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Abstract (Italiano) 

Le tecnologie di next generation sequencing (NGS) hanno rivoluzionato 

il mondo della genetica e della medicina, influenzando fortemente la 

diagnosi delle malattie ereditarie. L’aumento della capacità di 

sequenziamento e l’abbattimento dei tempi d’analisi hanno permesso la 

diffusione delle tecnologie NGS in molti laboratori di genetica. Il grande 

numero di applicazioni, sia di diagnostica che di ricerca, ha inoltre generato 

la necessità di adattare l’analisi dei dati prodotti da queste tecnologie per 

ottimizzare la risposta ai problemi specifici. Il processo di analisi è 

implementato tramite trasformazioni consecutive dei dati genetici (pipeline) 

utilizzando un grande numero di tool e software bioinformatici. Spesso le 

performance dei diversi tool dipendono dal tipo dei dati in ingresso e 

l’integrazione dei software adatti ai diversi tipi di dati è diventato un 

passaggio critico per la qualità delle informazioni prodotte. Inoltre, l’utilizzo 

dei tool, la loro configurazione, la progettazione di pipeline robuste e lo 

sviluppo di nuove soluzioni di analisi, sono processi complessi che 

richiedono competenze di coding e la conoscenza dell’esteso panorama 

bioinformatico. In questo contesto, i bioinformatici hanno acquisito un ruolo 

fondamentale all’interno dei laboratori di genetica, grazie alle competenze 

di sviluppo di sistemi informatici unite alle capacità di comprensione dei 

problemi biologici e di adattamento delle analisi alle specifiche domande. I 

laboratori che non dispongono di queste professionalità specializzate 

possono incontrare difficoltà nell’ottimizzazione del workflow analitico, che 

spesso viene affidato a software commerciali che applicano uguali regole e 

sistemi a tutti i geni indistintamente. Da qui la necessità crescente di 

strumenti semplici e veloci che possano essere d’ausilio, anche per figure 

professionali con limitate competenze informatiche, alla progettazione di 

pipeline customizzate e al loro utilizzo nell’analisi dei dati NGS. Durante il 

percorso di dottorato di ricerca effettuato presso il Centro malattie genetiche 

cardiovascolari della Fondazione IRCCS Policlinico San Matteo di Pavia, è 

stata sviluppata la piattaforma Helper. Helper è nata per la progettazione e 

l’adattamento semplificato delle pipeline bioinformatiche dedicate 

all’analisi di dati NGS derivati da applicazioni di targeted sequencing. 

Helper è dotato di una semplice interfaccia grafica mirata a facilitare 

l’esperienza di sviluppo dei processi analitici bioinformatici anche per chi 

non possiede particolari conoscenze di sviluppo di codice. Tramite Helper è 

possibile scegliere quali step effettuare nel workflow di analisi e quali 

evitare, quali tools e software utilizzare in ogni step selezionato, e con quali 

argomenti settare i tool utilizzati. Helper permette inoltre di utilizzare le 

pipeline progettate ed effettuare l’analisi dei dati NGS, modificandole in 
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base all’esperimento di sequenziamento dal quale derivano i campioni e in 

base al tipo e all’organizzazione dei campioni. Helper può essere utilizzato 

sia su una workstation, sia su un comune PC, dimostrandosi compatibile con 

i tempi di analisi dei laboratori di genetica anche in presenza di soluzioni a 

bassa capacità computazionale. Nel workflow di analisi genetica, Helper è 

dedicato a quella che è definita come analisi secondaria, che trasforma i dati 

NGS grezzi in un set di varianti utili all’interpretazione del test genetico.  

Il lavoro di tesi si è proposto inoltre di introdurre due ulteriori domande 

fondamentali per la diagnosi genetica. La prima è rappresentata dal problema 

della classificazione patogenica delle varianti identificate dall’analisi 

bioinformatica. La classificazione patogenica delle varianti è un processo 

delicato a causa della difficoltà esistenti nel trovare regole uniformi e robuste 

da applicare a tutti i difetti genici. In questa tesi viene proposto l’esempio di 

un sistema di classificazione per le varianti del gene DES, che prende in 

considerazione le caratteristiche specifiche del gene che codifica per la 

proteina di Desmina. Il secondo è l’identificazione dei geni responsabili di 

un determinato fenotipo, necessaria per l’ottimizzazione del test diagnostico 

e per la gestione dei pazienti. In questo contesto viene approfondito il 

problema dei tumori ereditari della mammella e dell’ovaio, tramite lo studio 

dei risultati di analisi del database genetico sviluppato presso il San Matteo 

per l’identificazione delle cause genetiche delle patologie oncologiche 

familiari, in particolare quelle clinicamente “actionable”. 
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Abstract (English) 

Next generation sequencing (NGS) technologies have revolutionized the 

world of genetics and medicine, strongly influencing the diagnosis of 

hereditary diseases. The increase in sequencing capacity and the reduction 

of analysis time and costs allowed the spread of NGS technologies in many 

genetics laboratories. The large number of applications, both diagnosis and 

research, has also generated the need to adapt the analysis of the data 

produced by these technologies to optimize the clinical path of many human 

diseases. The analysis process is implemented through consecutive 

modifications of the genetic data (pipeline) using bioinformatics tools and 

software. Often, the performance of the different tools depends on the type 

of input data; the integration of software suitable for different types of data 

is a critical step for the quality of the information produced. Furthermore, 

the use of bioinformatics tools, their configuration, the design of robust 

pipelines, and the development of new analysis solutions is a complex 

process that requires coding skills and knowledge of the wide range of 

existing tools. In this context, bioinformaticians achieved a key role within 

genetics laboratories, thanks to the skills of developing computer systems 

combined with the integration of knowledge on target biology systems and 

related applications; these “in house” tailored activities favor the adaptation 

of the analyses to each specific question/objective. 

Laboratories using outsourcing analysis tools or entrusting to commercial 

software that apply the same rules and systems to all genes, without 

distinction, often face difficult optimization of the analytical workflow. 

Hence, the growing need for simple and fast tools that can support 

professionals with limited computer skills in the design of customized 

pipelines and their use to analyze NGS data. During the PhD course carried 

out at the Center for Cardiovascular Genetic Diseases of the IRCCS San 

Matteo Hospital Foundation in Pavia, the Helper platform was developed. 

Helper was born for the design and simplified adaptation of bioinformatics 

pipelines for the analysis of NGS data derived from targeted sequencing 

applications. Helper is equipped with a simple graphic interface aimed at 

facilitating the development experience of bioinformatics analytical 

processes even for professionals who do not have coding knowledge. 

Helper allows the selection of: the steps to carry out in the analysis 

workflow; the tools and software to use in each selected step; the arguments 

to set the tools employed in each application. Helper further allows the use 

of the pipelines, the design and carrying out of the analysis of NGS data; it 

can be modified based on the sequencing experiment from which the samples 

are derived, and on the basis of the organization of the samples. Helper can 

be used both on a workstation and on a common PC, proving to be 

compatible with the analysis times of the genetics laboratories even in the 

presence of solutions with low computational capacity. In the genetic 
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analysis workflow, Helper is part of the process of translating raw NGS data 

into a set of variants useful for the interpretation of the genetic test. 

The thesis finally aimed at addressing two fundamental questions for 

genetic diagnosis. The first question addresses the complex issue of the 

variant classification as identified by bioinformatics analysis. The 

classification of genetic variants is a process that reflects difficulties in 

finding uniform and robust rules shared by all genes. In this thesis, a 

classification system is proposed for the variants of the DES gene, which 

takes into consideration the specific characteristics of the gene encoding the 

Desmin protein. The second question addressed the identification of the 

genes responsible for a specific phenotype, necessary for the optimization of 

the diagnostic test and for patient management. In this context, hereditary 

breast and ovarian tumors is investigated through the study of the results of 

the analysis of the genetic database developed at San Matteo for identifying 

the genetic basis of familial cancers, in particular clinically actionable genes 

and variants. 
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Chapter 1 

1 Introduction 

1.1. NGS-driven genetics 

Next-generation sequencing has definitively revolutionized genetic 

testing in human as well as non-human pathology. Earlier, in the 1970s, the 

Sanger methodology [1] had provided a new way of directly searching for 

the genetic basis of hereditary diseases. The process of genetic diagnosis 

before NGS technologies was a difficult path, due to the lack of information 

supporting the interpretation of findings and to the low throughput 

sequencing potential of the tools available. The search for gene defects was 

based on gene-by-gene sequencing, exon by exon, in a long and costly 

process if performed on a large scale. Sanger sequencing was used for more 

than 15 years as the unique sequencing tool at the Centro Malattie Genetiche 

CardioVascolari (CMGCV) of the IRCCS Policlinico San Matteo of Pavia 

(OSM), later integrated with Roche 454 sequencer (2011-2014), and finally 

by Illumina MiSeq from 2015 to date; it is still used as confirmatory second 

tool for the diagnostic test, as requested by Region Lombardia rules for 

genetic testing and guidelines for genetic testing by scientific societies.  

The Sanger sequencing limitations were overcome with NGS tools that 

parallelize the sequencing of a large number of genes in a pool of samples at 

the same time, lowering the costs and times of genetic analysis and opening 

new horizons only glimpsed until then. The enormous amount of data that 

has reached the scientific community in just less than 20 years is one of the 

main effects of the expansion of NGS technologies. The evolution of 

population genetics gained by large-scale genetic studies led to the 

development of large population databases [2] as well as to the origin and 

implementation of clinical and genetic association databases (for example 

Decipher [3], HGMD [4] or ClinVar [5][6]. The broadcasting of shared 

genetic repositories around the world contributed to the exponential 

expansion of the methodology. An example of the impact of NGS 

technologies on the study of rare diseases is the growth of the Online 

Mendelian Inheritance in Man (OMIM) database [7] in which the number of 

inherited phenotypes with a known genetic basis has nearly doubled since 
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2007. In parallel, the number of genes associated with rare diseases has 

grown at an impressive proportion. The opportunities that NGS offers to the 

scientific community are not easily quantifiable: the possibility of 

discovering the causes of hereditary diseases that are still orphan, or of 

identifying more than one genetic disease in a single individual; the 

discovery of genetic markers of predisposition to quantify the risk of 

developing more common diseases [8][9]; the study the genetic makeup of 

tumors and the identification of targets to develop disease-specific 

medications and preventive surgery [10]. The cascade of the benefits of the 

new knowledge deepens molecular mechanisms of diseases thus finally 

translating into human care. These are some of the examples of the impact 

of NGS technology on patient management. NGS technology overturned the 

paradigm that guided genetic diagnosis. Moving from clinically-driven 

genetics to genetically-driven clinics, making the reverse phenotyping 

process possible [11]. NGS sequencing has in fact made it possible to 

identify the causes of genetic diseases that can be detected far before the 

phenotype develops, and therefore to optimize clinical management by 

anticipating the effects of the disease, significantly improving human lives. 

Now a new calling for a third step is needed, from genetically-driven clinics 

to molecular clinics, when new disease classifications incorporate their 

genetic basis (for example Desminopathy as the disease caused by DES 

defect shown in chapter 4).  

However, easy access to these sequencing technologies introduces the 

risks of moving genetics away from the clinics. In recent years, huge 

amounts of data have been produced supporting associations between genes 

and diseases that have often proved inconclusive, complicating the genetic 

diagnosis process, and confusing the clinic. The large number of scientific 

papers that analyze the genetic bases of the diseases generate a “jungle” of 

contents that remain largely unconfirmed and non-validated. Hence, in 

recent years, the need to put an order within the genetic knowledge has 

arisen, which has favored the birth of projects such as ClinGen [12] aimed 

at providing precise rules for the interpretation of genetic data and standards 

for scientific communication. The method applies a robust process of 

curation of the literature, returning to paying particular attention to the clinic 

and refocusing on specific genes. 

1.2. NGS data analysis systems 

 

The exploitation in NGS sequencing led to the development of the systems 

necessary to analyze the large amount of data produced. The new sequencing 

platforms have the potential to produce terabytes of output files. Whole-

genome sequencing projects can generate a huge amount of data that turns 

NGS analysis management into a big data problem. The challenges include 

the implementation of analysis processes suitable for the different 
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applications of NGS sequencing; the development of hardware systems, 

specific computing, and storage structures for the analysis of big data; the 

training of professional figures capable of responding effectively to the 

technological and biological problems typical of the NGS world. Over the 

years, a large number of tools and software dedicated to NGS data analysis 

have been developed, thanks also to special contests that engage the 

scientific community to collaboratively solve fundamental biomedical 

questions and focus the attention to bioinformatics problems [13]. The 

possibility of exploiting different tools made possible the adaptation of the 

analysis process (pipeline) to the different types of data produced by NGS 

sequencing. Although the application of the same pipeline is advisable to 

obtain repeatable and robust results, the adaptation of the workflow to each 

specific problem is often crucial for the final result. For this reason, in the 

last 5 years, various solutions have been developed aimed at customizing the 

NGS analysis process. Furthermore, the storage and processing of NGS data 

require computational structures that often are not readily available. Within 

labs with NGS machines, the available computing resources should match 

the computational needs of the instruments. In some cases, a workstation is 

the most cost-effective solution; in other cases, high-performance computing 

(HPC) resources are needed, such as cluster or server solutions. Cloud 

computing solutions may help to overcome the issues related to the purchase 

of expensive and difficult-to-manage solutions such as cluster servers. The 

option of paying based on the computing resources effectively utilized for 

the analysis helps to reduce costs for large sequencing projects and many 

companies, including Illumina, have adopted this solution to release 

accessible services to all customers. Finally, the adoption of NGS technology 

involves a series of difficulties that are not always within the reach of 

traditional figures in genetics laboratories, such as doctors, biologists, and 

laboratory technicians. The challenges include the development of analysis 

systems, the selection, and management of calculation tools, the design of 

new methods of extracting information from the raw data combined with the 

ability to fully understand the biological problem and to succeed to 

communicate effectively with the biomedical world. These complex 

challenges generate the need for new professionals whose contribution is 

now central to the management of NGS technologies. Their role is to 

effectively interface in all the steps of the genetic diagnosis process, from 

the evaluation of the clinical parameters of the patients to the extraction of 

information from the genetic data. These professionals may not be present in 

all laboratories, supporting the need for developing simplified systems that 

can help design NGS data analysis pipelines, and that can have an 

educational role in understanding the bioinformatics processes. 
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1.3. The aim and the structure of the thesis 

This thesis presents Helper, a platform for the simplified development of 

customized pipelines aimed at analyzing NGS data derived from DNA 

target-sequencing applications. The idea of a platform for the customization 

of analysis workflows was born within the highly multidisciplinary context 

of the CMGCV of the OSM Foundation. For more than 35 years, the center 

has been dealing with genetic diseases, including heritable 

cardiomyopathies, aneurysmal diseases, hereditary-familial tumors, and 

other rare and ultra-rare conditions. Within the genetics laboratory, the large 

number of experiments, pilot studies, and research projects that require NGS 

sequencing has generated the need for a fast and flexible system for adapting 

NGS analysis pipelines to different needs. The thesis reflects the experience 

of the bioinformatician within the CMGCV, invested with the technical role 

of developing tailored analysis solutions, incorporating all investigation 

tools that can contribute to the interpretation process of the genetic data. The 

next chapter (chapter 2) describes the technological background that 

describes the applications of NGS systems, the work-path of the Illumina 

sequencing technology, and the methods of NGS data analysis aimed at 

identifying the genetic basis of hereditary diseases. Chapter 3 describes the 

Helper platform and discusses the structure and the workflow management 

system, as well as the graphical interface for preparing the analyses. The 

chapter further discusses the results of the performance of the platform, 

considering times for analysis, and the accuracy of the results of the variant 

calling of the allelic copy number (CNV), a hot topic for the scientific 

community. Finally, chapter 4 describes two clinical-genetic applications: 

one exemplifies a rare monogenic disease with complex gene analysis and 

interpretation (Desmin), and one shows the germinal genetic basis of familial 

Breast and Ovarian Cancers. 
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Chapter 2 

2 Technological background 

This chapter describes the state of the art of NGS as applied to the analysis 

of the human genome. The aim is to show the technological path leading to 

the identification of disease-causing variants, for both research and 

diagnostic applications. The chapter briefly shows the scenarios of NGS 

applications for DNA sequencing, the Illumina sequencing technology, and 

the NGS data analysis workflow, from the structure of the bioinformatics 

pipelines to the interpretative path of the genetic data. 

2.1. NGS applications 

The potential of NGS technology is still evolving; despite being a 

relatively young technology, dozens of applications are described in the 

literature [14]. Many applications are now used on a large scale and have 

made the success of NGS. In short, NGS introduced a revolution in genome 

studies, greatly increased the potential for identifying gene variants, 

simplified the sequencing of new genomes, made it possible to carry out 

transcriptomics and gene expression studies, allowed the identification of the 

epigenetic changes of DNA and better understand DNA-protein interactions. 

For example, Bisulfite sequencing (methylation seq) is used to determine 

methylation patterns that regulate gene expression [15][16]; the ChIP 

(chromatin immunoprecipitation) seq is a sequencing technique used to study 

protein–DNA relationships. ChIP seq determines the sequence of the binding 

sites of DNA-associated proteins and maps these regions precisely in the 

genome [17][18]; the RNA sequencing is used to identify and quantify the 

transcripts that are expressed in tissues or single-cell sequences [19] as well 

as their changes over time. This technique allows studying alternative 

splicing effects in genes, gene fusion, transcriptional modifications, and the 

effect of genetic variants on the RNA product. RNA seq is used to identify 

medications in small-RNA, miRNA, tRNA, and rRNA or to find new RNA 

molecules [14][20]. 
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Although epigenetics and transcriptomics are now commonplace in 

research laboratories, the two major applications of NGS sequencing remain 

the sequencing of new genomes (De-novo sequencing) and re-sequencing. 

De-novo sequencing has the primary objective of discovering the sequence 

of novel genomes -never been previously studied-without reference 

sequence, which must be generated. De-novo sequencing also contributed to 

improving and completing the genome sequencing of known organisms and 

to elucidating the structure of highly repetitive complex areas of DNA. It is 

usually applied to small bacterial and viral genomes and has fundamental 

importance in phylogenetic studies. Re-sequencing is vice versa defined as 

sequencing aimed at identifying variations of a genome when compared with 

a reference genome. The most common applications include the 

identification of the genetic causes of hereditary diseases, the discovery of 

new gene-phenotype associations, the calculation of the risk predisposition 

to different diseases, and pharmaco-genetics. 

2.1.1. NGS re-sequencing approaches  

Re-sequencing applications are based on different genome interrogation 

strategies. The choice of the genome sequencing strategy is a fundamental 

step in the design of the study and takes into account factors such as the 

throughput capacity of the instruments, the number and type of samples to 

be sequenced, the costs, and the impact of the strategy on the goal of the 

project. The possible strategies include the sequencing of the whole genome 

(Whole Genome Sequencing - WGS) or the analysis of a pool of target 

genome regions of interest (targeted sequencing). The most extensive 

application of the targeted strategy is the sequencing of all coding regions of 

the genes (Whole Exome Sequencing - WES). However, often in research 

practice and diagnostics, sequencing of restricted genomic targets is used to 

specifically address the research or clinical aims (Gene Panels or Hot spot 

arrays). 

The WGS represents the most comprehensive method for studying the 

genome: in human genetics, WGS may apply to both chromosomal and 

mitochondrial DNA. The WGS is the most effective application for 

characterizing the patient's genomic profile, due to its ability to identify 

defects in coding zones and in the intronic zones that contain regulatory 

transcription sequences. In recent years, the costs of high-throughput NGS 

technologies (e.g., Illumina NovaSeq and BGI platforms) have fallen below 

€ 1,000, encouraging its use also in diagnostics [21]. The main obstacles 

related to WGS are the difficulties faced by many institutions in supporting 

the costs of consumables, either maintenance of the instruments or 

outsourced sequencing services, and finally managing a large amount of 
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data. The WGS generates a huge amount of data which, to be analyzed and 

stored, requires adequate infrastructure, which may not be easy to implement 

in all research labs. In clinical settings, a key point against the use of WGS 

in diagnostic contexts is the difficult interpretation of data, which currently 

prefers other more convenient and feasible sequencing strategies. 

WES is a less thorough approach than WGS as it only provides sequences 

of the coding regions (exomes) of the genes. The WES, despite not including 

intronic regions, covers about 20,000 genes that code for proteins and whose 

defects cause a large number of known Mendelian hereditary diseases; in 

addition, WES may contribute to discovering new genes associated with the 

studied phenotype. Although limited by the absence of information on 

introns and some regulatory areas, the WGS guarantees an excellent cost-

effectiveness compromise of the test. For this reason, the practice of exome 

sequencing is now entering genetic diagnostic paths. 

The basis of Gene Panel Sequencing (GPS) is the selective study of genes 

or genomic regions known to be associated with diseases, or biological 

pathways pertinent with the given disorders, s suggested by previous studies 

of WGS, WES, or linkage analysis. Regions commonly studied include 

exons, introns, promoter sequences, or other highly conserved regions with 

biological significance and pertinence with the phenotypes. This method is 

the most widely used in the field of precision medicine for the detection of 

genetic variants associated with monogenic diseases or genetic risk factors, 

in which the variants are directly associated with specific genomic regions 

[22]. The advantage of GPS is the restriction of the analysis to target genes 

and to reduce the number of unneeded information that negatively affects the 

genetic diagnosis of specific diseases, syndromes, or phenotypes. In 

addition, an increasing number of guidelines/recommendations/position 

statements are generated to focus the clinical applications to those genes that 

are progressively proven e confirmed to play a deterministic role in the 

pathogenesis of the disease. This is because in the recent past, many “new 

disease genes” remained unconfirmed, not validated, and their defects were 

unsupported by functional studies. In addition, by reducing the target, 

sequencing costs are amortized, and the computational resources needed to 

manage, analyze and store genetic data are  reduced. Compared to WGS and 

WES that usually require advanced analysis systems such as cluster servers 

or cloud systems and extensive bioinformatics work, the approach of 

sequencing gene panels reduces management costs [23] and analysis times 

Despite the convenience, GPS is connected to some difficulties related to the 

composition of the gene panels and the limited detection capacity. In both 

cases, the efficacy of GPS is closely linked to the level of knowledge of the 

genetic basis of the diseases by the designer who must know how to identify 

the optimized target in order to meet the needs of the study. The use of 

scientific literature alone may not be sufficient for this purpose, which is 
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sometimes achieved only by integrating the use of multiple functional 

research methods and clinical studies capable of supporting and confirming 

the choice of clinically actionable genes (the thesis provides the example of 

Desmin gene). For other applications (e.g., malignancies), the choice of 

genes must be even more robust, because today the applications go beyond 

the diagnostic impact on patients and families but strictly concern preventive 

medical and surgical therapy (the thesis provides the example of Breast and 

Ovarian cancers). These issues have implications for liability, costs, and 

reimbursements, both diagnostic and therapeutic appropriateness, as well as 

impacting the health of patients and families. 

2.1.2. Germinal, Somatic, Cell-free DNA 

The applications of NGS technologies also vary according to the type of 

sample to be analyzed. The germinal or constitutive DNA is inherited from 

the parents and represents the common genetic source for all the cells of the 

body. Germline DNA mutations are the cause of inherited genetic diseases 

and are the main target of the genetic diagnosis process for familial 

phenotypes. The identification of the causative variants of Mendelian 

diseases is the main goal of NGS sequencing in clinical practice. Defining 

the cause of a disease or the predisposition to develop a disease allows 

optimizing the clinical and therapeutic management of the patient and his 

family. For diploid organisms such as humans, the DNA defects can be 

inherited from one parent or both parents, and the allelic status of the variant 

can be heterozygous (one in two mutated alleles), or homozygous 

(inheritance of both parental mutated alleles). Inherited variants are found at 

the same allelic frequency in all cells of the body. 

During fetal development and throughout the lifespan, genomic sequence 

variations occur in an individual's DNA due to random errors in the DNA 

replication process or damage caused by exposure to environmental factors 

such as harmful radiation, chemical or physical injuries/exposures, incorrect 

lifestyles, etc. Variants acquired post-zygotically are referred to as somatic 

variants. The characteristic of somatic variants is that they cannot be passed 

on to subsequent generations if they are absent in the progenitor cells of the 

gametes. The median somatic mutation rate for variants affecting a single 

nucleotide span in the order of 3 × 10-7 [24], therefore an accumulation of 

variants in the DNA of the cells is expected to occur during life, generating 

genetic heterogeneity within the same tissue or between different tissues of 

an individual. This process of genetic differentiation due to somatic variants 

is called somatic mosaicism [25]. The more a variant occurs early in the cell 

differentiation process, the more it is represented in the cellular populations 
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of the organism while the variants located in specific districts have a more 

recent temporal origin [26]. 

 

Figure 2.1: Germline vs Somatic variants 

(Image from https://www.genomicseducation.hee.nhs.uk/cancer-genomics/) 

The most common field of investigation of somatic DNA is cancer. 

Cancer is caused by a progressive accumulation of somatic mutations 

(sometimes favored/promoted by a germ gene defect) that generates high 

genetic heterogeneity and causes continuous clonal differentiation. Clones 

in which mutations that provide individual cell evolutionary advantages, 

reproduce, and become increasingly aggressive [27]. The somatic variants 

can be exploited as pharmacological targets in the treatment of some 

oncological diseases [28][29] and can be used as a marker of tumor evolution 

or adaptation from a prognostic perspective [30]. 

The search for somatic variants, their burden, and distribution in a tissue 

sample or single cells is far more complex than the search for germline 

variants. Somatic variants are involved in many diseases and cell aging 

processes, but their impact must also be assessed based on the fraction of 

mutated cells. Unlike the germline variants that can be identified by DNA 

from any nucleated cell, the somatic variants must be searched within the 

affected tissue and their measured allelic frequency depends on the number 

of mutated cells that are sampled for sequencing. 

A further method for studying somatic DNA is the sequencing of cell-free 

DNA (cfDNA). CfDNA is composed of somatic DNA fragments released 

into the bloodstream following cell damage caused by trauma, sepsis, aseptic 

inflammation, myocardial infarction, stroke, transplantation, diabetes, sickle 

cell disease, and cancer [31]. 
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Major sources of cfDNA are massive cellular apoptosis and necrosis that 

occur in the exponential growth of tumors which releases a very high amount 

of fragmented DNA into the plasma compared to the physiological baseline 

levels [32]. CfDNA reflects the genetic makeup of the cells that release it 

and can be used as a marker for the early diagnosis of cancer and relapse 

[33][34][35], for the identification of pharmacological markers for target 

treatments and for monitoring the evolution of the disease as well as the 

minimal residual disease [36] (Figure 2.2). 

 

Figure 2.2: Cell-free DNA sources and analysis applications (Figure 

modified from [34]) 

2.2. Illumina sequencing technology 

Illumina (San Diego, CA) is an American company that develops systems 

for the analysis of genetic variation and biological function since 1998. Since 

then and very quickly, Illumina gained the market leadership in NGS 

machines, and its platforms are still a technological reference despite the 

continuous evolution of the NGS and market competition. Illumina boasts a 

range of tools that cover all the possible needs of a laboratory, thus managing 

to achieve the largest proportion of the worldwide market [37]. Illumina 

sequencing technology is defined as a second-generation technology and is 

based on the clonal amplification of DNA fragments on a solid support and 

the generation of read sequences of 100-300 bp (short reads). The NGS 

Illumina sequencing workflow can be divided into three steps common to all 

the platforms produced by the company: 1. Preparation of the libraries; 2. 

Sequencing; 3. Base-calling. 
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2.2.1. Library preparation 

Library preparation starts from the DNA molecule and transforms it into 

a pool of fragments (genomic library) ready to be uploaded on the instrument 

and then, sequenced. The entire DNA molecule is too large to be sequenced 

using Illumina instruments. For this reason, once the DNA has been isolated, 

a fragmentation step is performed that generates millions of small fragments. 

There are several methods of DNA fragmentation: sonication and enzymatic 

methods are those commonly used in most labs. The fragments need the 

addition of adapters that bind fragments to the flowcell (see Chapter 2.2.2) 

and indexes useful to identify the sample of origin of the fragment in case of 

multiplexing sequencing. For some applications, additional indices called 

Unique Molecular Identifiers (UMI) are added which represent a unique code 

for each fragment and are useful for increasing error correction and accuracy. 

They can reduce false-positive variant calls and increase variant detection 

sensitivity. 

In the case of WGS sequencing, the library is amplified through PCR 

cycles to increase the signal readable by the instrument. Then, the length 

distribution of the fragments that characterize the library is analyzed, and 

finally, the optimal sample quantitation is defined, which is loaded onto the 

sequencer. In the case of a targeted approach, a selection step is performed 

for the fragments that cover the target of interest before the amplification 

and analysis of the distribution of lengths. The two most common target 

selection methods are that based on fragment capture (Hybridization capture) 

and on copying fragments (Amplicon) (Figure 2.3) [38]. 

The hybridization capture-based method uses long oligonucleotide probes 

to hybridize and capture fragments. Because the DNA is randomly sheared 

during library preparation, captured fragments are partially overlapping and 

unique. Overlapping allows coverage of the target, even in the event of 

problems with some nearby probes, and the uniqueness helps to identify 

possible sequencing errors. With the capture enrichment method, coverage 

of certain particular regions, such as genes with pseudogenes, highly 

repeated regions, and regions with high GC content - can be difficult. 

Furthermore, it could be affected by differences in the affinity of the different 

probes, thus impairing the coverage of the target. These problems can be 

solved during the design of the target. Areas known to be associated with 

these problems can be covered using second methodologies such as Sanger 

sequencing. 

Methods based on target enrichment amplification methods (Amplicon) 

employ a set of PCR primers to generate PCR products -size 150–400 base 

pair- starting from the ends of the fragments. Each fragment of interest is 

cloned (a high number of times) to be read by the sequencer. Amplicon 

sequencing is usually a faster process than hybridization capture with the 
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same samples and guarantees a higher fraction of sequences within the target 

(in-target reads) than the capture method thanks to the specificity of the 

primers used. Amplicon methods, however, like all PCR-based methods, are 

sensitive to allele dropout which can be caused by variants present at the 

primer hybridization site. The dropout allele can generate the loss of 

coverage of entire fragments and the loss of the ability to identify variants. 

Another problem of Amplicon-based methods is the amplification of the 

error due to the PCR reaction which increases the probability of false-

positive findings [39].  

Amplicon sequencing is optimal for efficiently sequencing small targets 

such as small gene panels (1-25 genes) and mutational hotspot panels and is 

preferable for deep sequencing applications. For larger targets, the method 

based on hybridization capture enrichment is usually preferred, capable of 

providing a more uniform coverage distribution and mitigating problems due 

to the quality of the probes [38]. 

 

Figure 2.3: Target selection methods in NGS library preparation (Figure 

modified from [40]) 

2.2.2. Amplification and Sequencing 

Once the NGS library is loaded onto the sequencer, the amplification 

needed to distinguish the sequencing signal from the background noise 
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occurs. In the Illumina solid-phase bridge amplification, the fragmented 

library is linked to primer immobilized on a solid support, such as a patterned 

flowcell. The free end of the fragment interacts with other nearby primers, 

forming a bridge structure. Using PCR, a second strand from the 

immobilized primers is created, and unbound DNA is removed (Figure 2.4) 

[41]. The process is repeated to generate a cluster of clones for each fragment 

that is bound to the flowcell. 

 

 

Figure 2.4: Illumina amplification system (Figure modified from [41])  

Illumina's NGS technology is a Sequencing By Synthesis (SBS) method 

[41] with a fluorescent-labeled reversible terminator technology (RT). In 

brief, each fragment becomes a template and is copied by an enzyme, the 

DNA polymerases, capable to incorporate a complementary nucleotide to 

that of the template. The procedure is composed of cycles of three phases: 1. 

Addition of a single nucleotide; 2. Creation of the image of the binding 

signal; 3. Cleavage of the terminator and washing of the flowcell.  

When a single dNTP linked to the reversible terminator is incorporated 

into the sequence of a cluster, a fluorescent light signal is emitted at a 

wavelength that differs for each nucleotide. The signals emitted on the 

flowcell are recorded by an optical system (Charge-Coupled Device - CCD 

camera) which captures an image for each emission wavelength of the 

nucleotides. The terminator does not allow the polymerase to incorporate 

other nucleotides and further elongate the sequence so that only one 
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nucleotide per cycle can be incorporated. During the last phase, the 

terminator and the fluorescent dye are split from the incorporated dNTP to 

allow the addition of the next labeled dNTP. The unused nucleotides are 

removed by washing the flowcell; then a new cycle restarts (figure 2.5). The 

procedure takes place in parallel on all the clusters present on the flowcell. 

Each cycle, therefore, corresponds to four images that appear dotted, one for 

each nucleotide, where the dots represent the clusters that have incorporated 

the specific dNTP. The result of the sequencing step is a number N of flow-

cell image quadruplets, where N corresponds to the number of cycles 

performed and therefore to the length of the read. Illumina NGS platforms 

are capable of sequencing both ends of each DNA fragment (paired-end 

sequencing) increasing sequencing quality and target read depth. 

 

Figure 2.5: The Illumina sequencing cycle (Figure modified from [41]) 

2.2.3. Base-calling 

Images acquired during sequencing cycles are then analyzed by the 

Illumina proprietary software installed on the sequencing platform. The 

images are first filtered to eliminate background noise, the light signals are 

identified and improved, the positions of the clusters in the flowcell are 

identified. For each image generated by a single machine cycle, the base that 

is most likely to be identified is assigned to each cluster (figure 2.6). The 

result is that each cluster is represented by a sequence of ACGTs 

corresponding to the nucleotides incorporated during sequencing. Each of 

these sequences is defined as a read. A Phred quality score is assigned to 

each base of the read, which represents in logarithmic scale the probability 

that the base has been erroneously assigned. All the reads generated by the 

sequencing are stored in a text file according to the Fastq format. 
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Figure 2.6: Illumina base-calling process (Figure modified from [42]) 

2.3. NGS data analysis 

NGS generates massive amounts of data that require multiple 

computationally intensive steps for appropriate analysis to be performed. 

The analysis of NGS data is considered an integral part of the NGS 

sequencing process. The analysis workflow is specific for the type of DNA 

sequenced, for the library preparation method, for the sequencing technology 

of the instrument, and the amount of data produced. At the current state of 

the art, there are many tools and software for NGS data analysis, and the 

choice of the best solution is essential to perform a robust and cost-effective 

workflow. An example is that of the choice of computing resources to be 

used to analyze the data. High-performance computing (HPC) systems such 

as cloud services or server clusters, allow us to face the big problems of 

computing and storage resources typical of big data derived from large 

sequencing experiments (e.g., WGS) and to break down the costs on large 

numbers. The management of these systems is complex and requires 

dedicated expertise. Less complex solutions such as workstations, on the 

other hand, are better suited to the analysis of small experiments (e.g., small 

targeted-seq) and can be managed more easily even by less specialized 

figures. 

