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Abstract (Italiano)

Le tecnologie di next generation sequencing (NGS) hanno rivoluzionato
il mondo della genetica e della medicina, influenzando fortemente la
diagnosi delle malattie ereditarie. L’aumento della capacita di
sequenziamento e ’abbattimento dei tempi d’analisi hanno permesso la
diffusione delle tecnologie NGS in molti laboratori di genetica. Il grande
numero di applicazioni, sia di diagnostica che di ricerca, ha inoltre generato
la necessita di adattare 1’analisi dei dati prodotti da queste tecnologie per
ottimizzare la risposta ai problemi specifici. Il processo di analisi ¢
implementato tramite trasformazioni consecutive dei dati genetici (pipeline)
utilizzando un grande numero di tool e software bioinformatici. Spesso le
performance dei diversi tool dipendono dal tipo dei dati in ingresso e
I’integrazione dei software adatti ai diversi tipi di dati ¢ diventato un
passaggio critico per la qualita delle informazioni prodotte. Inoltre, I’utilizzo
dei tool, la loro configurazione, la progettazione di pipeline robuste e lo
sviluppo di nuove soluzioni di analisi, sono processi complessi che
richiedono competenze di coding e la conoscenza dell’esteso panorama
bioinformatico. In questo contesto, i bioinformatici hanno acquisito un ruolo
fondamentale all’interno dei laboratori di genetica, grazie alle competenze
di sviluppo di sistemi informatici unite alle capacita di comprensione dei
problemi biologici e di adattamento delle analisi alle specifiche domande. I
laboratori che non dispongono di queste professionalita specializzate
possono incontrare difficolta nell’ ottimizzazione del workflow analitico, che
spesso viene affidato a software commerciali che applicano uguali regole e
sistemi a tutti i geni indistintamente. Da qui la necessita crescente di
strumenti semplici e veloci che possano essere d’ausilio, anche per figure
professionali con limitate competenze informatiche, alla progettazione di
pipeline customizzate e al loro utilizzo nell’analisi dei dati NGS. Durante il
percorso di dottorato di ricerca effettuato presso il Centro malattie genetiche
cardiovascolari della Fondazione IRCCS Policlinico San Matteo di Pavia, ¢
stata sviluppata la piattatforma Helper. Helper ¢ nata per la progettazione e
I’adattamento semplificato delle pipeline bioinformatiche dedicate
all’analisi di dati NGS derivati da applicazioni di targeted sequencing.
Helper ¢ dotato di una semplice interfaccia grafica mirata a facilitare
I’esperienza di sviluppo dei processi analitici bioinformatici anche per chi
non possiede particolari conoscenze di sviluppo di codice. Tramite Helper ¢
possibile scegliere quali step effettuare nel workflow di analisi e quali
evitare, quali tools e software utilizzare in ogni step selezionato, e con quali
argomenti settare i tool utilizzati. Helper permette inoltre di utilizzare le
pipeline progettate ed effettuare 1’analisi dei dati NGS, modificandole in
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base all’esperimento di sequenziamento dal quale derivano i campioni e in
base al tipo e all’organizzazione dei campioni. Helper puo essere utilizzato
sia su una workstation, sia su un comune PC, dimostrandosi compatibile con
1 tempi di analisi dei laboratori di genetica anche in presenza di soluzioni a
bassa capacita computazionale. Nel workflow di analisi genetica, Helper ¢
dedicato a quella che ¢ definita come analisi secondaria, che trasforma 1 dati
NGS grezzi in un set di varianti utili all’interpretazione del test genetico.

Il lavoro di tesi si € proposto inoltre di introdurre due ulteriori domande
fondamentali per la diagnosi genetica. La prima ¢ rappresentata dal problema
della classificazione patogenica delle varianti identificate dall’analisi
bioinformatica. La classificazione patogenica delle varianti ¢ un processo
delicato a causa della difficolta esistenti nel trovare regole uniformi e robuste
da applicare a tutti i difetti genici. In questa tesi viene proposto 1’esempio di
un sistema di classificazione per le varianti del gene DES, che prende in
considerazione le caratteristiche specifiche del gene che codifica per la
proteina di Desmina. Il secondo ¢ 1’identificazione dei geni responsabili di
un determinato fenotipo, necessaria per 1’ottimizzazione del test diagnostico
e per la gestione dei pazienti. In questo contesto viene approfondito il
problema dei tumori ereditari della mammella e dell’ovaio, tramite lo studio
dei risultati di analisi del database genetico sviluppato presso il San Matteo
per I’identificazione delle cause genetiche delle patologie oncologiche
familiari, in particolare quelle clinicamente “actionable”.
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Abstract (English)

Next generation sequencing (NGS) technologies have revolutionized the
world of genetics and medicine, strongly influencing the diagnosis of
hereditary diseases. The increase in sequencing capacity and the reduction
of analysis time and costs allowed the spread of NGS technologies in many
genetics laboratories. The large number of applications, both diagnosis and
research, has also generated the need to adapt the analysis of the data
produced by these technologies to optimize the clinical path of many human
diseases. The analysis process is implemented through consecutive
modifications of the genetic data (pipeline) using bioinformatics tools and
software. Often, the performance of the different tools depends on the type
of input data; the integration of software suitable for different types of data
is a critical step for the quality of the information produced. Furthermore,
the use of bioinformatics tools, their configuration, the design of robust
pipelines, and the development of new analysis solutions is a complex
process that requires coding skills and knowledge of the wide range of
existing tools. In this context, bioinformaticians achieved a key role within
genetics laboratories, thanks to the skills of developing computer systems
combined with the integration of knowledge on target biology systems and
related applications; these “in house” tailored activities favor the adaptation
of the analyses to each specific question/objective.

Laboratories using outsourcing analysis tools or entrusting to commercial
software that apply the same rules and systems to all genes, without
distinction, often face difficult optimization of the analytical workflow.
Hence, the growing need for simple and fast tools that can support
professionals with limited computer skills in the design of customized
pipelines and their use to analyze NGS data. During the PhD course carried
out at the Center for Cardiovascular Genetic Diseases of the IRCCS San
Matteo Hospital Foundation in Pavia, the Helper platform was developed.
Helper was born for the design and simplified adaptation of bioinformatics
pipelines for the analysis of NGS data derived from targeted sequencing
applications. Helper is equipped with a simple graphic interface aimed at
facilitating the development experience of bioinformatics analytical
processes even for professionals who do not have coding knowledge.

Helper allows the selection of: the steps to carry out in the analysis
workflow; the tools and software to use in each selected step; the arguments
to set the tools employed in each application. Helper further allows the use
of the pipelines, the design and carrying out of the analysis of NGS data; it
can be modified based on the sequencing experiment from which the samples
are derived, and on the basis of the organization of the samples. Helper can
be used both on a workstation and on a common PC, proving to be
compatible with the analysis times of the genetics laboratories even in the
presence of solutions with low computational capacity. In the genetic
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analysis workflow, Helper is part of the process of translating raw NGS data
into a set of variants useful for the interpretation of the genetic test.

The thesis finally aimed at addressing two fundamental questions for
genetic diagnosis. The first question addresses the complex issue of the
variant classification as identified by bioinformatics analysis. The
classification of genetic variants is a process that reflects difficulties in
finding uniform and robust rules shared by all genes. In this thesis, a
classification system is proposed for the variants of the DES gene, which
takes into consideration the specific characteristics of the gene encoding the
Desmin protein. The second question addressed the identification of the
genes responsible for a specific phenotype, necessary for the optimization of
the diagnostic test and for patient management. In this context, hereditary
breast and ovarian tumors is investigated through the study of the results of
the analysis of the genetic database developed at San Matteo for identifying
the genetic basis of familial cancers, in particular clinically actionable genes
and variants.
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Chapter 1

Introduction

1.1. NGS-driven genetics

Next-generation sequencing has definitively revolutionized genetic
testing in human as well as non-human pathology. Earlier, in the 1970s, the
Sanger methodology [1] had provided a new way of directly searching for
the genetic basis of hereditary diseases. The process of genetic diagnosis
before NGS technologies was a difficult path, due to the lack of information
supporting the interpretation of findings and to the low throughput
sequencing potential of the tools available. The search for gene defects was
based on gene-by-gene sequencing, exon by exon, in a long and costly
process if performed on a large scale. Sanger sequencing was used for more
than 15 years as the unique sequencing tool at the Centro Malattie Genetiche
CardioVascolari (CMGCYV) of the IRCCS Policlinico San Matteo of Pavia
(OSM), later integrated with Roche 454 sequencer (2011-2014), and finally
by Illumina MiSeq from 2015 to date; it is still used as confirmatory second
tool for the diagnostic test, as requested by Region Lombardia rules for
genetic testing and guidelines for genetic testing by scientific societies.

The Sanger sequencing limitations were overcome with NGS tools that
parallelize the sequencing of a large number of genes in a pool of samples at
the same time, lowering the costs and times of genetic analysis and opening
new horizons only glimpsed until then. The enormous amount of data that
has reached the scientific community in just less than 20 years is one of the
main effects of the expansion of NGS technologies. The evolution of
population genetics gained by large-scale genetic studies led to the
development of large population databases [2] as well as to the origin and
implementation of clinical and genetic association databases (for example
Decipher [3], HGMD [4] or ClinVar [5][6]. The broadcasting of shared
genetic repositories around the world contributed to the exponential
expansion of the methodology. An example of the impact of NGS
technologies on the study of rare diseases is the growth of the Online
Mendelian Inheritance in Man (OMIM) database [7] in which the number of
inherited phenotypes with a known genetic basis has nearly doubled since
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2007. In parallel, the number of genes associated with rare diseases has
grown at an impressive proportion. The opportunities that NGS offers to the
scientific community are not easily quantifiable: the possibility of
discovering the causes of hereditary diseases that are still orphan, or of
identifying more than one genetic disease in a single individual; the
discovery of genetic markers of predisposition to quantify the risk of
developing more common diseases [8][9]; the study the genetic makeup of
tumors and the identification of targets to develop disease-specific
medications and preventive surgery [10]. The cascade of the benefits of the
new knowledge deepens molecular mechanisms of diseases thus finally
translating into human care. These are some of the examples of the impact
of NGS technology on patient management. NGS technology overturned the
paradigm that guided genetic diagnosis. Moving from clinically-driven
genetics to genetically-driven clinics, making the reverse phenotyping
process possible [11]. NGS sequencing has in fact made it possible to
identify the causes of genetic diseases that can be detected far before the
phenotype develops, and therefore to optimize clinical management by
anticipating the effects of the disease, significantly improving human lives.
Now a new calling for a third step is needed, from genetically-driven clinics
to molecular clinics, when new disease classifications incorporate their
genetic basis (for example Desminopathy as the disease caused by DES
defect shown in chapter 4).

However, easy access to these sequencing technologies introduces the
risks of moving genetics away from the clinics. In recent years, huge
amounts of data have been produced supporting associations between genes
and diseases that have often proved inconclusive, complicating the genetic
diagnosis process, and confusing the clinic. The large number of scientific
papers that analyze the genetic bases of the diseases generate a “jungle” of
contents that remain largely unconfirmed and non-validated. Hence, in
recent years, the need to put an order within the genetic knowledge has
arisen, which has favored the birth of projects such as ClinGen [12] aimed
at providing precise rules for the interpretation of genetic data and standards
for scientific communication. The method applies a robust process of
curation of the literature, returning to paying particular attention to the clinic
and refocusing on specific genes.

1.2. NGS data analysis systems

The exploitation in NGS sequencing led to the development of the systems
necessary to analyze the large amount of data produced. The new sequencing
platforms have the potential to produce terabytes of output files. Whole-
genome sequencing projects can generate a huge amount of data that turns
NGS analysis management into a big data problem. The challenges include
the implementation of analysis processes suitable for the different
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applications of NGS sequencing; the development of hardware systems,
specific computing, and storage structures for the analysis of big data; the
training of professional figures capable of responding effectively to the
technological and biological problems typical of the NGS world. Over the
years, a large number of tools and software dedicated to NGS data analysis
have been developed, thanks also to special contests that engage the
scientific community to collaboratively solve fundamental biomedical
questions and focus the attention to bioinformatics problems [13]. The
possibility of exploiting different tools made possible the adaptation of the
analysis process (pipeline) to the different types of data produced by NGS
sequencing. Although the application of the same pipeline is advisable to
obtain repeatable and robust results, the adaptation of the workflow to each
specific problem is often crucial for the final result. For this reason, in the
last 5 years, various solutions have been developed aimed at customizing the
NGS analysis process. Furthermore, the storage and processing of NGS data
require computational structures that often are not readily available. Within
labs with NGS machines, the available computing resources should match
the computational needs of the instruments. In some cases, a workstation is
the most cost-effective solution; in other cases, high-performance computing
(HPC) resources are needed, such as cluster or server solutions. Cloud
computing solutions may help to overcome the issues related to the purchase
of expensive and difficult-to-manage solutions such as cluster servers. The
option of paying based on the computing resources effectively utilized for
the analysis helps to reduce costs for large sequencing projects and many
companies, including Illumina, have adopted this solution to release
accessible services to all customers. Finally, the adoption of NGS technology
involves a series of difficulties that are not always within the reach of
traditional figures in genetics laboratories, such as doctors, biologists, and
laboratory technicians. The challenges include the development of analysis
systems, the selection, and management of calculation tools, the design of
new methods of extracting information from the raw data combined with the
ability to fully understand the biological problem and to succeed to
communicate effectively with the biomedical world. These complex
challenges generate the need for new professionals whose contribution is
now central to the management of NGS technologies. Their role is to
effectively interface in all the steps of the genetic diagnosis process, from
the evaluation of the clinical parameters of the patients to the extraction of
information from the genetic data. These professionals may not be present in
all laboratories, supporting the need for developing simplified systems that
can help design NGS data analysis pipelines, and that can have an
educational role in understanding the bioinformatics processes.
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1.3. The aim and the structure of the thesis

This thesis presents Helper, a platform for the simplified development of
customized pipelines aimed at analyzing NGS data derived from DNA
target-sequencing applications. The idea of a platform for the customization
of analysis workflows was born within the highly multidisciplinary context
of the CMGCYV of the OSM Foundation. For more than 35 years, the center
has been dealing with genetic diseases, including heritable
cardiomyopathies, aneurysmal diseases, hereditary-familial tumors, and
other rare and ultra-rare conditions. Within the genetics laboratory, the large
number of experiments, pilot studies, and research projects that require NGS
sequencing has generated the need for a fast and flexible system for adapting
NGS analysis pipelines to different needs. The thesis reflects the experience
of the bioinformatician within the CMGCYV, invested with the technical role
of developing tailored analysis solutions, incorporating all investigation
tools that can contribute to the interpretation process of the genetic data. The
next chapter (chapter 2) describes the technological background that
describes the applications of NGS systems, the work-path of the Illumina
sequencing technology, and the methods of NGS data analysis aimed at
identifying the genetic basis of hereditary diseases. Chapter 3 describes the
Helper platform and discusses the structure and the workflow management
system, as well as the graphical interface for preparing the analyses. The
chapter further discusses the results of the performance of the platform,
considering times for analysis, and the accuracy of the results of the variant
calling of the allelic copy number (CNV), a hot topic for the scientific
community. Finally, chapter 4 describes two clinical-genetic applications:
one exemplifies a rare monogenic disease with complex gene analysis and
interpretation (Desmin), and one shows the germinal genetic basis of familial
Breast and Ovarian Cancers.
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Chapter 2

Technological background

This chapter describes the state of the art of NGS as applied to the analysis
of the human genome. The aim is to show the technological path leading to
the identification of disease-causing variants, for both research and
diagnostic applications. The chapter briefly shows the scenarios of NGS
applications for DNA sequencing, the Illumina sequencing technology, and
the NGS data analysis workflow, from the structure of the bioinformatics
pipelines to the interpretative path of the genetic data.

2.1. NGS applications

The potential of NGS technology is still evolving; despite being a
relatively young technology, dozens of applications are described in the
literature [14]. Many applications are now used on a large scale and have
made the success of NGS. In short, NGS introduced a revolution in genome
studies, greatly increased the potential for identifying gene variants,
simplified the sequencing of new genomes, made it possible to carry out
transcriptomics and gene expression studies, allowed the identification of the
epigenetic changes of DNA and better understand DNA -protein interactions.
For example, Bisulfite sequencing (methylation seq) is used to determine
methylation patterns that regulate gene expression [15][16]; the ChIP
(chromatin immunoprecipitation) seq is a sequencing technique used to study
protein—DNA relationships. ChIP seq determines the sequence of the binding
sites of DNA-associated proteins and maps these regions precisely in the
genome [17][18]; the RNA sequencing is used to identify and quantify the
transcripts that are expressed in tissues or single-cell sequences [19] as well
as their changes over time. This technique allows studying alternative
splicing effects in genes, gene fusion, transcriptional modifications, and the
effect of genetic variants on the RNA product. RNA seq is used to identify
medications in small-RNA, miRNA, tRNA, and rRNA or to find new RNA
molecules [14][20].
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Although epigenetics and transcriptomics are now commonplace in
research laboratories, the two major applications of NGS sequencing remain
the sequencing of new genomes (De-novo sequencing) and re-sequencing.
De-novo sequencing has the primary objective of discovering the sequence
of novel genomes -never been previously studied-without reference
sequence, which must be generated. De-novo sequencing also contributed to
improving and completing the genome sequencing of known organisms and
to elucidating the structure of highly repetitive complex areas of DNA. It is
usually applied to small bacterial and viral genomes and has fundamental
importance in phylogenetic studies. Re-sequencing is vice versa defined as
sequencing aimed at identifying variations of a genome when compared with
a reference genome. The most common applications include the
identification of the genetic causes of hereditary diseases, the discovery of
new gene-phenotype associations, the calculation of the risk predisposition
to different diseases, and pharmaco-genetics.

2.1.1. NGS re-sequencing approaches

Re-sequencing applications are based on different genome interrogation
strategies. The choice of the genome sequencing strategy is a fundamental
step in the design of the study and takes into account factors such as the
throughput capacity of the instruments, the number and type of samples to
be sequenced, the costs, and the impact of the strategy on the goal of the
project. The possible strategies include the sequencing of the whole genome
(Whole Genome Sequencing - WGS) or the analysis of a pool of target
genome regions of interest (targeted sequencing). The most extensive
application of the targeted strategy is the sequencing of all coding regions of
the genes (Whole Exome Sequencing - WES). However, often in research
practice and diagnostics, sequencing of restricted genomic targets is used to
specifically address the research or clinical aims (Gene Panels or Hot spot
arrays).

The WGS represents the most comprehensive method for studying the
genome: in human genetics, WGS may apply to both chromosomal and
mitochondrial DNA. The WGS is the most effective application for
characterizing the patient's genomic profile, due to its ability to identify
defects in coding zones and in the intronic zones that contain regulatory
transcription sequences. In recent years, the costs of high-throughput NGS
technologies (e.g., [llumina NovaSeq and BGI platforms) have fallen below
€ 1,000, encouraging its use also in diagnostics [21]. The main obstacles
related to WGS are the difficulties faced by many institutions in supporting
the costs of consumables, either maintenance of the instruments or
outsourced sequencing services, and finally managing a large amount of
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data. The WGS generates a huge amount of data which, to be analyzed and
stored, requires adequate infrastructure, which may not be easy to implement
in all research labs. In clinical settings, a key point against the use of WGS
in diagnostic contexts is the difficult interpretation of data, which currently
prefers other more convenient and feasible sequencing strategies.

WES is a less thorough approach than WGS as it only provides sequences
of the coding regions (exomes) of the genes. The WES, despite not including
intronic regions, covers about 20,000 genes that code for proteins and whose
defects cause a large number of known Mendelian hereditary diseases; in
addition, WES may contribute to discovering new genes associated with the
studied phenotype. Although limited by the absence of information on
introns and some regulatory areas, the WGS guarantees an excellent cost-
effectiveness compromise of the test. For this reason, the practice of exome
sequencing is now entering genetic diagnostic paths.

The basis of Gene Panel Sequencing (GPS) is the selective study of genes
or genomic regions known to be associated with diseases, or biological
pathways pertinent with the given disorders, s suggested by previous studies
of WGS, WES, or linkage analysis. Regions commonly studied include
exons, introns, promoter sequences, or other highly conserved regions with
biological significance and pertinence with the phenotypes. This method is
the most widely used in the field of precision medicine for the detection of
genetic variants associated with monogenic diseases or genetic risk factors,
in which the variants are directly associated with specific genomic regions
[22]. The advantage of GPS is the restriction of the analysis to target genes
and to reduce the number of unneeded information that negatively affects the
genetic diagnosis of specific diseases, syndromes, or phenotypes. In
addition, an increasing number of guidelines/recommendations/position
statements are generated to focus the clinical applications to those genes that
are progressively proven e confirmed to play a deterministic role in the
pathogenesis of the disease. This is because in the recent past, many “new
disease genes” remained unconfirmed, not validated, and their defects were
unsupported by functional studies. In addition, by reducing the target,
sequencing costs are amortized, and the computational resources needed to
manage, analyze and store genetic data are reduced. Compared to WGS and
WES that usually require advanced analysis systems such as cluster servers
or cloud systems and extensive bioinformatics work, the approach of
sequencing gene panels reduces management costs [23] and analysis times
Despite the convenience, GPS is connected to some difficulties related to the
composition of the gene panels and the limited detection capacity. In both
cases, the efficacy of GPS is closely linked to the level of knowledge of the
genetic basis of the diseases by the designer who must know how to identify
the optimized target in order to meet the needs of the study. The use of
scientific literature alone may not be sufficient for this purpose, which is
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sometimes achieved only by integrating the use of multiple functional
research methods and clinical studies capable of supporting and confirming
the choice of clinically actionable genes (the thesis provides the example of
Desmin gene). For other applications (e.g., malignancies), the choice of
genes must be even more robust, because today the applications go beyond
the diagnostic impact on patients and families but strictly concern preventive
medical and surgical therapy (the thesis provides the example of Breast and
Ovarian cancers). These issues have implications for liability, costs, and
reimbursements, both diagnostic and therapeutic appropriateness, as well as
impacting the health of patients and families.

2.1.2. Germinal, Somatic, Cell-free DNA

The applications of NGS technologies also vary according to the type of
sample to be analyzed. The germinal or constitutive DNA is inherited from
the parents and represents the common genetic source for all the cells of the
body. Germline DNA mutations are the cause of inherited genetic diseases
and are the main target of the genetic diagnosis process for familial
phenotypes. The identification of the causative variants of Mendelian
diseases is the main goal of NGS sequencing in clinical practice. Defining
the cause of a disease or the predisposition to develop a disease allows
optimizing the clinical and therapeutic management of the patient and his
family. For diploid organisms such as humans, the DNA defects can be
inherited from one parent or both parents, and the allelic status of the variant
can be heterozygous (one in two mutated alleles), or homozygous
(inheritance of both parental mutated alleles). Inherited variants are found at
the same allelic frequency in all cells of the body.

During fetal development and throughout the lifespan, genomic sequence
variations occur in an individual's DNA due to random errors in the DNA
replication process or damage caused by exposure to environmental factors
such as harmful radiation, chemical or physical injuries/exposures, incorrect
lifestyles, etc. Variants acquired post-zygotically are referred to as somatic
variants. The characteristic of somatic variants is that they cannot be passed
on to subsequent generations if they are absent in the progenitor cells of the
gametes. The median somatic mutation rate for variants affecting a single
nucleotide span in the order of 3 x 1077 [24], therefore an accumulation of
variants in the DNA of the cells is expected to occur during life, generating
genetic heterogeneity within the same tissue or between different tissues of
an individual. This process of genetic differentiation due to somatic variants
is called somatic mosaicism [25]. The more a variant occurs early in the cell
differentiation process, the more it is represented in the cellular populations
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of the organism while the variants located in specific districts have a more
recent temporal origin [26].
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Figure 2.1: Germline vs Somatic variants
(Image from https://www.genomicseducation.hee.nhs.uk/cancer-genomics/)

The most common field of investigation of somatic DNA is cancer.
Cancer is caused by a progressive accumulation of somatic mutations
(sometimes favored/promoted by a germ gene defect) that generates high
genetic heterogeneity and causes continuous clonal differentiation. Clones
in which mutations that provide individual cell evolutionary advantages,
reproduce, and become increasingly aggressive [27]. The somatic variants
can be exploited as pharmacological targets in the treatment of some
oncological diseases [28][29] and can be used as a marker of tumor evolution
or adaptation from a prognostic perspective [30].

The search for somatic variants, their burden, and distribution in a tissue
sample or single cells is far more complex than the search for germline
variants. Somatic variants are involved in many diseases and cell aging
processes, but their impact must also be assessed based on the fraction of
mutated cells. Unlike the germline variants that can be identified by DNA
from any nucleated cell, the somatic variants must be searched within the
affected tissue and their measured allelic frequency depends on the number
of mutated cells that are sampled for sequencing.

A further method for studying somatic DNA is the sequencing of cell-free
DNA (cfDNA). CfDNA is composed of somatic DNA fragments released
into the bloodstream following cell damage caused by trauma, sepsis, aseptic
inflammation, myocardial infarction, stroke, transplantation, diabetes, sickle
cell disease, and cancer [31].
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Major sources of cfDNA are massive cellular apoptosis and necrosis that
occur in the exponential growth of tumors which releases a very high amount
of fragmented DNA into the plasma compared to the physiological baseline
levels [32]. CfDNA reflects the genetic makeup of the cells that release it
and can be used as a marker for the early diagnosis of cancer and relapse
[33][34][35], for the identification of pharmacological markers for target
treatments and for monitoring the evolution of the disease as well as the
minimal residual disease [36] (Figure 2.2).
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Figure 2.2: Cell-free DNA sources and analysis applications (Figure
modified from [34])

2.2. lllumina sequencing technology

[llumina (San Diego, CA) is an American company that develops systems
for the analysis of genetic variation and biological function since 1998. Since
then and very quickly, Illumina gained the market leadership in NGS
machines, and its platforms are still a technological reference despite the
continuous evolution of the NGS and market competition. Illumina boasts a
range of tools that cover all the possible needs of a laboratory, thus managing
to achieve the largest proportion of the worldwide market [37]. Illumina
sequencing technology is defined as a second-generation technology and is
based on the clonal amplification of DNA fragments on a solid support and
the generation of read sequences of 100-300 bp (short reads). The NGS
[llumina sequencing workflow can be divided into three steps common to all
the platforms produced by the company: 1. Preparation of the libraries; 2.
Sequencing; 3. Base-calling.

10
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2.2.1. Library preparation

Library preparation starts from the DNA molecule and transforms it into
a pool of fragments (genomic library) ready to be uploaded on the instrument
and then, sequenced. The entire DNA molecule is too large to be sequenced
using [llumina instruments. For this reason, once the DNA has been isolated,
a fragmentation step is performed that generates millions of small fragments.
There are several methods of DNA fragmentation: sonication and enzymatic
methods are those commonly used in most labs. The fragments need the
addition of adapters that bind fragments to the flowcell (see Chapter 2.2.2)
and indexes useful to identify the sample of origin of the fragment in case of
multiplexing sequencing. For some applications, additional indices called
Unique Molecular Identifiers (UMI) are added which represent a unique code
for each fragment and are useful for increasing error correction and accuracy.
They can reduce false-positive variant calls and increase variant detection
sensitivity.

In the case of WGS sequencing, the library is amplified through PCR
cycles to increase the signal readable by the instrument. Then, the length
distribution of the fragments that characterize the library is analyzed, and
finally, the optimal sample quantitation is defined, which is loaded onto the
sequencer. In the case of a targeted approach, a selection step is performed
for the fragments that cover the target of interest before the amplification
and analysis of the distribution of lengths. The two most common target
selection methods are that based on fragment capture (Hybridization capture)
and on copying fragments (Amplicon) (Figure 2.3) [38].

The hybridization capture-based method uses long oligonucleotide probes
to hybridize and capture fragments. Because the DNA is randomly sheared
during library preparation, captured fragments are partially overlapping and
unique. Overlapping allows coverage of the target, even in the event of
problems with some nearby probes, and the uniqueness helps to identify
possible sequencing errors. With the capture enrichment method, coverage
of certain particular regions, such as genes with pseudogenes, highly
repeated regions, and regions with high GC content - can be difficult.
Furthermore, it could be affected by differences in the affinity of the different
probes, thus impairing the coverage of the target. These problems can be
solved during the design of the target. Areas known to be associated with
these problems can be covered using second methodologies such as Sanger
sequencing.

Methods based on target enrichment amplification methods (Amplicon)
employ a set of PCR primers to generate PCR products -size 150-400 base
pair- starting from the ends of the fragments. Each fragment of interest is
cloned (a high number of times) to be read by the sequencer. Amplicon
sequencing is usually a faster process than hybridization capture with the

11
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same samples and guarantees a higher fraction of sequences within the target
(in-target reads) than the capture method thanks to the specificity of the
primers used. Amplicon methods, however, like all PCR-based methods, are
sensitive to allele dropout which can be caused by variants present at the
primer hybridization site. The dropout allele can generate the loss of
coverage of entire fragments and the loss of the ability to identify variants.
Another problem of Amplicon-based methods is the amplification of the
error due to the PCR reaction which increases the probability of false-
positive findings [39].

Amplicon sequencing is optimal for efficiently sequencing small targets
such as small gene panels (1-25 genes) and mutational hotspot panels and is
preferable for deep sequencing applications. For larger targets, the method
based on hybridization capture enrichment is usually preferred, capable of
providing a more uniform coverage distribution and mitigating problems due
to the quality of the probes [38].
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Figure 2.3: Target selection methods in NGS library preparation (Figure
modified from [40])

2.2.2. Amplification and Sequencing

Once the NGS library is loaded onto the sequencer, the amplification
needed to distinguish the sequencing signal from the background noise

12
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occurs. In the Illumina solid-phase bridge amplification, the fragmented
library is linked to primer immobilized on a solid support, such as a patterned
flowcell. The free end of the fragment interacts with other nearby primers,
forming a bridge structure. Using PCR, a second strand from the
immobilized primers is created, and unbound DNA is removed (Figure 2.4)
[41]. The process is repeated to generate a cluster of clones for each fragment
that is bound to the flowcell.

b Solid-phase bridge amplification
(lllumina)

Template binding
Free templates hybridize
E with slide-bound adapters

Bridge amplification Cluster generation

Distal ends of hybridized templates After several rounds of
interact with nearby primers where amplification, 100-200 million
amplification can take place clonal clusters are formed

Patterned flow cell
Microwells on flow cell
direct cluster generation,
increasing cluster density

Figure 2.4: [llumina amplification system (Figure modified from [41])

[llumina's NGS technology is a Sequencing By Synthesis (SBS) method
[41] with a fluorescent-labeled reversible terminator technology (RT). In
brief, each fragment becomes a template and is copied by an enzyme, the
DNA polymerases, capable to incorporate a complementary nucleotide to
that of the template. The procedure is composed of cycles of three phases: 1.
Addition of a single nucleotide; 2. Creation of the image of the binding
signal; 3. Cleavage of the terminator and washing of the flowcell.

