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Abstract (Italiano) 

 
L'attività di ricerca descritta in questa tesi è stata condotta all’interno del 
Laboratorio di Informatica Biomedica “Mario Stefanelli” dell’Università 
degli Studi di Pavia da ottobre 2018 a novembre 2021. È stata motivata dalla 
necessità di un’applicazione per la gestione dei pazienti diabetici che 
permettesse l’integrazione dei dati di monitoraggio ottenuti attraverso 
l’utilizzo di diversi sensori indossabili, fornendo strumenti di analisi 
temporale per estrarre conoscenza e migliorare la predizione di episodi acuti.  

Il diabete mellito è una condizione cronica la cui prevalenza è in continuo 
aumento nel mondo, costituendo una delle sfide per la salute in più rapida 
ascesa nelle ultime decadi. La gestione del diabete mellito si basa 
principalmente sul mantenimento dei valori glicemici all’interno di un range 
di normalità, così da ridurre il rischio di serie complicanze a lungo termine, 
senza però causare un sostanziale crollo dei valori di glucosio presente nel 
sangue. I sistemi per l’automonitoraggio del glucosio ( “self-monitoring of 
blood glucose” o SBGM) e quelli per il monitoraggio in continua 
(“continuous glucose monitoring” o CGM) sono essenziali per il 
raggiungimento e il mantenimento di un buon controllo glicemico nel tempo, 
in modo particolare nei soggetti sottoposti a terapia insulinica. In ogni caso, 
è di grande importanza considerare anche altri fattori per poter fornire un 
quadro glicemico più completo, dove ogni misura è contestualizzata 
nell’arco della giornata e in base all’attività svolta in quel preciso momento. 

La piattaforma “Advanced Intelligent Distant – Glucose Monitoring” 
(AID-GM), sviluppata all’interno del Laboratorio di Informatica Biomedica 
dell’Università degli Studi di Pavia, consente l’integrazione dei dati di 
monitoraggio provenienti da fonti differenti, quali ad esempio un sistema di 
monitoraggio glicemico in continua, un fitness tracker, o un diario clinico 
redatto dal paziente stesso. Attraverso la piattaforma, dunque, i pazienti e il 
personale clinico hanno la possibilità di condividere e visualizzare i dati 
provenienti dai propri dispositivi di monitoraggio insieme alle informazioni 
relative allo stile di vita, alla qualità del sonno e al battito cardiaco.  

In questa prospettiva, l’attività di ricerca si è focalizzata sullo sviluppo di 
strategie innovative e allo stato dell’arte per l’analisi dei dati temporali basati 
su differenti sorgenti, al fine di estrarre nuova conoscenza. Inoltre, il 
monitoraggio a distanza è stato supportato dall’implementazione degli 
algoritmi per l’analisi temporale all’interno della piattaforma AID-GM, 
trasformando i dati grezzi delle serie storiche in informazioni cliniche 
rilevanti, offrendo ai medici una quadro completo delle condizioni di ciascun 
paziente.
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Abstract (English) 

The research activity described in this thesis has been conducted within the 
Laboratory for Biomedical Informatics “Mario Stefanelli” of the University 
of Pavia, Italy, from October 2018 to November 2021. It was motivated by 
the need of a diabetes management application that allowed the integration 
of patient-generated health data (PGHD) from different wearable sensors, 
providing temporal data analytics functionalities to gain deeper insights in 
the data and to enhance critical events prediction. 

Diabetes mellitus (DM) is a life-long condition that continues to rise in 
prevalence across the globe, representing one of the fastest growing health 
challenges of the last decades. DM management is mainly focused on 
maintain near-normal glycemic values for reducing the risk of long-term life-
threatening complications, without causing substantial falls in circulating 
glucose. Self-monitoring of blood glucose (SMBG) and continuous glucose 
monitoring (CGM) systems are essential to achieve the goal of a safe and 
prolonged glycemic control, especially in subjects on insulin therapies. 
Anyway, it is important to consider also other factors for providing a 
complete glycemic profile contextualized within the day. 

The Advanced Intelligent Distant – Glucose Monitoring (AID-GM) 
platform, developed at the Biomedical Informatics Laboratory of the 
University of Pavia, consents the integration of PGHD from multiple 
sources, such as CGM systems, personal fitness trackers (PFTs), and self-
reported daily diaries. Therefore, patients and healthcare providers were 
allowed to share and visualize CGM measurements integrated by lifestyle, 
sleep, and HR information. 

In this context, the research activity is focused on the development of 
novel and state of the art temporal data analytics strategies based on 
multivariate PGHD to discover new insights in the collected data. Moreover, 
the long-term remote monitoring has been supported by the implementation 
of the proposed temporal data analytics functionalities in the AID-GM 
platform, turning the time-series raw data into relevant clinical information 
and making available to clinicians a complete overview of each patient’s 
conditions as a decision support in their healthcare tasks. 

. 
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Chapter 1 
1 Introduction 

1.1. Motivation and objectives 
Diabetes Mellitus (DM) is a high-prevalence lifelong condition that is 
rapidly growing worldwide, characterized by an excessive amount of 
circulating glucose and metabolic disorders. Early diagnosis, access to 
medication, education and frequent monitoring are necessary for preventing 
acute complications and reducing the risk of long-term complications. 
Indeed, raised levels of circulating glucose through time can lead to disabling 
and life-threatening health complications such as retinopathy, nephropathy, 
peripheral neuropathy, and cardiovascular diseases. 

The latest developments in wearable blood glucose (BG) technologies 
have provided a great support in diabetes management, which is mainly 
focused on maintaining a near-normal glycemic control. Different 
continuous glucose monitoring (CGM) systems are now available on the 
market, able to measure BG levels around the clock through disposable 
subcutaneous sensors. Anyway, also other factors may influence the BG 
profile over the day, including physical activity, quality of sleep, and heart 
rate (HR), which can be automatically monitored by activity trackers. 
Therefore, the integration between information from CGM systems and 
activity trackers has become essential to achieve a complete glycemic profile 
contextualized within the day. 

In this background, the Advanced Intelligent Distant – Glucose 
Monitoring (AID-GM) platform has been developed at the Biomedical 
Informatics Laboratory of the University of Pavia, allowing patients and 
healthcare providers to share and visualize glucose measurements integrated 
by daily activity, sleep, and HR information. In particular, this application 
has been used by two different cohorts of patients with DM, such as a group 
of pediatric patients recruited from the Pediatric Endocrinology and 
Diabetology outpatient service of Fondazione IRCCS Policlinico San Matteo 
hospital, and a group of adult patients recruited from the Endocrinology and 
Diabetology outpatient service of the IRCCS Istituti Clinici Scientifici 
Maugeri in Pavia, Italy. 
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This research activity is focused on developing novel and state of the art 
temporal data analytics methodologies based on multivariate patient-
generated health data (PGHD) to discover new insights in the collected 
datasets. In addition, the proposed algorithms for temporal data analytics 
have been integrated within the AID-GM application to turn the raw data 
coming from different sources into relevant clinical information, providing 
clinicians with composite and advanced overviews of each patient’s 
condition as a support in their healthcare tasks, facilitating long-term remote 
monitoring.  

1.2. Overview of the thesis 
The dissertation is organized as in the following. 
 

Chapter 2 provides the background of the thesis. Since this research 
activity focuses on temporal analytics for diabetes monitoring, Section 2.1 
introduces definition and pathophysiology of DM, illustrating the most 
common symptoms and the diagnostic tests recommended by international 
guidelines for a definitive diagnosis of DM, and explaining the diabetes 
classification proposed by the World Health Organization (WHO) in 2019 
[1]. Particularly, CGM systems and CGM-derived glycemic metrics are 
explored in detail as they allow to assess the quality of glycemic control, 
evaluating the magnitude and the frequency of intra- and inter-day glucose 
fluctuations. Then, Section 2.2 presents a literature review regarding glucose 
time-series analysis and forecasting, considering univariate and multivariate 
models developed through statistical, machine learning and deep learning 
approaches, since glucose profile over the day can be influenced by several 
variables. Finally, Section 2.3 describes the data integration infrastructure 
and the graphical user interface of the AID-GM platform. 

Chapter 3 illustrates the considered datasets and explains the proposed 
analytical methodologies. Section 3.1 introduces the two datasets used in this 
research activity, one collected on pediatric patients and the other on adult 
patients, in both cases affected by a specific subclass of DM, called type 1 
diabetes, and monitored in real-life conditions through the same devices. 
Afterwards, Section 3.2 presents glucose data analytics. An algorithm for 
descriptive statistics and glycemic metrics computation is implemented, so 
that healthcare providers can have an immediate overview of each patient’s 
conditions. In addition, the relationship between glycated hemoglobin and 
time in ranges is investigated, along with the correlation between self-
monitoring frequency through CGM devices and glycemic metrics. Section 
3.3 explains the knowledge-based Temporal Abstraction (TA) techniques 
used to automatically detect time intervals in which time-series assume 
behaviors of interest. In particular, several domain-specific patterns have 
been formalized in collaboration with the diabetologists of the Pediatric 
Endocrinology and Diabetology outpatient service of Fondazione IRCCS 
Policlinico San Matteo hospital, and of the Endocrinology and Diabetology 



Introduction 
 

 3 

outpatient service of the IRCCS Istituti Clinici Scientifici Maugeri. Finally, 
Section 3.4 presents the proposed deep learning architecture for developing 
multi-patient and multivariate models for glucose prediction. 

Chapter 4 exposes the outcomes of temporal analytics methods applied 
on real-world data, exploring the differences between the results obtained on 
pediatric and adult datasets and comparing the findings with the literature. 

Finally, Chapter 5 outlines and discusses the main conclusions of this 
research activity. 

As a complement to the main research work of this thesis, Appendix A 
reports on the application of TA techniques to evaluate the presence of 
glucose disorders in young patients affected by multisystem inflammatory 
syndrome in children (MIS-C), a critical health condition associated with the 
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The data 
for this study have been provided by the Vittore Buzzi Children’s Hospital 
in Milan, Italy, during the coronavirus disease 2019 (COVID-19) pandemic.  
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Chapter 2 
2 Background 

This chapter provides the background material and the literature review for 
technical and analytical diabetes monitoring solutions. Section 2.1 explains 
the clinical problem, first introducing the characteristics of DM, then 
presenting glucose monitoring systems and metrics used for glycemic 
assessment. Section 2.2 describes relevant works for BG time-series 
forecasting, considering statistical, machine learning and deep learning 
approaches in univariate and multivariate models. Finally, Section 2.3 
illustrates the AID-GM platform. 

2.1. Diabetes monitoring 
DM is a lifelong condition that is rising worldwide, representing one of the 
fastest growing health challenges of the last decades. Within fifteen years, 
according to the 9th edition of the International Diabetes Federation (IDF) 
Diabetes Atlas [2], the number of adults with DM has risen from 151 million 
in 2000 to 415 million in 2015. In 2019 it was estimated that one in eleven 
adults had DM, and there was over one million of children and adolescents 
with a specific subclass of diabetes, called type 1 diabetes [2]. Nowadays, 
the trend is still upward: the overall projection of adults with DM in 2030 is 
578 million, and 700 million in 2045 [2].  

Globally, 11.3% of deaths in the 20-79 years age group are due to DM, 
mainly as a consequence of its complications, and almost half of these deaths 
are in adults aged under 60 years [2]. In this context, early diagnosis, access 
to medication, education and regular monitoring is essential in preventing 
acute complications and reducing the risk of long-term complications [3]. 
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2.1.1. Characteristics of diabetes mellitus 

DM in an umbrella term for a group of metabolic disorders characterized by 
hyperglycemia, i.e. an excessive amount of circulating glucose, together with 
disturbances in carbohydrate, fat, and protein metabolism [1], [4]. A 
prolonged exposure to hyperglycemia causes microvascular complications, 
including retinopathy, nephropathy, and peripheral neuropathy. DM is also 
associated to an increased risk of macrovascular complications, such as 
atherosclerosis, and some infectious diseases [1], [4]. 

The most common signs and symptoms of DM are thirst, polyuria, 
blurring of vision, and weight loss; genital yeast infection can also occur [1]. 
There are also severe clinical manifestations, such as ketoacidosis or a non-
ketotic hyperosmolar state that may lead to dehydration, coma, and death [1], 
[4]. Anyway, a definitive diagnosis of DM has to be established through one 
of the four diagnostic tests recommended by international guidelines like the 
WHO “Classification of diabetes mellitus 2019” [1] and the American 
Diabetes Association (ADA) “Standards of Medical Care in Diabetes 2021” 
[5], as reported in Table 2.1. 

Table 2.1: Criteria for the diagnosis of diabetes adapted from the American 
Diabetes Association guidelines [5]. 

FPG ≥ 126 mg/dL (7.0 mmol/L) 
fasting is defined as no caloric intake for at least 8 hours * 

OR 
2-hours PG ≥ 200 mg/dL (11.1 mmol/L) during OGGT 

performed as described by WHO, using a glucose load containing the 
equivalent of 75 grams of anhydrous glucose dissolved in water * 

OR 
HbA1c ≥ 48 mmol/mol (6.5%) 

performed in a laboratory using a method that is NGSP certified  
and standardized to the DCCT assay 

OR 
Random plasma ≥ 200 mg/dL (11.1 mmol/L) 

in an individual with DM characteristic symptoms 
* In the absence of unequivocal hyperglycemia, diagnosis requires two abnormal 
test results from the same sample or in two separate test samples. 
FPG: fasting plasma glucose; PG: plasma glucose; OGGT: oral glucose tolerance 
test; WHO: World Health Organization; HbA1c: glycated hemoglobin; NGSP: 
National Glycohemoglobin Standardization Program; DCCT: Diabetes Control and 
Complications Trial; DM: diabetes mellitus. 

Although origin and etiology are heterogenous, defective pancreatic β-
cells account for almost all forms of DM [6]. A dysfunction or destruction 
of β-cells can happen due to various mechanisms, including genetic 
predisposition and abnormalities, epigenetic processes, insulin resistance, 
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auto-immunity, concurrent illnesses, inflammation, and environmental 
factors [1], [5]. Sited in the islets of Langerhans throughout the endocrine 
pancreas, β-cells can detect variations in the circulating concentrations of 
nutrients, hormones, neurotransmitters, and neuropeptides, in a complex 
interaction with the autonomic nervous and the gastrointestinal systems [7]. 
β-cells respond to increasing levels of nutrients by releasing the polypeptide 
hormone insulin to enable the uptake and metabolism or storage of the 
nutrients in liver, muscles, and adipose tissues, preventing hyperglycemia. 
Insulin secretion is switched off when the consequent decrease in circulating 
nutrients is detected, preventing hypoglycemia [7]. 

Hypoglycemia in DM is fundamentally iatrogenic as a consequence of 
therapeutic hyperinsulinemia [8]. It produces recurrent morbidity and some 
mortality and weakens the physiologic defensive mechanism against 
successive hypoglycemic episodes [9]. Hypoglycemia can also be 
asymptomatic and cause brain fuel deprivation that, if unchecked, may lead 
to functional brain failure or sudden death. The so-called death-in-bed 
syndrome, indeed, refers to sudden death in young DM patients without any 
history of long-term complications [10], [11].  

 
According to the WHO guidelines [1], DM can be classified into the 

following categories: 

• Type 1 DM (T1DM) 
• Type 2 DM (T2DM) 
• Hybrid forms of diabetes mellitus, including slowly evolving 

immune-mediated DM and ketosis-prone T2DM 
• Other specific types of DM, including monogenic DM, 

monogenic defects of insulin action, diseases of the exocrine 
pancreas, endocrine disorders, drug- or chemical-induced DM, 
infection-related DM, uncommon specific forms of immune-
mediated DM, and other genetic syndromes sometimes associated 
with DM 

• Unclassified DM, a temporary category used whether there is not 
a clear diagnostic category, especially close to the time of 
diagnosis 

• Hyperglycemia first detected during pregnancy, including DM 
defined by the same criteria as in non-pregnant persons but first 
recognized during pregnancy, and gestational DM, defined by 
lower glucose cut-off points than those in Table 2.1 

T1DM and T2DM are the most prevalent form of DM, accounting 
respectively for 5-10% and 90-95% of DM cases [5]. T1DM results from an 
almost complete insulin loss due to a progressive cellular-mediated 
autoimmune destruction of the β-cells [5], [12]. The onset of T1DM is 
typically during childhood, but it can occur at any age [1], [4]. The complex 
etiology of T1DM involves genetic and several presumed environmental 
factors, such as maternal factors, viral infections, dietary, high birth weight 
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and growth rate, psychologic stress, dietary, and toxic substances [12]. 
Insulin replacement therapy is required to reproduce a normal physiologic 
insulin profile without inducing significant hypoglycemia [8]. A possible 
approach is represented by the multiple daily injection (MDI) insulin-
therapy, which involves a long-acting insulin injection once or twice a day 
for basal insulin requirements, and a short-acting insulin injection at each 
meal time [8]. Alternatively, the continuous subcutaneous insulin infusion 
(CSII) therapy may be prescribed; it requires the use of an insulin pump to 
continuously deliver predetermined insulin rates for basal insulin 
requirements, and to infuse a bolus to cover meal-time insulin requirements 
[13]. 

T2DM, instead, is characterized by insulin resistance with relative insulin 
deficiency due to β-cell dysfunction [4]. Although specific etiologies are not 
known, an increased risk of developing T2DM is associated to several 
factors, including age, obesity, unhealthy lifestyles and prior gestational DM 
[1], [14]. For most individuals with T2DM, an insulin treatment is not 
required for survival but it may be needed, often after many years, to 
maintain a good glycemic control [1], [4].  

2.1.2. Monitoring systems 

Diabetes management is mainly focused on reducing the risk of long-term 
complications, maintaining near-normal glycemic values without causing 
significant hypoglycemia [15]. In current practice, the quality of glycemic 
control is typically assessed by glycated hemoglobin (HbA1c) test and 
regular glucose monitoring. 

HbA1c is a retrospective indicator that reflects the average glucose 
concentrations over approximately the previous 2-3 months [16], [17]. 
According to the consensus statement on the standardization of HbA1c 
measurements [18], the International Federation of Clinical Chemistry 
(IFCC) reference method should be used by all manufacturers for calibration 
procedures. In addition, HbA1c results should be reported both in Système 
Internationale (SI) units, i.e. mmol/mol without decimals, and in derived 
National Glycohemoglobin Standardization Program (NGSP) units, i.e. % 
with one decimal [19], using the IFCC-NGSP master equation [16], [18]. 

Elevated HbA1c concentrations have been associated with long-term DM 
complications and identified as significant risk factor for cardiovascular 
diseases [20]. The ADA guidelines recommend an overall HbA1c target of 
<53 mmol/mol (<7.0%), emphasizing the importance of individualized 
goals, as shown in Figure 2.1, particularly for children and adolescent, older 
adults, and pregnant woman [5]. As stated by the International Society for 
Pediatric and Adolescent Diabetes (ISPAD), a HbA1c target of <53 
mmol/mol (7.0%) is recommended for children, adolescents and young 
adults aged less than 25 years with DM who have access to comprehensive 
care, but a more-stringent goal of <48 mmol/mol (<6.5%) may be appropriate 
if achievable without significant hypoglycemia, negative impacts on quality 
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of life, or undue burden of care [21]. In addition, a less-stringent HbA1c goal 
of <59 mmol/mol (<7.5%) may be applicable in case of inability to articulate 
hypoglycemia symptoms; hypoglycemia awareness or history of severe 
hypoglycemia; lack of access to analog insulins and/or advanced insulin 
delivery technology, ability to regularly check BG, and continuous glucose 
monitoring; individuals who are “high glycators”, in whom an at-target 
HbA1c would reflect a significantly lower mean glucose than 155 mg/dL 
(8.6 mmol/L) [21]. Across all age-groups, indeed, adolescents are the farthest 
from accomplishing the HbA1c target of <53 mmol/mol (<7.0%) [19]. 

The measurement of HbA1c should be performed at least twice a year in 
adults with T2DM and a stable glycemic control, while unstable or 
intensively managed adults should be tested every three months [17]. In 
children and adolescent with DM the measurement of HbA1c should be 
performed quarterly a year [21].  

 

Figure 2.1: Approach for individualizing the glycated hemoglobin (HbA1c) 
target around the 53 mmol/mol (7%) recommendation, adapted from the 
American Diabetes Association guidelines [17]. 
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The HbA1c test is used as the gold standard for long-term follow-up of 
glycemic control [22], but it cannot provide information about the day-to-
day glycemic control and glycemic variability (GV), which refers to the 
oscillations in BG values over a given interval of time. Thus, the 
complementary use of glucose monitoring systems is essential to verify 
current glucose levels and eventually react to mitigate or prevent acute 
glycemic events, particularly for individuals with T1DM and insulin-treated 
individuals with T2DM [23].  

Systems for BG monitoring can be divided into two major categories: self-
monitoring of blood glucose (SMBG) devices, which measure glucose 
concentrations in capillary blood samples, and CGM devices, which measure 
glucose concentrations in interstitial fluid [24]. 

SMBG represent a standard of care for making therapeutic decisions such 
as insulin dosing [16], [17]. Although individual needs may vary, the 
American Association of Clinical Endocrinologists (AACE) guidelines 
recommend SMBG at least twice daily to all individuals using insulin and 
ideally before any insulin injection, so prior to meals and at bedtime [25]; 
ISPAD guidelines, instead, recommend SMBG six to ten times per day to 
children and adolescent with DM [21]. Anyway, additional checks are 
suggested in specific conditions for preventing the risk of hypoglycemia, e.g. 
before physical activity and critical tasks, or in the presence of hypoglycemic 
symptoms. Indeed, several studies in literature report that a higher SMBG 
frequency is correlated with lower HbA1c values in DM individuals on 
insulin therapies [26]–[28]. 

The most agreed upon standards for SMBG accuracy are the International 
Organization for Standardization (ISO) 15197:2013 [29] and the United 
States Food and Drug Administration (FDA) “Self-Monitoring Blood 
Glucose Test Systems for Over-the-Counter Use” [30]. Nevertheless, the 
accuracy of SMBG systems is dependent also to the end-user technique. As 
shown in Figure 2.2, the capillary blood sample should be obtained from the 
side of the finger pulp, applying the second drop of hanging blood to the test 
strip [16]. 

 

Figure 2.2: A self-monitoring of blood glucose (SMBG) device, which 
measures glycemia in capillary blood samples. 
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2.1.2.1. Continuous glucose monitoring 

Unlike the SMBG episodic measurement process, CGM allow to gather 
glucose measurements on a continuous basis. In this way, it is possible to 
obtain a representative glycemic picture ideally without missing numerous 
hypoglycemic and hyperglycemic episodes, as indicated in Figure 2.3. 
Indeed, the adoption of a CGM system is recommended by the ADA 
guidelines for all individuals with DM on insulin therapy [31]. 

 

Figure 2.3: Illustration of glucose monitoring data obtained with self-
monitoring of blood glucose (SMBG: in green) and continuous glucose 
monitoring (CGM: in blue). Dotted circles show hyperglycemic and 
hypoglycemic event that are not detectable using only SMBG measurements 
[32]. 

 
Figure 2.4: On the left a schema of continuous glucose monitoring (CGM) 
system [33], which measure glycemia in interstitial fluid, and on the right a 
CGM device in use. 

As presented in Figure 2.4, CGM systems exploit a disposable 
subcutaneous sensor applied to the patient’s abdomen or upper arm for 
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continuously measuring the interstitial glucose, which is strongly correlated 
with plasma glucose, although there could be a lag time between plasma and 
interstitial glucose concentrations during rapid BG changes [31], [33], [34]. 
Anyway, currently CGM algorithms tend to consider also this physiological 
delay in the estimation of plasma glucose values [33]. Attached to the sensor 
there is a transmitter that transfers glucose data to the user’s cell phone or a 
dedicated receiver via a wireless connection. Finally, CGM systems are 
usually complemented with a proprietary software that allows to visualize 
glycemic reports like the ambulatory glucose profile (AGP). 

Created by Mazze et al. [35] and further developed by the International 
Diabetes Center (IDC) [36], the AGP is an agreed upon dashboard 
characterized by a statistical summary section at the top, a daily view section 
at the bottom, and a central visual display section presenting a modal day in 
which all BG readings from multiple days are collapsed into a single 24-
hours period, as shown in Figure 2.5.   