The NGS data analysis process starts from the sequencing tool. The 

primary analysis of the data is represented by the transformation of the 

fluorescence signal acquired during sequencing through the base calling 

process, the calculation of the Base quality, and the production of Fastq files. 

The consecutive manipulation of the different types of files until reaching a 

useful result for the experiment is instead defined as secondary analysis. For 

genotyping applications, the secondary analysis starts from the Fastq files up 

to a set of variants contained in the sample under analysis. The 

transformation of data into knowledge useful for the interpretation of the 
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results is instead called tertiary analysis. The primary analysis, being 

implemented within the sequencer, is now a robust and reproducible process, 

while secondary and tertiary analyses are highly customizable. 

2.3.1. Bioinformatics pipelines 

The secondary analysis is typically performed through progressive steps 

that process the sequencing data and transform them using multiple tools and 

software components. This process, in which the genetic data output of one 

tool becomes the input of another to be manipulated by sequential modules, 

is called "bioinformatics pipeline". The goal of bioinformatics pipelines is to 

perform the analysis process in an automatic and reproducible manner and 

ensure the greatest achievable robustness and accuracy. NGS bioinformatics 

pipelines are frequently platform-specific and may be customizable based on 

the experiment design and laboratory needs. A typical clinical 

implementation of a bioinformatics pipeline to search for variants in DNA 

samples consists of five major steps: 1. Alignment; 2. Pre-processing; 3. 

Variant calling; 4. Variant post-processing; 5. Variant annotation. 

The internal workflow of each of the major steps is complex and may vary 

according to the application. To make the result of the different pipelines 

reproducible, best practices have been developed over the years for the 

different types of NGS data [43]. The workflow for genotyping applications 

of NGS data produced by re-sequencing experiments to identify the genetic 

causes of a particular phenotype is introduced below. 

2.3.2. Alignment 

The first fundamental step for the study of NGS data is the Alignment 

which consists in recomposing the sequenced genome starting from the reads 

present in the Fastq files. For re-sequencing applications, the alignment of 

reads is a process facilitated by the presence of a standard genome to which 

it is possible to refer to find the right position of every single read. There are 

reference genomes for many organisms: they are updated cyclically to 

improve their accuracy. The latest reference genome for humans, GRCh38, 

was released in 2013 but many laboratories still use the previous GRCh37 or 

hg19. 

There are several alignment algorithms, but most use the Burrows-

Wheeler transform (BWT), or techniques based on hash tables [44]. BTW-

based aligners are memory-efficient and work faster than hash-based 

aligners, but they are less accurate. In contrast, hash table algorithms tend to 

be slower, but more sensitive. The choice of the aligner is a key step that can 

influence the result of the analysis. The algorithms are evaluated based on 

the accuracy in finding the right position of the reads, but also in terms of 

efficiency (speed of execution) and scalability (storage capacity). Some 

benchmarking studies have compared the alignment tools found in the 
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literature [45][46] demonstrating that algorithm performance depends on 

input data and that there is no better one for all scenarios. Many tools are 

highly configurable to increase their adaptability to a particular application 

and it is up to the researcher to find the right set-up to optimize the analysis 

considering the possible obstacles. 

One of the main challenges for alignment is the presence within the 

genome of repetitive or low-complexity regions. This often leads the reads 

to be mapped in different areas of the genome with the same reliability. The 

result is an ambiguous alignment that potentially leads to errors in the variant 

detection process. Longer reads and paired-end sequencing can help in 

improving alignment in these particular regions. The length of the reads and 

their complexity in terms of the sequence are directly proportional to the 

quality of the alignment. The presence of paired reads instead increases the 

available information (e.g., orientation and distance between read pairs) to 

improve mapping performance. 

At the end of the alignment process, the Mapping quality score is 

calculated for each read, indicating the accuracy of the chromosomal 

position assigned by the algorithm. Reads enriched with further information 

on the mapping are stored in a Sequence Alignment Map (SAM) 

(specifications in [47] for SAM format description) format. 

2.3.2.1. Post Alignment process 

After the alignment, it is possible to make changes to the mapped 

sequences which commonly include the conversion of the SAM files in the 

compressed version in BAM (Binary Alignment Map) form, in the sorting of 

the reads inside the BAM files to optimize the analysis and in the general 

assessment of the alignment by issuing a report. It is possible to evaluate the 

alignment by viewing some software that shows the reads mapped on the 

reference genome such as the Broad Institute's Integrative Genomics Viewer 

(IGV) [48][49] but it is a difficult process for quality control of large targets. 

2.3.3. Pre variant calling process (pre-processing) 

In order to improve the variant identification process, some data 

optimization steps are recommended. The most important ones involve 

identifying duplicates from PCR, alignment artifact correction, and sequence 

quality score recalibration. 

2.3.3.1. The marking of duplicates reads 

The amplification step usually concludes the preparation of libraries (see 

Chapter 2.2.1) and is useful to get a greater sequencing yield. The 

amplification generates clones of the fragments contained in the library 

which are randomly immobilized on the flowcell and sequenced. When 
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multiple copies of the same original fragment bind at different points in the 

flowcell, they give rise to separate clusters and are sequenced independently. 

This process generates duplicated reads that can introduce a bias in the 

analysis that causes false high coverage of some areas and rises false-positive 

variant calls due to errors that occurred during library preparation, and that 

have been propagated to PCR duplicates. The percentage of duplicates 

depends on the characteristics of the NGS library and the loading phase of 

the instrument. If the amount of starting sample is small, the amplification 

step of the library must be greater thus increasing the duplication rate, 

furthermore, the smaller fragments are amplified more and can be over-

represented. Finally, if the amount of library loaded on the instrument is 

lower than expected, a higher percentage of clones bind to the flowcell and 

are sequenced as duplicates. 

Given that, PCR duplicates originate from the same DNA fragment, their 

mapping positions can be used to identify and either mark or entirely remove 

these duplicates, retaining only the highest quality read. The duplicate reads 

removal step is strongly recommended in workflow analysis of NGS data 

generated from the Hybridization capture-based method but not for 

Amplicon sequencing. In the Amplification based method, reads start and 

end at the same positions by design and duplicates removal should be 

disabled because otherwise, it will remove most aligned reads. 

2.3.3.2. Indel Realignment 

Because alignment algorithms map each read individually to the reference 

genome, reads spanning insertions or deletions (Indels) are often misaligned 

and it commonly results in mismatches. The tools that call variants could be 

fooled by mismatches and could call an insertion or deletion (Indels) in the 

sequence as a set of SNVs, increasing the error rate. To recognize and 

eliminate these artifacts, the local realignment process around the indels is 

performed, which is divided into two steps. In the first phase, suspicious 

intervals are defined in three ways: sites where there are frequent Indels in 

the population databases such as dbSNP [50] and 1000G [51], Indels seen in 

original alignments, and sites where some evidence suggests a hidden Indel. 

In the second step, the optimal consensus sequence is determined, and the 

local realignment of reads around the site is performed. 

The entire process of Indel Realignment is computationally intense and 

for high coverage, sequencing is very time-consuming. The latest software 

for calling variants have implemented a local realignment step to improve 

the accuracy and quality of the variants identified. If these tools are used, 

realignment is no longer an essential step and can be avoided by saving time 

and resources. However, it remains recommended because it improves the 

Base Quality Score Recalibration process. 

2.3.3.3. Base quality score recalibration 
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Base quality scores are per-base estimates of error emitted by the 

sequencing machines and express how confidently the called base is deemed 

correct. The base quality score is a fundamental factor that is used by variant 

callers to decide whether a variant really exists or is an error and is a main 

feature for filtering false positives. The BQ score emitted by the sequencing 

machine is often inaccurate and is subject to various systematic errors due to 

the sequencing reaction (e.g., machine cycle and sequence context) and to 

small defects in the instrumentation that cause it to be incorrectly estimated. 

For this reason, a score recalibration step is essential that re-evaluates the 

error probability of the called base using several features including starting 

quality score, the machine cycle, and the dinucleotide sequence context (the 

current and the previous bases). 

2.3.4. Variant Calling 

The key step in the analysis of NGS data is the identification of the 

variants present in the sample. The variants can be of three types: 

• Point Variants or Single Nucleotide Variants (SNV): these are 

substitutions of single nucleotides in the DNA sequence. 

• Short Insertions or Deletions (InDels): they are caused by an 

insertion or loss of some nucleotides respectively. 

• Structural Variants (SV): are large genomic rearrangements 

affecting extended areas of the genome from hundreds of 

nucleotides to entire chromosomal segments. SVs include 

Translocations, Inversions, or variations of the copy number of a 

DNA stretch (CNV). 

2.3.4.1. SNV / InDel calling 

The tools calling short variants compare the aligned sequences contained 

in the BAM file against the reference genome and identify the variants using 

different approaches. Numerous tools have been developed to identify single 

nucleotide variants (SNVs) and short insertions/deletions (indels) from 

aligned NGS data [52][53]. The tools use different methods to perform 

variant calling, some are based on heuristic methods, some use probabilistic 

models, other machine learning algorithms.  

Heuristic methods call variants based on multiple information sources 

associated with the structure and quality of mismatches. For variant 

detection, a heuristic algorithm determines the genotype based on thresholds 

for coverage, base quality, and variant allele frequency. These tools usually 

use statistical tests (i.e., Fisher's exact test on the reads covering the variant) 

to assess the call quality. 

Probabilistic methods instead provide measures of statistical uncertainty 

for called genotypes. Probabilistic tools use Bayes' theorem to calculate the 
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genotype likelihood for each possible genotype at each base (a homozygote 

for the reference allele, a homozygote for the alternative allele, or a 

heterozygote). The algorithm calculates the a priori probabilities of the 

genotypes and infers the posterior probabilities using the information from 

the quality scores and allele counts. The genotype with the highest posterior 

probability is chosen and the ratio between the highest and the second-

highest probabilities may be used as a measure of confidence. Some 

Bayesian tools also implement a local realignment or assembly of suspicious 

reads to increase the accuracy of the variant call. Variants identified during 

variant calling are reported in the variant calling format (VCF) [54]. 

2.3.4.2. Individual versus joint variant calling 

Many tools provide the ability to analyze both a single sample at a time 

and a cohort of samples simultaneously. Single sample analysis produces 

reproducible and repeatable results because it does not depend on other 

samples. This approach is the simplest and the least computationally 

expensive, but it may cause some information to be lost. In fact, in the VCF 

file all the sites in which a variant has been identified in the sample are 

reported, but in all the other sites not reported it is not clear whether the 

sample is homozygous and not mutated or if the coverage is not sufficient to 

perform a call. Conversely, multi-sample calling involves a simultaneous 

identification of variants in several individuals, and it is much more CPU 

time- and resource-consuming than individual variant calling. It produces 

genotypes for every sample at all variant positions by differentiating, for 

samples that do not carry the variant, between not mutated homozygotes and 

those with insufficient coverage. Furthermore, the joint analysis allows a 

variant caller to minimize the issue of variant representation differences that 

affects particularly complex variants and to use multi-sample information to 

improve the genotype likelihood calculation. Finally, multi-sample analysis 

can help in trio sequencing, enabling direct inference of the cis or trans status 

of two heterozygous variants. 

2.3.4.3. Germline versus Somatic variant calling 

A particular case of variant calling is the search for variants in somatic 

DNA samples. The call of the germline variants is relatively simple, 

identifying the mismatches between the sample sequence and the reference 

sequence that exceed a certain probability of not being sequencing errors or 

alignment bias. As far as somatic variant calling is concerned, the matter is 

more complex. Usually, the search for somatic variants is performed  through 

a case-control analysis in which the case is represented by the somatic 

sample and the control is a sample taken as Germinal or as Normal (in the 

case of tumors). Therefore, the somatic tools search for the mismatches with 

respect to the reference genome that are present in the somatic sample and 
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identify which of these variants are of somatic or germinal nature. 

Sometimes, it is possible to analyze only the somatic sample against the 

reference, but it is not recommended due to the high number of false 

positives that are produced. The greatest difficulty is given by the nature of 

the samples; using the example of tumors, it is common for the somatic tissue 

sample taken with a biopsy to be contaminated with normal cells and vice 

versa, causing changes in the allelic fraction in both tumor and healthy 

samples. Furthermore, the tumor could be subject to clonal heterogeneity or 

be affected by structural events and by changes in the number of copies of a 

given region. The consequences of these factors are an allelic fraction of the 

somatic variants that can reach very low values (even below 1%) and the 

presence of somatic variants of the germ samples due to tissue contamination 

problems. The biggest challenge for somatic variant callers is to recognize 

variants with lower allelic fractions and rule out sequencing, alignment, and 

cross-contamination artifacts. 

2.3.4.4. CNV calling 

Multiple tools have been generated to detect CNVs in NGS data. Their 

approaches can be categorized into five different strategies (figure) that have 

advantages and limitations:  

• Paired-End Mapping (PEM);  

• Split Read (SR); 

• Read Depth (RD);  

• Assembly-based (AS).  

The PEM uses distances between paired-end reads and is not applicable 

with single-end reads. In paired-end sequencing, the libraries prepared using 

the same protocol have similar fragments length, and consequently similar 

distances between paired reads, distribution. PEM identifies the distances of 

the mapped paired reads that are significantly different from the expected 

insert size and infers the presence of a CNV event. The main limitation is 

that it cannot detect CNVs in regions with segmental duplication. 

The SR identifies possible CNV events using read pairs. The SR method 

identifies paired read in which one read is uniquely aligned to the reference 

genome and the paired one is unmapped or only partially maps to the 

genome. The assumption is that the read fails in perfect mapping because of 

the presence of a breaking point. SR strategy split the mis-mapped reads into 

multiple fragments and re-aligns the first and the last parts providing the 

precise start and end positions of the CNV events. The SR method is also 

affected by the nucleotide composition of the interrogated area as well as by 

the length of the reads. 

The RD method is based on the assumption that the presence of a CNV is 

related to the variation of the read depth in the region of the event. In case 

of an allele deletion, a significant decrease in coverage should be observed 
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and vice versa a duplication should increase the coverage of the duplicated 

zone. The read depth procedure for CNV detection consists of four steps. 

The CNV caller tool calculates the read depth in the predefined window, 

normalizes and estimates the number of copies in the window, and finally 

merges all regions with a similar copy number detecting CNV events [55]. 

Generally, RD-based tools use a cohort of samples to improve the quality of 

the normalization step and the calling of the CNVs. The coverage 

normalization is performed as a function of the distribution of coverage in 

the single sample by correcting it according to the characteristics of the 

analyzed genomic region that may have introduced a coverage bias (e.g., GC 

content, repeated regions), and using the overall depth distribution from 

more samples to improve the result. The RD approach works well with high 

coverage samples and allows to mitigate the problems related to difficult 

areas of the genome and it better quantifies the extent of the structural event 

than the other methods. 

The assembly methods first reconstruct DNA contigs performing the 

assembly of overlapping reads, then identify CNV events comparing the 

assembled regions with the reference genome. The assembly can also use the 

reference genome as a template to improve the quality of the contigs and the 

computational efficiency.  

As for SNV and short Indels callers, even for CNV callers, despite the 

large number of tools developed, there is no gold standard. PEM-based 

methods can detect all types of SVs (even single exons) but not insertions 

that exceed the average insert size of the library. In addition, the estimate of 

the number of copies of the event cannot reach the quality of RD-based 

methods. Read depth-based methods can be useful in target sequencing 

applications especially for identifying larger CNVs. However, with RD 

methods the identification of small CNV (<1 kb), inversion or translocations, 

and the precise breakpoint sites. On the other hand, SR-based methods 

provide a very high resolution in finding breakpoints but not repeated or low-

complexity genomic regions. 

New tools adopt combined strategies to exploit the advantages of multiple 

methods while reducing their weaknesses. In any case, the choice of the CNV 

caller and the detection method must adapt to the needs of the specific 

application. 
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Figure 2.7: CNV calling strategies (Figure from [56]) 

2.3.5. Post-processing (Variant filtering) 

This phase aims to increase the calling accuracy and eliminate “residual” 

artifacts. The filtering of VCF files is an important step in the bioinformatics 

pipelines because it guarantees the most accurate set of variants in the output, 

minimizing the number of false variants without excluding any of those 

actually present in the sample. Short variant filtering strategies can be 

classified into two groups; 1. filtering based on the quality threshold criteria 

(hard filtering) and 2. machine learning systems for automatic filtering of 

variants (soft filtering). Hard filtering (HF) is a system of rules that 

discriminates artifacts and variants by evaluating a set of quality indicators. 

Characteristics commonly assessed with HF include variant coverage and 

allelic frequency in the sample, variant base quality, and mapping quality 

scores as well as related differences with reference allele, and genotype 

quality score. An additional index is the Imbalance strand specificity because 

a true variant is expected to be equally represented on both forward and 

reverse strands. The thresholds for discriminating false positives should be 

modified according to the type of application desired. For example, for the 

search for somatic vs. germline variants, coverage and frequencies filters are 

different, or the criterion that evaluates the imbalance strand in the case of 
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amplicon or capture enrichment sequencing differ. Furthermore, it is 

necessary to carefully evaluate the result of filtering in complex areas of the 

genome where true variants could appear as artifacts using the same 

thresholds on the whole target. The major flaw of Hard filtering is that 

evaluates each threshold independently, and the discrimination rules, 

although considering one or more criteria at the same time, fail to grasp the 

interdependencies between indicators, producing effective but coarse 

discrimination. Soft filtering is a more sophisticated approach that leverages 

the capabilities of machine learning to identify patterns within data, 

combining different indicators, and performing a finer classification than 

hard filtering. Soft filtering methods build a supervised classification system 

by training the model on a set of known variants and artifacts. This model 

estimates the probability that a variant is really present and allows filtering 

at various confidence levels. Soft filtering is especially useful for low 

coverage samples [57] but its performance is influenced by the need for a 

large training dataset which is often not available, especially for targeted 

sequencing applications. 

2.4. Variant annotation and interpretation 

The format used by variant callers to report the variants describes the 

internal characteristics of the sample and are useful for discriminating 

artifacts and true variants but does not allow us to understand their role in 

the carrier phenotype. The annotation of the variants together with the 

process of interpreting the genetic data constitute the tertiary analysis of the 

NGS data and are essential for identifying the causes of hereditary diseases 

in the genetic diagnosis process. 

2.4.1. Variant annotation 

Once the calling and variant filtering process has been completed, the last 

step of an analysis pipeline is functional annotation. The annotation aims at 

enriching each variant with useful information to explore the impact of the 

genotype on the phenotype. 

Different types of information can be associated with each variant and 

may help in better understand their role. The first level of information 

concerns the affected genomic area. In fact, a variant can fall into an 

intergenic region between two different genes (intronic variants), or it can 

affect a protein-encoding gene (exonic variant). Since several transcripts can 

be associated with a unique gene and the variant may fall into different 

functional zones according to the analyzed transcript, precise information is 

generated for each transcript.). The choice of transcripts is a relevant 

contributor to the interpretation of the genetic test as a variant may have 

different roles in different transcripts of the same gene. Several transcript 

databases (Ensembl [58], RefSeq [59], and UCSC [60]) with which variants 
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can be annotated exist. The second level concerns the functional description 

of the variant with respect to the transcript. Essential information include: 

the type of consequence of the variant on the transcript (e.g., synonymous, 

missense, stop gain, etc.), the nucleotide changes in the coding sequence 

(HGVS nomenclature for cDNA sequence changes - HGVSc) and amino acid 

change in the protein (HGVS nomenclature for protein sequence changes - 

HGVSp). Other key annotations are those obtained from variant databases. 

Many databases (table 2.1) provide information of different nature: clinical 

databases such as ClinVar and Uniprot [61] contain information on the 

impact of variants on clinical phenotypes, population databases such as 

dbSNP, 1000 Genomes Project database, ExAC [62], and GnomAD [63] 

report the frequency with which the variant was observed in large groups of 

subjects, and finally, databases such as OMIM that contains information 

about Gene-disease associations. Some databases cover specific genes such 

as BRCA Exchange [64] (which reports information on BRCA1 and 

BRCA2), others such as COSMIC [65] contain a multitude of information 

only on genes and variants identified on somatic tissue. The last level of 

annotation is the one based on the tools that provide a damage prediction 

score generated with different approaches, such as protein structure, 

sequence homology, evolutionary conservation or statistical prediction based 

on known mutations. In table 2.2 are reported some of in silico prediction 

tool commonly used for variants annotation. 

Table 2.1: Useful databases for variant interpretation 

Population Databases 

Exome Aggregation Consortium 

http://exac.broadinstitute.org/ 

Database of variants found during exome 

sequencing of 61,486 unrelated individuals 

sequenced as part of various disease-

specific and population genetic studies. 

Pediatric disease subjects as well as related 

individuals were excluded. 

Genome Aggregation Database 

https://gnomad.broadinstitute.org/ 

Database of variants found during exome 

sequencing of several large cohorts of 

individuals of European and African 

American 

ancestry. Includes coverage data to inform 

the absence of variation. 

1000 Genomes 

http://browser.1000genomes.org 

Database of variants found during low-

coverage and high coverage genomic and 

targeted sequencing from 26 populations. 

dbSNP 

http://www.ncbi.nlm.nih.gov/snp 

Database of short genetic variations 

(typically 50 bp or less) submitted from 

many sources. May lack details of 

originating study and may contain 

pathogenic variants. 

dbVar 

http://www.ncbi.nlm.nih.gov/dbvar 

Database of structural variation (typically 

greater than 50 bp) submitted from many 

sources. 

http://exac.broadinstitute.org/
http://browser.1000genomes.org/
http://www.ncbi.nlm.nih.gov/snp
http://www.ncbi.nlm.nih.gov/dbvar
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Disease Databases 

ClinVar 

http://www.ncbi.nlm.nih.gov/clinva

r 

Database of assertions about the clinical 

significance and phenotype relationship of 

human variation. 

OMIM 

http://www.omim.org 

Database of human genes and genetic 

conditions that also contains a representative 

sampling of disease-associated genetic 

variants. 

Human Gene Mutation Database 

http://www.hgmd.org 

Database of variant annotations published in 

the literature. Requires fee-based 

subscription for much of the content. 

Sequence Databases 

NCBI Genome 

http://www.ncbi.nlm.nih.gov/geno

me 

Source of full human genome reference 

sequences. 

RefSeqGene  

http://www.ncbi.nlm.nih.gov/refseq

/rsg  

Medically relevant gene reference sequence 

resource 

MitoMap 

http://www.mitomap.org/MITOMA

P/HumanMitoSeq 

Revised Cambridge reference sequence 

(rCRS) for the Human Mitochondrial DNA 

 

Table 2.2: In silico prediction tools 

Name Basis 

Missense prediction 

ConSurf 

https://consurf.tau.ac.il/ 

Evolutionary conservation 

FATHMM 

http://fathmm.biocompute.org.uk/ 

Evolutionary conservation 

PANTHER 

http://www.pantherdb.org/ 

Evolutionary conservation 

SIFT 

https://sift.bii.a-star.edu.sg/ 

Evolutionary conservation 

SNPs&GO 

https://snps-and-go.biocomp.unibo.it/ 

Protein structure/function 

Align GVGD 

http://agvgd.hci.utah.edu/ 

Protein structure/function and 

evolutionary conservation 

MAPP 

http://mendel.stanford.edu/SidowLab

/downloads/MAPP/index.html 

Protein structure/function and 

evolutionary conservation 

MutationTaster 

https://www.mutationtaster.org/ 

Protein structure/function and 

evolutionary conservation 

MutPred 

http://mutpred.mutdb.org/ 

Protein structure/function and 

evolutionary conservation 

PolyPhen-2 

http://genetics.bwh.harvard.edu/pph2 

Protein structure/function and 

evolutionary conservation 

http://www.ncbi.nlm.nih.gov/clinvar
http://www.ncbi.nlm.nih.gov/clinvar
http://www.omim.org/
http://www.hgmd.org/
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PROVEAN 

http://provean.jcvi.org/index.php 

Alignment and measurement of similarity 

between variant sequence and protein 

sequence homolog 

Condel 

https://bbglab.irbbarcelona.org/fanns

db/help/condel.html 

Combines SIFT, PolyPhen-2 and 

MutationAssessor 

CADD 

https://cadd.gs.washington.edu/ 

Contrasts annotations of fixed/nearly 

fixed derived alleles in humans with 

simulated variants 

Splice site prediction 

GeneSplicer 

https://ccb.jhu.edu/software/genespli

cer/ 

Markov models 

Human Splicing Finder 

http://www.umd.be/hsf 

Position-dependent logic 

MaxEntScan 

http://hollywood.mit.edu/burgelab/m

axent/Xmaxentscan_scoreseq.html 

Maximum entropy principle 

NetGene2 

https://services.healthtech.dtu.dk/ser

vice.php?NetGene2-2.42 

Neural networks 

NNSplice Neural networks 

Nucleotide conservation prediction 

GERP 

http://mendel.stanford.edu/sidowlab/

downloads/gerp/index.html 

 

PhastCons 

http://compgen.cshl.edu/phast 

 

PhyloP 

https://ccg.epfl.ch/mga/hg19/phylop/

phylop.htm 

 

 

2.4.2. Variant prioritization 

Once all the information about the functional effect of the variant in the 

different transcripts, its frequency in the population, the damage prediction 

scores on the protein, and the notes about the gene-disease association have 

been collected, these are useful for the prioritization process. The goal of 

prioritization is to pass from thousands of variants to a small group of one or 

two variants that are candidates to be responsible for the observed phenotype. 

The prioritization process can be seen as a cascade of filters applied to 

variant annotations, guided by a reasonable method based on the specific 

clinical context. 

For hereditary diseases, the in-depth phenotyping of the carrier of the 

variants and his family members, together with the study of the pedigrees, is 

the starting point for validating the result of the prioritization process 
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obtained with functional information and bioinformatics data. The definition 

of the inheritance model of the disease allows excluding all the variants that 

do not respect the principles of co-segregation. For recessive diseases 

homozygous variants inherited from two parents (often consanguineous), or 

two heterozygous variants, each passed by a different parent, are sought; for 

a dominant inheritance model, the candidates will be heterozygous variants 

inherited from a sick parent or private variants (de novo variant). More 

attention is needed for the evaluation of X-linked phenotypes or 

mitochondrial diseases associated with mutations in mitochondrial DNA. 

Once the characteristics of the phenotype and its inheritance model have 

been evaluated, it is possible interrogate genes that are plausible candidate 

in case of causative variant. A thorough understanding of the molecular 

causes of the phenotypes is essential in order to narrow the spectrum of 

genes of interest. The gene-disease association data extracted from clinical 

databases such as ClinVar or OMIM, the information reported in the 

literature, and the geneticist's experience can guide the ranking of the genes 

to be investigated, excluding all those related to phenotypes far from the 

one under investigation. 

One of the primary criteria for predicting if a variant is likely to have a 

functional effect on the encoded protein is a rarity. A commonly used 

threshold to exclude a variant from potentially harmful ones is a Minor Allele 

Frequency (MAF) in population databases greater than 1%. This threshold 

may vary according to the incidence of the disease and the level of 

penetrance expected for the phenotype. Often the causative variants of the 

disease are extremely rare and unreported in the population databases, while 

others are instead observed in various subjects considered healthy at the date 

of clinical control but who may have developed the disease later during the 

life. If a variant is common in the population, it almost certainly has a neutral 

effect on the protein, but a rare variant may still be benign. For this reason, 

the choice of the MAF threshold to be applied for prioritization must adapt 

to specific issues. 

Another contributor helping the characterization of a variant is its 

functional impact on the transcript. In fact, different types of variants are 

associated with different levels of protein damage: intronic variants far from 

gene regulation sites, variants in UTR, and synonymous variants have a very 

low probability of causing disease; missense, exonic insertions, deletions, 

stop losses and start losses, carry a greater potential of damaging the protein 

function; while stop gains, frameshifts, and splice site variants are of primary 

interest for their protein-truncating effect. Also, in this case, special caution 

must be considered in filtering out the variants: it is possible that some 

variants with a low impact potential may instead be the cause of hidden 

protein damage. An important example is the case of synonymous variants 

that cause a cryptic splicing site within an exon [66][67]. 

The functional impact prediction from in silico tools can help refine 

prioritization. Many prediction tools and the diversity of algorithms with 

which the damage score is calculated, can cause interpretation difficulties 

linked to the discordant predictive results. For this reason, there is no 
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standard filtering strategy for this type of data, but it must be adapted to the 

molecular context of the disease. 

The result of the prioritization process is composed of a narrow subset of 

variants with a reasonably high probability of causing the phenotype, and a 

larger group of variants with a low probability of affecting protein function. 

This ranking process has no standard rules and is subject to many variables 

that could change the accuracy of the result. Furthermore, the candidate 

variants are not interpreted as causative or neutral, but their role is defined 

in a descriptive way. 

2.4.3. ACMG-AMP classification system 

If the prioritization aims at minimizing the number of variants that 

disease-causing candidates, the classification of the variants is the process 

aimed at interpreting their specific role on the phenotype. The functional 

filtering process of variants is guided by rules that often vary from laboratory 

to laboratory, producing heterogeneity in interpretation. The need for 

common rules to homogenize the results of genetic tests has prompted the 

scientific community to devise a robust method for pathogenic classification. 

In 2015, the American College of Molecular Genetics (ACMG) together with 

the College of American Pathologists (AMP) developed guidelines for the 

interpretation of the role of Mendelian and mitochondrial variants  (68). The 

old term that defined "mutation" as a causative variant and "polymorphism" 

as a non-causative variant has been replaced by a system based on 5 classes: 

1. Benign (B - non-causative variant of disease), 2. Likely Benign (LB - 

probably not causing disease); 3. A variant of Uncertain Significance (VUS); 

4. Likely Pathogenic (LP - probably causative of disease); 5. Pathogenic (P 

- Definitely causative of disease). 

The pathogenicity class is defined on a system that evaluates the 

combinations of 28 criteria activated by the different types of information 

available on the variant and their relative strength. Different sources of 

information are evaluated:  

• Population data such as frequencies of variants in large 

populations and prevalence in control groups.  

• Computational and prediction data that consider the functional 

effect of the variant and damage mechanism to which the affected 

gene is sensitive, the existence of variants whose role is 

established affecting the same nucleotide or amino acid, and the 

results of the in-silico protein damage prediction tools.  

• Functional data produced through in-vivo, ex-vivo, and in-vitro 

studies, aimed at determining the consequence of the variant on 

the affected protein and on the cellular phenotype.  

• Clinical and segregation studies aimed at verifying the specificity 

of the clinical picture of the carrier and family members, the co-

segregation of the variant with the phenotype in case of hereditary 
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disease, the possibility that a mutational event occurred de novo, 

the presence of other variants that potentially cause the 

phenotype, and finally the cis or trans status of two variants 

identified in the same gene.  

• Information derived from reputable sources such as peer-

reviewed literature and from curated disease databases such as 

ClinVar. 

The criteria are divided into ones in favor of the benign role of the variant 

(12 criteria) and criteria in favor of the pathogenic role (16 criteria) based on 

the evidence reported by the analyzed information. Each criterion is 

associated with a weight (strength) that reflects the level of evidence in favor 

of the benign or pathogenic interpretation, and which determines the strength 

with which the single criterion guides the final classification. Each 

pathogenic criterion is weighted as very strong (PVS1), strong (PS1–4), 

moderate (PM1–6) or supporting (PP1–5) and each benign criterion is 

weighted as stand-alone (BA1), strong (BS1–4), or supporting (BP1–7). The 

default strength levels were calculated during the validation phase of the 

ACMG system, but to improve the flexibility of the model, the weights can 

be modified based on the evidence supporting each criterion. 

 

Figure 2.7: Data sources and level of strength for ACMG criteria (Figure 

from [68]) 
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Each single criterion is not able of determining the class of pathogenicity 

alone, except for the one that evaluates the allele frequency in the population. 

In fact, a MAF such as to define the variant as common is a sufficient 

criterion for the Benign classification (Stand-Alone strength). The 

pathogenic class is assigned based on the combination of weighted criteria 

that are activated during the analysis (table 2.3). If a variant does not fulfill 

the criteria to gain a benign or pathogenic class, or the evidence for benign 

and pathogenic is conflicting, the variant must be classified as Uncertain 

Significance (VUS). 

Table 2.3: ACMG criteria combination for determining pathogenicity class 

Pathogenic 

1 Very Strong (PVS1) AND  

≥1 Strong (PS1–PS4) OR 

≥2 Moderate (PM1–PM6) OR 

1 Moderate (PM1–PM6) and 1 Supporting (PP1–PP5) OR 

≥2 Supporting (PP1–PP5) 

≥2 Strong (PS1–PS4) OR 

1 Strong (PS1–PS4) AND  

≥3 Moderate (PM1–PM6) OR 

2 Moderate (PM1–PM6) AND ≥2 Supporting (PP1–PP5) OR 

1 Moderate (PM1–PM6) AND ≥4 Supporting (PP1–PP5) 

Likely Pathogenic 

1 Very Strong (PVS1) AND 1 Moderate (PM1–PM6) OR 

1 Strong (PS1–PS4) AND 1–2 Moderate (PM1–PM6) OR 

1 Strong (PS1–PS4) AND ≥2 Supporting (PP1–PP5) OR 

≥3 Moderate (PM1–PM6) OR 

2 Moderate (PM1–PM6) AND ≥2 Supporting (PP1–PP5) OR 

1 Moderate (PM1–PM6) AND ≥4 Supporting (PP1–PP5) 

Benign 

1 Stand-Alone (BA1) OR  

≥2 Strong (BS1–BS4) 

Likely Benign 

1 Strong (BS1–BS4) and 1 Supporting (BP1–BP7) OR 

≥2 Supporting (BP1–BP7) 

 

The variant classification process is a very hot topic for genetics. The 

exponential increase in genetic tests and the ever-increasing sequencing 

capacity of the new tools has caused a sharp increase in the time and costs 

required for the interpretation of the results. In response to this need, many 

tools have been developed to simplify and speed up the decision-making 

process. These tools, both commercial and open sources [69][70][71], group 

in a functional way all the information available on the variant and 

implement automatic algorithms for “activating” the criteria and modulating 
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their weights, improving the data analysis capacity and simplifying the 

interpretation of large sets of variants. 

2.4.3.1. Somatic Variants 

The evaluation of the somatic variants is instead carried out on two 

different levels, especially in cancer sequencing applications. The first type 

is a functional type on the nature of cancer and is carried out to distinguish 

which acquired variants give an evolutionary advantage to the tumor cells 

and are drivers for the generation of new and more aggressive subclones, and 

which ones have a neutral impact in the progress of the illness (passenger). 