When a single dNTP linked to the reversible terminator is incorporated
into the sequence of a cluster, a fluorescent light signal is emitted at a
wavelength that differs for each nucleotide. The signals emitted on the
flowcell are recorded by an optical system (Charge-Coupled Device - CCD
camera) which captures an image for each emission wavelength of the
nucleotides. The terminator does not allow the polymerase to incorporate
other nucleotides and further elongate the sequence so that only one

13
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nucleotide per cycle can be incorporated. During the last phase, the
terminator and the fluorescent dye are split from the incorporated dNTP to
allow the addition of the next labeled ANTP. The unused nucleotides are
removed by washing the flowcell; then a new cycle restarts (figure 2.5). The
procedure takes place in parallel on all the clusters present on the flowcell.
Each cycle, therefore, corresponds to four images that appear dotted, one for
each nucleotide, where the dots represent the clusters that have incorporated
the specific ANTP. The result of the sequencing step is a number N of flow-
cell image quadruplets, where N corresponds to the number of cycles
performed and therefore to the length of the read. Illumina NGS platforms
are capable of sequencing both ends of each DNA fragment (paired-end
sequencing) increasing sequencing quality and target read depth.

(457
B

HC

HO HO

‘%3\ \ ’ I".I.‘.
HEH _EBEHE- (HHH

Nucleotide addition Imaging Cleavage

Fluorophore-labelled, terminally blocked Slides are imaged with either two or Fluorophores are cleaved and washed
nucleotides hybridize to complementary four laser channels. Each cluster from flow cells and the 3’-OH group
base. Each cluster on a slide can emits a colour corresponding to the is regenerated. A new cycle begins

incorporate a different base. base incorporated during this cycle. with the addition of new nucleotides.

Figure 2.5: The Illumina sequencing cycle (Figure modified from [41])

2.2.3. Base-calling

Images acquired during sequencing cycles are then analyzed by the
[llumina proprietary software installed on the sequencing platform. The
images are first filtered to eliminate background noise, the light signals are
identified and improved, the positions of the clusters in the flowcell are
identified. For each image generated by a single machine cycle, the base that
is most likely to be identified is assigned to each cluster (figure 2.6). The
result is that each cluster is represented by a sequence of ACGTs
corresponding to the nucleotides incorporated during sequencing. Each of
these sequences is defined as a read. A Phred quality score is assigned to
each base of the read, which represents in logarithmic scale the probability
that the base has been erroneously assigned. All the reads generated by the
sequencing are stored in a text file according to the Fastq format.
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Figure 2.6: Illumina base-calling process (Figure modified from [42])

2.3. NGS data analysis

NGS generates massive amounts of data that require multiple
computationally intensive steps for appropriate analysis to be performed.
The analysis of NGS data is considered an integral part of the NGS
sequencing process. The analysis workflow is specific for the type of DNA
sequenced, for the library preparation method, for the sequencing technology
of the instrument, and the amount of data produced. At the current state of
the art, there are many tools and software for NGS data analysis, and the
choice of the best solution is essential to perform a robust and cost-effective
workflow. An example is that of the choice of computing resources to be
used to analyze the data. High-performance computing (HPC) systems such
as cloud services or server clusters, allow us to face the big problems of
computing and storage resources typical of big data derived from large
sequencing experiments (e.g., WGS) and to break down the costs on large
numbers. The management of these systems is complex and requires
dedicated expertise. Less complex solutions such as workstations, on the
other hand, are better suited to the analysis of small experiments (e.g., small
targeted-seq) and can be managed more easily even by less specialized
figures.

The NGS data analysis process starts from the sequencing tool. The
primary analysis of the data is represented by the transformation of the
fluorescence signal acquired during sequencing through the base calling
process, the calculation of the Base quality, and the production of Fastq files.
The consecutive manipulation of the different types of files until reaching a
useful result for the experiment is instead defined as secondary analysis. For
genotyping applications, the secondary analysis starts from the Fastq files up
to a set of variants contained in the sample under analysis. The
transformation of data into knowledge useful for the interpretation of the
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results is instead called tertiary analysis. The primary analysis, being
implemented within the sequencer, is now a robust and reproducible process,
while secondary and tertiary analyses are highly customizable.

2.3.1. Bioinformatics pipelines

The secondary analysis is typically performed through progressive steps
that process the sequencing data and transform them using multiple tools and
software components. This process, in which the genetic data output of one
tool becomes the input of another to be manipulated by sequential modules,
is called "bioinformatics pipeline". The goal of bioinformatics pipelines is to
perform the analysis process in an automatic and reproducible manner and
ensure the greatest achievable robustness and accuracy. NGS bioinformatics
pipelines are frequently platform-specific and may be customizable based on
the experiment design and laboratory needs. A typical clinical
implementation of a bioinformatics pipeline to search for variants in DNA
samples consists of five major steps: 1. Alignment; 2. Pre-processing; 3.
Variant calling; 4. Variant post-processing; 5. Variant annotation.

The internal workflow of each of the major steps is complex and may vary
according to the application. To make the result of the different pipelines
reproducible, best practices have been developed over the years for the
different types of NGS data [43]. The workflow for genotyping applications
of NGS data produced by re-sequencing experiments to identify the genetic
causes of a particular phenotype is introduced below.

2.3.2. Alignment

The first fundamental step for the study of NGS data is the Alignment
which consists in recomposing the sequenced genome starting from the reads
present in the Fastq files. For re-sequencing applications, the alignment of
reads is a process facilitated by the presence of a standard genome to which
it is possible to refer to find the right position of every single read. There are
reference genomes for many organisms: they are updated cyclically to
improve their accuracy. The latest reference genome for humans, GRCh38,
was released in 2013 but many laboratories still use the previous GRCh37 or
hgl9.

There are several alignment algorithms, but most use the Burrows-
Wheeler transform (BWT), or techniques based on hash tables [44]. BTW-
based aligners are memory-efficient and work faster than hash-based
aligners, but they are less accurate. In contrast, hash table algorithms tend to
be slower, but more sensitive. The choice of the aligner is a key step that can
influence the result of the analysis. The algorithms are evaluated based on
the accuracy in finding the right position of the reads, but also in terms of
efficiency (speed of execution) and scalability (storage capacity). Some
benchmarking studies have compared the alignment tools found in the
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literature [45][46] demonstrating that algorithm performance depends on
input data and that there is no better one for all scenarios. Many tools are
highly configurable to increase their adaptability to a particular application
and it is up to the researcher to find the right set-up to optimize the analysis
considering the possible obstacles.

One of the main challenges for alignment is the presence within the
genome of repetitive or low-complexity regions. This often leads the reads
to be mapped in different areas of the genome with the same reliability. The
result is an ambiguous alignment that potentially leads to errors in the variant
detection process. Longer reads and paired-end sequencing can help in
improving alignment in these particular regions. The length of the reads and
their complexity in terms of the sequence are directly proportional to the
quality of the alignment. The presence of paired reads instead increases the
available information (e.g., orientation and distance between read pairs) to
improve mapping performance.

At the end of the alignment process, the Mapping quality score is
calculated for each read, indicating the accuracy of the chromosomal
position assigned by the algorithm. Reads enriched with further information
on the mapping are stored in a Sequence Alignment Map (SAM)
(specifications in [47] for SAM format description) format.

2.3.2.1. Post Alignment process

After the alignment, it is possible to make changes to the mapped
sequences which commonly include the conversion of the SAM files in the
compressed version in BAM (Binary Alignment Map) form, in the sorting of
the reads inside the BAM files to optimize the analysis and in the general
assessment of the alignment by issuing a report. It is possible to evaluate the
alignment by viewing some software that shows the reads mapped on the
reference genome such as the Broad Institute's Integrative Genomics Viewer
(IGV) [48][49] but it is a difficult process for quality control of large targets.

2.3.3. Pre variant calling process (pre-processing)

In order to improve the variant identification process, some data
optimization steps are recommended. The most important ones involve
identifying duplicates from PCR, alignment artifact correction, and sequence
quality score recalibration.

2.3.3.1. The marking of duplicates reads
The amplification step usually concludes the preparation of libraries (see
Chapter 2.2.1) and is useful to get a greater sequencing yield. The

amplification generates clones of the fragments contained in the library
which are randomly immobilized on the flowcell and sequenced. When
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multiple copies of the same original fragment bind at different points in the
flowcell, they give rise to separate clusters and are sequenced independently.
This process generates duplicated reads that can introduce a bias in the
analysis that causes false high coverage of some areas and rises false-positive
variant calls due to errors that occurred during library preparation, and that
have been propagated to PCR duplicates. The percentage of duplicates
depends on the characteristics of the NGS library and the loading phase of
the instrument. If the amount of starting sample is small, the amplification
step of the library must be greater thus increasing the duplication rate,
furthermore, the smaller fragments are amplified more and can be over-
represented. Finally, if the amount of library loaded on the instrument is
lower than expected, a higher percentage of clones bind to the flowcell and
are sequenced as duplicates.

Given that, PCR duplicates originate from the same DNA fragment, their
mapping positions can be used to identify and either mark or entirely remove
these duplicates, retaining only the highest quality read. The duplicate reads
removal step is strongly recommended in workflow analysis of NGS data
generated from the Hybridization capture-based method but not for
Amplicon sequencing. In the Amplification based method, reads start and
end at the same positions by design and duplicates removal should be
disabled because otherwise, it will remove most aligned reads.

2.3.3.2. Indel Realignment

Because alignment algorithms map each read individually to the reference
genome, reads spanning insertions or deletions (Indels) are often misaligned
and it commonly results in mismatches. The tools that call variants could be
fooled by mismatches and could call an insertion or deletion (Indels) in the
sequence as a set of SNVs, increasing the error rate. To recognize and
eliminate these artifacts, the local realignment process around the indels is
performed, which is divided into two steps. In the first phase, suspicious
intervals are defined in three ways: sites where there are frequent Indels in
the population databases such as dbSNP [50] and 1000G [51], Indels seen in
original alignments, and sites where some evidence suggests a hidden Indel.
In the second step, the optimal consensus sequence is determined, and the
local realignment of reads around the site is performed.

The entire process of Indel Realignment is computationally intense and
for high coverage, sequencing is very time-consuming. The latest software
for calling variants have implemented a local realignment step to improve
the accuracy and quality of the variants identified. If these tools are used,
realignment is no longer an essential step and can be avoided by saving time
and resources. However, it remains recommended because it improves the
Base Quality Score Recalibration process.

2.3.3.3. Base quality score recalibration
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Base quality scores are per-base estimates of error emitted by the
sequencing machines and express how confidently the called base is deemed
correct. The base quality score is a fundamental factor that is used by variant
callers to decide whether a variant really exists or is an error and is a main
feature for filtering false positives. The BQ score emitted by the sequencing
machine is often inaccurate and is subject to various systematic errors due to
the sequencing reaction (e.g., machine cycle and sequence context) and to
small defects in the instrumentation that cause it to be incorrectly estimated.
For this reason, a score recalibration step is essential that re-evaluates the
error probability of the called base using several features including starting
quality score, the machine cycle, and the dinucleotide sequence context (the
current and the previous bases).

2.3.4. Variant Calling

The key step in the analysis of NGS data is the identification of the
variants present in the sample. The variants can be of three types:

e Point Variants or Single Nucleotide Variants (SNV): these are
substitutions of single nucleotides in the DNA sequence.

e Short Insertions or Deletions (InDels): they are caused by an
insertion or loss of some nucleotides respectively.

e Structural Variants (SV): are large genomic rearrangements
affecting extended areas of the genome from hundreds of
nucleotides to entire chromosomal segments. SVs include
Translocations, Inversions, or variations of the copy number of a
DNA stretch (CNV).

2.3.4.1. SNV / InDel calling

The tools calling short variants compare the aligned sequences contained
in the BAM file against the reference genome and identify the variants using
different approaches. Numerous tools have been developed to identify single
nucleotide variants (SNVs) and short insertions/deletions (indels) from
aligned NGS data [52][53]. The tools use different methods to perform
variant calling, some are based on heuristic methods, some use probabilistic
models, other machine learning algorithms.

Heuristic methods call variants based on multiple information sources
associated with the structure and quality of mismatches. For variant
detection, a heuristic algorithm determines the genotype based on thresholds
for coverage, base quality, and variant allele frequency. These tools usually
use statistical tests (i.e., Fisher's exact test on the reads covering the variant)
to assess the call quality.

Probabilistic methods instead provide measures of statistical uncertainty
for called genotypes. Probabilistic tools use Bayes' theorem to calculate the
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genotype likelihood for each possible genotype at each base (a homozygote
for the reference allele, a homozygote for the alternative allele, or a
heterozygote). The algorithm calculates the a priori probabilities of the
genotypes and infers the posterior probabilities using the information from
the quality scores and allele counts. The genotype with the highest posterior
probability is chosen and the ratio between the highest and the second-
highest probabilities may be used as a measure of confidence. Some
Bayesian tools also implement a local realignment or assembly of suspicious
reads to increase the accuracy of the variant call. Variants identified during
variant calling are reported in the variant calling format (VCF) [54].

2.3.4.2. Individual versus joint variant calling

Many tools provide the ability to analyze both a single sample at a time
and a cohort of samples simultaneously. Single sample analysis produces
reproducible and repeatable results because it does not depend on other
samples. This approach is the simplest and the least computationally
expensive, but it may cause some information to be lost. In fact, in the VCF
file all the sites in which a variant has been identified in the sample are
reported, but in all the other sites not reported it is not clear whether the
sample is homozygous and not mutated or if the coverage is not sufficient to
perform a call. Conversely, multi-sample calling involves a simultaneous
1dentification of variants in several individuals, and it is much more CPU
time- and resource-consuming than individual variant calling. It produces
genotypes for every sample at all variant positions by differentiating, for
samples that do not carry the variant, between not mutated homozygotes and
those with insufficient coverage. Furthermore, the joint analysis allows a
variant caller to minimize the issue of variant representation differences that
affects particularly complex variants and to use multi-sample information to
improve the genotype likelihood calculation. Finally, multi-sample analysis
can help in trio sequencing, enabling direct inference of the cis or trans status
of two heterozygous variants.

2.3.4.3. Germline versus Somatic variant calling

A particular case of variant calling is the search for variants in somatic
DNA samples. The call of the germline variants is relatively simple,
identifying the mismatches between the sample sequence and the reference
sequence that exceed a certain probability of not being sequencing errors or
alignment bias. As far as somatic variant calling is concerned, the matter is
more complex. Usually, the search for somatic variants is performed through
a case-control analysis in which the case is represented by the somatic
sample and the control is a sample taken as Germinal or as Normal (in the
case of tumors). Therefore, the somatic tools search for the mismatches with
respect to the reference genome that are present in the somatic sample and
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identify which of these variants are of somatic or germinal nature.
Sometimes, it is possible to analyze only the somatic sample against the
reference, but it is not recommended due to the high number of false
positives that are produced. The greatest difficulty is given by the nature of
the samples; using the example of tumors, it is common for the somatic tissue
sample taken with a biopsy to be contaminated with normal cells and vice
versa, causing changes in the allelic fraction in both tumor and healthy
samples. Furthermore, the tumor could be subject to clonal heterogeneity or
be affected by structural events and by changes in the number of copies of a
given region. The consequences of these factors are an allelic fraction of the
somatic variants that can reach very low values (even below 1%) and the
presence of somatic variants of the germ samples due to tissue contamination
problems. The biggest challenge for somatic variant callers is to recognize
variants with lower allelic fractions and rule out sequencing, alignment, and
cross-contamination artifacts.

2.3.4.4. CNV calling

Multiple tools have been generated to detect CNVs in NGS data. Their
approaches can be categorized into five different strategies (figure) that have
advantages and limitations:

Paired-End Mapping (PEM);
Split Read (SR);

Read Depth (RD);
Assembly-based (AS).

The PEM uses distances between paired-end reads and is not applicable
with single-end reads. In paired-end sequencing, the libraries prepared using
the same protocol have similar fragments length, and consequently similar
distances between paired reads, distribution. PEM identifies the distances of
the mapped paired reads that are significantly different from the expected
insert size and infers the presence of a CNV event. The main limitation is
that it cannot detect CNVs in regions with segmental duplication.

The SR identifies possible CNV events using read pairs. The SR method
identifies paired read in which one read is uniquely aligned to the reference
genome and the paired one is unmapped or only partially maps to the
genome. The assumption is that the read fails in perfect mapping because of
the presence of a breaking point. SR strategy split the mis-mapped reads into
multiple fragments and re-aligns the first and the last parts providing the
precise start and end positions of the CNV events. The SR method is also
affected by the nucleotide composition of the interrogated area as well as by
the length of the reads.

The RD method is based on the assumption that the presence of a CNV is
related to the variation of the read depth in the region of the event. In case
of an allele deletion, a significant decrease in coverage should be observed
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and vice versa a duplication should increase the coverage of the duplicated
zone. The read depth procedure for CNV detection consists of four steps.
The CNV caller tool calculates the read depth in the predefined window,
normalizes and estimates the number of copies in the window, and finally
merges all regions with a similar copy number detecting CNV events [55].
Generally, RD-based tools use a cohort of samples to improve the quality of
the normalization step and the calling of the CNVs. The coverage
normalization is performed as a function of the distribution of coverage in
the single sample by correcting it according to the characteristics of the
analyzed genomic region that may have introduced a coverage bias (e.g., GC
content, repeated regions), and using the overall depth distribution from
more samples to improve the result. The RD approach works well with high
coverage samples and allows to mitigate the problems related to difficult
areas of the genome and it better quantifies the extent of the structural event
than the other methods.

The assembly methods first reconstruct DNA contigs performing the
assembly of overlapping reads, then identify CNV events comparing the
assembled regions with the reference genome. The assembly can also use the
reference genome as a template to improve the quality of the contigs and the
computational efficiency.

As for SNV and short Indels callers, even for CNV callers, despite the
large number of tools developed, there is no gold standard. PEM-based
methods can detect all types of SVs (even single exons) but not insertions
that exceed the average insert size of the library. In addition, the estimate of
the number of copies of the event cannot reach the quality of RD-based
methods. Read depth-based methods can be useful in target sequencing
applications especially for identifying larger CNVs. However, with RD
methods the identification of small CNV (<1 kb), inversion or translocations,
and the precise breakpoint sites. On the other hand, SR-based methods
provide a very high resolution in finding breakpoints but not repeated or low-
complexity genomic regions.

New tools adopt combined strategies to exploit the advantages of multiple
methods while reducing their weaknesses. In any case, the choice of the CNV
caller and the detection method must adapt to the needs of the specific
application.
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Figure 2.7: CNV calling strategies (Figure from [56])

2.3.5. Post-processing (Variant filtering)

This phase aims to increase the calling accuracy and eliminate “residual”
artifacts. The filtering of VCEF files is an important step in the bioinformatics
pipelines because it guarantees the most accurate set of variants in the output,
minimizing the number of false variants without excluding any of those
actually present in the sample. Short variant filtering strategies can be
classified into two groups; 1. filtering based on the quality threshold criteria
(hard filtering) and 2. machine learning systems for automatic filtering of
variants (soft filtering). Hard filtering (HF) is a system of rules that
discriminates artifacts and variants by evaluating a set of quality indicators.
Characteristics commonly assessed with HF include variant coverage and
allelic frequency in the sample, variant base quality, and mapping quality
scores as well as related differences with reference allele, and genotype
quality score. An additional index is the Imbalance strand specificity because
a true variant is expected to be equally represented on both forward and
reverse strands. The thresholds for discriminating false positives should be
modified according to the type of application desired. For example, for the
search for somatic vs. germline variants, coverage and frequencies filters are
different, or the criterion that evaluates the imbalance strand in the case of
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amplicon or capture enrichment sequencing differ. Furthermore, it is
necessary to carefully evaluate the result of filtering in complex areas of the
genome where true variants could appear as artifacts using the same
thresholds on the whole target. The major flaw of Hard filtering is that
evaluates each threshold independently, and the discrimination rules,
although considering one or more criteria at the same time, fail to grasp the
interdependencies between indicators, producing effective but coarse
discrimination. Soft filtering is a more sophisticated approach that leverages
the capabilities of machine learning to identify patterns within data,
combining different indicators, and performing a finer classification than
hard filtering. Soft filtering methods build a supervised classification system
by training the model on a set of known variants and artifacts. This model
estimates the probability that a variant is really present and allows filtering
at various confidence levels. Soft filtering is especially useful for low
coverage samples [57] but its performance is influenced by the need for a
large training dataset which is often not available, especially for targeted
sequencing applications.

2.4. Variant annotation and interpretation

The format used by variant callers to report the variants describes the
internal characteristics of the sample and are useful for discriminating
artifacts and true variants but does not allow us to understand their role in
the carrier phenotype. The annotation of the variants together with the
process of interpreting the genetic data constitute the tertiary analysis of the
NGS data and are essential for identifying the causes of hereditary diseases
in the genetic diagnosis process.

2.4.1. Variant annotation

Once the calling and variant filtering process has been completed, the last
step of an analysis pipeline is functional annotation. The annotation aims at
enriching each variant with useful information to explore the impact of the
genotype on the phenotype.

Different types of information can be associated with each variant and
may help in better understand their role. The first level of information
concerns the affected genomic area. In fact, a variant can fall into an
intergenic region between two different genes (intronic variants), or it can
affect a protein-encoding gene (exonic variant). Since several transcripts can
be associated with a unique gene and the variant may fall into different
functional zones according to the analyzed transcript, precise information is
generated for each transcript.). The choice of transcripts is a relevant
contributor to the interpretation of the genetic test as a variant may have
different roles in different transcripts of the same gene. Several transcript
databases (Ensembl [58], RefSeq [59], and UCSC [60]) with which variants
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can be annotated exist. The second level concerns the functional description
of the variant with respect to the transcript. Essential information include:
the type of consequence of the variant on the transcript (e.g., synonymous,
missense, stop gain, etc.), the nucleotide changes in the coding sequence
(HGVS nomenclature for cDNA sequence changes - HGVSc) and amino acid
change in the protein (HGVS nomenclature for protein sequence changes -
HGVSp). Other key annotations are those obtained from variant databases.
Many databases (table 2.1) provide information of different nature: clinical
databases such as ClinVar and Uniprot [61] contain information on the
impact of variants on clinical phenotypes, population databases such as
dbSNP, 1000 Genomes Project database, EXAC [62], and GnomAD [63]
report the frequency with which the variant was observed in large groups of
subjects, and finally, databases such as OMIM that contains information
about Gene-disease associations. Some databases cover specific genes such
as BRCA Exchange [64] (which reports information on BRCAI1 and
BRCA?2), others such as COSMIC [65] contain a multitude of information
only on genes and variants identified on somatic tissue. The last level of
annotation is the one based on the tools that provide a damage prediction
score generated with different approaches, such as protein structure,
sequence homology, evolutionary conservation or statistical prediction based
on known mutations. In table 2.2 are reported some of in silico prediction
tool commonly used for variants annotation.

Table 2.1: Useful databases for variant interpretation

Population Databases

Exome Aggregation Consortium | Database of variants found during exome
http://exac.broadinstitute.org/ sequencing of 61,486 unrelated individuals
sequenced as part of various disease-
specific and population genetic studies.
Pediatric disease subjects as well as related
individuals were excluded.

Genome Aggregation Database | Database of variants found during exome
https://gnomad.broadinstitute.org/ sequencing of several large cohorts of
individuals of European and African
American

ancestry. Includes coverage data to inform
the absence of variation.

1000 Genomes Database of variants found during low-

http://browser.1000genomes.org coverage and high coverage genomic and
targeted sequencing from 26 populations.

dbSNP Database of short genetic variations

http://www.ncbi.nlm.nih.gov/snp (typically 50 bp or less) submitted from
many sources. May lack details of
originating study and may contain
pathogenic variants.

dbVar Database of structural variation (typically
http://www.ncbi.nlm.nih.gov/dbvar | greater than 50 bp) submitted from many
sources.
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Disease Databases

ClinVar
http://www.ncbi.nlm.nih.gov/clinva
r

Database of assertions about the clinical
significance and phenotype relationship of
human variation.

OMIM
http://www.omim.org

Database of human genes and genetic
conditions that also contains a representative
sampling of disease-associated genetic
variants.

Human Gene Mutation Database
http://www.hgmd.org

Database of variant annotations published in
the literature. Requires fee-based
subscription for much of the content.

Sequence Databases

NCBI Genome
http://www.ncbi.nlm.nih.gov/geno
me

Source of full human genome reference
sequences.

RefSeqGene
http://www.ncbi.nlm.nih.gov/refseq
/rsg

Medically relevant gene reference sequence
resource

MitoMap
http://www.mitomap.org/MITOMA
P/HumanMitoSeq

Revised Cambridge reference sequence
(rCRS) for the Human Mitochondrial DNA

Table 2.2: In silico prediction tools

Name Basis
Missense prediction

ConSurf Evolutionary conservation

https://consurf.tau.ac.il/

FATHMM Evolutionary conservation

http://fathmm.biocompute.org.uk/

PANTHER
http://www.pantherdb.org/

Evolutionary conservation

SIFT Evolutionary conservation
https://sift.bii.a-star.edu.sg/

SNPs&GO Protein structure/function
https://snps-and-go.biocomp.unibo.it/

Align GVGD Protein structure/function and
http://agvgd.hci.utah.edu/ evolutionary conservation
MAPP Protein structure/function and

http://mendel.stanford.edu/SidowLab
/downloads/MAPP/index.html

evolutionary conservation

MutationTaster
https://www.mutationtaster.org/

Protein structure/function and
evolutionary conservation

MutPred
http://mutpred.mutdb.org/

Protein structure/function and
evolutionary conservation

PolyPhen-2
http://genetics.bwh.harvard.edu/pph2

Protein structure/function and

evolutionary conservation
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Alignment and measurement of similarity
between variant sequence and protein
sequence homolog

PROVEAN
http://provean.jcvi.org/index.php

Condel Combines SIFT, PolyPhen-2 and
https://bbglab.irbbarcelona.org/fanns | MutationAssessor
db/help/condel.html

Contrasts annotations of fixed/nearly
CADD

https://cadd.gs washington.edu/ fixed derived alleles in humans with

simulated variants

Splice site prediction

GeneSplicer Markov models
https://ccb.jhu.edu/software/genespli

cer/

Human Splicing Finder Position-dependent logic
http://www.umd.be/hsf

MaxEntScan Maximum entropy principle

http://hollywood.mit.edu/burgelab/m
axent/Xmaxentscan_scoreseq.html

NetGene?2 Neural networks
https://services.healthtech.dtu.dk/ser
vice.php?NetGene2-2.42

NNSplice Neural networks

Nucleotide conservation prediction

GERP
http://mendel.stanford.edu/sidowlab/
downloads/gerp/index.html

PhastCons
http://compgen.cshl.edu/phast

PhyloP
https://ccg.epfl.ch/mga/hg19/phylop/
phylop.htm

2.4.2. Variant prioritization

Once all the information about the functional effect of the variant in the
different transcripts, its frequency in the population, the damage prediction
scores on the protein, and the notes about the gene-disease association have
been collected, these are useful for the prioritization process. The goal of
prioritization is to pass from thousands of variants to a small group of one or
two variants that are candidates to be responsible for the observed phenotype.
The prioritization process can be seen as a cascade of filters applied to
variant annotations, guided by a reasonable method based on the specific
clinical context.

For hereditary diseases, the in-depth phenotyping of the carrier of the
variants and his family members, together with the study of the pedigrees, is
the starting point for validating the result of the prioritization process
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obtained with functional information and bioinformatics data. The definition
of the inheritance model of the disease allows excluding all the variants that
do not respect the principles of co-segregation. For recessive diseases
homozygous variants inherited from two parents (often consanguineous), or
two heterozygous variants, each passed by a different parent, are sought; for
a dominant inheritance model, the candidates will be heterozygous variants
inherited from a sick parent or private variants (de novo variant). More
attention is needed for the evaluation of X-linked phenotypes or
mitochondrial diseases associated with mutations in mitochondrial DNA.

Once the characteristics of the phenotype and its inheritance model have
been evaluated, it is possible interrogate genes that are plausible candidate
in case of causative variant. A thorough understanding of the molecular
causes of the phenotypes is essential in order to narrow the spectrum of
genes of interest. The gene-disease association data extracted from clinical
databases such as ClinVar or OMIM, the information reported in the
literature, and the geneticist's experience can guide the ranking of the genes
to be investigated, excluding all those related to phenotypes far from the
one under investigation.

One of the primary criteria for predicting if a variant is likely to have a
functional effect on the encoded protein is a rarity. A commonly used
threshold to exclude a variant from potentially harmful ones is a Minor Allele
Frequency (MAF) in population databases greater than 1%. This threshold
may vary according to the incidence of the disease and the level of
penetrance expected for the phenotype. Often the causative variants of the
disease are extremely rare and unreported in the population databases, while
others are instead observed in various subjects considered healthy at the date
of clinical control but who may have developed the disease later during the
life. If a variant is common in the population, it almost certainly has a neutral
effect on the protein, but a rare variant may still be benign. For this reason,
the choice of the MAF threshold to be applied for prioritization must adapt
to specific issues.

Another contributor helping the characterization of a variant is its
functional impact on the transcript. In fact, different types of variants are
associated with different levels of protein damage: intronic variants far from
gene regulation sites, variants in UTR, and synonymous variants have a very
low probability of causing disease; missense, exonic insertions, deletions,
stop losses and start losses, carry a greater potential of damaging the protein
function; while stop gains, frameshifts, and splice site variants are of primary
interest for their protein-truncating effect. Also, in this case, special caution
must be considered in filtering out the variants: it is possible that some
variants with a low impact potential may instead be the cause of hidden
protein damage. An important example is the case of synonymous variants
that cause a cryptic splicing site within an exon [66][67].

The functional impact prediction from in silico tools can help refine
prioritization. Many prediction tools and the diversity of algorithms with
which the damage score is calculated, can cause interpretation difficulties
linked to the discordant predictive results. For this reason, there is no
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standard filtering strategy for this type of data, but it must be adapted to the
molecular context of the disease.

