..., n

(where n denotes the number of currencies). By reducing to the moment t0 and normalizing each

currency observation by the geometric average of the other currencies at that specific point in

time, the RNVAL allows the computation of a unique optimal, minimum variance currency basket,

despite the base currency choice. The minimum variance currency basket is derived by searching
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the optimal weight vector w∗ = (w∗1, ..., w
∗
n) which solves the following optimal control problem:

Min

(︄
S2(w) =

n∑︂
i,j=1

wiwj cov(i, j) =
n∑︂

i=1

w2
i s

2
i + 2

n∑︂
i,j=1

wiwj cov(i, j)

)︄
(3.2)

subject to

{︄ ∑︁n
i=1wi = 1

wi ≥ 0

where cov(i, j) is the covariance of time series RNV ALi(t = t0) and RNV ALj(t = t0),

s2i (w) is the variance of the time series RNV ALi(t = t0), with i; j = 1, ..., n, t = 1, ..., T .

The solution to the constrained optimisation problem in Equation (3.2) yields to the minimum

variance weights which enable us to construct the stablecoin value.

3.3.2 VAR models and spillover analysis

We evaluate spillovers using the methodology of Diebold and Yilmaz (2012), which has been

widely employed in the literature with the aim of measuring return and volatility spillovers – see,

for instance, Abosedra et al. (2020). As in their seminal paper, we start from estimating a Vector

AutoRegressive (VAR) model, that is:

xt =
k∑︂

i=1

Φixt−i + εt (3.3)

where xt is the (n × 1) vector of first differences in RNVALs at time t, Φi the (n × n) VAR

parameter matrices, k the autoregressive order, εt a zero-mean white noise process having variance-

covariance matrix Σε, with n being the number of currencies considered in order to build the basket.
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Note that the VAR model is built on the variables’ first differences, as this ensures the stationarity

of the analyzed time series.

The VAR in Equation 3.3 may also be rewritten in its corresponding vector moving average

(VMA) representation, that is

xt = εt +Ψ1εt−1 +Ψ2εt−2 + · · · (3.4)

where Ψ1,Ψ2, ... the (n× n) are the matrices of VMA coefficients. The VMA coefficients are

recursively computed as Ψi = Φ1Ψi−1+Φ2Ψi−2+ ...+ΦiΨ1, having Ψi = 0 ∀i < 0 and Ψ1 = In.

As it is widely accepted in the financial econometric literature, the variance decomposition

tools are used to evaluate the impact of shocks in one system variable on the others. Strictly

speaking, variance decompositions decompose the H-step-ahead error variance in forecasting xi

which is due to shocks to xj , ∀j ̸= i and ∀i = 1, ..., n.

Diebold and Yilmaz (2012) founded their methodology on the H-step ahead forecast error

variance decomposition. Considering two generic variables xi and xj , they define the own variance

shares as the proportion of the H-step ahead error variance in predicting xi due to shocks in xi

itself, ∀i = 1, ..., n. On the other hand, the cross variance shares (spillovers) are defined as the

H-step ahead error variance in forecasting xi due to shocks in xj , ∀i = 1, · · · , n with j ̸= i. In

other words, denoting as θgij(H) the KPPS H-step forecast error variance decompositions, with

h = 1, · · · , H , we have:

θgij(H) =
σ−1jj

∑︁H−1
h=0 (e

′
iΨhΣej)

2∑︁H−1
h=0 (e

′
iΨhΣΨ′hei)

(3.5)
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with σjj being the standard deviation of the innovation for equation j and ei the selection vector,

i.e. a vector having one as ith element and zeros elsewhere. Intuitively, the own variance shares

and cross variance shares (spillovers) measure the contribution of each variable to the forecast error

variance of itself and the other variables in the system, respectively, thus giving a measure of the

importance of each variable in predicting the others.

Note that the row sum of the generalized variance decomposition is not equal to 1, meaning∑︁H−1
h=0 θgij(H) ̸= 1. Diebold and Yilmaz (2012) circumvent this problem by normalizing each entry

of the variance decomposition matrix by its own row sum, i.e.

θ̃
g

ij(H) =
θgij(H)∑︁n
j=1 θ

g
ij(H)

(3.6)

This tackles the above mentioned issue and yields to
∑︁n

j=1 θ̃
g

ij(H) = 1, and
∑︁n

j,i=1 θ̃
g

ij(H) = n.

As a measure of the fraction of forecast error variance coming from spillovers, Diebold and Yilmaz

(2012) define the total spillover index (TSI):

TSI(H) =

∑︁n
j=1
j ̸=i

θ̃
g

ij(H)∑︁n
j,i=1 θ̃

g

ij(H)
· 100 =

∑︁n
j=1
j ̸=i

θ̃
g

ij(H)

n
· 100 (3.7)

Moreover, we also make use of directional spillovers indexes (DSI) to measure, respectively

through equations (3.8) and (3.9), the spillover from exchange i to all other exchanges J (cfr. Eq.

3.8) and the spillover from all exchanges J to exchange i (cfr. Eq. 3.9) as:
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DSIJ←i(H) =

∑︁n
j=1
j ̸=i

θ̃
g

ji(H)∑︁n
j,i=1 θ̃

g

ij(H)
· 100 (3.8)

DSIi←J(H) =

∑︁n
j=1
j ̸=i

θ̃
g

ij(H)∑︁n
j,i=1 θ̃

g

ij(H)
· 100 (3.9)

Directional spillovers may be conceived as providing a decomposition of total spillovers into

those coming from – or to – a particular variable. In other words, they measure the fraction of

forecast error variance which comes from (or to) one of the variables included in the system -

and, hence, the importance of the variable itself in forecasting the others. From the definitions of

directional spillover indexes, it is natural to build a net contribution measure, impounded in the net

spillover index (NSI) from market i to all other markets J , namely:

NSIi(H) = DSIJ←i(H)−DSIi←J(H) (3.10)

Another very important metric to measure the difference between the gross shocks transmitted

from market i to j and gross shocks transmitted from j to i is the net pairwise spillover (NPS),

defined as:

NPSij(H) =

(︄
θ̃
g

ij(H)∑︁n
q=1 θ̃

g

iq(H)
−

θ̃
g

ji(H)∑︁n
q=1 θ̃

g

jq(H)

)︄
· 100 (3.11)
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All the metrics discussed above are able to yield insights regarding the mechanisms of market

exchange spillovers both from a system-wide and a net pairwise point of view. Furthermore,

performing the analyses on rolling windows we are able to study the dynamics of spillover indexes

over time.