Driver variants usually have a gain-of-function effect for proto-oncogenic 

genes (commonly missense variants) and a loss-of-function effect for tumor 

suppressor genes. 

The second type is focused on the variant impact on clinical care. An 

actionable variant can be considered a predictive biomarker for sensitivity or 

resistance to therapies, can be targeted for new generation drugs, can take on 

prognostic significance, facilitate early diagnosis and guide preventive 

actions. Based on the available evidence, a clinical impact-driven 

categorization system has been proposed [72] based on 4 classes of variants: 

tier I, variants with strong clinical significance; tier II, variants with potential 

clinical significance; tier III, variants with unknown clinical significance; 

and tier IV, variants that are benign or likely benign (figure 2.8). 

 

Figure 2.8: Evidence-based somatic variant categorization in cancer 

sequencing. (Figure from [72]) 
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Chapter 3  

3 The Helper platform 

In the background chapter, the technological scenario of NGS technology 

was introduced in a comprehensive synthetic presentation. It was shown 

which are the fundamental steps in the process of identifying the genetic 

causes for hereditary diseases and which is the role of bioinformatics 

analysis in the diagnostic process. The present chapter describes the Helper 

platform, developed to simplify the design and execution of bioinformatics 

pipelines for NGS sequencing data. The chapter introduces the needs, and 

the solutions present in the literature for pipeline development, the 

implementation structure of Helper and its operating principles. The 

implemented algorithms, and how it works in the pipelines are described for 

each tool that can be used in the Helper platform. Then the Helper's graphical 

interface is presented, and finally the results of the performances, in terms 

of processing time and CNV calling, are discussed for a pipeline developed 

for the analysis of NGS libraries commonly used at OSM. 

3.1.  Needs and motivations  

The development of new pipelines addressing specific issues involving 

NGS sequencing is an ever-evolving field. There is an increasing need for 

simple systems for customizing bioinformatics analyses, overcoming the 

coding difficulties. One of the pioneering projects that promoted this trend 

of making user-friendly both bioinformatics and pipeline development, is 

Galaxy [73]. Galaxy is a web-based platform developed for making analysis 

completely reproducible and accessible to all researchers.  

Galaxy implements a large number of bioinformatics solutions for the 

analysis and manipulation of data from different types of experiments 

(Genomics, RNA-seq, Chip-seq, etc.). Galaxy is an open system that 

provides a large choice of tools, excellent documentation, ability to run the 

analysis in cloud, and the support of an extensive community. 

Despite all the advantages of systems like Galaxy, tools dedicated to 

specific applications are often required. Dedicated systems focus on the 

problem, simplifying the user experience in terms of understanding the 

processes and using the platform. In recent years, various systems for the 
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customization of bioinformatics analysis have been created for different 

NGS applications [74][75][76]. 

The Helper platform fits into this landscape as a solution designed to 

simplify the development of new bioinformatics pipelines for the analysis of 

NGS data from Illumina sequencing of DNA samples for targeted 

sequencing applications. The need for a simple and fast tool for the 

development of new pipelines arose because of the various research projects 

active at the Center for Inherited Cardiovascular Diseases of the OSM. The 

heterogeneity of different projects, of the different analysed samples, and of 

the different technologies of the sequencing kits, translates into greater 

complexity of adaptation of the bioinformatics pipelines. The development 

of pipelines must take into account a multitude of factors that affect the 

design of the project and requires several phases, such as code development, 

testing, debugging and validation of results. Without adequate coding 

experience, the development of new bioinformatics pipelines could be a 

difficult path. Helper aims to relieve the users from writing new code by 

guiding them through a simple graphical interface in the implementation and 

use of new pipelines easily adaptable to the context and specific needs . 

Unlike systems such as Galaxy, which provide tools for multiple 

bioinformatics applications, Helper is a platform dedicated to the analysis of 

data derived from DNA target re-sequencing experiments. This specific 

setting guarantees an optimized management of the analyzed data and a user-

friendly experience in using Helper. The user is able to choose which steps 

to include in the pipeline, which software to use in the different steps of the 

analysis, and which parameters to run the different tools, in the context of a 

workflow aimed to the identification and interpretation of variants. The 

Helper platform is deposited in the OSM repository (protocol number 

0102850/21) and is accessible upon request. 

3.2. Workflow management system  

Helper is a platform developed in Python3 compatible with Ubuntu 16 

and 18 operating systems. Helper requires the installation of a few 

dependencies: 

• PyQT5 for the execution of the graphic interface. 

• Json for the decoding and encoding of the configuration files 

necessary for the operation of Helper. 

• Argparse for the implementation of the Helper main script 

argument system. 

• Subprocess for the execution and parallelization of tools. 

The tools used in the bioinformatics pipelines are many, developed using 

different languages and each need specific dependencies in order to be used. 

To safely install the tools and their dependencies without incurring the 

danger of changing the work environment, it is advisable to use an 
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environment management system such as Conda (https://docs.conda.io/). 

Conda is an open-source package management system that allows to quickly 

install, run and update packages and their dependencies. The list of tools that 

can be used for the execution of pipelines with Helper, and the description 

of the workflow is described in Chapter 2.3.  

3.2.1. Tools wrapping and parallelization  

Integration of software developed in different languages is not always 

simple and represents an obstacle for an inexperienced bioinformatician. The 

wrappers have been designed to simplify the use of these tools and integrate 

them more easily. In the world of software, a wrapper is a code that wraps 

or covers other functions or tools. It can be thought of as a sandwich that 

contains several ingredients, making them easier to use. 

The Helper platform uses a complex wrapper system that implements the 

functions of 25 external tools and scripts and allows their calling using just 

Python language. The tools must be installed locally and have to be 

compatible with the versions supported by the platform. Within Helper, tools 

are coded as an object that contains a series of methods called through the 

wrappers. Before being able to call a function of a tool, it is necessary to 

initialize it by supplying the path of the main script responsible for the 

execution of the tool, the amount of RAM to be dedicated, the number of 

threads to be used (in case the tool that implements the multithreading), and 

the set of parameters needed for execution.  The wrappers implemented in 

Helper all have a similar structure (Figure 3.1); they have three ports: 

• A setting port to which the tool initialization information is 

provided; 

• An input port to which the files to be processed are provided, the 

accessory files required by the tool function, the log file in which 

to keep track of the processing result, the working directory in 

which to save the output files. 

• An output port that is used by the wrapper to return the files 

produced by the execution of the function. 

The module used to manage the wrapping is subprocess that allows to call 

and run external software, connect inputs, outputs, and errors in pipe, and 

monitor the status of the process. Furthermore, the subprocess module 

provides the ability to improve workflow efficiency thanks to the parallel 

execution of processes. Each function is performed on several samples at the 

same time, significantly reducing processing times. 
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Figure 3.1: The structure of the wrappers 

3.2.2. The Helper structure 

Helper consists of a simple Graphical User interface (GUI) for the 

preparation of the configuration files necessary for the execution of the 

analysis, and of a back-end for the execution of the analysis process. The 

back end of Helper is composed of the main script in which the execution of 

the pipelines is managed (pipeline.py), and of four libraries of functions. The 

function.py library includes all the functions for managing directories within 

the analysis folder, the functions to support the reading of configuration files 

and those for interpreting the samplesheet. In the tools.py and 

parallel_tools.py libraries are implemented the wrappers of the tools and 

software necessary for the serial and parallel analysis, correspondingly. 

Finally, the scripts.py library contains all the wrappers that call the in-house 

scripts dedicated to the execution of some Helper steps. 

 

Figure 3.2: The Helper structure. 
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3.2.2.1. The configuration files 

Helper takes all the information necessary to carry out the analysis from 

the configuration files (CF). All CFs are implemented in JSON format 

[https://www.json.org] with information nested at different levels. For the 

execution of Helper 4 CF are required: 

1. The tools configuration file 

2. The experiment configuration file 

3. The pipeline configuration file 

4. The samplesheet 

The tools configuration file (Tools.cfg) contains useful information to 

recall the tools, databases, and reference genomes during the analysis. The 

CF contains the list of the tools implemented in Helper (tools.list), and a set 

of lists of tools that specify which one can be used during each step of the 

analysis (for example tools.fastq_alignment or tools.variant_calling). 

Similar lists for databases and reference genomes are present in the CF 

(databases.list, genomes.list). Furthermore, in the CF all the information 

necessary to use each tool, database, and reference genome, is specified. For 

the tools, the path of the main script or jar file (for example GATK.path), the 

tag that indicates in which step of the analysis it can participate (for example 

GATK.tag), and the version of the tool (GATK.version) are indicated. For 

databases, the path to the DB, the tags of the steps in which they can be used, 

and other accessory information are specified. For the reference genomes, 

the path of the fasta file, the “dict” file, and the version must be indicated. 

During the implementation phase of the pipeline via GUI, Helper checks 

which tools can be used in each step and proposes them to the user. During 

the analysis processing, at the beginning of each step of the pipeline, the 

main script reads the need information about selected tools from the 

tools.cfg. 

Example of tool: 
"GATK v.4.1": { 

        "path": "/NGS_TOOLS/GATK/v4.1.2.0/gatk", 

        "version": "4.1.2.0", 

        "tags": 

"preprocessing,variantcalling,cnv_calling"} 

 

Example of database: 

"dbNSFP": { 

        "path": "/dbSNFP/dbNSFP4.0/dbNSFP4.0a_hg19.gz", 

        "files": "/dbSNFP/dbNSFP_replacement_logic", 

        "version": "4.0", 

        "tags": "database" 

 

Example of genome reference: 

“GRch37": { 

        "fasta": "/NGS_REF/hg19/GRch37.fasta", 

        "dict": "/NGS_REF/hg19/GRch37.dict", 

        "version": "37"} 
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The experiment configuration file contains information regarding the 

sequencing target. For each experiment contained in the list, the following 

information are reported: the identification name of the panel; the technology 

used to select the target during the sample preparation step (Capture 

Enrichment or Amplicon); the list of genes (one entry per line); the list of 

transcripts to be analyzed (one per gene and one per row); files describing 

the target and “BED” format and in “List” format. The last fields are specific 

for the analysis of the CNVs, and in the example shown below, the 

directories of models and the target needed by GATK to perform the CNV 

call are indicated. 

"TrusightCardio": { 

        "panel_name": "TrusightCardio", 

        "panel_technology": "Capture Enrichment", 

        "gene_list": 

"/TARGET/gene_list_Trusightcardio.txt", 

        "transcripts_list": 

"/TARGET/transcriptList_Trusightcardio.txt", 

        "target_list": 

"/TARGET/Trusightcardio_manifest.list", 

        "target_bed": 

"/TARGET/Trusightcardio_manifest.bed", 

        "cnv_calls_model": “/CNV/GATK/Trusightcardio-

model", 

        "cnv_ploidy_model": "/CNV/GATK/Trusightcardio-

model", 

        "cnv_target_list": 

/CNV/Trusightcardio_manifest.CNV.list" 

    } 

The pipeline configuration contains information about the workflow and 

which tools have to be used. The CF contains fields that specify the ID of 

the pipeline, the type of analysis (Germline or Somatic), the name of the 

genome reference (as reported on the tools CF), and the workflow as a list 

of modules that the pipeline must execute. Each module contained in the 

workflow list is then described in an independent block with a series of 

nested information: the RAM and the number of threads to be used during 

the module processing, the workflow of the module reported as a list of steps, 

and the information about each step as separate blocks. For each step, the 

tool (or the list of tools in the case that the step can be executed by several 

tools such as variant calling) and the tool parameters (see example below) 

are reported. The modules and the steps are explained in Chapter 2.3. 

 

Pipeline configuration file example: 
"id": "helper_test", 

 "analysis": "Germline", 

 "reference_version": "hg19", 

  "workflow": ["alignment"], 

 

"alignment": { 
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        "workflow": [“fastq_alignment", 

"sam_to_bam","sortSam", "bam_QC"], 

        "threads": "2", 

        "ram": "1g", 

        "fastq_alignment": { 

             "tool": "BWA", 

             "BWA v.0.7.17": {"args": [], "algorithm": 

"mem”} 

        }, 

        "sam_to_bam": { 

            "tool": "PICARD v.2.7.1", 

             "PICARD v.2.7.1": {"args": []} 

        }, 

        "sortSam": { 

            "tool": "PICARD v.2.7.1", 

            "PICARD v.2.7.1": {"args": 

["SORT_ORDER=coordinate"]} 

        }… 

} 

The last configuration file is the samplesheet which contains information 

on the samples. The samplesheet contains the list of samples to be analyzed 

(sample_list), the organization of the samples (sample_organization) and the 

files about the samples organized in blocks, one for each module (module 

block) of the pipeline. Within each module block, samples are structured into 

blocks (sample block) based on sample organization: "only case" 

(example1), "case-control" (example 2), or trio (example 3). Each sample 

block is identified by the ID of the case sample. Sample blocks contains 

information about each sample associated with the case sample, and 

identified by role (case, control, or parent). The information concerns the 

name of the sample and the files to be processed in the specific module of 

the pipeline. 

Example 1: “only case” sample organization  
"variantcalling": { 
       "sample1": { 

"case": { 

                 "sample_name": " sample1", 

                 "bam": " sample1.bam"}, 

}, 

      "sample2": { 

    "case": { 

                 "sample_name": " sample2", 

                 "bam": " sample2.bam"}, 

}, 

     ... 

 } 

 

Example 2: “case-control” sample organization 

"variantcalling": { 

       " sample1": { 

    "case": { 

                 "sample_name": " sample1", 

                 "bam": " sample1.bam"}, 
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    "control": { 

                 "sample_name": " sample2", 

                 "bam": " sample2.bam"}, 

}, 

      ... 

 } 

 

Example 3: “trio” sample organization 

"variantcalling": { 

       "sample1": { 

    "case": { 

                 "sample_name": " sample1", 

                 "bam": " sample1.bam"}, 

    "parent1": { 

                "sample_name": " sample2”, 

                 "bam": " sample2.bam"}, 

    "parent2": { 

                 "sample_name": " sample3", 

                "bam": " sample3.bam"} 

}, 

      ... 

 } 

3.3. Data processing workflow  

The main script that performs sample analysis is the Pipeline.py. The 

script is executed by the Analysis_designer interface or using a simple 

command line. The required input arguments are summarized in the 

following table: 

Table 3.1: Input arguments to Pipeline.py script 

Argument Description Comments 

--tools_cfg 

[file] 

Tools config file path Default: 

Helper_dir/configs/tools_cfg/tools.cfg 

--samplesheet 

[file] 

Samplesheet file path Required argument 

--panel 

[string] 

The experiment name 

contained in the 

Experiment.list file 

Required argument 

--pipeline 

[file] 

Pipeline  config file 

path 

Required argument 

--run_id 

[string] 

The identification name of 

the analysis 

Required argument 

--workdir 

[directory] 

The path of the working 

directory 

Required argument 

--workflow 

[string] 

The list of major steps 

confirmed in the analysis 

launcher 

Default: all the major steps 

--parallel 

[bool] 

Enable parallel analysis Default: Not activated (False) 
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--del_temp 

[bool] 

Delete temporary files Default: Not activated (False) 

 

The structure of Pipeline.py is modular and the workflow is managed in 

automatic way. The complete workflow provided by Helper is composed of 

seven major modules (pre-alignment, alignment, preprocessing, variant 

calling, CNV calling, post processing, annotation, post-annotation), each of 

which includes a variable number of other sub-steps. Helper extracts the 

complete workflow from the pipeline configuration file but only executes the 

modules confirmed by the “--workflow” argument. For example, if the Pre-

alignment module is provided in the pipeline workflow, but the user wants 

to start analyzing the data directly from the Alignment, he should omit the 

pre-alignment in the “--workflow” argument. It is important that 

compatibility is maintained between files produced by the previous module 

and entering the next. For example, it is not possible to omit the variant 

calling module if you want to proceed later with the post-processing or 

annotation phase. In fact, these last two modules require VCF files that can 

only be produced by variant callers. 

The files produced by a module are traced by updates of the samplesheet. 

Each module receives as input the updated samplesheet from the previous 

module with information on the files produced; the first module of the 

pipeline uses the samplesheet provided when launching the analysis. Once 

all the steps, provided in the module, have been performed, the last files 

produced are stored in the dedicated directories and their path are indicated 

in the updated samplesheet. In order to track the workflow and to simplify 

troubleshooting, Helper implements a log file system in which the STD-OUT 

and STD-ERROR of the tools are printed. If an error occurs in reading an 

input file or due to an incorrect parameter, Helper specifies in which step of 

the pipeline the problem occurred and reports the error message, issued by 

the failing tool, in the log file of the specific step. 

3.3.1. Pre-alignment process 

The first module of the workflow is the processing of the Fastq files before 

the alignment of the sequences, and is needed to improve the quality of the 

data. The pre-alignment consists of four possible sub-steps that are 

performed on each sample: Adapter Trimming, Fastq filtering (using Read 

mean quality or read length), and Fastq quality control. 

3.3.1.1. Trimming of adapters 

Removal of adapter sequences (read trimming or clipping) is the first steps 

in analyzing NGS data. Adapter contamination will lead to NGS alignment 

errors and an increased number of unaligned reads, since the adapter 

sequences are synthetic and do not occur in the genomic sequence. In 

Illumina sequencing, adapter sequences will only occur at the 3' end of the 
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read and only if the DNA fragment is shorter than the number of sequencing 

cycles. For applications where the fragment size is well calculated, adapter 

contamination is expected to be small, and the adapter removal step can be 

skipped saving time and efforts. 

The tools implemented in Helper among which it is possible to choose for 

the removal of adapter sequences are AGeNT [77] and Cutadapt [78]. The 

Agilent Genomics NextGen Toolkit (AGeNT) is a Java-based (Java 8) 

software module that processes specifically sequencing data obtained via 

Agilent libraries (SureSelect and Haloplex) and should not be used for 

experiments performed with other kits (e.g., Illumina, IDT, and Roche). 

AGeNT is a command-line tools collection that contains a module for 

managing molecular barcodes (LocatIt) and a module that removes the 

adapter sequences (Trimmer). To use AGeNT Trimmer function, the 

indication of adapters sequences it is not necessary, becausethey are 

automatically recognized by indicating,  the specific tag (as input to the tool) 

of the library used for the preparation of the samples. Cutadapt is a very 

simple tool to use and allows trimming both single and paired-end reads 

obtained from any type of NGS library. Cutadapt, unlike AGeNT, requires 

in input the sequences of the adapters to be removed, indicating the position 

in the read (in 3 ', 5' or in the middle of the read). In the case of paired-end 

sequencing, the reverse strand adapters are also required. The wrapper for 

the AGeNT Trimmer function (AGeNT.Trimmer) takes in input the path of 

the AGeNT tool, the Fastq paired files, the specific tag for the NGS library, 

the address of the reference genome, and other ancillary topics. The wrapper 

for the Cutadapt trimming function (Cutadapt.Trim_Adapters) requires the 

path of the Cutadapt tool, the number of threads to be used for analysis, Fastq 

paired files, the adapter sequence in 3' forward and the sequence of the 

adapter in 3' reverse, the path to the reference genome, and other optional 

arguments. In output from the trimming step of the adapters, you get the two 

trimmed Fastq paired files. 

3.3.1.2. Fastq filtering 

The filtering of Fastq files is a useful step to improve the quality of the 

data, excluding reads with low base quality and selecting the reads within a 

certain length range. The Fastq filter step potentially increases the accuracy 

of the NGS analysis but in the case of good quality sequencing experiments 

it is possible to skip it. 

To perform the filtering of the Fastqs, Cutadapt was implemented using 

two different wrappers, one for filtering using mean quality 

(Cutadapt.Fastq_fiter_Qual) and one for filtering using read lenght 

(Cutadapt.Fastq_fiter_Len). Cutadapt.Fastq_fiter_Qual requires in inp A 

novel cryptic splice site mutation in ut the path of the tool, how many threads 

to use for analysis, Fastq paired files, the Base Qual threshold to be used to 

filter reads, and other ancillary arguments. In input, 

Cutadapt.Fastq_filter_Len requires the path of the tool, the number of 
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threads to use for analysis, the Fastq paired files, the maximum and minimum 

length thresholds that delimit the optimal range, and the other ancillary 

arguments. The output from each filtering step contains two filtered paired 

Fastq files. 

3.3.1.3. Quality control 

The Quality control step performs simple checks to ensure that the raw 

data are good and there are no problems or biases potentially affecting 

results. Typical metrics analyzed to assess the quality of NGS data are: 

quality base distribution in reads, GC mean content, contamination with 

adapter sequences and biases in base composition, sequence duplication, and 

reads length distribution [79].   

The FAstQC [80] tool has been implemented in Helper to perform the 

Quality control on Fastq files. FastQC is a perl script that parses Fastq, SAM 

and BAM file and produces an HTML report file that reports the data for the 

sample evaluation in graphical format and a zipped folder containing the 

results in TXT format. FastQC uses multiple modules to calculate the 

statistics:  

1. The “Basic Statistics” module generates a descriptive summary of the 

analyzed sample indicating the file name and the file type, the encoding of 

quality values (e.g., Illumina), the total number of sequences processed, the 

number of sequences flagged as poor quality, the min and max read length 

in the sample, and the overall% GC of all bases in all sequences.  

2. The “Per Base Sequence Quality” module shows an overview of the 

range of quality values across all bases at each position in the FastQ file.  

3. The “Per Sequence Quality Scores” module reports the mean quality 

score distribution over all reads. If a significant proportion of the sequences 

in the run have overall low quality, then this could indicate some kind of 

systematic problem.  

4. The “Per Base Sequence Content” module calculates the proportion of 

each called nucleotide for each base position in reads. An unbalance can 

indicate an overrepresented sequence which is contaminating library.  

5. The “Per Sequence GC Content” module measures the GC content 

across all reads and compare it with a normal distribution from a random 

library. An unusually shaped distribution may indicate a contaminated 

library or some other kinds of biased subset.  

6. The “Per Base N Content” module reports the percentage of N calls at 

each position. N are called when the sequencer is unable to make a base call 

with sufficient confidence and a increased percent of N suggest a low-quality 

sequencing.  

7. The “Sequence Length Distribution” module generates a distribution of 

fragment sizes. More than one peak in the distribution means different sizes 

in the libraries that can introduce analysis biases.  

8. The “Duplicate Sequences” module counts the degree of duplication 

for every sequence and calculates a distribution of duplication level.  
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9. The “Overrepresented Sequences” module finds all of the sequences 

which make-up more than 0.1% of the total and that can indicate some source 

of contamination.  

3.3.2. Alignment 

The next module is the alignment of the sequences into the Fastq files to 

obtain BAM files that contain the aligned reads. The workflow of the 

alignment phase consists of four mandatory steps (Fastq_alignment, 

sam_to_bam, sortSam, indexBam) and a fifth step of Bam quality control 

that is possible (but not recommended) to skip. 

3.3.2.1. Fastq_alignment 

Fastq_alignment is the step responsible for aligning the sequences 

contained in the Fastq files against the reference genome. The aligners 

implemented in Helper are BWA [81] and Bowtie2 [82]. BWA and Bowtie2 

are two tools that implement alignment algorithms based on the Burrows-

Wheeler Transform (BWT), they work well with paired-end reads, and are 

widely used for their accuracy and mapping speed. BWA implements three 

different algorithms: a) BWA-backtrack, b) BWA-sw, and c) BWA-mem. 

The BWA-backtrack algorithm is designed for short Illumina reads (up to 

100bp), while both BWA-mem and BWA-sw are implemented for longer 

sequences and are very similar. BWA-mem is the last implemented 

algorithm, it is faster and more accurate than the other two and it is the 

generally recommended algorithm.  

Bowtie2 allows choosing between two alignment algorithms: a) End-to-

end alignment and b) Local alignment. End-to-end alignment is the one 

performed by default in Bowtie2, and it searches for alignments involving 

all the read bases without trimming the reads (untrimmed alignment), while 

Local alignment maximizes the alignment score by trimming some bases. 

In order to perform the alignment, both tools require that the FASTA file 

containing the reference genome be indexed, each aligner using its own 

function. 

// Building a reference index with bwa and bowtie2 

bwa index [options] reference.fasta 

bowtie2-build [options] reference.fasta output_dir 

In Helper, the wrappers for BWA and Bowtie2 are implemented with the 

functions Bwa.align_fastq and Bowtie2.align_fastq, correspondingly. The 

functions ask in input the paths to the executables of the tools, the Fastq 

paired, the path to the reference genome for mapping the reads (the index 

files of the genome for the respective tools must be present in the same 

folder), the optional arguments of the tool, the alignment algorithm (only for 
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Bwa.align_fastq), the log file, and the output directory. The output of the 

Fastq file alignment step is a file in SAM format containing the aligned reads.  

3.3.2.2. Sam to Bam conversion 

This step converts the format from SAM to BAM via the 

SamFormatConverter function of Picard toolkit [83]. Picard is a JAVA 

package of command line tools for manipulating files containing NGS data 

that has become part of the GATK best practices [43] for the implementation 

of NGS analysis pipelines. 

The Picard.SamFormatConverter wrapper requests the path to the Picard 

Jar file, the SAM file to be converted, and the amount of RAM to use for 

processing. The converted BAM file is returned in output. 

3.3.2.3. Sort Sam files 

After Fastq alignment, the read contained in the SAM/BAM files are 

sorted in random order according to their positions in the Fastq files. In order 

to be usable in the subsequent steps of pre-processing and variant calling, 

the reads in Bam files must be ordered according to the chromosomal 

coordinates of the region in which they are mapped.  

In Helper, the process of sorting Bam files is implemented through Picard 

tool and the wrapper for its sorting function (picard.SortSam) requires the 

path to the Picard Jar file, the Bam file, the amount of dedicated RAM and 

the optional arguments of the tool, the log file and the directory in which the 

sorted file has to be saved. The wrapper default is to sort by coordinates 

(SORT_ORDER=coordinates). In output, a Bam file containing the reads 

sorted first by the reference sequence name (RNAME field), then by the 

mapping position (POS field), is released. 

3.3.2.4. Index Bam files 

Indexing a sorted Bam file allows a quick access to reads that are mapped 

in particular genomic regions and to extract alignment information quickly. 

The index file acts like an external table of contents and allows programs to 

jump directly to specific parts of the Bam file without reading through all of 

the sequences. Many tools require Bam files to be indexed in order to read 

them. The indexing of Bam files is performed using a Picard function. The 

Picard.BuidBamIndex wrapper requests the Bam file to be indexed and the 

amount of RAM to use and returns a file with the same name as the Bam file 

suffixed with “bai”. 

3.3.2.5. Bam quality control 



The Helper platform 

 

 46 

Bam files are evaluated using parameters similar to those of Fastq QC. In 

addition, the following indexes of quality are assessed: the average coverage 

of the target; the uniformity of coverage calculated as the percentage of the 

target with coverage in the range between 80% and 120% of the average 

coverage of the sample, and how much of the target exceeds the minimum 

acceptable coverage threshold (which depends on the application); the 

quality of alignment of the reads on the target in terms of fraction of reads 

that are mapped to the target (in-target and off-target reads); finally, the areas 

with low coverage compared to the rest of the target (gaps) are identified. In 

Helper the Bam quality control is implemented through FastQC. The 

Fastqc.bam_diagnosis wrapper requests the input of the Bam file to be 

analyzed and returns the statistics for the evaluation of the sample. 

3.3.3. Pre-processing 

3.3.3.1. Add readgroups to Bam file 

Adding read groups to Bam files is a step that facilitates the analysis of 

samples by subsequent tools. The function is implemented through the 

picard.AddOrReplaceReadGroups wrapper, which requests the Bam file to 

be modified, the experiment ID, the analysis ID, and the sample_name. The 

function modifies the fields present in the Bam file according to the 

following table. 

Table 3.2 - Tags modified during Add readgroups to Bam file 

BAM TAG FIELD  

RGID Sample name 

RGPL 'ILLUMINA’ 

RGSM Sample name 

RGLB Experiment ID 

RGPU Analysis ID 

3.3.3.2. Mark pcr duplicates 

The marking of duplicate reads within the Bam file is implemented 

through Picard's MarkDuplicates function. The picard.MarkDuplicates 

wrapper asks in input the Bam file to be analyzed and the optional arguments 

to run the tool. The function works by comparing sequences in the 5-prime 

positions of both reads and read-pairs. The tool output is a new Bam file, in 

which duplicates have been identified (not deleted) using SAM flags field 

for each read, and a metrics file indicating the numbers of duplicates reads. 

The wrapper assumes the Bam is sorted using chromosome coordinates 

(ASSUME_SORT_ORDER = coordinates). 
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3.3.3.3. Realignment around InDels 

The tool used for realigning the reads around the InDels is GATK v3. This 

step is no longer implemented in GATK v4 as it is replaced by the local 

realignment of sequences directly in the variant calling step. 

The wrapper GATK.IndelRealigner requests as input the Bam to be 

analyzed, the BED or LIST file that contains the coordinates of the 

sequencing target, and the Fasta file of the reference genome. To improve 

accuracy, the database containing known InDel sites (e.g., 

mills_and_1000G_gold_standard.indels.hg19.sites) can also be provided. 

The realignment process implemented in GATK consists of two steps: 1. the 

sites where it is probably necessary to realign through the 

RealignerTargetCreator function are identified, and 2. the candidate sites 

are realigned through the IndelRealignerfunction. The output of the wrapper 

is a Bam file in which potentially problematic sites due to the presence of an 

InDel have been realigned. 

3.3.3.4. Base Quality Score Recalibration 

The recalibration of the Base quality scores step is implemented using 

GATK v3 or v4. The recalibration process consists of two phases: 1. First, 

GATK calculates for each mismatch found in the Bam file a series of 

statistics and covariates and generates a recalibration table file; 2. Then, 

GATK uses these tables to calculate the new quality score for the bases 

contained in the Bam file. 

The wrapper GATK.BaseRecalibrator requires reads data in Bam format 

whose base quality scores need to be assessed, one or more databases of 

known polymorphic sites that can be useful to improve the process quality 

(e.g., mills_and_1000G_gold_standard.indels.hg19.vcf or dbsnp.vcf), the 

target file in BED or LIST format, and the reference Fasta file. The first step 

of generating the recalibration table is implemented through the 

BaseRecalibrator function for both versions of GATK, while the second step 

is performed by the PrintReads function for GATK v3 or the ApplyBQSR 

function for GATK v4. The output of the GATK.BaseRecalibrator is a Bam 

file with recalibrated quality scores. 

3.3.4. Short variant calling 

The variant calling step is performed differently based on the type of 

samples (germline or somatic) and their organization in the samplesheet 

(only case, case-control, trio). In the case of germline analyses, variant 

calling can be performed in single-sample, in cohort and in trio modalities, 

while in somatic analysis the samples are organized in case-control modality 

(figure). 
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In order to perform variant calling, Helper implements 3 tools: GATK 

(HaplotypeCaller + GenotypeGVCF) [84], Freebayes [85], and VarScan2 

[86]. For somatic variant calling, GATK (Mutect2), VarScan2, and Vardict 

[87] are implemented. 

HaplotypeCaller and Freebayes are two variant callers based on a local 

de-novo assembly of the suspicious regions and implement a method of 

detection of the probable haplotypes, present in the target analyzed, a priori 

from the alignment information contained in the Bam files. Both algorithms 

identify regions that show sufficient evidence to hypothesize the presence of 

a variant and construct a window of interest (“ActiveRegion” for GATK) 

around the candidate region. All possible haplotypes observed within the 

window of interest are calculated and the one with the greatest likelihood of 

actually being present in the sample is considered. GATK calculates the 

likelihood after a local realignment step of the haplotypes, while Freebayes 

performs a count of the frequencies of the observed haplotypes. Using the 

information on the haplotypes, the probability of the genotype for each 

potential variant site is inferred using Bayesian methods. Finally, the most 

likely genotype is assigned to each genomic position within the haplotype 

considered (an example of haplotype-based workflow is shown in figure). In 

both HaplotypeCaller and Freebayes, the genotype Quality score associated 

with the variant is provided as the difference between the likelihood of the 

chosen genotype and the second most probable. 

 

Figure 3.3: The HaplotypeCaller genotyping workflow (Figure from [84]) 

 

Mutect2 is the variant caller implemented in GATK for the analysis of 

somatic samples. The workflow for identifying variants is similar to those of 
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HaplotypeCaller. Both search for the active regions, perform the assembly 

de novo to reconstruct the haplotypes, calculate the probability associated 

with each identified haplotype, and estimate the most likely genotype. The 

main difference is represented by the model used to calculate the likelihood 

of the genotype. HaplotypeCaller relies on a fixed ploidy assumption to 

calculate the genotype likelihood, Mutect2 instead does not use a fixed 

ploidy model in order to ensure greater accuracy in calling variants with a 

lower allelic frequency. This allows Mutect2 to gain greater flexibility in the 

evaluation of samples with problems of fractional purity, sub-clonality, and 

copy number variations common in cancer sequencing applications. 

On the other end, VarScan is a tool that implement a robust heuristic 

approach to call variants. Unlike the Bayesian tools, it does not calculate the 

probability of the genotype based on the observations on the sample but 

evaluates the mismatches with the reference genome on a base-by-base basis 

through a threshold system. For each possible variant site, apply a cascade 

of quality filters to evaluate the parameters supporting each observed allele. 

The bases that mismatch and that exceed the coverage and base quality 

thresholds on the reads with non-null mapping score are examined, the others 

are recognized as non-variant positions. The alleles identified in the position 

under examination are tested based on the number of supporting reads, allele 

frequency, strand balance, and the p-value derived from a Fisher's Exact Test 

on the observations on the variant and on the reference. The genotype of the 

evaluated site is determined based on the frequency of the variant allele. If 

the allelic frequency exceeds a certain threshold (0.80 by default) then the 

genotype is Homozygous, otherwise heterozygous. Although GATK 

HaplotypeCaller and FreeBayes are two tools that generally work well, 

Varscan guarantees a different “point of view” useful for increasing the 

number of detected variants in the case of joint multi-tool variant calling.  

VarDict is a variant caller developed for cancer sequencing applications 

and allows to perform analysis of paired samples (tumor and matched normal 

samples) to detect germline, somatic and loss of heterozygosity (LOH) 

variants. Similar with Varscan, VarDict uses a heuristic approach for the 

identification of variants and implements an algorithm specially developed 

for the detection of InDels hard to evaluate and to estimate their allelic 

frequency with greater accuracy. Taking advantage of the fact that InDels 

often cause misalignments and clipped reads, VarDict performs two types of 

local realignments based on the size of InDels:  

1. For small InDels, a supervised method is used that realigns clipped 

reads in the around variants already identified, improving the estimate of the 

allele frequency.  