 

Figure 2.5: Example of the ambulatory glucose profile (AGP) visual display 
[23]. 

Since the approval of the first CGM device in 1999 [37] significant 
advancements have been made in terms of features, ease of use, and 
accuracy, which is commonly evaluated in mean absolute relative difference 
(MARD). Nowadays, according to the ADA guidelines [31], CGM systems 
can be divided into the following categories:  

• Real-time CGM (rtCGM) 
• Intermittently scanned CGM (isCGM) 
• Professional CGM (pCGM) 

The rtCGM systems are personal devices that passively transmit BG 
readings to the receiver and warn of imminent or occurring acute glycemic 
events. In the last decade several rtCGM devices have been approved by 
FDA, such as the Dexcom Platinum G4 Platinum and the Dexcom G5 Mobile 
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(Dexcom, San Diego, California), which were discontinued by Dexcom at 
the end of 2020 [38] in favor of the Dexcom G6  [39], the Medtronic Enlite 
Sensor [40] and the Medtronic Guardian Sensor 3 (Medtronic, Northridge, 
California) [41], whose characteristics are presented in Table 2.2. In 2018 
FDA approved for adult patients the Senseonics Eversense (Senseonics, 
Germantown, Maryland) [42], which was the first long-term implantable 
rtCGM system able to provide glucose data for up to 90 days via an under-
the-skin sensor, placed by a healthcare provider through a small incision, 
together with a removable and rechargeable smart transmitter. Contrary to 
the previous rtCGM systems, which use a glucose oxidase (GOD)-based 
glucose sensor, the Senseonics Eversense exploits a patented fluorescent 
glucose-indicating polymer technology to measure interstitial glucose. 

Instead, the isCGM systems are personal devices that continuously 
measure interstitial glucose and display the measured values only when the 
sensor is scanned with the receiver. For this reason, these systems are also 
called flash glucose monitoring (FGM). The Abbott FreeStyle Libre (Abbott, 
Alameda, California) [43] was the first personal isCGM device on the 
market. In the United States it was approved by FDA only for adult patients, 
while in Europe and Australia it was approved both for adults and pediatric 
patients aged four years old and above. Moreover, a recent study across nine 
diabetes centers in the United Kingdom has demonstrated the accuracy, 
safety, and user acceptability of the FreeStyle Libre system specifically in 
the pediatric population [44]. As indicated in Table 2.2, the FreeStyle Libre 
system is characterized by more economic technology, factory calibration, 
and 14-days sensor life. The sensor measures interstitial glucose every 
minute and stores a reading (a weighted average value in a glucose range of 
40–500 mg/dL) every 15 minutes in a rolling 8-hours memory. This means 
that if a patient swipes the reader over the sensor at least every eight hours, 
no information is lost and 96 automatic measurements per day are stored. 
The reader, instead, has a 90-days memory. In 2020 the FDA approved the 
Abbott FreeStyle Libre 2 [45] both for adults and pediatric patients aged four 
years old and above, provided with optional real-time alarms for acute 
glycemic events as the most recent rtCGM systems. 

In addition, the FreeStyle Libre 2 isCGM and the Dexcom G6 rtCGM 
have been designated by FDA as integrated CGM (iCGM) devices [46], [47]. 
The iCGM is a higher standard for monitoring systems that can be used in 
an integrated mode alongside other diabetes management devices, including 
automatic insulin dosing systems and insulin pumps [31].  

While rtCGM and isCGM systems are patient-owned devices, pCGM 
systems are clinic-based devices prescribed to patients for a short period of 
time, usually for one or two weeks [31], [48]. Upon return of the device to 
the healthcare provider's office, glucose monitoring data are downloaded and 
retrospectively analyzed to assess glycemic patterns. The pCGM systems 
offer a blinded mode, so that patients cannot verify current glucose levels 
and change behavior in response to real-time readings during the monitoring 
period [48], [49]. In this way, healthcare providers could have a more 
representative picture of patients’ glycemic trends for making apposite 



 

 14 

therapy adjustments [49]. Moreover, pCGM also offer to uncertain patients 
a trial opportunity before purchasing a personal CGM device [48]. Currently, 
a few pCGM devices are available on the market: the FreeStyle Libre Pro 
[50] and the Medtronic iPro2 [51] are blinded systems, while the Dexcom 
G6 Pro [52] is a rtCGM system available for professional use. 

Table 2.2: Features of selected personal CGM systems approved by the Food 
and Drug Administration (FDA) and currently available on the market in the 
United States [53].  

CGM sensor Category Life Warm- 
up time Calibration 

Frequency of 
glucose 

readings 

Dexcom 
G6 rtCGM Up to 

10 days 2 hours Factory-
calibrated 

Every 5 
minutes 

Medtronic 
Enlite rtCGM Up to 

6 days 2 hours Every 
12 hours 

Every 5 
minutes 

Medtronic 
Guardian Sensor 3 rtCGM Up to 

7 days 2 hours Every 
12 hours 

Every 5 
minutes 

Senseonics 
Eversense rtCGM Up to 

90 days 24 hours Every 
10–14 hours 

Every 5 
minutes 

Abbott 
Freestyle Libre isCGM Up to 

14 days 1 hour Factory-
calibrated 

Per scanning/ 
stored every 
15 minutes 

Abbott 
Freestyle Libre 2 isCGM Up to  

14 days 1 hour Factory-
calibrated 

Per scanning/ 
stored every 
15 minutes 

Abbott  
FreeStyle Libre 

Pro 
pCGM Up to  

14 days 1 hour Factory-
calibrated 

Every 15 
minutes 

Dexcom 
G6 Pro pCGM Up to 

10 days 2 hours Factory-
calibrated 

Every 5 
minutes 

Medtronic iPro2 
Enlite pCGM Up to 

6 days 1 hour Every 
12 hours 

Every 5 
minutes 

isCGM: intermittently scanned Continuous Glucose Monitoring; pCGM: 
professional Continuous Glucose Monitoring; rtCGM: real-time Continuous 
Glucose Monitoring. 

Literature reports significant clinical benefits of CGM adoption in 
individuals with DM regardless of insulin delivery method, showing 
enhancements in glycemic control, management of hypoglycemic episodes, 
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and glycemic variability [23]. According to a randomized controlled trial 
(RCT) conducted by the Juvenile Diabetes Research Foundation (JDRF) 
CGM Study Group [54], the use of CGM compared to SMBG devices is 
associated with significant decrease in HbA1c levels in T1DM adult patients; 
a similar conclusion can be drawn from both the GOLD [55] and the 
DIAMOND [56] RCTs, which included only T1DM adult patients on MDI 
therapy. In addition, the REPLACE-BG RCT demonstrated that the use of 
CGM systems alone is as safe and effective as the adoption of CGM systems 
adjunctive to SMBG devices in adult patients with well-controlled T1DM on 
CSII therapy [57]. The HypoDE [58] RCT revealed that in T1DM adult 
patients on MDI therapy with hypoglycemia awareness the adoption of CGM 
devices could reduce the number of hypoglycemic events compared to 
SMBG, as observed also in the IN CONTROL [59] RCT, which included 
adult patients with T1DM on MDI or CSII therapy. Particularly, the RCT of 
Bolinder et al. indicated that the use of FGM systems reduced the time spent 
in hypoglycemia in adult patients with controlled T1DM [60]. Moreover, the 
RCT of Bergenstal et al. [61] showed that the integration of unblinded CGM 
systems within the insulin therapy resulted in lower HbA1c values in both 
adults and children with inadequately controlled T1DM [61]. 

Another RCT conducted by the DIAMOND study group reported that a 
high percentage of T2DM adult patients on MDI therapy improved their 
glycemic control using CGM systems [62]. Nevertheless, there are not 
significant evidences to determine whether CGM could improve such 
clinical outcomes also in T2DM individuals not on intensive insulin 
treatment [32]. 

2.1.3. Glycemic variability 

Clinical evidences support that glucose fluctuations might play a negative 
role in the development of acute and chronic microvascular and 
macrovascular complications [63], [64]. Nevertheless, this dynamic cannot 
be reflected by the HbA1c test alone, but it need also the measurements of 
GV, which allow to investigate the magnitude and the frequency of intra- 
and inter-day glucose fluctuations [65]. 

Over the past years, the widespread diffusion of CGM systems has 
noticeably improved the evaluation of GV and numerous GV metrics have 
been proposed for the glycemic assessment. These metrics can be divided 
into two categories according to the length of time-interval under 
surveillance: long-term GV metrics are based on the variability between 
visit-to-visit HbA1c, fasting plasma glucose (FPG) or postprandial glucose 
(PPG) measurements, while short-term GV metrics consider BG changes 
within a day or between few days [65]. In the following, the short-term GV 
metrics that are most widely used in clinical practice are presented as 
belonging to four families of methods, such as traditional metrics, metrics 
based on absolute change in glucose levels, metrics based on risk of major 
glycemic excursions, and metrics based on time in ranges. In all equations, 
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𝐵𝐵𝐵𝐵𝑡𝑡 represents the BG reading in mg/dL (which can be converted in mmol/L 
considering that 18 mg/dL = 1 mmol/L) at time 𝑡𝑡, 𝑛𝑛 is the total number of 
glucose readings, and 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 is the number of monitored days. 

Traditional metrics 

• Mean: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛 =
∑ 𝐵𝐵𝐵𝐵𝑡𝑡𝑛𝑛
𝑡𝑡=1

𝑛𝑛  

It is a simple measure of central tendency that has the best correlation 
with HbA1c levels; it can be influenced by outliers and it does not 
assign more importance to acute glycemic events [66]. 

• Overall standard deviation (𝑆𝑆𝑆𝑆): 

𝑆𝑆𝑆𝑆 = �∑ (𝐵𝐵𝐵𝐵𝑡𝑡  −  𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛)2𝑛𝑛
𝑡𝑡=1

𝑛𝑛 − 1  

It combines information on variability from all days and all time 
points; it can be influenced by outliers and non-Gaussian skewed 
asymmetrical distribution of BG readings [66]. 

• Within-day standard deviation (𝑆𝑆𝑆𝑆𝑤𝑤): 

𝑆𝑆𝑆𝑆𝑤𝑤 =  
∑ 𝑆𝑆𝑆𝑆(𝑖𝑖)𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑖𝑖=1
𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 

It is the average over all days of intra-day SD values and it is 
consequently highly correlated with overall SD [67]. 

• Daily means standard deviation (𝑆𝑆𝑆𝑆𝑑𝑑𝑑𝑑): 

𝑆𝑆𝑆𝑆𝑑𝑑𝑑𝑑 = �
∑ 𝑚𝑚𝑀𝑀𝑀𝑀𝑛𝑛(𝑖𝑖) −𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑖𝑖=1

𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − 1  

It is the SD of the BG readings daily means and it is correlated with 
overall SD [67]. 

• Percentage coefficient of variation (%𝐶𝐶𝐶𝐶): 

%𝐶𝐶𝐶𝐶 = 100 ∙  
𝑆𝑆𝑆𝑆
𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛 

It represents the extent of variability in relation to the Mean of BG 
readings, expressed as a percentage [66]. It is subject to the same 
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limitations as SD, but it is less influenced when comparing data with 
widely different Mean or HbA1c values. The recommended target for 
a good glycemic control is ≤36%, although some studies suggest that 
a lower target of <33% provide additional protection against 
hypoglycemia for those receiving insulin or sulfonylureas [23]. 

• Median: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖𝑀𝑀𝑛𝑛 = 𝐵𝐵𝐵𝐵50𝑡𝑡ℎ𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑡𝑡𝑖𝑖𝑝𝑝𝑝𝑝 

It is a simple measures of central tendency with the advantage of 
being insensitive to outliers and unaffected by values that are outside 
the range of measurement; as the Mean, it does not assign more 
importance to acute glycemic events [66]. 

• Interquartile range (𝐼𝐼𝐼𝐼𝐼𝐼): 

𝐼𝐼𝐼𝐼𝐼𝐼 =  𝐵𝐵𝐵𝐵75𝑡𝑡ℎ𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑡𝑡𝑖𝑖𝑝𝑝𝑝𝑝 −  𝐵𝐵𝐵𝐵25𝑡𝑡ℎ𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑡𝑡𝑖𝑖𝑝𝑝𝑝𝑝 

It can handle non-Gaussian distributions and it has the advantage of 
being insensitive to outliers and unaffected by values that are outside 
the range of measurement [66]. 

• Range: 

𝐼𝐼𝑀𝑀𝑛𝑛𝑅𝑅𝑀𝑀 = max(𝐵𝐵𝐵𝐵) − min (𝐵𝐵𝐵𝐵) 

It is the difference between the highest and the lowest BG reading; it 
is markedly sensitive to outliers or values that are outside the range 
of measurement [66]. 

Metrics based on absolute change in glucose levels 

• M-value (𝑀𝑀𝐼𝐼𝐼𝐼𝐼𝐼): 

𝑀𝑀𝐼𝐼𝐼𝐼𝐼𝐼 =
1
𝑛𝑛  ��10 ∙  log10(

𝐵𝐵𝐵𝐵𝑡𝑡
𝐼𝐼𝐵𝐵𝐶𝐶)�

3𝑛𝑛

𝑡𝑡=1

 

Also called Schlichtkrull’s M-value [68], [69] it evaluates the 
glycemic control based on deviations from an arbitrary glycemic 
reference point, which represent healthy individuals, and it assigns 
more importance to hypoglycemia than hyperglycemia. IGV is the 
ideal glucose value that reflects the normal basal glycemia in healthy 
individuals, originally set at 120 mg/dL, then modified to 90 mg/dL 
when glucose is measured in the interstitial fluid or to 80 mg/dL when 
glucose is measured in capillary blood samples [70]. Alternatively, 
Tatoñ and Czec proposed to set IGV at 100 mg/dL [69]. According 
to Service and Nelson [71], considering a IGV equal to 90 mg/dL 
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healthy individuals generally present a M-value ≈1, individuals with 
a well-controlled DM have a M-value ≈10, while individuals with 
inadequately controlled DM present a M-value >30 [71]. 

• Adjusted M-value (𝑀𝑀𝐼𝐼𝐼𝐼𝐼𝐼,𝑤𝑤): 

𝑀𝑀𝐼𝐼𝐼𝐼𝐼𝐼,𝑤𝑤 = 𝑀𝑀𝐼𝐼𝐼𝐼𝐼𝐼 + 𝑀𝑀𝑤𝑤 

where 𝑀𝑀𝑤𝑤 =  max(𝐵𝐵𝐼𝐼)−min (𝐵𝐵𝐼𝐼)
20

 

The amplitude correction factor 𝑀𝑀𝑤𝑤 is added to the M-value formula 
if the number of BG readings 𝑛𝑛 is less than 25 [70]. 

• J-index: 

𝐽𝐽 − 𝑖𝑖𝑛𝑛𝑀𝑀𝑀𝑀𝑖𝑖 = 0.001 ⋅  (𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛 + 𝑆𝑆𝑆𝑆)2 

The J-index was defined by Wójcicki [72], who combined Mean and 
SD through a mathematical formula. It is sensitive to hyperglycemia 
but relatively insensitive to hypoglycemia; compared to M-value, it 
has the advantage of being independent of any arbitrarily glycemic 
reference point, which can impede the comparison between studies 
that use different reference points. In addition, Wójcicki defined four 
categories for the assessment of glycemic control based on J-index 
values: ideal glycemic control if 10 ≤ 𝐽𝐽 ≤ 20, good glucose control if 
20 < 𝐽𝐽 ≤ 30, poor glucose control if 30 < 𝐽𝐽 ≤ 40, and lack of glycemic 
control if 𝐽𝐽 > 40 [72]. 

• Continuous Overlapping Net Glycemic Action at n-hour (𝐶𝐶𝐶𝐶𝑁𝑁𝐵𝐵𝐶𝐶𝑛𝑛): 

𝐶𝐶𝐶𝐶𝑁𝑁𝐵𝐵𝐶𝐶𝑛𝑛 = �∑ (𝑆𝑆𝑡𝑡 −  𝑆𝑆�)2𝑡𝑡𝑘𝑘∗
𝑡𝑡=𝑡𝑡1
𝑘𝑘∗ −  1  

where𝑘𝑘∗ is the number of observations with an observation 
𝑛𝑛 × 60 minutes ago, 

𝑆𝑆𝑡𝑡 =  𝐵𝐵𝐵𝐵𝑡𝑡 −  𝐵𝐵𝐵𝐵𝑡𝑡−𝑑𝑑 with m =  𝑛𝑛 × 60, 

and 𝑆𝑆� =  
∑ 𝐷𝐷𝑡𝑡
𝑡𝑡𝑘𝑘∗
𝑡𝑡=𝑡𝑡1
𝑘𝑘∗

 

It describes the within-day glycemic fluctuations by computing the 
SD of the differences between each current observation and the 
observation at 𝑛𝑛  hours before [73]. High CONGA values indicate 
elevated glucose fluctuations, which are consistent to inadequate 
glycemic control. 
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• Mean of Daily Differences (𝑀𝑀𝐶𝐶𝑆𝑆𝑆𝑆): 

𝑀𝑀𝐶𝐶𝑆𝑆𝑆𝑆 = �∑ (𝐵𝐵𝐵𝐵𝑡𝑡 −  𝐵𝐵𝐵𝐵𝑡𝑡−1440)2𝑡𝑡𝑘𝑘
𝑡𝑡=𝑡𝑡1

k  

where 𝑘𝑘 is the number of observation with an observation 24 
hours ago 

It describes the between-day glycemic fluctuations by computing the 
mean difference between BG readings obtained at the same time of 
the day on two consecutive days [74]. 

Metrics based on risk of major glycemic excursions 

Risk-based metrics have been introduced to reduce the bias towards 
hyperglycemia due to the high asymmetry of the BG scale. As shown in part 
A of Figure 2.6, indeed, deviations towards hyperglycemia (above 180 
mg/dL or 10 mmol/L [75]) occupy a wider space than deviations towards 
hypoglycemia (below 70 mg/dL or 3.9 mmol/L [75]) and euglycemia is not 
centered within the scale [76]. 

 

Figure 2.6: Risk analysis of blood glucose data proposed by Kovatchev et al. 
[76], [77] 

• Low BG Index (𝐿𝐿𝐵𝐵𝐵𝐵𝐼𝐼) and High BG Index (𝐻𝐻𝐵𝐵𝐵𝐵𝐼𝐼): 
Kovatchev et al. [77] first validated a numerical transformation of the 
BG scale to generate a symmetric BG distribution around zero, using 
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a continuous function defined in the range [20 mg/dL – 600 mg/dL] 
as displayed in part B of Figure 2.6: 

 𝑓𝑓(𝐵𝐵𝐵𝐵) = 𝛾𝛾 ∗ [(ln(BG))𝛼𝛼 − 𝛽𝛽],  
where α = 1.084, β = 5.381, and γ = 1.509. 

After the numerical transformation, a quadratic risk function is 
superimposed as shown in part C of Figure 2.6: 

𝑟𝑟(𝐵𝐵𝐵𝐵) = 10 ∙ 𝑓𝑓(𝐵𝐵𝐵𝐵𝑡𝑡)2  

defined in the range [0-100] with a minimum value around 113 mg/dL 
(6.25 mmol/L). The 𝑟𝑟(𝐵𝐵𝐵𝐵) represents a measure of the risk associated 
to a specific BG reading; in particular, the left branch of the resulting 
parabola detects the risk of hypoglycemia, while the right branch 
identifies the risk of hyperglycemia [76]–[78]: 

𝑟𝑟(𝐵𝐵𝐵𝐵) = � 𝑟𝑟𝑟𝑟(𝐵𝐵𝐵𝐵), 𝐵𝐵𝐵𝐵 < 0
𝑟𝑟ℎ(𝐵𝐵𝐵𝐵), BG > 0 

Finally, once back to the original BG scale, part D of Figure 2.6 
reveals that the risk of BG decreasing grows rapidly, while the risk of 
BG increasing has a more attenuated rise. Therefore, LBGI is a non-
negative number that increases when the frequency and/or the extent 
of low BG readings increases, validated as a good predictor of severe 
hypoglycemia. Contrarily, HBGI is a measure of the frequency and 
extent of high BG readings, closely related to HbA1c and risk for 
hyperglycemia. 

𝐿𝐿𝐵𝐵𝐵𝐵𝐼𝐼 =
1
𝑛𝑛

 �𝑟𝑟𝑟𝑟(𝐵𝐵𝐵𝐵)
𝑛𝑛

𝑡𝑡=1

 

𝐻𝐻𝐵𝐵𝐵𝐵𝐼𝐼 =
1
𝑛𝑛  �𝑟𝑟ℎ(𝐵𝐵𝐵𝐵)

𝑛𝑛

𝑡𝑡=1

 

Based on the LBGI value, Kovatchev et al. [77] identified three risk 
categories for the development of severe hypoglycemic episodes: low 
risk if LBGI ≤2.5, moderate risk if 2.5< LBGI ≤5, and high risk if 
LBGI >5. Similarly, based on the HBGI value, three risk categories 
for the development of hyperglycemia were defined: low risk if HBGI 
≤4.5, moderate risk if 4.5< HBGI ≤9, and high risk if HBGI > 9. 

• BG Risk Index (𝐵𝐵𝐵𝐵𝐼𝐼𝐼𝐼): 

𝐵𝐵𝐵𝐵𝐼𝐼𝐼𝐼 = 𝐿𝐿𝐵𝐵𝐵𝐵𝐼𝐼 + 𝐻𝐻𝐵𝐵𝐵𝐵𝐼𝐼 

It represents the overall risk of experiencing extreme glycemic 
values, ranging in the interval [0-100] [79]. 
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• Average Daily Risk Range (𝐶𝐶𝑆𝑆𝐼𝐼𝐼𝐼): 

ADRR =
1

𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
 � 𝐿𝐿𝐼𝐼𝑖𝑖 + 𝐻𝐻𝐼𝐼𝑖𝑖

𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑖𝑖=1

 

where for the 𝑖𝑖-th day 

𝐿𝐿𝐼𝐼𝑖𝑖 = max(rl𝑖𝑖(𝐵𝐵𝐵𝐵)) 
𝐻𝐻𝐼𝐼𝑖𝑖 = max(rh𝑖𝑖(𝐵𝐵𝐵𝐵)) 

The ADRR is the average of the risk range per day, where 𝑟𝑟𝑟𝑟 and 𝑟𝑟ℎ 
represent the same risk function defined by Kovatchev et al. [77] for 
the computation of LBGI and HBGI. Indeed, ADRR combines LBGI 
and HBGI in order to be equally predictive of extreme glycemic 
excursion towards to hypoglycemia and hyperglycemia [80]. ADRR 
values have been stratified by Kovatchev et al. [80] in three risk 
categories: low risk if ADRR <20, moderate risk if 20≤ ADRR ≤40, 
and high risk if ADRR >40. 