3.4 Data and empirical findings

3.4.1 Data

To test our proposal we make use of historical data to perform a retrospective analysis. We use

daily foreign exchange rate data spanning the period January 2002 - November 2019. We then

extend the analysis until December 2020, to take into account variation related to the Covid-19

crisis period. To build our optimal basket of currencies, we collect data on the foreign exchange

pairs between the currencies that are included in the IMF’s Special Drawings Rights: the US

dollar, the Chinese Renminbi, the Euro, the British pound and the Japanese Yen. According to

our research assumption, we will assume that the obtained basket of currencies correspond to a

stablecoin which can be exchanged and compared with a single currency based stablecoin. To

understand the relationship between major currencies and remittances we also collect data on the

largest remittance markets - namely, the Indian Rupee, Mexican Peso, Philippines Peso, Nigerian

Naira. Moreover, for what concerns the volatility analysis, we divide the sample into subsets which

define the pre-crisis period (2002-2008), crisis period (2009-2011) and post-crisis period (2012-

2019). Finally, for the sake of comparison with a widely known basket-based currency such as

the IMF SDR, we also collect data relative to the foreign exchange pair of the dollar with the IMF

Special Drawing Rights.
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3.4.2 Optimal basket and stability analysis

We present the results of the optimisation problem presented in Section 3.3 in Table 3.1. The

weights of the IMF’s SDR are also given for comparison. From the table, note that our method

yields weights which are spread relatively equal across the currencies, in fact each are approxi-

mately a fifth, with a slightly heavier weighting on the EUR. The weights are quite different from

the weights of the IMF SDR, which tend to be more concentrated on the USD dollar.

Currency USD CNY EUR GBP JPY

Optimal Weights 0.17 0.2 0.23 0.19 0.21

IMF SDR Weights 0.42 0.11 0.31 0.08 0.08

Table 3.1: Optimal weights of the currency basket versus SDR weights

The IMF’s precise methodology for determining weights remains undisclosed. The weighting

scheme incorporates information from other economic variables such as trade flows. The most

attractive feature of our weighting methodology is that it remains apolitical in nature rather than

adopting the arbitrary inclusion of economic variables that become a matter of contention. The

valuation of the SDR in terms of a currency basket had been among the most controversial deci-

sions in the IMF history Mandeng (2019). This could certainly be of appeal to a private company

considering issuing such an asset, as it keeps the methodology a purely statistical debate rather than

a political one (Pontines, 2009). Furthermore, it also allows the computation of a unique optimal,

minimum variance currency basket regardless of base currency choice and can be extended to any

number of currencies. The rationale behind the SDR is to minimise transaction costs in interna-

tional exchanges yet remaining independent on the monetary or exchange rate policy objectives

of any single country. Many foreign-exchange transactions, even excluding US residents, are de-

nominated and settled in dollars. Producers typically invoice their products in dollars, which keeps
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their prices in line with their competitors and simplifies cross-border price comparisons among

producers (Gopinath et al., 2016). This status quo tends to lend itself to a currency that has less

variation against the dollar and consequently a weighting that favours the dollar such that there

are stronger correlations with dollar movements. On the other hand Libra is focused on retail con-

sumers, in particular those dependent on remittances. During bouts of depreciation, for example,

in 2010, when the Fed embarked on QE2, the dollar hit all-time lows against several currencies. In

this instance a Libra coin with less emphasis on the dollar could have sheltered holders from the

depreciation of the dollar.

As noted above, fluctuations of SDRs will strongly be correlated with fluctuations in USD and

EUR. Our proposed stablecoin (SAC) distributes the weights more evenly across the basket to

minimise the variations in fluctuations. Since the basket is comprised of hard currencies the diver-

sification tends to work, as the currencies move systematically over time relative to one another.

In other words, if the value a particular currency depreciates relative to the SAC, but simultane-

ously there is an appreciation of another currency, their movements would balance each other, all

else the same. Note that China has managed a floating peg against the USD and hence these two

currencies are likely to be strongly linked. In the SDR these two currencies make up 53% of the

basket compared to 37% in the SAC, arguably indicating more diversification is needed to offset

movements in the dollar. To better interpret the results, Figure 1 represents the time series of the

RNVALs of all considered currencies in the basket, along with our basket based stablecoin, in the

considered period.

From Figure 1 note that, after an initial period of turbulence, the time series start to diverge

roughly from the beginning of 2006 onwards. From that point in time, two clusters seem to emerge

from the graph: the first one includes USD and CNY, while the second one pertains EUR, GBP and

JPY. This is arguably due to the fact that, for many years, the CNY value was pegged to the dollar
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Figure 3.1: RNVALs of the basket currencies
Notes: The figure shows the time evolution of the RNVALs of the basket currencies over the sample period.

and, therefore, its dynamics over time shows quite similar patterns to that of the USD. As expected

by construction, the RNVAL of the basket based stablecoin lies in the middle, ”mediating” between

the different currencies, and compensating single deviations with diversification benefits.

To understand the dynamics between currency and whether the basket based currency is more

stable, Table 3.2 presents their volatilities, measured by their standard deviations, over the consid-

ered time period. The table presents also the correlations between the currencies, which help in the

interpretation of the results. Table 3.2 shows, as far as correlations are concerned, that USD and

CNY exhibit relatively strong negative or little correlation with others currencies in the basket, but

are weakly positive between themselves, consistently with what observed in Figure 1. Moreover,

one can clearly notice that the EUR acts as a good diversifier, as its pairwise correlations are quite

low if compared to those between other currencies. More importantly, from the correlation matrix

we can deduce that the stablecoin shows correlations with the other currencies whose values are
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very close to zero. Low correlations with the other currencies is a clear sign of the ability of our

stablecoin to remain orthogonal to the other fiat currencies’ dynamics and, therefore, arguably sta-

ble. In terms of variability, the standard deviations show that the most volatile currency is CNY,

followed by JPY and USD. Our stablecoin exhibits a standard deviation magnitude which is much

lower than those of the other currencies and about ten times lower than that of the least volatile

one, namely EUR. This is a clear sign of stability of the proposed stablecoin, as opposed to an

hypothetical stablecoin pegged to one single currency.