2. To search for new larger InDels, the near clipped reads areas are 

monitored, a consensus sequence is generated which VarDict realigns 

(unsupervised realignment) within a window of variable size based on the 

length of the InDels to be identified. Based on the result of the alignment of 

the consensus, deletions, insertions or complex variants are called even if 

they are larger than the length of the reads.  
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When evaluating paired samples, VarDict performs for each identified 

variant, a fisher's exact test to determine if the difference of allele frequency 

between case and control samples is significant. Variants present only in the 

case sample are called somatic, variants present in both samples are called 

germline, and variants in heterozygous state in control sample that become 

homozygous in the case sample are called LOH. 

 

Figure 3.4: Variant calling process based on the sample organization 

3.3.5. Post processing 

3.3.5.1. VCF normalization 

During variant calling, the same indel can often be reported multiple times 

and with different starting positions in the VCF file. The standard convention 

with VCF is to place an indel at the left-most position to define a unique 

record. The VCF normalization step is necessary to ensure that the InDels 

described in the VCFs are reported in the left-most standard. In Helper this 

step is performed by GATK v4 or Bcftools. 

The two wrappers gatk.LeftAlignAndTrimVariants and bcftools.norm 

require input the VCF file to normalize and the reference genome. Both 

wrappers implement by default the splitting of multiallelic sites (sites where 

are reported more than one alternate alleles) in biallelic sites. The normalized 

VCF is returned as output. 

3.3.5.2. VCF filtering 

VCF file filtering is implemented through the VariantFiltration tool of 

GATK v3 and GATK v4. VariantFiltration allows to perform a Hard filtering 

of the variants using a threshold system on the information contained in the 
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VCF file. It was decided not to implement filtering methods based on the 

machine learning approach (such as GATK's VQSR) in the v1.0 version of 

Helper as it is a framework dedicated to the analysis of target sequencing 

data. In fact, The ML filtering algorithms are poorly performing for this type 

of applications. 

The wrapper for the filtering function (gatk.VariantFiltration) asks for the 

VCF file to be filtered, the reference genome, and filters that can be provided 

as an argument to the tool at the pipeline design time. In output the function 

produces a VCF file that contains the FILTER field modified with the 

respective filtering tags if the variants that do not exceed the thresholds, and 

with PASS in the others. 

3.3.5.3. VCF split by samples 

This step is needed only in the case in which the germinal variant calling 

is performed in Cohort mode. The joint VCF that contains all the samples of 

the cohort is split into several VCFs containing a single sample in order to 

be analyzed individually. 

The scripts.Filter_by_sample wrapper calls a script developed in-house 

(vcf_split_by_sample.py) which requests the joint VCF file and the sample 

name used for information extraction and with which to rename the filtered 

VCF. The script filters the VCF joint using the sample name, extrapolates all 

the variants identified in the sample excluding sites with wild type (0/0) or 

unknown (./.) genotype. In output, a VCF file is obtained, in which the fields 

of the chromosomal position (CHROM and POS), of the alleles (ID, REF, 

and ALT), of the FILTER, and of the INFO remain unchanged with respect 

to the joint VCF starting file and the field FORMAT that reports only the 

information of the sample of interest. 

3.3.5.4. VCF merge 

The VCF merge step generates a single VCF using calls from multiple 

variant callers. The scripts.merge_vcfs wrapper calls an in-house script 

(merge_vcfs.py) which requests as input the VCFs issued by the individual 

variant callers: GATK, Freebayes, and Varscan for germline analysis, and 

GATK, Varscan, and Vardict for somatic variant calling. For each variant it 

extracts and processes the information contained in the different VCFs and 

outputs a new merged VCF file. The new VCF contains the set of variants 

identified by at least one of the variant callers. The new FORMAT field is 

the result obtained by averaging the values of the FORMAT fields of the 

three software, and the most represented genotype across the three tools is 

chosen. The new INFO field shows the INFO fields of the other VCFs with 

a prefix indicating the source software (for example GATK_AC). The INFO 

field also reports the FORMAT fields of each VCF in order to track original 
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values (for example GATK_FORMAT). The new file respects the VCFv4.2 

format and is compatible with the most software that analyze VCF files. 

3.3.5.5. VCF to TSV conversion 

This pipeline step converts the variant format from VCF to TSV. The TSV 

format is easier to read and can be parsed like an Excel or Calc worksheet. 

Also, in this case the vcf_to_tsv.py script that deals with the conversion of 

the format is a script developed in-house and requires the VCF file to be 

converted, the FORMAT and INFO fields to be reported in the TSV file, and 

the name of the output file. The FORMAT and INFO fields to be reported in 

the TSV file, must be indicated as a comma-separated list under the “--

format” and “--info” parameters. Alternatively, it is possible to provide a file 

(“--tag_file”) containing the list of FORMAT and INFO fields of interest. 

Within the tag_file, the fields must be indicated as a list of elements (one 

entry per line) consisting of FORMAT or INFO and the name of the field of 

interest separated by TAB. The nested INFO fields, such as the formats of 

the individual Variant callers in the case of VCF merged (e.g., 

GATK_FORMAT), must be reported indicating the name of the nested field 

like GATK_FORMAT and the name of the field of interest contained in the 

nested one as GT, separated by ":". 

 

Examples of entries in the tag_file: 

FORMAT GT 

FORMAT AD 

INFO AC 

INFO GATK_FORMAT:GT //nested field 

INFO FREEB_FORMAT:DP //nested field 

The output TSV file contains a Header that includes the mandatory 

descriptive fields about the chromosomal position of the variant, the alleles, 

the filters ('CHROM', 'POS', 'ID', 'REF', 'ALT', 'FILTER'), and the whole list 

of fields extrapolated from the separate FORMAT and INFO TAB. The 

information corresponding to the fields of the Header, separated by TAB, are 

shown for each variant (one per line). 

The wrapper scripts.Vcf_to_tsv asks as input the path to the script, the 

VCF file to convert, the tag_file, the list of fields of the FORMAT and the 

list of fields of the INFO report in the TSV file. 

3.3.6. Variant annotation 

The variant annotation step is implemented in Helper using Variant Effect 

Predictor (VEP) [88] and Annotate Variant (ANNOVAR) [89]. Both tools 

annotate variants locally by extracting information from precompiled 

databases. Both VEP and ANNOVAR are two tools widely used for their 
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ease of use and completeness of annotation. ANNOVAR performs three 

levels of annotation using three different scripts or using a single line 

command: 1. Gene-based annotation to identify whether SNPs or CNVs 

cause protein coding changes and the amino acids that are affected; 2. 

Region-based annotation to identify variants in particular genomic regions, 

for example, conserved regions, predicted transcription factor binding sites, 

segmental duplication regions, or many other annotations on genomic 

intervals. 3. Filter-based annotation for information about the presence of the 

variant in the various databases (dbSNP, population database, etc.), or to 

extract the scores from the damage prediction tools. VEP, on the other hand, 

generate the entire set of annotations with a single line of code, and allows 

information on the gene, the region and the various clinical and population 

databases to be integrated with other custom databases external to the pre-

compiled one, increasing the quantity of potentially obtainable information. 

The wrapper for VEP (vep.vcf_annotation) requests the VCF file to be 

annotated, the reference genome, the assembly with which you want to 

annotate the variants (the precompiled VEP database), the species (the 

default specie in Helper is “homo_sapiens”), the fields with which you want 

to note the variants, the additional plugins (optional). The additional plugins 

must be present locally and must be indicated in the tools configuration file 

as a database (for example dbSNFP). 

The ANNOVAR wrapper (annovar.vcf_annotation) requests in input the 

VCF file to be annotated, the reference genome, the path to the precompiled 

database, and the protocol with which to annotate the variants. In Helper, the 

annotation using the single command line is implemented for ANNOVAR. 

The output of the module is an annotated VCF file. 

3.3.7. Post annotation 

3.3.7.1. Report annotation in TSV format 

This step reports in TSV format the variants contained in the annotated 

VCF. The scripts.add_Annotation wrapper calls an in-house script 

(annotation_extractor.py) which requests the annotated VCF, the file 

containing the list of annotations to be extracted, the TSV format file 

generated in the vcf_to_tsv step of the post-processing module (optional), 

the file containing the list of main transcripts from which to extract the 

annotation information (optional), as well as the log file and the working 

directory. The script first filters the transcripts for each variant, considering 

only those provided in input, or alternatively the canonical ones; then look 

for the annotation tags provided in input with the annotation list file; finally, 

if the TSV file produced by post-processing is supplied to him, the 

annotations extracted are added directly to this file, otherwise the variants 

are reported in new file in TSV format. 
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3.3.8. CNV calling 

In Helper the CNV call module is implemented using GATK, Decon (90), 

CoNVaDING [91], and CNVkit [92]. 

GATK calls CNVs using a Read Depth (RD) based method for both WGS 

and targeted sequencing applications. The GermlineCNVCaller algorithm 

uses a Bayesian approach to calculate the likelihood of the ploidy of the 

regions of interest and call the CNVs. The algorithm generates a coverage 

model by calculating all the descriptive parameters of the distribution of read 

depth, variance and bias within the target through the comparative analysis 

of a training dataset that contains a series of similar samples (same 

sequencing platform, same library preparation protocol, and same capture 

kit). From the training dataset, GermlineCNVCaller also infers the ploidy 

status of the target contigs and uses them as the baseline copy number state 

for a Hidden Markov Model (HMM). The HMM algorithm uses information 

on the region of interest and the parameters of the coverage model to 

calculate the probability that a change in copy number status may have 

occurred in one or more adjacent regions of the target. GermlineCNVCaller 

can runs in Cohort mode or Case mode: in cohort mode the coverage model 

and its parameters are calculated directly from the samples that are part of 

the cohort to be analyzed and based on these parameters it calls the CNVs; 

in Case mode the model is built on a cohort different from the samples to be 

analyzed but which must be compatible in terms of library preparation and 

sequencing platform. The cohort mode needs a large number of samples to 

be analyzed in parallel in order to work at its best (recommended 30 WES or 

WGS samples), while the Case mode allows you to analyze even a single 

sample at a time as long as you have a model trained with a sufficient number 

of compatible samples. The result of the CNV call is linked to the quality of 

the coverage model both in the number of samples that compose the training 

cohort and in the estimation of the hyperparameters that can be modified by 

the user and must be evaluated on a case-by-case basis. The 

GermlineCNVCaller tool has computational resource requirements to 

consider that scale linearly with the number of analyzed samples and the 

complexity of the trained model. 

CoNVaDING is a CNV caller that implements an RD-based algorithm 

based on comparative analysis with a group of control samples. The 

CoNVaDING workflow consists of serveral steps, starting from the selection 

of the best control group, composed of samples generated with the same 

library preparation protocol and sequenced with the same platform. The tool 

performs two coverage normalizations for each region contained in the 

target: a normalization on the whole sample using the average coverage of 

the entire target, and a normalization on each gene, comparing the coverage 

of the single exons with the average coverage of the entire gene. The most 

informative samples are chosen, based on the similarity in terms of coverage 

with the sample under examination, to be used as a reference set for calling 

the CNVs. The CNV call is made for each target region by comparing the 

normalized coverage of the sample under examination and the average 
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coverage of the reference set and calculating the Z-score between the 

normalized coverage distribution (first on the whole sample and then on the 

specific gene) in the sample under examination and the distribution of the 

control group. The CNVs are called by combining information on the 

coverage ratio and distributions in a different way based on the magnitude 

of the event identified. CoNVaDING filters the called CNVs by dividing 

them into 3 sets of different sensitivity and specificity based on the quality 

control results on the samples. 

 

Figure 3.5: The CoNVaDING workflow (Figure from [91]) 

Decon is an ExomeDepth based tool [93], optimized for target sequencing 

applications that implement an RD type approach. CNVkit calculates a 

coverage metric called the fragment per kilobase and million base pairs 

(FPKM) for each exon in the target. The FPKM normalizes the number of 

reads that map the analyzed region based on the length of the exon and the 

total number of samples reads. CNVkit works in batch mode and requires a 

minimum of input samples to ensure call quality (the number of samples 

depend on the experiment). The call of the CNVs is made through an HMM 

which considers the FPKM, the quality of the analyzed region, the quality of 
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the entire sample in terms of coverage and correlation with the other samples 

of the incoming cohort. 

CNVkit uses both the on-target reads and the nonspecifically captured off-

target reads to identify CNVs for each sample. Both the on- and off-target 

locations are separately used to calculate the mean read depth within each 

interval. In fact, for each Bam file, CNVkit computes the log2 mean read 

depth in each on and off- target bin. CNVkit uses a copy number reference 

in order to correct the results of test samples. The reference profile is 

estimates using samples derived from same NGS protocol and analyzed 

using same sequencer. The number of reference samples depends on the 

applications; it is possible to generate a reference using just a sample, but 

more samples are recommended. Additional information can be associated 

with each bin in order to perform GC bias, and repetition bias correction. 

The CNV calling is performed after a read depth fixing step. The single 

sample's on- and off-target read data are combined, then CNVkit removes 

bins that fail quality check, performs the correction of systematic biases, 

subtracts the reference read depth from each bin, and finally median-centers 

the corrected copy ratios. The sample's copy ratios are segmented into 

discrete copy-number regions and the report containing CNV calls is emitted. 

The segmentation step can be performed using a set of algorithms (CBS, 

HaarSeg, HMM) in order to adapt the analysis to different applications. 

The CNV callers implemented in Helper can work both in single sample 

mode and in batch mode. Whereas the single sample mode uses samples from 

other experiments as a reference in order to compare the analyzed sample 

and identify variants, the batch mode uses samples in the same cohort as 

reference. In Helper, the choice between the two calling modalities depends 

on the Experiment configuration file. If the fields that concern CNV tools 

reference files and directories (for example GATK ploidy and call models, 

or the control samples directory for CoNVaDING) are empty, then Helper 

performs CNV calling in batch mode, otherwise uses the single sample 

mode. 

3.3.9. Sample organization and workflows 

The sample organization is important for the workflow setting (Figure 

3.6). The pre-alignment, the alignment, and the pre-processing modules are 

performed ever in the same way, based on the workflow set in the pipeline 

configuration file. Files from all samples are analyzed step by step 

independently form the sample organization. On the other hand, variant 

calling strongly depends on the sample's organization: “single-sample” or 

“cohort” modality of germline variant calling can be performed with “only-

case” sample organization, while trio germline analysis and case-control 

somatic variant calling are performed in case of “trio” and “case-control” 

organization, respectively. 

In case of single sample variant calling using multiple tools, VCF files of 

the same sample are merged in a single VCF file; otherwise, the merging 
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step is bypassed. This file is optionally processed, filtered, annotated, and 

converted in TSV format. The final TSV file contains information about 

variants in a single sample. 

In case of cohort variant calling, a multi-sample VCF is produced for each 

used tool. Joint VCF files are split in single sample VCFs; thereafter, the 

workflow proceed per single-sample analysis and therefore, each final TSV 

contains the variants of a single sample, to which useful information about 

allele count, allele number, and allele fraction in the cohort are added. 

In case of trio variant calling, the split step is bypassed. VCF files from 

the tools are merged in a single VCF file, and then analyzed as a single 

sample VCF. The final TSV file contains variants from the case sample and 

from both parent samples. Information about the genotype and quality scores 

are reported for the three samples, in order to understand which samples are 

carriers of the variants and to reconstruct the variant segregation. 

The case of case-control variant calling, is similar to the trio one. The 

splitting step is bypassed, VCF files from different tools are merged in a 

single VCF and analyzed as a single-sample VCF, and the final TSV files 

contains variants from both the somatic and the control samples. In this case 

is important to understand which variants are present only in the somatic 

sample and which are also present in the control sample. Information about 

genotype and quality scores are reported for both samples to facilitate the 

identification of true somatic variants from artifacts. 

In this version of Helper, the CNV calling module is performed ever as 

single-sample or cohort (batch) modality. In case of trios or case-control 

samples organization, CNV module consider all samples as only-case mode. 

For each tool a file report is generated, and the comparison between child 

and parents, or tumor vs normal sample have to be performed manually. In 

the next version, this comparison step will be implemented. 
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Figure 3.6: Workflows based on the sample's organization 

Table 3.3: The table reports tools implemented in Helper, the version, the 

module, and the steps where can be used. 

Tool name Version Module Step 

AGeNT v.3.5.1.46 pre-alignment Trimming of adapters 

CUTADAPT v.1.13 pre-alignment Trimming of adapters 

pre-alignment Fastq filtering 

FastQC v.0.11.8 pre-alignment Fastq QC 

pre-processing Bam QC 

BWA v.0.7.17 alignment Fastq alignment 

BOWTIE2 v.2.3.5.1 alignment Fastq alignment 

PICARD v2.7.1 alignment Sam to Bam conversion 

alignment Bam sorting 

alignment Bam indexing 

pre-processing Add or replace read group 

pre-processing Duplicates marking 

GATK v.3 v.3.7 pre-processing Indel realignment 

pre-processing Base quality score 

recalibration 

variant calling short variant calling 

post-processing VCF filtration 

GATK v.4 v.4.1 pre-processing Base quality score 

recalibration 

variant calling short variant calling 

variant calling CNV calling 

post-processing VCF filtration 

post-processing VCF normalization 

Freebayes v.1.1 variant calling short variant calling 

Varscan2 v.2.3.9 variant calling short variant calling 

VarDict-Java - variant calling short variant calling 

Samtools v.1.3.1 variant calling short variant calling 

Bcftools v.1.5 post-processing VCF normalization 

VEP - annotation VCF annotation 

Annovar - annotation VCF annotation 

Decon v.1.0.2 variant calling CNV calling 

CoNVaDING v.2.3.2 variant calling CNV calling 

CNVkit - variant calling CNV calling 
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3.4. The Helper GUI 

To facilitate the user experience in the setup of the configuration files In 

order to facilitate the user experience in the compiling of the configuration 

files, in the preparation of the samplesheet file, and in the setup of the 

analysis of the samples, a simple graphical user interface (GUI) is 

implemented in Helper. The GUI was developed in Python 3 language using 

pyQT5 python module. The GUI can be called using simple command line: 

Python /paht/to/Helper.py  

The first window that appears is the main Helper window and contains 

five buttons, each of which opens another window: 

1. The button labeled "compile shamplesheet" opens the 

Samplesheet designer window; 

2. The button labeled “Add or Edit gene panel info” opens the 

Experiment designer window; 

3. The button labeled “Add or edit pipeline” opens the Pipeline 

designer window; 

4. The button labeled “Instrument settings” opens the Samplesheet 

designer window; 

5. The button labeled “Start analysis” opens the Analysis settings 

window. 
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Figure 3.7: The Helper’s main window 

3.4.1. Tools setting 

The tool setting window allows the compilation of the Tools config file. 

This window automatically loads the Tools configuration file into the 

/pathtoHelper/config/tools folder. Any changes made to the information and 

settings of the tools are automatically saved in that configuration file. 

The main window of the Tool settings contains the list of tools 

implemented in Helper, the list of databases that can be used in the various 

steps of the pipeline by the tools, and the list of reference files. When you 

select a tool, a database, or a reference genome, the information present in 

the configuration file is displayed in the “Settings” table.  

The “Add” button opens a window (Add tool info window, for the button 

dedicated to tools) in which you can indicate: the tool name field that 

identifies the tool within Helper; the tool version for tracing tools with 

similar names (e.g., GATK v3 and GATK v4); the path of the main script in 

case of tools developed in Python, R, Perl, or Bash, and of the jar file in case 

of Java tools; the tags that indicate in which steps the tool can be used. The 

tags can be entered manually, or through the “Add_tags” window which can 

be accessed via the appropriate button. The Add Tags window contains the 

list of possible pipeline steps. By selecting the steps and confirming, the tags 

will be automatically added to the tool. Using the save button, information 

contained in the Add tools window is saved in the tool's configuration file 

and the new tool is added to the list in the main window. 

The “Set” button opens a window that contains the same fields as the “Add 

tool” window. In this case the fields are pre-filled with the information of 

the selected tool extracted from the configuration file. Clicking the save 

button, the information in the configuration file is overwritten by the 

modified one.  

Using the Delete button, the selected tool is deleted from the list of tools 

and from the configuration file. 
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Figure 3.8: The Helper’s Tool Settings window 

3.4.2. Experiment Designer 

In the experiment designer window, all the information contained in the 

Experiment configuration file must be specified. Using the “Panel Name” 

drop-down menu it is possible to choose an existing experiment to modify it, 

or to create a new one by simply entering a new experiment ID. From the 

drop-down menu “Panel chemistry” it is possible to select the type of sample 

preparation: “Capture Enrichment” or “Amplicon”. In the "Gene List" field 

it is possible (optional) to indicate the list of genes contained in the panel 

used for the experiment; in the “Principal Transcript List” field it is possible 

(optional) to indicate the list of transcripts necessary to filter the annotations 

of the variants in the post-annotation form; In the "Target file" fields it is 

necessary to indicate the file containing the target in LIST format and in BED 

format. Finally, it is necessary to indicate the directories and files essential 

to the tools to make the CNV call. Each tool needs specific files in order to 

perform the analysis. The example in the figure shows the fields dedicated 

to GATK: The target file in LIST format dedicated to the CNV call, the 

Ploidy model used by the algorithm for calculating the likelihood of the 

genotype, and the Call model needed with the 'Single sample' CNV calling 
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mode. The "Reset Experiment" button deletes all the fields of the selected 

experiment, while the "Save Experiment" button allows you to save the 

changes made or to save the new experiment in the Experiment configuration 

file. 

 

Figure 3.8: The Helper’s Experiment Designer window 

3.4.3. Samplesheet Designer 

The samplesheet designer allows the organization of sample files in such 

a way that they can be analyzed by Helper. The main window has two search 

buttons. The "search files" button allows you to search for files one by one 

to add them to the list and create a new samplesheet; if multiple files are 

selected at the same time, they will be added together. The drop-down menu 

of the Pipeline step determines in which module the files will be saved. For 

example, the selection of prealignment, allows the selection of Fastq files 

only (which are files compatible with the prealignment module); they will be 

organized in such a way as to distinguish Fastq R1 from R2 (and Fastq I2 if 

needed). The sample ID will be inferred directly from the files but can be 

changed later. It is possible to add one sample at a time by right clicking on 

the table and selecting add sample; in that case the Fastq files will be added 

individually by double clicking on the specific box. From the drop-down 

menu it is possible to choose the four starting modules of the pipeline: 

prealignment, alignment, preprocessing, variant calling (short variants and 

CNV). For prealignment and alignment only Fastq files can be selected, 

while for preprocessing and variant calling only Bam files can be selected. 

The second button (open samplesheet) allows you to open and edit an 

existing samplesheet. In this case, the drop-down menu allows you to switch 

between the different modules within the samplesheet.  
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Figure 3.9: The Helper’s Samplesheet Designer window 

The "Sample organization" radio button is used to indicate the 

organization of the samples in the pipeline. Depending on the organization, 

once the setting window is opened using the "Organize samples" button, you 

can indicate the role of each sample. If the organization is "only case", each 

sample will be considered independently; if it is case control, you must 

indicate which sample is the case and which is the control; in the case of 

"trio" it is necessary to indicate who is the case and who are the relatives. In 

order to save the pipeline, it is necessary to perform this sample organization 

step. 

 

 

 

Figure 3.10: The “Organize Samples” window 
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3.4.4. Pipeline designer 

The Pipeline Designer window allows the design of new pipelines or the 

modifications of existing ones. Through the drop-down menu "Pipeline" the 

pipeline can be chosen. Through the "Tools cfg" field it is possible to choose 

the tool configuration file from which the tools, that can be used in each step 

of the pipeline, are extracted. The two drop-down menus "Analysis" and 

"Reference version" indicate the analysis type (somatic or germline) and the 

version of the reference genome to use, correspondingly. The central core of 

the interface is the tree of the analysis steps. The user decides which steps to 

enable and disable in the pipeline: if a step belonging to a module is enabled, 

the module is also automatically enabled; if all the steps of a module are 

disabled, the module itself is also disabled; if you enable or disable the 

module directly, all the steps of the module are enabled or disabled. When a 

step is selected, the tools provided and the specific settings for the selected 

step are displayed in the next window. Through the buttons "Use / add this 

tool" you choose which tool to use to perform the step, in case of multi-tool 

step the selected tool is added to the list. Using the button "Don't use this 

tool" you remove the tool from those provided in the step. When a tool is 

chosen to perform the selected step, it is also indicated in the “Analysis step” 

tree, under the “Tools” field. The settings compiled in the Step settings table 

are used by all the tools included in the list, while the Tool settings table 

contains those relating to the single selected tool. In this table you can enter 

all the input arguments and parameters of the selected tool, to further 

customize the analysis. Finally, the “Delete Pipeline” button deletes the 

selected pipeline, the "Cancel" button deletes all unsaved changes, and the 

"Save" button saves the pipeline as a Json format. 
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Figure 3.11: The Helper’s Pipeline Designer window 

3.4.5. Analysis Settings 

Finally, the Analysis settings window allows you to execute the Helper 

main script (pipeline.py) and to launch the analysis. In order to start the 

pipeline, it is necessary to specify the ID of the single run, the experiment 

(Panel name) from which the samples are derived, and the pipeline 

configuration file. The samplesheet file, the working directory and the tools 

configuration file are also required. After the pipeline configuration file is 

selected, the steps provided by the chosen pipeline appear in the "Analysis 

steps" tree. By deselecting the modules within the Analysis steps tree, you 

choose which steps to process in the specific workflow. For example, if my 

pipeline includes the complete workflow but there is a need to start the 

analysis from the alignment, the pre-alignment module must be deselected; 

or, if for the specific run it is not necessary to call the CNVs, deselect Copy 

number variation in the Variant calling module. This strategy allows you to 

restart the analysis from the module in which it stopped, or to save time if 

you do not need to run a particular module. The two flags "Delete temp files" 

and "Use parallel analysis" activate the elimination of the temporary files of 

the modules and launch the pipeline by activating the parallel processing of 

the samples, respectively. The temporary files are all those files produced by 
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the intermediate steps within the modules and which do not need to be 

subtracted in the long term. Deleting these files saves a large amount of 

memory space. Parallel analysis allows to reduce sample processing times 

but requires adequate hardware resources. Once the configuration files have 

been selected, the workflow selected and the paralleling and deletion 

parameters of the temp files have been set, the analysis can be added to the 

queue. You can prepare multiple runs and add them to the queue before 

starting sample processing; in the event of multiple analyzes in the queue, 

these will be processed in series, in the order in which they were added. The 

start Analysis button calls pipeline.py and provides it with all the parameters 

necessary to perform the analysis. 

 

Figure 3.12: The Helper’s Analysis Settings window 

3.5. Workflow performance study 

Understanding whether it is possible to use Helper within a clinical and 

research context is a necessary step to test the potential of the software. For 

this reason, an ad hoc pipeline was developed for the needs of the genetics 

laboratory of the CMGCV. The CMGCV mainly uses two gene panels for 

diagnostic and research routines: the Illumina Trusight Cardio kit for the 
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study of hereditary cardiomyopathies and aneurysmal connective tissue 

diseases, and the Illumina Trusight Cancer kit for the study of hereditary 

tumor pathologies.  

3.5.1. Trusight Cardio and Trusight Cancer Panels 

The TruSight Cardio (TSCardio) is a gene panel that provides 

comprehensive coverage of 174 genes with known associations to 17 

inherited cardio-vascular conditions, including cardiomyopathies, 

arrhythmias, aortopathies, and more. Genes were expertly selected with 

researchers at the National Heart Center Singapore and Imperial College of 

London. The TruSight Cancer (TSCancer) is a gene panel developed in 

collaboration with cancer genomics experts, that includes 94 genes and 284 

single nucleotide polymorphisms (SNPs) associated with a predisposition 

towards cancer. The TSCardio target is 571,897 bp long and allows to 

sequence 12 samples per run with Illumina v2 reagents (based on 300x mean 

coverage of targeted content). The TSCancer target is 252,835 bp long and 

allows to sequence 24 samples per run with Illumina v2 reagents (based on 

250x mean coverage of targeted content). 

3.5.2. Computing performance study 

Critical problems in the management of NGS data within the laboratories 

include the quantification and and selection of the suitable computing 

resources supporting the sequence analysis. There is no optimal solution for 

each case, but the the computing capacity to has to be optimized for the 

specific needs. Some laboratories produce a mass of data compatible only 

with high-performance computing systems, but in many other cases it is 

possible to adopt fewer demanding solutions such as workstations or 

personal computer stations. The analysis of gene panels such as Trusight 

cardio (TSCardio) and Trusight cancer (TSCancer), for example, does not 

require high computational performance and could be performed in stations 

with hardware features that are now common on the market and at low cost.  
To verify the analysis capabilities of a common computer (PC) against a 

workstation (WS) designed ad hoc for targeted sequencing applications, the 

performance study of a pipeline implemented through Helper was performed, 

evaluating the analysis times of the samples sequenced using TSCardio and 

TSCancer gene panels. 10 cohorts of samples were selected for each of the 

two Trusight panels. Each of the cohorts is derived from a sequencing 

experiment performed on MiSeq Illumina. The cohorts prepared with the 

TSCardio contain of 12 samples, while those prepared with the TSCancer are 

composed of 24 samples. The workstation (WS) used for the tests has 64 GB 

(4 x 16, DDR4) of RAM memory and an Intel core i9-10940X processor with 

3.30 Ghz and 28 threads. To simulate the use of a PC, analysis of the samples 

was started in serial mode, using 2 threads for each step and limiting the 
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amount of usable RAM to 8 GB. Instead, to calculate the performance of the 

workstation, the analysis of the samples was started in parallel, using 2 

threads for each step and without limiting the use of RAM. The average 

times, calculated on the analysis of the 10 different cohorts for both panels, 

were recorded both for the single step and for each module of the pipeline 

by comparing the serial mode with the parallelized one. 

The pipeline used is the “trusight_germline”. The trusight_germline was 

developed through Helper and is implemented within the platform as a 

precompiled pipeline. The workflow of the pipeline include: 

• Alignment of Fastq files using BWA-mem. 

• Sam to Bam files conversion, bam sorting, and marking of 

duplicates using Picard tool. 

• Realignment around indels and Base Quality Score Recalibration 

using GATK v.3.7. 

• Joint Variant calling using GATK v.4.1 and Freebayes. 

• Annotation using VEP. 

• VCF to TSV files conversion. 

• CNV calling using GATK v4.1. 

For the TSCardio, the computing capacity of the workstation is sufficient 

to analyze all 12 samples in parallel using 2 threads tools for each instance. 

Also for the TSCancer, the workstation can analyze 12 samples 

simultaneously, which however represent half of the samples in the cohort. 

The results are summarized in tables 3.4 and 3.5. 

3.5.2.1. Trusight_germline runtime 

The first module is the Alignment; the entire module is processed with 

average times of 3 min and 14 sec for a single TSCardio sample and 1 min 

and 28 sec for each TSCancer sample. The step that takes highest time 

fraction is the alignment of the Fastq files with BWA (2 min, 36 sec). The 

most time-consuming module is the preprocessing of the Bam files, which 

takes about 15 min for each TSCardio sample and almost 8 min for each 

TSCancer sample. By itself, the Indel realignment step represents about 30% 

of the processing time of the entire preprocessing module; and skipping it 

would allow a significant time saving (see chapter 2.3.3). The Base quality 

recalibration step takes a long time to perform (9 min for each TSCardio 

sample and 4 min for TSCancer) and represents almost 60% of the module 

time and between 25 and 30% of the processing time of the entire pipeline 

for calling and annotating short variants. The variant calling module 

performed using two tools takes about 5 min and 3 min and 40 sec per sample 

for TSCardio and TSCancer, respectively, and the processing time of the two 

tools is almost the same. The Annotation module of the variants performed 

using VEP takes about 3 min for the TSCardio and about 2 min and 30 sec 

for the TSCancer, while the post-processing module, in which the 
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information on the variants in TSV format is reported, takes just over 1 

minute. In total, the complete workflow, excluding CNV calling, of the 

Trusight_germline pipeline takes about 30 minutes to analyze a single 

TSCardio sample, while for the TSCancer it takes just over 16 minutes. The 

difference is due to the size of the two targets; the TSCardio has an almost 

double target than the TSCancer, and the processing times of the modules 

that analyze the entire target (alignment, preprocessing, and variant calling) 

reflect this proportion. The average performance recorded for the simulated 

PC considering the analysis of all the samples in the cohort, demonstrate a 

pipeline processing time of approximately 342 minutes for the TSCardio and 

approximately 393 minutes for the TSCancer. Both experiments take 6 to 7 

hours to complete the pipeline. This is because, although the target of the 

TSCardio is almost double than the target to the TSCancer, the TSCancer 

cohort contains twice as many samples as the TS cardio. The step of CNV 

analysis was excluded from this calculation as it is always carried out in 

parallel on all samples and does not respect the design of the experiment 

based on the analysis in series vs. in parallel. However, taking into account 

the analysis of the CNVs, a PC could take about 10 hours to complete the 

entire workflow, which corresponds to an acceptable time for an overnight 

analysis. The comparison of the performance in terms of timing between the 

use of a PC, which can potentially analyze the samples only in series, and a 

workstation that can take advantage of the paralleling of the processes, 

demonstrates that the WS is able to perform each step over the entire cohort 

in the same amount of time that a PC analyzes a single sample. The PC 

perform the workflow of the Trusight_germline on the entire cohort 10 to 12 

times slower than the WS. Despite the significant time savings that are 

achieved by using a workstation, Helper can also be used in laboratories 

where high computing solutions are not available. 