• Glycemic Risk Assessment Diabetes Equation (𝐵𝐵𝐼𝐼𝐶𝐶𝑆𝑆𝐺𝐺): 

𝐵𝐵𝐼𝐼𝐶𝐶𝑆𝑆𝐺𝐺 𝑣𝑣𝑀𝑀𝑟𝑟𝑣𝑣𝑀𝑀𝑡𝑡 = 425 ∙ �log10 ��log10(
𝐵𝐵𝐵𝐵𝑡𝑡
18  ��+ 0.16�

2

 

𝐵𝐵𝐼𝐼𝐶𝐶𝑆𝑆𝐺𝐺 𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑀𝑀 =
∑ 𝐵𝐵𝐼𝐼𝐶𝐶𝑆𝑆𝐺𝐺 𝑣𝑣𝑀𝑀𝑟𝑟𝑣𝑣𝑀𝑀𝑡𝑡𝑛𝑛
𝑡𝑡=1

𝑛𝑛  

The GRADE score is the mean of all GRADE values. This formula 
was designed by Hill et al. [81] to operate for BG readings ranging in 
the interval [37 mg/dL - 630 mg/dL]; outside this range, a GRADE 
value of 50 is assigned by default. In addition, the relative risk 
contributions of hypoglycemia (below 70 mg/dL as defined by 
authors), euglycemia and hyperglycemia (above 140 mg/dL as 
defined by authors) to the GRADE risk score can be defined as in the 
following equations: 

GRADEℎ𝑑𝑑𝑝𝑝𝑦𝑦𝑦𝑦𝑝𝑝𝑑𝑑𝑝𝑝𝑝𝑝𝑑𝑑𝑖𝑖𝑑𝑑 =
∑𝐵𝐵𝐼𝐼𝐶𝐶𝑆𝑆𝐺𝐺 𝑣𝑣𝑀𝑀𝑟𝑟𝑣𝑣𝑀𝑀𝑦𝑦𝑛𝑛𝑝𝑝𝑑𝑑 𝐵𝐵𝐼𝐼𝑡𝑡 <70 𝑑𝑑𝑦𝑦/𝑑𝑑𝑑𝑑

∑𝐵𝐵𝐼𝐼𝐶𝐶𝑆𝑆𝐺𝐺 𝑣𝑣𝑀𝑀𝑟𝑟𝑣𝑣𝑀𝑀𝑑𝑑𝑝𝑝𝑝𝑝 𝐵𝐵𝐼𝐼𝑡𝑡
 ∙ 100 

GRADE𝑝𝑝𝑒𝑒𝑦𝑦𝑝𝑝𝑑𝑑𝑝𝑝𝑝𝑝𝑑𝑑𝑖𝑖𝑑𝑑 =
∑𝐵𝐵𝐼𝐼𝐶𝐶𝑆𝑆𝐺𝐺 𝑣𝑣𝑀𝑀𝑟𝑟𝑣𝑣𝑀𝑀𝑦𝑦𝑛𝑛𝑝𝑝𝑑𝑑 70 mg/dL≤ 𝐵𝐵𝐼𝐼𝑡𝑡 ≤180 𝑑𝑑𝑦𝑦/𝑑𝑑𝑑𝑑

∑𝐵𝐵𝐼𝐼𝐶𝐶𝑆𝑆𝐺𝐺 𝑣𝑣𝑀𝑀𝑟𝑟𝑣𝑣𝑀𝑀𝑑𝑑𝑝𝑝𝑝𝑝 𝐵𝐵𝐼𝐼𝑡𝑡
 ∙ 100 

GRADEℎ𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝𝑦𝑦𝑝𝑝𝑑𝑑𝑝𝑝𝑝𝑝𝑑𝑑𝑖𝑖𝑑𝑑 =
∑𝐵𝐵𝐼𝐼𝐶𝐶𝑆𝑆𝐺𝐺 𝑣𝑣𝑀𝑀𝑟𝑟𝑣𝑣𝑀𝑀𝑦𝑦𝑛𝑛𝑝𝑝𝑑𝑑 𝐵𝐵𝐼𝐼𝑡𝑡 >180 𝑑𝑑𝑦𝑦/𝑑𝑑𝑑𝑑

∑𝐵𝐵𝐼𝐼𝐶𝐶𝑆𝑆𝐺𝐺 𝑣𝑣𝑀𝑀𝑟𝑟𝑣𝑣𝑀𝑀𝑑𝑑𝑝𝑝𝑝𝑝 𝐵𝐵𝐼𝐼𝑡𝑡
 ∙ 100 

A GRADE score >5 indicate an inadequately controlled glycemic 
profile. The weighted risk contributions of GRADEhypoglycemia, 
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GRADEeuglycemia, and GRADEhypeglycemia are used in parenthesis 
alongside the overall risk score for specifying if the glycemic risk is 
more attributable to hypoglycemia or to hyperglycemia [81]. 

• Hypo Index and Hyper Index: 

𝐻𝐻𝐻𝐻𝐻𝐻𝑠𝑠 𝐼𝐼𝑛𝑛𝑀𝑀𝑀𝑀𝑖𝑖 =  
∑ (𝐿𝐿𝐿𝐿𝐿𝐿𝐼𝐼 −  𝐵𝐵𝐵𝐵𝑡𝑡)𝑏𝑏n
𝑡𝑡=1

n ∙ d  

for any 𝐵𝐵𝐵𝐵𝑡𝑡 < 𝐿𝐿𝐿𝐿𝐿𝐿𝐼𝐼 

𝐻𝐻𝐻𝐻𝐻𝐻𝑀𝑀𝑟𝑟 𝐼𝐼𝑛𝑛𝑀𝑀𝑀𝑀𝑖𝑖 =  
∑ (𝐵𝐵𝐵𝐵𝑡𝑡 − 𝑈𝑈𝐿𝐿𝐿𝐿𝐼𝐼)𝑑𝑑n
𝑡𝑡=1

n ∙ c  
for any 𝐵𝐵𝐵𝐵𝑡𝑡 > 𝑈𝑈𝐿𝐿𝐿𝐿𝐼𝐼 

The Hypo Index represents a weighted average of hypoglycemic 
values, while the Hyper Index represents a weighted average of 
hyperglycemic values. These weights can be adjusted for mild, 
moderate, or severe hypoglycemia and hyperglycemia [82]. 
Generally, the exponents a and b range in the interval [1.0-2.0] and 
by default b=2.0 and a=1.1. The default values (d=30 and c=30) of 
the scaling factors were selected so that Hypo Index and Hyper Index 
could be approximately on the same range of numerical values as 
LBGI, HBGI, and GRADE. Finally, LLTR is the lower limit of target 
range, with a default value of 80 mg/dL, while ULTR is the upper 
limit of target range, with default value of 140 mg/dL. 

• Index of Glycemic Control (𝐼𝐼𝐵𝐵𝐶𝐶): 

𝐼𝐼𝐵𝐵𝐶𝐶 = 𝐻𝐻𝐻𝐻𝐻𝐻𝑠𝑠 𝑖𝑖𝑛𝑛𝑀𝑀𝑀𝑀𝑖𝑖 + 𝐻𝐻𝐻𝐻𝐻𝐻𝑀𝑀𝑟𝑟 𝐼𝐼𝑛𝑛𝑀𝑀𝑀𝑀𝑖𝑖 

It represents a flexible weighting for extreme glycemic values [82] 
that can be adjusted to mimic either BGRI or GRADE score. 
 

• Mean Amplitude of Glycemic Excursions (𝑀𝑀𝐶𝐶𝐵𝐵𝐺𝐺): 

𝑀𝑀𝐶𝐶𝐵𝐵𝐺𝐺 = �
λ𝑘𝑘
𝑁𝑁𝑝𝑝𝑒𝑒𝑝𝑝

, 𝑖𝑖𝑓𝑓 𝜆𝜆 > 𝑆𝑆𝑆𝑆  
𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒

𝑘𝑘=1

 

where 𝑁𝑁𝑝𝑝𝑒𝑒𝑝𝑝 is the number of upward or downward glycemic 
excursions that exceed one SD, and λ is the amplitude of the 𝑘𝑘-th 

excursion 

The MAGE is the mean of the glycemic excursions from nadir to peak 
(or vice versa) that exceed one SD of BG readings [83]. The graphical 
estimation of MAGE based on the procedure described by Service 
[83] is time-consuming and may be subject to many sources of error. 
Nevertheless, there is a lack of agreement as to which automated 
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algorithm could constitute the gold standard to compute MAGE. 
Indeed, Czerwoniuk et al. [84], Hill et al. [85], Fritzsche et al. [86], 
and Baghurst [87] proposed different software programs for MAGE 
computation that show varying agreement, as discussed by 
Sechterberger et al. [88] and Rodbard [89]. 

Metrics based on time in ranges 

The diffusion of CGM systems allowed the development of a new group 
of glycemic metrics based on the percentage of time spent in specific glucose 
ranges, such as within target range, below target range and above target range 
[90], [91]. 

• Time In Range (𝐿𝐿𝐼𝐼𝐼𝐼): 

𝐿𝐿𝐼𝐼𝐼𝐼 =
𝑁𝑁𝑇𝑇𝐼𝐼𝑇𝑇
𝑛𝑛  ∙ 100 

where 𝑁𝑁𝑇𝑇𝐼𝐼𝑇𝑇 is the number of glucose readings such that 

70 ≤ 𝐵𝐵𝐵𝐵𝑡𝑡 ≤ 180 𝑚𝑚𝑅𝑅/𝑀𝑀𝐿𝐿 

• Time In Target Range (𝐿𝐿𝐼𝐼𝐿𝐿): 

𝐿𝐿𝐼𝐼𝐿𝐿 =
𝑁𝑁𝑇𝑇𝐼𝐼𝑇𝑇
𝑛𝑛  ∙ 100 

where 𝑁𝑁𝑇𝑇𝐼𝐼𝑇𝑇 is the number of glucose readings such that 

70 ≤ 𝐵𝐵𝐵𝐵𝑡𝑡 ≤ 140 𝑚𝑚𝑅𝑅/𝑀𝑀𝐿𝐿 

• Time Below Range (𝐿𝐿𝐵𝐵𝐼𝐼): 

𝐿𝐿𝐵𝐵𝐼𝐼 =
𝑁𝑁𝑇𝑇𝐵𝐵𝑇𝑇
𝑛𝑛  ∙ 100 

where 𝑁𝑁𝑇𝑇𝐵𝐵𝑇𝑇 is the number of glucose readings such that 
𝐵𝐵𝐵𝐵𝑡𝑡 < 70 𝑚𝑚𝑅𝑅/𝑀𝑀𝐿𝐿 

It can be divided into Time slightly Below Range (𝐿𝐿𝐵𝐵𝐼𝐼_𝐿𝐿𝑀𝑀𝑣𝑣1) and 
Time severely Below Range (𝐿𝐿𝐵𝐵𝐼𝐼_𝐿𝐿𝑀𝑀𝑣𝑣2): 

𝐿𝐿𝐵𝐵𝐼𝐼_𝐿𝐿𝑀𝑀𝑣𝑣1 =
𝑁𝑁𝑇𝑇𝐵𝐵𝑇𝑇_𝑑𝑑𝑝𝑝𝐿𝐿1

𝑛𝑛  ∙ 100 

𝐿𝐿𝐵𝐵𝐼𝐼_𝐿𝐿𝑀𝑀𝑣𝑣2 =
𝑁𝑁𝑇𝑇𝐵𝐵𝑇𝑇_𝑑𝑑𝑝𝑝𝐿𝐿2

𝑛𝑛  ∙ 100 

where 𝑁𝑁𝑇𝑇𝐵𝐵𝑇𝑇_𝑑𝑑𝑝𝑝𝐿𝐿1 is the number of glucose readings such that 
54 ≤ 𝐵𝐵𝐵𝐵𝑡𝑡 < 70 𝑚𝑚𝑅𝑅/𝑀𝑀𝐿𝐿  



 

 24 

and 𝑁𝑁𝑇𝑇𝐵𝐵𝑇𝑇_𝑑𝑑𝑝𝑝𝐿𝐿2 is the number of glucose readings such that 
𝐵𝐵𝐵𝐵𝑡𝑡 < 54 𝑚𝑚𝑅𝑅/𝑀𝑀𝐿𝐿 

• Time Above Range (𝐿𝐿𝐶𝐶𝐼𝐼): 

𝐿𝐿𝐶𝐶𝐼𝐼 =
𝑁𝑁𝑇𝑇𝑇𝑇𝑇𝑇
𝑛𝑛  ∙ 100 

where 𝑁𝑁𝑇𝑇𝑇𝑇𝑇𝑇 is the number of glucose readings such that 
𝐵𝐵𝐵𝐵𝑡𝑡 > 180 𝑚𝑚𝑅𝑅/𝑀𝑀𝐿𝐿 

It can be divided into Time slightly Above Range (𝐿𝐿𝐶𝐶𝐼𝐼_𝐿𝐿𝑀𝑀𝑣𝑣1) and 
Time severely Above Range (𝐿𝐿𝐶𝐶𝐼𝐼_𝐿𝐿𝑀𝑀𝑣𝑣2): 

𝐿𝐿𝐶𝐶𝐼𝐼_𝐿𝐿𝑀𝑀𝑣𝑣1 =
𝑁𝑁𝑇𝑇𝑇𝑇𝑇𝑇_𝑑𝑑𝑝𝑝𝐿𝐿1

𝑛𝑛  ∙ 100 

𝐿𝐿𝐶𝐶𝐼𝐼_𝐿𝐿𝑀𝑀𝑣𝑣2 =
𝑁𝑁𝑇𝑇𝑇𝑇𝑇𝑇_𝑑𝑑𝑝𝑝𝐿𝐿2

𝑛𝑛  ∙ 100 

where 𝑁𝑁𝑇𝑇𝑇𝑇𝑇𝑇_𝑑𝑑𝑝𝑝𝐿𝐿1 is the number of glucose readings such that 
180 < 𝐵𝐵𝐵𝐵𝑡𝑡 ≤ 250 𝑚𝑚𝑅𝑅/𝑀𝑀𝐿𝐿  

and 𝑁𝑁𝑇𝑇𝑇𝑇𝑇𝑇_𝑑𝑑𝑝𝑝𝐿𝐿2 is the number of glucose readings such that  
𝐵𝐵𝐵𝐵𝑡𝑡 > 250 𝑚𝑚𝑅𝑅/𝑀𝑀𝐿𝐿 

In 2019, the Advanced Technologies and Treatments for Diabetes 
(ATTD) published consensus recommendations for the adoption of time in 
ranges clinical targets for glycemic assessment, as illustrated in Table 2.3 
[23]. The importance of individualized goals was emphasized especially for 
pediatric patients with the advice that a lower TIR target of 60% may be 
considered in case of an higher HbA1c goal of 7.5% [23]. 

Table 2.3: Time in ranges targets for the glycemic assessment, adapted from 
the Advanced Technologies and Treatments for Diabetes (ATTD) consensus 
recommendations [23].  

Group TBR TIR TAR 
T1DM/T2DM <4% >70% <25% 

Older or high risk T1DM/T2DM <1% >50% <10% 
TBR: Time Below Range; TIR: Time In Range; TAR: Time Above Range; T1DM: 
Type 1 Diabetes Mellitus; T2DM: Type 2 Diabetes Mellitus. 

Among all the selected short-term GV metrics, TIR has been arising as a 
reference measurement. According to a study of Beck et al. [92], TIR can be 
considered as a valid end point for clinical trials because it is strongly 
associated with the risk of development or progression of microvascular 
complications. Furthermore, several studies in literature have demonstrated 
the relationship between TIR and HbA1c, which is the actual gold standard 
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for assessing the quality of glycemic control in the long period. Based on 
four RCT regarding adult patients with T1DM (JDRF CGM RCT [54], 
DIAMOND [56], REPLACE-BG [57], HypoDE [58]), Beck et al. [93] 
noticed that on average a TIR value of 70% corresponded with a HbA1c 
value of 7% (53 mmol/mol) at baseline and with a HbA1c value of 6.8% (51 
mmol/mol) after six months of monitoring; in addition, it was observed that 
an increase in TIR of 10% corresponded to a decrease in HbA1c of 0.6%. A 
good correlation between HbA1c and TIR was evidenced through the 
analysis of 18 articles also by Vigersky and McMahon [94], who observed 
that an increase in TIR of 10% corresponded to a change in HbA1c of 0.8% 
(9 mmol/mol). 

2.2. Analysis of blood glucose time-series 
A time-series is a collection of observations made sequentially through time 
that can be expressed as: 

𝑖𝑖0:𝑇𝑇 =  𝑖𝑖1, 𝑖𝑖2, … , 𝑖𝑖𝑇𝑇 

Time-series can be divided into two categories: continuous time-series, 
when observations are recorded continuously through time, and discrete 
time-series, when observations are collected only at specific times, usually 
equally spaced [95], e.g., BG measurements provided by a isCGM device 
every 15 minutes. Qualitatively, time-series can be explored through the 
time-series plot, which is a univariate graph where the observations’ values 
are plotted against the observations’ times, generally displayed horizontally. 
A quantitative analysis, instead, focuses on providing plausible descriptions 
for observed data and predicting future values, modeling the underlying 
dynamics of the system.  

Nowadays, CGM devices make available real-time snapshots of glycemic 
levels and allow using retrospective data to evaluate metabolic control 
between periodic clinical encounters, but an accurate forecasting of BG 
levels within a prediction horizon (PH) long enough to support decision-
making still remains a challenge [96]. As reported in the review article of 
Oviedo et al. [97], several univariate models have been developed for 
glucose prediction, ranging from linear to machine learning and deep 
learning models. In addition, given that the BG profile over day is sensitive 
to multiple factors, e.g. insulin therapy, meals, sleep, physical activity, 
stress, and HR, also multivariate models have been considered [97].  

2.2.1. Univariate models for glucose prediction 

BG levels can be predicted with a great accuracy considering only historical 
BG values in univariate models. One of the first methodologies adopted for 
glucose prediction is based on the autoregressive (AR) process, which have 
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a simple and easily interpretable structure. Indeed, an AR model of order 𝐻𝐻 
predicts the variable of interest through a linear combination of the 𝐻𝐻 
previous values of the variable itself, e.g. the previous BG measurements, 
plus some noise term. Alternatively, a moving average (MA) model uses the 
previous 𝑞𝑞  forecasting errors in a regression-like model, imposing a 
correlated noise structure beyond the traditional assumption of independent 
and identically distributed errors. In addition, both AR and MA models can 
be combined into a unique representation building a general autoregressive 
moving average model of orders p and q defined as ARMA(p, q). Reifman 
et al. [98] proposed a thirty-order AR model with fixed coefficients 
determined by the regularized least-squares technique. Resulting model was 
evaluated on 9 T1DM adult patients monitored for five days through the 
iSense rtCGM system (iSense Corporation, Portland, Oregon), which 
provides BG measurements every minute, obtaining adequate prediction 
performances on a 30-minutes PH as indicated by both the Clarke Error Grid 
(CEG) and the average root mean square error (RMSE) equal to 22.25 mg/dL 
(± 3.89 SD). Sparacino et al. [99], instead, presented a first-order AR model 
with time-varying parameters determined by the weighted least squares 
technique, exploiting a forgetting factor to regulate the weights of historical 
data used for glucose predictions. Resulting model was evaluated on a 
dataset of 28 T1DM patients monitored for 48 hours through the Menarini 
GlucoDay rtCGM system (Menarini Diagnostics, Florence, Italy), which 
provides BG measurements every 3 minutes [100]. Good average results in 
terms of mean square prediction error (MSPE), energy of the second-order 
differences (ESOD), and time delay demonstrated that acute glycemic events 
can be predicted with a sufficient margin for intervention. Moreover, Eren-
Oruklu et al. [101] developed a second-order ARMA model with time-
varying parameters determined by the weighted least squares algorithm 
integrated with a change detection method, which decreases the forgetting 
factor to a smaller value when a persistent change in model parameters is 
detected. Authors considered two different adult populations: one group 
consisted of 22 healthy individuals, 7 glucose-intolerant subjects and 11 
T2DM patients hospitalized for 48 hours, while the other group consisted in 
8 healthy individuals and 14 T2DM patients monitored at home for 48 hours, 
all wearing the Medtronic Gold rtCGM system that provides BG 
measurements every five minutes. Within a PH of 30 minutes, resulting 
model was able to predict glucose levels with a sum of squares of the glucose 
prediction error (SSGPE) of 6.14% and a relative absolute deviation (RAD) 
of 3.78 (±1.12% SD) for T2DM patients. 

Beyond autoregressive models a number of univariate machine learning 
approaches have been considered for glucose prediction, even if there is not 
a single methodology that can be identified as the most popular strategy. 
Hamdi et al. [102] developed a Support Vector Regression (SVR) model, 
using the differential evolution algorithm for hyperparameters selection. 
Resulting model was evaluated on a dataset of 12 T1DM patients monitored 
in real-life conditions through the Abbott Freestyle Navigator rtCGM 
system, which provides BG measurements every 15 minutes, obtaining an 
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average RMSE of 9.44 mg/dL on a PH of 15 minutes and an average RMSE 
of 10.78 on a PH of 30 minutes. Rodríguez-Rodríguez et al. [96], instead, 
compared the accuracy of SVR and Random Forest (RF) models for glucose 
prediction, varying the sampling frequency of BG measurements, the volume 
of historical data, and the PH. Model evaluation was performed on a dataset 
of 25 T1DM adult patients monitored in real-life conditions through the 
Abbott FreeStyle Libre isCGM system for up to 14 days. Authors reported 
the SVR models were less accurate than RF models, which allowed to obtain 
an average RMSE of 15.43 mg/dL on a 15-minutes PH with a 15-minutes 
sampling frequency, using 24 historical data points for each prediction.  

Recently, given the considerable amount of data made available by CGM 
systems, deep learning models have been applied to glucose prediction. 
Pérez-Gandia et al. [103] developed a feed-forward neural network (NN) 
model with two layers, which consist of ten neurons and five neurons 
respectively, and an output layer with one neuron, considering for each 
prediction a 20-minutes sliding window and different PHs. Resulting models 
were evaluated on two different populations, both monitored in real-life 
conditions: 9 T1DM patients were monitored intermittently for 72 hours per 
week over a 4-week period through the Medtronic Guardian Real-time 
rtCGM system, which provides a BG measurements every five minutes, 
while 6 patients were monitored for around 72 hours through the Abbott 
FreeStyle Navigator rtCGM system, which provides a BG measurements 
every minute. Considering a PH of 15 minutes, the average RMSE was equal 
to 9.74 mg/dL (± 2.71 SD) for the first dataset and to 10.38 mg/dL (± 3.15 
SD) for the second dataset; considering a PH of 30 minutes, instead, the 
average RMSE was equal to 17.45 mg/dL (± 5.44 SD) for the first dataset 
and to 19.51 mg/dL (± 5.53 SD) for the second dataset. In addition, authors 
also implemented a first-order AR model to compare the prediction 
performances, observing that the NN models were characterized by higher 
accuracies but also longer delays compared to the first-order AR model. 
Martinsson et al. [104] presented a NN model based on a first layer with 256 
Long-Short Term Memory (LSTM) units followed by two hidden layers, 
which consisted of 512 and 256 neurons respectively, and an output layer 
with two neurons. Model evaluation was performed on 6 T1DM adult 
patients from the OhioT1DM dataset [105], monitored in real-life conditions 
for 8 weeks through the Medtronic Enlite rtCGM system that provides BG 
measurements every five minutes. The average RMSE was equal to 18.87 
mg/dL (± 1.79 SD) on a 30-minutes PH and to 31.40 mg/dL (± 2.08 SD) on 
a 60-minutes PH. Moreover, Wang et al. [106] proposed a framework that 
integrates a fifth-order AR, extreme learning machine (EML), and SVR 
algorithms. Resulting model was evaluated on ten T1DM patients randomly 
selected from the RCT conducted by the JDRF CGM Study Group using the 
Medtronic Guardian and the Dexcom SEVEN rtCGM systems with a 
sampling frequency of five minutes and the Abbott FreeStyle Navigator 
rtCGM system with a sampling frequency of ten minutes [54]. Compared to 
single fifth-order AR, EML, and SVR models, the integrated framework 
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allowed to obtain the best prediction performance with an average RMSE of 
19.0 mg/dL (±0.3 SD).  

2.2.2. Multivariate models for glucose prediction 

As outlined in Figure 2.7, glucose prediction can be based on other input 
variables in addition to BG measurements, although it may be hard to 
formalize in mathematical terms and automatically extract useful signals 
from other source of information [97].  

 

Figure 2.7: Conceptual schema of a multivariate model for glucose 
prediction at time 𝑡𝑡 + 𝑃𝑃𝐻𝐻 (prediction horizon) using several inputs, such as 
previous glucose measurements, insulin therapy, meals, sleep, physical 
activity, stress, and heart rate information, adapted from Zecchin et al. [107]. 