USD CNY EUR GBP JPY SAC

USD 1 0.14 -0.68 0.01 -0.41 0.02

CNY 0.14 1 -0.4 -0.8 0.17 0.02

EUR -0.68 -0.4 1 0.26 -0.09 0.03

GBP 0.01 -0.8 0.26 1 -0.64 0.02

JPY -0.41 0.17 -0.09 -0.64 1 0.02

SAC 0.02 0.02 0.03 0.02 0.02 1

σ 0.07 0.1 0.06 0.1 0.09 0.002

Notes: The table presents the correlations between the RNVALs of the basket currencies based on the time series
depicted in Figure 1. The bottom row gives the deviation measured over the whole period.

Table 3.2: Volatility and correlation of the RNVALs

To analyse the world’s emerging market currencies with the highest portions of remittances, we

first reconstruct a historical exchange rate for the SAC. We then recompute the RNVALs extend-

ing the basket to include the SAC, SDR and the emerging market currencies. The corresponding

graphical representation is contained in Figure 3.2. Figure 3.2 shows that emerging market curren-

cies such as the Mexican Peso (MXN) and the Nigerian Naira (NGN) have appreciated consistently

with respect to the other fiat currencies in the basket over time. All the other currencies, instead,

seem to belong to another cluster, in the sense that they do not follow an upward trend as the pre-

vious ones, but rather fluctuate below the value of 1, with different patterns. The only exception
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is the Indian rupee (INR), whose value grows over time, although not with the same magnitude

as MXN and NGN do. Note that both basket based stablecoins lie in the middle, similarly as in

Figure 1, although their Reduced Normalised values fluctuate. This because the baskets are built

using only five currencies, but are normalised with respect to all nine included in Figure 3.2.
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Figure 3.2: RNVALs of the basket and largest remittance currencies
Notes: The figure shows the time evolution of the RNVALs of the basket currencies including largest remittance

currencies of the basket currencies over the sample period.

To determine whether a basket-based stablecoin would be a more valuable and more stable

alternative than a stablecoin pegged to a single currency, especially for remittances, we can, in

analogy with 3.2, compare the volatility of our stablecoin with that of a SDR based basket, and with

the currencies of the most important emerging markets in terms of remittances. Table 3.3 contains

the comparison, in terms of standard deviations, over the whole period and also in three distinct

periods, corresponding to the pre-crisis period, the crisis period and the post-crisis period. From

the top row of Table 3.3, it is clear that overall the stablecoin exhibits lower values of volatility,
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when compared to the other traditional fiat currencies. The other rows in the table show that this

is often the case, although especially during pre-crisis and crisis period few currencies exhibit

slightly lower volatilities, depending on how and when they were affected by the global financial

crisis. However, we can notice that the stablecoin’s volatility is much lower than that of the other

currencies which, although for some period slightly lower, show quite relevant jumps in magnitude.

Moreover, the proposed stablecoin exhibit lower volatilities over the whole time period if compared

to the single currencies in the basket and to the single emerging market currencies. This can be

read as a strength of our stablecoin, as it could function as a better medium of exchange than a

country’s single currency, in particular as far as remittances are concerned. Note also that the SDR

appears to be equally stable and is a valid alternative to our stablecoin.

USD CNY EUR GBP INR JPY MXN NGN PHP SAC SDR

σall 0.09 0.14 0.07 0.06 0.13 0.11 0.23 0.41 0.10 0.04 0.05

σpre 0.04 0.03 0.08 0.05 0.02 0.05 0.10 0.07 0.06 0.04 0.02

σcri 0.05 0.05 0.03 0.06 0.03 0.10 0.09 0.10 0.03 0.03 0.02

σpost 0.1 0.06 0.03 0.04 0.08 0.07 0.16 0.39 0.04 0.03 0.05

Notes: The table presents the standard deviations of the RNVALs of the basket currencies, of the emerging market
currencies, our stablecoin and the SDR. The top row gives the deviation measured over the whole period (all), the
second row measured during the pre-crisis period (pre), the third during the crisis period (cri) and the fourth during
the post-crisis period (post).

Table 3.3: Measuring the volatility of the RNVALs

3.4.3 Spillover network analysis

We now consider spillovers between foreign exchange rates to evaluate the connectedness of the

currencies composing the basket, and to understand which is the relative importance of each of

the currencies in transmitting shocks. In this way, we are also able to determine which currencies

potentially cause strong (or weak) changes in our proposed stablecoin value.
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As far as specifications are concerned, VAR models are built on changes in reduced normalised

values (RNVALs). We use a VAR lag determined by a Bayes-Schwarz information criterion (BIC)

that penalises over-parameterisation compared to other widely employed information criteria. We

use a H = 100 step-ahead forecast horizons for forward iteration of the system. Additionally,

dynamic spillovers use a rolling estimation window of length 100 observations. Firstly, we provide

an analysis of unconditional spillovers, that are spillovers evaluated on the whole sample period.

The results are shown in Table 3.4.

USD CNY EUR GBP JPY FROM

USD 44.94 35.33 13.02 6.67 0.04 11.01

CNY 34.49 49.40 10.76 5.34 0.00 10.12

EUR 15.81 15.22 62.29 6.48 0.19 7.54

GBP 11.4 10.21 6.28 69.58 2.53 6.08

JPY 0.41 0.14 0.01 3.94 95.51 0.90

TO 12.42 12.18 6.01 4.49 0.55 35.66

Notes: The table presents the volatility spillovers between currencies. Reading the table horizontally shows the
spillovers each currency receives from others, reading vertically shows the spillovers that each currency gives to the
others.

Table 3.4: Currency spillovers

From Table 3.4 note that the USD and CNY are highly interconnected with the others, whereas

EUR, GBP and in particular JPY are more isolated in terms of connectedness. USD and CNY are

significantly dominant, and their contributions in terms of spillover towards other currencies are

much higher than those of the remaining currencies in the basket.