Table 3.4: Processing time for Trusight Cardio panel 

TRUSIGHTCARDIO 

 SERIAL PARALLEL 

STEP 1 SAMPLE 12 SAMPLES 12 SAMPLES 

ALIGNMENT 

BWA MEM 2 min 36 sec 31 min 12 sec 2 min 41 sec 

SAM TO BAM 0 min 12 sec 2 min 24 sec 0 min 13 sec 

SORT BAM 0 min 26 sec 5 min 12 sec 0 min 29 sec 

TOTAL 3 min 14 sec 38 min 48 sec 3 min 23 sec 

PREPROCESSING 

ADD READ GROUP 0 min 50 sec 10 min 0 sec 0 min 53 sec 

MARK DUP 1 min 11 sec 14 min 12 sec 1 min 15 sec 

INDEL REALIGNMENT 4 min 15 sec 51 min 0 sec 4 min 22 sec 

QB RECALIBRATION 9 min 15 sec 111 min 0 sec 9 min 13 sec 

TOTAL 15 min 21 sec 186 min 12 sec 15 min 43 sec 

VARIANT CALLING 

GATK 2 min 32 sec 30 min 24 sec 2 min 28 sec 
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FREEBAYES 2 min 55 sec 32 min 56 sec 3 min 07 sec 

TOTAL 5 min 27 sec 63 min 20 sec 5 min 35 sec 

ANNOTATION 

VEP 3 min 12 sec 38 min 24 sec 3 min 25 sec 

POST ANNOTATION 

VCF TO TSV 1 min 13 sec 14 min 36 sec 1 min 16 sec 

 

OVERALL TOTAL 28 min 27 sec 342 min 16 sec 29 min 22 sec 

CNV CALLING 

GATK - 258 min 56 sec 259 min 32 sec 

 

Table 3.5: Processing time for Trusight Cancer panel 

TRUSIGHTCANCER 

 SERIAL PARALLEL 

STEP 1 SAMPLE 24 SAMPLES 2X12 SAMPLES 

ALIGNMENT 

BWA MEM 1 min 0 sec 24 min 0 sec 2 min 12 sec 

SAM TO BAM 0 min 10 sec 4 min 0 sec 0 min 28 sec 

SORT BAM 0 min 18 sec 7 min 23 sec 0 min 41 sec 

TOTAL 1 min 28 sec 35 min 23 sec 3 min 23 sec 

PREPROCESSING 

ADD READ GROUP 0 min 47 sec 18 min 48 sec 1 min 41 sec 

MARK DUP 0 min 54 sec 21 min 36 sec 2 min 01 sec 

INDEL REALIGNMENT 2 min 12 sec 52 min 28 sec 4 min 38 sec 

QB RECALIBRATION 4 min 01 sec 96 min 24 sec 8 min 25 sec 

TOTAL 7 min 44 sec 185 min 50 sec 16 min 45 sec 

VARIANT CALLING 

GATK 1 min 54 sec 45 min 36 sec 4 min 43 sec 

FREEBAYES 1 min 46 sec 42 min 18 sec 4 min 12 sec 

TOTAL 3 min 40 sec 87 min 54 sec 8 min 55 sec 

ANNOTATION 

VEP 2 min 28 sec 59 min 12 sec 5 min 32 sec 

POST ANNOTATION 

VCF TO TSV 1 min 1 sec 24 min 24 sec 2 min 12 sec 

    

OVERALL TOTAL 16 min 21 sec 392 min 43 sec 36 min 47 sec 

CNV CALLING 

GATK - 190 min 8 sec 194 min 41 sec 
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3.5.3. CNV Analysis 

One of the critical points of the bioinformatics pipeline is the analysis 

concerning the CNVs in the samples studied for targeted sequencing 

applications. The potential of the analysis of CNVs on NGS samples can be 

assessed in economic and time terms. The CNVs are in fact studied mainly 

through MLPA (multiplex ligation-dependent probe amplification), which 

still today represents the gold standard method, through real time PCR 

(rtPCR), or through array CGH (aCGH). All three methods have substantial 

flaws, including the need to prepare an additional experiment, which 

increases the costs of studying the sample and lengthens reporting times. 

These methods also have problems with the accuracy of the result and still 

require validation of the findings. The call of the CNVs in the same assay, 

in which the short genomic variants are studied, becomes essential in the 

diagnostic path of genetic diseases, but requires particular attention in the 

validation of the results to better understand the expected error range that 

must be calculated when issuing a report.  

To understand the difficulties related to the detection of the CNVs, a 

performance study of the tools dedicated to the call of the CNVs, 

implemented in Helper, was performed. In order to compare copy-number-

variation (CNV) detection methods, for targeted NGS panel data in a clinical 

diagnostic setting, 3 CNV callers were evaluated on 3 CNV datasets 

validated using MLPA, rtPCR, or aCGH methods. The tools used are GATK 

V4 in cohort and single sample mode, CoNVaDING, and CNVkit. 

3.5.3.1. Datasets and tools 

Three datasets were included in this benchmark, 2 with data from 

TSCancer sequencing panel, and 1 from TScardio panel: 

• The panelcnDataset (IBK) [94][95] contains 170 samples that 

were processed using the Illumina Trusight Cancer and 

sequenced using Illumina MiSeq instrument. The dataset contains 

single exon CNV (n=19), multi exons CNV (n=22), and whole 

gene CNV (n=6) validated using MLPA assays. The 

panelcnDataset is accessible on the European Genome-Phenome 

Archive (EGA) using the EGAD00001003400 dataset ID. 

(https://ega-archive.org/datasets/EGAD00001003400). 

• The OSM-TSCancer dataset contains 70 samples from the OSM 

population. Samples were processed using the Illumina Trusight 

Cancer and sequenced using Illumina MiSeq instrument. The 

CMGCV-TSCancer dataset contains 19 samples with CNV, 

including single exon (n=6), multiple exon (n=11), and whole 

gene CNV (n=2), and 51 samples without CNV in analyzed 

genes. 

https://ega-archive.org/datasets/EGAD00001003400
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• The OSM-TSCardio dataset contains 150 samples from the OSM 

population. Samples were processed using the Illumina Trusight 

Cardio and sequenced using Illumina MiSeq instrument. The 

CMGCV-TSCancer dataset contains 70 samples with CNV, 

including single exon (n=11), multiple exon (n=38), and whole 

gene CNV (n=21), and 80 samples without CNV in analyzed 

genes. 

For each dataset, the samples without known CNVs were considered as 

the control population. For the IBK dataset, the control population is 

composed of 123 samples, for OSM-TSCancer 51 samples, and for OSM-

TSCardio 80 samples. 

For GATK tools in single sample modality (GATK-ss) the read depth 

values for each sample were calculated; those belonging to the control group 

were used for the calculation of the ploidy model and the Call model; 

subsequently the call was made on the test samples. This process was done 

for all three datasets. For GATK in cohort modality (GAKT-cohort) the same 

read depth calculation process was performed, but both test and control 

samples were used to calculate the ploidy model and call the CNVs. 

For CoNVaDING, the control samples separated from the test samples, 

were used to call the CNVs. From the control set, 30 best match samples 

were chosen for each test sample to improve the accuracy of the analysis. 

For the evaluation of the results, the set of CNVs contained within the 

extended list produced by CoNVaDING was used. 

Also for CNVkit, the samples of the control set were used to generate a 

reference. CNVkit in addition to the analysis target, also requires studying 

the off-target coverage to improve the call of the CNVs. The reference in 

target and the reference off target were used to study each sample separately 

and to generate the variant call. All the tools were used with the default 

settings, in order to compare the finding without altering the result by 

customizing the analysis.  

3.5.3.2. Benchmark evaluation metric 

The performances of each tool for CNVs detection were evaluated 

considering the calling sensitivity defined as TP / (TP + FN). Each validated 

CNV that is identified by the tools represents a True Positive call (TP), while 

each validated CNV not found is considered as True Negative call (TN). The 

CNV calls made by the tools that concern genes other than those containing 

the validated CNVs were not considered as False Positive calls because it is 

not possible to define which ones have actually been studied with a second 

method. 

3.5.3.3. CNV calling sensitivity 
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In the sensitivity test, the call performance of the CNVs of the four tools, 

on the three datasets, are evaluated. GATK in cohort mode and GATK in 

single sample mode are considered as two different tools. The results refer 

to both the sensitivity level of the tools, and the number of CNVs identified 

or missed by CNV callers. This is because, in addition to performance 

statistics, each CNV missed has an important weight within the diagnostic 

workflow. 

For the IBK Dataset, which contains 47 validated CNVs (40 deletions and 

7 duplications) the tool that identifies the greatest number of TPs is GATK, 

which identifies 42/47 CNV in both cohort and single sample mode. Among 

these 42 CNVs 36 are deletions and 6 are duplications. GATK misses the 

detection of 4/40 deletions and 1 duplication. CNVkit and CoNVaDING only 

call 38 and 39 CNV, respectively. Both tools identify 4 out of 7 duplications 

in the IBK dataset, CNVkit identifies 34/40 deletions, while CoNVaDING 

identifies 35/40. Comparing the detection capacity levels of the tools on the 

entire IBK dataset, it is noted that GATK is the most performing tool, with 

a sensitivity of 0.894 against the 0.818 of CNVkit and 0.864 of 

CoNVaDING. Despite the few duplications present in the IBK dataset, it is 

interesting to note that the missing rate of CNVkit and CoNVaDING for this 

type of CNV exceeds 40% against 15% for GATK. 

For the OSM-TSCancer Dataset, which contains 18 deletions and 1 

duplication, the tool that performs best is CoNVaDING. CoNVaDING 

identifies 18 CNVs, missing only 1 deletion in the BRCA2 gene. Also in this 

case, GATK-cohort and GATK-ss show the same performances, identifying 

17/19 CNV, missing the same 2 deletions, and identifying the only 

duplication present in the dataset. CNVkit identifies 16/19 variants, with a 

missing rate of approximately 5%. The CoVading sensitivity goes from 

0.864 on the IBK dataset to 0.947 on the OSM-TSCancer, with a missing 

rate of 13.6% on the two datasets together. As regards GATK, both in cohort 

and in single sample modality, the sensitivity remains unchanged on the two 

datasets, considered separate or considered together, with a missing rate of 

10.6% on the datasets composed of Trusight Cancer samples. CNVkit is the 

least performing tool on both datasets, with a sensitivity on the OSM-

TSCancer of 0.842 and a missing rate on the two datasets of 18.2%. 

The OSM-TSCardio dataset contains 71 CNVs of which 42 deletions and 

29 duplications. The tool that performs best on this dataset is GATK-ss, 

which identifies 70/71 CNV, calling all deletions, and missing the 1 

duplication detection. GATK-cohort and CoNVaDING identify 68/70 

CNVs, but GATK calls 28/29 duplications and 40/42 deletions, while 

CoNVaDING calls 27 duplications and 41 deletions. CNVkit is the tool with 

the highest number of missed CNVs, identifies 40 deletions and 27 

duplications, with a missing rate of 5.6%. The sensitivity index on the 

TSCardio dataset is greater than the two TSCancer datasets, for all 4 tools. 

GATK-ss is the best tool, with a sensitivity of 0.986, followed by GATK-

cohort and CoNVaDING which identify 95.8% of the variants, and finally, 

by CNVkit with a sensitivity of 0.944. 
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Considering all three datasets together, the best performing tool is 

confirmed to be GATK in single sample modality, with a sensitivity of 0.942 

and a missing rate of 5.8%. GATK-cohort and CoNVaDING demonstrate 

very similar performances on all CNVs, with a sensitivity of 0.927 and 0.912, 

respectively. The results change considering the type of CNV, GATK-cohort 

has a duplication detection rate higher (94.6%) than CoNVaDING (86.5%), 

but identifies 1% fewer deletions (92% GATK vs 93% CoNVaDING). 

CNVkit has an overall sensitivity of 0.883, which translates into a double 

missing rate compared to GATK-ss (11.7% CNVkit vs 5.7% GATK). Even 

CNVkit, like CoNVaDING, demonstrates a higher difficulty in identifying 

duplications than deletions with a sensitivity of 0.865 and 0.890, 

respectively. 

Table 3.6: CNV TP calls 

Dataset 
CNV 

Type 

Validated 

CNV 

GATK-

Cohort 

GATK-

ss 
CNVkit Convading 

OSM -TSCancer DEL 18 16 16 15 17 

OSM -TSCancer DUP 1 1 1 1 1 

OSM -TSCancer ALL 19 17 17 16 18 

IBK DEL 40 36 36 34 35 

IBK DUP 7 6 6 4 4 

IBK ALL 47 42 42 38 39 

OSM-TSCardio DEL 42 40 42 40 41 

OSM-TSCardio DUP 29 28 28 27 27 

OSM-TSCardio ALL 71 68 70 67 68 

 

Table 3.7: Sensitivity of CNV callers 

Dataset 
CNV 

Type 

GATK-

Cohort 
GATK-ss CNVkit Convading 

OSM -TSCancer DEL 0.889 0.889 0.833 0.944 

OSM -TSCancer DUP 1.000 1.000 1.000 1.000 

OSM -TSCancer ALL 0.895 0.895 0.842 0.947 

IBK DEL 0.900 0.900 0.850 0.875 

IBK DUP 0.857 0.857 0.571 0.571 

IBK ALL 0.894 0.894 0.818 0.864 

OSM-TSCancer+ IBK DEL 0.897 0.897 0.845 0.897 

OSM-TSCancer+ IBK DUP 0.875 0.875 0.625 0.625 

OSM-TSCancer+ IBK ALL 0.894 0.894 0.818 0.864 

OSM-TSCardio DEL 0.952 1.000 0.952 0.976 

OSM-TSCardio DUP 0.966 0.966 0.931 0.931 

OSM-TSCardio ALL 0.958 0.986 0.944 0.958 
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3 DATASETS DEL 0.920 0.940 0.890 0.930 

3 DATASETS DUP 0.946 0.946 0.865 0.865 

3 DATASETS ALL 0.927 0.942 0.883 0.912 

 

In addition to considering the type of CNV, it is useful to understand the 

detection capacity based on the size of the variant. It is well known that the 

CNVs of a single exon are difficult to identify, due to the lack of 

informativity compared to the larger CNVs [(94)]. To evaluate this aspect, 

given that the performances of each tool are similar on the two datasets 

composed of samples sequenced with the TSCancer, the CNVs of the IBK 

and OSM-TSCancer datasets were considered as a single dataset. 

The TSCancer is made up of 25 single exons, 8 full gene, and 33 multiple 

exons CNVs. All the tools prove to have greater difficulty in identifying 

CNVs composed of a single exon: GATK-cohort and GATK-ss identify 

19/25 variants, CoNVaDING 17/25 and CNVkit 14/25. All the tools are able 

to identify 100% of the CNVs that affect the whole gene, while GATK-

cohort, CoNVaDING, and CNVkit miss 1 CNV that spans over more exons. 

The missed multi-exon CNV is the same for all three tools, it is a deletion of 

2 exons (exons 8 and 9) in the EPCAM gene related to colorectal carcinoma. 

The TSCardio is composed of 11 single exon, 21 full gene, and 39 

multiple exon CNVs. The ability to detect single exon CNVs in this gene 

panel is greater than in TSCancer. GATK-ss can identify 10/11, GATK-

cohort and CoNVaDING identify 9/10, and CNVkit calls 8/11. All the tools 

identify 100% of the full CNV genes, while only GATK-ss can find 100% 

of the CNVs composed of more than one exon. The other 3 tools identify 70 

out of 72. 

As expected, the single exon CNVs are the ones that put the CNV callers 

in greater difficulty. The tool that demonstrates the best performances is, also 

in this case, GATK-ss, which identifies all the CNVs involving more than 

one exon, with a sensitivity of 1,000. The detection rate of GATK-ss is lower 

for single exon CNVs, the tool calls only 80% of the variants. The 

performances have a similar trend also for the other tools, with a sensitivity 

for multi exon CNV of 0.972 and a very high single exon CNV missing rate. 

GATK-cohort misses 23% of the variants, CoNVaDING 27.8%, and CNVkit 

nearly 40%. 

Table 3.8: Number of called CNV based on CNV length 

Datase CNV Type 
Validated 

CNV 

GATK-

Cohort 
GATK-ss CNVkit Convading 

TSCancer 
SINGLE 

EXON 
25 19 19 14 17 

TSCancer FULL GENE 8 8 8 8 8 

TSCancer 
MULTI 

EXON 
33 32 33 32 32 
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TSCardio 
SINGLE 

EXON 
11 9 10 8 9 

TSCardio FULL GENE 21 21 21 21 21 

TSCardio 
MULTI 

EXON 
39 38 39 38 38 

3 DATASETS 
SINGLE 

EXON 
36 28 29 22 26 

3 DATASETS FULL GENE 29 29 29 29 29 

3 DATASETS 
MULTI 

EXON 
72 70 72 70 70 

 

Table 3.9: Sensitivity of CNV callers based on CNV length 

Dataset CNV Type 
GATK-

Cohort 
GATK-ss CNVkit Convading 

TSCancer 
SINGLE 

EXON 
0,760 0,760 0,560 0,680 

TSCancer 
FULL 

GENE 
1,000 1,000 1,000 1,000 

TSCancer 
MULTI 

EXON 
0,970 1,000 0,970 0,970 

TSCardio 
SINGLE 

EXON 
0,818 0,909 0,727 0,818 

TSCardio 
FULL 

GENE 
1,000 1,000 1,000 1,000 

TSCardio 
MULTI 

EXON 
0,974 1,000 0,974 0,974 

3 DATASETS 
SINGLE 

EXON 
0,778 0,806 0,611 0,722 

3 DATASETS 
FULL 

GENE 
1,000 1,000 1,000 1,000 

3 DATASETS 
MULTI 

EXON 
0,972 1,000 0,972 0,972 
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Figure 3.13: The CNV callers performances in terms of True call sensitivity 

for each of the CNV type 

The performance test of the tools has shown that it is necessary to pay 

attention to the call results of the NVCs. The single tools alone cannot 

guarantee a detection rate of 100%, especially for single exon CNVs. The 

results show that the CNVs contained in the samples sequenced with the 

TSCancer are identified with more difficulty than those of the TSCardio 

dataset. This could be related to the difference in target coverage by the two 

panels, in fact the TSCardio sequencing panel has an in-target coverage of 

about 82% of the aligned reads, and the TSCancer has an in-target of about 

70%. The percentage of on and off target could have an important impact on 

the result of the call of the CNVs. Furthermore, the evaluation of False 

Positives was excluded from the performance analysis. The PFs increase the 

uncertainty about the result by decreasing the total accuracy of the analysis. 

CNVs are variants that often have an important impact on the phenotype of 

carriers, and it is essential to be able to identify them with certainty. Even if 

a missed CNV has a greater weight than False positives calls, the presence 

of the latter, generates the need to confirm the result with a second method. 

For this reason, it is necessary to identify the right set-up for each tool to 

maximize the accuracy of the CNV call. 
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Chapter 4 

4 Clinical Applications 

In the previous chapter, a novel solution to adapt bioinformatics analysis 

to different target-sequencing applications was presented. Customizing 

pipelines is just one of the challenges that must be faced in the path of genetic 

test optimization. When the sample is sequenced, analyzed, and a narrow set 

of variants has been identified, the further step is the classification in order 

to correlate the finding with the patient's phenotype. Understanding the role 

of variants within the gene, and the role of different genes in the disease, are 

two fundamental processes both for diagnosis and for research in the 

molecular-genetic field. In this chapter, I will present two examples of 

Helper applications: the case of optimized interpretation of variants in the 

specific field of Desminopathies, and the process of exploring the 

heterogeneous genetic bases for hereditary Breast and Ovarian cancer 

syndrome. 

4.1. Variant interpretation - the case of Desmin 

The criteria for the classification of variants generated by the ACMG (see 

variant classification in chapter 2.7) has introduced a conservative and robust 

framework for the interpretation of the genetic data in the scientific 

community. The system was planned in such a way as to standardize the 

variant classification path regardless of the gene and the disease under 

examination. However, neither genes nor diseases are generalizable. For this 

reason, the current trend is to modify the ACMG system by adapting the 

strength of the criteria to increase the accuracy of classification of variants 

present in a specific gene (e.g., MYH7) or in a group of genes associated with 

a particular disease [96][97]. This chapter aims at describing a Desmin-

specific adaptation system of the ACMG rules, and includes: 

1. the description of the gene and of the clinical issues related to the 

defects of DES, which concerns a subgroup of highly malignant 

heart diseases. 

2. the path that led to the development of the adapted system.  

3. the dataset of variants in DES identified within the cohort of 

patients cared for desminopathies at the CMGCV. 
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4. the comparative analysis of the ACMG-based classification 

results using 3 commercial software, and the OSM system 

adapted for DES and using the clinical and pathological findings 

that establish the precise diagnosis. 

The goal is to provide the rules for definite and irrefutable diagnosis of 

Cardiodesminopathy. 

4.1.1. Clinical and genetic background 

4.1.1.1. The DES gene and the Desmin protein 

The DES gene maps in the chromosome 2 (2q35); it consists of 9 exons, 

about 8.4 kilo bases [kb]. The mature protein contains 470 amino acids and 

is composed of a non-helical amino-terminal domain (Head), a central alpha 

helical rod and a non-helical domain carboxy-terminal (Tail). The central rod 

domain is composed of four helices (coil-1A, coil-1B, coil-2A, coil-2B) 

interspersed with 3 short non-helical linkers (L1, L12, L2). 

 

Figure 4.1: The Desmin protein primary structure (Figure modified from 

[98]). 

The DES gene encodes the class III intermediate filament (IF) protein 

Desmin that plays a central role in the cytoskeleton structure of the cells. IFs 

are constituted of highly flexible non-globular protein units that form an 

elastic scaffold connecting most of the cytoplasm structures of skeletal 

myocytes and cardiomyocytes. Desmin is expressed in cardiac, skeletal, and 

smooth muscle cells. Within these cells, its first function is myofibril 

stabilization, by inter-connection of Z-disks and forming a three-dimensional 

network that extends from the nucleus to the junctional structures such as 

desmosomes and adhesion structures such as costamers; the second function 

is the transmission of the mechanical force of cellular contraction to the 

extracellular matrix and to the other adherent cells; finally, Desmin regulates 

the distribution and modulates the function of the mitochondria within the 

cytoplasm. 

 



Clinical Applications 

 

 80 

 

Figure 4.2: The intracellular organization of myocytes and the connecting 

role of the Desmin. (Figure from [98]) 

4.1.1.2. Phenotypes related to DES defect 

DES defects were first reported in relation to semi-dominant Myofibrillar 

Myopathy (MFM). Desmin-related MFM - also called desminopathy - 

defines a set of inherited muscle diseases primarily characterized by 

abnormal aggregates of misfolded Desmin in the cellular cytoplasm. The 

desminopathy phenotype is characterized by progressive muscle weakness, 

cardiomyopathy, and abnormalities of cardiac rhythm. 

In the current literature, DES gene defects are associated with 

phenotypically heterogeneous cardiomyopathies, which include Dilated 

cardiomyopathy (DCM), Hypertrophic cardiomyopathy (HCM), Restrictive 

cardiomyopathy (RCM), and Arrhythmogenic cardiomyopathy (ARVC) (98) 

(99). The ClinGen expert panel (https://www.clinicalgenome.org/) 

classified the DES defects as strongly associated with DCM, ARVC, and 

MFM. However, the most typical cardiac phenotype caused by Desmin-

related MFM is RCM associated with atrio-ventricular conduction delay that 

evolves over time to Atrioventricular Block (AVB). Desminopathy evolves 

to progressive heart failure and, in many cases, to the need for heart 

transplantation (HTx). 

4.1.1.3. Genetic complexity of Desminopathy 

Interpretation of DES variants is especially complex due to the 

heterogeneity of the phenotypes reported to date as associated with DES gene 

defects. Many associations remain questionable mainly due to the lack of 

demonstration of the misfolded Desmin within the cardiac myocytes. The 

complexity increases when considering that variants reported to date in 

amino acid residues close to each other are related to different types of 

cardiomyopathy, or that different diseases within the same family are 

https://www.clinicalgenome.org/
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associated with the same DES variant. This latter evidence, together with the 

presence of unaffected carriers, due to the heterogeneity of the onset age and 

the penetrance of desminopathy (about 80%), makes difficult the 

interpretation of family studies and complicates the proper management of 

families. Although all above issues are reported in the literature, they do not 

convince on a clinical level, and are difficult to support when the information 

needs to be translated from the scientific papers to patients. The concept is 

that when a genetic variant is found in the DES gene, for example in a patient 

with a typical dilated phenotype, and the same variant is reported in a 

different phenotype, neither observed case nor reported cases are sufficient 

to close the diagnostic dilemma on pathogenicity of the given variant. 

4.1.2. The CMGCV-DES system 

To break down the interpretative uncertainty associated with DES 

variants, all ACMG criteria were analyzed and investigating the literature, 

clinical databases such as Clinvar, and population databases such as ExAC 

and GnomAD, a DES adapter system was developed. The result is the 

CMGCV-DES system, in which some ACMG criteria can be activated in a 

specific way using dedicated thresholds, some criteria are not recommended, 

while others can be used without particular precautions, according to the 

characteristics of the DES gene. 

4.1.2.1. Variant type and location (PVS1 / PM1 / PM4 / PP2) 

The PVS1 criterion is activated in the presence of a variant that induces 

Loss of function (LoF) in the protein and LoF is a known mechanism of 

disease. Variants that induce the loss of protein function are the so-called 

"null variants" (nonsense, frameshift, canonical ± 1 or 2 splice sites, 

initiation codon, single or multi-exon deletion). To quantify the tolerance of 

a gene to LoF variants, two indices are usually evaluated: the probability 

score (pLI) of Intolerance to LoF variants calculated from ExAC data and 

the ratio between observed and expected LoF variants (o/e constraint metric) 

calculated on gnomAD data. While a pLI close to 1 is usually dichotomized 

using 0.9 as threshold (pLI> 0.9 identifies intolerance to LoF), the index o/e, 

or rather the LOEUF (a more conservative estimate which is equivalent to 

the upper bound of the confidence interval of the Poisson distribution 

constructed on o/e), is a continuous value that indicates different degrees of 

tolerance. Although pLI or LOEUF are two easy-to-use numerical methods, 

caution is needed during the evaluation of their reliability for most adult-

onset Mendelian disorders [100]. Evaluating the fraction of LoF variants 

classified as P or LP within databases such as ClinVar can help in 

understanding the effect of these variants on gene function. In ClinVar, for 

Des gene, 37 LoF variants are described; they are distributed in all exons of 

the gene and 30/37 (81%) are classified as conflict-free P or LP. Although 
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pLI = 0.047 (<0.9) and LOEUF = 0.596 indicate low or moderate intolerance, 

clinical correlation data between LoF variants and diseased phenotype 

extracted from ClinVar indicate that the DES gene is sensitive to the damage 

mechanism induced by null variants. 

The CMGCV-DES system applies PVS1 by modulating the strength of 

the criterion according to the zone in which the null variant falls, considering 

the nonsense-mediated decay that could limit the protein damage as 

suggested by the recommendations for this specific criterion [101]. 

The PP2 criterion is activated in the presence of missense variants in a 

gene that has a low rate of benign missense variations and in which missense 

variants are a common mechanism of disease. As a general recommendation, 

based on ExAC and gnomAD data, GlinGen suggests the use of the z-score 

as an index of tolerability of the gene to missense variants. The z-score is 

calculated by comparing the observed missense variants to the expected ones 

and is directly proportional to the sensitivity of the gene to the presence of 

the missense variant. As for the pLI, a threshold can also be applied to the z-

score to define tolerance/intolerance (threshold z-score = 3.09), but it may 

also be useful to evaluate the number of missenses classified in the databases 

as P or LP compared to those classified as B, LB or VUS to refine the rule 

for activating Score PP2. 

The z-scores for missense variants in the DES gene calculated from ExAC 

and gnomAD are 2.45 and 1.7, respectively (<3.09). ClinVar reports 252 

missenses of which 36/252 are classified without conflict of interpretation: 

35/36 P or LP, 1/36 LB or B. Although the z-scores do not reach the 

recommended threshold of 3.09, they do not exclude a certain sensitivity of 

DES to missense (2.45> the upper limit of the confidence interval on all z-

scores calculated on ExAC), this data is confirmed by the fraction of 

missense variants classified in the literature as pathogenic compared to the 

benign ones. Furthermore, the large number of missenses classified as VUS 

or with conflict of interpretation shows that the uncertainty that accompanies 

the presence of a missense variant in DES is still high. For these reasons, the 

CMGCV-DES system activates the PP2 criterion using a Supporting 

strength. 

The PM4 criterion is activated in the presence of an in-frame change in 

the length of the protein due to In-frame Deletions and Insertion that do not 

fall into a homopolymer zone (in the case of a repeated zone, BP3 is 

activated) or a Stop loss variant. ClinVar describes 12 in-frame InDels, of 

which 5 are classified as P / LP and none as LB / B, and 2 LP Stop loss. 

These types of variants are poorly described for DES and appear to have a 

harmful impact on the protein. For this reason, the CMGCV-DES system 

activates PM4 in the presence of in-frame InDels or Stop loss variant, using 

a Moderate strength. 

The PM1 criterion is activated when a non-null and non-synonymous 

variant falls into a mutational hotspot or a functional domain important for 

protein function validated by experimental evidence. In the absence of robust 

regions intolerant to variations, alternative methods have been described in 

the literature that can be used to infer the presence of fragile areas of the 
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gene by analyzing the distribution of variants classified as P or LP and B or 

LB [102][103]. These systems identify exonic regions in which only P / LP 

variants are present with an increased density compared to control series. 

These systems generalize the PM1 activation method for all gene types. The 

PM1 score has a Moderate strength, and it is often the tip of the balance in 

the classification of variants that are not described in the literature, because 

it can shift the interpretation of a new variant from VUS to LP in the absence 

of experimental or clinical data. For this reason, caution should be applied 

in evaluating the presence of a fragile site or hotspot using only the positional 

information of the variants, without validated data about the characteristics 

of the analyzed gene. Given that the knowledge on DES fragile sites is not 

yet robust and the Moderate strength of PM1 is a decisive factor that could 

lead to overestimating the pathogenic interpretation if wrongly activated, the 

CMGCV-DES system does not apply the PM1 criterion. 

4.1.2.2. Same residue as known pathogenic (PS1 / PM5) 

The PS1 criterion is activated when another variant, that affects the same 

nucleotide of the analyzed variant, is known to be pathogenic, while the PM5 

criterion is activated when the same affected amino-acid residue changes in 

another variant defined as pathogenic. 

In ClinVar, reports for DES include 41 amino acid positions where the 

same amino acid varies in at least two different residues, and 14/41 (34.15%) 

involve at least one variant called P or LP with no classification conflict. 

None of the latter (0/14) is involved in a second P or LP variant, without 

conflict. Furthermore, among the P or LP variants, the distribution of the 

involved amino acids does not demonstrate the presence of a starting residue 

that, when mutated, is particularly harmful, while the introduction of a 

Proline in the amino acid sequence could have a detrimental effect on protein 

folding [99]. Due to the lack of evidence to support the PM5 criterion, the 

CMCV-DES system excludes it from the evaluation of the variants, while it 

does apply the PS1 criterion without modifications. 

4.1.2.3. Population frequency (PM2 / BS1 / BA1) 

The population frequency provides significant data for the interpretation 

of the variants. The criteria in favor of the benign interpretation vary from 

BA1 (Allele frequency too high in the control population), whose strength is 

Stand Alone, and therefore alone can be considered a filter to distinguish the 

benign variants that are too frequent in controls, to BS1 (allele frequency too 

high for the disorder) which corresponds to a Very Strong strength and 

which, if activated by itself in the absence of other scores, would move the 

pathogenicity class to LB. The score that considers the MAF in favor of the 

pathogenicity of a variant is PM2 (Absent or extremely rare from large 

population studies). PM2 has moderate strength and is activated when the 



Clinical Applications 

 

 84 

variant is absent or very rare in the control population. A determining factor 

for the evaluation of allele frequencies for the classification of variants is 

that MAFs are calculated in robust population datasets composed of at least 

2000 alleles derived from unrelated subjects [104]. Since the frequency in 

the population is decisive for the classification of a variant and the use of the 

same thresholds for all genes and diseases could generate misinterpretation, 

the ClinGen expert groups have suggested methods to optimize the MAF 

thresholds for each of the three criteria (BA1, BS1, PM2) as a function of 

the phenotype and gene studied. An example is the case of MYH7 for which 

the CMP-EP has developed a method for calculating the BA1 and BS1 

thresholds that take into account the disease prevalence, gene contribution to 

disease, and estimated penetrance of the variant [105]. Using a conservative 

prevalence among all MYH7-associated phenotypes (1/400 chromosomes), a 

contribution of MYH7 to HCM of 10.6%, and a mean penetrance of all 

MYH7 variants of 30%, the following MAF thresholds were obtained: for 

BA1 it is a MAF> 0.1% (0.001), for BS1 the threshold is> 0.02% (0.0002) 

and for PM2 the threshold is <0.004% (0.00004). The same thresholds  are 

generally used for the evaluation of the variants present also in the other 

genes associated with hereditary cardiomyopathies [106]. 

The cardiac phenotype associated with DES with the highest prevalence 

is DCM. DCM has a prevalence of 1/2500 but may be higher according to 

some updated estimates. The contribution of DES to dilated 

cardiomyopathies is very low, around 1% [107][108], and the mean 

penetrance for DCM of variants in DES is unknown. Although, the value of 

the thresholds for BA1 and BS1, obtained using the specific data of DES, are 

an order of magnitude smaller than those of MYH7, it was preferred to start 

from the values commonly used for cardiomyopathies by inserting some 

adaptations: the BA1 criterion is activated if the MAF is >0.001 or has been 

observed in a homozygous state on gnomAD (Number of Homozygous, NoH 

>= 1), and the BS1 criterion is activated if the MAF is >0.0001. 

Furthermore, in ClinVar there are 76 variants in Desmin (SNV and Short 

InDels) classified P and LP without interpretation conflicts, 34 are missense 

(1 of which involves 2 consecutive amino acids), 33 are null variant, 2 are 

non-canonical splices, 6 are inframe InDels and 1 is a synonym. Of all these, 

only 6 of the 33 null variants are reported in GnomAD, and c.194dup 

(p.Leu66fs) is the P variant with the highest MAF among all DES variants 

(MAF of 0.000032), while the one with the greatest allelic count (AC) is the 

variant of the canonical splice site c.1288+1G>A (AC = 6/282842 alleles). 

In GnomAD, 281 variants are reported for DES (Nonsense, missense, non-

canonical splice, inframe delins) with a median MAF of 0.00000795 (CI 

0.0000040 - 0.0000278); of these, 157/281 (55.8%) variants have an AC 

equal to 1 and 247/281 (87.9%) have MAF <0.00004. 

Taking into account that:  

• missense, indels, and non-canonical splice sites defined as 

Pathogenic in ClinVar are not present in gnomAD,  



Clinical Applications 

 

 85 

• a nonsense variant is present with an allele count equal to 6 (all 

heterozygous subjects),  

• the percentage of very rare variants in DES is high, 

• some variants are recessive,  

we have decided to apply PM2 in a different way between the null variant 

and the other variants also depending on their transmission (Table 4.1): 

• Non-canonical splicing variants, missense, delins, and splices AD 

activate the PM2 criterion if they are absent in the control 

population, while those with AR transmission activate PM2 if 

they have a count <= 1 allele in gnomAD. 

• The nonsense variants (Stop, FS, canonical splice, start loss) 

activate PM2 if the MAF is <0.00004 with an allele count <= 1. 

Table 4.1 - Rules for activating BA1, BS1, and PM2 criteria 

Variant type Inheritance PM2 BA1 BS1 

Missense 

NC splice 

InDels 

Syonymous 

AD 

Absent in 

control 

population 

MAF >= 0.001 

or 

NoH >= 1 

MAF >= 0.0001 

AR AC <=1 MAF > 0.001 MAF >= 0.0001 

Stop gain 

Frameshift 

Canonical 

splice 

Start loss 

AD 

MAF < 0.00004  

and  

AC <= 1 

MAF >= 0.001  

or  

NoH >= 1 

 

MAF >= 0.0001 

 

 

4.1.2.4. Homozygous status (PM3) 

PM3 is activated when a variant is found in trans with another pathogenic 

for a recessive disease. Desminopathy is known to be a semi-dominant 

disease caused by both heterozygous and homozygous variants. In the 

presence of a recessive variant in a homozygous state, CMGCV-DES applies 

the PM3 criterion downgraded to Supporting strength, but it can be upgraded 

to Moderate in the presence of more observations in favor of the recessive 

transmission of the variant [109]. 