The result of the prioritization process is composed of a narrow subset of
variants with a reasonably high probability of causing the phenotype, and a
larger group of variants with a low probability of affecting protein function.
This ranking process has no standard rules and is subject to many variables
that could change the accuracy of the result. Furthermore, the candidate
variants are not interpreted as causative or neutral, but their role is defined
in a descriptive way.

2.4.3. ACMG-AMP classification system

If the prioritization aims at minimizing the number of variants that
disease-causing candidates, the classification of the variants is the process
aimed at interpreting their specific role on the phenotype. The functional
filtering process of variants is guided by rules that often vary from laboratory
to laboratory, producing heterogeneity in interpretation. The need for
common rules to homogenize the results of genetic tests has prompted the
scientific community to devise a robust method for pathogenic classification.
In 2015, the American College of Molecular Genetics (ACMG) together with
the College of American Pathologists (AMP) developed guidelines for the
interpretation of the role of Mendelian and mitochondrial variants (68). The
old term that defined "mutation" as a causative variant and "polymorphism"
as a non-causative variant has been replaced by a system based on 5 classes:
1. Benign (B - non-causative variant of disease), 2. Likely Benign (LB -
probably not causing disease); 3. A variant of Uncertain Significance (VUS);
4. Likely Pathogenic (LP - probably causative of disease); 5. Pathogenic (P
- Definitely causative of disease).

The pathogenicity class is defined on a system that evaluates the
combinations of 28 criteria activated by the different types of information
available on the variant and their relative strength. Different sources of
information are evaluated:

e Population data such as frequencies of variants in large
populations and prevalence in control groups.

e Computational and prediction data that consider the functional
effect of the variant and damage mechanism to which the affected
gene is sensitive, the existence of variants whose role is
established affecting the same nucleotide or amino acid, and the
results of the in-silico protein damage prediction tools.

e Functional data produced through in-vivo, ex-vivo, and in-vitro
studies, aimed at determining the consequence of the variant on
the affected protein and on the cellular phenotype.

e C(linical and segregation studies aimed at verifying the specificity
of the clinical picture of the carrier and family members, the co-
segregation of the variant with the phenotype in case of hereditary
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disease, the possibility that a mutational event occurred de novo,
the presence of other variants that potentially cause the
phenotype, and finally the cis or trans status of two variants
identified in the same gene.
Information derived from reputable sources such as peer-
reviewed literature and from curated disease databases such as

ClinVar.

The criteria are divided into ones in favor of the benign role of the variant
(12 criteria) and criteria in favor of the pathogenic role (16 criteria) based on
the evidence reported by the analyzed information. Each criterion is
associated with a weight (strength) that reflects the level of evidence in favor
of the benign or pathogenic interpretation, and which determines the strength
with which the single criterion guides the final classification. Each
pathogenic criterion is weighted as very strong (PVS1), strong (PS1-4),
moderate (PM1-6) or supporting (PP1-5) and each benign criterion is
weighted as stand-alone (BA1), strong (BS1-4), or supporting (BP1-7). The
default strength levels were calculated during the validation phase of the
ACMG system, but to improve the flexibility of the model, the weights can
be modified based on the evidence supporting each criterion.
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Figure 2.7: Data sources and level of strength for ACMG criteria (Figure
from [68])
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Each single criterion is not able of determining the class of pathogenicity
alone, except for the one that evaluates the allele frequency in the population.
In fact, a MAF such as to define the variant as common is a sufficient
criterion for the Benign classification (Stand-Alone strength). The
pathogenic class is assigned based on the combination of weighted criteria
that are activated during the analysis (table 2.3). If a variant does not fulfill
the criteria to gain a benign or pathogenic class, or the evidence for benign
and pathogenic is conflicting, the variant must be classified as Uncertain
Significance (VUS).

Table 2.3: ACMG criteria combination for determining pathogenicity class

Pathogenic

1 Very Strong (PVS1) AND
>1 Strong (PS1-PS4) OR
>2 Moderate (PM1-PM6) OR
1 Moderate (PM1-PM6) and 1 Supporting (PP1-PP5) OR
>2 Supporting (PP1-PP5)
>2 Strong (PS1-PS4) OR
1 Strong (PS1-PS4) AND
>3 Moderate (PM1-PM6) OR
2 Moderate (PM1-PM6) AND >2 Supporting (PP1-PP5) OR
1 Moderate (PM1-PM6) AND >4 Supporting (PP1-PP5)
Likely Pathogenic
1 Very Strong (PVS1) AND 1 Moderate (PM1-PM6) OR
1 Strong (PS1-PS4) AND 1-2 Moderate (PM1-PM6) OR
1 Strong (PS1-PS4) AND >2 Supporting (PP1-PP5) OR
>3 Moderate (PM1-PM6) OR
2 Moderate (PM1-PM6) AND >2 Supporting (PP1-PP5) OR
1 Moderate (PM1-PM6) AND >4 Supporting (PP1-PP5)
Benign

1 Stand-Alone (BA1) OR
>2 Strong (BS1-BS4)

Likely Benign
1 Strong (BS1-BS4) and 1 Supporting (BP1-BP7) OR
>2 Supporting (BP1-BP7)

The variant classification process is a very hot topic for genetics. The
exponential increase in genetic tests and the ever-increasing sequencing
capacity of the new tools has caused a sharp increase in the time and costs
required for the interpretation of the results. In response to this need, many
tools have been developed to simplify and speed up the decision-making
process. These tools, both commercial and open sources [69][70][71], group
in a functional way all the information available on the variant and
implement automatic algorithms for “activating” the criteria and modulating
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their weights, improving the data analysis capacity and simplifying the
interpretation of large sets of variants.

2.4.3.1. Somatic Variants

The evaluation of the somatic variants is instead carried out on two
different levels, especially in cancer sequencing applications. The first type
is a functional type on the nature of cancer and is carried out to distinguish
which acquired variants give an evolutionary advantage to the tumor cells
and are drivers for the generation of new and more aggressive subclones, and
which ones have a neutral impact in the progress of the illness (passenger).
Driver variants usually have a gain-of-function effect for proto-oncogenic
genes (commonly missense variants) and a loss-of-function effect for tumor
suppressor genes.

The second type is focused on the variant impact on clinical care. An
actionable variant can be considered a predictive biomarker for sensitivity or
resistance to therapies, can be targeted for new generation drugs, can take on
prognostic significance, facilitate early diagnosis and guide preventive
actions. Based on the available evidence, a clinical impact-driven
categorization system has been proposed [72] based on 4 classes of variants:
tier I, variants with strong clinical significance; tier II, variants with potential
clinical significance; tier III, variants with unknown clinical significance;
and tier IV, variants that are benign or likely benign (figure 2.8).
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The Helper platform

Chapter 3

The Helper platform

In the background chapter, the technological scenario of NGS technology
was introduced in a comprehensive synthetic presentation. It was shown
which are the fundamental steps in the process of identifying the genetic
causes for hereditary diseases and which is the role of bioinformatics
analysis in the diagnostic process. The present chapter describes the Helper
platform, developed to simplify the design and execution of bioinformatics
pipelines for NGS sequencing data. The chapter introduces the needs, and
the solutions present in the literature for pipeline development, the
implementation structure of Helper and its operating principles. The
implemented algorithms, and how it works in the pipelines are described for
each tool that can be used in the Helper platform. Then the Helper's graphical
interface is presented, and finally the results of the performances, in terms
of processing time and CNV calling, are discussed for a pipeline developed
for the analysis of NGS libraries commonly used at OSM.

3.1. Needs and motivations

The development of new pipelines addressing specific issues involving
NGS sequencing is an ever-evolving field. There is an increasing need for
simple systems for customizing bioinformatics analyses, overcoming the
coding difficulties. One of the pioneering projects that promoted this trend
of making user-friendly both bioinformatics and pipeline development, is
Galaxy [73]. Galaxy is a web-based platform developed for making analysis
completely reproducible and accessible to all researchers.

Galaxy implements a large number of bioinformatics solutions for the
analysis and manipulation of data from different types of experiments
(Genomics, RNA-seq, Chip-seq, etc.). Galaxy is an open system that
provides a large choice of tools, excellent documentation, ability to run the
analysis in cloud, and the support of an extensive community.

Despite all the advantages of systems like Galaxy, tools dedicated to
specific applications are often required. Dedicated systems focus on the
problem, simplifying the user experience in terms of understanding the
processes and using the platform. In recent years, various systems for the
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customization of bioinformatics analysis have been created for different
NGS applications [74][75][76].

The Helper platform fits into this landscape as a solution designed to
simplify the development of new bioinformatics pipelines for the analysis of
NGS data from Illumina sequencing of DNA samples for targeted
sequencing applications. The need for a simple and fast tool for the
development of new pipelines arose because of the various research projects
active at the Center for Inherited Cardiovascular Diseases of the OSM. The
heterogeneity of different projects, of the different analysed samples, and of
the different technologies of the sequencing kits, translates into greater
complexity of adaptation of the bioinformatics pipelines. The development
of pipelines must take into account a multitude of factors that affect the
design of the project and requires several phases, such as code development,
testing, debugging and validation of results. Without adequate coding
experience, the development of new bioinformatics pipelines could be a
difficult path. Helper aims to relieve the users from writing new code by
guiding them through a simple graphical interface in the implementation and
use of new pipelines easily adaptable to the context and specific needs.
Unlike systems such as Galaxy, which provide tools for multiple
bioinformatics applications, Helper is a platform dedicated to the analysis of
data derived from DNA target re-sequencing experiments. This specific
setting guarantees an optimized management of the analyzed data and a user-
friendly experience in using Helper. The user is able to choose which steps
to include in the pipeline, which software to use in the different steps of the
analysis, and which parameters to run the different tools, in the context of a
workflow aimed to the identification and interpretation of variants. The
Helper platform is deposited in the OSM repository (protocol number
0102850/21) and is accessible upon request.

3.2. Workflow management system

Helper is a platform developed in Python3 compatible with Ubuntu 16
and 18 operating systems. Helper requires the installation of a few
dependencies:

e PyQT}5 for the execution of the graphic interface.

e Json for the decoding and encoding of the configuration files
necessary for the operation of Helper.

o Argparse for the implementation of the Helper main script
argument system.

e Subprocess for the execution and parallelization of tools.

The tools used in the bioinformatics pipelines are many, developed using
different languages and each need specific dependencies in order to be used.
To safely install the tools and their dependencies without incurring the
danger of changing the work environment, it is advisable to use an
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environment management system such as Conda (https://docs.conda.io/).
Conda is an open-source package management system that allows to quickly
install, run and update packages and their dependencies. The list of tools that
can be used for the execution of pipelines with Helper, and the description
of the workflow is described in Chapter 2.3.

3.2.1. Tools wrapping and parallelization

Integration of software developed in different languages is not always
simple and represents an obstacle for an inexperienced bioinformatician. The
wrappers have been designed to simplify the use of these tools and integrate
them more easily. In the world of software, a wrapper is a code that wraps
or covers other functions or tools. It can be thought of as a sandwich that
contains several ingredients, making them easier to use.

The Helper platform uses a complex wrapper system that implements the
functions of 25 external tools and scripts and allows their calling using just
Python language. The tools must be installed locally and have to be
compatible with the versions supported by the platform. Within Helper, tools
are coded as an object that contains a series of methods called through the
wrappers. Before being able to call a function of a tool, it is necessary to
initialize it by supplying the path of the main script responsible for the
execution of the tool, the amount of RAM to be dedicated, the number of
threads to be used (in case the tool that implements the multithreading), and
the set of parameters needed for execution. The wrappers implemented in
Helper all have a similar structure (Figure 3.1); they have three ports:

e A setting port to which the tool initialization information is
provided;

e An input port to which the files to be processed are provided, the
accessory files required by the tool function, the log file in which
to keep track of the processing result, the working directory in
which to save the output files.

e An output port that is used by the wrapper to return the files
produced by the execution of the function.

The module used to manage the wrapping is subprocess that allows to call
and run external software, connect inputs, outputs, and errors in pipe, and
monitor the status of the process. Furthermore, the subprocess module
provides the ability to improve workflow efficiency thanks to the parallel
execution of processes. Each function is performed on several samples at the
same time, significantly reducing processing times.
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Figure 3.1: The structure of the wrappers

3.2.2. The Helper structure

Helper consists of a simple Graphical User interface (GUI) for the
preparation of the configuration files necessary for the execution of the
analysis, and of a back-end for the execution of the analysis process. The
back end of Helper is composed of the main script in which the execution of
the pipelines is managed (pipeline.py), and of four libraries of functions. The
function.py library includes all the functions for managing directories within
the analysis folder, the functions to support the reading of configuration files
and those for interpreting the samplesheet. In the tools.py and
parallel tools.py libraries are implemented the wrappers of the tools and
software necessary for the serial and parallel analysis, correspondingly.
Finally, the scripts.py library contains all the wrappers that call the in-house
scripts dedicated to the execution of some Helper steps.
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Figure 3.2: The Helper structure.
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3.2.2.1. The configuration files

Helper takes all the information necessary to carry out the analysis from
the configuration files (CF). All CFs are implemented in JSON format
[https://www _json.org] with information nested at different levels. For the
execution of Helper 4 CF are required:

The tools configuration file

The experiment configuration file
The pipeline configuration file
The samplesheet

P

The tools configuration file (7ools.cfg) contains useful information to
recall the tools, databases, and reference genomes during the analysis. The
CF contains the list of the tools implemented in Helper (tools.list), and a set
of lists of tools that specify which one can be used during each step of the
analysis (for example tools.fastq alignment or tools.variant calling).
Similar lists for databases and reference genomes are present in the CF
(databases.list, genomes.list). Furthermore, in the CF all the information
necessary to use each tool, database, and reference genome, is specified. For
the tools, the path of the main script or jar file (for example GATK.path), the
tag that indicates in which step of the analysis it can participate (for example
GATK.tag), and the version of the tool (GATK.version) are indicated. For
databases, the path to the DB, the tags of the steps in which they can be used,
and other accessory information are specified. For the reference genomes,
the path of the fasta file, the “dict” file, and the version must be indicated.
During the implementation phase of the pipeline via GUI, Helper checks
which tools can be used in each step and proposes them to the user. During
the analysis processing, at the beginning of each step of the pipeline, the
main script reads the need information about selected tools from the
tools.cfg.

Example of tool:
"GATK v.4.1": {

"path": "/NGS TOOLS/GATK/v4.1.2.0/gatk",
"version": "4.1.2.0",
"tags":

"preprocessing,variantcalling,cnv_calling"}

Example of database:

"dbNSFP": {
"path": "/dbSNFP/dbNSFP4.0/dbNSFP4.0a hgl9.gz",
"files": "/dbSNFP/dbNSFP replacement logic",
"version": "4.0",
"tags": "database"

Example of genome reference:
“GRch37": {

"fasta": "/NGS_REF/hgl9/GRch37.fasta",
"dict": "/NGS_REF/hg19/GRCh37.dict",
"version": "37"}
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The experiment configuration file contains information regarding the
sequencing target. For each experiment contained in the list, the following
information are reported: the identification name of the panel; the technology
used to select the target during the sample preparation step (Capture
Enrichment or Amplicon); the list of genes (one entry per line); the list of
transcripts to be analyzed (one per gene and one per row); files describing
the target and “BED” format and in “List” format. The last fields are specific
for the analysis of the CNVs, and in the example shown below, the
directories of models and the target needed by GATK to perform the CNV
call are indicated.

"TrusightCardio": {

"panel name": "TrusightCardio",

"panel technology": "Capture Enrichment",

"gene list":
"/TARGET/gene list Trusightcardio.txt",

"transcripts list":
"/TARGET/transcriptList Trusightcardio.txt",

"target list":
"/TARGET/Trusightcardio manifest.list",

"target bed":
"/TARGET/Trusightcardio manifest.bed",

"cnv_calls model": “/CNV/GATK/Trusightcardio-
model™,

"cnv_ploidy model"™: "/CNV/GATK/Trusightcardio-
model™,

"cnv_target list":
/CNV/Trusightcardio manifest.CNV.list"

}

The pipeline configuration contains information about the workflow and
which tools have to be used. The CF contains fields that specify the ID of
the pipeline, the type of analysis (Germline or Somatic), the name of the
genome reference (as reported on the tools CF), and the workflow as a list
of modules that the pipeline must execute. Each module contained in the
workflow list is then described in an independent block with a series of
nested information: the RAM and the number of threads to be used during
the module processing, the workflow of the module reported as a list of steps,
and the information about each step as separate blocks. For each step, the
tool (or the list of tools in the case that the step can be executed by several
tools such as variant calling) and the tool parameters (see example below)
are reported. The modules and the steps are explained in Chapter 2.3.

Pipeline configuration file example:
"id": "helper test",
"analysis": "Germline",
"reference version": "hgl9",
"workflow": ["alignment"],

"alignment": {
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"workflow": [“fastg alignment",
"sam to bam","sortSam", "bam QC"],
"threads": "2",
"ram": "1g",
"fastg alignment": {
"tool": "BWA",
"BWA v.0.7.17": {"args": [], "algorithm":
"mem” }
}I
"sam_ to bam": {
"tool": "PICARD v.2.7.1",
"PICARD v.2.7.1": {"args": []}
}l
"sortSam": {
"tool": "PICARD v.2.7.1",

"PICARD v.2.7.1": {"args":
["SORT ORDER=coordinate"]}
}e.
}

The last configuration file is the samplesheet which contains information
on the samples. The samplesheet contains the list of samples to be analyzed
(sample_list), the organization of the samples (sample organization) and the
files about the samples organized in blocks, one for each module (module
block) of the pipeline. Within each module block, samples are structured into
blocks (sample block) based on sample organization: "only case"
(examplel), "case-control" (example 2), or trio (example 3). Each sample
block is identified by the ID of the case sample. Sample blocks contains
information about each sample associated with the case sample, and
identified by role (case, control, or parent). The information concerns the
name of the sample and the files to be processed in the specific module of
the pipeline.

Example 1: “only case” sample organization

"variantcalling": {
"samplel": {
"case": {
"sample name": " samplel",
"bam": " samplel.bam"},
}I
"sample2": {
"case": {
"sample name": " sample2",
"bam": " sample2.bam"},

}y

Example 2: “case-control” sample organization

"variantcalling": {
" samplel": {
"case": {
"sample name": " samplel",
"bam": " samplel.bam"},
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"control": {

"sample name": "
sample2.bam"},

"bam" s

},

}

sample2",

Example 3: “trio” sample organization
"variantcalling": {
"samplel": {

"case": {

"sample name": "
samplel

"bam" : "
"parentl": {

"sample name": "
sample?2.

"bam" : "
"parent2": {

"sample name": "
sample3

"bam" s

}y

samplel",
.bam"},

sample2”,
bam"},

sample3",
.bam"}

3.3. Data processing workflow

The main script that performs sample analysis is the Pipeline.py. The
script is executed by the Analysis designer interface or using a simple
command line. The required input arguments are summarized in the

following table:

Table 3.1: Input arguments to Pipeline.py script

Argument Description Comments
--tools_cfg Tools config file path Default:
[file] Helper dir/configs/tools_cfg/tools.cfg
--samplesheet | Samplesheet file path Required argument
[file]
--panel The experiment name Required argument
[string] contained in the
Experiment.list file
--pipeline Pipeline config file Required argument
[file] path
--run_id The identification name of Required argument
[string] the analysis
--workdir The path of the working Required argument
[directory] = directory
--workflow The list of major steps Default: all the major steps
[string] confirmed in the analysis
launcher
--parallel Enable parallel analysis Default: Not activated (False)
[bool]
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--del_temp Delete temporary files Default: Not activated (False)
[bool]

The structure of Pipeline.py is modular and the workflow is managed in
automatic way. The complete workflow provided by Helper is composed of
seven major modules (pre-alignment, alignment, preprocessing, variant
calling, CNV calling, post processing, annotation, post-annotation), each of
which includes a variable number of other sub-steps. Helper extracts the
complete workflow from the pipeline configuration file but only executes the
modules confirmed by the “--workflow” argument. For example, if the Pre-
alignment module is provided in the pipeline workflow, but the user wants
to start analyzing the data directly from the Alignment, he should omit the
pre-alignment in the “--workflow” argument. It is important that
compatibility is maintained between files produced by the previous module
and entering the next. For example, it is not possible to omit the variant
calling module if you want to proceed later with the post-processing or
annotation phase. In fact, these last two modules require VCF files that can
only be produced by variant callers.

The files produced by a module are traced by updates of the samplesheet.
Each module receives as input the updated samplesheet from the previous
module with information on the files produced; the first module of the
pipeline uses the samplesheet provided when launching the analysis. Once
all the steps, provided in the module, have been performed, the last files
produced are stored in the dedicated directories and their path are indicated
in the updated samplesheet. In order to track the workflow and to simplify
troubleshooting, Helper implements a log file system in which the STD-OUT
and STD-ERROR of the tools are printed. If an error occurs in reading an
input file or due to an incorrect parameter, Helper specifies in which step of
the pipeline the problem occurred and reports the error message, issued by
the failing tool, in the log file of the specific step.

3.3.1. Pre-alignment process

The first module of the workflow is the processing of the Fastq files before
the alignment of the sequences, and is needed to improve the quality of the
data. The pre-alignment consists of four possible sub-steps that are
performed on each sample: Adapter Trimming, Fastq filtering (using Read
mean quality or read length), and Fastq quality control.

3.3.1.1. Trimming of adapters

Removal of adapter sequences (read trimming or clipping) is the first steps
in analyzing NGS data. Adapter contamination will lead to NGS alignment
errors and an increased number of unaligned reads, since the adapter
sequences are synthetic and do not occur in the genomic sequence. In
[llumina sequencing, adapter sequences will only occur at the 3' end of the
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read and only if the DNA fragment is shorter than the number of sequencing
cycles. For applications where the fragment size is well calculated, adapter
contamination is expected to be small, and the adapter removal step can be
skipped saving time and efforts.

The tools implemented in Helper among which it is possible to choose for
the removal of adapter sequences are AGeNT [77] and Cutadapt [78]. The
Agilent Genomics NextGen Toolkit (AGeNT) is a Java-based (Java 8)
software module that processes specifically sequencing data obtained via
Agilent libraries (SureSelect and Haloplex) and should not be used for
experiments performed with other kits (e.g., Illumina, IDT, and Roche).
AGeNT is a command-line tools collection that contains a module for
managing molecular barcodes (Locatlt) and a module that removes the
adapter sequences (Trimmer). To use AGeNT Trimmer function, the
indication of adapters sequences it is not necessary, becausethey are
automatically recognized by indicating, the specific tag (as input to the tool)
of the library used for the preparation of the samples. Cutadapt is a very
simple tool to use and allows trimming both single and paired-end reads
obtained from any type of NGS library. Cutadapt, unlike AGeNT, requires
in input the sequences of the adapters to be removed, indicating the position
in the read (in 3 ', 5' or in the middle of the read). In the case of paired-end
sequencing, the reverse strand adapters are also required. The wrapper for
the AGeNT Trimmer function (4AGeNT.Trimmer) takes in input the path of
the AGeNT tool, the Fastq paired files, the specific tag for the NGS library,
the address of the reference genome, and other ancillary topics. The wrapper
for the Cutadapt trimming function (Cutadapt.Trim Adapters) requires the
path of the Cutadapt tool, the number of threads to be used for analysis, Fastq
paired files, the adapter sequence in 3' forward and the sequence of the
adapter in 3' reverse, the path to the reference genome, and other optional
arguments. In output from the trimming step of the adapters, you get the two
trimmed Fastq paired files.

3.3.1.2. Fastq filtering

The filtering of Fastq files is a useful step to improve the quality of the
data, excluding reads with low base quality and selecting the reads within a
certain length range. The Fastq filter step potentially increases the accuracy
of the NGS analysis but in the case of good quality sequencing experiments
it is possible to skip it.

To perform the filtering of the Fastqs, Cutadapt was implemented using
two different wrappers, one for filtering using mean quality
(Cutadapt.Fastq fiter Qual) and one for filtering using read lenght
(Cutadapt.Fastq_fiter Len). Cutadapt.Fastq fiter Qual requires in inp A
novel cryptic splice site mutation in ut the path of the tool, how many threads
to use for analysis, Fastq paired files, the Base Qual threshold to be used to
filter  reads, and  other ancillary  arguments. In  input,
Cutadapt.Fastq_filter Len requires the path of the tool, the number of
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threads to use for analysis, the Fastq paired files, the maximum and minimum
length thresholds that delimit the optimal range, and the other ancillary
arguments. The output from each filtering step contains two filtered paired
Fastq files.

3.3.1.3. Quality control

The Quality control step performs simple checks to ensure that the raw
data are good and there are no problems or biases potentially affecting
results. Typical metrics analyzed to assess the quality of NGS data are:
quality base distribution in reads, GC mean content, contamination with
adapter sequences and biases in base composition, sequence duplication, and
reads length distribution [79].

The FAstQC [80] tool has been implemented in Helper to perform the
Quality control on Fastq files. FastQC is a perl script that parses Fastq, SAM
and BAM file and produces an HTML report file that reports the data for the
sample evaluation in graphical format and a zipped folder containing the
results in TXT format. FastQC uses multiple modules to calculate the
statistics:

1. The “Basic Statistics” module generates a descriptive summary of the
analyzed sample indicating the file name and the file type, the encoding of
quality values (e.g., [llumina), the total number of sequences processed, the
number of sequences flagged as poor quality, the min and max read length
in the sample, and the overall% GC of all bases in all sequences.

2. The “Per Base Sequence Quality” module shows an overview of the
range of quality values across all bases at each position in the FastQ file.

3. The “Per Sequence Quality Scores” module reports the mean quality
score distribution over all reads. If a significant proportion of the sequences
in the run have overall low quality, then this could indicate some kind of
systematic problem.

4. The “Per Base Sequence Content” module calculates the proportion of
each called nucleotide for each base position in reads. An unbalance can
indicate an overrepresented sequence which is contaminating library.

5. The “Per Sequence GC Content” module measures the GC content
across all reads and compare it with a normal distribution from a random
library. An unusually shaped distribution may indicate a contaminated
library or some other kinds of biased subset.

6. The “Per Base N Content” module reports the percentage of N calls at
each position. N are called when the sequencer is unable to make a base call
with sufficient confidence and a increased percent of N suggest a low-quality
sequencing.

7. The “Sequence Length Distribution” module generates a distribution of
fragment sizes. More than one peak in the distribution means different sizes
in the libraries that can introduce analysis biases.

8. The “Duplicate Sequences” module counts the degree of duplication
for every sequence and calculates a distribution of duplication level.
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9. The “Overrepresented Sequences” module finds all of the sequences
which make-up more than 0.1% of the total and that can indicate some source
of contamination.

3.3.2. Alignment

The next module is the alignment of the sequences into the Fastq files to
obtain BAM files that contain the aligned reads. The workflow of the
alignment phase consists of four mandatory steps (Fastq alignment,
sam_to_bam, sortSam, indexBam) and a fifth step of Bam quality control
that is possible (but not recommended) to skip.

3.3.2.1. Fastg_alignment

Fastq alignment is the step responsible for aligning the sequences
contained in the Fastq files against the reference genome. The aligners
implemented in Helper are BWA [81] and Bowtie2 [82]. BWA and Bowtie2
are two tools that implement alignment algorithms based on the Burrows-
Wheeler Transform (BWT), they work well with paired-end reads, and are
widely used for their accuracy and mapping speed. BWA implements three
different algorithms: a) BWA-backtrack, b) BWA-sw, and ¢) BWA-mem.
The BWA-backtrack algorithm is designed for short Illumina reads (up to
100bp), while both BWA-mem and BWA-sw are implemented for longer
sequences and are very similar. BWA-mem is the last implemented
algorithm, it is faster and more accurate than the other two and it is the
generally recommended algorithm.

Bowtie2 allows choosing between two alignment algorithms: a) End-to-
end alignment and b) Local alignment. End-to-end alignment is the one
performed by default in Bowtie2, and it searches for alignments involving
all the read bases without trimming the reads (untrimmed alignment), while
Local alignment maximizes the alignment score by trimming some bases.

In order to perform the alignment, both tools require that the FASTA file
containing the reference genome be indexed, each aligner using its own
function.

// Building a reference index with bwa and bowtie2
bwa index [options] reference.fasta
bowtie2-build [options] reference.fasta output dir

In Helper, the wrappers for BWA and Bowtie2 are implemented with the
functions Bwa.align fastq and Bowtie2.align fastq, correspondingly. The
functions ask in input the paths to the executables of the tools, the Fastq
paired, the path to the reference genome for mapping the reads (the index
files of the genome for the respective tools must be present in the same
folder), the optional arguments of the tool, the alignment algorithm (only for
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Bwa.align_fastq), the log file, and the output directory. The output of the
Fastq file alignment step is a file in SAM format containing the aligned reads.

3.3.2.2. Sam to Bam conversion

This step converts the format from SAM to BAM via the
SamFormatConverter function of Picard toolkit [83]. Picard is a JAVA
package of command line tools for manipulating files containing NGS data
that has become part of the GATK best practices [43] for the implementation
of NGS analysis pipelines.

The Picard.SamFormatConverter wrapper requests the path to the Picard
Jar file, the SAM file to be converted, and the amount of RAM to use for
processing. The converted BAM file is returned in output.

3.3.2.3. Sort Sam files

After Fastq alignment, the read contained in the SAM/BAM files are
sorted in random order according to their positions in the Fastq files. In order
to be usable in the subsequent steps of pre-processing and variant calling,
the reads in Bam files must be ordered according to the chromosomal
coordinates of the region in which they are mapped.

In Helper, the process of sorting Bam files is implemented through Picard
tool and the wrapper for its sorting function (picard.SortSam) requires the
path to the Picard Jar file, the Bam file, the amount of dedicated RAM and
the optional arguments of the tool, the log file and the directory in which the
sorted file has to be saved. The wrapper default is to sort by coordinates
(SORT _ORDER=coordinates). In output, a Bam file containing the reads
sorted first by the reference sequence name (RNAME field), then by the
mapping position (POS field), is released.

3.3.2.4. Index Bam files

Indexing a sorted Bam file allows a quick access to reads that are mapped
in particular genomic regions and to extract alignment information quickly.
The index file acts like an external table of contents and allows programs to
jump directly to specific parts of the Bam file without reading through all of
the sequences. Many tools require Bam files to be indexed in order to read
them. The indexing of Bam files is performed using a Picard function. The
Picard.BuidBamIndex wrapper requests the Bam file to be indexed and the
amount of RAM to use and returns a file with the same name as the Bam file
suffixed with “bai”.