The autoregressive with exogenous inputs (ARX) models represent an 
extension of the AR models that allow to include one or more exogenous 
signals for glucose prediction. Finan et al. [108] compared a third-order time-
invariant ARX model with a third-order time-variant ARX model 
considering in input CGM measurements, insulin pump records and patient-
recorded estimates of meal carbohydrate (CHO) content. Data were collected 
from two datasets: the first dataset comprised 9 T1DM adult patients 
monitored for a period of 2-8 days in ambulatory conditions through the 
Medtronic MiniMed system, which consists of the MiniMed insulin pump 
and the Guardian rtCGM system with a 5-minutes sampling frequency, while 
the second dataset included 6 of the same monitored patients treated for 3 
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consecutive days with prednisone, a steroid medication. ARX models were 
evaluated on the second dataset studying the impact of a reduced insulin 
sensitivity due to prednisone on the prediction performances. Considering a 
30-minutes PH, the time-variant approach produced slightly better 
predictions than the time-invariant approach (average RMSE ≈ 27 mg/dL), 
while on a 90-minutes PH the time-invariant ARX models with an average 
RMSE of 59 mg/dL was more accurate than the time-variant ARX models 
that showed an average RMSE of 61 mg/dL. Turksoy et al. [109] proposed a 
third-order autoregressive moving average with exogenous inputs 
(ARMAX) model for building a glucose prediction and alarm system, using 
a Savitzky-Golay filter and a Kalman filter to reduce noise in data. Model 
evaluation was performed on 14 T1DM adult patients monitored in real-life 
conditions through the Medtronic iPro rtCGM system, which provide BG 
measurements every five minutes, and the BodyMedia SenseWear Pro3 
(BodyMedia Inc., Pittsburgh, Pennsylvania) armband device [110], which 
acquires body physiological signals every minutes. In particular, considering 
a 30-minutes PH for a specific patient, the ARMAX model based on BG 
measurements, energy expenditure, galvanic skin response, and insulin on 
board (amount of insulin that is accumulated in the body) showed a RMSE 
of 17.46 mg/dL and a SSGPE of 8.17%, while the univariate model had less 
accurate predictions with a RMSE of 41.16 mg/dL and a SSGPE of 19.26%.  

Moreover, Zaho et al. [111] compared ARX and latent variable with 
exogenous input (LVX) prediction models, which were optimized through 
partial-least square algorithm and canonical correlation analysis, considering 
estimates of meal CHO content and recorded insulin boluses as exogenous 
variables. Models were evaluated on two datasets: ten in-silico adult patients, 
who were generated through the UVa/Padova Type-1 Diabetic simulator 
[112] with a 5-minutes sampling frequency and different scenarios (meal 
timing, meal amounts, and insulin-to-carbohydrate ratio) for three days, and 
seven adult patients monitored in ambulatory conditions through the Dexcom 
SEVEN Plus rtCGM system with 5-minutes sampling frequency. LVX 
models gave more accurate glucose predictions than ARX models for both 
datasets. In particular, considering the ambulatory dataset, LVX models 
provided an average RMSE of 11.1 mg/dL (± 2.4 SD) on a 15-minutes PH 
and 18.7 mg/dL (± 3.7 SD) on a 30-minutes PH, while ARX models provided 
an average RMSE of 11.3 mg/dL (± 2.5 SD) on a 15-minutes PH and 19.5 
mg/dL (± 3.8 SD) on a 30-minutes PH. 

Also machine and deep learning approaches have been adopted for 
developing multivariate models for glucose prediction. Georga et al. [113] 
proposed a SVR model with BG measurements, plasma insulin 
concentration, rate of appearance of meal-derived glucose into the systemic 
circulation (as described by the Lehmann and Deutsch model [114]), and 
cumulative amount of the energy expenditure during physical activities. 
Model evaluation was performed on 15 T1DM adult patients on MDI therapy 
enrolled in the METABO project [115], monitored in real-life conditions for 
a period of 5-22 days through the Guardian rtCGM system, which provide 
BG measurements every five minutes, and the BodyMedia SenseWear 
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armband device, which provides physiological signals every minute. 
Information regarding both insulin, i.e. doses, types, and injection times, and 
food intake, i.e. type of food, serving sizes, and times, were collected on a 
daily basis by patients using a paper diary. Overall, resulting model showed 
an average RMSE of 5.21 mg/dL on a 15-minutes PH and 6.03 mg/dL on a 
30-minutes PH. 

Zecchin et al. [116] proposed a NN model, which consisted of one hidden 
with eight neurons and an output layer with one neuron, considering BG 
measurements and estimates of meal CHO content in sliding windows of 15 
minutes for each glucose prediction. Resulting model was evaluated on two 
datasets: five in-silico adult patients, who were generated through the 
UVa/Padova Type-1 Diabetic simulator with a 5-minutes sampling 
frequency for five days, and one patient monitored in real-life conditions 
through the Abbott FreeStyle Navigator with a 1-minute sampling frequency 
for seven days during the DIAdvisor project [117]. Considering a 30-minutes 
PH, the NN model obtained an average RMSE of 9.7 mg/dL (± 1.1 SD) on 
the simulated data and a RMSE of 28.2 mg/dL on the single real patient. Li 
et al. [118] developed a dilated convolutional neural network (CNN) 
framework called “GluNet”, which consisted of an input layer with 32 
neurons, two hidden layers with 32 neurons, a hidden layer with 64 neurons 
and an output layer with 64 neurons, considering BG measurements, meals, 
and insulin information in sliding windows of 90 minutes for each glucose 
prediction. Authors collected both simulated and clinical data for model 
evaluation. On the one side, 20 T1DM adult and adolescent patients were 
generated through the UVa/Padova Type-1 Diabetic simulator with a 5-
minutes sampling frequency for 180 days. On the other side, two clinical 
dataset were used: the ABC4D project dataset [119] included ten T1DM 
adult patients monitored in real-life conditions for six months through the 
Medtronic iPro rtCGM system with a 5-minutes sampling frequency, 
recording meals and insulin dosages in a dedicated app, while the 
OhioT1DM dataset [105] included six T1DM adult patients monitored in 
real-life conditions for eight weeks through the Medtronic Enlite rtCGM 
system with a 5-minutes sampling frequency. The resulting CNN model was 
compared with the NN model developed by Pérez-Gandia et al. [103], the 
LVX model developed by Zaho et al. [111], the third-order ARX model 
developed by Finan et al. [108], and the SVR model developed by Georga et 
al. [113]. Considering a 30-minutes PH, GluNet revealed the best prediction 
performances with an average RMSE of 8.88 mg/dL (± 0.77 SD) on the 
simulated data, an average RMSE of 19.19 mg/dL (± 2.74 SD) on the 
ABC4D data, and an average RMSE of 19.28 mg/dL (± 2.76 SD) on the 
OhioT1DM data. In addition, authors also trained a generalized CNN model 
on data corresponding to five ABC4D patients and tested it on the other 
patients one by one. The average RMSE of the generalized model was equal 
to 24.93 mg/dL, while the average RMSE of single personalized models was 
equal to 20.59 mg/dL. Also Aliberti et al. [120] proposed a generalized NN 
model, which consisted of a layer with 30 LSTM units and an output layer 
with six neurons for a 30-minutes PH and 12 neurons for a 60-minutes PH, 
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using several input variables in addition to BG measurements. Resulting 
model was evaluated on 451 T1DM patients (children, adolescents, and 
adults) from the JDRF CGM Study Group RCT, using the Medtronic 
Guardian and the Dexcom SEVEN rtCGM systems with a sampling 
frequency of five minutes and the Abbott FreeStyle Navigator rtCGM system 
with a sampling frequency of ten minutes. Considering monitoring data 
without filtering procedures, the RMSE was equal to 19.47 mg/dL on a 30-
minutes PH and to 32.38 mg/dL on a 60-minutes PH. 

2.3. The AID-GM platform 
AID-GM is a web application developed at the Biomedical Informatics 
Laboratory of the University of Pavia, Italy, in collaboration with the 
Pediatric Endocrinology and Diabetology outpatient service of the 
Fondazione IRCCS Policlinico San Matteo Hospital and the Endocrinology 
and Diabetology outpatient service of the IRCCS Istituti Clinici Scientifici 
Maugeri, both located in Pavia [121]. This platform allows the integration of 
PGHD from multiple sources, such as CGM systems, personal fitness 
trackers (PFTs), and self-reported daily diaries. In this way, DM patients and 
their healthcare providers are enables to share, visualize, and analyze the 
glycemic profiles integrated by HR, daily activity, and sleep information. 

AID-GM is mainly developed in Java and integrated with JavaServer 
Faces (JSF) [122], Hibernate [123], and MySQL [124] technologies. JSF is 
a Java specification that simplifies the development of components in a web-
based user interface, while Hibernate provides a framework for mapping 
Java objects manipulated by the AID-GM platform to relational databases. 
Finally, MySQL has been chosen as database management system because it 
is designed for web application, and it is open source.  

2.3.1. Data integration infrastructure 

The AID-GM data integration module has been designed to be independent 
of the specific PFT or CGM system. BG readings, insulin bolus, meals, and 
health-related issues can be periodically uploaded to the platform through a 
text file, which is downloadable by the patient from the CGM system 
application, or otherwise automatically retrieved from a proprietary cloud. 
Similarly, HR, daily activity, and sleep information are gathered from the 
cloud through an automatic night routine by the AID-GM platform. 

Indeed, monitoring data can be synchronized to a cloud repository through 
a mobile application paired to the CGM system or the PFT worn by the 
patient. Afterwards, once new PGHD become available on the cloud, the 
downloader components in the data integration module exploit the Apache 
HttpClient library [125] for sending Hypertext Transfer Protocol (HTTP) 
requests to the PGHD source’s server, which queries the cloud repository for 
data. The data integration module also includes the consent collectors 
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components, which are responsible to verify the consent status over time and, 
if expired, ask the patient to renew it, since a third application like AID-GM 
is allowed to access data within the cloud only in presence of the patient’s 
explicit permission.  

Generally, PGHD sources provide documents in the JavaScript Object 
Notation (JSON) format, a lightweight data-interchange standard that is 
completely language independent [126]. Thus, the data integration module 
contains JSON parser components for extracting text elements and data 
converters components for translating such elements in the format requested 
by the MySQL relational database, provided by the Oracle Corporation 
[124]. Information on daily habits, instead, is collected directly through the 
AID-GM interface during registration and can be modified at any time. 

 In addition, the data integration module has the key task of 
contextualizing each BG and HR events within the patient’s day through two 
different tagging procedures. For each measurement, in fact, both the profile tag 
and the PFT tag that are assigned by the data taggers components are stored into 
the database using the data loaders components. The profile tag is assigned 
based on patient’s daily habits considering a set of possible values, such as 
awakening, after breakfast, before lunch, before dinner, after dinner, and 
night, which is attributed when the time of occurrence is between the bedtime 
and the awakening-time, as illustrated in Figure 2.8.  

 

Figure 2.8: Procedure for assigning the profile tag value to blood glucose or 
heart rate measurements based on patient’s daily routine [127].  

Contrarily, the PFT tag is assigned using the activity information provided 
by the patient’s tracker. In particular, workout and sleep values are attributed 
when an event occurs during a tracked workout or sleep session, respectively, 
while the routine value is used when patient is not sleeping and not training 
[121]. Finally, the not-available (NA) value is assigned to each BG 
measurement if the patient is not wearing the PFT at a specific time 𝑡𝑡𝑖𝑖, i.e. if 
there are not any HR measurements available in the interval [𝑡𝑡𝑖𝑖−5 𝑑𝑑𝑖𝑖𝑛𝑛𝑒𝑒𝑡𝑡𝑝𝑝𝑑𝑑; 
𝑡𝑡𝑖𝑖+5 𝑑𝑑𝑖𝑖𝑛𝑛𝑒𝑒𝑡𝑡𝑝𝑝𝑑𝑑]. 

2.3.2. Graphical user interface 

The AID-GM graphical user interface (GUI) has been developed to support 
the usability for both patients and healthcare providers, who have available 
different functionalities. As shown in Figure 2.9, the physician’s home page 
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presents a summary of patients’ information and activities, like the last CGM 
data upload or the last PFT synchronization. Figure 2.10, instead, displays 
the form where patients are asked to provide their habitual time schedule 
regarding primary meals, snacks, and sleep, used for computing the profile 
tag. 

 

Figure 2.9: Physician’ home page in the Advanced Intelligent Distant – 
Glucose Monitoring (AID-GM) platform [127]. 

 

Figure 2.10: Patient’s form to provide the time schedule of daily habits in 
the Advanced Intelligent Distant – Glucose Monitoring (AID-GM) platform 
[127]. 

Besides the consultation of general patient’s information like 
demographics, contacts, DM onset date, weight, and personal thresholds for 
glycemic and HR alterations, the AID-GM GUI allows to visualize different 
kind of reports that integrate data from CGM system, PFT, and lifestyle.  
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Figure 2.11 shows an example of patient’s daily profile, where the HR 
profile is represented by the dark orange line and expressed in beats per 
minute (BPM), while the glycemic profile is represented by the blue line and 
expressed in mg/dL. Particularly, the glycemic profile presents both 
automatic and manual BG measurements, which are performed using the 
CGM system, respectively with blue and red dots. Finally, the icons on the 
timeline help to contextualize the BG and HR measurements within the day 
based on additional events such as sleep, workout, insulin injection, and 
meals, as explained in the legend of Figure 2.12. 

 

Figure 2.11: Visualization of a patient’s daily profile in the Advanced 
Intelligent Distant – Glucose Monitoring (AID-GM) platform [127]. 

 

Figure 2.12: Legend of the icons used in the Advanced Intelligent Distant – 
Glucose Monitoring (AID-GM) daily profile visualization [127]. 

Furthermore, AID-GM provides reports of patient’s lifestyle and physical 
activity. Figure 2.13 presents the lifestyle summary visualization, which 
gives an overview of patient’s activities over a user-defined time period. 
Figure 2.14, instead, shows the physical activity summary visualization, 
regarding HR measurements and workouts performed by patient in a specific 
time period [127]. Finally, all the available functionalities are indicated in Table 
2.4, specifying if they are available for patients and/or clinicians. 
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Figure 2.13: Visualization of a patient’s lifestyle summary in the Advanced 
Intelligent Distant – Glucose Monitoring (AID-GM) platform [127]. 

 

Figure 2.14: Visualization of a patient’s physical activity summary in the 
Advanced Intelligent Distant – Glucose Monitoring (AID-GM) platform 
[127]. 
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Table 2.4: Advanced Intelligent Distant – Glucose Monitoring (AID-GM) 
functionalities with the corresponding users, i.e., patient (P) or clinician (C), 
grouped by type of action [121]. 

Type of action Functionality 
User 
P C 

Set up of the  
AID-GM  

account and 
access 

Access through secure authentication • • 
Request to be enrolled in the clinical center •  
View and approval of enrollment request  • 

Set-up and update of daily habits •  
Set-up and update of patient-specific thresholds 

to identify glycemic alterations  • 

Set-up and update of patient-specific thresholds 
to identify HR alteration  • 

Data upload 

Upload of BG monitoring data • • 
Consent to download the PFT data •  

Visualization of patients list and recently 
uploaded data  • 

Visualization of patient’s information (e.g., 
demographics, contact information, onset date, 

weight, and thresholds for BG and HR) 
 • 

Visualization of BG overall time series, daily 
trends, and average glucose profile • • 

Visualization of a summary of the most recent 
hyperglycemic and hypoglycemic episodes • • 

Visualization of combined BG and HR daily 
profiles, complemented with information on 

sleep, workout, meal, and insulin intake 
• • 

Visualization of a summary of the physical 
activity in a selected period • • 

Visualization of a timeline that shows if the 
patient is regular in terms of sleep and activity • • 

Detection and visualization of patterns for one 
patient • • 

Detection and visualization of patterns for a 
group of patients  • 

Visualization of statistics related to pattern 
detection for a group of patients  • 

Drill-down to the BG and HR profiles related 
to the time intervals in which a selected pattern 

occurred 
• • 

Communication 
between patient 
and physician 

Request for data visualization •  

Notification of data visualization request  • 
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Chapter 3 
3 Datasets description and temporal 

data analytics techniques 

This chapter describes the datasets considered in this research activity and 
methodologies proposed for the analyses, providing details on their 
implementations. Section 3.1 introduces the two considered datasets used in 
this research activity, collected in real-world conditions. Section 3.2 is 
dedicated to glucose data analytics, investigating the relationship between 
glycated hemoglobin and time in ranges along with the correlation between 
self-monitoring frequency and glycemic metrics. Section 3.3 presents 
temporal data mining techniques, considering temporal abstractions based 
on domain-specific pattern detection. Finally, Section 3.4 illustrates the 
architecture of the proposed deep learning model for glucose prediction. 

3.1. Datasets description 
Two different datasets have been considered in this research activity, one is 
collected on pediatric patients and the other on adult patients. In both cases 
all patients were affected by T1DM and monitored in real-life conditions 
through the same devices, as shown in Figure 3.1. 

BG was measured through the Abbott FreeStyle Libre isCGM system 
(Abbott, Alameda, California), whose characteristics are described in 
Section 2.1.2, and all sensor readings were performed with the same version 
of the reader [43]. The FreeStyle Libre sensor provided BG measurements 
every 15 minutes, but it happened that the time interval  between two 
consecutive readings was slightly different in terms of minutes, probably due 
to data processing made by the device algorithm. In addition to these 
automatic BG measurements patients could generate the so-called manual 
BG measurements, scanning the sensor whenever they wanted to check 
glycemic levels. On the other hand, HR, physical activity, and sleep were 
monitored using the Fitbit Charge 2 PFT (Fitbit, San Francisco, California) 
with a sampling frequency of one minute [128]. Activity information was 
used to assign the PFT tag (also called Fitbit tag) to BG and HR 
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measurements, distinguishing between workout, sleep, and routine intervals, 
as explained in Section 2.3.1. In particular, although Fitbit trackers’ accuracy 
in the identification of specific stages within sleep occurrences has been 
debated, the accuracy of sleep detection is elevated and allows to reliably 
monitor patients’ sleep quantity [129]. 

Additionally, both pediatric patients (or their caregivers) and adult 
patients provided personal and clinical information, like demographics, 
contacts, DM onset date, and a list of HbA1c tests. 

 

Figure 3.1: On the left the Abbott FreeStyle Libre intermittently scanned 
Continuous Glucose Monitoring (isCGM) system, while on the right the 
Fitbit Charge 2 personal fitness tracker (PFT). 

Data collection from these two wearable sensors required a limited active 
contribution by patients, who were asked to regularly recharge the devices, 
synchronize Fitbit data to the cloud, and upload glycemic text files produced 
by the Abbott software into the AID-GM platform. Specifically, the 
Freestyle Libre is characterized by an 8-hours rolling memory, which means 
that the oldest measurements are cyclically deleted from the sensor and lost 
if the patient does not swipe the reader over the sensor at least every eight 
hours, while the reader has a 90-days memory. The Fitbit tracker, instead, 
must be synchronized to the cloud at least once a week. In addition, patients 
were instructed to apply the FreeStyle sensor at the back of the upper arm 
and change it every 14 days. 

This study was conducted according to the guidelines of the Declaration 
of Helsinki and the protocol was approved by the Institutional Review Board 
of the two hospitals. Children’s caregivers (or subjects aged ≥ 18 years) 
provided written consent for inclusion in the study. 

3.1.1. The pediatric dataset 

A group of 30 T1DM children, adolescents and young adults on MDI therapy 
was recruited from the Pediatric Endocrinology and Diabetology outpatient 
service of Fondazione IRCCS Policlinico San Matteo hospital in Pavia, Italy. 
Exclusion criteria comprised retinopathy, nephropathy, established 
macrovascular disease, and therapies based on drugs likely to affect cardiac 
function or rhythm.  

Out of the 30 recruited patients, three were discarded since they did not 
log into the AID-GM platform, nor did they upload data, therefore the 
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pediatric dataset used for the analyses effectively consisted of 27 patients. In 
addition, 10 patients did not use the Fitbit tracker. Table 3.1 summarizes the 
number (and percentages) of pediatric patients in specific pubertal stages 
monitored through the FreeStyle Libre system and the Fitbit tracker, grouped 
by sex. Pubertal stage was evaluated by clinicians using the Marshall and 
Tanner scale with the pre-pubertal characteristics corresponding to Tanner 
Stage 1 [130], [131].  

Table 3.1: Number of pediatric patients in specific pubertal stages monitored 
through the FreeStyle Libre system and the Fitbit tracker, grouped by sex. 

Patients with  
FreeStyle 

with 
Fitbit 

Pubertal stage 
Pre-puberty Puberty Post-puberty 

Female 14 (52%) 9 (53%) 5 6 3 
Male  13 (48%) 8 (47%) 7 2 4 
 
Data were collected over a period of approximately 25 months between 

January 2018 and February 2020. A few patients did not use the monitoring 
devices in some periods, as outlined by the “Days without measurements” 
rows in Table 3.2, and Fitbit tracker was generally worn for a shorter time 
compared to the FreeStyle Libre device. Indeed, the average FreeStyle Libre 
follow-up was equal to 242.70 days (± 158.38 SD), computed as the 
difference between the last and the first FreeStyle Libre monitoring day, 
while the average Fitbit follow-up was equal to 98.18 days (± 118.96), 
computed as the difference between the last and the first Fitbit monitoring 
day. 

Table 3.2: Characteristics of the pediatric dataset. 

Characteristic 
Summary statistics 

Mean ± SD Median  
[25th-75th percentile] 

Age (years) 11.33 ± 4.98 11 
[7.50-12.50] 

Diabetes duration (years) 5.13 ± 5.19 3.62 
[1.93-6.95] 

FreeStyle 
monitoring 

Days of 
follow-up  

242.70 ± 158.38 180 
[130-311] 

Days without 
measurements 56.44 ± 119.47 3 

[0-58.50] 

Fitbit 
monitoring 

Days of 
follow-up 98.18 ± 118.96 47 

[42-57] 
Days without 
measurements 33.88  ± 90.82 0 

[0-1] 
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3.1.2. The adult dataset 

A group of 12 T1DM adult patients (3 females and 9 males) on MDI therapy 
was recruited from the Endocrinology and Diabetology outpatient service of 
the IRCCS Istituti Clinici Scientifici Maugeri in Pavia, Italy. Monitoring 
data were collected between November 2016 and July 2020. Patients wore 
the FreeStyle Libre system and the Fitbit tracker for a long time, as 
summarized in Table 3.3, but a number of patients temporarily suspended 
the use of monitoring devices in some periods. 

Table 3.3: Characteristics of the adult dataset. 

Characteristic 
Summary statistics 

Mean ± SD Median  
[25th-75th percentile] 

Age (years) 35.84  ± 9.93 37.84 
[28.15- 42.93] 

Diabetes duration (years) 17.37 ± 7.72 15.80 
[12.62- 20.58] 

FreeStyle 
monitoring 

Days of 
follow-up  

467.83 ± 267.49 410.50 
[298-534.50] 

Days without 
measurements 95.83 ± 103.34 79.50 

[23-121.50] 

Fitbit 
monitoring 

Days of 
follow-up 533.17 ± 490.38 372 

[308.80-556.20] 
Days without 
measurements 138.58 ± 280.57 52.50  

[15.75- 100.25] 

3.2. Glucose data analytics 
An algorithm for descriptive statistics was implemented to provide clinicians 
with an immediate overview of each patient’s situations. BG measurements 
were contextualized within the day and graphically related to physical 
activity and sleep periods, with a special attention to glucose values outside 
the euglycemic range (70-180 mg/dL). Several glycemic metrics introduced 
in Section 2.1.3 were computed for further considerations on glycemic 
control, considering all the monitoring period or specific monitoring 
windows for each patient, such as: 

• Mean 
• Overall standard deviation (SD) 
• Within-day standard deviation (SDw) 
• Daily means standard deviation (SDdm) 
• Percentage coefficient of variation (%CV) 
• Median 
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• Interquartile range (IQR) 
• Range 
• M-value (M90) 
• J-index 
• Continuous Overlapping Net Glycemic Action at 1-hour 

(CONGA1) 
• Mean of Daily Differences (MODD) 
• Low BG Index (LBGI) 
• High BG Index (HBGI) 
• BG Risk Index (BGRI) 
• Average Daily Risk Range (ADRR) 
• Glycemic Risk Assessment Diabetes Equation (GRADE) 
• Hypo Index 
• Hyper Index 
• Index of Glycemic Control (IGC) 
• Time In Range (TIR) 
• Time In Target Range (TIT) 
• Time Below Range (TBR) 
• Time slightly Below Range (TBR_Lev1) 
• Time severely Below Range (TBR_Lev2) 
• Time Above Range (TAR) 
• Time slightly Above Range (TAR_Lev1) 
• Time severely Above Range (TAR_Lev2) 

All the analyses and graphical representations related to glucose data 
analytics were performed using the R system for statistical computing, 
version 3.5.1 [132]. 