4.1.2.5. Specific phenotype (PP4/BS2) 

The PP4 criterion is activated in the presence of a phenotype closely 

related to the mutated gene. Generally, for the evaluation of variants in genes 

of cardiomyopathies, it is recommended not to use PP4 due to the lack of 
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specificity of the genetic causes. Among the DES-related phenotypes, DCM 

and ARVC have multiple genetic causes and are attributable to Desmin 

defects in only a small percentage of cases. The cardiac expression of the 

MFM includes RCM + AVB associated with myopathy (detected by 

increased serum CK). These phenotypes considered individually are not 

specific enough to be associated to DES mutation but, considered as a 

complex phenotype, they can easily be related to Desminopathy. The main 

difficulty in evaluating the phenotypes associated with MFM is their clinical 

identification in the different stages of the disease: RCM is not always full-

blown and can often be mistaken as mild concentric HCM, if the atrial 

chambers are not correctly evaluated; cardiac filling patterns evolve from 

semi-normal to restrictive over time; the AVB may have a late-onset, but it 

is always anticipated by a conduction delay that can be found as a long PQ 

wave in the ECG trace. These intermediate phenotypes could be due to an 

early stage desminopathy but cannot be considered specific enough to 

activate PP4. In conclusion, the CMGCV-DES system considers the RCM + 

AVB + myopathy complex phenotype as closely related to MFM-Desmin 

related and activates PP4; on the contrary, mild phenotypes do not activate 

the PP4 criterion, but can be used in co-segregation studies when parents 

show desminopathy and sons present the mild phenotype. 

The BS2 criterion is activated in the presence of healthy adults. Due to 

the phenotypic heterogeneity associated with Desmin mutations, the 

CMGCV-DES system considers "healthy" only adult patients who do not 

report the clinical characteristics of onset of cardiomyopathy on specific 

instrumental tests and who do not have a family history related to inherited 

cardiomyopathy. 

4.1.2.6. Functional studies (PS3 / BS3) 

The PS3 and BS3 criteria are activated if well-performed functional 

studies demonstrate a correspondingly harmful or neutral effect on the 

protein and phenotype. The strength with which these criteria are applied is 

modulated according to the type of functional studies performed and the 

robustness of their results, and the certainty of the pathological effect of the 

mutated protein [110]. 

Functional studies for DES variants are commonly performed on in vitro 

cell models, in vivo mouse models, and on tissue from affected patients. The 

in vitro models use different cell lines for the evaluation of the structural 

conformation of the cytoplasm and the integrity of the cytoskeleton by 

fluorescence microscopy. Mouse models allow the evaluation of both the 

cellular structure and the phenotype induced by the mutation. The 

pathological assessment of the tissue of affected patients, on the other hand, 

allows the effects of cell damage on humans to be investigated directly in 

vivo and to have a direct comparison with the clinical phenotype. 

The intracellular granulo-filamentous accumulations (or myofibrillar 

material MFM) characteristic of Desminopathy are easily diagnosed with 
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electron microscopy (EM), especially if performed through ultrastructural 

immuno-histochemistry (U-IHC) methods that allow to specifically mark the 

Desmin protein inside the cells. The same accumulations observed in light 

microscopy, both in bright field and in fluorescence, lose some of their 

specificity and can be used as distinctive signs in skeletal muscle cells but 

not in myocardial tissue [111]. The difference in diagnostic capacity is due 

to the characteristics and the location of the accumulation in the different 

cell types. In skeletal myocytes, Desmin aggregates are localized at 

subsarcolemmal level with unique characteristics when labeled with anti-

Desmin antibodies. On the contrary, in the myocardium, the accumulations 

are arranged in a diffuse manner in the cytoplasm of the cardiomyocyte cells 

and can be confused with the contracture bands due to the action of the 

bioptome in the biopsy site. 

The CMGCV-DES system evaluates: 

• The Immuno-ultrastructural study as diagnostic test to determine 

the presence of MFM and activate the PS3 with Stand Alone 

strength. 

• The EM study without the use of highly specific Desmin markers 

for the characteristics of the accumulations in ultrastructure and 

activates the PS3 with Very Strong strength. 

• The study of optical IHC, in bright field and in fluorescence, on 

skeletal myocytes as sufficiently robust for diagnosis and 

activates the PS3 with Strong strength. 

• The study of optical IHC, in bright field and in fluorescence, on 

cardiomyocytes as not robust enough and does not activate the 

PS3. 

As far as studies with animal and cell models are concerned, the presence 

of robust and validated results makes possible the activation of PS3 

according to the recommendations of the scientific society [110]. 

The BS3 criterion is activated with Strong strength, as it is not possible to 

exclude causative damage of the variant for the DCM or ARVC phenotypes 

even in the absence of specific accumulations for MFM. There is  no 

scientific evidence of the structural characterization of myocytes and 

cardiomyocytes in the presence of these phenotypes. 

4.1.2.7. In-silico prediction (PP3 / BP4) 

The PP3 and BP4 criteria are activated if the in-silico tools that predict 

the impact of the variant gives a result in favor of or against pathogenicity. 

It is not clear how to evaluate the different tools, some software uses a 

majority rule to activate the criteria, others activate PP3 and BP4 exclusively, 

and others activate them at the same time. This criterion is difficult to apply. 

The CMGCV-DES system uses 9 prediction tools for the evaluation of the 

missense variants and 2 tools for the evaluation of the splicing variants. 
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CMGCV-DES activates the PP3 and BP4 criteria exclusively taking into 

account the evaluation trend of the different tools, using following rules: 

• criterion PP3 is activated if at least 8/9 software predict a harmful 

impact for the missense variants. 

• criterion PP3 is activated if 2/2 software predict a damaging 

impact for variants in canonical and non-canonical splicing sites. 

• the BP4 criterion is activated if at least 8/9 software predict a 

benign impact for the missense variants. 

• criterion BP4 is activated if 2/2 software predicts a benign impact 

for variants in canonical and non-canonical splice sites. 

Table 4.2: The adapted criteria of the CMGCV-DES system 

CRITERIA CHANGED ADAPTION 

PATHOGENIC CRITERIA 

PVS1 not changed modulated using [101] 

PS3 changed 

Stand_alone strength if U-IHC results 

positive; 

Very_strong strength if EM shows aggregates; 

Strong strength if LM in skeletal myocytes 

shows aggregates 

PM1 changed not applicable 

PM2 changed see Table 4.1 

PM3 changed 
homozygous variants activate 

PM3_Supporting 

PM5 changed not applicable 

PP3 changed 
Missense: 8/9 tools predict damage 

Splicing: 2/2 tools predict damage 

PP4 changed 
if MFM phenotype (RCM+AVB+sPK+) is 

present 

PS1, PS2, 

PS4, PM4, 

PM6, PP1, 

PP2, PP5 

not changed applicable 

BENIGN CRITERIA 

BA1 changed see Table 4.1 

BS1 changed see Table 4.1 

BS2 changed if present in multiple controls 

BS3 changed not applicable 

BP4 changed 
Missense: 8/9 tools predict no damage 

Splicing: 2/2 tools predict no damage 

BS4, BP1, 

BP2, BP3, 

BP5, BP6, 

BP7 

not changed applicable 
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4.1.3. The DES-dataset 

At the CMGCV, from 2015 to 2021, 2562 unrelated subjects with 

hereditary cardiomyopathy and controls with other genetic diseases were 

studied. All probands were tested using NGS sequencing; library preparation 

was performed using the Illumina Trusight Library Preparation Kit in 

combination with the Illumina Trusight cardio probes. Samples, after 

quantification and library quality control, were sequenced using MiSeq 

Illumina in a pool of 12 samples per run as per Illumina protocol. 

The bioinformatics analysis was performed through Helper using the 

Trusight analysis pipeline described in chapter 4.1. All variants identified in 

the cohort were grouped by the affected gene in the CMG-CardioDB. The 

variants affecting the DES gene have been subjected to a review aimed at 

identifying the candidates to be causative of Desminopathy. The final DES-

dataset consists of 41 variants (Table 4.3): 33 are missense variants (1 of 

these involves two consecutive amino acids), 3 variants affecting canonical 

splice sites, 2 non-canonical splicing variants, 1 frameshift, 1 stop gain, and 

1 exon deletion. 

4.1.4. Benchmark study 

To better understand how the non-adapted ACMG rules classify DES 

variants, variant classification was performed using three commercial 

software, commonly used in genetics laboratories, which support the 

annotation and interpretation of variants: Varsome [71], eVai [112], and 

Franklin [113]. The classification process was carried out using the criteria 

compiled automatically by the three software: 

• Criteria about variant type and location (PVS1, PM1, PM4, PP2, 

BP1, BP7). 

• Criteria about variant MAF (PS4, PM2, BA1, BS1). 

• Criteria about functional studies (PS3, BS3). 

• Criteria about residues (PS1, PM5). 

• Criteria about in silico tools (PP3, BP4). 

• Criteria about reputable sources (PP5, BP6). 

The result was analyzed to evaluate if the three software agree in 

classifying the variants and to understand which criteria are activated in a 

different way and which can cause misclassification of the DES variants. 

Subsequently the variants were classified using the adapted criteria of the 

CMGCV-DES. Finally, by integrating the information on the phenotype of 

carriers (PP4, BS2, BP5), on the family study (PS2, PM6, PP3, BS4), and on 

the functional studies on myocardial tissue carried out at OSM, a robust 

classification of the variants contained in the DES-dataset was provided. 
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4.1.4.1. Differences between software before patient and family 
evaluation 

All the 40 short variants extracted from the DES-dataset were classified 

using the three software (Figure 4.3, 4.4). The CNV was excluded from the 

evaluation because not all software provide interpretation of this type of 

variant by applying the 28 criteria-based ACMG system, rather preferring to 

apply the rules dedicated to structural variants [114]. 

• Varsome classifies 31 variants as P / LP (77.5%), 8 as VUS 

(20%), 1 as LB / B (2.5%);  

• Franklin classifies 16 variants as P / LP (40%), 19 as VUS 

(47.5%), 5 as LB / B (12.5%);  

• eVai classifies 9 variants as P / LP (22.5%), 28 as VUS (70%), 3 

as LB / B (7.5%).  

 

Figure 4.3: Distribution of variant classification of the three software 
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Figure 4.4: Trends in the classification of the three software 

The 3 software agree in classifying 18/40 (45%) variants (9 as P / LP, 8 

as VUS, and 1 as LB / B), while for 22 (55%) variants the classification is 

discordant. As the 22 variants discordantly classified are concerned, for 

20/40 variants (50%) 2 out of 3 software agree in the classification and 

classify by majority 7/20 as P / LP, 11/20 as VUS, and 2/20 as LB / B. The 

interpretation from 3 software are completely different only for 2 (5%) 

variants: Varsome classify them as P / LP, eVai as VUS, and Franklin as LB 

/ B (Figure 4.5). 

 

Figure 4.5: Concordant and discordant classification between the three 

software. Variants without the full agreement between software are classified 

using the 2 out of 3 rule. 
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These classification differences are due to the different strategies with 

which the software activates the ACMG rules criteria. 

All software agrees to use the criteria concerning the type of variant 

(PVS1 or PP2) with the only difference that Franklin applies the 

recommendations for the use of PVS1 by modulating its strength based on 

the prediction of the nonsense-mediated decay as per recommendations 

[101].  

The other criteria activated in a discordant way between the software are: 

1. The criterion that evaluates the prediction tools (PP3 / BP4).  

2. The criteria that evaluate the MAF thresholds to determine if a 

variant is to be considered rare or common (PM2 / BA1 / BS1). 

3. The criterion that evaluates the literature and clinical database 

data (PP5 / BP6). 

The different use of PP3 or BP4 is due to the different sets of prediction 

tools that each software queries and to the rule with which they activate the 

score. Specifically, eVai activates PP3 and BP4 independently and, in some 

cases, simultaneously if even a single tool is in favor of the deleterious or 

benign effect. Varsome uses a majority ranking among the results of all tools 

to determine whether to activate PP3 or BP4 and activate them exclusively. 

Franklin calculates a machine learning-based meta-score of the predictions 

of the interrogated tools and interprets the impact through ranges of 

benignity or deleterious effect.  

In interpreting the MAF calculated from the control population, the 

software agrees to classify 17/22 variants as rare and activate PM2, while 

calculating the threshold for BS1 differently. Franklin, in fact, activates the 

BS1 for 3 variants, determining the LB / B class, while Varsome and eVai 

do not activate the BS1 for any variant. The rule that most causes the 

classification differences between the 3 software is the PM1 which in 21/22 

variants switches the classification from VUS to LP. The software that most 

applies the PM1 criterion is Varsome: it classifies the 21 LP variants using 

the PM1 compared to 7/21 classified as P / LP by Franklin, and 0/21 eVai. 

EVai does not activate the PM1 criterion for any variant, while Franklin only 

activates PM1 for 6/21 variants. 

4.1.4.2. The CMGCV interpretation 

By applying the CMGCV-DES system, the 40 variants of the DES-dataset 

were classified as 10 LP-P (25%), 24 VUS (60%), and 6 LB-B (15%), while 

the three software, considering at least 2 out of 3 software, classified the 

variants as 16 LP-P (40%), 19 VUS (47.5%), 3 LB-B (7.5%) and 2 LP-VUS-

LB (5%) (Figure 4.6). Through the CMGCV-DES system, the CNV DEL 

exon 3, excluded from the evaluation of the 3 software, was classified as LP. 

Of the 38 variants with a concordant class calculated by 2 out of 3 

software, the CMGCV-DES system classifies 31/38 (81.6%) in agreement 
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with software: 10 LP-P, 18 VUS, and 3 LB-B. Of the 7/38 (18.4%) variants 

classified differently, 6 were classified LP-P by the software and VUS by the 

CMGCV-DES, while 1 is VUS for software and LB for CMGCV-DES. The 

differences in classification are due to the difference in the interpretation  of 

critical areas (hotspots or functional domains) within the Desmin gene 

(PM1), to the interpretation of the MAF of the variant (PM2 / BS1), and to 

the criterion that evaluates a second variant which afflicts the same amino 

acid (PM5). 

 

Figure 4.6: Distribution of variant classification of the three software (using 

the 2 out of 3 rule) and of the CMGCV-DES system. 

4.1.4.3. The impact of the pathological and clinical study of 
subjects and the analysis of families on classification 

The final classification was optimized using clinical information of 

variant carriers, familiar co-segregation information, and functional tissue 

pathology studies where available. The immuno-ultrastructural pathological 

study for the identification of Desmin aggregates in myocardial tissue was 

performed on the carriers of 9 variants, 7 of which classified as LP and 2 as 

VUS by the CMGCV-DES system. The carriers of 8 of the 9 tested variants 

demonstrated specific accumulations due to the Desmin defect, while in the 

carrier of 1 variant no pathological findings of intra-myocyte myofibrillar 

aggregates were found. 

Clinical evaluation of patients revealed the compound phenotype RCM + 

AVB (and serum PK+) in probands carrying 10/41 variants, and none of 

these demonstrated the presence of a second variant that can be considered 

an alternative cause of the phenotype. Carriers with DCM, HCM, and ARVC 

(but also carriers without cardiomyopathy) were identified for 14/41 

variants; in subjects with cardiomyopathy carriers of 5/14 variants, a second 

variant classified as P or LP was identified in a disease, probably the 
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principal cause of the phenotype. Finally, 17/41 variants were identified in 

control subjects with clinically proven absence of the phenotype, and clinical 

and family history negative for cardiomyopathy and myopathy. 

The family study identified 4/41 de-novo variants; for 1/41 variant 

recessive transmission was demonstrated in two unrelated families with 

homozygous subjects affected by RCM and AVB and healthy heterozygous 

subjects; for 2/41 variants segregation with the phenotype with the dominant 

transmission was observed, while for the remaining variant carriers the 

families proved to be not informative or not accessible. By adding this 

information, the pathogenicity class changes for 16/41 variants. For 8 

variants the pathogenic interpretation was strengthened passing from LP to 

P, 2 variants were confirmed benign passing from LB to B, while from 6 

variants they changed class passing from VUS to P (n = 1) and from VUS to 

LB (n = 5). 

4.1.5. The final classification 

Considering the above-presented data, the 41 variants can be divided into 

4 groups: 

1. The first group comprises variants whose carriers are all affected by 

RCM with AVB, myopathy, and Desmin accumulations. Some of these have 

led to end-stage disease and heart transplantation. This group is composed 

of 9 variants, 4 null variants and 5 missenses (1 of which replaces 2 amino 

acids) distributed in the Head (n = 1), in the coil1B (n = 4), Coil2B (n = 1), 

and in the Tail (n = 3) of the Desmin protein; all 9 variants are absent from 

the population databases but 4/9 are described in ClinVar as P or LP and 1/9 

are described as P and VUS. In subjects carrying 8/9 variants of this group, 

the immuno-ultrastructural investigation was performed which revealed the 

presence of Desmin accumulations inside the cardiomyocytes demonstrating 

an "aggregate-forming" effect of these variants. The final interpretation of 

the variants of the first group is Pathogenic for MFM Desmin related. 

2. The second group includes variants identified in subjects with 

cardiomyopathy related to the Desmin defect (HCM, DCM, and ARVC) but 

non-specific for Desminopathy and who do not have a second variant that 

could be the main cause of the phenotype. The second group is composed of 

9 variants, 6 missenses, 2 truncating variants, and 1 variant of non-canonical 

splice site, distributed in the Head (n = 3), in Coil1A (n = 1), in Coil1B (n = 

3), and in the Tail (n = 2) of the Desmin protein. The EM study carried out 

in the myocardial tissue of the carrier of 1 variant (c.323A> G; p.Glu108Gly) 

did not show the presence of Desmin accumulations excluding an aggregate-

forming effect of the variant. Of this group 6/9 are variants absent from 

population databases, 1/9 is described in ClinVar as P, 1/9 as LP and VUS, 

and 1/9 as LB and VUS. The final classification determines the LP-P class 

for 2/9 variants, 6/9 variants are classified as VUS and 1/9 as LB. Variants 

in this group do not appear to have an aggregate-forming impact but may 

play a causative role for other DES-associated cardiomyopathies. 
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3. The third group is composed of 6 missense variants identified in 

subjects with cardiomyopathy associated with a Desmin defect (HCM, DCM, 

ARVC, RCM) but who have a variant in another gene that is likely to cause 

the cardiac phenotype. The variants of the third group are distributed in the 

Head (n = 2), in the Coil 1B (n = 1), in the Coil 2B (n = 1), and in the Tail 

(n = 2) of the Desmin. 5/6 variants are present in the population databases 

with a number of alleles >= 4, while 4/5 are described in ClinVar as B and 

VUS (n = 2) and VUS (n = 2). The clinical study shows both carriers affected 

by cardiomyopathy (6 of these are mutated in other phenotype-related genes) 

and healthy subjects from a cardiac point of view. In this group, 5/6 variants 

are classified LB or B and 1/6 is VUS. The variants of the third group are 

likely to have no impact on the MFM phenotype and do not appear to cause 

cardiomyopathy either. 

4. The fourth group includes 17 variants identified in control subjects 

without CMP and myopathy. This group is constituted of 16 missense 

variants and 1 non-canonical splice site variant (c.579-4C> T) distributed in 

the Head (n = 2), in Coil 1A (n = 3), in Coil 1B (n = 7), in Coil 2B (n = 3), 

and in Tail (n = 2). Out of 17 variants, 5/17 are not represented in the control 

populations and 7/17 are described in ClinVar as VUS (n = 5) and VUS and 

LB (n = 3). All carriers of the variants contained in this group were 

considered healthy controls without cardiomyopathy. Of this group, 5/17 

variants meet the criteria to be classified as LB or B, and 12/17 remain VUS. 

Although the interpretation tends towards kindness. The variants of the 

fourth group are most likely benign and have a neutral role towards 

Desminopathy. 

Table 4.3: DES-dataset variants classification 

VARIANT EVAI VARSOME FRANKLIN 
CMGCV-

DES 
FINAL CLASS 

AGGREGATE FORMING VARIANTS 

c.46C>T 

p.Arg16Cys 
VUS LP LP LP 

LP → P 

PM2,PP2,PP3,PP5 + 

PS3_Verystrong, 

PM3_Supporting,PP4 

c.536_551del 

p.Glu179fs 
P P P LP 

LP → P 

PVS1,PM2 + PP4 

c.641_735+1del 

p.Asp214_Glu245del 
- - - LP 

LP → P 

PVS1,PM2 + 

PS3_StandAlone,PP4 

c.735+2_735+11del 

- 
P P LP LP 

LP → P 

PVS1,PP5,PP3 + 

PS3_StandAlone, PP4 

c.735+1G>A 

-11111111\ 
P P P LP 

LP → P 

PVS1,PM2,PP3,PP5_S

trong + 

PS3_StandAlone, PP4 
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c.1216C>T 

p.Arg406Trp 
LP P P LP 

LP → P 

PM2,PP2,PP3,PP5_Str

ong + 

PS3_StandAlone, PP4 

c.1358C>T 

p.Thr453Ile 
VUS LP LP LP 

LP → P 

PM2,PP2,PP3,PP5 + 

PS3_StandAlone, PP4 

c.1360C>T 

p.Arg454Trp 
LP P P LP 

LP → P 

PM2,PP2,PP3,PP5_Str

ong + 

PS3_StandAlone, PP4 

c.1398_1399delGCin

sTT 

p.GlnHis466HisTyr 

VUS VUS VUS VUS 

VUS → P 

PM2,PP2 + 

PS3_StandAlone, PP4 

VARIANTS IN CMPs WITHOUT OTHER MUTATIONS 

c.250G>A 

p.Gly84Ser 
LB VUS LB LB 

LB → LB 

PP2,BS1,BP6 + PP4 

c.322G>A 

p.Glu108Lys 
VUS LP LP VUS 

VUS 

PM2,PP2,PP3 

c.323A>G 

p.Glu108Gly 
VUS LP LP VUS 

VUS 

PM2,PP2,PP3 

c.380G>C 

p.Arg127Pro 
VUS LP LP LP 

LP 

PM2,PP2,PP3,PP5 

c.517C>A 

p.Arg173Ser 
VUS LP VUS VUS 

VUS 

PM2,PP2,PP3 

c.634C>T 

p.Arg212Ter 
P P P VUS 

VUS 

PVS1,PP5 

c.749T>C 

p.Leu250Ser 
VUS LP VUS VUS 

VUS 

PM2,PP2,PP3 

c.1289-3C>T 

- 
VUS VUS VUS VUS 

VUS 

PM2 

c.1371+2T>C 

- 
P P LP P 

P 

PVS1,PP5,PP3 

VARIANTS IN CMPs WITH OTHER MUTATIONS 

c.170C>T 

p.Ser57Leu 
LB P LB LB 

LB 

PP2,BS1,BP6 

c.238C>T 

p.Pro80Ser 
VUS VUS VUS VUS 

VUS → LB 

PM2,PP2,BP4 + BP5 

c.635G>A 

p.Arg212Gln 
VUS LP VUS LB 

LB → B 

PP2,PP3,BS1,BP6 + 

BS2,BP5 

c.1123C>T 

p.Arg375Trp 
VUS LP LP VUS 

VUS → LB 

PP2,PP3 + BS2,BP5 

c.1286G>A 

p.Arg429Gln 
VUS LP VUS VUS 

VUS → LB 

PP2 + BS2,BP5 

c.1334C>T 

p.Thr445Met 
VUS LP VUS VUS 

VUS → VUS 

PP2 

VARIANTS IN CONTROLS 
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c.173G>A 

p.Arg58His 
VUS VUS VUS VUS 

VUS → VUS 

PM2,PP2 + BS2 

c.216C>A 

p.Ser72Arg 
VUS VUS VUS VUS 

VUS → LB 

PP2,BS1 + BS2 

c.404C>T 

p.Ala135Val 
LB LP LB LB 

LB → B 

PP2,BS1,BP4,BP6 + 

BS2 

c.407T>A 

p.Leu136His 
VUS LP LP VUS 

VUS → VUS 

PP2,PP3 + BS2 

c.415G>C 

p.Glu139Gln 
VUS LP VUS VUS 

VUS → VUS 

PP2,PP3 + BS2 

c.460C>A 

p.Leu154Ile 
VUS VUS VUS VUS 

VUS → VUS 

PP2 + BS2 

c.538C>T 

p.Arg180Cys 
VUS LP VUS VUS 

VUS → VUS 

PM2,PP2,PP3 + BS2 

c.543C>G 

p.Asp181Glu 
VUS LP VUS VUS 

VUS → VUS 

PM2,PP2,PP3 + BS2 

c.546C>G 

p.Asn182Lys 
VUS LP VUS VUS 

VUS → VUS 

PM2,PP2,PP3 + BS2 

c.577A>C 

p.Lys193Gln 
VUS LP VUS VUS 

VUS → VUS 

PM2,PP2,PP3 + BS2 

c.579-4C>T 

- 
VUS VUS VUS VUS 

VUS → LB 

BP4 + BS2 

c.643G>T 

p.Val215Leu 
VUS LP VUS VUS 

VUS → VUS 

PP2,PP3 + BS2 

c.935A>C 

p.Asp312Ala 
VUS LP LB B 

B → B 

PP2,PP3,BA1,BP6 + 

BS2 

c.1064G>A 

p.Arg355Gln 
LP LP LP VUS 

VUS → VUS 

PP2 + BS2 

c.1180G>A 

p.Val394Met 
VUS LP B B 

B → B 

PP2,PP3,BA1,BP6 + 

BS2 

c.1189G>A 

p.Ala397Thr 
VUS LP VUS VUS 

VUS → VUS 

PP2,PP3 + BS2 

c.1361G>A 

p.Arg454Gln 
LP LP LP VUS 

VUS → VUS 

PP2 + BS2 

 

4.1.6. The importance of clinical and pathology studies 

 The difficulties related to understanding the impact of Desmin-gene 

variants, and consequently on the clinical path of carriers, make DES a key 

example of the need to deepen the methods of interpretation of genetic tests. 

The presence of commercial or free-to-use software for the prioritization of 

variants has facilitated the genetic diagnosis process by implementing the 

ACMG rules and making easier the collection and interpretation of the 

necessary information. Despite the concrete help that derives from the use of 
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these systems, the implementation of the criteria for the pathogenic 

classification is still not very robust, especially using partial information. 

The analysis of the results of the three software has shown that the 

classification of pathogenicity of the variants, provided only by the 

information available in silico, is strongly influenced by the algorithms with 

which the rules are interpreted. Each software uses different logics for the 

activation of each criterion and small differences in implementation can 

generate important classification discrepancies, giving rise to more or less 

conservative or unbalanced interpretations. Depending on the software used, 

there is a risk of over-interpreting the variants, altering the calculation of the 

predisposition to develop the disease, with a deleterious impact both for the 

patient and for the healthcare system. On the other hand, a too conservative 

classification that interprets as VUS variants that hardly have a pathogenic 

effect, leaves the genetic report pending due to lack of certainties. These 

problems give rise to the need to integrate as much knowledge as possible 

about the clinical case, its genetics, its family, and dedicated functional 

experiments into the interpretative process. The interpretative problem 

affects almost all genes but is crucial for those associated with rare diseases 

characterized by a lack of genetic, clinical, and segregation information. For 

this reason, it becomes essential to adapt the algorithms according to the 

genes being analyzed to maximize accuracy. The CMGCV-DES system 

avoids overestimating the impact of the variants and increases the number of 

likely benign or benign classification, preferring a more conservative 

interpretation in the absence of functional or segregation tests to confirm the 

pathogenic assessment. Although the ACMG rules help to make the 

interpretation of DES variants more robust, only clinical and pathology can 

shed light on the real role of the variant on the phenotype. It is, in fact, 

essential to be able to understand which variants actually have an "aggregate-

forming" effect causing the intra-myocytes accumulation of Desmin, and 

which ones do not have this role despite being classified as pathogenic.  

4.1.7. Clinical features of variant’s groups 

 As a conclusion of the evaluations on the variants present in the subjects 

belonging to our center, we decided to organize the series of variants 

according to 4 distinct groups based on the characteristics of the patients and 

the variants themselves. 

All the variants of which we are certain of pathogenicity and of the role 

of the aggregate forming cause of myofibrillar myopathy belong to the first 

group. The clinical picture of carriers of these variants has a very similar 

evolution, which begins with a delay in conduction and slight concentric 

hypertrophy of the ventricles and evolves into RCM and AVB. All variant 

subjects in this group underwent PM implantation and many of them 

underwent cardiac transplantation. Evidence of the intra-myocyte Desmin 

aggregates labeled with anti Desmin antibodies during the EM study 

excludes any doubts about the effect of the variants of this group. While the 
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aggregate forming variants are relatively simple to identify by deepening the 

clinical aspects of the patient and through robust and well-performed 

functional studies, the variants that do not generate intra-myocyte 

accumulations of Desmin but that decrease its functionality and cause 

nonspecific phenotypes, are still a challenge. The definition of the cause-

and-effect relationship between the genetic defect in DES and myocardial 

pathology in subjects who do not have a second mutation capable of 

explaining the phenotype is essential in the path of understanding the 

disease, but it is still difficult to evaluate due to the lack of markers, 

pathological and functional tests. The variants of the second group within 

our series are an example of this. Carriers in fact demonstrate a range of 

cardiomyopathies, mostly sporadic, which includes DCM, HCM, ARVC, 

conduction dysfunctions, and extensive myocardial fibrosis; moreover, they 

are not affected by other pathogenic variants and the families are not very 

informative due to the lack of phenotypic transmission. The effect of this 

uncertainty is reflected in the final classification of these variants, which are 

mostly referred to as VUS precisely because of the lack of crucial evidence 

of a damaging effect. The lack of functional data does not allow to assess the 

aggregate forming role, and the clinical study on the proband and on his 

family does not clarify the ideas on the pathogenic impact. The meaning 

changes for the variants of the last two groups in patients with 

cardiomyopathy caused by a mutation in another gene strongly related to the 

phenotype or in control subjects who do not have cardiomyopathy and who 

come from phenotypically healthy families for hereditary cardiomyopathy. 

The CMGCV-DES system with the addition of information on the patient 

and families, classifies these variants as (likely) Benign or as VUS tending 

to Benign. This group includes variants that affect an amino acid that also 

changes into a pathogenic variant. Patients' clinics orient the assessment 

towards a likely neutral impact, confirming the CMGCV-DES interpretation. 
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4.2. Variants study in breast and ovarian cancer 
families 

4.2.1. Introduction to hereditary cancer 

Since 2013 the Centre for Genetic Diseases of the OSM Foundation, in 

collaboration with the Breast Cancer and Gynecology and Obstetrics units of 

the Hospital, has developed a path of clinical and molecular genetics to 

support and enhance the diagnosis and care of women at high risk of 

developing breast and ovarian cancer. In the same year, a research project 

was launched aimed at identifying the genetic causes of breast and ovarian 

cancer and HBOC syndrome. These paths was provided to over a thousand 

women with Breast and Ovarian Cancer (BROVCA) who received highly 

specialized multidisciplinary care aimed at the most advanced management 

(diagnosis and treatment) of malignancies (OSM PDTA EUSOMA; EU 

certification with annual confirmation). Within this process, an integrated 

clinical and genetic database of patients suffering not only from BROVCA, 

but also from non-BROVCA hereditary cancers, was created in order to 

incorporate the data in an easy and fast management the data analysis and 

interpretation.  

This chapter describes the database developed at the CMGCV of San 

Matteo and the results obtained from the analysis of genetic data conducted 

with NGS analyzes from 2015 to 2020. The primary objective is to 

understand the genetic makeup of patients with BROVCA compared to 

patients with other malignant neoplasms; the secondary objective is the 

assessment of the feasibility of family segregation studies. 

4.2.2. Genetic and clinical background 

 Breast cancer (BR) is the most common cancer in women. The World 

Health Organization (WHO) has estimated that it accounts for more than 

25% of all new cancer cases per year in women and 10% of all cancers when 

men are included in the estimates [115]. Ovarian cancer (OV) is less common 

than breast cancer. The latest estimate in the "Global Cancer Statistics 2020" 

report [116], generated by the American Cancer Society (ACS) and the 

International Agency for Research on Cancer (IARC), shows that ovarian 

cancer accounts for approximately 3.4% of all female cancers, globally. Most 

BR and OV appears as sporadic without an obvious genetic etiology. A 

smaller proportion - between 5 and 15% of BR cancers and 6-25% of OV 

cancers - is linked to a strong hereditary "predisposition". The genetic causes 

of these two types of cancer overlap, and both Breast and Ovarian cancers 

(BROVCA) are often observed in family members, carriers of the same 

genetic defect. This familial predisposition syndrome to develop BROVCA 

cancers is called hereditary breast and ovarian cancer (HBOC). 
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Although most cases of HBOC syndrome are associated with mutations 

in BRCA1 or BRCA2 genes, defects in these two genes explain about 15-

25% of cases. The study of the HBOC BRCA negative families led to the 

identification of additional 25 genes associated with hereditary 

predisposition to BROVCA cancers; still far from a completion of the 

predisposing genes, and in the context of this high genetic heterogeneity, 

further studies are ongoing to identify all the possible disease-genes thus 

providing precise molecular diagnostics with complete lists of the genetic 

causes of HBOC syndrome [115][117]. 

4.2.3. The reasons for genetic testing  

Genetic testing for HBOC syndrome is integrally part of the management 

of patients who develop BROVCA cancers and their families. The most 

common test is limited to BRCA1 and BRCA2 because most familial 

BROVCA are associated with mutations in these 2 genes. However, the new 

discoveries on the genetic causes of non-BRCA BROVCA cancers 

demonstrated the clinical relevance to other genes as well. The result of the 

genetic investigation is clinically actionable as it has an immediate impact 

on surgery, oncology treatment, clinical management of family members, ass 

well as on the quality of life of unaffected carriers. Immediately after the 

diagnosis of cancer, the detection of pathogenic or likely pathogenic variants 

in a relevant gene can support surgical decision, from a conservative 

quadrantectomy to a total mastectomy and, in some cases, to a preventive 

bilateral mastectomy [118]. Prophylactic bilateral salpingo-oophorectomy is 

recommended in genetically predisposed and aged individuals at risk and can 

reduce the risk of ovarian cancer by up to 80% [118]. Cancers related to 

BRCA1 or BRCA2 defects are commonly susceptible to carboplatin which 

is considered the first line treatment for genetic cancers. In addition, some 

ovarian tumors, and recently also BR cancers, associated with defects in the 

homologous recombination pathway (HRD) are targets of a new line of 

PARP inhibitors that has shown promising effects [119][120]. Finally, 

probands and family carriers exposed to the risk of HBOC syndrome enter 

personalized prevention monitoring programs to ensure early diagnosis and 

increase the probability of survival and quality of life.  