3.3.2.5. Bam quality control
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Bam files are evaluated using parameters similar to those of Fastq QC. In
addition, the following indexes of quality are assessed: the average coverage
of the target; the uniformity of coverage calculated as the percentage of the
target with coverage in the range between 80% and 120% of the average
coverage of the sample, and how much of the target exceeds the minimum
acceptable coverage threshold (which depends on the application); the
quality of alignment of the reads on the target in terms of fraction of reads
that are mapped to the target (in-target and off-target reads); finally, the areas
with low coverage compared to the rest of the target (gaps) are identified. In
Helper the Bam quality control is implemented through FastQC. The
Fastgc.bam_diagnosis wrapper requests the input of the Bam file to be
analyzed and returns the statistics for the evaluation of the sample.

3.3.3. Pre-processing

3.3.3.1. Add readgroups to Bam file

Adding read groups to Bam files is a step that facilitates the analysis of
samples by subsequent tools. The function is implemented through the
picard.AddOrReplaceReadGroups wrapper, which requests the Bam file to
be modified, the experiment ID, the analysis ID, and the sample name. The
function modifies the fields present in the Bam file according to the
following table.

Table 3.2 - Tags modified during Add readgroups to Bam file

BAM TAG FIELD

RGID Sample name
RGPL 'ILLUMINA’
RGSM Sample name
RGLB Experiment ID
RGPU Analysis ID

3.3.3.2. Mark pcr duplicates

The marking of duplicate reads within the Bam file is implemented
through Picard's MarkDuplicates function. The picard MarkDuplicates
wrapper asks in input the Bam file to be analyzed and the optional arguments
to run the tool. The function works by comparing sequences in the 5-prime
positions of both reads and read-pairs. The tool output is a new Bam file, in
which duplicates have been identified (not deleted) using SAM flags field
for each read, and a metrics file indicating the numbers of duplicates reads.
The wrapper assumes the Bam is sorted using chromosome coordinates
(ASSUME SORT ORDER = coordinates).
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3.3.3.3. Realignment around InDels

The tool used for realigning the reads around the InDels is GATK v3. This
step is no longer implemented in GATK v4 as it is replaced by the local
realignment of sequences directly in the variant calling step.

The wrapper GATK.IndelRealigner requests as input the Bam to be
analyzed, the BED or LIST file that contains the coordinates of the
sequencing target, and the Fasta file of the reference genome. To improve
accuracy, the database containing known InDel sites (e.g.,
mills_and 1000G_gold_standard.indels.hg19.sites) can also be provided.
The realignment process implemented in GATK consists of two steps: 1. the
sites where it 1is probably necessary to realign through the
RealignerTargetCreator function are identified, and 2. the candidate sites
are realigned through the IndelRealignerfunction. The output of the wrapper
is a Bam file in which potentially problematic sites due to the presence of an
InDel have been realigned.

3.3.3.4. Base Quality Score Recalibration

The recalibration of the Base quality scores step is implemented using
GATK v3 or v4. The recalibration process consists of two phases: 1. First,
GATK calculates for each mismatch found in the Bam file a series of
statistics and covariates and generates a recalibration table file; 2. Then,
GATK uses these tables to calculate the new quality score for the bases
contained in the Bam file.

The wrapper GATK.BaseRecalibrator requires reads data in Bam format
whose base quality scores need to be assessed, one or more databases of
known polymorphic sites that can be useful to improve the process quality
(e.g., mills_and 1000G_gold standard.indels.hgl9.vcf or dbsnp.vcf), the
target file in BED or LIST format, and the reference Fasta file. The first step
of generating the recalibration table is implemented through the
BaseRecalibrator function for both versions of GATK, while the second step
is performed by the PrintReads function for GATK v3 or the ApplyBOSR
function for GATK v4. The output of the GATK. BaseRecalibrator is a Bam
file with recalibrated quality scores.

3.3.4. Short variant calling

The variant calling step is performed differently based on the type of
samples (germline or somatic) and their organization in the samplesheet
(only case, case-control, trio). In the case of germline analyses, variant
calling can be performed in single-sample, in cohort and in trio modalities,
while in somatic analysis the samples are organized in case-control modality
(figure).
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In order to perform variant calling, Helper implements 3 tools: GATK
(HaplotypeCaller + GenotypeGVCF) [84], Freebayes [85], and VarScan2
[86]. For somatic variant calling, GATK (Mutect2), VarScan2, and Vardict
[87] are implemented.

HaplotypeCaller and Freebayes are two variant callers based on a local
de-novo assembly of the suspicious regions and implement a method of
detection of the probable haplotypes, present in the target analyzed, a priori
from the alignment information contained in the Bam files. Both algorithms
identify regions that show sufficient evidence to hypothesize the presence of
a variant and construct a window of interest (“ActiveRegion” for GATK)
around the candidate region. All possible haplotypes observed within the
window of interest are calculated and the one with the greatest likelihood of
actually being present in the sample is considered. GATK calculates the
likelihood after a local realignment step of the haplotypes, while Freebayes
performs a count of the frequencies of the observed haplotypes. Using the
information on the haplotypes, the probability of the genotype for each
potential variant site is inferred using Bayesian methods. Finally, the most
likely genotype is assigned to each genomic position within the haplotype
considered (an example of haplotype-based workflow is shown in figure). In
both HaplotypeCaller and Freebayes, the genotype Quality score associated
with the variant is provided as the difference between the likelihood of the
chosen genotype and the second most probable.
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Figure 3.3: The HaplotypeCaller genotyping workflow (Figure from [84])

Mutect2 is the variant caller implemented in GATK for the analysis of
somatic samples. The workflow for identifying variants is similar to those of
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HaplotypeCaller. Both search for the active regions, perform the assembly
de novo to reconstruct the haplotypes, calculate the probability associated
with each identified haplotype, and estimate the most likely genotype. The
main difference is represented by the model used to calculate the likelihood
of the genotype. HaplotypeCaller relies on a fixed ploidy assumption to
calculate the genotype likelihood, Mutect2 instead does not use a fixed
ploidy model in order to ensure greater accuracy in calling variants with a
lower allelic frequency. This allows Mutect2 to gain greater flexibility in the
evaluation of samples with problems of fractional purity, sub-clonality, and
copy number variations common in cancer sequencing applications.

On the other end, VarScan is a tool that implement a robust heuristic
approach to call variants. Unlike the Bayesian tools, it does not calculate the
probability of the genotype based on the observations on the sample but
evaluates the mismatches with the reference genome on a base-by-base basis
through a threshold system. For each possible variant site, apply a cascade
of quality filters to evaluate the parameters supporting each observed allele.
The bases that mismatch and that exceed the coverage and base quality
thresholds on the reads with non-null mapping score are examined, the others
are recognized as non-variant positions. The alleles identified in the position
under examination are tested based on the number of supporting reads, allele
frequency, strand balance, and the p-value derived from a Fisher's Exact Test
on the observations on the variant and on the reference. The genotype of the
evaluated site is determined based on the frequency of the variant allele. If
the allelic frequency exceeds a certain threshold (0.80 by default) then the
genotype 1s Homozygous, otherwise heterozygous. Although GATK
HaplotypeCaller and FreeBayes are two tools that generally work well,
Varscan guarantees a different “point of view” useful for increasing the
number of detected variants in the case of joint multi-tool variant calling.

VarDict is a variant caller developed for cancer sequencing applications
and allows to perform analysis of paired samples (tumor and matched normal
samples) to detect germline, somatic and loss of heterozygosity (LOH)
variants. Similar with Varscan, VarDict uses a heuristic approach for the
identification of variants and implements an algorithm specially developed
for the detection of InDels hard to evaluate and to estimate their allelic
frequency with greater accuracy. Taking advantage of the fact that InDels
often cause misalignments and clipped reads, VarDict performs two types of
local realignments based on the size of InDels:

1. For small InDels, a supervised method is used that realigns clipped
reads in the around variants already identified, improving the estimate of the
allele frequency.

2. To search for new larger InDels, the near clipped reads areas are
monitored, a consensus sequence is generated which VarDict realigns
(unsupervised realignment) within a window of variable size based on the
length of the InDels to be identified. Based on the result of the alignment of
the consensus, deletions, insertions or complex variants are called even if
they are larger than the length of the reads.
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When evaluating paired samples, VarDict performs for each identified
variant, a fisher's exact test to determine if the difference of allele frequency
between case and control samples is significant. Variants present only in the
case sample are called somatic, variants present in both samples are called
germline, and variants in heterozygous state in control sample that become
homozygous in the case sample are called LOH.

GERMLINE ANALYSIS SOMATIC ANALYSIS
SINGLE SAMPLE COHORT TRIO CASE CONTROL
For each case sample: All samples togheter: For each case sample: For each case sample:
Case Parent 1 Parent2 Somatic Normal
Sample bam Samples bams bam bam bam bam bam
GATK (Haplotypecaller + Genotype gvcf) GATK (Mutect2)
Freebayes VarDict
Varscan2 Varscan2
One single sample One multisample VCF One trio VCF file One case control VCF
VCF file for each tool file for each tool for each tool file for each tool

Figure 3.4: Variant calling process based on the sample organization

3.3.5. Post processing

3.3.5.1. VCF normalization

During variant calling, the same indel can often be reported multiple times
and with different starting positions in the VCEF file. The standard convention
with VCF is to place an indel at the left-most position to define a unique
record. The VCF normalization step is necessary to ensure that the InDels
described in the VCFs are reported in the left-most standard. In Helper this
step is performed by GATK v4 or Bcftools.

The two wrappers gatk.LeftAlignAndTrimVariants and bcftools.norm
require input the VCF file to normalize and the reference genome. Both
wrappers implement by default the splitting of multiallelic sites (sites where
are reported more than one alternate alleles) in biallelic sites. The normalized
VCF is returned as output.

3.3.5.2. VCF filtering

VCF file filtering is implemented through the VariantFiltration tool of
GATK v3 and GATK v4. VariantFiltration allows to perform a Hard filtering
of the variants using a threshold system on the information contained in the
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VCF file. It was decided not to implement filtering methods based on the
machine learning approach (such as GATK's VOSR) in the v1.0 version of
Helper as it is a framework dedicated to the analysis of target sequencing
data. In fact, The ML filtering algorithms are poorly performing for this type
of applications.

The wrapper for the filtering function (gatk. VariantFiltration) asks for the
VCF file to be filtered, the reference genome, and filters that can be provided
as an argument to the tool at the pipeline design time. In output the function
produces a VCF file that contains the FILTER field modified with the
respective filtering tags if the variants that do not exceed the thresholds, and
with PASS in the others.

3.3.5.3. VCF split by samples

This step is needed only in the case in which the germinal variant calling
is performed in Cohort mode. The joint VCF that contains all the samples of
the cohort is split into several VCFs containing a single sample in order to
be analyzed individually.

The scripts.Filter by sample wrapper calls a script developed in-house
(vef split_by sample.py) which requests the joint VCF file and the sample
name used for information extraction and with which to rename the filtered
VCF. The script filters the VCF joint using the sample name, extrapolates all
the variants identified in the sample excluding sites with wild type (0/0) or
unknown (./.) genotype. In output, a VCF file is obtained, in which the fields
of the chromosomal position (CHROM and POS), of the alleles (ID, REF,
and ALT), of the FILTER, and of the INFO remain unchanged with respect
to the joint VCF starting file and the field FORMAT that reports only the
information of the sample of interest.

3.3.5.4. VCF merge

The VCF merge step generates a single VCF using calls from multiple
variant callers. The scripts.merge vcfs wrapper calls an in-house script
(merge_vcfs.py) which requests as input the VCFs issued by the individual
variant callers: GATK, Freebayes, and Varscan for germline analysis, and
GATK, Varscan, and Vardict for somatic variant calling. For each variant it
extracts and processes the information contained in the different VCFs and
outputs a new merged VCF file. The new VCF contains the set of variants
identified by at least one of the variant callers. The new FORMAT field is
the result obtained by averaging the values of the FORMAT fields of the
three software, and the most represented genotype across the three tools is
chosen. The new INFO field shows the INFO fields of the other VCFs with
a prefix indicating the source software (for example GATK AC). The INFO
field also reports the FORMAT fields of each VCF in order to track original
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values (for example GATK _FORMAT). The new file respects the VCFv4.2
format and is compatible with the most software that analyze VCF files.

3.3.5.5. VCF to TSV conversion

This pipeline step converts the variant format from VCF to TSV. The TSV
format is easier to read and can be parsed like an Excel or Calc worksheet.
Also, in this case the vcf to tsv.py script that deals with the conversion of
the format is a script developed in-house and requires the VCF file to be
converted, the FORMAT and INFO fields to be reported in the TSV file, and
the name of the output file. The FORMAT and INFO fields to be reported in
the TSV file, must be indicated as a comma-separated list under the “--
format” and “--info” parameters. Alternatively, it is possible to provide a file
(“--tag_file”) containing the list of FORMAT and INFO fields of interest.
Within the tag file, the fields must be indicated as a list of elements (one
entry per line) consisting of FORMAT or INFO and the name of the field of
interest separated by TAB. The nested INFO fields, such as the formats of
the individual Variant callers in the case of VCF merged (e.g.,
GATK FORMAT), must be reported indicating the name of the nested field
like GATK _FORMAT and the name of the field of interest contained in the
nested one as GT, separated by ":".

Examples of entries in the tag_file:

FORMAT GT
FORMAT AD
INFO AC
INFO  GATK FORMAT:GT  //nested field
INFO FREEB FORMAT:DP //nested field

The output TSV file contains a Header that includes the mandatory
descriptive fields about the chromosomal position of the variant, the alleles,
the filters (CCHROM!', 'POS', 'ID', 'REF', 'ALT', 'FILTER"), and the whole list
of fields extrapolated from the separate FORMAT and INFO TAB. The
information corresponding to the fields of the Header, separated by TAB, are
shown for each variant (one per line).

The wrapper scripts.Vcf to_tsv asks as input the path to the script, the
VCF file to convert, the tag file, the list of fields of the FORMAT and the
list of fields of the INFO report in the TSV file.

3.3.6. Variant annotation
The variant annotation step is implemented in Helper using Variant Effect
Predictor (VEP) [88] and Annotate Variant (ANNOVAR) [89]. Both tools

annotate variants locally by extracting information from precompiled
databases. Both VEP and ANNOVAR are two tools widely used for their
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ease of use and completeness of annotation. ANNOVAR performs three
levels of annotation using three different scripts or using a single line
command: 1. Gene-based annotation to identify whether SNPs or CNVs
cause protein coding changes and the amino acids that are affected; 2.
Region-based annotation to identify variants in particular genomic regions,
for example, conserved regions, predicted transcription factor binding sites,
segmental duplication regions, or many other annotations on genomic
intervals. 3. Filter-based annotation for information about the presence of the
variant in the various databases (dbSNP, population database, etc.), or to
extract the scores from the damage prediction tools. VEP, on the other hand,
generate the entire set of annotations with a single line of code, and allows
information on the gene, the region and the various clinical and population
databases to be integrated with other custom databases external to the pre-
compiled one, increasing the quantity of potentially obtainable information.

The wrapper for VEP (vep.vcf annotation) requests the VCF file to be
annotated, the reference genome, the assembly with which you want to
annotate the variants (the precompiled VEP database), the species (the
default specie in Helper is “homo_sapiens™), the fields with which you want
to note the variants, the additional plugins (optional). The additional plugins
must be present locally and must be indicated in the tools configuration file
as a database (for example dbSNFP).

The ANNOVAR wrapper (annovar.vcf annotation) requests in input the
VCF file to be annotated, the reference genome, the path to the precompiled
database, and the protocol with which to annotate the variants. In Helper, the
annotation using the single command line is implemented for ANNOVAR.

The output of the module is an annotated VCF file.

3.3.7. Post annotation

3.3.7.1. Report annotation in TSV format

This step reports in TSV format the variants contained in the annotated
VCF. The scripts.add Annotation wrapper calls an in-house script
(annotation_extractor.py) which requests the annotated VCF, the file
containing the list of annotations to be extracted, the TSV format file
generated in the vcf to tsv step of the post-processing module (optional),
the file containing the list of main transcripts from which to extract the
annotation information (optional), as well as the log file and the working
directory. The script first filters the transcripts for each variant, considering
only those provided in input, or alternatively the canonical ones; then look
for the annotation tags provided in input with the annotation list file; finally,
if the TSV file produced by post-processing is supplied to him, the
annotations extracted are added directly to this file, otherwise the variants
are reported in new file in TSV format.

53



The Helper platform

3.3.8. CNV calling

In Helper the CNV call module is implemented using GATK, Decon (90),
CoNVaDING [91], and CNVKkit [92].

GATK calls CNVs using a Read Depth (RD) based method for both WGS
and targeted sequencing applications. The GermlineCNV Caller algorithm
uses a Bayesian approach to calculate the likelihood of the ploidy of the
regions of interest and call the CNVs. The algorithm generates a coverage
model by calculating all the descriptive parameters of the distribution of read
depth, variance and bias within the target through the comparative analysis
of a training dataset that contains a series of similar samples (same
sequencing platform, same library preparation protocol, and same capture
kit). From the training dataset, GermlineCNV Caller also infers the ploidy
status of the target contigs and uses them as the baseline copy number state
for a Hidden Markov Model (HMM). The HMM algorithm uses information
on the region of interest and the parameters of the coverage model to
calculate the probability that a change in copy number status may have
occurred in one or more adjacent regions of the target. GermlineCNVCaller
can runs in Cohort mode or Case mode: in cohort mode the coverage model
and its parameters are calculated directly from the samples that are part of
the cohort to be analyzed and based on these parameters it calls the CNVs;
in Case mode the model is built on a cohort different from the samples to be
analyzed but which must be compatible in terms of library preparation and
sequencing platform. The cohort mode needs a large number of samples to
be analyzed in parallel in order to work at its best (recommended 30 WES or
WGS samples), while the Case mode allows you to analyze even a single
sample at a time as long as you have a model trained with a sufficient number
of compatible samples. The result of the CNV call is linked to the quality of
the coverage model both in the number of samples that compose the training
cohort and in the estimation of the hyperparameters that can be modified by
the user and must be evaluated on a case-by-case basis. The
GermlineCNVCaller tool has computational resource requirements to
consider that scale linearly with the number of analyzed samples and the
complexity of the trained model.

CoNVaDING is a CNV caller that implements an RD-based algorithm
based on comparative analysis with a group of control samples. The
CoNVaDING workflow consists of serveral steps, starting from the selection
of the best control group, composed of samples generated with the same
library preparation protocol and sequenced with the same platform. The tool
performs two coverage normalizations for each region contained in the
target: a normalization on the whole sample using the average coverage of
the entire target, and a normalization on each gene, comparing the coverage
of the single exons with the average coverage of the entire gene. The most
informative samples are chosen, based on the similarity in terms of coverage
with the sample under examination, to be used as a reference set for calling
the CNVs. The CNV call is made for each target region by comparing the
normalized coverage of the sample under examination and the average
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coverage of the reference set and calculating the Z-score between the
normalized coverage distribution (first on the whole sample and then on the
specific gene) in the sample under examination and the distribution of the
control group. The CNVs are called by combining information on the
coverage ratio and distributions in a different way based on the magnitude
of the event identified. CoNVaDING filters the called CNVs by dividing
them into 3 sets of different sensitivity and specificity based on the quality
control results on the samples.
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Figure 3.5: The CoNVaDING workflow (Figure from [91])

Decon is an ExomeDepth based tool [93], optimized for target sequencing
applications that implement an RD type approach. CNVKkit calculates a
coverage metric called the fragment per kilobase and million base pairs
(FPKM) for each exon in the target. The FPKM normalizes the number of
reads that map the analyzed region based on the length of the exon and the
total number of samples reads. CNVkit works in batch mode and requires a
minimum of input samples to ensure call quality (the number of samples
depend on the experiment). The call of the CNVs is made through an HMM
which considers the FPKM, the quality of the analyzed region, the quality of
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the entire sample in terms of coverage and correlation with the other samples
of the incoming cohort.

CNVKkit uses both the on-target reads and the nonspecifically captured off-
target reads to identify CNVs for each sample. Both the on- and off-target
locations are separately used to calculate the mean read depth within each
interval. In fact, for each Bam file, CNVkit computes the log2 mean read
depth in each on and off- target bin. CNVKkit uses a copy number reference
in order to correct the results of test samples. The reference profile is
estimates using samples derived from same NGS protocol and analyzed
using same sequencer. The number of reference samples depends on the
applications; it is possible to generate a reference using just a sample, but
more samples are recommended. Additional information can be associated
with each bin in order to perform GC bias, and repetition bias correction.
The CNV calling is performed after a read depth fixing step. The single
sample's on- and off-target read data are combined, then CNVkit removes
bins that fail quality check, performs the correction of systematic biases,
subtracts the reference read depth from each bin, and finally median-centers
the corrected copy ratios. The sample's copy ratios are segmented into
discrete copy-number regions and the report containing CNV calls is emitted.
The segmentation step can be performed using a set of algorithms (CBS,
HaarSeg, HMM) in order to adapt the analysis to different applications.

The CNV callers implemented in Helper can work both in single sample
mode and in batch mode. Whereas the single sample mode uses samples from
other experiments as a reference in order to compare the analyzed sample
and identify variants, the batch mode uses samples in the same cohort as
reference. In Helper, the choice between the two calling modalities depends
on the Experiment configuration file. If the fields that concern CNV tools
reference files and directories (for example GATK ploidy and call models,
or the control samples directory for CONVaDING) are empty, then Helper
performs CNV calling in batch mode, otherwise uses the single sample
mode.

3.3.9. Sample organization and workflows

The sample organization is important for the workflow setting (Figure
3.6). The pre-alignment, the alignment, and the pre-processing modules are
performed ever in the same way, based on the workflow set in the pipeline
configuration file. Files from all samples are analyzed step by step
independently form the sample organization. On the other hand, variant
calling strongly depends on the sample's organization: “single-sample” or
“cohort” modality of germline variant calling can be performed with “only-
case” sample organization, while trio germline analysis and case-control
somatic variant calling are performed in case of “trio” and “case-control”
organization, respectively.

In case of single sample variant calling using multiple tools, VCF files of
the same sample are merged in a single VCF file; otherwise, the merging
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step is bypassed. This file is optionally processed, filtered, annotated, and
converted in TSV format. The final TSV file contains information about
variants in a single sample.

In case of cohort variant calling, a multi-sample VCF is produced for each
used tool. Joint VCF files are split in single sample VCFs; thereafter, the
workflow proceed per single-sample analysis and therefore, each final TSV
contains the variants of a single sample, to which useful information about
allele count, allele number, and allele fraction in the cohort are added.

In case of trio variant calling, the split step is bypassed. VCF files from
the tools are merged in a single VCF file, and then analyzed as a single
sample VCF. The final TSV file contains variants from the case sample and
from both parent samples. Information about the genotype and quality scores
are reported for the three samples, in order to understand which samples are
carriers of the variants and to reconstruct the variant segregation.

The case of case-control variant calling, is similar to the trio one. The
splitting step is bypassed, VCF files from different tools are merged in a
single VCF and analyzed as a single-sample VCF, and the final TSV files
contains variants from both the somatic and the control samples. In this case
is important to understand which variants are present only in the somatic
sample and which are also present in the control sample. Information about
genotype and quality scores are reported for both samples to facilitate the
identification of true somatic variants from artifacts.

In this version of Helper, the CNV calling module is performed ever as
single-sample or cohort (batch) modality. In case of trios or case-control
samples organization, CNV module consider all samples as only-case mode.
For each tool a file report is generated, and the comparison between child
and parents, or tumor vs normal sample have to be performed manually. In
the next version, this comparison step will be implemented.
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Figure 3.6: Workflows based on the sample's organization

Table 3.3: The table reports tools implemented in Helper, the version, the
module, and the steps where can be used.

Tool name Version Module Step
AGeNT v.3.5.1.46 | pre-alignment Trimming of adapters
CUTADAPT | v.1.13 pre-alignment Trimming of adapters
pre-alignment Fastq filtering
FastQC v.0.11.8 pre-alignment Fastq QC
pre-processing | Bam QC
BWA v.0.7.17 alignment Fastq alignment
BOWTIE2 v.2.3.5.1 alignment Fastq alignment
PICARD v2.7.1 alignment Sam to Bam conversion
alignment Bam sorting
alignment Bam indexing
pre-processing | Add or replace read group
pre-processing | Duplicates marking
GATK v.3 v.3.7 pre-processing | Indel realignment
pre-processing | Base quality score
recalibration
variant calling | short variant calling
post-processing | VCF filtration
GATK v.4 v.4.1 pre-processing | Base quality score
recalibration
variant calling | short variant calling
variant calling | CNV calling
post-processing | VCEF filtration
post-processing | VCF normalization
Freebayes v.1.1 variant calling | short variant calling
Varscan2 v.2.3.9 variant calling | short variant calling
VarDict-Java | - variant calling | short variant calling
Samtools v.1.3.1 variant calling | short variant calling
Bcftools v.1.5 post-processing | VCF normalization
VEP - annotation VCF annotation
Annovar - annotation VCF annotation
Decon v.1.0.2 variant calling | CNV calling
CoNVaDING |v.2.3.2 variant calling | CNV calling
CNVkit - variant calling | CNV calling
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3.4. The Helper GUI

To facilitate the user experience in the setup of the configuration files In
order to facilitate the user experience in the compiling of the configuration
files, in the preparation of the samplesheet file, and in the setup of the
analysis of the samples, a simple graphical user interface (GUI) is
implemented in Helper. The GUI was developed in Python 3 language using
pyQTS5 python module. The GUI can be called using simple command line:

Python /paht/to/Helper.py

The first window that appears is the main Helper window and contains
five buttons, each of which opens another window:

1. The button labeled "compile shamplesheet" opens the
Samplesheet designer window;

2. The button labeled “Add or Edit gene panel info” opens the
Experiment designer window;

3. The button labeled “Add or edit pipeline” opens the Pipeline
designer window;

4. The button labeled “Instrument settings” opens the Samplesheet
designer window;

5. The button labeled “Start analysis” opens the Analysis settings

window.

Helperv1.0

COMPILE SAMPLE SHEET ADD or EDIT PIPELINE

ADD or EDIT GENE PANEL INFO TOOLS SETTINGS

START ANALYSIS
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Figure 3.7: The Helper’s main window

3.4.1. Tools setting

The tool setting window allows the compilation of the Tools config file.
This window automatically loads the Tools configuration file into the
/pathtoHelper/config/tools folder. Any changes made to the information and
settings of the tools are automatically saved in that configuration file.

The main window of the Tool settings contains the list of tools
implemented in Helper, the list of databases that can be used in the various
steps of the pipeline by the tools, and the list of reference files. When you
select a tool, a database, or a reference genome, the information present in
the configuration file is displayed in the “Settings” table.

The “Add” button opens a window (Add tool info window, for the button
dedicated to tools) in which you can indicate: the tool name field that
identifies the tool within Helper; the tool version for tracing tools with
similar names (e.g., GATK v3 and GATK v4); the path of the main script in
case of tools developed in Python, R, Perl, or Bash, and of the jar file in case
of Java tools; the tags that indicate in which steps the tool can be used. The
tags can be entered manually, or through the “Add_tags” window which can
be accessed via the appropriate button. The Add Tags window contains the
list of possible pipeline steps. By selecting the steps and confirming, the tags
will be automatically added to the tool. Using the save button, information
contained in the Add tools window is saved in the tool's configuration file
and the new tool is added to the list in the main window.

The “Set” button opens a window that contains the same fields as the “Add
tool” window. In this case the fields are pre-filled with the information of
the selected tool extracted from the configuration file. Clicking the save
button, the information in the configuration file is overwritten by the
modified one.

Using the Delete button, the selected tool is deleted from the list of tools
and from the configuration file.
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Figure 3.8: The Helper’s Tool Settings window

3.4.2. Experiment Designer

In the experiment designer window, all the information contained in the
Experiment configuration file must be specified. Using the “Panel Name”
drop-down menu it is possible to choose an existing experiment to modify it,
or to create a new one by simply entering a new experiment ID. From the
drop-down menu “Panel chemistry” it is possible to select the type of sample
preparation: “Capture Enrichment” or “Amplicon”. In the "Gene List" field
it is possible (optional) to indicate the list of genes contained in the panel
used for the experiment; in the “Principal Transcript List” field it is possible
(optional) to indicate the list of transcripts necessary to filter the annotations
of the variants in the post-annotation form; In the "Target file" fields it is
necessary to indicate the file containing the target in LIST format and in BED
format. Finally, it is necessary to indicate the directories and files essential
to the tools to make the CNV call. Each tool needs specific files in order to
perform the analysis. The example in the figure shows the fields dedicated
to GATK: The target file in LIST format dedicated to the CNV call, the
Ploidy model used by the algorithm for calculating the likelihood of the
genotype, and the Call model needed with the 'Single sample' CNV calling
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mode. The "Reset Experiment" button deletes all the fields of the selected
experiment, while the "Save Experiment" button allows you to save the

changes made or to save the new experiment in the Experiment configuration
file.

@@ @ Experiment Builder

Add or Edit Experiment Information

Panel Name: ~ | |DELETE Panel|
Panel Chemistry:

Gene List: search...
Principal Transcript List: Search...

Target File.list: Search...

Target File.bed: H search...

Useful information For the CNVs analysis with GATK

CNV Target File.list: search...

CNV GATK Ploidy Model path: Search...

CNV GATK Calls Model path: Search...