The analysis of dynamic spillovers is able to clarify the results obtained in the unconditional

spillover analysis by means of observing the evolution of spillovers over time. Figure 3.3 depicts

the overall dynamic spillover plotted over the sample period. The overall spillover within the

basket ranges from a minimum of 17.87% to a maximum of 80.00%. It seems that the overall

spillover follows a generally decreasing trend, as it starts from 54.51% at the beginning of the
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Figure 3.3: Overall spillovers
Notes: The figure represents the dynamic overall spillover index of the basket currencies over the sample period.

sample period, while it diminishes to 34.43% at the end of the studied time frame.

Dynamic directional spillovers can shed light on which of the currencies transmit price change

spillovers to others and which of them receive spillovers from others. We plot directional from, to

and net spillovers in Figures 3.4, 3.5 and 3.6, respectively.

From the joint analysis of Figures 3.4, 3.5 and 3.6 we can observe that USD is the most in-

fluential currency in terms of spillovers. Indeed, the magnitude of spillovers received from others

is weak compared to that transmitted to others. Moreover, the net spillover dynamics summarises

the dominant position of the USD, being it always positive and taking relatively high values over

the sample period. However, the magnitude of spillovers transmitted by USD follows a decreas-

ing trend over time, indicating the currency is gradually losing its potential to contribute to the

evolution of the others, perhaps due to the affirmation of emerging economies in the latter period,

especially after the 2009 crisis. CNY is indeed emerging as a dominant currency during the recent
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Figure 3.4: From spillovers
Notes: The figure represents the dynamic directional ”From” spillovers of the basket currencies over the sample

period.

Figure 3.5: To spillovers
Notes: The figure represents the dynamic directional ”To” spillovers of the basket currencies over the sample period.
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Figure 3.6: Net spillovers
Notes: The figure represents the dynamic directional net spillovers of the basket currencies over the sample period.

times. Despite that, the latter considerations are in line with the full sample results obtained above,

which point to the dominance of USD as a spillover transmitting currency.

Differently from what emerged in the full sample analysis, instead, the dynamic analysis shows

that CNY has not been such a leading currency in transmitting price change shocks from an his-

torical viewpoint. Indeed, the full sample result is arguably driven by a noticeable spike which

occurred on 21 July 2005. Indeed, during that day the Chinese Central Bank officially announced

the abandonment of the eleven-year-old peg to the dollar and pegged the CNY to a basket of cur-

rencies whose composition was not disclosed. This caused a prompt revaluation to CNY 8.11 per

USD, as well as to 10.07 CNY per euro. However, the peg to the dollar was reinstated as the

financial crisis strengthened in July 2008. These results indicate that CNY does not particularly

contribute to the price change evolution of the other currencies in the basket, although it can exert

shocks through sudden policy decisions.

The dominance of the USD and, to a lesser extent, of CNY emerges also when analysing
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the directed network structure of the currencies in terms of net pairwise spillovers represented in

Figure 3.7. In this context, the network edges are represented by the currencies in the basket,

whereas links represent the magnitude of net pairwise spillovers for each currency pair.

Figure 3.7: Spillover network (full sample)
Notes: The figure represents the spillover network of the currencies included in the basket over the full sample period.
The nodes are represented by the currencies included in the basket. The magnitude of the links is represented by the
net pairwise spillovers between each currency pair.

To verify the loss of importance of the dollar, we extend the spillover network analysis to cover

the Covid-19 crisis period. Specifically, we analyse two subsamples with the year 2020 as the

cutoff point, to detect major changes in country forex spillover dynamics.

The spillover network gives a ranking in terms of spillover transmission capacity and, therefore,

price discovery. The most influential currency in terms of price change shock transmission is

USD, followed by CNY and, to a lesser extent, GBP. The two receivers are instead JPY and, at

most, EUR. The highest influence is given by USD towards EUR, followed by CNY to JPY. This
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Figure 3.8: Spillover network (sub-samples)
Notes: The figure represents the spillover network of the currencies included in the basket. The first representation

corresponds to the period April 2017 to December 2019 (left panel), while the second one from January 2020 to
December 2020 (right panel). The nodes are represented by the currencies included in the basket. The magnitude of

the links is represented by the net pairwise spillovers between each currency pair.

suggests that the contagion occurs to a greater extent within Asian currencies and across American

and European ones.

However, the picture is different when analysing spillovers during two distinct sub-samples:

one ranging from April 2017 to December 2019, and another one from January 2020 to December

2020, both depicted in Figure 3.8. Indeed, overall interconnectedness has increased in the second

sub-sample, likely due to the Covid-19 outbreak; thus markets move more similarly as a conse-
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quence of the epidemic. This is equivalent to say there are more contagion dynamics occurring

since the Covid-19 outbreak and that the magnitude of information transmitted from the currencies

sharply increased after the Covid-19 crisis. Moreover, empirical outcomes highlight that the conta-

gion dynamics starkly different from that of the pre-crisis period. USD is no longer dominant, and

it becomes a spillover receiver during the pandemic period. Currencies which before were mostly

receivers, instead, started becoming transmitter of shocks, such as JPY, GBP and, to a lesser extent,

EUR. This suggests that the Covid-19 pandemic, while inducing a more coordinated response of

the forex market to shocks, has literally disrupted the equilibria existing prior the crisis. It also

highlights the importance of monitoring the spillover dynamics in the basket both to have a sys-

temic risk indicator and to determine lead-lag relationships among currencies in the basket when

designing basket-based stablecoins.

3.5 Conclusion

In the paper we present a methodology to build a basket based stablecoin whose weights can

maximise stability over a long time period. The weights have been calculated, retrospectively, from

2002 to 2019, and are distributed more evenly across the currency basket than those suggested by

the SDR.

The proposed stablecoin (Librae) appears to be less volatile than single currencies and, there-

fore, with respect to single currency stablecoins (Libra). It can thus constitute a valuable proposal

especially for workers who live abroad and make remittances to their own country, a market seg-

ment with a high potential of being attracted by payments in stablecoins.

We have also proposed a variance decomposition technique based on a VAR model aimed

at showing which currencies mostly impact the Foreign Exchange market and whether a single

currency or a basket based stablecoin is more resilient to currency shocks. Our results show that
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the dollar is the currency which mostly impact the market, and that a basket based coin is better

than a dollar based one, from a stability and value maintenance viewpoint. However, CNY is

taking over as spillover transmitter and USD is gradually losing its influence over time, especially

with regards to the latest period, characterised by the Covid-19 otubreak.