4.2.4. The clinical and molecular genetic path at the OSM 

The path is structured as indicated by the Regione Lombardia rules and 

by guidelines from scientific societies. The first step is genetic counselling, 

with examination of individual clinical data and of clinical data from 

relatives (patients are asked to trace and collect clinical records of relatives 

before accessing the center for counselling). In cases in which the genetic 

test is appropriated, informed consent for testing is collected and then the 

patient undergoes blood sampling. The blood sample is transferred to the 
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laboratory where it is processed for NGS tests. After running the NGS, data 

are analyzed as described in the prior chapters. The file including all variants 

selected by the analysis is addressed to the lab for Sanger confirmation, as 

per request of the Regione Lombardia rules. After completion of the 

confirmation, a report describing the results is generated according to the 

rules indicated by scientific societies. In parallel, family segregation studies 

are performed, in particular in case of variants that are defined as VUS based 

on ACMG rules due to the lack of any prior description. Reports on known 

and proven pathogenic variants are usually released immediately after 

Sanger confirmation. The center acknowledges ACMG criteria for variant 

reclassification and ACMG indications for recalling patients when 

reclassification provides new evidence of variant actionability. Each patient 

then receives three written reports: the pre-test genetic counselling, the 

genetic test report and the post-test counselling report. The reports and the 

related information are directly transferred to the patients during the post-

test counselling. Each patient signs a further form in which she/he declares 

the receipt of the reports and the full understanding of the information 

provided during post-test counselling. 

4.2.5. NGS sequencing and analysis pipeline  

The workflow of NGS-based germline genetic analysis of samples was 

validated within the accreditation process of the European Society of Breast 

Cancer Specialists (EUSOMA) [121] for the genetic diagnosis of hereditary 

breast cancers.  

4.2.5.1. Wet process  

By protocol, DNA is isolated from whole blood by the Promega 

Maxwell® RSC automatic extractor and quantified by NanoDrop™.  

NGS libraries are prepared using the Illumina Trusight Rapid Capture kit 

in combination with the Trusight Cancer (illuminate) probes. The libraries 

undergo a process of quantification, quality control and selection of 

fragments using the BioAnalyzer (Agilent), before being loaded onto the 

Illumina MiSeq sequencer in groups of 24 samples per run, as per the 

Illumina protocol.  

4.2.5.2. NGS data analysis 

Fastq files are analyzed via the trusight_germline pipeline implemented 

using Helper platform. The workflow of the trusight_germline pipeline 

includes: 

1. Fastq QC using FastQC tool.   

2. Alignment of Fastqs using BWA-mem.   
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3. Sam conversion, bam sorting, and marking of duplicates using 

Picard tool.   

4. Realignment around InDels and Base Quality Score Recalibration 

using GATK v.3.7. 

5. Joint Variant calling using GATK v.4.1 and Freebayes in cohort 

modality.   

6. Variant filtering using GATK v.4.1. 

7. Annotation using VEP. 

8. Transcript selection using Canonical Transcript for all genes.  

9. CNV calling using GATK v4.1. 

The NGS samples are evaluated through target coverage quality 

parameters and the identified variants undergo a prioritization process 

through a cascade of sequential filters.  

Variants with the following characteristics are excluded:  

1. Heterozygous in more than two samples or homozygous in more 

than one sample within the cohort consisting of 24 samples.  

2. Intronic, UTR, intergenic and non-coding variants distant from 

the splice sites.  

3. Variants with MAF greater than 0.005 in at least one population 

database including 1000G, ExAC, and GnomAD.  

4. Benign or Likely Benign, ascertained.  

5. Synonymous or missense variants in genes with a high mutation 

frequency and with an established loss of function as mechanism 

of damage.  

The remaining variants were classified according to the ACMG-

AMP guidelines and only variants with a Likely Pathogenic and Pathogenic 

significance are considered.  

4.2.5.3. The CMG-Cancer DB 

For the present study, the clinical and family information on patients, 

obtained at the pre-test genetic counseling, and the variants identified 

through the NGS analysis, were included in the CMG-CancerDB. Clinical 

data such as the site of the tumor, the age of onset, the characteristics of 

malignancy and information on family history have been entered manually 

and are subjected to a continuous review process. The genetic information 

of the probands obtained through NGS analysis was integrated with an 

automatic system and was updated periodically. 

Cancer DB contains information from 1320 unrelated probands, addressed 

to the CMG for cancer (n = 1225; 92.8%) and eligible for genetic testing, as 

well as unaffected subjects (n = 95; 7.2%) who underwent genetic testing for 

positive family history suggestive for Hereditary Cancer syndrome (HCS). 

The series analyzed in this study includes 253 males and 1067 females, with 

a mean age of 55 years at the date of the consultation (C.I. 95% = 32-77 
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years) (Table). Based on tumor site and characteristics, probands with prior 

malignancy were grouped into probands with BROVCA (p-BO) (n = 825; 

62.5%) and probands with other non-BROVCA tumors (p-NBO). The latter, 

together with the unaffected probands, were considered as a single group 

without prior BROVCA (p-NBO) (n = 495; 37.5%). For the p-NBO group, 

family history was assessed and subjects with at least one BROVCA relative 

in the first (parents, siblings, children) generation or in the second generation 

(uncles, grandparents, grandchildren) were grouped as probands no 

BROVCA in BROVCA family (p-NBO in f-BO) (n = 173; 34.9% of p-NBO). 

The remaining patients without prior BROVCA in the family were grouped 

together as probands no BROVCA in no BROVCA family (p-NBO in f-

NBO) (n = 322; 65.1% of p-NBO). To carry out the classification, only 

subjects with primary breast or ovarian cancer were considered as BROVCA 

and metastatic lesions were excluded. Non-HBOC tumors such as Sertoli-

Leydig cell tumor (non-germ cell neoplasm of the ovary and testis) were 

considered among the non-BROVCA tumors due to the unique 

characteristics and well-defined genetic causes (e.g., Diceropathies). 

4.2.6. Results of genetic testing  

Although the genes reported as associated with increased risk of BROCA 

are a small group, all genes present in the Trusight Cancer panel were 

considered for this study. Of the 1320 tested probands, 274 (20.8%) carried 

a P or LP variant in a gene associated with HCS Syndrome, with a slightly 

higher percentage of mutants among the p-BO probands (n = 182 / 825; 

22.1%) compared with p-NBOs (n = 92/495; 18.6%).  
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Figure 4.7: The distribution of genes within the entire population of CMG-

CancerDB.  

The list of genes with at least one P/LP variant includes 40 genes with at 

least one P or LP variant (Figure 4.7). Most common genes are BRCA1 (n = 

59) and BRCA2 (n = 47) which, by themselves, comprise 38.7% of the 

causative disease variants in the series.  

Among the BROVCA probands, 91/180 (50.5%) carry a P / LP variant in 

the BRCA1 or BRCA2 genes and 89/180 (49.5%) in other genes. The 

percentage decreases in the non-BROVCA group of probands (n = 15/93; 

16.3%); 11/15 (73.3%) were identified in unaffected probands from high-

risk families.  
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4.2.6.1. BRCA vs other genes in BROVCA probands  

For a more in-depth analysis of BRCA1 and BRCA2 genes vs. other genes 

in probands with previous breast or ovarian cancer, the 825 BROVCA 

probands were divided into 5 subgroups based on the location of the 

malignancies:  

• ovarian cancer alone (n = 232/825, 28.1%)  

• ovarian cancer plus other types of cancer (n = 14/825, 1.7%)  

• breast cancer alone (n = 481/825, 58.3%)  

• breast cancer plus other types of cancer (n = 51/825, 6.2%)  

• breast + ovarian cancer (n = 47/825, 5.7%).  

  

Figure 4.8: The distribution of malignancy types in BROVCA probands 

The highest percentage of mutated probands (35.7%) was found in the 

group of patients with previous ovarian cancer and at least one more non-

BROVCA tumor. In this group, 40% of the mutants are carriers of a P / LP 

variant in BRCA1 or BRCA2, while 60% carry pathogenic variants in other 

genes. The representativeness of the Ovarian + other tumors group is limited 

by the low number of probands. The probands affected by Ovarian cancer 

alone are 232: 37 (50.7% of the mutants) are mutated in BRCA1 / 2 and 36 

(49.3%) in other genes, with overall 73/232 mutated (31.5%). Considering 

all probands who had Ovarian but no Breast cancer (n = 246/825, 29.8%), 

78/246 (31.7%) were mutated in BRCA1/2 (n=39/78, 50%) and in other 

genes (n=39/78, 50%).  

In 481 (90.4%) of the 532 probands, breast cancer was the only 

malignancy, while the remaining 9.4% had had at least one further non-

BROVCA malignancy. Among the probands who had only breast cancer, 77 
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(16.0%) had a positive genetic test, and 37 (48.1%) were carriers of 

BRCA1/2 mutation. Of the 51 patients who had more than one malignancy, 

13 carried pathogenic variants (25.5%), of which 6/13 (46.2%) in BRCA1/2, 

and 7/13 (53.8%) in other genes. Overall, 16.9% probands with breast cancer 

(with or without other tumors) carry BRCA defects. Finally, the probands 

who developed both breast and ovarian cancer are 47: 14 (29.8%) were 

carriers of mutations in at least one gene of the panel; 9/14 (64.3%) tested 

positive for BRCA1 or BRCA2.  

 Within the BROVCA probands, the groups show a similar percentage of 

P / LP variants in BRCA1/2 versus all other 38 genes. This trend reflects the 

high correlation between ovarian and breast cancer with the two BRCA 

genes and is best seen among patients who developed lesions in both sites. 

This last group, despite the low number, showed a higher frequency of 

variants classified as causing disease in BRCA genes (64.3%).  

Overall, the diagnostic yield in BRCA for patients with ovarian cancer is 

about one positive out of three mutated ones, while it drops dramatically in 

breast cancer. 

Table 4.4: The genetic distribution into the BROVCA group 

 MUTATED 
NON 

MUTATED 

  BRCA1/BRCA2 
OTHER 

GENES 

ALL 

GENES 
 

OVARIAN+OTHERS  2 (40%) 3 (60%) 35,7% 64,3% 

OVARIAN  37 (50.7%) 36 (49.3%) 31,5% 68,5% 

OVARIAN+BREAST  9 (64.3%) 5 (35.7%) 29,8% 70,2% 

BREAST+OTHERS  6 (46.2%) 7 (53.8%) 25,5% 74,5% 

BREAST  37 (48.1%) 40 (51.9%) 16,0% 84,0% 
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Figure 4.9: The BRCA1/2 vs other genes distribution into the BROVCA 

group 

4.2.6.2. Non-BROVCA probands  

In probands without BROVCA, the mutation frequency of BRCA versus 

other genes was assessed by comparing probands from BROVCA families, 

as previously defined, and probands without family history of breast and 

ovarian cancer. In the cohort of non-BROVCA probands, regardless of 

family history, 91 subjects (18.6%) were mutated, with a higher percentage 

of defects in the non-BRCA gene group (n = 77; %) than in BRCA1 and 

BRCA2 (n = 15; %). All 15 BRCA positive probands had a positive family 

history of BROVCA cancer, while BRCA mutants were not identified in the 

group of subjects from non-BROVCA families. In the non-BROVCA group 

in BROVCA families, the percentage of BRCA defects is 36.8% 

versus the 63.2% in other genes.  

This result suggests that in probands without previous ovarian or breast 

cancer and without any first or second-degree family member affected by 

BROVCA, the probability that the oncology risk in the family is associated 

with BRCA defect is almost nil.  

4.2.6.3. Mutated non affected probands  

In our series, 15 probands had no previous malignancies, but were carrier 

of a P or LP variant in a gene associated with HCS: 11 probands in BRCA1 

(n = 6) and BRCA2 (n = 4), 1 carries both BRCA2 and MSH6 mutations, 1 

in FANCG, 1 in HOXB13, and 2 in MUTYH. Among the 11 probands with 

a variant P or LP in BRCA1 / 2, 8 are Female and 3 are Male. The females - 

mean age 44.5 years (CI-0.95 = 28.2-62.5) - all have a strong family history 

of BROVCA; 6 of 8 have mothers with a past breast or ovary and 2 have at 

least 1 sister with breast or ovarian cancer. The 3 BRCA1-positive males 

have a strong family history of BROVCA (2 breast cancers in the mother and 

1 ovarian and breast cancer of a sister). The age at counseling ranges from 

22, 41, to 60 years. As for the 4 subjects mutated in non-BRCA genes, only 

2 of 4 had at least one first-degree relative with a previous BROVCA. 

4.2.6.4. BROVCA in male probands  

Men who have developed breast cancer during their lifetime deserve a 

careful analysis. In our series 17 men have breast cancer, with a mean age at 

counselling = 65.7 years (C.I. 95% = 43.8-72.5). They constitute 1.6% of all 

tested subjects and 2.1% of BROVCA probands. 12 out of 17 probands had 

only breast cancer while 5 had malignancies in other districts as well: one 

breast and prostate, two had kidney and breast cancers and two had kidney, 

breast and colon cancers. Only 4 (23.5%) male probands were found to be 
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mutated in the genes contained in the panel, one in BRCA1, one in BRCA2, 

one in ERCC2, and one in FANCA. The two BRCA carriers developed both 

Breast and clear cells Renal cancer (one of them also a colon 

adenocarcinoma) while the other two only breast cancer. 

4.2.6.5. Gene pathways in breast and ovarian cancers  

 The evaluation of the mutation fraction of the two BRCA genes vs. all 

the other malignancy genes has showed a balanced relationship in BROVCA 

probands, with the percentage of positive BRCA decreasing in the non-

BROVCA probands who were members of BROVCA families, up to zero in 

BRCA negative probands within the subgroup of the non-BROVCA families.  

Within the group of BROVCA with mutations in non-BRCA genes, there 

are 38 different genes, some are associated with specific syndromic 

malignancies (e.g., TSC2, DICER1, RB1, MC1R), while others are related 

to syndromes associated with the risk of malignancy in different districts 

organism (e.g., TP53, CHEK2). However, it should be noted that syndromic 

malignancy can be suspected after genetic counseling and visit, and that 

when the suspect is strong, the genetic testing can be performed by 

sequencing the given suspected gene (e.g., Carney Complex, DICER1, or 

NF1, NF2, etc.). To carry out an in-depth analysis of the mutational profile 

of the 3 clinical groups (p-BO, p-NBO in f-BO and p-NBO in f-NBO) the 

genes were grouped according to the biochemical pathways. 

In fact, genetic susceptibility to HBOC is caused by defects in the genes 

that participate in maintaining the stability of the genome, that is, DNA error 

identification and correct nucleotide sequence restoration. The major 

pathways involved in the protective mechanisms of the human genome 

include the homologous recombination repair (HRR), the mismatch repair 

(MMR), the ill checkpoint pathways (CKP), and the Fanconi anemia 

pathway (FA) [117]. In short, there are four major mechanisms of 

maintenance of the genome involving genes whose defects in one or more 

than one mechanism cause HBOC. 

The first mechanism -the HRR- intervenes in case of double-strand 

damage (DSB). In DSB, the checkpoint system detects an error and promotes 

the removal of the ends of both strands of the damaged sequence. The HRR 

complex is recalled, which uses the complementary sequence of the paired 

chromatid as a reference and repairs the damage with a copy and paste action.  

The protection system of replication fork stability limits the erroneous 

degradation of newly synthesized DNA sequences. The nascent DNA 

sequences are protected via the stabilization effect of the replication fork, 

which prevents them from becoming subject to the action of nucleases. Both 

HRR genes and Fanconi anemia complex are involved in this mechanism.  

The mismatch repair mechanism corrects base-base mispairing as it 

recognizes and repairs erroneous insertion, deletion and misincorporation of 

nucleotides. In addition to monitoring the entire sequence, the MMR controls 

the HRR mechanism. In case of an excessive number of mismatches in the 
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copy process, the MMR disables the HRR, preventing the accumulation of 

further errors and decreasing the possibility of potentially damaging effects.  

The last mechanism - the ill checkpoint pathway (CPK) - supports DNA 

repair pathways and includes DNA damage signaling, checkpoint control and 

cell death. When genetic defects affect the function of error detection in the 

homologous recombination process, in parallel to the recalling of the HRR 

complex, CPK activates the checkpoint system in cascade that pauses the 

progression of the cell cycle to allow DNA repair. Alternatively, the 

accumulation of errors in cellular DNA leads the cell to senescence and the 

cell death control system promotes apoptosis. When the checkpoint and 

senescence process are damaged, the DNA would continue to accumulate 

errors without the cell being induced to death and could acquire changes that 

promote uncontrolled proliferation. 
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Figure 4.6: Genome maintenance mechanisms (Figure from [115]) 

The genes involved in the HRR process present in the Trusight Cancer 

Illumina panel are BRCA1, BRCA2, BRIP1, PALB2, RAD51C, RAD51D, 

and BLM. BLM is not part of the main HRR complex, but its support action 
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is of great importance. These genes are major players related to HBOC and 

have been grouped in the HRR cluster (Table 4.5). 

The genes involved in the MMR mechanism are MLH1, MSH2, MSH6, 

and PMS2. Typically, these genes are strongly associated with malignancies 

of the intestinal tract but also influence the predisposition to BROVCA 

cancers. The mismatch repair genes were considered as a single group and 

are reported in Table 4.6. 

The genes involved in the error sensing, cell checkpoint and cell death 

system, present in our series are ATM, NBN (sensing and signaling), CHEK2 

(checkpoint control) and TP53 (apoptosis promoter). All these genes 

demonstrate variable correlation with breast and ovarian cancer and make up 

the CKP group (Table 4.7). In addition, the CDH1 gene was added to CKP 

cluster due to its association with breast cancer. 

Genes playing in the Fanconi Anemia complex deserve specific 

comments. FA genes are numerous and act differently in co-operation with 

genes belonging to other cellular repair pathways (e.g., HRR complex). The 

Fanconi Anemia Core Complex (FACC) consists of FANCA, FANCB, 

FANCC, FANCE, FANCG, FANCI, FANCL, FANCM, and FANCD2 

(Table 4.8). 

All genes that are not involved in genome stability mechanisms and that 

are primarily related to different malignancies compared to BROVCA 

cancers, were grouped all together in the cluster termed “Others”. Genes 

included in this group may predispose to rare tumors such as those seen in 

Diceropathies (DICER1) [122] and retinoblastoma (RB1) [123]; genes 

associated with increased risk of familial melanoma such as MITF, MC1R, 

CDKN2A; genes associated with increased risk of gastrointestinal tumors 

such as APC, MUTYH and SMAD4, or of kidneys, such as VHL. Other 

genes are related to syndromic malignancies such as TSC2, ERCC2, ERCC3, 

CYLD, CDKN1C, and BUB1B (Table 4.9). 

Table 4.5: Genes in the homologous recombination repair pathway 

HOMOLOGOUS RECOMBINATION REPAIR - HRR 

GENE GENE NAME 
OMIM CANCER/DISEASE 

ASSOCIATION 

BRCA1 Breast cancer-1 gene 
Breast-ovarian cancer (604370); 

Pancreatic cancer (614320) 

BRCA2 BRCA2 gene 

Breast-ovarian cancer (612555); 

Fanconi anemia D1 (605724);  

Prostate cancer (176807);  

Breast cancer male (114480);  

Wilms tumor (194070);  

Medulloblastoma (155255);  

Glioblastoma 3 (613029);  

Pancreatic cancer 2 (613347) 

BRIP1 
BRCA1-associated C-terminal 

helicase 1 

Breast cancer, early-onset (114480);  

Fanconi anemia J (609054) 
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PALB2 Partner and localizer of BRCA2 

Fanconi anemia N (610832);  

Breast cancer (114480); 

Pancreatic cancer (613348)  

RAD51C RAD51, S. cerevisiae, homolog of, C 
Fanconi anemia O (613390); 

Breast-ovarian cancer (613399)  

PAD51D RAD51, S. cerevisiae, homolog of, D Breast-ovarian cancer (614291) 

BLM DNA helicase, RecQ-like 3 Bloom syndrome (210900)  

 

Table 4.6: Genes in the mismatch repair pathway 

MISMATCH REPAIR - MMR 

GENE GENE NAME 
OMIM CANCER/DISEASE 

ASSOCIATION 

MLH1 mutL, E. coli, homolog of, 1 

Colorectal cancer (609310); 

Mismatch repair cancer syndrome 

(276300) 

MSH2 mutS, E. coli, homolog of, 2 

Colorectal cancer (609310); 

Mismatch repair cancer syndrome 

(276300) 

MSH6 MutS, E. coli, homolog of, 6 

Colorectal cancer (609310); 

Mismatch repair cancer syndrome 

(276300) 

PMS2 
Postmeiotic segregation increased, S. 

cerevisiae, 2, homolog of 

Colorectal cancer (614337); 

Mismatch repair cancer syndrome 

(276300)  

 

Table 4.7: Genes in the pathway of sensing, signaling, checkpoint, and cell 

death control 

SENSING, SIGNALING, CHEKPOINT CONTROL, CELL DEATH - CKP 

GENE GENE NAME 
OMIM CANCER/DISEASE 

ASSOCIATION 

ATM 

Ataxia-telangiectasia mutated 

(includes complementation groups A, 

C, D, and E) 

Ataxia-telangiectasia (208900); 

Breast cancer (114480)  

CHEK2 

Checkpoint kinase 2, S. pombe, 

homolog of (RAD53, S. cerevisiae, 

homolog of) 

Li-Fraumeni syndrome (609265); 

Breast cancer (114480);  

Prostate cancer (176807) 

TP53 Tumor protein p53 

Colorectal cancer (114500); Li-

Fraumeni syndrome (151623); 

Hepatocellular carcinoma (114550); 

Osteosarcoma (259500); Choroid 

plexus papilloma (260500); 

Nasopharyngeal carcinoma (607107); 

Pancreatic cancer (260350); Adrenal 

cortical carcinoma (202300); Breast 
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cancer (114480); 

Basal cell carcinoma (614740); 

Glioma susceptibility (137800)  

CDH1 Cadherin 1 

Blepharocheilodontic syndrome 1 

(119580) 

Gastric cancer (137215) 

Ovarian cancer (167000) 

Breast cancer (114480)  

Prostate cancer (176807) 

NBN Nibrin 

Nijmegen breakage syndrome 

(251260); 

Aplastic anemia (609135);  

Leukemia, acute lymphoblastic 

(613065) 

 

Table 4.8: Genes in the Fanconi Anemia Core Complex 

FANCONI ANEMIA CORE COMPLEX - FACC 

GENE GENE NAME 
OMIM CANCER/DISEASE 

ASSOCIATION 

FANCA Fanconi anemia, comp. group A Fanconi anemia A (227650)  

FANCC Fanconi anemia, comp. group C Fanconi anemia C (227645)  

FANCE Fanconi anemia, comp. group E Fanconi anemia E (600901)  

FANCG X-ray repair, repair cross comp. 9 Fanconi anemia G (614082)  

FANCL PHD finger protein 9 Fanconi anemia L (614083)  

FANCM FANCM gene - 

FANCD2 Fanconi anemia, comp. group D2 Fanconi anemia D2 (227646) 

 

Table 4.9: Genes in other pathways associated with non-breast and non-

ovarian cancer. 

OTHER GENES ASSOCIATED WITH NO BROVCA 

GENE GENE NAME 
OMIM CANCER/DISEASE 

ASSOCIATION 

APC Adenomatous polyposis coli 

Adenomatous polyposis coli (175100); 

Desmoid disease (135290); 

Brain tumor-polyposis syndrome 2 

(175100); 

Gardner syndrome (175100)  

BUB1B 

Budding uninhibited by 

benzimidazoles 1, S. cerevisiae, 

homolog of, beta 

Mosaic variegated aneuploidy 

syndrome 1 (257300) 

CDKN1C 
Cyclin-dependent kinase inhibitor 1C 

(p57, Kip2) 

Beckwith-Wiedemann syndrome 

(130650);  

IMAGE syndrome (614732)  
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CDKN2A 
Cyclin-dependent kinase inhibitor 2A 

(p16, inhibits CDK4) 

Melanoma (155601);  

Pancreatic cancer (606719) 

CEP57 Centrosomal protein, 57-KD 
Mosaic variegated aneuploidy 

syndrome 2 (614114) 

CYLD CYLD gene 

Cylindromatosis (132700);  

Brooke-Spiegler syndrome (605041);  

Trichoepithelioma (601606)  

DICER1 Dicer, Drosophila, homolog of, 1 

Pleuropulmonary blastoma (601200);  

Goiter with or without Sertoli-Leydig 

cell tumors (138800); 

Rhabdomyosarcoma (180295)  

ERCC2 

Excision repair cross complementing 

rodent repair deficiency, 

complementation group-2 

Xeroderma pigmentosum (278730) 

ERCC3  

Excision-repair cross-complementing 

rodent repair deficiency, 

complementation group 3 

Xeroderma pigmentosum (610651) 

HOXB13 HOMEOBOX B13 Prostate cancer (610997) 

MC1R Melanocortin-1 receptor  Melanoma (613099) 

MITF 
Microphthalmia-associated 

transcription factor 
Melanoma (614456) 

MUTYH MutY, E. coli, homolog of Colorectal cancer (132600)  

RB1 Retinoblastoma-1 Retinoblastoma (180200) 

SMAD4 
Mothers against decapentaplegic, 

Drosophila, homolog of, 4 

Juvenile polyposis/hereditary 

hemorrhagic telangiectasia syndrome 

(175050); 

Myhre syndrome (139210) 

TSC2 Tuberin (tuberous sclerosis 2 gene) Tuberous sclerosis (613254)  

VHL VHL gene von Hippel-Lindau syndrome (193300) 

 

The distribution of the gene clusters in the different clinical groups shows 

similar profiles for probands with Ovarian and Breast cancer, but it varies in 

non-BROVCA subjects. The BROVCA patient group demonstrates a high 

percentage of carriers of P variants in HRR pathway compared with other 

gene clusters. A slight difference is observed between ovarian vs breast 

cancer concerning the pathway of mismatch repair. The fraction of probands 

with breast cancer carrying damage to the MMR is almost nil, while among 

the ovarian cancer it increases significantly. On the other hand, the fraction 

of probands presenting a P/LP variant in “Other genes”, is greater in the 

breast than in the ovarian group. The distributions change further considering 

probands without positive family history of BROVCA. This latter group 

demonstrates an opposite profile to the BROVCA probands, without carriers 

of HRR pathway deficiency and a very high percentage of mutation carriers 

in the group “Other genes”. Subjects belonging to the BROVCA family's 

group show an intermediate mutational profile between the p-BO and the p-
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NBO in f-NBO groups, retaining a high fraction of carriers of HRR damage 

together with an increased percentage of other gene defects. 

 

Figure 4.7: Distribution of groups of genes in clinic groups 

The distribution of damage among the different pathways in the clinical 

groups highlighted an orthogonality of the mutational profile between the 

probands with previous Breast or Ovarian Cancer and the subjects unaffected 

or with malignancy in other locations and without family history of 

BROVCA (figure 4.8). The two groups share a small part of the defective 

genes belonging almost entirely to the mismatch repair, checkpoint control 

and FA core complex groups, while they have an opposite profile with 

respect to the HRR genes and the group of other genes. 

 

Figure 4.8: The distribution of damage among the different pathways in p-

BO vs p-NBO in f-NBO groups. 
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4.2.6.6. From genetics to clinical groups 

A further point of view that can help to understand better the correlations 

between genes and tumor type is to study the distribution of clinical groups 

according to the damaged gene pathway. 

When the damage is charged to the HRR genes, almost all carriers have 

BROVCA cancer and probands unaffected or with tumors in other sites have 

a positive family history for BROVCA. None of the carriers of the 

homologous recombination pathway deficiency has a negative familiarity for 

HBOC, demonstrating a high specificity of mechanism of increased risk for 

both ovarian and breast cancer. 

The distribution profile of clinical groups between the CKP and FACC 

gene groups is remarkably similar to each other and is characterized by a 

higher fraction of BROVCA tumors, a smaller proportion of non-BROVA 

probands in BROVCA families, and a percentage between 20 and 30% of 

tumors in other sites with negative familiarity for HBOC. In this case, the 

fraction of breast cancer is greater than ovarian cancer.  

The balance between p-BO e p-NBO in f-NBO is obtained in the pathways 

of mismatch repair, in which the fraction of BROVCA probands is equal to 

that of non-BROVCA probands in no BROVCA families (approximately 

45% for both groups). The mismatch genes are primarily associated in the 

literature with colorectal cancer but have been shown to cause an increased 

risk also for BROVCA tumors with a strong imbalance in favor of ovarian 

tumors compared to breast. 

Considering the group of other genes not primarily associated with 

ovarian and breast cancer, the number of subjects with previous cancer of 

another type or not affected significantly increases and the proportion of 

probands BROVCA decreases. In this case, the fraction of no BROVCA in 

BROVCA families is about 20%, which added to the share of no BROVCA 

families, reaches the threshold of 2 mutated out of 3. Although the genes of 

this group have at most a minimal correlation with HBOC, the percentage of 

carriers nevertheless develops breast or ovarian cancer.  
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Figure 4.9: Distribution of the fraction of BROVCA, NON BROVCA, and 

not affected probands within the groups of genes. 

 

Figure 4.10: Percentage of Ovarian and Breast cancer among the mutated in 

the diverse groups of genes 

Table 4.10: Distribution of clinic groups into genetic pathways 

 BROVCA NO BROVCA NO BROVCA 

   BROVCA 

FAM 

NO BROVCA 

FAM 

HRR 110 (0.859)  19 (0.148) 19 (0.148) 0 (0.000) 

CKP 24 (0.647) 10 (0.351) 3 (0.135) 7 (0.216) 

FACC 17 (0.630) 8 (0.370) 1 (0.111) 7 (0.259) 



Clinical Applications 

 

 119 

MMR 7 (0.467) 13 (0.533) 5 (0.067)  8 (0.467) 

ALTRI 22 (0.328) 43 (0.642) 14 (0.209) 29 (0.433) 

 

4.2.7. Family segregation and familiarity for BROVCA tumors 

HBOC families are often characterized by a high number of family 

members affected by either BROVCA or other types of tumors. Some 

families are highly informative in terms of predisposition to hereditary 

cancer and when an affected member tests positive for a pathogenic or likely 

pathogenic variant, the family management path is simplified. Greater 

difficulties are encountered in the presence of VUS in the proband: to better 

understand its role, in the absence of specific in vitro tests, the only option 

potentially contributing to the given variant interpretation is the segregation 

study in the family. The feasibility of the segregation studies largely depends 

on the number of living family members, both affected and non-affected, in 

particular for de novo variants (extremely rare in BRCA genes), on the 

possibility of testing clinically unaffected parents. Cascade genetic testing 

can be performed in relatives of BRCA-positive probands, thus contributing 

to the ACMG segregation criteria (PP3). We regularly performed segregation 

studies in families (both genetic testing, clinical evaluation, tracing clinical 

reports or biological samples -when possible and feasible- of deceased 

relatives).  

In families with a high number of affected members, a negative test in the 

proband should not discourage the search for gene defects in other affected 

relatives. The figure below (figure 4.11) shows that family member III:21 

tested negative. When the previously unaffected member III:7 developed 

triple negative breast cancer, genetic test was performed and identified a 

BRCA2 pathogenic variant. The segregation study in the family 

demonstrated the absence of the variant in III:21 but the segregation of the 

cancer with the BRCA2 mutation in the rest of the family.   
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Figure 4.11: Evolution of a genetic pedigree in a BROVCA family may show 

HBOC syndrome despite the presence of a non-mutated proband. 

However, this clinical contribution to variant interpretation, which is 

often feasible for most Mendelian diseases, can be especially difficult in 

cancer families because of several reasons including: 

• High death rate in families 

• Age of family members available for genetic testing 

• Difficult joining of family members 

• Probands with paternal inheritance of BRCA mutations 

High death rate in families: Breast and ovarian cancers usually develop 

from the third decade onwards, with a probability that increases with age. 

Often, affected probands come to counseling at an adult or advanced age. 

Parents are often unavailable for genetic testing, especially those who 

developed and died for cancer. This is a major limitation for segregation 

studies. Offspring from the familial lineage of an affected and deceased 

parent can contribute when cascade genetic testing demonstrate a carrier 

status, because it adds the information on the obligate carrier status of an 

affected uncle or aunt. An example is the family shown in the figure below. 

The first pedigree evaluation (figure 4.12) shows: 
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• The BROVCA proband that carries a BRCA pathogenic variant 

(indicated with the arrow). 

• Two mutated daughters without malignancies. 

• Three not affected brothers: two not mutated and 1 not tested. 

• The mutated but not affected mother. The mother was subjected 

to hysterectomy and bilateral salpingo-oophorectomy at the age 

of 45 years.  

• The grandmother deceased due to BROVCA and not tested. 

The segregation study of this family pedigree is uninformative due to the 

early age of the two daughters, the impossibility of testing the affected but 

deceased grandmother, and the preventive surgery of the mother. The 

segregation information is not sufficient to apply the PP3 criterion. By 

expanding the family study with the genetic test of a family member (III:2) 

suffering from BROVCA, the pedigree becomes informative (figure 3.13). 

The genetic test reveals that the family member carries the same variant of 

the proband, therefore the subject II:1 (great-aunt of the proband with 

BROVCA) is an obligate carrier, like the grandmother of the proband (II: 4). 

The ACMG classification system recommends quantifying the co-

segregation in order to shift the strength of the PP3 criterion, based on the 

cumulative number of meiosis occurring between mutated affected family 

members and the proband [68]: PP3_supperting with 3 meiosis, 

PP3_Moderate with 5 meiosis, and PP3_Strong with 7 meiosis. 

 Considering that, between mother and children, and between siblings a 

meiosis a single meiosis occurs, the quantification of the co-segregation of 

the variant with breast or ovarian malignancies, takes in consideration: 

• 2 meiosis from the proband and the grandmother (II:4); 

• 3 meiosis from the proband and the great-aunt (II:1); 

• 4 meiosis from the proband and the III:2 family member. 

The cumulative number of meiosis that support the co-segregation is 9 

meiosis. This result is sufficient to activate PP3 using Strong weight 

(PP3_Strong).  
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Figure 4.12: The first evaluation of the family pedigree 

 

Figure 4.13: Expanded family pedigree shows strong co-segregation. 