Reset Experiment Save Experiment

Figure 3.8: The Helper’s Experiment Designer window

3.4.3. Samplesheet Designer

The samplesheet designer allows the organization of sample files in such
a way that they can be analyzed by Helper. The main window has two search
buttons. The "search files" button allows you to search for files one by one
to add them to the list and create a new samplesheet; if multiple files are
selected at the same time, they will be added together. The drop-down menu
of the Pipeline step determines in which module the files will be saved. For
example, the selection of prealignment, allows the selection of Fastq files
only (which are files compatible with the prealignment module); they will be
organized in such a way as to distinguish Fastq R1 from R2 (and Fastq 12 if
needed). The sample ID will be inferred directly from the files but can be
changed later. It is possible to add one sample at a time by right clicking on
the table and selecting add sample; in that case the Fastq files will be added
individually by double clicking on the specific box. From the drop-down
menu it is possible to choose the four starting modules of the pipeline:
prealignment, alignment, preprocessing, variant calling (short variants and
CNV). For prealignment and alignment only Fastq files can be selected,
while for preprocessing and variant calling only Bam files can be selected.
The second button (open samplesheet) allows you to open and edit an
existing samplesheet. In this case, the drop-down menu allows you to switch
between the different modules within the samplesheet.
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(<] Helper - Ssamplesheet designer

Samplesheet Designer

Search Files... Samples organization
Open Sample sheet... Only cases (®
Organize Samples ->
Pipeline Step Case - Control
prealignment - Trios
sampleID =~ FASTQR1 FASTQ R2 FASTQ 12
Cancel Samplesheet Save Samplesheet

Figure 3.9: The Helper’s Samplesheet Designer window

The "Sample organization" radio button is used to indicate the
organization of the samples in the pipeline. Depending on the organization,
once the setting window is opened using the "Organize samples" button, you
can indicate the role of each sample. If the organization is "only case", each
sample will be considered independently; if it is case control, you must
indicate which sample is the case and which is the control; in the case of
"trio" it is necessary to indicate who is the case and who are the relatives. In
order to save the pipeline, it is necessary to perform this sample organization
step.

oOrganization: case-control
Add Sample

sample ID CASE CONTROL
1/ 20210903 _02_cardio ~ | 20210903_02_Cardio ~ |20210903_03_Cardio ~

2/ 20210903_03_Cardia ~ | 20210903_03_Cardio ~ | 20210903_04_Cardio ~

Cancel Accept

Organization: trio
Add Sample

; sample ID ] CASE PARENT 1 PARENT 2
1/20210903_02_cardic ~ | 20210903_02_cardio ~ | 20210903_03_Cardio ~ | 20210903_04_Cardio

Cancel Accept

Organization: only cases
Add Sample

sample ID CASE
1/20210903_02_Cardia v | 20210903_02_Cardio ~

2/ 20210903_03_Cardio ~ | 20210903_03_Cardio ~

3/20210903_04_Cardia ~ | 20210903_04_Cardio ~

Cancel Accept

Figure 3.10: The “Organize Samples” window
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3.4.4. Pipeline designer

The Pipeline Designer window allows the design of new pipelines or the
modifications of existing ones. Through the drop-down menu "Pipeline" the
pipeline can be chosen. Through the "Tools cfg" field it is possible to choose
the tool configuration file from which the tools, that can be used in each step
of the pipeline, are extracted. The two drop-down menus "Analysis" and
"Reference version" indicate the analysis type (somatic or germline) and the
version of the reference genome to use, correspondingly. The central core of
the interface is the tree of the analysis steps. The user decides which steps to
enable and disable in the pipeline: if a step belonging to a module is enabled,
the module is also automatically enabled; if all the steps of a module are
disabled, the module itself is also disabled; if you enable or disable the
module directly, all the steps of the module are enabled or disabled. When a
step is selected, the tools provided and the specific settings for the selected
step are displayed in the next window. Through the buttons "Use / add this
tool" you choose which tool to use to perform the step, in case of multi-tool
step the selected tool is added to the list. Using the button "Don't use this
tool" you remove the tool from those provided in the step. When a tool is
chosen to perform the selected step, it is also indicated in the “Analysis step”
tree, under the “Tools” field. The settings compiled in the Step settings table
are used by all the tools included in the list, while the Tool settings table
contains those relating to the single selected tool. In this table you can enter
all the input arguments and parameters of the selected tool, to further
customize the analysis. Finally, the “Delete Pipeline” button deletes the
selected pipeline, the "Cancel" button deletes all unsaved changes, and the
"Save" button saves the pipeline as a Json format.
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@ @ Ppipeline designer

Pipeline Designer

Pipeline: | helper_test ~ | Analysis:  Germline
Tools cfg: |fhome/jarvis/git/Helper/configs/toals_cfg/tools.cfg Reference version:  hg19
Analysis Steps Tools VC SNV & short InDels
= || Pre-Alignment Step Settings =
Adapters trimming CUTADAPT .
FASTQ read lenght filter CUTADAPT samples_org single-sample
FASTQ quality filter CUTADAPT
FASTQ quality control FASTQC v.0.11.8 threads 6
- @ Alignment
UMI/Molecular barcodes merge o 29
v| FASTQ alignment BOWTIE2 " "
V| SAM to BAM convertion PICARD v.2.7.1 R T e
v BAM S:)rt. PICARD v.2.7.1 min_alt_coverage =
v BAM quality control FASTQCv.0.11.8 —
v Pre-Processing
BAM Filter Use/add this tool Don't use this tool
Add readgroups to BAM PICARD v.2.7.1
PCR duplicates marking PICARD v.2.7.1 FREEBAYES v.1.1
InDels realignment GATKV.3.7 GATKV.3.7
Base quality recalibration GATKV.3.7 GATK v.4.1
~ || Variant Calling VARDICT
VARSCAN v.23.9
VC Copy Number Variation CNVkit
v Post-Processing
VCF filter GATK v.4.1
VCF normalization BCFTOOLS
VCF to TSV convertion
v Annotation
Ann SNV & short InDels VEP v.95 Tool Settings
Ann Copy Number Variation VEP v.95

v Post-Annotation
Annotation filter
Ann transcripts filter
Annotated VCF to TSV convertion

Delete Pipeline Cancel Save

Figure 3.11: The Helper’s Pipeline Designer window

3.4.5. Analysis Settings

Finally, the Analysis settings window allows you to execute the Helper
main script (pipeline.py) and to launch the analysis. In order to start the
pipeline, it is necessary to specify the ID of the single run, the experiment
(Panel name) from which the samples are derived, and the pipeline
configuration file. The samplesheet file, the working directory and the tools
configuration file are also required. After the pipeline configuration file is
selected, the steps provided by the chosen pipeline appear in the "Analysis
steps" tree. By deselecting the modules within the Analysis steps tree, you
choose which steps to process in the specific workflow. For example, if my
pipeline includes the complete workflow but there is a need to start the
analysis from the alignment, the pre-alignment module must be deselected;
or, if for the specific run it is not necessary to call the CNVs, deselect Copy
number variation in the Variant calling module. This strategy allows you to
restart the analysis from the module in which it stopped, or to save time if
you do not need to run a particular module. The two flags "Delete temp files"
and "Use parallel analysis" activate the elimination of the temporary files of
the modules and launch the pipeline by activating the parallel processing of
the samples, respectively. The temporary files are all those files produced by
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the intermediate steps within the modules and which do not need to be
subtracted in the long term. Deleting these files saves a large amount of
memory space. Parallel analysis allows to reduce sample processing times
but requires adequate hardware resources. Once the configuration files have
been selected, the workflow selected and the paralleling and deletion
parameters of the temp files have been set, the analysis can be added to the
queue. You can prepare multiple runs and add them to the queue before
starting sample processing; in the event of multiple analyzes in the queue,
these will be processed in series, in the order in which they were added. The
start Analysis button calls pipeline.py and provides it with all the parameters
necessary to perform the analysis.

Analysis Settings

Analysis Informations Analysis Steps
- Pre-Alignment
Adapters trimming
FASTQ read lenght filter
FASTQ quality filter
FASTQ quality control
~ @ Alignment
v| FASTQ alignment
v! SAM to BAM convertion
UMI/Molecular barcodes merge
v/ BAM sort
v| BAM quality control

RunID Run_Test3
Panel Name | TrusightCardio -

Pipeline helper_test -

Analysis Paths

Samplesheet /home/jarvis/prova_helper.ss

Working directory |/path/tofworking/dir = | Pre-Processing

Tools config file | path/to/tools_conFfig.cfg

Analysis Queue

BAM filter

Add readgroups to BAM

PCR duplicates marking

InDels realignment

Base quality recalibration
Variant Calling

Run_Test2 SNV & short InDels
Run_Test3 Copy Number Variation
- Post-Processing
VCF normalization
VCF filter
VCF to TSV convertion
- Annotation
SNV & short InDels
Copy Number Variation
- Post-Annotation
Annotation Filter
Ann transcripts filter
Annotated VCF to TSV convertion

Remove Add to Queue Delete temp files

¥ Use parallel analysis

Start POWERCALL V2.0
Figure 3.12: The Helper’s Analysis Settings window

3.5. Workflow performance study

Understanding whether it is possible to use Helper within a clinical and
research context is a necessary step to test the potential of the software. For
this reason, an ad hoc pipeline was developed for the needs of the genetics
laboratory of the CMGCV. The CMGCV mainly uses two gene panels for
diagnostic and research routines: the Illumina Trusight Cardio kit for the
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study of hereditary cardiomyopathies and aneurysmal connective tissue
diseases, and the Illumina Trusight Cancer kit for the study of hereditary
tumor pathologies.

3.5.1. Trusight Cardio and Trusight Cancer Panels

The TruSight Cardio (TSCardio) is a gene panel that provides
comprehensive coverage of 174 genes with known associations to 17
inherited cardio-vascular conditions, including cardiomyopathies,
arrhythmias, aortopathies, and more. Genes were expertly selected with
researchers at the National Heart Center Singapore and Imperial College of
London. The TruSight Cancer (TSCancer) is a gene panel developed in
collaboration with cancer genomics experts, that includes 94 genes and 284
single nucleotide polymorphisms (SNPs) associated with a predisposition
towards cancer. The TSCardio target is 571,897 bp long and allows to
sequence 12 samples per run with Illumina v2 reagents (based on 300x mean
coverage of targeted content). The TSCancer target is 252,835 bp long and
allows to sequence 24 samples per run with Illumina v2 reagents (based on
250x mean coverage of targeted content).

3.5.2. Computing performance study

Critical problems in the management of NGS data within the laboratories
include the quantification and and selection of the suitable computing
resources supporting the sequence analysis. There is no optimal solution for
each case, but the the computing capacity to has to be optimized for the
specific needs. Some laboratories produce a mass of data compatible only
with high-performance computing systems, but in many other cases it is
possible to adopt fewer demanding solutions such as workstations or
personal computer stations. The analysis of gene panels such as Trusight
cardio (TSCardio) and Trusight cancer (TSCancer), for example, does not
require high computational performance and could be performed in stations
with hardware features that are now common on the market and at low cost.

To verify the analysis capabilities of a common computer (PC) against a
workstation (WS) designed ad hoc for targeted sequencing applications, the
performance study of a pipeline implemented through Helper was performed,
evaluating the analysis times of the samples sequenced using TSCardio and
TSCancer gene panels. 10 cohorts of samples were selected for each of the
two Trusight panels. Each of the cohorts is derived from a sequencing
experiment performed on MiSeq Illumina. The cohorts prepared with the
TSCardio contain of 12 samples, while those prepared with the TSCancer are
composed of 24 samples. The workstation (WS) used for the tests has 64 GB
(4 x 16, DDR4) of RAM memory and an Intel core i19-10940X processor with
3.30 Ghz and 28 threads. To simulate the use of a PC, analysis of the samples
was started in serial mode, using 2 threads for each step and limiting the
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amount of usable RAM to 8 GB. Instead, to calculate the performance of the
workstation, the analysis of the samples was started in parallel, using 2
threads for each step and without limiting the use of RAM. The average
times, calculated on the analysis of the 10 different cohorts for both panels,
were recorded both for the single step and for each module of the pipeline
by comparing the serial mode with the parallelized one.

The pipeline used is the “trusight germline”. The trusight germline was
developed through Helper and is implemented within the platform as a
precompiled pipeline. The workflow of the pipeline include:

e Alignment of Fastq files using BWA-mem.

e Sam to Bam files conversion, bam sorting, and marking of
duplicates using Picard tool.

e Realignment around indels and Base Quality Score Recalibration
using GATK v.3.7.

e Joint Variant calling using GATK v.4.1 and Freebayes.

e Annotation using VEP.

e VCF to TSV files conversion.

e NV calling using GATK v4.1.

For the TSCardio, the computing capacity of the workstation is sufficient
to analyze all 12 samples in parallel using 2 threads tools for each instance.
Also for the TSCancer, the workstation can analyze 12 samples
simultaneously, which however represent half of the samples in the cohort.
The results are summarized in tables 3.4 and 3.5.

3.5.2.1. Trusight_germline runtime

The first module is the Alignment; the entire module is processed with
average times of 3 min and 14 sec for a single TSCardio sample and 1 min
and 28 sec for each TSCancer sample. The step that takes highest time
fraction is the alignment of the Fastq files with BWA (2 min, 36 sec). The
most time-consuming module is the preprocessing of the Bam files, which
takes about 15 min for each TSCardio sample and almost 8 min for each
TSCancer sample. By itself, the Indel realignment step represents about 30%
of the processing time of the entire preprocessing module; and skipping it
would allow a significant time saving (see chapter 2.3.3). The Base quality
recalibration step takes a long time to perform (9 min for each TSCardio
sample and 4 min for TSCancer) and represents almost 60% of the module
time and between 25 and 30% of the processing time of the entire pipeline
for calling and annotating short variants. The variant calling module
performed using two tools takes about 5 min and 3 min and 40 sec per sample
for TSCardio and TSCancer, respectively, and the processing time of the two
tools is almost the same. The Annotation module of the variants performed
using VEP takes about 3 min for the TSCardio and about 2 min and 30 sec
for the TSCancer, while the post-processing module, in which the
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information on the variants in TSV format is reported, takes just over 1
minute. In total, the complete workflow, excluding CNV calling, of the
Trusight germline pipeline takes about 30 minutes to analyze a single
TSCardio sample, while for the TSCancer it takes just over 16 minutes. The
difference is due to the size of the two targets; the TSCardio has an almost
double target than the TSCancer, and the processing times of the modules
that analyze the entire target (alignment, preprocessing, and variant calling)
reflect this proportion. The average performance recorded for the simulated
PC considering the analysis of all the samples in the cohort, demonstrate a
pipeline processing time of approximately 342 minutes for the TSCardio and
approximately 393 minutes for the TSCancer. Both experiments take 6 to 7
hours to complete the pipeline. This is because, although the target of the
TSCardio is almost double than the target to the TSCancer, the TSCancer
cohort contains twice as many samples as the TS cardio. The step of CNV
analysis was excluded from this calculation as it is always carried out in
parallel on all samples and does not respect the design of the experiment
based on the analysis in series vs. in parallel. However, taking into account
the analysis of the CNVs, a PC could take about 10 hours to complete the
entire workflow, which corresponds to an acceptable time for an overnight
analysis. The comparison of the performance in terms of timing between the
use of a PC, which can potentially analyze the samples only in series, and a
workstation that can take advantage of the paralleling of the processes,
demonstrates that the WS is able to perform each step over the entire cohort
in the same amount of time that a PC analyzes a single sample. The PC
perform the workflow of the Trusight germline on the entire cohort 10 to 12
times slower than the WS. Despite the significant time savings that are
achieved by using a workstation, Helper can also be used in laboratories
where high computing solutions are not available.

Table 3.4: Processing time for Trusight Cardio panel

TRUSIGHTCARDIO
SERIAL PARALLEL
STEP 1 SAMPLE | 12 SAMPLES | 12 SAMPLES
ALIGNMENT
BWA MEM 2 min 36 sec | 31 min 12 sec 2 min 41 sec
SAM TO BAM 0 min 12 sec 2 min 24 sec 0 min 13 sec
SORT BAM 0 min 26 sec 5 min 12 sec 0 min 29 sec
TOTAL 3 min 14 sec | 38 min 48 sec 3 min 23 sec
PREPROCESSING
ADD READ GROUP 0 min 50 sec 10 min O sec 0 min 53 sec
MARK DUP 1 min 11 sec | 14 min 12 sec 1 min 15 sec
INDEL REALIGNMENT | 4 min 15 sec 51 min 0 sec 4 min 22 sec
QB RECALIBRATION | 9min 15sec | 111 min O sec 9 min 13 sec
TOTAL 15 min 21 sec | 186 min 12 sec | 15 min 43 sec
VARIANT CALLING
GATK | 2 min32sec | 30 min24sec | 2 min 28 sec

69



The Helper platform

FREEBAYES 2 min 55 sec | 32 min 56 sec | 3 min 07 sec
TOTAL 5Smin 27 sec | 63 min 20 sec | 5 min 35 sec
ANNOTATION
VEP | 3min 12 sec | 38 min 24 sec | 3 min 25 sec
POST ANNOTATION
VCF TO TSV | 1 min13sec | 14 min36sec | 1 min 16 sec
OVERALL TOTAL | 28 min 27 sec | 342 min 16 sec | 29 min 22 sec
CNV CALLING
GATK | - | 258 min 56 sec | 259 min 32 sec

Table 3.5: Processing time for Trusight Cancer panel

TRUSIGHTCANCER
SERIAL PARALLEL
STEP 1 SAMPLE 24 SAMPLES | 2X12 SAMPLES
ALIGNMENT
BWA MEM 1 min 0 sec 24 min 0 sec 2 min 12 sec
SAM TO BAM 0 min 10 sec 4 min 0 sec 0 min 28 sec
SORT BAM 0 min 18 sec 7 min 23 sec 0 min 41 sec
TOTAL 1 min 28 sec | 35 min 23 sec 3 min 23 sec

PREPROCESSING

ADD READ GROUP

0 min 47 sec

18 min 48 sec

1 min 41 sec

MARK DUP 0 min 54 sec | 21 min 36 sec 2 min 01 sec
INDEL REALIGNMENT | 2 min 12 sec | 52 min 28 sec 4 min 38 sec
QB RECALIBRATION | 4 min 01 sec | 96 min 24 sec 8 min 25 sec
TOTAL 7 min 44 sec | 185 min 50 sec 16 min 45 sec
VARIANT CALLING
GATK 1 min 54 sec | 45 min 36 sec 4 min 43 sec
FREEBAYES 1 min 46 sec | 42 min 18 sec 4 min 12 sec
TOTAL 3 min 40 sec | 87 min 54 sec 8 min 55 sec
ANNOTATION
VEP 2 min 28 sec | 59 min 12 sec 5 min 32 sec
POST ANNOTATION
VCF TO TSV 1 min 1 sec 24 min 24 sec 2 min 12 sec
OVERALL TOTAL 16 min 21 sec | 392 min 43 sec | 36 min 47 sec
CNV CALLING
GATK - 190 min 8 sec 194 min 41 sec
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3.5.3. CNV Analysis

One of the critical points of the bioinformatics pipeline is the analysis
concerning the CNVs in the samples studied for targeted sequencing
applications. The potential of the analysis of CNVs on NGS samples can be
assessed in economic and time terms. The CNVs are in fact studied mainly
through MLPA (multiplex ligation-dependent probe amplification), which
still today represents the gold standard method, through real time PCR
(rtPCR), or through array CGH (aCGH). All three methods have substantial
flaws, including the need to prepare an additional experiment, which
increases the costs of studying the sample and lengthens reporting times.
These methods also have problems with the accuracy of the result and still
require validation of the findings. The call of the CNVs in the same assay,
in which the short genomic variants are studied, becomes essential in the
diagnostic path of genetic diseases, but requires particular attention in the
validation of the results to better understand the expected error range that
must be calculated when issuing a report.

To understand the difficulties related to the detection of the CNVs, a
performance study of the tools dedicated to the call of the CNWVs,
implemented in Helper, was performed. In order to compare copy-number-
variation (CNV) detection methods, for targeted NGS panel data in a clinical
diagnostic setting, 3 CNV callers were evaluated on 3 CNV datasets
validated using MLPA, rtPCR, or aCGH methods. The tools used are GATK
V4 in cohort and single sample mode, CoNVaDING, and CNVKkit.

3.5.3.1. Datasets and tools

Three datasets were included in this benchmark, 2 with data from
TSCancer sequencing panel, and 1 from TScardio panel:

e The panelcnDataset (IBK) [94][95] contains 170 samples that
were processed using the Illumina Trusight Cancer and
sequenced using I[llumina MiSeq instrument. The dataset contains
single exon CNV (n=19), multi exons CNV (n=22), and whole
gene CNV (n=6) validated using MLPA assays. The
panelcnDataset is accessible on the European Genome-Phenome
Archive (EGA) using the EGAD00001003400 dataset ID.
(https://ega-archive.org/datasets/ EGAD00001003400).

e The OSM-TSCancer dataset contains 70 samples from the OSM
population. Samples were processed using the Illumina Trusight
Cancer and sequenced using Illumina MiSeq instrument. The
CMGCV-TSCancer dataset contains 19 samples with CNV,
including single exon (n=6), multiple exon (n=11), and whole
gene CNV (n=2), and 51 samples without CNV in analyzed
genes.
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e The OSM-TSCardio dataset contains 150 samples from the OSM
population. Samples were processed using the Illumina Trusight
Cardio and sequenced using Illumina MiSeq instrument. The
CMGCV-TSCancer dataset contains 70 samples with CNV,
including single exon (n=11), multiple exon (n=38), and whole
gene CNV (n=21), and 80 samples without CNV in analyzed
genes.

For each dataset, the samples without known CNVs were considered as
the control population. For the IBK dataset, the control population is
composed of 123 samples, for OSM-TSCancer 51 samples, and for OSM-
TSCardio 80 samples.

For GATK tools in single sample modality (GATK-ss) the read depth
values for each sample were calculated; those belonging to the control group
were used for the calculation of the ploidy model and the Call model;
subsequently the call was made on the test samples. This process was done
for all three datasets. For GATK in cohort modality (GAKT-cohort) the same
read depth calculation process was performed, but both test and control
samples were used to calculate the ploidy model and call the CNVs.

For CoNVaDING, the control samples separated from the test samples,
were used to call the CNVs. From the control set, 30 best match samples
were chosen for each test sample to improve the accuracy of the analysis.
For the evaluation of the results, the set of CNVs contained within the
extended list produced by CoNVaDING was used.

Also for CNVkit, the samples of the control set were used to generate a
reference. CNVKkit in addition to the analysis target, also requires studying
the off-target coverage to improve the call of the CNVs. The reference in
target and the reference off target were used to study each sample separately
and to generate the variant call. All the tools were used with the default
settings, in order to compare the finding without altering the result by
customizing the analysis.

3.5.3.2. Benchmark evaluation metric

The performances of each tool for CNVs detection were evaluated
considering the calling sensitivity defined as TP / (TP + FN). Each validated
CNYV that is identified by the tools represents a True Positive call (TP), while
each validated CNV not found is considered as True Negative call (TN). The
CNV calls made by the tools that concern genes other than those containing
the validated CN'Vs were not considered as False Positive calls because it is
not possible to define which ones have actually been studied with a second
method.

3.5.3.3. CNV calling sensitivity
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In the sensitivity test, the call performance of the CNVs of the four tools,
on the three datasets, are evaluated. GATK in cohort mode and GATK in
single sample mode are considered as two different tools. The results refer
to both the sensitivity level of the tools, and the number of CNVs identified
or missed by CNV callers. This is because, in addition to performance
statistics, each CNV missed has an important weight within the diagnostic
workflow.

For the IBK Dataset, which contains 47 validated CNVs (40 deletions and
7 duplications) the tool that identifies the greatest number of TPs is GATK,
which identifies 42/47 CNV in both cohort and single sample mode. Among
these 42 CNVs 36 are deletions and 6 are duplications. GATK misses the
detection of 4/40 deletions and 1 duplication. CNVkit and CoNVaDING only
call 38 and 39 CNV, respectively. Both tools identify 4 out of 7 duplications
in the IBK dataset, CNVkit identifies 34/40 deletions, while CoNVaDING
identifies 35/40. Comparing the detection capacity levels of the tools on the
entire IBK dataset, it is noted that GATK is the most performing tool, with
a sensitivity of 0.894 against the 0.818 of CNVkit and 0.864 of
CoNVaDING. Despite the few duplications present in the IBK dataset, it is
interesting to note that the missing rate of CNVkit and CoNVaDING for this
type of CNV exceeds 40% against 15% for GATK.

For the OSM-TSCancer Dataset, which contains 18 deletions and 1
duplication, the tool that performs best is CoNVaDING. CoNVaDING
identifies 18 CNVs, missing only 1 deletion in the BRCA2 gene. Also in this
case, GATK-cohort and GATK-ss show the same performances, identifying
17/19 CNV, missing the same 2 deletions, and identifying the only
duplication present in the dataset. CN'Vkit identifies 16/19 variants, with a
missing rate of approximately 5%. The CoVading sensitivity goes from
0.864 on the IBK dataset to 0.947 on the OSM-TSCancer, with a missing
rate of 13.6% on the two datasets together. As regards GATK, both in cohort
and in single sample modality, the sensitivity remains unchanged on the two
datasets, considered separate or considered together, with a missing rate of
10.6% on the datasets composed of Trusight Cancer samples. CNVKkit is the
least performing tool on both datasets, with a sensitivity on the OSM-
TSCancer of 0.842 and a missing rate on the two datasets of 18.2%.

The OSM-TSCardio dataset contains 71 CNVs of which 42 deletions and
29 duplications. The tool that performs best on this dataset is GATK-ss,
which identifies 70/71 CNV, calling all deletions, and missing the 1
duplication detection. GATK-cohort and CoNVaDING identify 68/70
CNVs, but GATK calls 28/29 duplications and 40/42 deletions, while
CoNVaDING calls 27 duplications and 41 deletions. CNVkit is the tool with
the highest number of missed CNVs, identifies 40 deletions and 27
duplications, with a missing rate of 5.6%. The sensitivity index on the
TSCardio dataset is greater than the two TSCancer datasets, for all 4 tools.
GATK-ss is the best tool, with a sensitivity of 0.986, followed by GATK-
cohort and CoNVaDING which identify 95.8% of the variants, and finally,
by CNVkit with a sensitivity of 0.944.
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Considering all three datasets together, the best performing tool is
confirmed to be GATK in single sample modality, with a sensitivity of 0.942
and a missing rate of 5.8%. GATK-cohort and CoNVaDING demonstrate
very similar performances on all CN'Vs, with a sensitivity of 0.927 and 0.912,
respectively. The results change considering the type of CNV, GATK -cohort
has a duplication detection rate higher (94.6%) than CoNVaDING (86.5%),
but identifies 1% fewer deletions (92% GATK vs 93% CoNVaDING).
CNVkit has an overall sensitivity of 0.883, which translates into a double
missing rate compared to GATK-ss (11.7% CNVkit vs 5.7% GATK). Even
CNVkit, like CoNVaDING, demonstrates a higher difficulty in identifying
duplications than deletions with a sensitivity of 0.865 and 0.890,

respectively.

Table 3.6: CNV TP calls

Dataset %:Ip‘; Vaéiglz;:ed gﬁl;rolft- GASZK- CNVKkit | Convading
OSM -TSCancer DEL 18 16 16 15 17
OSM -TSCancer DUP 1 1 1 1 1
OSM -TSCancer ALL 19 17 17 16 18

IBK DEL 40 36 36 34 35

IBK DUP 7 6 6 4 4

IBK ALL 47 42 42 38 39

OSM-TSCardio DEL 42 40 42 40 41

OSM-TSCardio DUP 29 28 28 27 27

OSM-TSCardio ALL 71 68 70 67 68

Table 3.7: Sensitivity of CNV callers

Dataset %?Ip\:a 2‘:5015; GATK-ss CNVkit Convading

OSM -TSCancer DEL 0.889 0.889 0.833 0.944

OSM -TSCancer DUP 1.000 1.000 1.000 1.000

OSM -TSCancer ALL 0.895 0.895 0.842 0.947

IBK DEL 0.900 0.900 0.850 0.875

IBK DUP 0.857 0.857 0.571 0.571

IBK ALL 0.894 0.894 0.818 0.864

OSM-TSCancer+ IBK | DEL 0.897 0.897 0.845 0.897

OSM-TSCancer+ IBK | DUP 0.875 0.875 0.625 0.625

OSM-TSCancer+ IBK | ALL 0.894 0.894 0.818 0.864

OSM-TSCardio DEL 0.952 1.000 0.952 0.976

OSM-TSCardio DUP 0.966 0.966 0.931 0.931

OSM-TSCardio ALL 0.958 0.986 0.944 0.958
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3 DATASETS DEL 0.920 0.940 0.890 0.930
3 DATASETS DUP 0.946 0.946 0.865 0.865
3 DATASETS ALL 0.927 0.942 0.883 0.912

In addition to considering the type of CNV, it is useful to understand the
detection capacity based on the size of the variant. It is well known that the
CNVs of a single exon are difficult to identify, due to the lack of
informativity compared to the larger CNVs [(94)]. To evaluate this aspect,
given that the performances of each tool are similar on the two datasets
composed of samples sequenced with the TSCancer, the CNVs of the IBK
and OSM-TSCancer datasets were considered as a single dataset.

The TSCancer is made up of 25 single exons, 8 full gene, and 33 multiple
exons CNVs. All the tools prove to have greater difficulty in identifying
CNVs composed of a single exon: GATK-cohort and GATK-ss identify
19/25 variants, CoONVaDING 17/25 and CNVkit 14/25. All the tools are able
to identify 100% of the CNVs that affect the whole gene, while GATK-
cohort, CoNVaDING, and CNVkit miss 1 CNV that spans over more exons.
The missed multi-exon CNV is the same for all three tools, it is a deletion of
2 exons (exons 8 and 9) in the EPCAM gene related to colorectal carcinoma.

The TSCardio is composed of 11 single exon, 21 full gene, and 39
multiple exon CNVs. The ability to detect single exon CNVs in this gene
panel is greater than in TSCancer. GATK-ss can identify 10/11, GATK-
cohort and CoNVaDING identify 9/10, and CNVKkit calls 8/11. All the tools
identify 100% of the full CNV genes, while only GATK-ss can find 100%
of the CNVs composed of more than one exon. The other 3 tools identify 70
out of 72.

As expected, the single exon CNVs are the ones that put the CNV callers
in greater difficulty. The tool that demonstrates the best performances is, also
in this case, GATK-ss, which identifies all the CNVs involving more than
one exon, with a sensitivity of 1,000. The detection rate of GATK-ss is lower
for single exon CNVs, the tool calls only 80% of the variants. The
performances have a similar trend also for the other tools, with a sensitivity
for multi exon CNV of 0.972 and a very high single exon CNV missing rate.
GATK-cohort misses 23% of the variants, CONVaDING 27.8%, and CNVKkit
nearly 40%.