With a basket based stablecoin it is possible to offset the risk of currencies shocks. This is

of relevance for different policy purposes and, in particular, for emerging markets and countries

having high remittances. Indeed, by holding stablecoins rather than single currencies the risks

associated to currency shocks are mitigated and stablecoin holders can count on a currency whose

value is less volatile than traditional fiat currencies and, thereby, more reliable. The latter fact has

also positive consequences on the cross-border payments side, provided that the stability of the

stablecoin mitigates the foreign exchange risk, thus contributing to the fact that buyers and sellers

give or receive an amount of money whose value is less sensitive to variations over time.

Future research may consider basket that dynamically evolve over time, although these are

bound to be more difficult to achieve consensus. Furthermore, currency volumes in circulation

may be taken to account, along with the technical characteristics of the coins (for example: cy-

bersecurity, redeemability, reliability), from a different, more theoretical, viewpoint. Future works

might also consider a basket composed of different currencies: for example, without the Chinese

Renminbi, and in line with the developments of the Diem coin, recently announced by the Libra

foundation.
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Čihák M, Schaeck K. 2010. Competition, efficiency, and soundness in banking: An industrial

organization perspective. European Banking Centre Discussion Paper .

Cohen RD, Humphries J, Veau S, Francis R. 2019. An investigation of cyber loss data and its links

to operational risk. Journal of Operational Risk 14: 1–25.

Cope EW, Piche MT, Walter JS. 2012. Macroenvironmental determinants of operational loss sever-

ity. Journal of Banking & Finance 36: 1362–1380.

Corbet S, Meegan A, Larkin C, Lucey B, Yarovaya L. 2018. Exploring the dynamic relationships

between cryptocurrencies and other financial assets. Economics Letters 165: 28–34.

Cornalba C, Giudici P. 2004. Statistical models for operational risk management. Physica A:

Statistical Mechanics and its applications 338: 166–172.

Cox DR. 1972. Regression models and life-tables. Journal of the Royal Statistical Society: Series

B (Methodological) 34: 187–202.

Crosignani M, Macchiavelli M, Silva AF. 2020. Pirates without borders: The propagation of

cyberattacks through firms’ supply chains. Staff Report 937, Federal Reserve Bank of New

York.

Cruz MG, Peters GW, Shevchenko PV. 2015. Fundamental aspects of operational risk and insur-

ance analytics: A handbook of operational risk. John Wiley & Sons.

Cummins JD, Lewis CM, Wei R. 2006. The market value impact of operational loss events for US

banks and insurers. Journal of Banking & Finance 30: 2605–2634.

127



Curti F, Gerlach J, Kazinnik S, Lee M, Mihov A. 2019a. Cyber risk definition and classification

for financial risk management. Federal Reserve Bank of St Louis, August, mimeo .

Curti F, Mihov A, Frame WS. 2019b. Are the largest banking organisations operationally more

risky?

URL https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3210206

Dalla Valle L, Giudici P. 2008. A bayesian approach to estimate the marginal loss distributions in

operational risk management. Computational Statistics & Data Analysis 52: 3107–3127.

Danielsson J, Macrae R. 2019. Systemic consequences of outsourcing to the cloud. VoxEU, CEPR.
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APPENDIX A

THE DRIVERS OF CYBER RISK

A.1 Additional material and robustness checks

Mean Median Std. dev. Minimum Maximum

Variables varying at individual event level

Costs ($ mil) 8.72 0 58.6 0 5,000

connections 2.00 2.00 7.09 0 161.

Variables varying at firm level

Firm size (Revenues $ mil) 6,910 27.7 31,000 0a 521,000

Variables varying at sector level

Digital share of business activity 14.6 15.2 2.06 9.23 24.3

Cloud service purchases 18.3 20.1 5.04 5.60 26.2

Binary variables at event level

Malicious 0.307 0 0.461 0 1.00

Security incident 0.0368 0 0.188 0 1.00

Data breach 0.400 0 0.490 0 1.00

Phishing/skimming 0.0366 0 0.188 0 1.00

Privacy violation 0.522 1.00 0.500 0 1.00

Other 0.00441 0 0.0663 0 1.00

Notes: a Zeros are a consequence of rounding accuracy. This table summarises all variables from the full set of
US-based observations (120,184) for comparison with the sub-sample used for regressions. The top panel reports the
variables from equation (1.1) that vary with each individual event in the sample. The second panel contains variables
from equation (1.1) that vary by each firm contained in the sample. The third panel are the variables from equation
(1.1) that vary at the sector level and obtained from the US census Bureau 2018 Annual Business Survey. The bottom
panel are dummy variables that indicate the type of the incident.

Table A.1.1: Summary of variables from full sample

137



N Mean Standard deviation σk ρk

Accommodation and Food Services 125 6,189,843 22,366,049 9.95 0.0469

Admin. and Support and Waste Management 462 9,658,941 75,249,945 9.74 0.00181

Agriculture, Forestry, Fishing and Hunting 2 1,355,000 1,902,117 - -

Arts, Entertainment, and Recreation 31 4,891,540 8,626,132 17.2 0.155

Construction 48 819,930 2,300,230 8.65 -0.0171

Educational Services 113 1,145,089 3,600,769 6.52 -0.00700

Finance and Insurance 901 6,157,930 25,769,555 10.5 0.00704

Health Care and Social Assistance 273 2,346,022 13,610,937 5.55 0.0293

Information 553 14,464,877 214,374,866 11.0 0.0209

Management of Companies and Enterprises 11 515,806 1,556,415 26.4 0.0187

Manufacturing 148 15,823,066 63,595,183 10.3 0.0853

Mining, Quarrying, and Oil and Gas Extraction 4 2,112,400 3,289,039 - -

Other Services (except Public Administration) 80 3,409,466 14,926,987 12.6 -0.0111

Professional, Scientific, and Technical Services 338 17,746,993 221,520,625 10.8 0.00518

Real Estate and Rental and Leasing 54 2,521,698 5,819,034 8.42 0.0759

Retail Trade 359 11,666,479 42,163,609 12.3 -0.00267

Transportation and Warehousing 54 29,170,690 84,187,668 11.9 0.0427

Utilities 39 1,512,738 2,405,099 16.9 0.00792

Wholesale Trade 110 38,134,792 268,239,144 10.7 0.00748

Total 3,705 10,398,854 121,742,478 - -

Notes: The first column reports the number of incidents in each sector. The second and third columns show the mean
and standard deviation of the dependent variable (the cost of a cyber incident in US$) prior to a log transformation. The
fourth and fifth column denote the within sector variation and within sector correlation calculated using the residuals
of the regression in column I of Table 1.2 according to the method of (Cameron and Trivedi, 2005, p. 835). Missing
entries could not be calculated due to a lack of observations in the clusters.