Age of family members available for genetic testing: The relatives who 

perform the targeted test to identify if they carry the variant of the affected 

family member are often the children or grandchildren of the proband. The 

probability that they have developed BROVCA tumor at the date of the 

consultation is low and, regardless of the result of the genetic test, this type 

of subject is not very informative. 
Difficult joining of family members: Genetic testing is commonly 

perceived by patients as a personal and private examination and the result is 

hardly communicated to more distant family members. Even in the presence 

of potentially highly informative families because they are made up of many 

subjects, perhaps with a significant share of BROVCA cancer, it is often 

impossible to extend the test to a sufficient number of family members to 

better understand the effect of the variant identified in the proband. 
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Probands with paternal inheritance of BRCA mutations: when the carrier 

is the father, the inheritance may escape attention. Family studies are 

uniquely useful to characterize the parental lineage and to activate protection 

plans for family members who are exposed at the risk of malignancy. Given 

that, recent data provide evidence of an increased risk of prostatic cancer in 

males carriers of pathogenic mutations in BRCA genes, healthy mutated 

fathers of affected daughters are now entering novel prevention surveillance 

plans for prostatic cancer. 

4.2.7.1. Multiple families affected by the same variant 

One possibility is to perform a segregation study using multiple families 

affected by the same variant. This strategy could increase the possibility of 

encountering sufficient information subjects to define the pathogenic role of 

the variant. However, the frequency of pathogenic variants in the population 

is extremely low and this contributes to increasing the difficulty in finding 

multiple carrier families of the same genetic defect. 

In conclusion, although many families have a high potential in terms of 

informativeness regarding the analysis of co-segregation between BROVCA 

cancer and the family variant, being able to reach enough relatives of the 

proband to obtain a significant result is very difficult. The study of 

familiarity can be useful to hypothesize the segregation of HBOC in the 

family, but the identification in the proband of a variant of uncertain 

significance that is a candidate for causing the syndrome can hardly make 

use of sufficient data to reclassify it. This can have negative implications in 

terms of choosing the appropriate therapy or clinical management and 

monitoring of unaffected carriers, decreasing the effectiveness of dedicated 

care pathways. 
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Chapter 5 

5 Conclusions and future 
implementations 

The path followed during the dissertation of the thesis opened with the 

introduction of the fundamental concepts underlying the knowledge on NGS 

sequencing, its applications and the analysis of the data produced by this 

technology. The discussion of the background has focused on the 

applications of DNA targeted sequencing. In the contest of targeted 

sequencing, Helper was developed as a solution for the simplified 

customization of bioinformatics pipelines.  

The implementation structure of Helper was detailed in chapter 3, and the 

modules and steps that compose the pipeline workflow have been discussed, 

paying particular attention to the characteristics of the integrated tools. The 

graphic interface developed to simplify the experience of using the platform 

was shown, and two performance tests were conducted using the pipeline 

developed for the CMGCV of the San Matteo Hospital in Pavia. Helper is 

now an essential part of the genetic units, both for clinics and research. The 

possibility of using a tool that simplifies the analysis of NGS samples 

facilitate the approach to bioinformatics of professionals who have little 

expertise with code management and NGS data analysis. Helper therefore 

have a dual function: the intuitive development of bioinformatics pipelines 

and the teaching role to explain how a bioinformatics pipeline is developed. 

Helper can also be used both on a workstation and on a common PC, ensuring 

analysis times consistent with laboratory times for reporting results even in 

the case of low computation potential. The next Helper development step is 

to adapt the system also to HPC solutions such as cluster servers or Cloud 

computing in order to expand the potential of the platform to WES and WGS 

applications. 

The last chapter presented two examples of practical application of the 

analysis customization based on specific needs, and of in-depth study of the 

genetic causes of a disease. The development of a classification system of 

the ACMG rules, adapted to the specific problem of Desmin variants, has 

shown how it is necessary to focus attention on the unique characteristics of 

genes related to genetic diseases, in order to better understand the genotype-

phenotype correlation. The support that the aid systems for the interpretation 

of genetic data provide to the molecular genetics laboratories is essential to 
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simplify the collection of information and accelerate the decision-making 

process. However, the comparative evaluation of the data has shown that the 

result is highly dependent on the software used for the bioinformatics 

analysis, and that the non-correct interpretation of the variants may depend 

upon incomplete data used for the classification. The development of gene 

specific systems reduces misclassification (in our specific DES example to 

prevent the over-interpretation of LP variants). In addition, the 

inconsistencies between geno-phenotypes in both patients and relatives, as 

well as the detection of second pathogenic variants in non-DES gene 

segregating with the phenotype in the family adds further contribution to the 

variant interpretation. 

The exclusion of some VUS - which through the adapted system become 

LB or B - increases the informativeness of the genetic test, decreasing the 

uncertainty. The example of the DES variants confirms the central role of 

integration of genetic, clinic, and pathology data in unravelling the real cause 

of the disease and strengthens the clinical actionability. Understanding when 

a pathological phenotype is related to a given mutated gene further 

contributes to disease classification according to genetic causes and to 

effectively schedule the clinical follow-up for patients and families. From 

this point of view, deep phenotyping, carried out through an in-depth study 

of the patient and its monitoring over time, can help to better define some 

features of the disease that may appear non-specific or non-informative in 

early stages of the disease, but which can later reveal the consistency of the 

genotype with the phenotype. The future goal is to improve the CMGCV-

DES model and to extend the adaptation of the ACMG rules to other disease 

genes.  

The in-depth study of the genetic causes of HBOC and BROVCA tumors 

through the family survey, demonstrates the need to depart from the past 

restrictive guidelines that limited the genetic testing to BRCA1 and BRCA2, 

and expand the test to other cancer genes. BRCA1 and BRCA2 pathogenic 

variants are actionable for both prevention and treatment (risk-reducing 

surgery and medication-PARP-INHIBITORS) of the proband and family, 

preventing, and monitoring plans; defects in other malignancy-related genes 

may equally become potentially actionable for treatments and surgical 

decisions, as well as for family care.  

Understanding the role of other genes and other pathways on pathology is 

essential in order to calculate the risk of malignancy throughout life. For 

example, our BROVCA tumor study not only demonstrated that the HRR 

system is actually related to breast and ovarian cancer, but also strengthened 

this correlation, showing that in the presence of a defect in HRR genes, the 

familial BROVCA risk is very high. Alternatively, in families without 

members suffering from BROVCA, the probability of defects in genes acting 

in the HRR pathway is very low. Having a complete scenario of the genetic 

makeup of the different types of tumors contributes to better define potential 

diagnostic targets and provide optimally interpreted genetic data to the 

clinical and scientific community. 
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The content of the thesis demonstrates the essential role of 

bioinformaticians / bioengineers in the genetic paths of mendelian diseases. 

The ability to combine development skills of software systems and tools to 

simplify complex processes such as the design of bioinformatics pipelines, 

the possibility of carrying out technological consultancy on calculation and 

analysis systems, and the ability to interact effectively in highly 

multidisciplinary contexts, make the bioinformatician / bioengineer an 

important member of the team dealing with the diagnostic and research 

process in the field of molecular genetics.



 

 127 

References 

[1] F. Sanger, S. Nicklen, A. R. Coulson, DNA sequencing with 

chain-terminating inhibitors. Proc Natl Acad Sci U S A 74, 

5463-5467 (1977). 

[2] J. Straiton, T. Free, A. Sawyer, J. Martin, From Sanger 

sequencing to genome databases and beyond. Biotechniques 

66, 60-63 (2019). 

[3] H. V. Firth et al., DECIPHER: Database of Chromosomal 

Imbalance and Phenotype in Humans Using Ensembl 

Resources. Am J Hum Genet 84, 524-533 (2009). 

[4] P. D. Stenson et al., The Human Gene Mutation Database: 

building a comprehensive mutation repository for clinical and 

molecular genetics, diagnostic testing and personalized 

genomic medicine. Hum Genet 133, 1-9 (2014). 

[5] M. J. Landrum et al., ClinVar: public archive of 

interpretations of clinically relevant variants. Nucleic Acids 

Res 44, D862-868 (2016). 

[6] M. J. Landrum et al., ClinVar: public archive of relationships 

among sequence variation and human phenotype. Nucleic 

Acids Res 42, D980-985 (2014). 

[7] V. A. McKusick, Mendelian Inheritance in Man and its online 

version, OMIM. Am J Hum Genet 80, 588-604 (2007). 

[8] D. Klarin, P. Natarajan, Clinical utility of polygenic risk 

scores for coronary artery disease. Nat Rev Cardiol, (2021). 

[9] Polygenic Risk Score Task Force of the International 

Common Disease Alliance, Responsible use of polygenic risk 

scores in the clinic: potential benefits, risks and gaps. Nat Med 

27, 1876-1884 (2021). 

[10] K. Stanek et al., Bilateral Prophylactic Nipple-Sparing 

Mastectomy: Analysis of the Risk-Reducing Effect in 

BRCA1/2 Mutation Carriers. Aesthetic Plast Surg, (2021). 



Conclusions and future implementations 

 

 128 

[11] A. Fernandez-Marmiesse, S. Gouveia, M. L. Couce, NGS 

Technologies as a Turning Point in Rare Disease Research , 

Diagnosis and Treatment. Curr Med Chem 25, 404-432 

(2018). 

[12] P. Pawliczek et al., ClinGen Allele Registry links information 

about genetic variants. Hum Mutat 39, 1690-1701 (2018). 

[13] P. Meyer, J. Saez-Rodriguez, Advances in systems biology 

modeling: 10 years of crowdsourcing DREAM challenges. 

Cell Syst 12, 636-653 (2021). 

[14] J. Shendure, E. Lieberman Aiden, The expanding scope of 

DNA sequencing. Nat Biotechnol 30, 1084-1094 (2012). 

[15] D. R. Masser, D. R. Stanford, W. M. Freeman, Targeted DNA 

methylation analysis by next-generation sequencing. J Vis 

Exp,  (2015). 

[16] L. Feng, J. Lou, DNA Methylation Analysis. Methods Mol 

Biol 1894, 181-227 (2019). 

[17] D. Schmidt et al., ChIP-seq: using high-throughput 

sequencing to discover protein-DNA interactions. Methods 

48, 240-248 (2009). 

[18] T. H. Kim, J. Dekker, ChIP-seq. Cold Spring Harb Protoc 

2018, (2018). 

[19] T. Stuart, R. Satija, Integrative single-cell analysis. Nat Rev 

Genet 20, 257-272 (2019). 

[20] R. Stark, M. Grzelak, J. Hadfield, RNA sequencing: the 

teenage years. Nat Rev Genet 20, 631-656 (2019). 

[21] K. J. van Nimwegen et al., Is the $1000 Genome as Near as 

We Think? A Cost Analysis of Next-Generation Sequencing. 

Clin Chem 62, 1458-1464 (2016). 

[22] M. Gulilat et al., Targeted next generation sequencing as a tool 

for precision medicine. BMC Med Genomics 12, 81 (2019). 

[23] P. Marino et al., Cost of cancer diagnosis using next-

generation sequencing targeted gene panels in routine 

practice: a nationwide French study. Eur J Hum Genet 26, 

314-323 (2018). 

[24] B. Milholland et al., Differences between germline and 

somatic mutation rates in humans and mice. Nat Commun 8, 

15183 (2017). 



Conclusions and future implementations 

 

 129 

[25] Y. Dou, H. D. Gold, L. J. Luquette, P. J. Park, Detecting 

Somatic Mutations in Normal Cells. Trends Genet 34, 545-

557 (2018). 

[26] S. Oota, Somatic mutations - Evolution within the individual. 

Methods 176, 91-98 (2020). 

[27] P. C. Nowell, The clonal evolution of tumor cell populations. 

Science 194, 23-28 (1976). 

[28] P. Vikas, N. Borcherding, A. Chennamadhavuni, R. Garje, 

Therapeutic Potential of Combining PARP Inhibitor and 

Immunotherapy in Solid Tumors. Front Oncol 10, 570 (2020). 

[29] P. G. Pilié, A. George, T. A. Yap, Patient selection biomarker 

strategies for PARP inhibitor therapy. Ann Oncol 31, 1603-

1605 (2020). 

[30] D. Xiao et al., High Tumor Mutation Burden and DNA Repair 

Gene Mutations are Associated with Primary Resistance to 

Crizotinib in. Onco Targets Ther 14, 4809-4817 (2021). 

[31] L. Kananen et al., Circulating cell-free DNA level predicts all-

cause mortality independent of other predictors in the Health 

2000 survey. Sci Rep 10, 13809 (2020). 

[32] H. Osumi, E. Shinozaki, K. Yamaguchi, H. Zembutsu, 

Clinical utility of circulating tumor DNA for colorectal 

cancer. Cancer Sci 110, 1148-1155 (2019). 

[33] S. De, Signatures Beyond Oncogenic Mutations in Cell-Free 

DNA Sequencing for Non-Invasive, Early Detection of 

Cancer. Front Genet 12, 759832 (2021). 

[34] Z. B. Huang, H. T. Zhang, B. Yu, D. H. Yu, Cell-free DNA as 

a liquid biopsy for early detection of gastric cancer. Oncol Lett 

21, 3 (2021). 

[35] C. Bailleux, L. Lacroix, E. Barranger, S. Delaloge, Using 

methylation signatures on cell-free DNA for early cancer 

detection: a new era in liquid biopsy? Ann Oncol 31, 665-667 

(2020). 

[36] H. Luo, W. Wei, Z. Ye, J. Zheng, R. H. Xu, Liquid Biopsy of 

Methylation Biomarkers in Cell-Free DNA. Trends Mol Med 

27, 482-500 (2021). 



Conclusions and future implementations 

 

 130 

[37] R. K. Ravi, K. Walton, M. Khosroheidari, MiSeq: A Next 

Generation Sequencing Platform for Genomic Analysis. 

Methods Mol Biol 1706, 223-232 (2018). 

[38] I. Kozarewa, J. Armisen, A. F. Gardner, B. E. Slatko, C. L. 

Hendrickson, Overview of Target Enrichment Strategies. Curr 

Protoc Mol Biol 112, 7.21.21-27.21.23 (2015). 

[39] J. M. Kebschull, A. M. Zador, Sources of PCR-induced 

distortions in high-throughput sequencing data sets. Nucleic 

Acids Res 43, e143 (2015). 

[40] L. J. Jennings et al., Guidelines for Validation of Next-

Generation Sequencing-Based Oncology Panels: A Joint 

Consensus Recommendation of the Association for Molecular 

Pathology and College of American Pathologists. J Mol Diagn 

19, 341-365 (2017). 

[41] S. Goodwin, J. D. McPherson, W. R. McCombie, Coming of 

age: ten years of next-generation sequencing technologies. 

Nat Rev Genet 17, 333-351 (2016). 

[42] J. A. Reuter, D. V. Spacek, M. P. Snyder, High-throughput 

sequencing technologies. Mol Cell 58, 586-597 (2015). 

[43] G. A. Van der Auwera et al., From FastQ data to high 

confidence variant calls: the Genome Analysis Toolkit best 

practices pipeline. Curr Protoc Bioinformatics 43, 11.10.11-

11.10.33 (2013). 

[44] K. Reinert, B. Langmead, D. Weese, D. J. Evers, Alignment 

of Next-Generation Sequencing Reads. Annu Rev Genomics 

Hum Genet 16, 133-151 (2015). 

[45] J. Shang et al., Evaluation and comparison of multiple aligners 

for next-generation sequencing data analysis. Biomed Res Int 

2014, 309650 (2014). 

[46] G. Highnam et al., An analytical framework for optimizing 

variant discovery from personal genomes. Nat Commun 6, 

6275 (2015). 

[47] H. Li et al., The Sequence Alignment/Map format and 

SAMtools. Bioinformatics 25, 2078-2079 (2009). 

[48] H. Thorvaldsdóttir, J. T. Robinson, J. P. Mesirov, Integrative 

Genomics Viewer (IGV): high-performance genomics data 

visualization and exploration. Brief Bioinform 14, 178-192 

(2013). 



Conclusions and future implementations 

 

 131 

[49] J. T. Robinson, H. Thorvaldsdóttir, A. M. Wenger, A. Zehir, 

J. P. Mesirov, Variant Review with the Integrative Genomics 

Viewer. Cancer Res 77, e31-e34 (2017). 

[50] S. T. Sherry et al., dbSNP: the NCBI database of genetic 

variation. Nucleic Acids Res 29, 308-311 (2001). 

[51] A. Auton et al., A global reference for human genetic 

variation. Nature 526, 68-74 (2015). 

[52] Á. Bartha, B. Győrffy, Comprehensive Outline of Whole 

Exome Sequencing Data Analysis Tools Available in Clinical 

Oncology. Cancers (Basel) 11, (2019). 

[53] A. Supernat, O. V. Vidarsson, V. M. Steen, T. Stokowy, 

Comparison of three variant callers for human whole genome 

sequencing. Sci Rep 8, 17851 (2018). 

[54] P. Danecek et al., The variant call format and VCFtools. 

Bioinformatics 27, 2156-2158 (2011). 

[55] A. Magi, L. Tattini, T. Pippucci, F. Torricelli, M. Benelli, 

Read count approach for DNA copy number variants 

detection. Bioinformatics 28, 470-478 (2012). 

[56] M. Zhao, Q. Wang, P. Jia, Z. Zhao, Computational tools for 

copy number variation (CNV) detection using next-generation 

sequencing data: features and perspectives. BMC 

Bioinformatics 14 Suppl 11, S1 (2013). 

[57] A. Y. Cheng, Y. Y. Teo, R. T. Ong, Assessing single 

nucleotide variant detection and genotype calling on whole-

genome sequenced individuals. Bioinformatics 30, 1707-1713 

(2014). 

[58] F. Cunningham et al., Ensembl 2022. Nucleic Acids Res, 

(2021). 

[59] N. A. O'Leary et al., Reference sequence (RefSeq) database at 

NCBI: current status, taxonomic expansion, and functional 

annotation. Nucleic Acids Res 44, D733-745 (2016). 

[60] W. J. Kent et al., The human genome browser at UCSC. 

Genome Res 12, 996-1006 (2002). 

[61] U. Consortium, UniProt: the universal protein knowledgebase 

in 2021. Nucleic Acids Res 49, D480-D489 (2021). 

[62] M. Lek et al., Analysis of protein-coding genetic variation in 

60,706 humans. Nature 536, 285-291 (2016). 



Conclusions and future implementations 

 

 132 

[63] K. J. Karczewski et al., The mutational constraint spectrum 

quantified from variation in 141,456 humans. Nature 581, 

434-443 (2020). 

[64] M. S. Cline et al., BRCA Challenge: BRCA Exchange as a 

global resource for variants in BRCA1 and BRCA2. PLoS 

Genet 14, e1007752 (2018). 

[65] J. G. Tate et al., COSMIC: the Catalogue Of Somatic 

Mutations In Cancer. Nucleic Acids Res 47, D941-D947 

(2019). 

[66] W. Zhu et al., GNE myopathy caused by a synonymous 

mutation leading to aberrant mRNA splicing. Neuromuscul 

Disord 28, 154-157 (2018). 

[67] A. El-Gazzar et al., A novel cryptic splice site mutation in   

COL1A2 as a cause of osteogenesis imperfecta. Bone Rep 15, 

101110 (2021). 

[68] S. Richards et al., Standards and guidelines for the 

interpretation of sequence variants: a joint consensus 

recommendation of the American College of Medical 

Genetics and Genomics and the Association for Molecular 

Pathology. Genet Med 17, 405-424 (2015). 

[69] Q. Li, K. Wang, InterVar: Clinical Interpretation of Genetic 

Variants by the 2015 ACMG-AMP Guidelines. Am J Hum 

Genet 100, 267-280 (2017). 

[70] G. Nicora et al., CardioVAI: An automatic implementation of 

ACMG-AMP variant interpretation guidelines in the 

diagnosis of cardiovascular diseases. Hum Mutat 39, 1835-

1846 (2018). 

[71] C. Kopanos et al., VarSome: the human genomic variant 

search engine. Bioinformatics 35, 1978-1980 (2019). 

[72] M. M. Li et al., Standards and Guidelines for the Interpretation 

and Reporting of Sequence Variants in Cancer: A Joint 

Consensus Recommendation of the Association for Molecular 

Pathology, American Society of Clinical Oncology, and 

College of American Pathologists. J Mol Diagn 19, 4-23 

(2017). 

[73] V. Jalili et al., The Galaxy platform for accessible, 

reproducible and collaborative biomedical analyses: 2020 

update. Nucleic Acids Res 48, W395-W402 (2020). 



Conclusions and future implementations 

 

 133 

[74] T. Joo et al., SEQprocess: a modularized and customizable 

pipeline framework for NGS processing in R package. BMC 

Bioinformatics 20, 90 (2019). 

[75] J. Lin et al., Vipie: web pipeline for parallel characterization 

of viral populations from multiple NGS samples. BMC 

Genomics 18, 378 (2017). 

[76] M. D'Antonio et al., RAP: RNA-Seq Analysis Pipeline, a new 

cloud-based NGS web application. BMC Genomics 16, S3 

(2015). 

[77] Agilent, The Agilent Genomics NextGen Toolkit (AGeNT), 

https://www.agilent.com/en/product/next-generation-

sequencing/hybridization-based-next-generation-sequencing-

ngs/ngs-software/agent-232879#features. 

[78] M. Martin. (EMBnet.journal, 2011), vol. 17, pp. 10-12. 

[79] U. H. Trivedi et al., Quality control of next-generation 

sequencing data without a reference. Front Genet 5, 111 

(2014). 

[80] S. W. Wingett, S. Andrews, FastQ Screen: A tool for multi-

genome mapping and quality control. F1000Res 7, 1338 

(2018). 

[81] H. Li, R. Durbin, Fast and accurate short read alignment with 

Burrows-Wheeler transform. Bioinformatics 25, 1754-1760 

(2009). 

[82] B. Langmead, S. L. Salzberg, Fast gapped-read alignment 

with Bowtie 2. Nat Methods 9, 357-359 (2012). 

[83] Broad Institute, (https://broadinstitute.github.io/picard/), 

(Github repository, 2019). 

[84] R. Poplin et al., Scaling accurate genetic variant discovery to 

tens of thousands of samples, (bioRxiv), vol. 201178. 

[85] E. Garrison., M. Gabor., Haplotype-based variant detection 

from short-read sequencing, (arXiv, 2012), vol. 

arXiv:1207.3907v2. 

[86] D. C. Koboldt et al., VarScan 2: somatic mutation and copy 

number alteration discovery in cancer by exome sequencing. 

Genome Res 22, 568-576 (2012). 



Conclusions and future implementations 

 

 134 

[87] Z. Lai et al., VarDict: a novel and versatile variant caller for 

next-generation sequencing in cancer research. Nucleic Acids 

Res 44, e108 (2016). 

[88] W. McLaren et al., The Ensembl Variant Effect Predictor. 

Genome Biol 17, 122 (2016). 

[89] K. Wang, M. Li, H. Hakonarson, ANNOVAR: functional 

annotation of genetic variants from high-throughput 

sequencing data. Nucleic Acids Res 38, e164 (2010). 

[90] A. Fowler et al., Accurate clinical detection of exon copy 

number variants in a targeted NGS panel using DECoN. 

Wellcome Open Res 1, 20 (2016). 

[91] L. F. Johansson et al., CoNVaDING: Single Exon Variation 

Detection in Targeted NGS Data. Hum Mutat 37, 457-464 

(2016). 

[92] E. Talevich, A. H. Shain, T. Botton, B. C. Bastian, CNVkit: 

Genome-Wide Copy Number Detection and Visualization 

from Targeted DNA Sequencing. PLoS Comput Biol 12, 

e1004873 (2016). 

[93] V. Plagnol et al., A robust model for read count data in exome 

sequencing experiments and implications for copy number 

variant calling. Bioinformatics 28, 2747-2754 (2012). 

[94] G. Povysil et al., panelcn.MOPS: Copy-number detection in 

targeted NGS panel data for clinical diagnostics. Hum Mutat 

38, 889-897 (2017). 

[95] J. M. Moreno-Cabrera et al., Evaluation of CNV detection 

tools for NGS panel data in genetic diagnostics. Eur J Hum 

Genet 28, 1645-1655 (2020). 

[96] B. D. Gelb et al., ClinGen's RASopathy Expert Panel 

consensus methods for variant interpretation. Genet Med 20, 

1334-1345 (2018). 

[97] M. J. Patel et al., Disease-specific ACMG/AMP guidelines 

improve sequence variant interpretation for hearing loss. 

Genet Med 23, 2208-2212 (2021). 

[98] V. Azzimato, N. Gennebäck, A. M. Tabish, B. Buyandelger, 

R. Knöll, Desmin, desminopathy and the complexity of 

genetics. J Mol Cell Cardiol 92, 93-95 (2016). 



Conclusions and future implementations 

 

 135 

[99] A. Brodehl, A. Gaertner-Rommel, H. Milting, Molecular 

insights into cardiomyopathies associated with desmin (DES) 

mutations. Biophys Rev 10, 983-1006 (2018). 

[100] ClinGen Variant Curation SOP Committee, ClinGen General 

Sequence Variant Curation Process Standard Operating 

Procedure Version 2.0, (The Clinical Genome Resource, 

https://clinicalgenome.org/docs/variant-curation-standard-

operating-procedure-version-2/), (2021). 

[101] A. N. Abou Tayoun et al., Recommendations for interpreting 

the loss of function PVS1 ACMG/AMP variant criterion. 

Hum Mutat 39, 1517-1524 (2018). 

[102] A. Waring et al., Data-driven modelling of mutational 

hotspots and in silico predictors in hypertrophic 

cardiomyopathy. J Med Genet 58, 556-564 (2021). 

[103] E. Persyn et al., DoEstRare: A statistical test to identify local 

enrichments in rare genomic variants associated with disease. 

PLoS One 12, e0179364 (2017). 

[104] R. Ghosh et al., Updated recommendation for the benign 

stand-alone ACMG/AMP criterion. Hum Mutat 39, 1525-

1530 (2018). 

[105] M. A. Kelly et al., Adaptation and validation of the 

ACMG/AMP variant classification framework for MYH7-

associated inherited cardiomyopathies: recommendations by 

ClinGen's Inherited Cardiomyopathy Expert Panel. Genet 

Med 20, 351-359 (2018). 

[106] R. Walsh et al., Quantitative approaches to variant 

classification increase the yield and precision of genetic 

testing in Mendelian diseases: the case of hypertrophic 

cardiomyopathy. Genome Med 11, 5 (2019). 

[107] A. Pérez-Serra et al., Genetic basis of dilated cardiomyopathy. 

Int J Cardiol 224, 461-472 (2016). 

[108] M. R. Taylor et al., Prevalence of desmin mutations in dilated 

cardiomyopathy. Circulation 115, 1244-1251 (2007). 

[109] The Sequence Variant Interpretation (SVI) Working Group, 

SVI Recommendation for in trans Criterion (PM3) - Version 

1.0 (2019). 



Conclusions and future implementations 

 

 136 

[110] S. E. Brnich et al., Recommendations for application of the 

functional evidence PS3/BS3 criterion using the ACMG/AMP 

sequence variant interpretation framework. Genome Med 12, 

3 (2019). 

[111] E. Arbustini et al., Desmin accumulation restrictive 

cardiomyopathy and atrioventricular block associated with 

desmin gene defects. Eur J Heart Fail 8, 477-483 (2006). 

[112] EnGenome, eVai software platform, (www.engenome.com) 

[113] Genoox, Fanklin (https://franklin.genoox.com/) 

[114] E. R. Riggs et al., Technical standards for the interpretation 

and reporting of constitutional copy-number variants: a joint 

consensus recommendation of the American College of 

Medical Genetics and Genomics (ACMG) and the Clinical 

Genome Resource (ClinGen). Genet Med 22, 245-257 (2020). 

[115] R. Yoshida, Hereditary breast and ovarian cancer (HBOC): 

review of its molecular characteristics, screening, treatment, 

and prognosis. Breast Cancer 28, 1167-1180 (2021). 

[116] H. Sung et al., Global Cancer Statistics 2020: GLOBOCAN 

Estimates of Incidence and Mortality Worldwide for 36 

Cancers in 185 Countries. CA Cancer J Clin 71, 209-249 

(2021). 

[117] F. C. Nielsen, T. van Overeem Hansen, C. S. Sørensen, 

Hereditary breast and ovarian cancer: new genes in confined 

pathways. Nat Rev Cancer 16, 599-612 (2016). 

[118] L. C. Hartmann, N. M. Lindor, The Role of Risk-Reducing 

Surgery in Hereditary Breast and Ovarian Cancer. N Engl J 

Med 374, 454-468 (2016). 

[119] S. Banerjee et al., Maintenance olaparib for patients with 

newly diagnosed advanced ovarian cancer and a BRCA 

mutation (SOLO1/GOG 3004): 5-year follow-up of a 

randomised, double-blind, placebo-controlled, phase 3 trial. 

Lancet Oncol, (2021). 

[120] A. N. J. Tutt et al., Adjuvant Olaparib for Patients with. N 

Engl J Med 384, 2394-2405 (2021). 

[121] L. Biganzoli et al., The requirements of a specialist breast 

centre. Breast 51, 65-84 (2020). 



Conclusions and future implementations 

 

 137 

[122] J. Azzollini et al., Clinical heterogeneity and reduced 

penetrance in DICER1 syndrome: a report of three families. 

Tumori, 3008916211058788 (2021). 

[123] M. Tanwar, S. Balaji, A. Vanniarajan, U. Kim, G. 

Chowdhury, Parental age and retinoblastoma-a retrospective 

study of demographic data and genetic analysis. Eye (Lond), 

(2021). 

 


	Acknowledgments
	Abstract (Italiano)
	Abstract (English)
	Contents
	Chapter 1
	1.1. NGS-driven genetics
	1.2. NGS data analysis systems
	1.3. The aim and the structure of the thesis

	Chapter 2
	2.1. NGS applications
	2.1.1. NGS re-sequencing approaches
	2.1.2. Germinal, Somatic, Cell-free DNA

	2.2. Illumina sequencing technology
	2.2.1. Library preparation
	2.2.2. Amplification and Sequencing
	2.2.3. Base-calling

	2.3. NGS data analysis
	2.3.1. Bioinformatics pipelines
	2.3.2. Alignment
	2.3.2.1. Post Alignment process

	2.3.3. Pre variant calling process (pre-processing)
	2.3.3.1. The marking of duplicates reads
	2.3.3.2. Indel Realignment
	2.3.3.3. Base quality score recalibration

	2.3.4. Variant Calling
	2.3.4.1. SNV / InDel calling
	2.3.4.2. Individual versus joint variant calling
	2.3.4.3. Germline versus Somatic variant calling
	2.3.4.4. CNV calling

	2.3.5. Post-processing (Variant filtering)

	2.4. Variant annotation and interpretation
	2.4.1. Variant annotation
	2.4.2. Variant prioritization
	2.4.3. ACMG-AMP classification system
	2.4.3.1. Somatic Variants



	Chapter 3
	3.1.  Needs and motivations
	3.2. Workflow management system
	3.2.1. Tools wrapping and parallelization
	3.2.2. The Helper structure
	3.2.2.1. The configuration files


	3.3. Data processing workflow
	3.3.1. Pre-alignment process
	3.3.1.1. Trimming of adapters
	3.3.1.2. Fastq filtering
	3.3.1.3. Quality control

	3.3.2. Alignment
	3.3.2.1. Fastq_alignment
	3.3.2.2. Sam to Bam conversion
	3.3.2.3. Sort Sam files
	3.3.2.4. Index Bam files
	3.3.2.5. Bam quality control

	3.3.3. Pre-processing
	3.3.3.1. Add readgroups to Bam file
	3.3.3.2. Mark pcr duplicates
	3.3.3.3. Realignment around InDels
	3.3.3.4. Base Quality Score Recalibration

	3.3.4. Short variant calling
	3.3.5. Post processing
	3.3.5.1. VCF normalization
	3.3.5.2. VCF filtering
	3.3.5.3. VCF split by samples
	3.3.5.4. VCF merge
	3.3.5.5. VCF to TSV conversion

	3.3.6. Variant annotation
	3.3.7. Post annotation
	3.3.7.1. Report annotation in TSV format

	3.3.8. CNV calling
	3.3.9. Sample organization and workflows

	3.4. The Helper GUI
	3.4.1. Tools setting
	3.4.2. Experiment Designer
	3.4.3. Samplesheet Designer
	3.4.4. Pipeline designer
	3.4.5. Analysis Settings

	3.5. Workflow performance study
	3.5.1. Trusight Cardio and Trusight Cancer Panels
	3.5.2. Computing performance study
	3.5.2.1. Trusight_germline runtime

	3.5.3. CNV Analysis
	3.5.3.1. Datasets and tools
	3.5.3.2. Benchmark evaluation metric
	3.5.3.3. CNV calling sensitivity



	Chapter 4
	4.1. Variant interpretation - the case of Desmin
	4.1.1. Clinical and genetic background
	4.1.1.1. The DES gene and the Desmin protein
	4.1.1.2. Phenotypes related to DES defect
	4.1.1.3. Genetic complexity of Desminopathy

	4.1.2. The CMGCV-DES system
	4.1.2.1. Variant type and location (PVS1 / PM1 / PM4 / PP2)
	4.1.2.2. Same residue as known pathogenic (PS1 / PM5)
	4.1.2.3. Population frequency (PM2 / BS1 / BA1)
	4.1.2.4. Homozygous status (PM3)
	4.1.2.5. Specific phenotype (PP4/BS2)
	4.1.2.6. Functional studies (PS3 / BS3)
	4.1.2.7. In-silico prediction (PP3 / BP4)

	4.1.3. The DES-dataset
	4.1.4. Benchmark study
	4.1.4.1. Differences between software before patient and family evaluation
	4.1.4.2. The CMGCV interpretation
	4.1.4.3. The impact of the pathological and clinical study of subjects and the analysis of families on classification

	4.1.5. The final classification
	4.1.6. The importance of clinical and pathology studies
	4.1.7. Clinical features of variant’s groups

	4.2. Variants study in breast and ovarian cancer families
	4.2.1. Introduction to hereditary cancer
	4.2.2. Genetic and clinical background
	4.2.3. The reasons for genetic testing
	4.2.4. The clinical and molecular genetic path at the OSM
	4.2.5. NGS sequencing and analysis pipeline
	4.2.5.1. Wet process
	4.2.5.2. NGS data analysis
	4.2.5.3. The CMG-Cancer DB

	4.2.6. Results of genetic testing
	4.2.6.1. BRCA vs other genes in BROVCA probands
	4.2.6.2. Non-BROVCA probands
	4.2.6.3. Mutated non affected probands
	4.2.6.4. BROVCA in male probands
	4.2.6.5. Gene pathways in breast and ovarian cancers
	4.2.6.6. From genetics to clinical groups

	4.2.7. Family segregation and familiarity for BROVCA tumors
	4.2.7.1. Multiple families affected by the same variant



	Chapter 5
	References