Table 3.8: Number of called CNV based on CNV length

Validated | GATK- . )
Datase CNV Type CNV Cohort GATK-ss | CNVEkit | Convading
SINGLE
TSCancer EXON 25 19 19 14 17
TSCancer FULL GENE 8 8 8 8 8
MULTI
TSCancer EXON 33 32 33 32 32
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TSCardio Sélg(g]f\]E 11 9 10 8 9
TSCardio FULL GENE 21 21 21 21 21
TSCardio l\él;]é;il 39 38 39 38 38
3 DATASETS Séiglf\IE 36 28 29 22 26
3 DATASETS | FULL GENE 29 29 29 29 29
3 DATASETS 1\];[)[(}16;1 72 70 72 70 70
Table 3.9: Sensitivity of CNV callers based on CNV length
Dataset CNV Type 2?1’11;) Ift- GATK-ss | CNVkit | Convading
TSCancer Sélj(g]&E 0,760 0,760 0,560 0,680
TSCancer gg;lé 1,000 1,000 1,000 1,000
TSCancer I\églc;g 0,970 1,000 0,970 0,970
TSCardio Sé])\l(gII:IE 0,818 0,909 0,727 0,818
TSCardio 2311:111:3 1,000 1,000 1,000 1,000
TSCardio 1\];[)(_(]1(311:11 0,974 1,000 0,974 0,974
3 DATASETS Sélj(giE 0,778 0,806 0,611 0,722
3 DATASETS f}]LEIII:II]; 1,000 1,000 1,000 1,000
3 DATASETS l\ggég 0,972 1,000 0,972 0,972
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Figure 3.13: The CNV callers performances in terms of True call sensitivity
for each of the CNV type

The performance test of the tools has shown that it is necessary to pay
attention to the call results of the NVCs. The single tools alone cannot
guarantee a detection rate of 100%, especially for single exon CNVs. The
results show that the CNVs contained in the samples sequenced with the
TSCancer are identified with more difficulty than those of the TSCardio
dataset. This could be related to the difference in target coverage by the two
panels, in fact the TSCardio sequencing panel has an in-target coverage of
about 82% of the aligned reads, and the TSCancer has an in-target of about
70%. The percentage of on and off target could have an important impact on
the result of the call of the CNVs. Furthermore, the evaluation of False
Positives was excluded from the performance analysis. The PFs increase the
uncertainty about the result by decreasing the total accuracy of the analysis.
CNVs are variants that often have an important impact on the phenotype of
carriers, and it is essential to be able to identify them with certainty. Even if
a missed CNV has a greater weight than False positives calls, the presence
of the latter, generates the need to confirm the result with a second method.
For this reason, it is necessary to identify the right set-up for each tool to
maximize the accuracy of the CNV call.
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Chapter 4

Clinical Applications

In the previous chapter, a novel solution to adapt bioinformatics analysis
to different target-sequencing applications was presented. Customizing
pipelines is just one of the challenges that must be faced in the path of genetic
test optimization. When the sample is sequenced, analyzed, and a narrow set
of variants has been identified, the further step is the classification in order
to correlate the finding with the patient's phenotype. Understanding the role
of variants within the gene, and the role of different genes in the disease, are
two fundamental processes both for diagnosis and for research in the
molecular-genetic field. In this chapter, I will present two examples of
Helper applications: the case of optimized interpretation of variants in the
specific field of Desminopathies, and the process of exploring the
heterogeneous genetic bases for hereditary Breast and Ovarian cancer
syndrome.

4.1. Variant interpretation - the case of Desmin

The criteria for the classification of variants generated by the ACMG (see
variant classification in chapter 2.7) has introduced a conservative and robust
framework for the interpretation of the genetic data in the scientific
community. The system was planned in such a way as to standardize the
variant classification path regardless of the gene and the disease under
examination. However, neither genes nor diseases are generalizable. For this
reason, the current trend is to modify the ACMG system by adapting the
strength of the criteria to increase the accuracy of classification of variants
present in a specific gene (e.g., MYH?7) or in a group of genes associated with
a particular disease [96][97]. This chapter aims at describing a Desmin-
specific adaptation system of the ACMG rules, and includes:

1. the description of the gene and of the clinical issues related to the
defects of DES, which concerns a subgroup of highly malignant
heart diseases.

2. the path that led to the development of the adapted system.

3. the dataset of variants in DES identified within the cohort of
patients cared for desminopathies at the CMGCV.
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4. the comparative analysis of the ACMG-based classification
results using 3 commercial software, and the OSM system
adapted for DES and using the clinical and pathological findings
that establish the precise diagnosis.

The goal is to provide the rules for definite and irrefutable diagnosis of
Cardiodesminopathy.

4.1.1. Clinical and genetic background

4.1.1.1. The DES gene and the Desmin protein

The DES gene maps in the chromosome 2 (2q35); it consists of 9 exons,
about 8.4 kilo bases [kb]. The mature protein contains 470 amino acids and
is composed of a non-helical amino-terminal domain (Head), a central alpha
helical rod and a non-helical domain carboxy-terminal (Tail). The central rod
domain is composed of four helices (coil-1A, coil-1B, coil-2A, coil-2B)
interspersed with 3 short non-helical linkers (L1, L12, L2).

NH o L T LT A L .. COOH
32 AR 100 AA 18 AA 116 AA
HEAD . a-HELICAL ROD . TAIL
470 AA

Figure 4.1: The Desmin protein primary structure (Figure modified from

[98]).

The DES gene encodes the class III intermediate filament (IF) protein
Desmin that plays a central role in the cytoskeleton structure of the cells. IFs
are constituted of highly flexible non-globular protein units that form an
elastic scaffold connecting most of the cytoplasm structures of skeletal
myocytes and cardiomyocytes. Desmin is expressed in cardiac, skeletal, and
smooth muscle cells. Within these cells, its first function is myofibril
stabilization, by inter-connection of Z-disks and forming a three-dimensional
network that extends from the nucleus to the junctional structures such as
desmosomes and adhesion structures such as costamers; the second function
is the transmission of the mechanical force of cellular contraction to the
extracellular matrix and to the other adherent cells; finally, Desmin regulates
the distribution and modulates the function of the mitochondria within the
cytoplasm.

79



Clinical Applications

ECM

Costamere Sarcolemma

Cytoplasm

Desmin Traponin T

Troponin C

T-Cap: LAl poaf A oA A A K AR K A
Thelethonin & i !

ESEGES]

Myesin Trapomedulin hyaosin binding protein C

o-Actinin

MNucleus

Figure 4.2: The intracellular organization of myocytes and the connecting
role of the Desmin. (Figure from [98])

4.1.1.2. Phenotypes related to DES defect

DES defects were first reported in relation to semi-dominant Myofibrillar
Myopathy (MFM). Desmin-related MFM - also called desminopathy -
defines a set of inherited muscle diseases primarily characterized by
abnormal aggregates of misfolded Desmin in the cellular cytoplasm. The
desminopathy phenotype is characterized by progressive muscle weakness,
cardiomyopathy, and abnormalities of cardiac rhythm.

In the current literature, DES gene defects are associated with
phenotypically heterogeneous cardiomyopathies, which include Dilated
cardiomyopathy (DCM), Hypertrophic cardiomyopathy (HCM), Restrictive
cardiomyopathy (RCM), and Arrhythmogenic cardiomyopathy (ARVC) (98)
(99). The ClinGen expert panel (https://www.clinicalgenome.org/)
classified the DES defects as strongly associated with DCM, ARVC, and
MFM. However, the most typical cardiac phenotype caused by Desmin-
related MFM is RCM associated with atrio-ventricular conduction delay that
evolves over time to Atrioventricular Block (AVB). Desminopathy evolves
to progressive heart failure and, in many cases, to the need for heart
transplantation (HTx).

4.1.1.3. Genetic complexity of Desminopathy

Interpretation of DES wvariants is especially complex due to the
heterogeneity of the phenotypes reported to date as associated with DES gene
defects. Many associations remain questionable mainly due to the lack of
demonstration of the misfolded Desmin within the cardiac myocytes. The
complexity increases when considering that variants reported to date in
amino acid residues close to each other are related to different types of
cardiomyopathy, or that different diseases within the same family are
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associated with the same DES variant. This latter evidence, together with the
presence of unaffected carriers, due to the heterogeneity of the onset age and
the penetrance of desminopathy (about 80%), makes difficult the
interpretation of family studies and complicates the proper management of
families. Although all above issues are reported in the literature, they do not
convince on a clinical level, and are difficult to support when the information
needs to be translated from the scientific papers to patients. The concept is
that when a genetic variant is found in the DES gene, for example in a patient
with a typical dilated phenotype, and the same variant is reported in a
different phenotype, neither observed case nor reported cases are sufficient
to close the diagnostic dilemma on pathogenicity of the given variant.

4.1.2. The CMGCV-DES system

To break down the interpretative uncertainty associated with DES
variants, all ACMG criteria were analyzed and investigating the literature,
clinical databases such as Clinvar, and population databases such as ExXAC
and GnomAD, a DES adapter system was developed. The result is the
CMGCV-DES system, in which some ACMG criteria can be activated in a
specific way using dedicated thresholds, some criteria are not recommended,
while others can be used without particular precautions, according to the
characteristics of the DES gene.

4.1.2.1. Variant type and location (PVS1 / PM1 / PM4 / PP2)

The PVSI criterion is activated in the presence of a variant that induces
Loss of function (LoF) in the protein and LoF is a known mechanism of
disease. Variants that induce the loss of protein function are the so-called
"null variants" (nonsense, frameshift, canonical = 1 or 2 splice sites,
initiation codon, single or multi-exon deletion). To quantify the tolerance of
a gene to LoF variants, two indices are usually evaluated: the probability
score (pLI) of Intolerance to LoF variants calculated from ExAC data and
the ratio between observed and expected LoF variants (o/e constraint metric)
calculated on gnomAD data. While a pLI close to 1 is usually dichotomized
using 0.9 as threshold (pLI> 0.9 identifies intolerance to LoF), the index o/e,
or rather the LOEUF (a more conservative estimate which is equivalent to
the upper bound of the confidence interval of the Poisson distribution
constructed on o/e), is a continuous value that indicates different degrees of
tolerance. Although pLI or LOEUF are two easy-to-use numerical methods,
caution is needed during the evaluation of their reliability for most adult-
onset Mendelian disorders [100]. Evaluating the fraction of LoF variants
classified as P or LP within databases such as ClinVar can help in
understanding the effect of these variants on gene function. In ClinVar, for
Des gene, 37 LoF variants are described; they are distributed in all exons of
the gene and 30/37 (81%) are classified as conflict-free P or LP. Although
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pLI=0.047 (<0.9) and LOEUF = 0.596 indicate low or moderate intolerance,
clinical correlation data between LoF variants and diseased phenotype
extracted from ClinVar indicate that the DES gene is sensitive to the damage
mechanism induced by null variants.

The CMGCV-DES system applies PVS1 by modulating the strength of
the criterion according to the zone in which the null variant falls, considering
the nonsense-mediated decay that could limit the protein damage as
suggested by the recommendations for this specific criterion [101].

The PP2 criterion is activated in the presence of missense variants in a
gene that has a low rate of benign missense variations and in which missense
variants are a common mechanism of disease. As a general recommendation,
based on EXAC and gnomAD data, GlinGen suggests the use of the z-score
as an index of tolerability of the gene to missense variants. The z-score is
calculated by comparing the observed missense variants to the expected ones
and is directly proportional to the sensitivity of the gene to the presence of
the missense variant. As for the pLI, a threshold can also be applied to the z-
score to define tolerance/intolerance (threshold z-score = 3.09), but it may
also be useful to evaluate the number of missenses classified in the databases
as P or LP compared to those classified as B, LB or VUS to refine the rule
for activating Score PP2.

The z-scores for missense variants in the DES gene calculated from ExAC
and gnomAD are 2.45 and 1.7, respectively (<3.09). ClinVar reports 252
missenses of which 36/252 are classified without conflict of interpretation:
35/36 P or LP, 1/36 LB or B. Although the z-scores do not reach the
recommended threshold of 3.09, they do not exclude a certain sensitivity of
DES to missense (2.45> the upper limit of the confidence interval on all z-
scores calculated on ExAC), this data is confirmed by the fraction of
missense variants classified in the literature as pathogenic compared to the
benign ones. Furthermore, the large number of missenses classified as VUS
or with conflict of interpretation shows that the uncertainty that accompanies
the presence of a missense variant in DES is still high. For these reasons, the
CMGCV-DES system activates the PP2 criterion using a Supporting
strength.

The PM4 criterion is activated in the presence of an in-frame change in
the length of the protein due to In-frame Deletions and Insertion that do not
fall into a homopolymer zone (in the case of a repeated zone, BP3 is
activated) or a Stop loss variant. ClinVar describes 12 in-frame InDels, of
which 5 are classified as P / LP and none as LB / B, and 2 LP Stop loss.
These types of variants are poorly described for DES and appear to have a
harmful impact on the protein. For this reason, the CMGCV-DES system
activates PM4 in the presence of in-frame InDels or Stop loss variant, using
a Moderate strength.

The PMI criterion is activated when a non-null and non-synonymous
variant falls into a mutational hotspot or a functional domain important for
protein function validated by experimental evidence. In the absence of robust
regions intolerant to variations, alternative methods have been described in
the literature that can be used to infer the presence of fragile areas of the

82



Clinical Applications

gene by analyzing the distribution of variants classified as P or LP and B or
LB [102][103]. These systems identify exonic regions in which only P / LP
variants are present with an increased density compared to control series.
These systems generalize the PM1 activation method for all gene types. The
PM1 score has a Moderate strength, and it is often the tip of the balance in
the classification of variants that are not described in the literature, because
it can shift the interpretation of a new variant from VUS to LP in the absence
of experimental or clinical data. For this reason, caution should be applied
in evaluating the presence of a fragile site or hotspot using only the positional
information of the variants, without validated data about the characteristics
of the analyzed gene. Given that the knowledge on DES fragile sites is not
yet robust and the Moderate strength of PM1 is a decisive factor that could
lead to overestimating the pathogenic interpretation if wrongly activated, the
CMGCV-DES system does not apply the PM1 criterion.

4.1.2.2. Same residue as known pathogenic (PS1 / PM5)

The PS1 criterion is activated when another variant, that affects the same
nucleotide of the analyzed variant, is known to be pathogenic, while the PM5
criterion is activated when the same affected amino-acid residue changes in
another variant defined as pathogenic.

In ClinVar, reports for DES include 41 amino acid positions where the
same amino acid varies in at least two different residues, and 14/41 (34.15%)
involve at least one variant called P or LP with no classification conflict.
None of the latter (0/14) is involved in a second P or LP variant, without
conflict. Furthermore, among the P or LP variants, the distribution of the
involved amino acids does not demonstrate the presence of a starting residue
that, when mutated, is particularly harmful, while the introduction of a
Proline in the amino acid sequence could have a detrimental effect on protein
folding [99]. Due to the lack of evidence to support the PMS5 criterion, the
CMCV-DES system excludes it from the evaluation of the variants, while it
does apply the PS1 criterion without modifications.

4.1.2.3. Population frequency (PM2 / BS1 / BA1)

The population frequency provides significant data for the interpretation
of the variants. The criteria in favor of the benign interpretation vary from
BAT1 (Allele frequency too high in the control population), whose strength is
Stand Alone, and therefore alone can be considered a filter to distinguish the
benign variants that are too frequent in controls, to BS1 (allele frequency too
high for the disorder) which corresponds to a Very Strong strength and
which, if activated by itself in the absence of other scores, would move the
pathogenicity class to LB. The score that considers the MAF in favor of the
pathogenicity of a variant is PM2 (Absent or extremely rare from large
population studies). PM2 has moderate strength and is activated when the

83



Clinical Applications

variant is absent or very rare in the control population. A determining factor
for the evaluation of allele frequencies for the classification of variants is
that MAFs are calculated in robust population datasets composed of at least
2000 alleles derived from unrelated subjects [104]. Since the frequency in
the population is decisive for the classification of a variant and the use of the
same thresholds for all genes and diseases could generate misinterpretation,
the ClinGen expert groups have suggested methods to optimize the MAF
thresholds for each of the three criteria (BA1, BS1, PM2) as a function of
the phenotype and gene studied. An example is the case of MYH?7 for which
the CMP-EP has developed a method for calculating the BA1 and BSI
thresholds that take into account the disease prevalence, gene contribution to
disease, and estimated penetrance of the variant [105]. Using a conservative
prevalence among all MYH?7-associated phenotypes (1/400 chromosomes), a
contribution of MYH7 to HCM of 10.6%, and a mean penetrance of all
MYH?7 variants of 30%, the following MAF thresholds were obtained: for
BATI it is a MAF> 0.1% (0.001), for BS1 the threshold is> 0.02% (0.0002)
and for PM2 the threshold is <0.004% (0.00004). The same thresholds are
generally used for the evaluation of the variants present also in the other
genes associated with hereditary cardiomyopathies [106].

The cardiac phenotype associated with DES with the highest prevalence
is DCM. DCM has a prevalence of 1/2500 but may be higher according to
some updated estimates. The contribution of DES to dilated
cardiomyopathies is very low, around 1% [107][108], and the mean
penetrance for DCM of variants in DES is unknown. Although, the value of
the thresholds for BA1 and BS1, obtained using the specific data of DES, are
an order of magnitude smaller than those of MYH?7, it was preferred to start
from the values commonly used for cardiomyopathies by inserting some
adaptations: the BA1 criterion is activated if the MAF is >0.001 or has been
observed in a homozygous state on gnomAD (Number of Homozygous, NoH
>=1), and the BS1 criterion is activated if the MAF is >0.0001.

Furthermore, in ClinVar there are 76 variants in Desmin (SNV and Short
InDels) classified P and LP without interpretation conflicts, 34 are missense
(1 of which involves 2 consecutive amino acids), 33 are null variant, 2 are
non-canonical splices, 6 are inframe InDels and 1 is a synonym. Of all these,
only 6 of the 33 null variants are reported in GnomAD, and c.194dup
(p.Leu66fs) is the P variant with the highest MAF among all DES variants
(MAF 0f 0.000032), while the one with the greatest allelic count (AC) is the
variant of the canonical splice site c.1288+1G>A (AC = 6/282842 alleles).
In GnomAD, 281 variants are reported for DES (Nonsense, missense, non-
canonical splice, inframe delins) with a median MAF of 0.00000795 (CI
0.0000040 - 0.0000278); of these, 157/281 (55.8%) variants have an AC
equal to 1 and 247/281 (87.9%) have MAF <0.00004.

Taking into account that:

e missense, indels, and non-canonical splice sites defined as
Pathogenic in ClinVar are not present in gnomAD,
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e anonsense variant is present with an allele count equal to 6 (all
heterozygous subjects),

e the percentage of very rare variants in DES is high,

e some variants are recessive,

we have decided to apply PM2 in a different way between the null variant
and the other variants also depending on their transmission (Table 4.1):

e Non-canonical splicing variants, missense, delins, and splices AD
activate the PM2 criterion if they are absent in the control
population, while those with AR transmission activate PM2 if
they have a count <=1 allele in gnomAD.

e The nonsense variants (Stop, FS, canonical splice, start loss)
activate PM2 if the MAF is <0.00004 with an allele count <= 1.

Table 4.1 - Rules for activating BA1, BS1, and PM2 criteria

Variant type Inheritance PM2 BA1 BS1
Missense .
NC splice Absent in MAF >= 0.001
InDels AD control ' or MAF >=0.0001
Syonymous population NoH >=1

AR AC <=1 MAF > 0.001 MAF >=0.0001
Stop gain
Frameshift MAF < 0.00004 MAF >=0.001
Canonical AD and or MAF >=0.0001
splice AC<=1 NoH >=1
Start loss

4.1.2.4. Homozygous status (PM3)

PM3 is activated when a variant is found in trans with another pathogenic
for a recessive disease. Desminopathy is known to be a semi-dominant
disease caused by both heterozygous and homozygous variants. In the
presence of a recessive variant in a homozygous state, CMGCV-DES applies
the PM3 criterion downgraded to Supporting strength, but it can be upgraded
to Moderate in the presence of more observations in favor of the recessive
transmission of the variant [109].

4.1.2.5. Specific phenotype (PP4/BS2)

The PP4 criterion is activated in the presence of a phenotype closely
related to the mutated gene. Generally, for the evaluation of variants in genes
of cardiomyopathies, it is recommended not to use PP4 due to the lack of
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specificity of the genetic causes. Among the DES-related phenotypes, DCM
and ARVC have multiple genetic causes and are attributable to Desmin
defects in only a small percentage of cases. The cardiac expression of the
MFM includes RCM + AVB associated with myopathy (detected by
increased serum CK). These phenotypes considered individually are not
specific enough to be associated to DES mutation but, considered as a
complex phenotype, they can easily be related to Desminopathy. The main
difficulty in evaluating the phenotypes associated with MFM is their clinical
identification in the different stages of the disease: RCM is not always full-
blown and can often be mistaken as mild concentric HCM, if the atrial
chambers are not correctly evaluated; cardiac filling patterns evolve from
semi-normal to restrictive over time; the AVB may have a late-onset, but it
is always anticipated by a conduction delay that can be found as a long PQ
wave in the ECG trace. These intermediate phenotypes could be due to an
early stage desminopathy but cannot be considered specific enough to
activate PP4. In conclusion, the CMGCV-DES system considers the RCM +
AVB + myopathy complex phenotype as closely related to MFM-Desmin
related and activates PP4; on the contrary, mild phenotypes do not activate
the PP4 criterion, but can be used in co-segregation studies when parents
show desminopathy and sons present the mild phenotype.

The BS2 criterion is activated in the presence of healthy adults. Due to
the phenotypic heterogeneity associated with Desmin mutations, the
CMGCV-DES system considers "healthy" only adult patients who do not
report the clinical characteristics of onset of cardiomyopathy on specific
instrumental tests and who do not have a family history related to inherited
cardiomyopathy.

4.1.2.6. Functional studies (PS3 / BS3)

The PS3 and BS3 criteria are activated if well-performed functional
studies demonstrate a correspondingly harmful or neutral effect on the
protein and phenotype. The strength with which these criteria are applied is
modulated according to the type of functional studies performed and the
robustness of their results, and the certainty of the pathological effect of the
mutated protein [110].

Functional studies for DES variants are commonly performed on in vitro
cell models, in vivo mouse models, and on tissue from affected patients. The
in vitro models use different cell lines for the evaluation of the structural
conformation of the cytoplasm and the integrity of the cytoskeleton by
fluorescence microscopy. Mouse models allow the evaluation of both the
cellular structure and the phenotype induced by the mutation. The
pathological assessment of the tissue of affected patients, on the other hand,
allows the effects of cell damage on humans to be investigated directly in
vivo and to have a direct comparison with the clinical phenotype.

The intracellular granulo-filamentous accumulations (or myofibrillar
material MFM) characteristic of Desminopathy are easily diagnosed with
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electron microscopy (EM), especially if performed through ultrastructural
immuno-histochemistry (U-IHC) methods that allow to specifically mark the
Desmin protein inside the cells. The same accumulations observed in light
microscopy, both in bright field and in fluorescence, lose some of their
specificity and can be used as distinctive signs in skeletal muscle cells but
not in myocardial tissue [111]. The difference in diagnostic capacity is due
to the characteristics and the location of the accumulation in the different
cell types. In skeletal myocytes, Desmin aggregates are localized at
subsarcolemmal level with unique characteristics when labeled with anti-
Desmin antibodies. On the contrary, in the myocardium, the accumulations
are arranged in a diffuse manner in the cytoplasm of the cardiomyocyte cells
and can be confused with the contracture bands due to the action of the
bioptome in the biopsy site.
The CMGCV-DES system evaluates:

e The Immuno-ultrastructural study as diagnostic test to determine
the presence of MFM and activate the PS3 with Stand Alone
strength.

e The EM study without the use of highly specific Desmin markers
for the characteristics of the accumulations in ultrastructure and
activates the PS3 with Very Strong strength.

e The study of optical IHC, in bright field and in fluorescence, on
skeletal myocytes as sufficiently robust for diagnosis and
activates the PS3 with Strong strength.

e The study of optical IHC, in bright field and in fluorescence, on
cardiomyocytes as not robust enough and does not activate the
PS3.

As far as studies with animal and cell models are concerned, the presence
of robust and validated results makes possible the activation of PS3
according to the recommendations of the scientific society [110].

The BS3 criterion is activated with Strong strength, as it is not possible to
exclude causative damage of the variant for the DCM or ARV C phenotypes
even in the absence of specific accumulations for MFM. There is no
scientific evidence of the structural characterization of myocytes and
cardiomyocytes in the presence of these phenotypes.

4.1.2.7. In-silico prediction (PP3 / BP4)

The PP3 and BP4 criteria are activated if the in-silico tools that predict
the impact of the variant gives a result in favor of or against pathogenicity.
It is not clear how to evaluate the different tools, some software uses a
majority rule to activate the criteria, others activate PP3 and BP4 exclusively,
and others activate them at the same time. This criterion is difficult to apply.
The CMGCV-DES system uses 9 prediction tools for the evaluation of the
missense variants and 2 tools for the evaluation of the splicing variants.
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CMGCV-DES activates the PP3 and BP4 criteria exclusively taking into
account the evaluation trend of the different tools, using following rules:

e criterion PP3 is activated if at least 8/9 software predict a harmful
impact for the missense variants.

e criterion PP3 is activated if 2/2 software predict a damaging
impact for variants in canonical and non-canonical splicing sites.

e the BP4 criterion is activated if at least 8/9 software predict a
benign impact for the missense variants.

e criterion BP4 is activated if 2/2 software predicts a benign impact
for variants in canonical and non-canonical splice sites.

Table 4.2: The adapted criteria of the CMGCV-DES system

CRITERIA | CHANGED ADAPTION
PATHOGENIC CRITERIA

PVS1 not changed modulated using [101]
Stand_alone strength if U-IHC results
positive;

PS3 changed Very_strong strength if EM shows aggregates;

Strong strength if LM in skeletal myocytes
shows aggregates

PM1 changed not applicable
PM2 changed see Table 4.1
homozygous variants activate
PM3 changed PM3_Supporting
PMS5 changed not applicable
Missense: 8/9 tools predict damage
PP3 changed Splicing: 2/2 tools predict damage
i + +sPK+) i
PP4 changed if MFM phenotype (RCM+AVB+sPK+) is
present
PS1, PS2,
PS4, PM4, .
PMS6, PPI. not changed applicable
PP2, PP5
BENIGN CRITERIA
BAI changed see Table 4.1
BS1 changed see Table 4.1
BS2 changed if present in multiple controls
BS3 changed not applicable
Missense: 8/9 tools predict no damage
BP4 changed Splicing: 2/2 tools predict no damage
BS4, BPI,
BP2, BP3, .
BPS. BPG, not changed applicable
BP7
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4.1.3. The DES-dataset

At the CMGCV, from 2015 to 2021, 2562 unrelated subjects with
hereditary cardiomyopathy and controls with other genetic diseases were
studied. All probands were tested using NGS sequencing; library preparation
was performed using the Illumina Trusight Library Preparation Kit in
combination with the Illumina Trusight cardio probes. Samples, after
quantification and library quality control, were sequenced using MiSeq
[1lumina in a pool of 12 samples per run as per Illumina protocol.

The bioinformatics analysis was performed through Helper using the
Trusight analysis pipeline described in chapter 4.1. All variants identified in
the cohort were grouped by the affected gene in the CMG-CardioDB. The
variants affecting the DES gene have been subjected to a review aimed at
identifying the candidates to be causative of Desminopathy. The final DES-
dataset consists of 41 variants (Table 4.3): 33 are missense variants (1 of
these involves two consecutive amino acids), 3 variants affecting canonical
splice sites, 2 non-canonical splicing variants, 1 frameshift, 1 stop gain, and
1 exon deletion.

4.1.4. Benchmark study

To better understand how the non-adapted ACMG rules classify DES
variants, variant classification was performed using three commercial
software, commonly used in genetics laboratories, which support the
annotation and interpretation of variants: Varsome [71], eVai [112], and
Franklin [113]. The classification process was carried out using the criteria
compiled automatically by the three software:

e C(riteria about variant type and location (PVS1, PM1, PM4, PP2,
BP1, BP7).

e C(riteria about variant MAF (PS4, PM2, BA1, BS1).

e C(riteria about functional studies (PS3, BS3).

e C(riteria about residues (PS1, PM5).

e C(riteria about in silico tools (PP3, BP4).

e Criteria about reputable sources (PP5, BP6).

The result was analyzed to evaluate if the three software agree in
classifying the variants and to understand which criteria are activated in a
different way and which can cause misclassification of the DES variants.
Subsequently the variants were classified using the adapted criteria of the
CMGCV-DES. Finally, by integrating the information on the phenotype of
carriers (PP4, BS2, BP5), on the family study (PS2, PM6, PP3, BS4), and on
the functional studies on myocardial tissue carried out at OSM, a robust
classification of the variants contained in the DES-dataset was provided.
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4.1.4.1. Differences between software before patient and family
evaluation

All the 40 short variants extracted from the DES-dataset were classified
using the three software (Figure 4.3, 4.4). The CNV was excluded from the
evaluation because not all software provide interpretation of this type of
variant by applying the 28 criteria-based ACMG system, rather preferring to
apply the rules dedicated to structural variants [114].

e Varsome classifies 31 variants as P / LP (77.5%), 8 as VUS
(20%), 1 as LB / B (2.5%);

e Franklin classifies 16 variants as P / LP (40%), 19 as VUS
(47.5%), 5 as LB / B (12.5%);

e c¢Vai classifies 9 variants as P / LP (22.5%), 28 as VUS (70%), 3
as LB/ B (7.5%).

Varsome Franklin eVai

LB/B

1

VUs 3%
8 ;

20% ) . ‘

LB/8 LB/B _
P/LP

8%

P/LP
16
0%

VUS
19 | ) e
31 47% ’ vUs |
77% 28

mB/P nVUS uLE/B

Figure 4.3: Distribution of variant classification of the three software
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P/LP

LB/B VUS

Varsome eVai Franklin

Figure 4.4: Trends in the classification of the three software

The 3 software agree in classifying 18/40 (45%) variants (9 as P/ LP, 8
as VUS, and 1 as LB / B), while for 22 (55%) variants the classification is
discordant. As the 22 variants discordantly classified are concerned, for
20/40 variants (50%) 2 out of 3 software agree in the classification and
classify by majority 7/20 as P / LP, 11/20 as VUS, and 2/20 as LB / B. The
interpretation from 3 software are completely different only for 2 (5%)
variants: Varsome classify them as P / LP, eVai as VUS, and Franklin as LB
/ B (Figure 4.5).

100%
90%
80%
70%
60%
50%
40%
30% 8
20%
10% 9
0%

2

1 2

I
I
11

Concordant Discordant

mpP/LP =VUS WmLB/B P/VUS/LB

Figure 4.5: Concordant and discordant classification between the three
software. Variants without the full agreement between software are classified
using the 2 out of 3 rule.
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These classification differences are due to the different strategies with
which the software activates the ACMG rules criteria.