Table A.1.2: Summary statistics by sector and within cluster correlation
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Figure A.1.1: Residuals of the estimation of firm revenues on the cost of cyber incidents
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Notes: The two figures show the partial residual plots used to observe the existence of a second order relationship
between costs and firm size, as well as costs and connections. The panel on the left hand side shows the residuals
obtained by regressing costs on the variables from our baseline equation with the omission of firm size, denoted by
û1, on the y-axis. On the x-axis are the residuals obtained by regressing firm size on the variables from the baseline
equation, denoted û2. The right hand panel plots the partial residuals between costs and connections variable where
the residuals from the regression of connections on controls is denoted by û3. The plots do not show any evidence of
the presence of a second order term, we thus do not include any second order terms in our regressions.

Figure A.1.4: Partial residual plots to identify second order relationships
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Dependent Variable: Log(Cost)

Regressor I II III IV V

Panel A: Ecker White Errors

log(Firm Size)
0.241***

(0.0134)

0.220***

(0.0132)

0.231***

(0.0140)

0.170***

(0.0306)

0.234***

(0.0140)

Connected events
0.0176***

(0.00664)

0.0257***

(0.00638)

0.0257***

(0.00645)

0.0246***

(0.00653)

-0.0251

(0.0164)

log(Firm Size)2
0.00698**

(0.00315)

(Connected events)2
0.000882***

(0.000249)

Malicious
-1.31***

(0.171)

-1.33***

(0.186)

-1.20***

(0.191)

-1.20***

(0.190)

-1.17***

(0.191)

Panel B: Cluster Robust Error by Firm

log(Firm Size)
0.241***

(0.0229)

0.220***

(0.0192)

0.231***

(0.0196)

0.170***

(0.0448)

0.234***

(0.0194)

Connected events
0.0176

(0.0109)

0.0257**

(0.0114)

0.0257**

(0.0114)

0.0246**

(0.0117)

-0.0251

(0.0185)

log(Firm Size)2
0.00698

(0.00505)

(Connected events)2
0.000882***

(0.000304)

Malicious
-1.31***

(0.219)

-1.33***

(0.218)

-1.20***

(0.223)

-1.20***

(0.222)

-1.17***

(0.223)

Year Fixed Effects N Y Y Y Y

Sector Fixed Effects N N Y Y Y

R2 0.11 0.19 0.21 0.21 0.21

N 3705 3705 3705 3705 3705

Notes: Results form estimating equation (1.1). *, ** and *** denote significance at the 10, 5 and 1 percent level
respectively. Panel A reports the estimates with Ecker-White standard errors (in parentheses). Panel B reports the
estimates with cluster robust errors at the firm level (in parentheses). Definitions of the regressors are reported in
Table 1.1. The regressions are analogous to those in Table 1.2.

Table A.1.3: Baseline model with alternative error clustering
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Dependent Variable: Log(Cost per Unit Revenue)

Regressor I II III IV V

log(Firm size)
-0.820***

(0.0295)

-0.843***

(0.0264)

-0.825***

(0.0247)

-0.844***

(0.0942)

-0.822***

(0.0244)

Connected events
0.0144

(0.0105)

0.0221*

(0.0112)

0.0243**

(0.0113)

0.0241*

(0.0115)

-0.0195

(0.0195)

log(Firm size)2
0.00146

(0.00782)

(Connected events)2
0.000762**

(0.000332)

Malicious
-1.37***

(0.241)

-1.40***

(0.248)

-1.21***

(0.250)

-1.21***

(0.250)

-1.18***

(0.250)

Security Incident
12.5***

(0.293)

14.9***

(0.600)

16.6***

(0.688)

16.7***

(0.718)

16.8***

(0.698)

Data Breach
13.4***

(0.256)

16.2***

(0.600)

17.9***

(0.693)

17.9***

(0.717)

18.0***

(0.702)

Phishing/Skimming
14.5***

(0.470)

16.9***

(0.703)

18.3***

(0.765)

18.4***

(0.793)

18.5***

(0.771)

Privacy Violation
12.5***

(0.177)

15.3***

(0.550)

17.3***

(0.648)

17.3***

(0.675)

17.4***

(0.656)

Other
13.4***

(0.826)

15.6***

(1.02)

17.9***

(1.08)

17.9***

(1.11)

18.2***

(1.10)

Year Fixed Effects N Y Y Y Y

Sector Fixed Effects N N Y Y Y

R2 0.45 0.5 0.52 0.52 0.52

N 3699 3699 3699 3699 3699

Notes: Results form estimating equation (1.1) using the cost per unit revenue as an alternate dependent variable. *, **
and *** denote significance at the 10, 5 and 1 percent level respectively. All standard errors (reported in parentheses)
are clustered by sector. The definition of the regressors are reported in Table 1.1, however in this specification Firm
size refers to the number of employees. Column I is an OLS regression without controls for year and sector fixed
effects. Column II is an OLS regression without year fixed effects. Column III is an OLS regression including both
fixed effects. Column IV tests for the presence of a non-linear relationship between firm revenues and the costs.
Column V tests for the non-linear relationship between connections and costs.

Table A.1.4: Baseline model using scaled dependent variable
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Figure A.1.5: IT expenditures across sectors
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Notes: The panel on the left hand side shows the histogram of the difference between annual spending as a percentage
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The panel on the right reports the equivalent histogram using malicious incidents.