3.2.1. Linear mixed effects models for glycated 
hemoglobin and time in ranges relationship 

As described in Section 2.1.2, HbA1c is the gold standard indirect measure 
of long-term glycemic control, and it estimates the glycemic exposure over 
the last 2-3 months before sampling. However, also glycemic metrics allow 
to monitor glycemic trends evaluating the magnitude and the frequency of 
intra- and inter-day glucose fluctuations. Particularly, metrics based on time 
in ranges like TIR have become reference measurements for glycemic 
control, as they have been associated with the risk of development or 
progression of microvascular complications .[92]. In our real-world scenario, 
since both the pediatric and adult datasets had multiple distinct HbA1c 
measurements for each patient revealing clusters of not-independent 
observational units, the relationship between HbA1c and glycemic metrics 
was investigated through linear mixed effects (LME) models [133], which 
allowed to explore also the inter-subject variability. 
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LME models represent an extension of linear regression models that is 
particularly useful when the assumption of independent and identically 
distributed random variables is violated, as in case of repeated measurements 
made on the same statistical units or measurements made on clusters of 
related statistical units. Indeed, LME models incorporate both fixed effects, 
i.e. parameters that do not vary in the hypothesis that there are true regression 
lines in the population, and random effects, i.e. parameters that are 
themselves random variables.  

A simple LME model with a single explanatory variable and a random 
intercept can be specified as: 

𝑌𝑌𝑖𝑖𝑖𝑖 = 𝛽𝛽0𝑖𝑖 + 𝛽𝛽1𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖 

where 𝑖𝑖  indicates the level-one unit (e.g., individual measurement), 𝑗𝑗 
indicates the level-two unit (e.g., patient),  𝑌𝑌𝑖𝑖𝑖𝑖 is the dependent variable to 
predict, 𝑖𝑖𝑖𝑖𝑖𝑖  is the explanatory variable at level one, 𝜀𝜀𝑖𝑖𝑖𝑖  is the normally-
distributed residual component,  𝛽𝛽1𝑖𝑖 is a regression coefficient common to 
all groups, and 𝛽𝛽0𝑖𝑖 is given by the sum between an average intercept 𝛾𝛾00 and 
a group-dependent deviation 𝑈𝑈0𝑖𝑖.  

In this scenario, given a j-th patient and a generic glycemic metric, the 
LME model equation for a i-th measurement can be reformulated as: 

𝐻𝐻𝐻𝐻𝐶𝐶1𝑠𝑠𝑖𝑖 =  𝐻𝐻𝑝𝑝𝑑𝑑𝑡𝑡_𝑖𝑖𝑛𝑛𝑡𝑡 + 𝐻𝐻𝑦𝑦𝑝𝑝𝑑𝑑 ∙ 𝑅𝑅𝑟𝑟𝐻𝐻𝑠𝑠𝑀𝑀𝑚𝑚𝑖𝑖𝑠𝑠_𝑚𝑚𝑀𝑀𝑡𝑡𝑟𝑟𝑖𝑖𝑠𝑠𝑖𝑖 +  𝜀𝜀𝑖𝑖 

where the patient-specific intercept 𝐻𝐻𝑝𝑝𝑑𝑑𝑡𝑡_𝑖𝑖𝑛𝑛𝑡𝑡  represents the random effect, 
since each patient may have a specific effect added to the average estimated 
intercept, while the glycemic metric coefficient 𝐻𝐻𝑦𝑦𝑝𝑝𝑑𝑑  is the fixed effect 
common to all patients, as in linear regression models. LME models were 
implemented with the function “lme” available in the R package called 
“nlme” [134]. 

 
Starting from each HbA1c exam date, glucose monitoring windows of 

past 30, 60, and 90 days were defined and considered valid if at least 70% of 
glucose measurements were available in those temporal intervals, in 
agreement with the ATTD consensus recommendations for CGM data usage 
[23]. For each monitoring windows width, the average percentages of time 
spent in different glucose ranges were displayed in a stacked boxplot colored 
according to the ATTD consensus recommendations for CGM data 
presentation [23], as shown in Figure 3.2. On the other hand, Afterwards, 
metrics based on time in ranges were computed in each valid window and 
separately used as explanatory variables (statistically significant if p-
value<0.05) to explore the specific relationships with HbA1c, in particular 
the relationship between TIR and HbA1c [135].  

For each LME model, the compliance of the prediction errors ε-
distribution with the normality assumption is checked both by Shapiro-
Wilk’s statistical test under the null hypothesis that the population is 
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normally distributed, using the function “shapiro.test” in the R package 
called “stats” [136] and setting the significance threshold to 0.05, and by 
visual inspection of quantile-quantile (q-q) plots. A q-q plot is graphical 
technique for determining if a set of data plausibly come from a theoretical 
distribution (e.g., the normal distribution): the quantiles of a given dataset is 
plotted against the quantiles calculated from a theoretical distribution and, if 
both sets of quantiles come from the same distribution, the resulting points 
should fall approximately along the 45-degrees reference line. Finally, the 
variance explained by the entire LME model is expressed by the conditional 
coefficient of determination R2 on a 0–1 scale: 

𝐼𝐼2 =
𝜎𝜎𝑝𝑝2 + 𝜎𝜎𝑓𝑓2

𝜎𝜎𝑝𝑝2 + 𝜎𝜎𝑓𝑓2 + 𝜎𝜎𝜀𝜀2
 

where 𝜎𝜎𝑝𝑝 is the random effects variance, 𝜎𝜎𝑓𝑓 is the fixed effect variance, and 
𝜎𝜎𝜀𝜀 is the observation-level variance [137], [138].  
 

 

Figure 3.2: Stacked boxplot for continuous glucose monitoring (CGM) data 
presentation as suggested by the Advanced Technologies and Treatments for 
Diabetes (ATTD) consensus [23]. The two categories of Time Above Range 
(TAR) are displayed in yellow and orange, Time in Range (TIR) is 
represented in green, while the two categories of Time Below Range (TBR) 
are in light and dark red. 
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3.2.2. Correlation between self-monitoring frequency and 
glycemic metrics 

Substantial clinical benefits from CGM systems adoption have been reported 
in literature for individuals with DM, including improvements in glycemic 
control and management of acute glycemic episodes, as discussed in Section 
2.1.2. In our real-world scenario, the relationship between TIR and patient’s 
self-monitoring frequency was analyzed both for exploring individual 
behaviors and examining if there was an overall enhancement in glycemic 
control related to an elevated manual scan frequency. Additionally, also the 
relationship between TIR and the other glycemic metrics was investigated. 

Glucose data were divided into monitoring windows of 14 days, as the 
FreeStyle Libre sensors life. In order to make a comparison with other 
similar studies in other countries [139]–[142], each monitoring window was 
included in the analyses only if it had at least 480 automatically stored 
readings, which correspond to around 120 hours of monitoring. In every 
accepted windows several glycemic metric has been calculated, one for each 
of the four families of methods described in Section 2.1.3, such as traditional 
metrics, metrics based on absolute change in glucose levels, metrics based 
on risk of major glycemic excursions, and metrics based on time in ranges, 
considering SD, CONGA1, ADRR, and TIR, respectively. The daily scan 
frequency was computed as the sum of the manual scans divided by the 
window length. 

In the first analysis, all patients’ monitoring windows were rank ordered 
by daily scan frequency and split into ten equally sized groups based on 
deciles. Average values of daily scan frequency and TIR were computed in 
each group, which contained 10% of the total monitoring windows data. A 
non-parametric Dunn's test was performed to verify if average TIR was 
significantly different among groups, using the function “dunnTest” in the R 
package called “FSA” [143] and setting the significance threshold to 0.05. 
Then, the correlation between TIR and daily scan frequency was investigated 
through the Spearman’s correlation coefficient (ρ), computed with the 
function “rcorr” available in the R package called “Hmisc” [144]. 

Afterwards, monitoring windows were ranked ordered also by SD, 
CONGA1, and ADRR in separate analyses and split into ten equally sized 
groups based on deciles. For each analysis, average values of TIR and the 
corresponding ranking variable were computed in every group. Similarly, 
Dunn's tests were executed to verify if average TIR was significantly 
different among groups and the Spearman’s correlation coefficients were 
calculated to explore the relationship between TIR and the selected glycemic 
metrics. 
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3.3. Temporal data mining with temporal 
abstraction 
In the analysis of temporal data it is useful to detect the occurrence of 
specific temporal patterns, i.e. time intervals in which one or more time-
series assume a behavior of interest [145], especially in contexts where there 
is a combination of qualitative and quantitative variables with irregular 
sampling frequencies, such as in medical domains. Knowledge-based TA 
techniques, in particular, allow to automatically detect a sequence of 
qualitative time intervals corresponding to significant patterns from a time-
point representation of quantitative data [146]. 

3.3.1. Libraries for temporal abstraction 

The AID-GM application is integrated with the Java Time Series Abstractor 
(JTSA) library [147], which has been developed at the Bio-Medical 
Informatics Laboratory “Mario Stefanelli” of the University of Pavia and 
distributed as a jar file under general public license.  

 

Figure 3.3: Methodological ontology of the Java Time Series Abstractor 
(JTSA) framework [147]. 
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JTSA operates on the basis of two temporal primitives, the time point and 
the time interval, as illustrated in the methodological ontology of Figure 3.3, 
both represented according to a specific temporal resolution referred as 
granularity [145]. This makes possible to distinguish between events, which 
are characterized by a time point and a measurement value, and episodes, 
which are characterized by an interval of occurrence and a temporal pattern 
label. Events time-series (E-TS) are time-series of events, while episodes 
(abstractions) time-series (A-TS) are time-series of episodes. Additionally, 
JTSA allows to consider also complex abstractions time-series (CA-TS) with 
pairs of episodes [147]. 

JTSA algorithms can be divided into two categories: preprocessing 
algorithms like filtering, smoothing, normalization, and interpolation, which 
work only on E-TS producing E-TS as the output, and TA algorithms, which 
can work on both E-TS and A-TS producing A-TS as the output [147]. TA 
algorithms can be further split into three subcategories, such as basic 
(including qualitative and trend), aggregation, and complex algorithms, 
which differ on the input data type and on the number of inputs, as shown in 
Table 3.4. 

Table 3.4: Input and output of the Java Time Series Abstractor (JTSA) 
algorithms [147]. 

Algorithm Input Output 
Preprocessing E-TS E-TS 

Basic E-TS A-TS 
Aggregation A-TS A-TS 

Complex Pair of A-TS A-TS 
E-TS: events time-series; A-TS: abstractions time-series; CA-TS: complex 
abstractions time-series. 

Qualitative TAs map a series of events onto a sequence of qualitative time 
intervals, while trend TAs detect increasing, decreasing, or stationarity 
patterns. Aggregation TAs accept A-TSs as the input and combine successive 
episodes having the same pattern label, considering parameters like 
“minLen”, i.e. the minimum length for an episode to be included in the 
output A-TS, and the “gap”, i.e. the maximum distance for two consecutive 
episodes to be aggregated in a single episode. Finally, complex TAs work on 
pairs of A-TS associated through the relational operators based on the 
Allen’s relationships (and their corresponding inverse relationships) [148], 
as presented in Table 3.5. 
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Table 3.5: List of Allen’s relationships [148]; X and Y are times intervals. 

Relation Description Graphical representation 

Before X ends before Y 

 

Equal 
X and Y are the 

same time 
intervals 

 

Meets X ends where Y 
starts 

 

Overlaps 

X starts before Y 
and Y starts 

before the end of 
X  

and X ends before 
the end of Y  

During 
X is fully 

contained within 
Y 

 

Starts 
X shares the same 
start as Y and ends 
before the end of Y 

 

Finishes 
X shares the same 
end as Y and starts 
after the start of Y 
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Figure 3.4: Parameters used to make the Allen’s temporal relations more or 
less restrictive; X and Y are times intervals. 

All the temporal patterns that use relational operators require the 
specification of one or more parameters to make the temporal relations more 
or less restrictive. As displayed in Figure 3.4, the “left shift” (LS) designates 
the maximum distance between the X-start point and the Y-start point, the 
right shift (RS) indicates the maximum distance between the X-end point and 
the Y-end point, while the “gap” reveals the maximum distance between the 
X-end point and the Y-start point.  

In case of CA-TS, as shown in Table 3.6, complex TAs intervals in output 
are defined through the combiner operators, which specify how each pair of 
complex TAs intervals in input has to be processed, e.g., connecting the pair 
of time intervals with a union or an intersection. 

Table 3.6: List of the combiners component provided by the Java Time Series 
Abstractor (JTSA) framework; X and Y are times intervals. 

Combiner Description Graphical representation 

Gap 
between 

starts 

Time interval 
between  

the start of X  
and the start of Y 

 

Gap 
between 

ends 

Time interval 
between  

the end of X  
and the end of Y 

 

Intersection Time interval that 
X and Y share 
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Longest 
The longest time 
interval between  

X and Y 
 

Shortest 
The shortest time 
interval between  

X and Y 
 

Union 

Time interval 
including both X 
and Y, in addition 

to eventual 
intervals  

between them  
 

 

Figure 3.5: Pipeline and complex blocks used in Java Time Series Abstractor 
(JTSA) workflows [147]. 

Preprocessing and TA algorithms can be combined in user-defined 
workflows, which are extensible markup language (XML) documents made 
up of a set of blocks based on a JTSA-specific schema and executed by the 
JTSA engine. As illustrated in Figure 3.5, it is possible to distinguish 
between pipelines, which contain an ordered set of step components for 
implementing a single preprocessing, basic, or aggregation algorithm, and 
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complex blocks, which are used for obtaining complex TAs based on a single 
relational operator and combiner [147]. 

3.3.2. Domain-specific pattern detection 

As a novel contribution in this thesis, several temporal patterns relevant for 
evaluating DM outcomes have been formalized in collaboration with the 
diabetologists of the Pediatric Endocrinology and Diabetology outpatient 
service of Fondazione IRCCS Policlinico San Matteo hospital, and the 
diabetologists of the Endocrinology and Diabetology outpatient service of 
the IRCCS Istituti Clinici Scientifici Maugeri. 

Basic and aggregation TA algorithms were used to detect knowledge-
based temporal patterns either considering all the BG monitoring data or 
contextualizing the search for glycemic patterns based on the Fitbit tag. 
Specifically, the suffix “S” was added to pattern labels when the search was 
restricted to sleep intervals, the suffix “W” was used when the search 
concerned only workout intervals, while the suffix “R” was adopted when 
the search excluded sleep and training periods. Moreover, the set of simple 
patterns was extended with the elaboration of univariate HR patterns. Table 
3.7 presents an outline of the most relevant patterns based on basic and 
aggregation TA algorithms; in addition, all patterns and implementation 
details are provided in Appendix B. 

Table 3.7: Some of the implemented patterns based on basic and aggregation 
temporal abstractions (TA) algorithms [127]. Red dots represent HR 
measurements, while blue dots represent BG measurements (normal 
glycemia refers to BG values between 70 mg/dL and 180 mg/dL). 

Description 
Input data 

Graphical representation 
BG HR Sleep 

Hypoglycemia •   
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Hyperglycemia •   

 

BG Decreasing •   

 

BG Increasing •   

 

Bradycardia  •  
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Tachycardia  •  

 

 
In a glucose monitoring application, Hypoglycemia and Hyperglycemia 

represent the core patterns. As a result of the integration between AID-GM 
platform and the JTSA library, it is possible to search such patterns 
considering either subject-specific or fixed thresholds (BG value <70 mg/dL 
for Hypoglycemia and BG value >180 mg/dL for Hyperglycemia). Figure 
3.6 displays the pipeline block of the Hypoglycemia workflow that consists 
of a basic and an aggregation TA algorithm. As indicated also in the “type” 
and “subtype” parameters of the following XML code, the first step of the 
workflow is a basic qualitative algorithm, which discretizes the input events 
using a set of thresholds defined in the “qualitativeGlycemia” properties file. 
In this way, BG values lower than 70 mg/dL were labelled as 
“hypoglycemia” while BG values greater than 180 mg/dL as 
“hyperglycemia”, and all the other BG values were identified as 
“euglycemia” (in case of fixed thresholds). The second step of the workflow, 
instead, aggregates all the episodes with the “hypoglycemia” label which last 
at least 13 minutes (minLen=13), and whose distance is not greater than 60 
minutes (gap=60), as specified in the “HighLevelAgg_Hypo” properties file. 
In this example, the search for hypoglycemic patterns is performed on all the 
available glucose data, but it is possible to restrict the analysis only to sleep, 
workout or routine periods modifying the “dataIn” parameter to “BGSleep”, 
“BGWorkout” or “BGRoutine”, with the definition of HypoglycemiaS, 
HypoglycemiaW, and HypoglycemiaR patterns, respectively. 

Additionally, the hypoglycemic abstraction was further refined 
distinguishing between mild hypoglycemia (Hypoglycemia_Lev1: 54≤ BG 
value <70 mg/dL) and severe hypoglycemia (Hypoglycemia_Lev2: BG value 
<54 mg/dL). Similarly, beyond the hyperglycemic abstraction, also mild 
hyperglycemic (Hyperglycemia_Lev1: 180< BG value ≤250 mg/dL) and 
severe hyperglycemic (Hyperglycemia_Lev2: BG value >250 mg/dL) 
patterns were defined. 

• Hypoglycemia.xml: 

<workflow> 
 <block> 
 <pipeline id="Hypo" type="pipeline" note="" 
           dataType="memory" dataIn="BG"> 

<step order="1" title="hypo1" 
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      parameters="qualitativeGlycemia.properties" 
      type="BASIC" 
      subtype="BASIC_QUALITATIVE"> 

  </step> 
  <step order="2" title="hypo2" 
             parameters=" HighLevelAgg_Hypo.properties" 
             type="AGGREGATION" 
             subtype="AGGREGATION_HIGHLEVEL"> 
  </step> 
  </pipeline> 
 </block> 
</workflow> 

• qualitativeGlycemia.properties: 

label=hypoglycemia,euglycemia,hyperglycemia 
th=70,181 

• HighLevelAgg_Hypo.properties: 

gap=60 
minLen=13 
granularity=MINUTES 
label=Hypoglycemia 
levels=hypoglycemia 
 
 

 

Figure 3.6: Pipeline block for hypoglycemia detection, based on basic and 
aggregation TA algorithms. 

Furthermore, even complex TA were used to discover composite temporal 
patterns like the Dawn Effect, which refers to periodic episodes of 
hyperglycemia occurring in the early morning hours [149], as presented in 
Table 3.8. Additionally, multivariate patterns were explored combining BG, 
HR, and activity data, detecting for instance time intervals where 
Tachycardia precedes Hypoglycemia, or Hypoglycemia precedes 
Bradycardia during sleep periods; all the other complex patterns and their 
implementation details are provided in Appendix B. 
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Table 3.8: Some of the implemented patterns based on complex temporal 
abstractions (TA) algorithms [127]. Red dots represent HR measurements, 
while blue dots represent BG measurements (normal glycemia refers to BG 
values between 70 mg/dL and 180 mg/dL). 

Description 
Input data 

Graphical representation 
BG HR Sleep 

Dawn Effect 
(Euglycemia  

at night followed 
by Hyperglycemia  

at wake up) 

•  • 

 

Hypoglycemia 
Before 

Hyperglycemia 
•   

 

Tachycardia 
Precedes 

Hypoglycemia 
(During sleep) 

• • (•) 
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Hypoglycemia 
Precedes 

Bradycardia  
During sleep 

• • • 

 

3.3.3. Analysis of hypoglycemia episodes 

Iatrogenic hypoglycemia is a limiting factor in DM management. Generally, 
a T1DM patient experiences a few episodes of symptomatic hypoglycemia 
per week but several episodes of asymptomatic hypoglycemia, which impair 
the physiologic defensive mechanism against subsequent hypoglycemia [9].  

Thanks to the adoption of CGM systems, which allows detecting and  
investigating all hypoglycemic episodes, it was possible to provide clinicians 
with a qualitative and quantitative outline of each patient’s hypoglycemia 
situation. A summary table with the total number of hypoglycemic episodes 
was realized for every patient, distinguishing between severe and mild 
hypoglycemia, and contextualizing all the episodes within the day.  

A particular attention, especially for the pediatric patients, was given to 
the analysis of hypoglycemia during sleep since it may be correlated with the 
“dead-in-bed” syndrome [10], [11], as discussed in Section 2.1.1, using the 
HypoglycemiaS, Hypoglycemia_Lev1S, and Hypoglycemia_Lev2S 
patterns. Also the profile tag was used to search for hypoglycemic patterns 
during sleep, considering the habitual bedtime and awakening-time for each 
patient, in order to make a comparison between the effective sleep periods 
as detected by the Fitbit trackers and those based on patients’ habits. 
Furthermore, HR time-series related to hypoglycemia during sleep were 
investigated for examining if there was a specific pattern that could improve 
the detection and prevention of such hypoglycemic episodes, considering 
children and adolescent, who were free of complications, since adult patients 
could have more evident HR alterations [150]. In the preprocessing phase, 
the first step consisted in a filter application to exclude all the sleep intervals 
that were preceded by hypoglycemic episodes in the previous two hours, 
since the succeeding BG and HR measurements could be altered. 
Consequently, only the HR measurements recorded in the remaining sleep 



 

 56 

intervals were considered in the analysis. In addition, subjects with less than 
three overall hypoglycemia during sleep (HypoglycemiaS) patterns were 
excluded. For each remaining subject, three HR datasets were created: the 
before-hypoglycemia dataset included HR measurements recorded in the 
hour before HypoglycemiaS, the after-hypoglycemia dataset contained HR 
measurements collected in the hour after HypoglycemiaS, while the no-
hypoglycemia dataset had HR measurements related to sleep intervals 
without hypoglycemic episodes, excluding the first hour after falling asleep 
and the last hour before waking up. Finally, HR measurements from each 
dataset were aggregated into separate five-minute time intervals to capture 
the average values [150].  

For each subject, after a visual inspection through boxplots, the non-
parametric Mann-Whitney U test was performed to compare both the before-
hypoglycemia and no-hypoglycemia HR distributions, and the after-
hypoglycemia and no-hypoglycemia HR distributions, using the function 
“wilcox.test” available in the R package called “stats” [151] and setting the 
significance threshold to 0.05. 

3.4. Generalized deep learning models 
A general glucose-prediction model built on a population of patients could 
be functional in real clinical scenarios, where the information for a new 
patient can be scarce at the beginning of the monitoring period. In our real-
world scenario, given the considerable amount of time-series data from 
different sources, LSTMs were considered since they were particularly 
suitable for developing accurate multi-patient and  multivariate models for 
glucose prediction.  

LSTMs are a specific subclass of Recurrent Neural Network (RNN) 
introduced by Hochreiter and Schmidhuber [152] and designed for solving 
the vanishing or exploding gradients problems. First introduced by Bengio 
et al. [153] and further explored by Pascanu et al. [154], the exploding 
gradients problem during model training refers to a large increase of the 
long-term components, which grow exponentially more than short-term 
components, while the vanishing gradients problem concerns a significant 
decrease of the long-term components, which go exponentially fast to norm 
zero. Consequently, models can hardly learn correlation between temporally 
distant events. Instead, LSTMs can remember the previous data patterns over 
arbitrary time intervals, removing or adding information to a memory 
implemented as a cell state (𝐶𝐶), without suffering from problems of long-
term dependencies. 

As illustrated in Figure 3.7, LSTM networks are characterized by a chain-
like structure of repeating units, each one provided with three gates, such as 
the input layer, the output gate, and the forget layer, which regulate the flow 
of information into and out of the cell. Every gate is composed of a sigmoid 
layer that returns values in a [0-1] range, defining how much of each 
component should be let through, and an element-wise multiplication 
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operator. Figure 3.8 displays a zoom on a single conventional LSTM unit, 
showing that each block receives three inputs, such as the input at the current 
time step (𝑋𝑋𝑡𝑡), the output from the previous unit (ℎ𝑡𝑡−1), and the cell state of 
the previous unit (𝐶𝐶𝑡𝑡−1), then updates the cell state of the current unit (𝐶𝐶𝑡𝑡), 
and provides an output (ℎ𝑡𝑡) [155], [156]. 

 

Figure 3.7: Sequential processing in Long Short-Term Memory (LSTM) 
neural networks, adapted from Yan [156]. 

 

Figure 3.8: Schema of a Long Short-Term Memory (LSTM) neural network, 
adapted from Yan [156]. 