All software agrees to use the criteria concerning the type of variant
(PVS1 or PP2) with the only difference that Franklin applies the
recommendations for the use of PVS1 by modulating its strength based on
the prediction of the nonsense-mediated decay as per recommendations
[101].

The other criteria activated in a discordant way between the software are:

1. The criterion that evaluates the prediction tools (PP3 / BP4).
2. The criteria that evaluate the MAF thresholds to determine if a
variant is to be considered rare or common (PM2 / BA1 / BS1).

3. The criterion that evaluates the literature and clinical database
data (PP5 / BP6).

The different use of PP3 or BP4 is due to the different sets of prediction
tools that each software queries and to the rule with which they activate the
score. Specifically, eVai activates PP3 and BP4 independently and, in some
cases, simultaneously if even a single tool is in favor of the deleterious or
benign effect. Varsome uses a majority ranking among the results of all tools
to determine whether to activate PP3 or BP4 and activate them exclusively.
Franklin calculates a machine learning-based meta-score of the predictions
of the interrogated tools and interprets the impact through ranges of
benignity or deleterious effect.

In interpreting the MAF calculated from the control population, the
software agrees to classify 17/22 variants as rare and activate PM2, while
calculating the threshold for BS1 differently. Franklin, in fact, activates the
BS1 for 3 variants, determining the LB / B class, while Varsome and eVai
do not activate the BS1 for any variant. The rule that most causes the
classification differences between the 3 software is the PM1 which in 21/22
variants switches the classification from VUS to LP. The software that most
applies the PM1 criterion is Varsome: it classifies the 21 LP variants using
the PM1 compared to 7/21 classified as P / LP by Franklin, and 0/21 eVai.
EVai does not activate the PM1 criterion for any variant, while Franklin only
activates PM1 for 6/21 variants.

4.1.4.2. The CMGCV interpretation

By applying the CMGCV-DES system, the 40 variants of the DES-dataset
were classified as 10 LP-P (25%), 24 VUS (60%), and 6 LB-B (15%), while
the three software, considering at least 2 out of 3 software, classified the
variants as 16 LP-P (40%), 19 VUS (47.5%), 3 LB-B (7.5%) and 2 LP-VUS-
LB (5%) (Figure 4.6). Through the CMGCV-DES system, the CNV DEL
exon 3, excluded from the evaluation of the 3 software, was classified as LP.

Of the 38 variants with a concordant class calculated by 2 out of 3
software, the CMGCV-DES system classifies 31/38 (81.6%) in agreement
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with software: 10 LP-P, 18 VUS, and 3 LB-B. Of the 7/38 (18.4%) variants
classified differently, 6 were classified LP-P by the software and VUS by the
CMGCV-DES, while 1 is VUS for software and LB for CMGCV-DES. The
differences in classification are due to the difference in the interpretation of
critical areas (hotspots or functional domains) within the Desmin gene
(PM1), to the interpretation of the MAF of the variant (PM2 / BS1), and to
the criterion that evaluates a second variant which afflicts the same amino
acid (PM5).

Software CMGCV-DES
(2 of the 3)
Unclassified
LB/B 2
3 oo Le/s o P/LP

8%
- 15%

VS : VUs
18 : 24
’ : o
7% WP/LP s VUS = LB/B - Unclassified 50%

Figure 4.6: Distribution of variant classification of the three software (using
the 2 out of 3 rule) and of the CMGCV-DES system.

4.1.4.3. The impact of the pathological and clinical study of
subjects and the analysis of families on classification

The final classification was optimized using clinical information of
variant carriers, familiar co-segregation information, and functional tissue
pathology studies where available. The immuno-ultrastructural pathological
study for the identification of Desmin aggregates in myocardial tissue was
performed on the carriers of 9 variants, 7 of which classified as LP and 2 as
VUS by the CMGCV-DES system. The carriers of 8 of the 9 tested variants
demonstrated specific accumulations due to the Desmin defect, while in the
carrier of 1 variant no pathological findings of intra-myocyte myofibrillar
aggregates were found.

Clinical evaluation of patients revealed the compound phenotype RCM +
AVB (and serum PK+) in probands carrying 10/41 variants, and none of
these demonstrated the presence of a second variant that can be considered
an alternative cause of the phenotype. Carriers with DCM, HCM, and ARVC
(but also carriers without cardiomyopathy) were identified for 14/41
variants; in subjects with cardiomyopathy carriers of 5/14 variants, a second
variant classified as P or LP was identified in a disease, probably the
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principal cause of the phenotype. Finally, 17/41 variants were identified in
control subjects with clinically proven absence of the phenotype, and clinical
and family history negative for cardiomyopathy and myopathy.

The family study identified 4/41 de-novo variants; for 1/41 variant
recessive transmission was demonstrated in two unrelated families with
homozygous subjects affected by RCM and AVB and healthy heterozygous
subjects; for 2/41 variants segregation with the phenotype with the dominant
transmission was observed, while for the remaining variant carriers the
families proved to be not informative or not accessible. By adding this
information, the pathogenicity class changes for 16/41 variants. For 8
variants the pathogenic interpretation was strengthened passing from LP to
P, 2 variants were confirmed benign passing from LB to B, while from 6
variants they changed class passing from VUS to P (n = 1) and from VUS to
LB (n=5).

4.1.5. The final classification

Considering the above-presented data, the 41 variants can be divided into
4 groups:

1. The first group comprises variants whose carriers are all affected by
RCM with AVB, myopathy, and Desmin accumulations. Some of these have
led to end-stage disease and heart transplantation. This group is composed
of 9 variants, 4 null variants and 5 missenses (1 of which replaces 2 amino
acids) distributed in the Head (n = 1), in the coillB (n = 4), Coil2B (n = 1),
and in the Tail (n = 3) of the Desmin protein; all 9 variants are absent from
the population databases but 4/9 are described in ClinVar as P or LP and 1/9
are described as P and VUS. In subjects carrying 8/9 variants of this group,
the immuno-ultrastructural investigation was performed which revealed the
presence of Desmin accumulations inside the cardiomyocytes demonstrating
an "aggregate-forming" effect of these variants. The final interpretation of
the variants of the first group is Pathogenic for MFM Desmin related.

2. The second group includes variants identified in subjects with
cardiomyopathy related to the Desmin defect (HCM, DCM, and ARVC) but
non-specific for Desminopathy and who do not have a second variant that
could be the main cause of the phenotype. The second group is composed of
9 variants, 6 missenses, 2 truncating variants, and 1 variant of non-canonical
splice site, distributed in the Head (n = 3), in CoillA (n=1), in CoillB (n =
3), and in the Tail (n = 2) of the Desmin protein. The EM study carried out
in the myocardial tissue of the carrier of 1 variant (¢.323A> G; p.Glul108Gly)
did not show the presence of Desmin accumulations excluding an aggregate-
forming effect of the variant. Of this group 6/9 are variants absent from
population databases, 1/9 is described in ClinVar as P, 1/9 as LP and VUS,
and 1/9 as LB and VUS. The final classification determines the LP-P class
for 2/9 variants, 6/9 variants are classified as VUS and 1/9 as LB. Variants
in this group do not appear to have an aggregate-forming impact but may
play a causative role for other DES-associated cardiomyopathies.
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3. The third group is composed of 6 missense variants identified in
subjects with cardiomyopathy associated with a Desmin defect (HCM, DCM,
ARVC, RCM) but who have a variant in another gene that is likely to cause
the cardiac phenotype. The variants of the third group are distributed in the
Head (n = 2), in the Coil 1B (n = 1), in the Coil 2B (n = 1), and in the Tail
(n = 2) of the Desmin. 5/6 variants are present in the population databases
with a number of alleles >= 4, while 4/5 are described in ClinVar as B and
VUS (n=2) and VUS (n =2). The clinical study shows both carriers affected
by cardiomyopathy (6 of these are mutated in other phenotype-related genes)
and healthy subjects from a cardiac point of view. In this group, 5/6 variants
are classified LB or B and 1/6 is VUS. The variants of the third group are
likely to have no impact on the MFM phenotype and do not appear to cause
cardiomyopathy either.

4. The fourth group includes 17 variants identified in control subjects
without CMP and myopathy. This group is constituted of 16 missense
variants and 1 non-canonical splice site variant (¢.579-4C> T) distributed in
the Head (n = 2), in Coil 1A (n = 3), in Coil 1B (n = 7), in Coil 2B (n = 3),
and in Tail (n = 2). Out of 17 variants, 5/17 are not represented in the control
populations and 7/17 are described in ClinVar as VUS (n = 5) and VUS and
LB (n = 3). All carriers of the variants contained in this group were
considered healthy controls without cardiomyopathy. Of this group, 5/17
variants meet the criteria to be classified as LB or B, and 12/17 remain VUS.
Although the interpretation tends towards kindness. The variants of the
fourth group are most likely benign and have a neutral role towards
Desminopathy.

Table 4.3: DES-dataset variants classification

VARIANT EVAI  VARSOME FRANKLIN CNI[)%%V' FINAL CLASS

AGGREGATE FORMING VARIANTS

LP—P
c.46C>T PM2,PP2,PP3,PP5 +
p-Argl6Cys VUS Lp Lp Lp PS3_Verystrong,
PM3_Supporting,PP4
¢.536_551del LP—P
p-Glul179fs P P P Lp PVS1,PM2 + PP4
LP—P
RV R N T i 8
P-Asp£ia_lusfode PS3_StandAlone,PP4
LP—>P
¢.735+2_735+11del p P LP LP PVS1,PP5,PP3 +
) PS3_StandAlone, PP4
LP—>P
c.735+1G>A PVS1,PM2,PP3,PP5_S
11111111 P P P Lp trong +

PS3_StandAlone, PP4

95



Clinical Applications

c.1216C>T
p-Arg406Trp

c.1358C>T
p-Thr4531le

c.1360C>T
p-Argd54Trp

¢.1398_1399delGCin
sTT
p.GInHis466HisTyr

c.250G>A
p-Gly84Ser

c.322G>A
p-Glul08Lys

¢323A>G
p.Glu108Gly

¢.380G>C
p-Argl27Pro

c.517C>A
p-Argl73Ser

€.634C>T
p-Arg212Ter

c.749T>C
p-Leu250Ser

c.1289-3C>T

c.1371+2T>C

c.170C>T
p-Ser57Leu

¢.238C>T
p-Pro80Ser

c.635G>A
p.Arg212Gln

c.1123C>T
p-Arg375Trp

c.1286G>A
p-Arg429Gln

c.1334C>T
p-Thr445Met

LpP

VUS

LpP

VUS

LB

VUS

VUS

VUS

VUS

VUS

VUS

P

VARIANTS IN CMPs WITH OTHER MUTATIONS

LB

VUS

VUS

VUS

VUS

VUS

Lp

VUS

VUS

LpP

LpP

LpP

LP

Lp

VUS

P

P

VUS

LP

Lp

LpP

LP

Lp

VUS

LB

Lp

Lp

Lp

VUS

VUS

VUS

LP

LB

VUS

VUS

Lp

VUS

VUS

VARIANTS IN CONTROLS

Lp

Lp

Lp

VUS

VARIANTS IN CMPs WITHOUT OTHER MUTATIONS

LB

VUS

VUS

Lp

VUS

VUS

VUS

VUS

P

LB

VUS

LB

VUS

VUS

VUS

LP—P
PM2,PP2,PP3,PP5_Str
ong +
PS3_StandAlone, PP4

LP —>P
PM2,PP2,PP3,PP5 +
PS3_StandAlone, PP4

LP—P
PM2,PP2,PP3,PP5_Str
ong +
PS3_StandAlone, PP4

VUS — P
PM2,PP2 +
PS3_StandAlone, PP4

LB — LB
PP2,BS1,BP6 + PP4

VUS
PM2,PP2,PP3

VUS
PM2,PP2,PP3

LP
PM2,PP2,PP3,PP5

VUS
PM2,PP2,PP3

VUS
PVS1,PP5

VUS
PM2,PP2,PP3

VUS
PM2

P
PVS1,PP5,PP3

LB
PP2,BS1,BP6

VUS —- LB
PM2,PP2,BP4 + BP5

ILB—B
PP2,PP3,BS1,BP6 +
BS2,BP5

VUS — LB
PP2,PP3 + BS2,BP5

VUS — LB
PP2 + BS2,BPS

VUS — VUS
PP2



Clinical Applications

pamsss | VUS o vusowves o ves o GnT
psamag | VUS VU WU wUs i
c404C>T LB LP LB LB PP2,BIé}13,B_I)’AEBP6 +
p-Alal35Val BS2

S s v ws s
e ws v wsows aGewe
SET s v wsows o
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pvadises | VUS| LP vos o vus e e
C93SA>C vUS LP LB B PP2,PP]§,;A]?,BP6 +
p-Asp312Ala BS2

e e e e ws
c.1180G>A VUS LP B B PP2,PP§,EA?,BP6 +
p-Val394Met BS2

pAlsor VUS| vos o oves e
e e e wws

4.1.6. The importance of clinical and pathology studies

The difficulties related to understanding the impact of Desmin-gene
variants, and consequently on the clinical path of carriers, make DES a key
example of the need to deepen the methods of interpretation of genetic tests.
The presence of commercial or free-to-use software for the prioritization of
variants has facilitated the genetic diagnosis process by implementing the
ACMG rules and making easier the collection and interpretation of the
necessary information. Despite the concrete help that derives from the use of
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these systems, the implementation of the criteria for the pathogenic
classification is still not very robust, especially using partial information.
The analysis of the results of the three software has shown that the
classification of pathogenicity of the variants, provided only by the
information available in silico, is strongly influenced by the algorithms with
which the rules are interpreted. Each software uses different logics for the
activation of each criterion and small differences in implementation can
generate important classification discrepancies, giving rise to more or less
conservative or unbalanced interpretations. Depending on the software used,
there is a risk of over-interpreting the variants, altering the calculation of the
predisposition to develop the disease, with a deleterious impact both for the
patient and for the healthcare system. On the other hand, a too conservative
classification that interprets as VUS variants that hardly have a pathogenic
effect, leaves the genetic report pending due to lack of certainties. These
problems give rise to the need to integrate as much knowledge as possible
about the clinical case, its genetics, its family, and dedicated functional
experiments into the interpretative process. The interpretative problem
affects almost all genes but is crucial for those associated with rare diseases
characterized by a lack of genetic, clinical, and segregation information. For
this reason, it becomes essential to adapt the algorithms according to the
genes being analyzed to maximize accuracy. The CMGCV-DES system
avoids overestimating the impact of the variants and increases the number of
likely benign or benign classification, preferring a more conservative
interpretation in the absence of functional or segregation tests to confirm the
pathogenic assessment. Although the ACMG rules help to make the
interpretation of DES variants more robust, only clinical and pathology can
shed light on the real role of the variant on the phenotype. It is, in fact,
essential to be able to understand which variants actually have an "aggregate-
forming" effect causing the intra-myocytes accumulation of Desmin, and
which ones do not have this role despite being classified as pathogenic.

4.1.7. Clinical features of variant’s groups

As a conclusion of the evaluations on the variants present in the subjects
belonging to our center, we decided to organize the series of variants
according to 4 distinct groups based on the characteristics of the patients and
the variants themselves.

All the variants of which we are certain of pathogenicity and of the role
of the aggregate forming cause of myofibrillar myopathy belong to the first
group. The clinical picture of carriers of these variants has a very similar
evolution, which begins with a delay in conduction and slight concentric
hypertrophy of the ventricles and evolves into RCM and AVB. All variant
subjects in this group underwent PM implantation and many of them
underwent cardiac transplantation. Evidence of the intra-myocyte Desmin
aggregates labeled with anti Desmin antibodies during the EM study
excludes any doubts about the effect of the variants of this group. While the
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aggregate forming variants are relatively simple to identify by deepening the
clinical aspects of the patient and through robust and well-performed
functional studies, the variants that do not generate intra-myocyte
accumulations of Desmin but that decrease its functionality and cause
nonspecific phenotypes, are still a challenge. The definition of the cause-
and-effect relationship between the genetic defect in DES and myocardial
pathology in subjects who do not have a second mutation capable of
explaining the phenotype is essential in the path of understanding the
disease, but it is still difficult to evaluate due to the lack of markers,
pathological and functional tests. The variants of the second group within
our series are an example of this. Carriers in fact demonstrate a range of
cardiomyopathies, mostly sporadic, which includes DCM, HCM, ARVC,
conduction dysfunctions, and extensive myocardial fibrosis; moreover, they
are not affected by other pathogenic variants and the families are not very
informative due to the lack of phenotypic transmission. The effect of this
uncertainty is reflected in the final classification of these variants, which are
mostly referred to as VUS precisely because of the lack of crucial evidence
of a damaging effect. The lack of functional data does not allow to assess the
aggregate forming role, and the clinical study on the proband and on his
family does not clarify the ideas on the pathogenic impact. The meaning
changes for the variants of the last two groups in patients with
cardiomyopathy caused by a mutation in another gene strongly related to the
phenotype or in control subjects who do not have cardiomyopathy and who
come from phenotypically healthy families for hereditary cardiomyopathy.
The CMGCV-DES system with the addition of information on the patient
and families, classifies these variants as (likely) Benign or as VUS tending
to Benign. This group includes variants that affect an amino acid that also
changes into a pathogenic variant. Patients' clinics orient the assessment
towards a likely neutral impact, confirming the CMGCV -DES interpretation.
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4.2. Variants study in breast and ovarian cancer
families

4.2.1. Introduction to hereditary cancer

Since 2013 the Centre for Genetic Diseases of the OSM Foundation, in
collaboration with the Breast Cancer and Gynecology and Obstetrics units of
the Hospital, has developed a path of clinical and molecular genetics to
support and enhance the diagnosis and care of women at high risk of
developing breast and ovarian cancer. In the same year, a research project
was launched aimed at identifying the genetic causes of breast and ovarian
cancer and HBOC syndrome. These paths was provided to over a thousand
women with Breast and Ovarian Cancer (BROVCA) who received highly
specialized multidisciplinary care aimed at the most advanced management
(diagnosis and treatment) of malignancies (OSM PDTA EUSOMA; EU
certification with annual confirmation). Within this process, an integrated
clinical and genetic database of patients suffering not only from BROVCA,
but also from non-BROVCA hereditary cancers, was created in order to
incorporate the data in an easy and fast management the data analysis and
interpretation.

This chapter describes the database developed at the CMGCV of San
Matteo and the results obtained from the analysis of genetic data conducted
with NGS analyzes from 2015 to 2020. The primary objective is to
understand the genetic makeup of patients with BROVCA compared to
patients with other malignant neoplasms; the secondary objective is the
assessment of the feasibility of family segregation studies.

4.2.2. Genetic and clinical background

Breast cancer (BR) is the most common cancer in women. The World
Health Organization (WHO) has estimated that it accounts for more than
25% of all new cancer cases per year in women and 10% of all cancers when
men are included in the estimates [115]. Ovarian cancer (OV) is less common
than breast cancer. The latest estimate in the "Global Cancer Statistics 2020"
report [116], generated by the American Cancer Society (ACS) and the
International Agency for Research on Cancer (IARC), shows that ovarian
cancer accounts for approximately 3.4% of all female cancers, globally. Most
BR and OV appears as sporadic without an obvious genetic etiology. A
smaller proportion - between 5 and 15% of BR cancers and 6-25% of OV
cancers - is linked to a strong hereditary "predisposition". The genetic causes
of these two types of cancer overlap, and both Breast and Ovarian cancers
(BROVCA) are often observed in family members, carriers of the same
genetic defect. This familial predisposition syndrome to develop BROVCA
cancers is called hereditary breast and ovarian cancer (HBOC).
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Although most cases of HBOC syndrome are associated with mutations
in BRCA1 or BRCA2 genes, defects in these two genes explain about 15-
25% of cases. The study of the HBOC BRCA negative families led to the
identification of additional 25 genes associated with hereditary
predisposition to BROVCA cancers; still far from a completion of the
predisposing genes, and in the context of this high genetic heterogeneity,
further studies are ongoing to identify all the possible disease-genes thus
providing precise molecular diagnostics with complete lists of the genetic
causes of HBOC syndrome [115][117].

4.2.3. The reasons for genetic testing

Genetic testing for HBOC syndrome is integrally part of the management
of patients who develop BROVCA cancers and their families. The most
common test is limited to BRCA1 and BRCA2 because most familial
BROVCA are associated with mutations in these 2 genes. However, the new
discoveries on the genetic causes of non-BRCA BROVCA cancers
demonstrated the clinical relevance to other genes as well. The result of the
genetic investigation is clinically actionable as it has an immediate impact
on surgery, oncology treatment, clinical management of family members, ass
well as on the quality of life of unaffected carriers. Immediately after the
diagnosis of cancer, the detection of pathogenic or likely pathogenic variants
in a relevant gene can support surgical decision, from a conservative
quadrantectomy to a total mastectomy and, in some cases, to a preventive
bilateral mastectomy [118]. Prophylactic bilateral salpingo-oophorectomy is
recommended in genetically predisposed and aged individuals at risk and can
reduce the risk of ovarian cancer by up to 80% [118]. Cancers related to
BRCAT or BRCA2 defects are commonly susceptible to carboplatin which
is considered the first line treatment for genetic cancers. In addition, some
ovarian tumors, and recently also BR cancers, associated with defects in the
homologous recombination pathway (HRD) are targets of a new line of
PARP inhibitors that has shown promising effects [119][120]. Finally,
probands and family carriers exposed to the risk of HBOC syndrome enter
personalized prevention monitoring programs to ensure early diagnosis and
increase the probability of survival and quality of life.

4.2.4. The clinical and molecular genetic path at the OSM

The path is structured as indicated by the Regione Lombardia rules and
by guidelines from scientific societies. The first step is genetic counselling,
with examination of individual clinical data and of clinical data from
relatives (patients are asked to trace and collect clinical records of relatives
before accessing the center for counselling). In cases in which the genetic
test is appropriated, informed consent for testing is collected and then the
patient undergoes blood sampling. The blood sample is transferred to the
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laboratory where it is processed for NGS tests. After running the NGS, data
are analyzed as described in the prior chapters. The file including all variants
selected by the analysis is addressed to the lab for Sanger confirmation, as
per request of the Regione Lombardia rules. After completion of the
confirmation, a report describing the results is generated according to the
rules indicated by scientific societies. In parallel, family segregation studies
are performed, in particular in case of variants that are defined as VUS based
on ACMG rules due to the lack of any prior description. Reports on known
and proven pathogenic variants are usually released immediately after
Sanger confirmation. The center acknowledges ACMG criteria for variant
reclassification and ACMG indications for recalling patients when
reclassification provides new evidence of variant actionability. Each patient
then receives three written reports: the pre-test genetic counselling, the
genetic test report and the post-test counselling report. The reports and the
related information are directly transferred to the patients during the post-
test counselling. Each patient signs a further form in which she/he declares
the receipt of the reports and the full understanding of the information
provided during post-test counselling.

4.2.5. NGS sequencing and analysis pipeline

The workflow of NGS-based germline genetic analysis of samples was
validated within the accreditation process of the European Society of Breast
Cancer Specialists (EUSOMA) [121] for the genetic diagnosis of hereditary
breast cancers.

4.2.5.1. Wet process

By protocol, DNA is isolated from whole blood by the Promega
Maxwell® RSC automatic extractor and quantified by NanoDrop™.

NGS libraries are prepared using the Illumina Trusight Rapid Capture kit
in combination with the Trusight Cancer (illuminate) probes. The libraries
undergo a process of quantification, quality control and selection of
fragments using the BioAnalyzer (Agilent), before being loaded onto the
Illumina MiSeq sequencer in groups of 24 samples per run, as per the
[1lumina protocol.

4.2.5.2. NGS data analysis

Fastq files are analyzed via the trusight germline pipeline implemented
using Helper platform. The workflow of the trusight germline pipeline
includes:

1. Fastq QC using FastQC tool.
2. Alignment of Fastqs using BWA-mem.
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3. Sam conversion, bam sorting, and marking of duplicates using
Picard tool.

4. Realignment around InDels and Base Quality Score Recalibration

using GATK v.3.7.

Joint Variant calling using GATK v.4.1 and Freebayes in cohort

modality.

Variant filtering using GATK v.4.1.

Annotation using VEP.

Transcript selection using Canonical Transcript for all genes.

CNV calling using GATK v4.1.

hd

A S

The NGS samples are evaluated through target coverage quality
parameters and the identified variants undergo a prioritization process
through a cascade of sequential filters.

Variants with the following characteristics are excluded:

1. Heterozygous in more than two samples or homozygous in more
than one sample within the cohort consisting of 24 samples.

2. Intronic, UTR, intergenic and non-coding variants distant from
the splice sites.

3. Variants with MAF greater than 0.005 in at least one population
database including 1000G, ExAC, and GnomAD.

4. Benign or Likely Benign, ascertained.

5. Synonymous or missense variants in genes with a high mutation
frequency and with an established loss of function as mechanism
of damage.

The remaining variants were classified according to the ACMG-
AMP guidelines and only variants with a Likely Pathogenic and Pathogenic
significance are considered.

4.2.5.3. The CMG-Cancer DB

For the present study, the clinical and family information on patients,
obtained at the pre-test genetic counseling, and the variants identified
through the NGS analysis, were included in the CMG-CancerDB. Clinical
data such as the site of the tumor, the age of onset, the characteristics of
malignancy and information on family history have been entered manually
and are subjected to a continuous review process. The genetic information
of the probands obtained through NGS analysis was integrated with an
automatic system and was updated periodically.

Cancer DB contains information from 1320 unrelated probands, addressed
to the CMG for cancer (n = 1225; 92.8%) and eligible for genetic testing, as
well as unaffected subjects (n = 95; 7.2%) who underwent genetic testing for
positive family history suggestive for Hereditary Cancer syndrome (HCS).
The series analyzed in this study includes 253 males and 1067 females, with
a mean age of 55 years at the date of the consultation (C.I. 95% = 32-77
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years) (Table). Based on tumor site and characteristics, probands with prior
malignancy were grouped into probands with BROVCA (p-BO) (n = 825;
62.5%) and probands with other non-BROVCA tumors (p-NBO). The latter,
together with the unaffected probands, were considered as a single group
without prior BROVCA (p-NBO) (n = 495; 37.5%). For the p-NBO group,
family history was assessed and subjects with at least one BROVCA relative
in the first (parents, siblings, children) generation or in the second generation
(uncles, grandparents, grandchildren) were grouped as probands no
BROVCA in BROVCA family (p-NBO in f-BO) (n=173; 34.9% of p-NBO).
The remaining patients without prior BROVCA in the family were grouped
together as probands no BROVCA in no BROVCA family (p-NBO in f-
NBO) (n = 322; 65.1% of p-NBO). To carry out the classification, only
subjects with primary breast or ovarian cancer were considered as BROVCA
and metastatic lesions were excluded. Non-HBOC tumors such as Sertoli-
Leydig cell tumor (non-germ cell neoplasm of the ovary and testis) were
considered among the non-BROVCA tumors due to the unique
characteristics and well-defined genetic causes (e.g., Diceropathies).

4.2.6. Results of genetic testing

Although the genes reported as associated with increased risk of BROCA
are a small group, all genes present in the Trusight Cancer panel were
considered for this study. Of the 1320 tested probands, 274 (20.8%) carried
a P or LP variant in a gene associated with HCS Syndrome, with a slightly
higher percentage of mutants among the p-BO probands (n = 182 / 825;
22.1%) compared with p-NBOs (n = 92/495; 18.6%).
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Figure 4.7: The distribution of genes within the entire population of CMG-
CancerDB.

The list of genes with at least one P/LP variant includes 40 genes with at
least one P or LP variant (Figure 4.7). Most common genes are BRCA1 (n=
59) and BRCA2 (n = 47) which, by themselves, comprise 38.7% of the
causative disease variants in the series.

Among the BROVCA probands, 91/180 (50.5%) carry a P / LP variant in
the BRCA1 or BRCA2 genes and 89/180 (49.5%) in other genes. The
percentage decreases in the non-BROVCA group of probands (n = 15/93;
16.3%); 11/15 (73.3%) were identified in unaffected probands from high-
risk families.
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4.2.6.1. BRCA vs other genes in BROVCA probands

For a more in-depth analysis of BRCA1 and BRCA2 genes vs. other genes
in probands with previous breast or ovarian cancer, the 825 BROVCA
probands were divided into 5 subgroups based on the location of the
malignancies:

e ovarian cancer alone (n = 232/825, 28.1%)

e ovarian cancer plus other types of cancer (n = 14/825, 1.7%)
e breast cancer alone (n = 481/825, 58.3%)

e breast cancer plus other types of cancer (n = 51/825, 6.2%)
e breast + ovarian cancer (n = 47/825, 5.7%).

BROVCA PROBANDS

Owvarian+others

Owvarian

Breast

Ovarian+Breast

Figure 4.8: The distribution of malignancy types in BROVCA probands

The highest percentage of mutated probands (35.7%) was found in the
group of patients with previous ovarian cancer and at least one more non-
BROVCA tumor. In this group, 40% of the mutants are carriers of a P / LP
variant in BRCA1 or BRCA2, while 60% carry pathogenic variants in other
genes. The representativeness of the Ovarian + other tumors group is limited
by the low number of probands. The probands affected by Ovarian cancer
alone are 232: 37 (50.7% of the mutants) are mutated in BRCA1 /2 and 36
(49.3%) in other genes, with overall 73/232 mutated (31.5%). Considering
all probands who had Ovarian but no Breast cancer (n = 246/825, 29.8%),
78/246 (31.7%) were mutated in BRCA1/2 (n=39/78, 50%) and in other
genes (n=39/78, 50%).

In 481 (90.4%) of the 532 probands, breast cancer was the only
malignancy, while the remaining 9.4% had had at least one further non-
BROVCA malignancy. Among the probands who had only breast cancer, 77
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(16.0%) had a positive genetic test, and 37 (48.1%) were carriers of
BRCA1/2 mutation. Of the 51 patients who had more than one malignancy,
13 carried pathogenic variants (25.5%), of which 6/13 (46.2%) in BRCA1/2,
and 7/13 (53.8%) in other genes. Overall, 16.9% probands with breast cancer
(with or without other tumors) carry BRCA defects. Finally, the probands
who developed both breast and ovarian cancer are 47: 14 (29.8%) were
carriers of mutations in at least one gene of the panel; 9/14 (64.3%) tested
positive for BRCA1 or BRCA2.

Within the BROVCA probands, the groups show a similar percentage of
P / LP variants in BRCA1/2 versus all other 38 genes. This trend reflects the
high correlation between ovarian and breast cancer with the two BRCA
genes and is best seen among patients who developed lesions in both sites.
This last group, despite the low number, showed a higher frequency of
variants classified as causing disease in BRCA genes (64.3%).