Figure A.1.6: Firms over / under spending.
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APPENDIX B

OPERATIONAL AND CYBER RISK IN THE FINANCIAL SECTOR

B.1 Description of the calculation of capital

Extension of the Internal Measurement Approach.

As done with all frameworks under the Advanced Measurement Approach, the Internal Measure-

ment Approach partitions a bank’s operational risk exposures into a series of business lines and

operational risk event types. Each intersection of business line and event type is known as a cell.

For each cell, a separate expected loss figure is calculated. Due to data limitations, we use solely

business lines as individual cells rather than the intersection of business lines and event types. A γ

factor is then used to translate the expected loss into a capital charge. Alexander (2008) proposes

a method to determine the γ factors that translate into observable quantities in the loss frequency

distribution, and therefore the parameter can be calibrated based on operational risk data.

The basic idea is to map the expected loss to a level of capital that covers the unexpected annual

loss, defined as the 99.9th percentile of annual loss net of mean annual loss (shown in Figure 2.4.

Alexander’s alternative γ factors, labelled as ϕ are thus defined as follows:

ϕ = (99.9thpercentile − mean)/standard deviation

where mean and standard deviation refer to the measures of the annual loss distribution. Under

the assumption that loss severity is random, Alexander’s approach suggests ϕ is calculated as

follows:
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ϕ = (99.9thpercentile − λµL)/
√︂

λ(µ2
L + σ2

L) (B.1)

where σL is the standard deviation of annual losses, µL is the mean of annual losses and λ is the

mean frequency of losses under the assumption they follow a Poisson distribution. The calculation

of operational risk capital then becomes:

KIMA = ϕ× µL ×
√
λ×

√︄
1 +

(︃
σL

µL

)︃2

(B.2)

the term

√︃
1 +

(︂
σL

µL

)︂2
is included to account for the uncertainty in loss severity. Note that

higher variation leads to a greater the capital charge. To calculate the operational risk capital based

on this approach, we first obtain the mean, µL, and standard deviation, σL, of annual losses from

the ORX database. For each business line, i, we use maximum-likelihood estimation to fit λî and

then compute the estimate of ϕî from equation B.1.

LDA and Bayesian methodology.

The LDA gives great flexibility to banks with respect to estimating the capital necessary to cover

operational losses. In our analysis we use two models from the LDA suite for capital calculation. In

this section we focus on the Bayesian approach, and note that the alternate MCMC methodology

also used in our analysis follows a similar logic. More details on this approach and LDA more

widely can be found in Cruz et al. (2015).

Various methodologies can be used to estimate the frequency and severity distributions and

subsequently perform the convolution of the two. Here, we detail a Bayesian approach to esti-

mating the annual loss distribution, which tends to give greater flexibility and avoids estimation

problems typically encountered when working with extreme value distributions. We consider non-
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informative priors for which Bayesian estimates converge to maximum likelihood ones. We follow

the approach used by Figini et al. (2015) to estimate the annual loss distribution, considering a

convolution between a Generalised Pareto distribution for the mean loss (severity), with a Poisson

distribution for the number of loss events (frequency), as in Chavez-Demoulin et al. (2006).

The annual losses can be written as a product of Frequency (the number of loss events during a

certain time period) and Severity (the mean impact of the event, in terms of financial losses, in the

same period). In particular,

Lit = sit × nit (B.3)

where for the business line/event type intersection i and for t time periods available, Lit denotes

the annual operational loss, sit denotes the severity and nit the frequency. As noted above, we ag-

gregate over business lines rather than the intersection of business lines and event types. Following

the operational risk literature, we consider the following three general assumptions: i) within each

intersection i, and each time period t, the distribution of the frequency nit is independent of the

distribution of the severity sit; ii) for any given time period t, the losses occurring in different

intersections, i, are independent of each other; iii) for any given intersection, i, losses occurring in

different time periods, t, are independent of each other.

Let f(st|θ) and f(nt|λ), denote the likelihood functions of the severity and frequency respec-

tively, where θ denotes the parameter vector of the severity distribution and λ denotes the parameter

vector of the frequency distribution, we have that, according to assumptions i)-iii):

L(s, n|θ, λ) =
T∏︂
t=1

f(nt|λ)f(st|θ) (B.4)

While expert input can be useful to construct informative priors, we use uninformative priors
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with high variance, as in Dalla Valle and Giudici (2008). For the frequency, we use the conjugate

gamma distribution.

λi ∼ Γ(α, β) (B.5)

We choose α = 0.01 and β = 0.01. The severity is assumed to follow a general Pareto

distribution:

Fi ∼ GPD(µ, ξ, σ) (B.6)

First, we assume the location parameter, µ = 0. We then follow Cabras and Castellanos (2007)

and use an uninformative prior for ξ and σ of the severity distribution.

π(ξ, σ) ∝ σ−1(1 + ξ)−1(1 + 2ξ)−1/2, ξ > −0.5, σ > 0 (B.7)

Since there are no analytical solutions to this problem, we use the Metropolis-Hastings algo-

rithm to estimate the posterior distributions of the annual frequency and severity. We then take the

convolution of the two distributions to obtain the annual loss distribution.
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B.2 Tables and Figures

Business Linea Description

Corporate finance Structuring, issuance or placement of securities and similar instruments,
not just for capital raising

Trading and sales Products / Positions held in the Trading Book of the firm and Corporate
Investments.

Retail banking Retail loans, Retail deposits, Banking services, Trusts & estates, Investment
advice, Cards - Credit & Debit

Commercial banking Project finance, Real estate finance, Export finance, Trade finance, Factor-
ing, Leasing, Loans guarantees, Bills of exchange

Clearing Financing and related services

Agency services Bank account, deposit services, “plain vanilla” investment products

Asset management Management of individual assets invested in financial instruments on behalf
of others (i.e. not in the bank’s own name for its own account) in which the
bank has the power to make investment decisions. This includes activities
where each customer’s assets are held in a separate portfolio, as well as
those where the assets of different customers are pooled in one portfolio.

Retail brokerage Various services related to administration and management of estates,
trusts, assets, portfolios etc.

Private banking Limited category for items than can only be categorised at corporate level

Notes: aThe definitions of business lines used by ORX are mapped to those used under the Basel II framework.