In the equations regarding the cell update process, 𝑊𝑊𝑞𝑞 and 𝑈𝑈𝑞𝑞 represent 
the weights matrices of the input and the recurrent connections, respectively, 
where the subscript 𝑞𝑞 can be either referred to the input gate, the output gate, 
the forget gate or the cell state [152].  
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Considering the LSTM schema presented in Figure 3.8, the first sigmoid 
layer on the left corresponds to the so-called forget gate layer (𝑓𝑓𝑡𝑡), which 
controls which information has to be eliminated from the cell state at step 𝑡𝑡. 
Indeed, based on the output of the previous unit and the input at the current 
time step, 𝑓𝑓𝑡𝑡 provides a value ranging in the [0-1] interval for all components 
in 𝐶𝐶𝑡𝑡−1, defined as: 

𝑓𝑓𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑓𝑓 ∙ 𝑋𝑋𝑡𝑡 + 𝑈𝑈𝑓𝑓 ∙  ℎ𝑡𝑡−1 + 𝐻𝐻𝑓𝑓) 

Afterwards, new information can be stored in the cell state using two 
layers. The second sigmoid layer represents the so-called input gate layer (𝑖𝑖𝑡𝑡) 
that decides the 𝐶𝐶𝑡𝑡  components to update, while a vector of new cell 
candidates �̃�𝐶𝑡𝑡 is created through a hyperbolic tangent layer. Consequently, 
the cell state is updated multiplying the cell state of the previous unit by the 
forget gate vector, and adding the new cell candidates scaled by the input 
gate vector, according to the following equations:  

𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑖𝑖 ∙ 𝑋𝑋𝑖𝑖 + 𝑈𝑈𝑖𝑖 ∙  ℎ𝑡𝑡−1 +  𝐻𝐻𝑖𝑖) 

�̃�𝐶𝑡𝑡 = tanh (𝑊𝑊𝑝𝑝 ∙ 𝑋𝑋𝑝𝑝 + 𝑈𝑈𝑝𝑝 ∙  ℎ𝑡𝑡−1 +  𝐻𝐻𝑝𝑝) 

𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡 ∗ 𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ∗ �̃�𝐶𝑡𝑡  

Finally, the last sigmoid layer represents the so-called output gate layer 
(𝑠𝑠𝑡𝑡), which determines the 𝐶𝐶𝑡𝑡 components to return in output. The output 
vector is a filtered version of 𝑠𝑠𝑡𝑡 , which is multiplied by 𝐶𝐶𝑡𝑡  components 
pushed between -1 and 1 by the hyperbolic tangent layer, according to the 
following equations: 

𝑠𝑠𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑦𝑦 ∙ [ℎ𝑡𝑡−1,𝑋𝑋𝑡𝑡] + 𝐻𝐻𝑦𝑦) 

ℎ𝑡𝑡 = 𝑠𝑠𝑡𝑡 ∗ 𝑡𝑡𝑀𝑀𝑛𝑛ℎ(𝐶𝐶𝑡𝑡) 

All the analyses and graphical representations related to the development 
of deep learning models were performed using PyCharm version 2019.3 
[157] as integrated development environment and the high-level NN 
application programming interface (API) Keras version 2.2.5 [158] with 
TensorFlow backend [159]. 

3.4.1. Time series preprocessing 

The application of LSTMs to the specific problem of integrating BG 
monitoring data with Fitbit information is illustrated as a novel contribution 
of this work. Indeed, the Fitbit tracker and the FreeStyle Libre system 
provided readings with different sampling frequency, as introduced in 
Section 3.1: HR measurements are taken every minute, while BG 
measurements are recorded every 15 minutes, although it happened that the 
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time intervals between consecutive BG readings were slightly shorter or 
longer than the conventional sampling frequency.  

Therefore, the first preprocessing step concerned the alignment of the HR 
time-series with the BG time-series. As shown in Figure 3.9, a weighted 
mean (𝑊𝑊𝑀𝑀𝑖𝑖𝑅𝑅ℎ𝑡𝑡𝐻𝐻𝐼𝐼) was computed on the 𝑛𝑛 HR measurements available in 
the interval (𝑡𝑡𝐵𝐵𝐼𝐼 − 1; 𝑡𝑡𝐵𝐵𝐼𝐼]  between two consecutive BG measurements, 
according to the following equation:  

𝑊𝑊𝑀𝑀𝑖𝑖𝑅𝑅ℎ𝑡𝑡𝐻𝐻𝐼𝐼 =  
∑ 𝐻𝐻𝐼𝐼𝑖𝑖 ∙ 𝑤𝑤𝑖𝑖𝑛𝑛
𝑖𝑖=1
∑ 𝑤𝑤𝑖𝑖𝑛𝑛
𝑖𝑖=1

 

 Increasing weights 𝑤𝑤 were adopted so that the HR measurements closer 
to the corresponding BG measurement gave progressively higher 
contributions compared to the first HR measurements in the interval, 
similarly to the procedure adopted by FreeStyle Libre system, which 
measures interstitial glucose every minute and stores a weighted average 
value (using a proprietary algorithm) every 15 minutes. In case of a missing 
BG measurement, 𝑛𝑛  is set to 14 and a weighted means is computed 
considering the HR measurements available in that time interval.  

In addition, the corresponding Fitbit tag information was processed using 
a one-hot encoding strategy. Each Fitbit tag categorical value (sleep, 
workout, and routine) was converted into a new binary column with 1 or 0 
values indicating the presence or the absence of that activity, respectively. 

 

Figure 3.9: Preprocessing procedure for aligning heart-rate (HR: in orange) 
time-series to blood glucose (BG: in blue) time-series, computing a weighted 
mean (in dark orange) on the HR measurements between two consecutive BG 
measurements. 

The second preprocessing step consisted in the missing data handling. BG 
and weighted HR time-series were split in subseries using frames of 96 
timestamps (corresponding to 24 hours). The resulting subseries were 
discarded either if the percentage of missing data was greater than 20%, or 
if there were more than 8 consecutive missing values (corresponding to 2 
hours). After the investigation of several interpolation algorithms, including 
linear, quadratic, spline, and cubic algorithms, the spline bidirectional 
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interpolation method was applied to deal with the remaining missing data for 
short gaps in BG and weighted HR time-series. 

 

Figure 3.10: Preprocessing procedure for organizing data in a structure 
suitable for neural networks. 

The last preprocessing step concerned the organization of time-series data 
in a structure suitable for deep learning, reframing the time-series forecasting 
task in a supervised learning problem. Past values are provided as features 
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and future values as labels, exploiting a sliding window of different lengths, 
such as 15, 30 and 45 minutes, for controlling the volume of historical value 
used for each prediction. As outlined in Figure 3.10, time-series data are 
exploded into a 2-D array of features called “X”, where the input data consist 
of overlapping lagged values at the desired number of timesteps, and a 1-D 
array of labels called “y”, containing the future values for each features row. 
The sliding window in the example has length=3, meaning that each 
sequence comprises 45 minutes of data at 15-minutes intervals and that y(t), 
y(t+1), y(t+2) values at the beginning are excluded. Additionally, the 
resulting data matrix was reshaped using the “reshape” Python function in 
the “NumPy” library [160], since the NN input layer expected the input data 
in a specific 3D tensor format of sample size by lag time (sliding window 
length) by the number of input features. 

3.4.2. Model infrastructure 

The infrastructure of the proposed multi-patient and multivariate deep 
learning framework for short-term glucose prediction is presented in Figure 
3.11. The input layer was designed to work in three different scenarios 
considering various features in input, such as: 

• Univariate scenario with only BG time-series (sBG) 
• Multivariate scenario with BG and HR time-series (sBG-HR) 
• Multivariate scenario with a combination of BG, HR, and 

activities time-series (sBG-HR-Activity) 

 

Figure 3.11: The architecture of the proposed Long-Short Term Memory 
(LSTM)-based neural network [161]. 
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Besides the input layer, the architecture comprises other five intermediate 
layers and an output layer. The core of the model is represented by a LSTM 
layer with 64 units, surrounded by two hidden layers on the left with 16 and 
32 neurons and two hidden layers on the right with 32 and 16 neurons, 
respectively. 

A linear activation function was used in the output layer, while the hidden 
layers were characterized by a rectified linear unit (ReLU) activation 
function [162], which is defined as the positive part of its input argument 
and offers the advantages of an efficient computation, a better gradient 
propagation compared to sigmoidal activation functions, and a sparse 
activation, useful in a randomly initialized network since only about half of 
hidden units are activated [163]. Weight matrices and bias vectors, 
introduced in Section 3.4, were randomly initialized at the beginning of the 
training procedure, and then updated using the truncated Backward 
Propagation Trough Time (BPTT) method [164].  

Network hyperparameters were experimentally selected through a grid 
search. The Adam optimizer was adopted to minimize the Mean Absolute 
Error (MAE) as the loss function setting the learning rate, i.e. the step size 
at each iteration towards a minimum of the loss function, equal to 0.001 
[165]. The number of epochs, i.e. the number of complete passes through the 
training dataset, was set to 250 to avoid underfitting, while the problem of 
overfitting was prevented by the use of the “EarlyStopping” [166], which is 
a Keras API callback for monitoring the performance of the model for every 
epoch on a validation set during the training, and for stopping the training 
when the monitored quantity, e.g. the loss function on the validation set 
(“val_loss”), has stopped improving. In particular, the “min_delta” 
parameter was set to 10-5,  meaning that an absolute change in the loss 
function of less than 10-5 was qualified as no improvement, the “patience” 
parameter was set to 50, meaning that with no improvements for more than 
50 epochs the “model.stop_training” was marked as “true” and the training 
terminated, and the “restore_best_weights” was set to “true” for restoring 
model weights from the epoch with the best value of the monitored quantity. 
The batch size, i.e. the number of training samples to work through before 
the model’s internal parameters are updated, was set equal to the subseries 
length (96 points) less the lag time. 

3.4.3. Model evaluation  

The preprocessing procedure described in Section 3.4.1 was applied to the 
pediatric and adult datasets considering only those patients who 
simultaneously used the Fitbit tracker and the FreeStyle Libre system. The 
preprocessed pediatric dataset (consisting of 17 patients) was randomly 
divided into a training set of 12 patients, a validation set of one patient, and 
a test set of four patients, while the preprocessed adult dataset (consisting of 
ten patients) was randomly partitioned into a training set of eight patients, a 
validation set of one patient, and a test set of three patients. Additionally, 
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each feature in the training set was individually scaled in the [0-1] range 
using the “MinMaxScaler” function from the Scikit-learn Python library 
[157]. This process was repeated ten times varying the composition of 
training, validation, and test sets. At the end, an average of the prediction 
performances is computed for every scenario, both in analytical and clinical 
terms [161]. Moreover, multi-patient and multivariate models developed on 
the pediatric training sets were tested also on the adult test sets, considering 
the same adult patients used to test the adult models in each repetition. 
Similarly, models developed on the adult training sets were tested also on 
pediatric test sets for further examining the generalization capabilities. 

The analytical assessment was realized through the RMSE, which is one 
of the most used evaluation metrics in literature, as evidenced in Section 2.2, 
and returns a quantitative measure of the prediction error on the same unit 
scale as the data, i.e. mg/dL. The RMSE is computed as the standard 
deviation of the residuals between the BG prediction 𝐻𝐻�𝑡𝑡  and the 
corresponding BG actual value 𝐻𝐻𝑡𝑡, where 𝐿𝐿 represents the time-series length: 

 𝐼𝐼𝑀𝑀𝑆𝑆𝐺𝐺 =  �∑ (𝑑𝑑�𝑡𝑡 − 𝑑𝑑𝑡𝑡)2

𝑇𝑇
𝑇𝑇
𝑡𝑡=1  

Since RMSE does not provide any information about the consequences of 
prediction errors on treatments decisions, a clinical assessment through the 
Clarke Error Grid analysis (CEGA) was considered [167]. CEGA is a non-
parametric graphical method to interpret the mapping between the BG 
reference measurements (on the x-axis) and the corresponding BG 
predictions (on the y-axis) in terms of severity of the potential harm caused 
by the prediction error. 

 

Figure 3.12: The Clarke Error Grid for clinically evaluating the accuracy of 
glucose predictions. 
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As shown in Figure 3.12, the grid is divided into five zones of accuracy, 
while the dotted diagonal line designates the perfect agreement between 
measured and predicted values. Points below the diagonal indicate an 
underestimation of the measured values, while points above the diagonal 
show an overestimation of the measured values. Specifically, zone A 
includes the area on both sides of the diagonal where the difference between 
measured and predicted BG values is less than 20%, leading to correct 
clinical decisions based on the prediction. In zone B, although this difference 
is greater than 20%, the resulting decision is at least clinically uncritical. 
Consequently, all the points that fall within zones A and B are clinically 
acceptable. In zone C, instead, BG prediction errors may prompt unnecessary 
corrections that could lead to a poor outcome, whereas in zone D the 
necessary corrections are not triggered, both in case of hypoglycemia and 
hyperglycemia. Prediction errors in zone E are the most dangerous because 
they lead to treat hypoglycemia instead of hyperglycemia and vice-versa 
[167]. 
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Chapter 4 
4 Applications on real-world data 

This chapter presents the results obtained on the real-world described in 
Section 3.1. Section 4.1 outlines patients characteristics with descriptive 
statistics regarding the FreeStyle Libre glucose measurements and the Fitbit 
activity information. Section 4.2 involves glucose data analytics and shows 
the overall relationships observed between glycated hemoglobin and time in 
ranges, exploring also the inter-subject variability, and the significant 
correlations between self-monitoring frequency and glycemic metrics. 
Section 4.3 describes the temporal data mining results, analyzing the 
diabetes-specific patterns detection with a particular attention to the 
hypoglycemic episodes. Finally, Section 4.4 illustrates the outcomes of the 
multi-patient and multivariate deep learning model for glucose prediction on 
both the pediatric and the adult datasets. 

4.1. Descriptive statistics on the datasets  
Although monitored with the same procedures, the pediatric and adult 
datasets show some important differences. As outlined in Table 4.1, the adult 
dataset is characterized by a lower number of patients but longer time-series. 
Indeed, the average count of BG automatic measurements is twice the count 
of BG automatic measurements in the pediatric dataset, while the average 
number of BG manual measurements is comparable between the two 
datasets. In addition, the percentage of hypoglycemic events (<70 mg/dL) in 
the adult dataset is more than double the percentage of hyperglycemic events 
(>180 mg/dL) in the pediatric dataset, while the average percentage of 
hyperglycemic events in the pediatric dataset is greater than the adult dataset. 

Figure 4.1 and Figure 4.2 graphically present the BG measurements that 
were automatically detected by the FreeStyle Libre system, while Figure 4.3 
and Figure 4.4 show the BG measurements that were manually detected by 
each patient through the FreeStyle Libre reader, considering the pediatric 
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and adult datasets, respectively. Overall it is possible to notice that pediatric 
patients exhibit higher median values, in several cases also greater than 200 
mg/dL, and a larger variability compared to adult patients, although there are 
a few exceptions like Patient 105 or Patient 108. 

Table 4.1: Comparison between pediatric and adult datasets.  

Measurements Pediatric Adult 
Percentage of 

hypoglycemic events 3.47 ± 3.45 7.56 ± 3.47 

Percentage of 
euglycemic events 41.80 ± 21.13 54.44 ± 10.79 

Percentage of 
hyperglycemic events 54.76 ± 23.01 38.00 ± 13.21 

Number of BG 
automatic measurements 15,799.48 ± 9,673.80 31,187.17 ± 19,104.65 

Number of BG 
manual measurements 2,016.74 ± 1,584.84 2,809.33 ± 1,948.52 

Number of HR 
measurements 80,350.77 ± 72,316.13 438,172.67 ± 233,358.02 

BG: blood glucose; HR: heart rate. Hypoglycemic events: BG < 70 mg/dL; 
euglycemic events: 70 mg/dL ≤ BG ≤ 180 mg/dL; hyperglycemic events: BG > 180 
mg/dL. 

 

Figure 4.1: Boxplot representation of blood glucose (BG) automatic 
measurements per patient in the pediatric dataset. 
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Figure 4.2: Boxplot representation of blood glucose (BG) automatic 
measurements per patient in the adult dataset. 

 

Figure 4.3: Boxplot representation of blood glucose (BG) manual 
measurements per patient in the pediatric dataset. 
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Figure 4.4: Boxplot representation of blood glucose (BG) manual 
measurements per patient in the adult dataset. 

Going deep into manual scanning, Figure 4.5 and Figure 4.6 allow to 
understand when pediatric and adult patients mainly used the FreeStyle Libre 
reader during the day, revealing a higher variability in the behavior of 
children and adolescents. The day was discretized in four intervals, such as 
morning, afternoon, evening, and night, defined as in the following:  

• 07:00:00 < Morning ≤ 13:00:00 
• 13:00:00 < Afternoon ≤ 18:00:00 
• 18:00:00 < Evening ≤ 23:00:00 
• 23:00:00 < Night ≤ 07:00:00 

Moreover, the stacked bar plots in Figure 4.7 and Figure 4.8 (part D) 
consent to understand in which condition each patient tended to increase the 
frequency of manual scans. Indeed, BG manual measurements are grouped 
based on the Fitbit tag, such as routine, sleep, and workout, and the 
distribution of the corresponding values is presented for each patient in the 
boxplots of part A, B, and C, respectively. In percentages, pediatric patients 
had more scans during sleep and workout intervals compared to adult 
patients, who concentrated BG manual measurements during routine 
activities. Other Fitbit information such as HR measurements distributions, 
daily activities, workouts per week, and sleep quality were used to provide 
clinicians with visual overviews of each patient’s situation, as reported in 
Appendix C. 
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Figure 4.5: Stacked bar plot of manually detected blood glucose (BG) 
manual measurements grouped by daily period in the pediatric dataset. 

 

Figure 4.6: Stacked bar plot of manually detected blood glucose (BG) 
manual measurements grouped by daily period in the adult dataset. 
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Figure 4.7: Manually detected blood glucose (BG) measurements grouped 
by Fitbit tag in the pediatric dataset: (A) boxplot of BG measurements in 
routine; (B) boxplot of BG measurements in sleep; (C) boxplot of BG 
measurements in workout; (D) stacked bar plot of manual scans per tag. 

 

Figure 4.8: Manually detected blood glucose (BG) measurements grouped 
by Fitbit tag in the adult dataset: (A) boxplot of BG measurements in routine; 
(B) boxplot of BG measurements in sleep; (C) boxplot of BG measurements 
in workout; (D) stacked bar plot of manual scans per tag. 
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4.2. Glucose data analytics results 

4.2.1. Glycated hemoglobin and time in ranges 

Considering the pediatric dataset, four patients were discarded during the 
preprocessing phase for not meeting the 70%-data availability requirement 
with any window width, as shown in Table 4.2. Not surprisingly, the number 
of accepted windows and the number of considered patients decreased when 
the window width increased. Anyway, there was no significant difference 
(based on the results of a non-parametric Kruskal-Wallis test with significant 
threshold set to 0.05) between the median HbA1c values, which were 7.35, 
7.30, and 7.25 in NGSP units, considering the accepted windows of 30, 60, 
and 90 days. Also the stacked bars in Figure 4.9 show that the average 
percent partition of time spent below, within, and above range was 
comparable in windows of 30, 60, and 90 days without statistically 
significant differences (based on the results of a Shapiro test with significant 
threshold set to 0.05).  

Additionally, it is possible to notice that all median HbA1c values are 
higher than the recommended ISPAD target [21], as discussed in Section 
2.1.2, and average TIR values, which resulted between 48.89% in 30-days 
windows and 54.02% in 90-days windows, are lower than the ATTD 
consensus recommendations [23], as described in Section 2.1.3. 

Table 4.2: Number of monitoring windows with different widths in the 
pediatric dataset.  

Windows 
width 

Number of 
windows 
accepted 

Number of 
windows 
discarded 

Number of 
patients HbA1c (%) 

30 days 42 35 23 7.35 [6.93-8.48] 
60 days 37 40 21 7.30 [6.90-8.50] 
90 days 28 49 18 7.25 [6.85-8.10] 

HbA1c: glycated hemoglobin in National Glycohemoglobin Standardization 
Program (NGSP) units, presented as median [1st quartile-3rd quartile]. 

After the preprocessing phase, time in ranges metrics were used to 
develop separate linear mixed model for HbA1c prediction. Table 4.3 
presents the variables that resulted significant HbA1c predictors considering 
all window widths. Particularly, there was no significant relationship 
between TBR_Lev2 and HbA1c with any window widths, while TBR 
resulted a significant predictor only in the case of windows of 30 and 60 days 
(R2=0.89).  

The variance explained by each linear mixed models was always above 
0.85 except for TAR_Lev2 in 90-days windows, characterized by a R2 equal 
to 0.76. TIR and TIT showed a strong negative linear relationship with 
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HbA1c (R2>0.88), while TAR and TAR_Lev2 revealed a positive linear 
relationship with HbA1c (R2>0.75). 

The Target column in Table 4.3 indicates the threshold values of each 
variable required for a safe glycemic control (HbA1c ≤7%), based on each 
linear mixed model using the overall estimated intercept, which is presented 
as fixed effect value ± the random effect within-patient SD. Considering TIR 
and TIT, therefore, the target represents the minimum percentage of time 
spent within a specific range able to maintain HbA1c ≤7%, while for TAR 
and TAR_Lev2 the target is the maximum percentage of time spent above a 
specific range able to maintain HbA1c ≤7%. 

 

 

Figure 4.9: Stacked bar plot of average time in ranges using windows of 30, 
60, and 90 days in the pediatric dataset. TAR_Lev2: Time severely Above 
Range; TAR_Lev1: Time slightly Above Range; TIR: Time in Range; 
TBR_Lev1: Time slightly Below Range, TBR_Lev2: Time severely Below 
Range. 
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Table 4.3: Separate linear mixed model predictor variables with different 
window widths in the pediatric dataset. Predictor coefficients are presented 
as value (lower 95% confidence limit; upper 95% confidence limit) while 
intercept coefficients are presented as fixed effect value ± random effect 
within-patient standard deviation. 

Windows 
width 

Predictor 
Intercept R2 Target 

Variable Coefficient 

30 days 

TIR -0.0482 
(-0.0598; -0.0366) 10.1678 ± 0.5413 0.90 65.72% 

TIT -0.0500 
(-0.0653; -0.0348) 9.4176 ± 0.6927 0.89 48.27% 

TAR +0.0449 
(0.0340; 0.0558) 5.6673 ± 0.5572 0.90 29.68% 

TAR_Lev2 +0.0522 
(+0.0414; +0.0631) 6.5325 ± 0.4171 0.87 8.95% 

60 days 

TIR -0.0591 
(-0.0708; -0.0475) 10.6973 ± 0.4726 0.95 62.52% 

TIT -0.0650 
(-0.0801; -0.0499) 9.8788 ± 0.5828 0.94 44.30% 

TAR +0.0549 
(+0.0439; +0.0659) 5.2025 ± 0.4921 0.95 32.76% 

TAR_Lev2 +0.0561 
(+0.0443; +0.0679) 6.4403 ± 0.4097 0.89 9.98% 

90 days 

TIR -0.0598 
(-0.0734; -0.0463) 10.7226 ± 0.3894 0.92 62.24% 

TIT -0.0641 
(-0.0811; -0.0471) 9.7751 ± 0.4961 0.91 43.29% 

TAR +0.0544 
(+0.0418; +0.0671) 5.2163 ± 0.3608 0.89 32.78% 

TAR_Lev2 +0.0650 
(+0.0491; +0.0809) 6.2934 ± 0.7015 0.76 10.87% 

TIR: Time in Range; TIT: Time in Target Range; TAR_Lev2: Time severely 
Above Range; SD: standard deviation. 

Random intercepts estimated for each patient, taking into account the 
relationship between HbA1c and TIR in 30-days windows, are presented in 
Table 4.4. In this case, TIR targets are subject-specific and represent the 
minimum percentage of time spent in the euglycemic range required for a 
safe glycemic control. Instead, Figure 4.10 illustrates the negative 
relationship between TIR and HbA1c adopting the overall estimated 
intercept to draw the regression line, defined as:  

𝐻𝐻𝐻𝐻𝐶𝐶1𝑠𝑠 =  10.1678 −  0.0482 ∙ 𝐿𝐿𝐼𝐼𝐼𝐼 
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Figure 4.10: Linear relationship between glycated hemoglobin (HbA1c) and 
Time in Range using the overall estimated intercept with 30-days windows 
in the adult dataset. HbA1c is expressed in National Glycohemoglobin 
Standardization Program (NGSP) units. 