Overall, the diagnostic yield in BRCA for patients with ovarian cancer is
about one positive out of three mutated ones, while it drops dramatically in
breast cancer.

Table 4.4: The genetic distribution into the BROVCA group

NON
MUTATED
MUTATED
OTHER ALL
BRCA1/BRCA2 GENES GENES
OVARIJAN+OTHERS 2 (40%) 3 (60%) 35,7% 64,3%
OVARIAN 37 (50.7%) 36 (49.3%) 31,5% 68,5%
OVARIAN+BREAST 9 (64.3%) 5 (35.7%) 29,8% 70,2%
BREAST+OTHERS 6 (46.2%) 7 (53.8%) 25,5% 74,5%
BREAST 37 (48.1%) 40 (51.9%)  16,0% 84,0%
50%
30%
20%
N I I I I I
Ovariarsothers Ovarian Ovarian+Breaxt Bresst+others Bresst

WMERCAI/BRCAZ W OTHER GEMES
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Figure 4.9: The BRCA1/2 vs other genes distribution into the BROVCA
group

4.2.6.2. Non-BROVCA probands

In probands without BROVCA, the mutation frequency of BRCA versus
other genes was assessed by comparing probands from BROVCA families,
as previously defined, and probands without family history of breast and
ovarian cancer. In the cohort of non-BROVCA probands, regardless of
family history, 91 subjects (18.6%) were mutated, with a higher percentage
of defects in the non-BRCA gene group (n = 77; %) than in BRCA1 and
BRCA2 (n = 15; %). All 15 BRCA positive probands had a positive family
history of BROVCA cancer, while BRCA mutants were not identified in the
group of subjects from non-BROVCA families. In the non-BROVCA group
in BROVCA families, the  percentage of BRCA defectsis 36.8%
versus the 63.2% in other genes.

This result suggests that in probands without previous ovarian or breast
cancer and without any first or second-degree family member affected by
BROVCA, the probability that the oncology risk in the family is associated
with BRCA defect is almost nil.

4.2.6.3. Mutated non affected probands

In our series, 15 probands had no previous malignancies, but were carrier
of a P or LP variant in a gene associated with HCS: 11 probands in BRCA1
(n=6) and BRCA2 (n=4), 1 carries both BRCA2 and MSH6 mutations, 1
in FANCG, 1 in HOXB13, and 2 in MUTYH. Among the 11 probands with
a variant P or LP in BRCA1 / 2, 8 are Female and 3 are Male. The females -
mean age 44.5 years (CI-0.95 = 28.2-62.5) - all have a strong family history
of BROVCA; 6 of 8 have mothers with a past breast or ovary and 2 have at
least 1 sister with breast or ovarian cancer. The 3 BRCA1-positive males
have a strong family history of BROVCA (2 breast cancers in the mother and
1 ovarian and breast cancer of a sister). The age at counseling ranges from
22,41, to 60 years. As for the 4 subjects mutated in non-BRCA genes, only
2 of 4 had at least one first-degree relative with a previous BROVCA.

4.2.6.4. BROVCA in male probands

Men who have developed breast cancer during their lifetime deserve a
careful analysis. In our series 17 men have breast cancer, with a mean age at
counselling = 65.7 years (C.I. 95% = 43.8-72.5). They constitute 1.6% of all
tested subjects and 2.1% of BROVCA probands. 12 out of 17 probands had
only breast cancer while 5 had malignancies in other districts as well: one
breast and prostate, two had kidney and breast cancers and two had kidney,
breast and colon cancers. Only 4 (23.5%) male probands were found to be
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mutated in the genes contained in the panel, one in BRCAT1, one in BRCA2,
one in ERCC2, and one in FANCA. The two BRCA carriers developed both
Breast and clear cells Renal cancer (one of them also a colon
adenocarcinoma) while the other two only breast cancer.

4.2.6.5. Gene pathways in breast and ovarian cancers

The evaluation of the mutation fraction of the two BRCA genes vs. all
the other malignancy genes has showed a balanced relationship in BROVCA
probands, with the percentage of positive BRCA decreasing in the non-
BROVCA probands who were members of BROVCA families, up to zero in
BRCA negative probands within the subgroup of the non-BROVCA families.

Within the group of BROVCA with mutations in non-BRCA genes, there
are 38 different genes, some are associated with specific syndromic
malignancies (e.g., TSC2, DICERI1, RB1, MCIR), while others are related
to syndromes associated with the risk of malignancy in different districts
organism (e.g., TP53, CHEK2). However, it should be noted that syndromic
malignancy can be suspected after genetic counseling and visit, and that
when the suspect is strong, the genetic testing can be performed by
sequencing the given suspected gene (e.g., Carney Complex, DICERI, or
NF1, NF2, etc.). To carry out an in-depth analysis of the mutational profile
of the 3 clinical groups (p-BO, p-NBO in f-BO and p-NBO in {-NBO) the
genes were grouped according to the biochemical pathways.

In fact, genetic susceptibility to HBOC is caused by defects in the genes
that participate in maintaining the stability of the genome, that is, DNA error
identification and correct nucleotide sequence restoration. The major
pathways involved in the protective mechanisms of the human genome
include the homologous recombination repair (HRR), the mismatch repair
(MMR), the ill checkpoint pathways (CKP), and the Fanconi anemia
pathway (FA) [117]. In short, there are four major mechanisms of
maintenance of the genome involving genes whose defects in one or more
than one mechanism cause HBOC.

The first mechanism -the HRR- intervenes in case of double-strand
damage (DSB). In DSB, the checkpoint system detects an error and promotes
the removal of the ends of both strands of the damaged sequence. The HRR
complex is recalled, which uses the complementary sequence of the paired
chromatid as a reference and repairs the damage with a copy and paste action.

The protection system of replication fork stability limits the erroneous
degradation of newly synthesized DNA sequences. The nascent DNA
sequences are protected via the stabilization effect of the replication fork,
which prevents them from becoming subject to the action of nucleases. Both
HRR genes and Fanconi anemia complex are involved in this mechanism.

The mismatch repair mechanism corrects base-base mispairing as it
recognizes and repairs erroneous insertion, deletion and misincorporation of
nucleotides. In addition to monitoring the entire sequence, the MMR controls
the HRR mechanism. In case of an excessive number of mismatches in the
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copy process, the MMR disables the HRR, preventing the accumulation of
further errors and decreasing the possibility of potentially damaging effects.

The last mechanism - the ill checkpoint pathway (CPK) - supports DNA
repair pathways and includes DNA damage signaling, checkpoint control and
cell death. When genetic defects affect the function of error detection in the
homologous recombination process, in parallel to the recalling of the HRR
complex, CPK activates the checkpoint system in cascade that pauses the
progression of the cell cycle to allow DNA repair. Alternatively, the
accumulation of errors in cellular DNA leads the cell to senescence and the
cell death control system promotes apoptosis. When the checkpoint and
senescence process are damaged, the DNA would continue to accumulate
errors without the cell being induced to death and could acquire changes that
promote uncontrolled proliferation.
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Figure 4.6: Genome maintenance mechanisms (Figure from [115])

The genes involved in the HRR process present in the Trusight Cancer
[llumina panel are BRCA1, BRCA2, BRIP1, PALB2, RAD51C, RADS1D,
and BLM. BLM is not part of the main HRR complex, but its support action
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is of great importance. These genes are major players related to HBOC and
have been grouped in the HRR cluster (Table 4.5).

The genes involved in the MMR mechanism are MLH1, MSH2, MSH6,
and PMS2. Typically, these genes are strongly associated with malignancies
of the intestinal tract but also influence the predisposition to BROVCA
cancers. The mismatch repair genes were considered as a single group and
are reported in Table 4.6.

The genes involved in the error sensing, cell checkpoint and cell death
system, present in our series are ATM, NBN (sensing and signaling), CHEK?2
(checkpoint control) and TP53 (apoptosis promoter). All these genes
demonstrate variable correlation with breast and ovarian cancer and make up
the CKP group (Table 4.7). In addition, the CDH1 gene was added to CKP
cluster due to its association with breast cancer.

Genes playing in the Fanconi Anemia complex deserve specific
comments. FA genes are numerous and act differently in co-operation with
genes belonging to other cellular repair pathways (e.g., HRR complex). The
Fanconi Anemia Core Complex (FACC) consists of FANCA, FANCB,
FANCC, FANCE, FANCG, FANCI, FANCL, FANCM, and FANCD2
(Table 4.8).

All genes that are not involved in genome stability mechanisms and that
are primarily related to different malignancies compared to BROVCA
cancers, were grouped all together in the cluster termed “Others”. Genes
included in this group may predispose to rare tumors such as those seen in
Diceropathies (DICER1) [122] and retinoblastoma (RB1) [123]; genes
associated with increased risk of familial melanoma such as MITF, MCIR,
CDKNZ2A; genes associated with increased risk of gastrointestinal tumors
such as APC, MUTYH and SMAD4, or of kidneys, such as VHL. Other
genes are related to syndromic malignancies such as TSC2, ERCC2, ERCC3,
CYLD, CDKNI1C, and BUB1B (Table 4.9).

Table 4.5: Genes in the homologous recombination repair pathway

HOMOLOGOUS RECOMBINATION REPAIR - HRR

OMIM CANCER/DISEASE

GENE GENE NAME ASSOCIATION

Breast-ovarian cancer (604370);

BRCAL1 Breast -1
reast canieet=% gene Pancreatic cancer (614320)

Breast-ovarian cancer (612555);
Fanconi anemia D1 (605724);
Prostate cancer (176807);
Breast cancer male (114480);
Wilms tumor (194070);
Medulloblastoma (155255);
Glioblastoma 3 (613029);
Pancreatic cancer 2 (613347)

BRCA2 BRCA2 gene

BRCA-associated C-terminal Breast cancer, early-onset (114480);

BRIPI helicase 1 Fanconi anemia J (609054)
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Fanconi anemia N (610832);

PALB2 Partner and localizer of BRCA2 Breast cancer (114480);
Pancreatic cancer (613348)
L. Fanconi anemia O (613390);
RAD51 RAD51, S. homolog of, .
S1C 51, 8. cerevisiae, homolog of, C Breast-ovarian cancer (613399)
PADS1D | RADS], S. cerevisiae, homolog of, D | Breast-ovarian cancer (614291)
BLM DNA helicase, RecQ-like 3 Bloom syndrome (210900)

Table 4.6: Genes in the mismatch repair pathway

MISMATCH REPAIR - MMR

GENE

GENE NAME

OMIM CANCER/DISEASE
ASSOCIATION

MLH1

mutL, E. coli, homolog of, 1

Colorectal cancer (609310);
Mismatch repair cancer syndrome
(276300)

MSH?2

mutS, E. coli, homolog of, 2

Colorectal cancer (609310);
Mismatch repair cancer syndrome
(276300)

MSH6

MutS, E. coli, homolog of, 6

Colorectal cancer (609310);
Mismatch repair cancer syndrome
(276300)

PMS2

Postmeiotic segregation increased, S.
cerevisiae, 2, homolog of

Colorectal cancer (614337);
Mismatch repair cancer syndrome
(276300)

Table 4.7: Genes in the pathway of sensing,

death control

signaling, checkpoint, and cell

SENSING, SIGNALING, CHEKPOINT CONTROL,

CELL DEATH - CKP

OMIM CANCER/DISEASE
GENE GENE NAME ASSOCIATION
Ataxia-telangiectasia mutated Ataxia-telangicctasia (208900);
ATM (includes complementation groups A, Breast cancer (114480)
C,D, and E)
Checkpoint kinase 2, S. pombe, Li-Fraumeni syndrome (609265);
CHEK2 homolog of (RADS3, S. cerevisiae, Breast cancer (114480);
homolog of) Prostate cancer (176807)
Colorectal cancer (114500); Li-
Fraumeni syndrome (151623);
Hepatocellular carcinoma (114550);
TPS3 Tumor protein ps3 Osteosarcoma (259500); Choroid

plexus papilloma (260500);
Nasopharyngeal carcinoma (607107);
Pancreatic cancer (260350); Adrenal
cortical carcinoma (202300); Breast
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cancer (114480);
Basal cell carcinoma (614740);
Glioma susceptibility (137800)

CDHI1

Cadherin 1

Blepharocheilodontic syndrome 1
(119580)

Gastric cancer (137215)

Ovarian cancer (167000)

Breast cancer (114480)

Prostate cancer (176807)

NBN

Nibrin

Nijmegen breakage syndrome
(251260);

Aplastic anemia (609135);
Leukemia, acute lymphoblastic
(613065)

Table 4.8: Genes in the Fanconi Anemia Core Complex

FANCONI ANEMIA CORE COMPLEX - FACC

OMIM CANCER/DISEASE
GENE GENE NAME ASSOCIATION
FANCA Fanconi anemia, comp. group A Fanconi anemia A (227650)
FANCC Fanconi anemia, comp. group C Fanconi anemia C (227645)
FANCE Fanconi anemia, comp. group E Fanconi anemia E (600901)
FANCG X-ray repair, repair cross comp. 9 Fanconi anemia G (614082)
FANCL PHD finger protein 9 Fanconi anemia L (614083)
FANCM FANCM gene -
FANCD2 | Fanconi anemia, comp. group D2 Fanconi anemia D2 (227646)

Table 4.9: Genes in other pathways associated with non-breast and non-
ovarian cancer.

OTHER GENES ASSOCIATED WITH NO BROVCA

OMIM CANCER/DISEASE
GENE GENE NAME ASSOCIATION
Adenomatous polyposis coli (175100);
Desmoid disease (135290);
APC Adenomatous polyposis coli Brain tumor-polyposis syndrome 2
(175100);
Gardner syndrome (175100)
Budqug uninhibited by .. Mosaic variegated aneuploidy
BUBIB benzimidazoles 1, S. cerevisiae,
homolog of. beta syndrome 1 (257300)
CDKNIC Cyclin-dependent kinase inhibitor 1C ﬁzcé( 6‘);1(;?, -Wiedemann syndrome

(p57, Kip2)

IMAGE syndrome (614732)
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CDKN2A Cyclin-dependent kinase inhibitor 2A | Melanoma (155601);
(p16, inhibits CDK4) Pancreatic cancer (606719)
CEP57 Centrosomal protein, 57-KD ls\;[];)lza;;cnjearzleziait:illjieuplo1dy
Cylindromatosis (132700);
CYLD CYLD gene Brooke-Spiegler syndrome (605041);
Trichoepithelioma (601606)
Pleuropulmonary blastoma (601200);
. . Goiter with or without Sertoli-Leydig
DICERI1 Dicer, Drosophila, homolog of, 1 cell tumors (138800);
Rhabdomyosarcoma (180295)
Excision repair cross complementing
ERCC2 rodent repair deficiency, Xeroderma pigmentosum (278730)
complementation group-2
Excision-repair cross-complementing
ERCC3 rodent repair deficiency, Xeroderma pigmentosum (610651)
complementation group 3
HOXB13 | HOMEOBOX B13 Prostate cancer (610997)
MCIR Melanocortin-1 receptor Melanoma (613099)
MITF Microp.htl.lalmia-associated Melanoma (614456)
transcription factor
MUTYH MutY, E. coli, homolog of Colorectal cancer (132600)
RBI Retinoblastoma-1 Retinoblastoma (180200)
Juvenile polyposis/hereditary
SMAD4 Mothers against decapentaplegic, hemorrhagic telangiectasia syndrome
Drosophila, homolog of, 4 (175050);
Myhre syndrome (139210)
TSC2 Tuberin (tuberous sclerosis 2 gene) Tuberous sclerosis (613254)
VHL VHL gene von Hippel-Lindau syndrome (193300)

The distribution of the gene clusters in the different clinical groups shows
similar profiles for probands with Ovarian and Breast cancer, but it varies in
non-BROVCA subjects. The BROVCA patient group demonstrates a high
percentage of carriers of P variants in HRR pathway compared with other
gene clusters. A slight difference is observed between ovarian vs breast
cancer concerning the pathway of mismatch repair. The fraction of probands
with breast cancer carrying damage to the MMR is almost nil, while among
the ovarian cancer it increases significantly. On the other hand, the fraction
of probands presenting a P/LP variant in “Other genes”, is greater in the
breast than in the ovarian group. The distributions change further considering
probands without positive family history of BROVCA. This latter group
demonstrates an opposite profile to the BROVCA probands, without carriers
of HRR pathway deficiency and a very high percentage of mutation carriers
in the group “Other genes”. Subjects belonging to the BROVCA family's
group show an intermediate mutational profile between the p-BO and the p-
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NBO in f-NBO groups, retaining a high fraction of carriers of HRR damage
together with an increased percentage of other gene defects.
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Figure 4.7: Distribution of groups of genes in clinic groups

The distribution of damage among the different pathways in the clinical
groups highlighted an orthogonality of the mutational profile between the
probands with previous Breast or Ovarian Cancer and the subjects unaffected
or with malignancy in other locations and without family history of
BROVCA (figure 4.8). The two groups share a small part of the defective
genes belonging almost entirely to the mismatch repair, checkpoint control
and FA core complex groups, while they have an opposite profile with
respect to the HRR genes and the group of other genes.

HRR

ALTRI CKP

MMR FACC

—BROVCA  —— NOBROVCAFAM

Figure 4.8: The distribution of damage among the different pathways in p-
BO vs p-NBO in f-NBO groups.
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4.2.6.6. From genetics to clinical groups

A further point of view that can help to understand better the correlations
between genes and tumor type is to study the distribution of clinical groups
according to the damaged gene pathway.

When the damage is charged to the HRR genes, almost all carriers have
BROVCA cancer and probands unaffected or with tumors in other sites have
a positive family history for BROVCA. None of the carriers of the
homologous recombination pathway deficiency has a negative familiarity for
HBOC, demonstrating a high specificity of mechanism of increased risk for
both ovarian and breast cancer.

The distribution profile of clinical groups between the CKP and FACC
gene groups is remarkably similar to each other and is characterized by a
higher fraction of BROVCA tumors, a smaller proportion of non-BROVA
probands in BROVCA families, and a percentage between 20 and 30% of
tumors in other sites with negative familiarity for HBOC. In this case, the
fraction of breast cancer is greater than ovarian cancer.

The balance between p-BO e p-NBO in f-NBO is obtained in the pathways
of mismatch repair, in which the fraction of BROVCA probands is equal to
that of non-BROVCA probands in no BROVCA families (approximately
45% for both groups). The mismatch genes are primarily associated in the
literature with colorectal cancer but have been shown to cause an increased
risk also for BROVCA tumors with a strong imbalance in favor of ovarian
tumors compared to breast.

Considering the group of other genes not primarily associated with
ovarian and breast cancer, the number of subjects with previous cancer of
another type or not affected significantly increases and the proportion of
probands BROVCA decreases. In this case, the fraction of no BROVCA in
BROVCA families is about 20%, which added to the share of no BROVCA
families, reaches the threshold of 2 mutated out of 3. Although the genes of
this group have at most a minimal correlation with HBOC, the percentage of
carriers nevertheless develops breast or ovarian cancer.
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Figure 4.9: Distribution of the fraction of BROVCA, NON BROVCA, and
not affected probands within the groups of genes.
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Figure 4.10: Percentage of Ovarian and Breast cancer among the mutated in
the diverse groups of genes

Table 4.10: Distribution of clinic groups into genetic pathways

BROVCA  NO BROVCA NO BROVCA
BROVCA  NO BROVCA
FAM FAM
HRR 110 (0.859) 19 (0.148) 19 (0.148) 0 (0.000)
CKP 24 (0.647) 10 (0.351) 3 (0.135) 7(0.216)
FACC 17 (0.630) 8 (0.370) 1(0.111) 7(0.259)
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MMR 7 (0.467) 13 (0.533) 5(0.067) 8 (0.467)
ALTRI  22(0.328) 43 (0.642) 14 (0.209) 29 (0.433)

4.2.7. Family segregation and familiarity for BROVCA tumors

HBOC families are often characterized by a high number of family
members affected by either BROVCA or other types of tumors. Some
families are highly informative in terms of predisposition to hereditary
cancer and when an affected member tests positive for a pathogenic or likely
pathogenic variant, the family management path is simplified. Greater
difficulties are encountered in the presence of VUS in the proband: to better
understand its role, in the absence of specific in vitro tests, the only option
potentially contributing to the given variant interpretation is the segregation
study in the family. The feasibility of the segregation studies largely depends
on the number of living family members, both affected and non-affected, in
particular for de novo variants (extremely rare in BRCA genes), on the
possibility of testing clinically unaffected parents. Cascade genetic testing
can be performed in relatives of BRCA-positive probands, thus contributing
to the ACMG segregation criteria (PP3). We regularly performed segregation
studies in families (both genetic testing, clinical evaluation, tracing clinical
reports or biological samples -when possible and feasible- of deceased
relatives).

In families with a high number of affected members, a negative test in the
proband should not discourage the search for gene defects in other affected
relatives. The figure below (figure 4.11) shows that family member II1:21
tested negative. When the previously unaffected member I11:7 developed
triple negative breast cancer, genetic test was performed and identified a
BRCA2 pathogenic variant. The segregation study in the family
demonstrated the absence of the variant in III:21 but the segregation of the
cancer with the BRCA2 mutation in the rest of the family.
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Figure 4.11: Evolution of a genetic pedigree ina BROVCA family may show
HBOC syndrome despite the presence of a non-mutated proband.

However, this clinical contribution to variant interpretation, which is
often feasible for most Mendelian diseases, can be especially difficult in
cancer families because of several reasons including:

e High death rate in families

e Age of family members available for genetic testing

e Difficult joining of family members

e Probands with paternal inheritance of BRCA mutations

High death rate in families: Breast and ovarian cancers usually develop
from the third decade onwards, with a probability that increases with age.
Often, affected probands come to counseling at an adult or advanced age.
Parents are often unavailable for genetic testing, especially those who
developed and died for cancer. This is a major limitation for segregation
studies. Offspring from the familial lineage of an affected and deceased
parent can contribute when cascade genetic testing demonstrate a carrier
status, because it adds the information on the obligate carrier status of an
affected uncle or aunt. An example is the family shown in the figure below.
The first pedigree evaluation (figure 4.12) shows:
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e The BROVCA proband that carries a BRCA pathogenic variant
(indicated with the arrow).

e Two mutated daughters without malignancies.

e Three not affected brothers: two not mutated and 1 not tested.

e The mutated but not affected mother. The mother was subjected
to hysterectomy and bilateral salpingo-oophorectomy at the age
of 45 years.

e The grandmother deceased due to BROVCA and not tested.

The segregation study of this family pedigree is uninformative due to the
early age of the two daughters, the impossibility of testing the affected but
deceased grandmother, and the preventive surgery of the mother. The
segregation information is not sufficient to apply the PP3 criterion. By
expanding the family study with the genetic test of a family member (II1:2)
suffering from BROVCA, the pedigree becomes informative (figure 3.13).
The genetic test reveals that the family member carries the same variant of
the proband, therefore the subject II:1 (great-aunt of the proband with
BROVCA) is an obligate carrier, like the grandmother of the proband (I1: 4).

The ACMG classification system recommends quantifying the co-
segregation in order to shift the strength of the PP3 criterion, based on the
cumulative number of meiosis occurring between mutated affected family
members and the proband [68]: PP3 supperting with 3 meiosis,
PP3 Moderate with 5 meiosis, and PP3_Strong with 7 meiosis.

Considering that, between mother and children, and between siblings a
meiosis a single meiosis occurs, the quantification of the co-segregation of
the variant with breast or ovarian malignancies, takes in consideration:

e 2 meiosis from the proband and the grandmother (11:4);
e 3 meiosis from the proband and the great-aunt (I1:1);
e 4 meiosis from the proband and the III:2 family member.

The cumulative number of meiosis that support the co-segregation is 9
meiosis. This result is sufficient to activate PP3 using Strong weight
(PP3_Strong).
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Figure 4.13: Expanded family pedigree shows strong co-segregation.

Age of family members available for genetic testing: The relatives who
perform the targeted test to identify if they carry the variant of the affected
family member are often the children or grandchildren of the proband. The
probability that they have developed BROVCA tumor at the date of the
consultation is low and, regardless of the result of the genetic test, this type
of subject is not very informative.

Difficult joining of family members: Genetic testing is commonly
perceived by patients as a personal and private examination and the result is
hardly communicated to more distant family members. Even in the presence
of potentially highly informative families because they are made up of many
subjects, perhaps with a significant share of BROVCA cancer, it is often
impossible to extend the test to a sufficient number of family members to
better understand the effect of the variant identified in the proband.
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Probands with paternal inheritance of BRCA mutations: when the carrier
is the father, the inheritance may escape attention. Family studies are
uniquely useful to characterize the parental lineage and to activate protection
plans for family members who are exposed at the risk of malignancy. Given
that, recent data provide evidence of an increased risk of prostatic cancer in
males carriers of pathogenic mutations in BRCA genes, healthy mutated
fathers of affected daughters are now entering novel prevention surveillance
plans for prostatic cancer.

4.2.7.1. Multiple families affected by the same variant

One possibility is to perform a segregation study using multiple families
affected by the same variant. This strategy could increase the possibility of
encountering sufficient information subjects to define the pathogenic role of
the variant. However, the frequency of pathogenic variants in the population
is extremely low and this contributes to increasing the difficulty in finding
multiple carrier families of the same genetic defect.

In conclusion, although many families have a high potential in terms of
informativeness regarding the analysis of co-segregation between BROVCA
cancer and the family variant, being able to reach enough relatives of the
proband to obtain a significant result is very difficult. The study of
familiarity can be useful to hypothesize the segregation of HBOC in the
family, but the identification in the proband of a variant of uncertain
significance that is a candidate for causing the syndrome can hardly make
use of sufficient data to reclassify it. This can have negative implications in
terms of choosing the appropriate therapy or clinical management and
monitoring of unaffected carriers, decreasing the effectiveness of dedicated
care pathways.
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Chapter 5

Conclusions and future
implementations

The path followed during the dissertation of the thesis opened with the
introduction of the fundamental concepts underlying the knowledge on NGS
sequencing, its applications and the analysis of the data produced by this
technology. The discussion of the background has focused on the
applications of DNA targeted sequencing. In the contest of targeted
sequencing, Helper was developed as a solution for the simplified
customization of bioinformatics pipelines.

The implementation structure of Helper was detailed in chapter 3, and the
modules and steps that compose the pipeline workflow have been discussed,
paying particular attention to the characteristics of the integrated tools. The
graphic interface developed to simplify the experience of using the platform
was shown, and two performance tests were conducted using the pipeline
developed for the CMGCV of the San Matteo Hospital in Pavia. Helper is
now an essential part of the genetic units, both for clinics and research. The
possibility of using a tool that simplifies the analysis of NGS samples
facilitate the approach to bioinformatics of professionals who have little
expertise with code management and NGS data analysis. Helper therefore
have a dual function: the intuitive development of bioinformatics pipelines
and the teaching role to explain how a bioinformatics pipeline is developed.
Helper can also be used both on a workstation and on a common PC, ensuring
analysis times consistent with laboratory times for reporting results even in
the case of low computation potential. The next Helper development step is
to adapt the system also to HPC solutions such as cluster servers or Cloud
computing in order to expand the potential of the platform to WES and WGS
applications.

The last chapter presented two examples of practical application of the
analysis customization based on specific needs, and of in-depth study of the
genetic causes of a disease. The development of a classification system of
the ACMG rules, adapted to the specific problem of Desmin variants, has
shown how it is necessary to focus attention on the unique characteristics of
genes related to genetic diseases, in order to better understand the genotype-
phenotype correlation. The support that the aid systems for the interpretation
of genetic data provide to the molecular genetics laboratories is essential to
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simplify the collection of information and accelerate the decision-making
process. However, the comparative evaluation of the data has shown that the
result is highly dependent on the software used for the bioinformatics
analysis, and that the non-correct interpretation of the variants may depend
upon incomplete data used for the classification. The development of gene
specific systems reduces misclassification (in our specific DES example to
prevent the over-interpretation of LP variants). In addition, the
inconsistencies between geno-phenotypes in both patients and relatives, as
well as the detection of second pathogenic variants in non-DES gene
segregating with the phenotype in the family adds further contribution to the
variant interpretation.

The exclusion of some VUS - which through the adapted system become
LB or B - increases the informativeness of the genetic test, decreasing the
uncertainty. The example of the DES variants confirms the central role of
integration of genetic, clinic, and pathology data in unravelling the real cause
of the disease and strengthens the clinical actionability. Understanding when
a pathological phenotype is related to a given mutated gene further
contributes to disease classification according to genetic causes and to
effectively schedule the clinical follow-up for patients and families. From
this point of view, deep phenotyping, carried out through an in-depth study
of the patient and its monitoring over time, can help to better define some
features of the disease that may appear non-specific or non-informative in
early stages of the disease, but which can later reveal the consistency of the
genotype with the phenotype. The future goal is to improve the CMGCV -
DES model and to extend the adaptation of the ACMG rules to other disease
genes.

The in-depth study of the genetic causes of HBOC and BROVCA tumors
through the family survey, demonstrates the need to depart from the past
restrictive guidelines that limited the genetic testing to BRCA1 and BRCA2,
and expand the test to other cancer genes. BRCA1 and BRCA2 pathogenic
variants are actionable for both prevention and treatment (risk-reducing
surgery and medication-PARP-INHIBITORS) of the proband and family,
preventing, and monitoring plans; defects in other malignancy-related genes
may equally become potentially actionable for treatments and surgical
decisions, as well as for family care.

Understanding the role of other genes and other pathways on pathology is
essential in order to calculate the risk of malignancy throughout life. For
example, our BROVCA tumor study not only demonstrated that the HRR
system is actually related to breast and ovarian cancer, but also strengthened
this correlation, showing that in the presence of a defect in HRR genes, the
familial BROVCA risk is very high. Alternatively, in families without
members suffering from BROVCA, the probability of defects in genes acting
in the HRR pathway is very low. Having a complete scenario of the genetic
makeup of the different types of tumors contributes to better define potential
diagnostic targets and provide optimally interpreted genetic data to the
clinical and scientific community.
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The content of the thesis demonstrates the essential role of
bioinformaticians / bioengineers in the genetic paths of mendelian diseases.
The ability to combine development skills of software systems and tools to
simplify complex processes such as the design of bioinformatics pipelines,
the possibility of carrying out technological consultancy on calculation and
analysis systems, and the ability to interact effectively in highly
multidisciplinary contexts, make the bioinformatician / bioengineer an
important member of the team dealing with the diagnostic and research
process in the field of molecular genetics.
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