Table B.2.1: Overview of business lines based on the operational risk reporting standards of ORX
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Region Sub-regions

North America US, Canada

Latin America & Caribbean -

Eastern Europe -

Western Europe Southern Europe, Northern Europe, United Kingdom, Western Europe

Asia / Pacific -

Africa -

Table B.2.2: Overview of regions and sub-regions
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Dependent Variables

Regressor Lossit
Incomeit

Freqit
Incomeit

Severityit

Incomeit

Panel A: Recognition Date

Taylor Rule
-0.0829**

(0.0359)

-0.0708*

(0.0397)

-0.0120

(0.0349)

Boone Indicator
0.870

(0.619)

0.711

(0.481)

0.159

(0.677)

Credit GDP Gap
0.00594

(0.0124)

0.0124

(0.0130)

-0.00645

(0.00571)

Supervisory Index
-3.17

(2.64)

-2.44

(1.95)

-0.723

(1.08)

R2 0.1 0.19 0.19

N 123 123 123

Panel B: Occurrence Date

Taylor Rule
-0.0578**

(0.0239)

-0.0491**

(0.0241)

-0.00870

(0.0201)

Boone Indicator
1.01

(0.620)

0.889**

(0.379)

0.117

(0.653)

Credit GDP Gap
0.0128

(0.00852)

0.0124*

(0.00681)

0.00033

(0.00531)

Supervisory Index
-0.0972

(1.83)

-0.439

(0.819)

0.342

(1.20)

R2 0.12 0.29 0.29

N 123 123 123

Time FE Y Y Y

Region FE Y Y Y

Notes: The table contains the results of a panel regression with all macroeconomic variables. The dependent variables
are the logarithm of the loss, frequency and severity normalised by income. Standard errors are robust with small
sample correction. *, ** and *** denote significance at the 10, 5 and 1 percent level, respectively. All standard errors
are robust to small sample. Panel A shows the coefficients when aggregating by recognition date and Panel B by
occurrence date.

Table B.2.4: Panel Regression of Contemporaneous Variables
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Dependent variable

TotalLoss˜

Income
Frequency˜

Income (Severity
Income )

Panel A

Credit-GDP-Gap - 4 Lags
0.0061

(0.0096)
0.0061

(0.0096)
0.00064
(0.0047)

Credit-GDP-Gap - 8 Lags
0.0071

(0.0095)
0.0071

(0.0095)
0.0039

(0.0040)

Panel B

Taylor Rule Dev. - 4 Lags
-0.046**
(0.022)

-0.061**
(0.028)

0.015
(0.021)

Taylor Rule Dev. - 8 Lags
-0.069**
(0.031)

-0.095*
(0.055)

0.026
(0.036)

Regional Fixed Effects Y Y Y
Time Fixed Effects Y Y Y

Notes: The table is divided into two panels summarising the results from 12 panel regressions. Each column denotes
the dependent variables used, which are logged and corrected for an underreporting bias. For these regressions we
extend our data collection of the credit-to-GDP gap and deviations from the Taylor rule to match the full database at
2018 Q3. Each panel distinguishes between the dependent variables used. The coefficients shown are the sum of the
lagged variables i.e. the cumulative effect, for example at 4 lags the coefficient reported is,

∑︁4
i=1 β̂i. A robust sum

of standard errors is reported in parenthesis. The sum of standard errors is calculated as
√
L′V L, where L is a 0,1

vector that denotes the linear combination of regressors and V is the estimated robust covariance matrix. We test that
the sum of coefficients is significantly different to 0. The asterisks denote the significance as follows: * p < 0.1 , **
p < 0.05, *** p < 0.01. All regressions are two way fixed effects models, including a regional and time effect.

Table B.2.5: Operational losses and the macroeconomic environment, with bias adjustment
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Figure B.2.1: Sample size and frequency of events
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Figure B.2.2: Loss and frequency over time partitioned by bank size

157



30,000

60,000

90,000

2008 2010 2012 2014 2016

E
st

im
at

ed
 O

pe
ra

tio
na

l R
is

k 
C

ap
ita

l (
99

.9
%

)

(a) Bayesian LDA Estimate with 95% Confidence Interval
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(b) Lognormal LDA Estimate with 95% Confidence Interval
Notes: The plot shows the estimated operational risk capital by two different methodologies and the 95% con-
fidence interval for the location of the 99/9% quantile of the annual loss distributions. These are calculated by
using the approximation put forward in Cruz et al. (2015). The upper or lower bound can be calculated as
B = Kα ± F−1

N

(︁
1+γ
2

)︁√︁
(Kα(1− α)). Where, K denotes the number of Monte Carlo random draws of the an-

nual losses, F−1
N the inverse of the standard normal distribution, γ the desired confidence interval and α the chosen

quantile.

Figure B.2.3: Confidence intervals for VaR
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Figure B.2.4: Estimated survival curves by region
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Figure B.2.5: Estimated bias factor by region
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Figure B.2.6: Annual frequencies adjusted for data bias by region
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Notes: On the left hand side of the quadrant of plots we show the total value of losses per year divided by the total
consortium annual income. On the right hand side we display the frequency divided by income (in billions). The
upper panel of the quadrant of plots shows incidents aggregated by date of occurrence and the bottom panel by date of
recognition. Each bar is partitioned by cyber event type.

Figure B.2.7: Loss and frequency of operational losses by event type
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Notes: On the left hand side of the quadrant of plots we show the total value of losses per year divided by the
total consortium annual income. On the right hand side we display the frequency divided by income (in billions).
The upper panel of the quadrant of plots shows incidents aggregated by date of occurrence and the bottom panel by
date of recognition. Each bar is partitioned by region. Abbreviations in the legend are defined as follows: APAC:
Asia/Pacific; East EU: Eastern Europe; Latam/Carib: Latin America and Caribbean; North Am: North America; and
West EU: Western Europe.

Figure B.2.8: Loss and frequency of operational losses by event type
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Notes: On the left hand side of the quadrant of plots we show the total value of losses per year divided by the total
consortium annual income. On the right hand side we display the frequency divided by income (in billions). The
upper panel of the quadrant of plots shows incidents aggregated by date of occurrence and the bottom panel by date of
recognition. Each bar is partitioned by bank size.

Figure B.2.9: Loss and frequency of operational losses by event type
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