Table 4.4: Estimated random intercepts and corresponding Time in Range 
(TIR) target values for maintaining glycated hemoglobin (HbA1c) ≤7% in 
National Glycohemoglobin Standardization Program (NGSP) units, using 30-
days windows in the pediatric dataset. 

Patient Average HbA1c Average TIR Intercept TIR target 
69 7.25 42.70 9.4129 50.06 
79 7.40 41.41 9.5164 52.20 
98 8.10 23.77 9.5749 53.42 
78 7.10 48.40 9.5926 53.79 
67 7.30 49.03 9.8435 58.99 
63 7.00 58.38 9.8911 59.98 
80 8.50 26.77 9.9252 60.69 
75 8.00 39.24 9.9902 62.03 
76 6.35 74.51 9.9909 62.05 
68 7.20 59.81 10.1016 64.35 
108 6.23 80.72 10.1309 64.95 
94 8.67 30.48 10.1409 65.16 
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105 6.10 84.76 10.1793 65.96 
91 7.80 50.00 10.1950 66.28 
88 9.40 19.24 10.2927 68.31 
85 7.10 67.83 10.2976 68.41 
89 6.72 74.64 10.3030 68.52 
101 10.30 4.94 10.4060 70.66 
82 9.70 19.27 10.4644 71.87 
110 9.60 29.06 10.7034 76.83 
97 9.10 41.01 10.7522 77.84 
100 9.10 46.42 10.9199 81.32 
87 10.35 24.51 11.2353 87.86 

 
Also in the adult dataset two patients were discarded during the 

preprocessing phase for not meeting the 70%-data availability requirement 
with any window width, as shown in Table 4.5. Anyway, when considering 
long monitoring windows, the number of accepted windows remained almost 
the same and the number of patients with valid data did not change. 
Consequently, there was no significant difference (based on the results of a 
non-parametric Kruskal-Wallis test with significant threshold set to 0.05) 
between the median HbA1c values using different windows widths. As 
displayed in Figure 4.11, there was no significant difference (based on the 
results of a Shapiro test with significant threshold set to 0.05) even in the 
average percent partition of time spent below, within, and above range in 
windows of 30, 60, and 90 days. 

In terms of glycemic control monitoring, median HbA1c values are higher 
than the ADA recommendations [5], as discussed in Section 2.1.2, and 
average TIR values, which resulted between 54.59% in 30-days windows and 
56.20% in 90-days windows, are lower than the ATTD consensus 
recommendations explained in Section 2.1.3 [23], although more elevated 
than those found in the pediatric dataset. 

Table 4.5: Number of monitoring windows with different widths in the adult 
dataset.  

Windows 
width 

Number of 
windows 
accepted 

Number of 
windows 
discarded 

Number of 
patients HbA1c (%) 

30 days 23 18 10 7.50 [7.00-7.87] 
60 days 22 19 10 7.60 [7.10-7.95] 
90 days 21 20 10 7.50 [7.10-7.73] 

HbA1c: glycated hemoglobin in National Glycohemoglobin Standardization 
Program (NGSP) units, presented as median [1st quartile-3rd quartile]. 
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Figure 4.11: Stacked bar plot of average time in ranges using windows of 30, 
60, and 90 days in the adult dataset. TAR_Lev2: Time severely Above Range; 
TAR_Lev1: Time slightly Above Range; TIR: Time in Range; TBR_Lev1: 
Time slightly Below Range, TBR_Lev2: Time severely Below Range. 

Time in ranges metrics that resulted significant HbA1c predictors with all 
windows widths are presented in Table 4.6. As observed in the pediatric 
analysis, TIR and TIT showed a negative linear relationship with HbA1c, 
while TAR had a positive linear relationship with HbA1c, although in 30-
days and 60-days windows the variance explained by these linear mixed 
models was not elevated. Moreover, TBR resulted a significant predictor 
only in the case of windows of 30 and 60 days (R2= 0.78 and R2= 0.81, 
respectively).  

Anyway, it is possible to also underline some distinctions compared to the 
pediatric dataset. In particular, there was a significant relationship between 
TAR_Lev2 and HbA1c only in 30-days and 90-days windows with a modest 
variance explained by each model (R2=0.38 and R2=0.63, respectively). In 
addition, TBR_Lev2 resulted a significant HbA1c predictor in the case of 
60-days windows (R2=0.74). 
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Table 4.6: Separate linear mixed model predictor variables with different 
window widths in the adult dataset. Predictor coefficients are presented as 
value (lower 95% confidence limit; upper 95% confidence limit) while 
intercept coefficients are presented as fixed effect value ± random effect 
within-patient standard deviation. 

Windows 
width 

Predictor 
Intercept R2 Target 

Variable Coefficient 

30 days 

TIR -0.0323 
(-0.0535; -0.0110) 9.2778 ± 0.2900 0.6102 70.58% 

TIT -0.0423 
(-0.0681; -0.0165) 8.9844 ± 0.3208 0.6888 46.93% 

TAR +0.0252 
(+0.0080; +0.0424) 6.5426 ± 0.2915 0.5834 18.18% 

60 days 

TIR -0.0297 
(-0.0543; -0.0050) 9.1760 ± 0.3381 0.5894 73.38% 

TIT -0.0381 
(-0.0654; -0.0107) 8.8666 ± 0.3612 0.6730 49.04% 

TAR +0.0260 
(+0.0073; +0.0446) 6.5756 ± 0.3877 0.6951 16.36% 

90 days 

TIR -0.0364 
(-0.0628; -0.0100) 9.5426 ± 0.4011 0.7416 69.89% 

TIT -0.0434 
(-0.0712; -0.0156) 9.0352 ± 0.4388 0.8062 46.92% 

TAR 0.0319 
(0.0126; 0.0512) 6.3479 ± 0.4616 0.8291 20.45% 

Table 4.7: Estimated random intercepts and corresponding Time in Range 
(TIR) target values for maintaining glycated hemoglobin (HbA1c) ≤7% in 
National Glycohemoglobin Standardization Program (NGSP) units, using 30-
days windows in the adult dataset. 

Patient Average HbA1c Average TIR Intercept TIR target 
42 7.18 49.68 8.9097 59.17 
60 6.60 67.89 9.0986 65.02 
48 7.36 54.10 9.1499 66.61 
39 7.73 45.53 9.2490 69.68 
45 7.85 43.61 9.2669 70.24 
57 7.30 61.64 9.2821 70.71 
46 6.88 77.58 9.3453 72.67 
38 8.30 38.34 9.3735 73.54 
40 8.00 50.93 9.5107 77.79 
50 8.50 50.59 9.5928 80.34 

 
Considering the relationship between HbA1c and TIR, Table 4.7 reports 

the random intercepts estimated for each patient in 30-days windows, while 
Figure 4.12 displays the negative relationship between TIR and HbA1c 
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adopting the overall estimated intercept to draw the regression line, defined 
as:  

𝐻𝐻𝐻𝐻𝐶𝐶1𝑠𝑠 = 9.2778 −  0.0323 ∙ 𝐿𝐿𝐼𝐼𝐼𝐼 

 

Figure 4.12: Linear relationship between glycated hemoglobin (HbA1c) and 
Time in Range using the overall estimated intercept with 30-days windows 
in the adult dataset. HbA1c is expressed in National Glycohemoglobin 
Standardization Program (NGSP) units. 

The results obtained with windows of 30, 60, and 90 days, both in the 
pediatric and adult datasets as reported in Table 4.3 and Table 4.6, confirmed 
the relationship between HbA1c and time in ranges metrics. The targets 
found in our study using the overall intercepts estimated through LME 
models are comparable with the ATTD consensus recommendations for a 
safe glycemic control [23], i.e. TIR >70%, TAR <25%, and TAR_Lev2 
<10%. In addition, these findings are consistent even with other studies in 
literature. Beck et al. [93] analyzed through linear regression models the 
relationship between HbA1c and glycemic metrics in T1DM adult patients 
across four RCT. Based on data at the beginning of the study, targets for a 
safe glycemic control were set at 70% for TIR, at 46.73% for TIT, and at 
24.89% for TAR, but based on data at the end of the study these targets were 
set at 64.63, 42.56, and 30%, which are almost similar to the targets 
identified in the pediatric dataset. Vigersky and McMahon [94] selected 
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paired HbA1c and TIR values from 18 studies, considering T1DM or T2DM 
patients, and they concluded that the TIR target should be set around 65%. 

Furthermore, the proposed approach allows also investigating the 
question of individualized glycemic targets to meet the needs of each DM 
subject, as advised in the ATTD consensus report [23]. Consistently with a 
recent study on T1DM pediatric patients by Piona et al. [168], which reported 
that a four-week period is the optimal sampling window for reflecting a long-
term glycemic control with CGM data, 30-days windows were used for 
exploring the inter-subject variability and identifying individualized CGM 
targets. This direction is suggested even by the JDRF CGM Study Group 
[54], which found that a substantial individual variability exists in the 
relationship between average glucose and HbA1c, and by Bergenstal et al. 
[169], who pointed out that people with the same average glucose could have 
different HbA1c value. 

In Table 4.4 Table 4.7 it possible to observe a high variability between 
each patient’s random effect with a more evident difference in the pediatric 
dataset compared to the adult dataset, since the patient-specific intercepts 
ranged in the interval [9.4129–11.2353] and in the interval [8.9097-9.5928], 
respectively. The differences between intercepts might be related to the 
individual biological variation in erythrocyte survival or glycation rates, as 
hypothesized by both the JDRF CGM Study Group [54] and Bergenstal. 
[169], although further studies on longer monitoring periods are needed to 
confirm this hypothesis. Such variability is reflected in the wide range of 
estimated TIR targets, which ranged in the interval [50.06 – 87.86] for 
pediatric patients ad in the interval [59.17-80.34] for adult patients. 
Accordingly, some patients could maintain a lower TIR to preserve a safe 
glycemic control, while other patients need to stay in the range for a longer 
period to keep HbA1c ≤7%. This conclusion may be influenced by the 
difference between long-term average glucose from HbA1c and short-term 
average glucose during CGM [170], emphasizing the importance of 
individualized diabetes management also using the CGM-derived glycemic 
metrics, particularly in patients with suboptimally controlled DM [135]. 

4.2.2. Self-monitoring frequency and glycemic metrics 

In the pediatric dataset, after the division of glucose data in 526 monitoring 
windows of 14-days, 218 windows were discarded because they contained 
less than 480 automatically stored readings. The 308 accepted windows were 
rank ordered by daily scan frequency, computed as the sum of the manual 
scans divided by the window length, and split into ten groups based on 
deciles. Within each group, which comprised 31 windows (except for the two 
highest groups that included 30 windows), average values of daily scan 
frequency and TIR were computed, as shown in Table 4.8.  

Figure 4.13 allows a visual inspection of the relationship between daily 
scan frequency and TIR average values. The significant positive correlation 
(p-value<0.02) is confirmed through the Spearman coefficient computation, 



 

 80 

with ρ=0.75. Based on the results of the non-parametric Dunn's test, the 
average TIR value in the highest scan frequency group was significantly 
different (p-value <10-3) from the average TIR in all but the ninth group. 
Indeed, average TIR decreased from 58.85% in the in the highest scan 
frequency group (30.02 scans/day) to 22.68% in the lowest scan frequency 
group (2.88 scans/day).  

Table 4.8: Daily scan frequency and Time in Range (TIR) average values ± 
standard deviation for each group, based on the daily scan frequency ranking 
in the pediatric dataset. 

Group Daily scan frequency TIR 
1 2.88 ± 0.72 22.68 ± 16.14 
2 4.62 ± 0.39 30.50 ± 22.81 
3 6.05 ± 0.34 43.63 ± 23.95 
4 6.83 ± 0.23 47.50 ± 23.67 
5 7.97 ± 0.48 47.52 ± 22.51 
6 9.31 ± 0.41 51.46 ± 18.07 
7 11.34 ± 0.72 44.34 ± 16.16 
8 15.44 ± 1.66 42.34 ± 22.08 
9 20.63 ± 1.22 55.67 ± 15.05 
10 30.02 ± 5.91 58.85 ± 23.50 

 

Figure 4.13: Scatter plot of daily scan frequency and Time in Range (TIR) 
average values, based on the daily scan frequency ranking in the pediatric 
dataset. 
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Afterwards, the 308 accepted windows were ranked ordered also by SD, 
CONGA1, and ADRR in separate analyses and split into ten groups based on 
deciles. Similarly, average values of TIR and the corresponding ranking 
variable were computed in every group. According to Dunn’s tests, TIR 
resulted significantly higher in groups with the lowest variability, and a 
strong negative correlation (p-value <10-5) was found between each of the 
selected glycemic metrics, as illustrated in Figure 4.14. In particular, ρ was 
equal to -0.98 considering SD and equal to -0.99 considering CONGA1 and 
ADRR.  

 

Figure 4.14: Scatter plots of average values of Time in Range (TIR) and 
Standard Deviations (SD) in part A, TIR and Continuous Overlapping Net 
Glycemic Action at 1-hour (CONGA1) in part B, and of TIR and Average 
Daily Risk Range (ADRR) in part C, based on the respective ranking variable 
in the pediatric dataset. 

Therefore, a high daily scan frequency through the FreeStyle Libre system 
and a reduction in glycemic variability are associated with high time spent 
in the euglycemic range in the pediatric dataset. The same positive 
correlation between elevated scanning frequency and improved glycemic 
control was observed in similar studies [139]–[142], although average daily 
scan frequency and TIR resulted lower in our T1DM pediatric population. 

Considering the adult dataset, 320 monitoring windows were accepted 
after the preprocessing phase, while 96 windows were discarded because 
they contained less than 480 automatically stored readings. Anyway, there 
was not a significant positive correlation between daily scan frequency and 
TIR. In Table 4.9, indeed, it is possible to notice that average TIR values 
were almost the same among all groups, varying only in the 50%-60% range. 
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Instead, a strong negative correlation (p-value <10-3) was found between TIR 
and each of the selected glycemic metrics, as illustrated in Figure 4.15. In 
particular, ρ was equal to -0.99 considering SD, equal to -0.89 considering 
CONGA1, and equal to -0.94 considering ADRR 

Table 4.9: Daily scan frequency and Time in Range (TIR) average values ± 
standard deviation for each group, based on the daily scan frequency ranking 
in the adult dataset. 

Group Daily scan frequency TIR 
1 3.16 ± 0.44 54.03 ± 13.04 
2 4.08 ± 0.25 54.58 ± 14.74 
3 5.01 ± 0.35 54.86 ± 13.65 
4 5.84 ± 0.15 55.83 ± 10.04 
5 6.66 ± 0.26 54.68 ± 11.14 
6 7.35 ± 0.20 52.47 ± 8.26 
7 8.12 ± 0.28 50.82 ± 9.29 
8 9.20 ± 0.30 51.88 ± 11.00 
9 10.34 ± 0.42 64.95 ± 14.25 
10 12.08 ± 0.80 58.68 ± 15.42 

 

Figure 4.15: Scatter plots of average values of Time in Range (TIR) and 
Standard Deviations (SD) in part A, TIR and Continuous Overlapping Net 
Glycemic Action at 1-hour (CONGA1) in part B, and of TIR and Average 
Daily Risk Range (ADRR) in part C, based on the respective ranking variable 
in the adult dataset. 
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The different relationship observed in the pediatric and the adult dataset 
between daily scan frequency and TIR might be related to the parental 
attitudes towards their children. In general, parents monitor child’s glycemic 
levels through their CGM sensors on a regular basis, especially in case of 
young children who are unable to clearly express symptoms of 
hypoglycemia, and promptly manage potential hypoglycemic or 
hyperglycemic episodes in a short time; on the contrary, it is possible that 
some adults tend to delay their own self-care tasks. 

4.3. Temporal data mining results 

4.3.1. Pattern detection 

Several workflows of diabetes-specific patterns have been included in the 
AID-GM platform. Through the GUI it was possible to select all the patterns 
of interest, along with patients and specific time periods, and visualize the 
results, i.e. time intervals in which the time-series assume behaviors of 
interest, presented in form of colored bars. For instance, Figure 4.16 shows 
all the hypoglycemic episodes occurred between the 1st of February 2018 and 
the 28th of February 2018 considering the adult dataset.  

 

Figure 4.16: Hypoglycemia pattern visualization in the Advanced Intelligent 
Distant – Glucose Monitoring (AID-GM) platform, considering glucose 
monitoring data of adult patients between 1st February 2018 and 28th February 
2018. 

Figure 4.17, instead, presents a second kind of pattern visualization 
available in the AID-GM platform, providing various glycemic patterns of 
Patient 42 (from the adult dataset) in the same period of interest. Each 
colored bar links to a daily profiles chart, which is related to the time interval 
of the corresponding pattern occurrence, as for the hyperglycemic episode 
shown in Figure 4.18 occurred to Patient 42 on the 28th of February 2018. 
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Additionally, the daily profiles chart can be supplemented by information on 
the subject’s activities in that time interval, like the manually and 
automatically detected workouts in Figure 4.18, which may help the 
healthcare providers to evaluate the patient’s situation. 

 

Figure 4.17: Glycemic pattern visualization in the Advanced Intelligent 
Distant – Glucose Monitoring (AID-GM) platform, considering glucose 
monitoring data of Patient 42 (adult dataset) between 1st February 2018 and 
28th February 2018. 

 

Figure 4.18: Pattern detection in the Advanced Intelligent Distant – Glucose 
Monitoring (AID-GM) platform, considering blood glucose (BG automatic: 
light blue line; BG manual: red dot) and heart rate (HR: dark orange line) 
data of Patient 46 in the adult dataset. On the timeline, the blue rectangle 
represents the time interval in which the selected pattern (in this case, 
hyperglycemia) occurred. 

A summary of diabetes-specific patterns based on FreeStyle Libre system 
and Fitbit tracker monitoring data is presented in Table 4.10 and Table 4.11, 
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considering the pediatric and adult datasets, respectively. Moreover, such 
patterns can be further specified based on the Fitbit tag, as described in 
Section 3.3.2; all implementation details are provided in Appendix B. In 
particular, it is possible to note that both the count and the average duration 
of hypoglycemic episodes are higher in the adult dataset compared to the 
pediatric dataset, while the opposite consideration can be done for 
hyperglycemic episodes, which are longer and more frequent in children and 
adolescents compared to adults. Furthermore, 25 and 92 episodes of Dawn 
Effect were detected in the pediatric and adult dataset, showing an average 
duration of 339.56 minutes (± 141.57 SD) and 337.32 minutes (± 120.64 
SD), respectively, along with multivariate patterns like Tachycardia 
precedes Hypoglycemia (146 versus 625 occurrences) or Hypoglycemia 
precedes Bradycardia during sleep periods (1 versus 39 occurrences). 

Table 4.10: Summary of diabetes-specific patterns detected in the pediatric 
dataset; statistics are presented as frequencies or averages ± standard 
deviations. Patterns durations are expressed in minutes. 

Pattern Episodes Total duration Average duration 
BGDecDuringHypo 115 4,257 37.02 ± 10.96 

BGDecreasing 13,068 1115,536 85.36 ± 45.72 
BGIncreasing 13,434 1075,135 80.03 ± 47.09 
BGStationary 36,880 744,471 20.19 ± 18.55 
Bradycardia 2,913 64,020 21.98 ± 31.00 
DawnEffect 25 8,489 339.56 ± 141.57 

DecreasingHypo 900 23,470 26.08 ± 17.99 
Euglycemia 14,397 2720,661 188.97 ± 213.74 

HRDecreasing 10,437 79,950 7.66 ± 2.55 
HRIncreasing 9,404 72,052 7.66 ± 2.88 
HRStationary 16,618 170,960 10.29 ± 6.29 

Hyperglycemia 10,915 3083,652 282.52 ± 338.56 
Hyperglycemia_Lev1 15,254 1255,683 82.32 ± 91.48 
Hyperglycemia_Lev2 7,226 1610,693 222.9 ± 249.20 

HypoBeforeHyper 2 254 127 ± 96,17 
Hypoglycemia 2,991 162,012 54.17 ± 65.25 

Hypoglycemia_Lev1 2,646 83,246 31.46 ± 27.85 
Hypoglycemia_Lev2 866 50,081 57.83 ± 65.88 

HypoPrecBradyS 1 23 23.00 
IncreasingHyper 4,880 298,202 61.11 ± 49.83 

Tachycardia 14,519 323,947 22.31 ± 35.2 
TachyPrecHypo 146 6,746 46.21 ± 21.85 
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Table 4.11: Summary of diabetes-specific patterns detected in the adult 
dataset; statistics are presented as frequencies or averages ± standard 
deviations. Patterns durations are expressed in minutes. 

Pattern Episodes Total duration Average duration 
BGDecDuringHypo 268 10,024 37.40 ± 10.79 

BGDecreasing 8,251 688,626 83.46 ± 43.96 
BGIncreasing 9,650 728,245 75.47 ± 39.63 
BGStationary 37,333 779,361 20.88 ± 15.49 
Bradycardia 28,068 702,043 25.01 ± 31.43 
DawnEffect 92 31,033 337.32 ± 120.64 

DecreasingHypo 1,290 37,288 28.91 ± 18.49 
Euglycemia 14,078 2905,436 206.38 ± 214.44 

HRDecreasing 42,233 327,414 7.75 ± 2.70 
HRIncreasing 33,945 257,469 7.58 ± 2.70 
HRStationary 74,614 869,073 11.65 ± 8.05 

Hyperglycemia 8,608 1929,161 224.11 ± 232.75 
Hyperglycemia_Lev1 11,589 1166,613 100.67 ± 104.43 
Hyperglycemia_Lev2 4,281 627,212 146.51 ± 148.42 

HypoBeforeHyper 0 0 0 
Hypoglycemia 4,617 366,464 79.37 ± 77.74 

Hypoglycemia_Lev1 4,448 182,279 40.98 ± 35.87 
Hypoglycemia_Lev2 1,943 126,231 64.97 ± 64.23 

HypoPrecBrady_Sleep 39 2,102 53.90 ± 25.08 
IncreasingHyper 3,666 198,194 54.06 ± 40.82 

Tachycardia 63,018 1530,833 24.29 ± 38.17 
TachyPrecHypo 625 40,279 64.45 ± 31.30 

4.3.2. Hypoglycemia analysis 

The search for hypoglycemic patterns can be further refined based on the 
activity information provided to the AID-GM platform when the Fitbit 
tracker is worn by patients. In particular, Table 4.12 and Table 4.13 outline 
the episodes of hypoglycemia during routine, sleep, and workout periods in 
the pediatric and adult datasets, respectively. In particular, it is possible to 
notice a difference between the number of Hypoglycemia, as presented in 
Table 4.10 and Table 4.11, and the sum of HypoglycemiaR, HypoglycemiaS, 
and HypoglycemiaW episodes, equal to 452 occurrences for pediatric 
patients and to 2,701 for adult patients. The discrepancy, which is more 
evident in the pediatric dataset, is due to the fact that patients have used the 
Fitbit tracker for a shorter period compared to the FreeStyle Libre system.  
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Table 4.12: Summary of hypoglycemic patterns based on the Fitbit tag, 
detected in the pediatric dataset; statistics are presented as frequencies or 
averages ± standard deviations. Patterns durations are expressed in minutes. 

Pattern Episodes Total duration Average duration 
Hypoglycemia_R 312 11,573 37.09 ± 34.64 
Hypoglycemia_S 123 10,167 82.66 ± 68.00 
Hypoglycemia_W 17 362 21.29 ± 11.06 

Hypoglycemia_Lev1R 249 6,479 26.02 ± 17.38 
Hypoglycemia_Lev1S 113 4,307 38.12 ± 33.11 
Hypoglycemia_Lev1W 12 226 18.83 ± 9.59 
Hypoglycemia_Lev2R 69 2,669 38.68 ± 31.80 
Hypoglycemia_Lev2S 60 4,234 70.57 ± 65.38 
Hypoglycemia_Lev2W 2 30 15 ± 0 

Table 4.13: Summary of hypoglycemic patterns based on the Fitbit tag, 
detected in the adult dataset; statistics are presented as frequencies or 
averages ± standard deviations. Patterns durations are expressed in minutes. 

Pattern Episodes Total duration Average duration 
Hypoglycemia_R 2,071 125,454 60.58 ± 54.33 
Hypoglycemia_S 578 56,95 98.53 ± 85.35 
Hypoglycemia_W 52 1,326 25.5 ± 16.81 

Hypoglycemia_Lev1R 1,786 68,236 38.21 ± 31.61 
Hypoglycemia_Lev1S 543 25,024 46.08 ± 38.72 
Hypoglycemia_Lev1W 27 630 23.33 ± 15.19 
Hypoglycemia_Lev2R 757 34,883 46.08 ± 42.85 
Hypoglycemia_Lev2S 317 24,93 78.64 ± 74.40 
Hypoglycemia_Lev2W 15 316 21.07 ± 15.81 

 
Moreover, the importance of contextualizing glycemic patterns within the 

day can be highlighted also in the comparison between the hypoglycemic 
patterns detected using the Profile tag or the Fitbit tag. Indeed, the frequency 
of hypoglycemia during sleep is a key information in diabetes monitoring, 
especially for children, and it is essential to quickly identify patients who are 
experiencing such pattern more frequently than others for apposite therapy 
adjustments. Considering the habitual bedtime and awakening-time for each 
patient, 266 episodes of HypoglycemiaS were detected in the pediatric 
dataset and 1,188 episodes in the adult dataset. Nevertheless, the search for 
HypoglycemiaS patterns using the Fitbit tag provided only 123 and 578 
effective occurrences, respectively. In particular, the intersection between 
the HypoglycemiaS patterns detected based on Fitbit tag and Profile tag was 
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limited to 104 episodes for children and 457 episodes for adults, as shown in 
Figure 4.19 and Figure 4.20, respectively. 

 

Figure 4.19: Count of hypoglycemic patterns during sleep detected using 
either the Profile tag, the Fitbit tag, or the intersection between the two tags  
in the pediatric dataset. 

 

Figure 4.20: Count of hypoglycemic patterns during sleep detected using 
either the Profile tag, the Fitbit tag, or the intersection between the two tags  
in the adult dataset. 
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Furthermore, HR time-series related to HypoglycemiaS episodes were 
investigated among children and adolescent, as described in Section 3.3.3. 
Overall, 15,392 hours of simultaneous FreeStyle Libre system and Fitbit 
tracker monitoring were recorded in the pediatric dataset. A total of 773 sleep 
intervals were detected, including 170 hours of BG recordings during sleep 
in the hypoglycemic range, and the median duration of HypoglycemiaS 
episodes for each subject was 57 minutes (± IQR of 43 minutes).  

Eight of the 17 patients equipped with the Fitbit tracker patients were 
excluded since they experienced less than three episodes of HypoglycemiaS. 
Therefore, a total of nine patients and 516 valid sleep intervals remained 
after the preprocessing phase, split into 68 intervals (13%) with the 
occurrence of hypoglycemic episodes and 448 intervals (87%) without 
hypoglycemic episodes. For each of the nine selected patient, the distribution 
of HR values in the before-hypoglycemia dataset was compared to the 
distribution of HR values in the no-hypoglycemia dataset, as shown in Figure 
4.21. Based on the results of the non-parametric Mann-Whitney U test, a 
statistically significant difference (p-value <10-2) between the before-
hypoglycemia HR distribution and the no-hypoglycemia HR distribution was 
found in six of nine patients, such as Patient 67, 68, 69, 75, 76, and 87. In all 
these six cases the HR median values of the no-hypoglycemia dataset were 
higher than the HR median values of the before-hypoglycemia dataset. 
Examining the other three patients, instead, it was possible to observe that 
also Patient 63 showed a higher HR median value before HypoglycemiaS 
episodes compared to sleep intervals without hypoglycemia, but the 
difference was not statistically significant, while for Subjects 97 and 100 the 
HR median values were comparable. Additionally, a comparison between 
after-hypoglycemia and no-hypoglycemia HR distributions was presented in 
Figure 4.22. After the end of the hypoglycemic episode the HR values 
remained higher in all cases but one (Patient 97) compared to those collected 
in the no-hypoglycemia sleep intervals, with a statistically significant 
difference in six cases. 

This analysis confirms that symptomatic or asymptomatic hypoglycemia 
repeatedly occur in children and adolescents with T1DM during sleep, 
suggesting that cardiac rhythm disturbances may represent a key element in 
the prevention of nighttime hypoglycemia. The presence of higher HR values 
in the before-hypoglycemia dataset compared to the no-hypoglycemia 
dataset, indeed, supports the sympathetic response to hypoglycemia [171], 
while a persistent increase in HR could be implicated in hypoglycemia-
induced cardiac arrhythmias. Increased HR followed by an incorrect 
adjustment of repolarization, with inhomogeneous prolongation of the action 
potential duration, can lead to the dispersion of ventricle repolarization and 
fatal arrhythmias [171]; in T1DM individuals, the additional role of renin-
angiotensin system activity in the magnitude of the adrenaline response to 
hypoglycemia could also be considered [172]. A subsequent increase of the 
parasympathetic activity to defend the organism cannot be excluded, leading 
to a risk for fatal heart rhythm problems in individuals with autonomic failure 
[150]. 
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Figure 4.21: Comparison between the heart rate values collected in the hour 
before a hypoglycemic episode (in red) and in sleep intervals without 
hypoglycemic episodes (in green) in the pediatric dataset. 

 

Figure 4.22: Comparison between the heart rate values collected in the hour 
after a hypoglycemic episode (in orange) and in sleep intervals without 
hypoglycemic episodes (in green) in the pediatric dataset. 
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4.4. Generalized deep learning model results 

4.4.1. Results on the pediatric dataset 

Table 4.14 allows to compare the average prediction errors of the proposed 
deep learning models based on pediatric patients, considering sliding 
windows with different widths and a 15-minutes PH. The “Model” column 
indicates the specific scenario, like the univariate scenario with only BG 
time-series (sBG), the multivariate scenario with BG and HR time-series 
(sBG-HR), and the multivariate scenario with a combination of BG, HR, and 
activities time-series (sBG-HR-Activity).  

Models performances are almost comparable between different scenarios 
using a short sliding window of 15 minutes. Anyway, it is possible to notice 
that increasing the volume of historical data consented to obtain more 
accurate predictions, and with longer sliding windows of 45 minutes the 
multivariate sBG-HR-Activity scenario provided on average a lower 
prediction error compared to sBG and sBG-HR scenarios. Time windows 
larger than 45 minutes were considered as well (60, 75, and 90 minutes) to 
evaluate the behavior of RMSE on longer PHs. We noticed that, although 
RMSE continued to decrease, the relative improvement was not as strong as 
before. Thus, considering that widening the time windows increases the 
possibility of losing some information, we decided to use a maximum width 
of 45 minutes to show results. In addition, such values are comparable to 
those obtained by other generalized models in literature trained in similar 
conditions [118], [120]. 

Table 4.14: Overall analytical evaluation of pediatric multi-patient models 
by window width using the root mean square error (RMSE). RMSE values 
are presented as mean ± standard deviation and expressed in mg/dL.  

Model 
Window width 

15 min 30 min 45 min 
sBG 15.67 ± 1.63 11.10 ± 1.16 10.55 ± 1.12 

sBG-HR 15.64 ± 1.65 11.05 ± 1.09 10.45 ± 1.14 
sBG-HR-Activity 15.67 ± 1.64 11.09 ± 1.20 10.35 ± 1.15 
 
The overall clinical evaluation of the proposed models through the CEGA 

is reported in Table 4.15. As emerged in the analytical assessment, the use 
of longer sliding windows allowed to achieve better results also in terms of 
severity of the potential harm caused by prediction errors. Indeed, in all 
scenarios the average percentages of points in zone A tended to rise as the 
windows width increased. In parallel, using 45-minutes windows the average 
percentages of points in a dangerous zone like the zone D decreased to 0.15% 
(± 0.11% SD) in the sBG scenario, to 0.17% (± 0.09% SD) in the sBG-HR 
scenario, and to 0.20% (± 0.07% SD) in the sBG-HR-Activity, while the 
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average percentages of points in the other dangerous zones such as zone C 
and zone E were very nearly to zero. Figure 4.23 displays an example of the 
resulting grid on Patient 98 using the sBG-HR-Fitbit model with 45-minutes 
sliding windows. Out of 1581 testing points, 1578 were in zone A with just 
three points in zone B and no points in dangerous areas. 

Table 4.15: Overall clinical evaluation of pediatric multi-patient models by 
window width using the Clarke Error Grid analysis. Values are presented as 
mean ± standard deviation and expressed in percentages. 

Model Window 
width 

Clarke Error Grid zones 

A B C D E 

sBG 

15 min 93.57 ± 1.34 5.97 ± 1.27 ≈0 ± ≈0 0.46 ± 0.18 0 ± 0 

30 min 97.05 ± 0.79 2.74 ± 0.79 0 ± 0 0.21 ± 0.09 0 ± 0 

45 min 97.66 ± 0.87 2.19 ± 0.80 0 ± 0 0.15 ± 0.11 0 ± 0 

sBG 
HR 

15 min 93.60 ± 1.48 5.80 ± 1.27 ≈0 ± ≈0 0.60 ± 0.37 0 ± 0 

30 min 97.11 ± 0.77 2.62 ± 0.77 0 ± 0 0.27 ± 0.10 0 ± 0 

45 min 97.72 ± 0.61 2.11 ± 0.59 0 ± 0 0.17 ± 0.09 0 ± 0 

sBG 
HR 

Activity 

15 min 93.79 ± 1.40 5.68 ± 1.28 ≈0 ± ≈0 0.53 ± 0.19 0 ± 0 

30 min 97.06 ± 0.80 2.67 ± 0.78 0 ± 0 0.27 ± 0.11 0 ± 0 

45 min 97.82 ± 0.57 1.98 ± 0.55 0 ± 0 0.20 ± 0.07 0 ± 0 

 

 

Figure 4.23: Clarke Error Grid for a pediatric test patient (Patient 98) using 
the BG-HR-Fitbit model with a 45-minutes window size. 

Furthermore, multi-patient and multivariate models developed on the 
adult training sets were tested on the pediatric test patients, demonstrating 
high generalization capabilities. Indeed, using 45-minutes windows the 
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average prediction errors were lower compared with those obtained by 
models developed on pediatric patients in all scenarios. The highest 
improvements were found in the sBG scenario, with an average RMSE of 
10.33 mg/dL (± 1.17 SD), and in the sBG-HR scenario, with an average 
RMSE of 10.30 mg/dL (± 1.17 SD), while in the sBG-HR-Activity scenario 
the average RMSE of 10.32 mg/dL (± 1.18 SD) was comparable with the 
average prediction accuracy achieved by models developed on pediatric 
patients. 

4.4.2. Results on the adult dataset 

Table 4.16 presents the average prediction errors of the proposed deep 
learning models based on adult patients, considering sliding windows of 
different widths and a 15-minutes PH. Overall, models that relied only on 
BG time-series performed slightly better than the other scenarios, even if the 
average prediction errors were comparable, especially considering 30-
minutes and 45-minutes windows. 

Table 4.16: Overall analytical evaluation of adult multi-patient models by 
window width using the root mean square error (RMSE). RMSE values are 
presented as mean ± standard deviation and expressed in mg/dL.  

Model 
Window width 

15 min 30 min 45 min 
BG 14.16 ± 2.37 9.31 ± 1.33 8.60 ± 1.10 

BG-HR 14.22 ± 2.40 9.33 ± 1.35 8.62 ± 1.11 
BG-HR-Activity 14.22 ± 2.37 9.31 ± 1.29 8.63 ± 1.08 

Table 4.17: Overall clinical evaluation of adult multi-patient models by 
window width using the Clarke Error Grid analysis. Values are presented as 
mean ± standard deviation and expressed in percentages. 

Model Window 
width 

Clarke Error Grid zones 

A B C D E 

BG 

15 min 94.72 ± 2.82 4.94 ± 2.67 0.01 ± 0.02 0.33 ± 0.15 0 ± 0 

30 min 98.07 ± 1.10 1.82 ± 1.09 ≈0 ± ≈0 0.11 ± 0.06 0 ± 0 

45 min 98.62 ± 0.78 1.26 ± 0.75 ≈0 ± ≈0 0.12 ± 0.04 0 ± 0 

BG 
HR 

15 min 94.66 ± 2.84 4.99 ± 2.68 0.02 ± 0.03 0.34 ± 0.18 0 ± 0 

30 min 98.04 ± 1.18 1.84 ± 1.17 ≈0 ± ≈0 0.12 ± 0.06 0 ± 0 

45 min 98.64 ± 0.76 1.23 ± 0.73 ≈0 ± ≈0 0.12 ± 0.06 0 ± 0 

BG 
HR 

Activity 

15 min 94.66 ± 2.82 4.95 ± 2.64 0.01 ± 0.02 0.38 ± 0.19 0 ± 0 

30 min 98.10 ± 1.12 1.77 ± 1.11 ≈0 ± ≈0 0.12 ± 0.07 0 ± 0 

45 min 98.62 ± 0.81 1.26 ± 0.78 ≈0 ± ≈0 0.11 ± 0.06 0 ± 0 
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As observed in the pediatric models, a greater volume of historical data 

allowed to obtain more accurate predictions, both in analytical and clinical 
terms. In fact, Table 4.17 shows that the average percentage of points in zone 
A achieved 98.62% (± 0.78% SD) in the sBG scenario, 98.64% (± 0.76% 
SD) in the sBG-HR scenario, and 98.62% (± 0.81% SD) in the sBG-HR-
Activity scenario, revealing better performances in terms of correct clinical 
decisions than pediatric models. 

In addition, multi-patient and multivariate models developed on the 
pediatric training sets were tested on the adult test patients using 45-minutes 
windows. The differences in terms of average prediction errors between the 
pediatric models tested on adult patients and adult models were modest, 
always less than 0.4 mg/dL. Indeed, the average RMSE was equal to 8.96 
mg/dL (± 1.13 SD) in the sBG scenario, to 8.99 mg/dL (± 1.17 SD) in the 
sBG-HR scenario, and to 8.95 mg/dL (± 0.99 SD) in the sBG-HR-Activity, 
revealing good generalization capabilities. 
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Chapter 5 
5 Conclusions 

Since DM is a lifelong condition that can lead to life-threatening health 
problems, early diagnosis, medication availability, life-style education, and 
constant monitoring represent crucial aspects for preventing acute events and 
reducing the risk of long-term complications.  

The AID-GM web application allowed patients to share with their 
diabetologists both glucose data from FreeStyle Libre isCGM systems and 
activity information from Fitbit fitness trackers. Long-term remote 
monitoring was supported by the implementation of several temporal 
analytics functionalities in the platform, making available to clinicians a 
qualitative and quantitative overview of each patient’s conditions. Fitbit 
information was used to contextualize BG measurements within the day and 
provide information about the actual lifestyle of a patient, identifying 
eventual irregularities in daily habits that can help clinicians in the 
interpretation of unusual metabolic responses.  

The data collected in the two evaluation studies of the platform allowed 
building a research dataset that was used for the development of several 
temporal data analytics strategies to gain deeper insight in the data and to 
enhance critical events prediction. 

The availability of considerable amount of BG data made it possible to 
investigate the relation between a set of summary indicators computed on 
CGM time series and HbA1c. HbA1c test represents the gold standard 
indirect measure of long-term glycemic control, since it can estimate the 
glycemic exposure over the last two or three months before sampling, while 
CGM-derived time in range indicators have become popular metrics for 
glycemic control, as they were associated with the risk of development of 
microvascular complications [92]. In this thesis, the relationship between 
HbA1c values and time in ranges metrics was investigated through the 
innovative adoption of LME models. TIR TIT, and TAR resulted significant 
HbA1c predictors considering both pediatric and adult patients. As expected, 
TIR and TIT confirmed a negative linear relationship with HbA1c, while 
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TAR showed a positive linear relationship with HbA1c, as reported in 
previous studies. Thanks to the use of LME models, it was possible to assess 
the time in ranges targets for a safe glycemic control (HbA1c ≤7%), which 
were found to be comparable with the ATTD consensus recommendations 
for CGM-derived glycemic targets [23] and also with other findings in 
literature [93], [94]. Finally, the adoption of LME models consented also to 
explore the inter-subject variability and identify, even though on a small 
cohort of patients, individualized glycemic targets for maintaining a near-
normal glycemic control.  

Thanks to the available data, it was possible to explore a second analysis 
scenario, related to the relationships between self-monitoring frequency and 
glycemic metrics. In the pediatric dataset, we found a significant correlation 
between a high daily scan frequency through the FreeStyle Libre system and 
a reduction in glycemic variability with high time spent in the euglycemic 
range. Interestingly, this result was not confirmed in the adult dataset. 

When considering BG time series, there exists a number of qualitative 
patterns that diabetologists used to look for in the data to identify specific 
patterns of interest. To extract such patterns from large time series datasets, 
TAs are a suitable solution. Thanks to the use of the JTSA tool, several 
workflows of diabetes-specific patterns, both univariate and multivariate, 
were formalized in collaboration with the diabetologists from the 
Fondazione IRCCS Policlinico San Matteo hospital and the IRCCS Istituti 
Clinici Scientifici Maugeri and have been included in the AID-GM platform. 
This allows clinicians to easily detect patterns of interest and possibly 
stratify the population in sub-groups, identifying the individuals who need 
apposite therapy adjustments. In this context, a particularly relevant analysis 
scenario has involved the investigation of the nighttime hypoglycemic 
pattern, especially for young patients, since it has been associated with the 
“dead-in-bed” syndrome. Analyzing pediatric patients, it was possible to 
notice that HR modifications occur in nighttime hypoglycemic episodes, 
suggesting that cardiac rhythm disturbances may represent a key element in 
the prevention of hypoglycemia during sleep. However, this explorative 
analysis presented several limitations, such as the relatively small number of 
number of participants, and the lack of data about morphological changes in 
electrocardiographic repolarization and/or the QTc prolongation, which 
could be useful to study the pathogenetic mechanisms of cardiac 
arrhythmias. 

Given the importance of preventing acute glycemic events especially in 
specific contexts (e.g. sleep or exercise), as a final analytics application we 
developed a multi-patient and multivariate deep learning model for glucose 
prediction considering both the pediatric and adult datasets. The core of the 
model was represented by a LSTM layer, surrounded by a set of hidden 
layers. Analytical and clinical evaluations suggested that a general model 
with good prediction performance can be obtained from a population of 
patients. Additionally, increasing the volume of historical values and 
combining HR and lifestyle monitoring signals to contextualize the BG 
measures can help to improve BG prediction. Increasing the PH by 
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considering time windows of different lengths allowed lowering RMSE. 
Although several PH were taken into account, a decision was made to present 
results only for 15, 30, and 45-minutes windows, as the relative improvement 
with longer windows started to decrease afterwards.  

Overall, this thesis presented an extensive analysis on BG monitoring 
time-series coupled with HR and lifestyle data. Thanks to the application of 
several advanced temporal analytics techniques, it was possible to evaluate 
different scenarios to exploit the data at its best. We took advantage of the 
possibility of contextualizing BG data with activities to study specific events 
during different moments of the day, and of TAs to easily identify such 
events in a large volume of time-series data. We had the possibility of 
comparing the results in two different populations, and we were able to 
highlight the diversities between the extracted results, which in some cases 
are due to the different management of the disease in different age classes. 
Future studies will be aimed at refining the models on a higher number of 
patients and validating the findings of the presented research scenarios on 
larger datasets. 
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Appendix A 
6 Impaired glucose-insulin metabolism 

in Multisystem Inflammatory 
Syndrome related to SARS-CoV-2 in 
children 

TA techniques presented in Section 3.3.1 were used also to evaluate the 
presence of glucose disorders in young patients affected by multisystem 
inflammatory syndrome in children (MIS-C), a critical health condition 
associated with the severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2). Data was provided by the Vittore Buzzi Children’s Hospital in 
Milan, Italy, during the coronavirus disease 2019 (COVID-19) pandemic 
[173]. 

As stated by the Center of Diseases Control and Prevention (CDC), the 
definition of MIS-C requires patients to be less than 21 years and to have 
evidence of either recent/current SARS-CoV-2 infection or exposure within 
the four weeks prior to the onset of symptoms, the presence of documented 
fever, elevated markers of inflammation, at least two signs of multisystem 
involvement, and finally, lack of an alternative diagnosis (e.g., bacterial 
sepsis, toxic shock syndrome) [174]. 

Between November 2020 and January 2021, a group of 30 children and 
adolescents (7 females and 23 males, aged on average 10.68 years ± 7.25 
SD) were admitted to the Pediatric Department of Vittore Buzzi Children’s 
Hospital for MIS-C, defined according to the CDC classification [174]. 
Exclusion criteria included a history of DM and/or insulin resistance, 
assumption of steroid/drug inducing hyperglycemia at admission, and 
suspected or proven inborn errors of metabolism. 

On admission, patients were asked to wear the FreeStyle Libre isCGM 
system, a clinical and biochemical assessment was recorded, and the 
metabolic profile including total and HDL cholesterol, FPG, fasting plasma 
insulin (FPI) and triglycerides (FTy) was analyzed (a blood sample was 
obtained in fasting state between 8:30 a.m. and 9:00 a.m.). 
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Two indexes were used as a surrogate of insulin resistance (IR), such as 
the homeostasis model analysis-insulin resistance (HOMA-IR) index [175], 
and the Triglyceride–glucose (TyG) index [176], [177], defined as in the 
following: 

𝐻𝐻𝐶𝐶𝑀𝑀𝐶𝐶 − 𝐼𝐼𝐼𝐼 =  
𝐹𝐹𝑃𝑃𝐼𝐼 (𝑚𝑚𝑈𝑈/𝐿𝐿) ∙ 𝐹𝐹𝑃𝑃𝐵𝐵 (𝑚𝑚𝑅𝑅/𝑀𝑀𝐿𝐿)

405
 

𝐿𝐿𝐻𝐻𝐵𝐵 = ln (
𝐹𝐹𝐿𝐿𝐻𝐻(𝑚𝑚𝑅𝑅/𝑀𝑀𝐿𝐿) ∙ 𝐹𝐹𝑃𝑃𝐼𝐼(𝑚𝑚𝑅𝑅/𝑀𝑀𝐿𝐿)

2 ) 

 
The cutoff point for pathological HOMA-IR index was set at the 97.5th 

percentile of the HOMA-IR distribution in a representative group of Italian 
healthy children and adolescents grouped by sex and pubertal stage [178], 
while the cutoff point for pathological TyG index was set at 7.88 [179], 
[180].   

Due to some missing FPI data, it was possible to calculate the HOMA-IR 
index for only 18 patients (60%). Among these, 17 (94%) revealed a 
pathological HOMA-IR value. Instead, the TyG index was computed for all 
patients and pathological values were detected in all cases.  

The Spearman coefficient ρ was used to estimate the correlation between 
each IR index and clinical and biochemical parameters. As shown Figure 
A.1, sodium had a significant correlation (p-value = 0.02) with HOMA-IR, 
while alanine transaminase (ALT), total cholesterol, gamma-glutamyl 
transferase (GGT), thyroid-stimulating hormone (TSH), and albumin 
revealed a significant correlation (p-value ≤ 0.02) with TyG index, as 
displayed in Figure A.2. This may support the predominance of catabolic 
condition and the impairment of glucose homeostasis within the body. 

Finally, Figure A.3 shows the average percent partition of time spent 
within different glucose ranges. It is possible to notice that time spent outside 
the euglycemic range was highly asymmetrical: average TBR was 5.67% 
(±10.19% SD), while average TAR was 0.57% (±1.20% SD). Additionally, 
four patients revealed glycemic fluctuation above the 180 mg/dL threshold 
of hyperglycemia, as illustrated in Figure A.4.  

In conclusion, IR and glycemic fluctuations were detected in normal 
weight children and adolescent without previous glycemic disorders. The 
high prevalence of pathological values in HOMA-IR and TyG indexes 
supported a both hepatic and peripheral impaired insulin action, while the 
correlation between IR markers and lipids, hepatic parameters, thyroid 
values, electrolytes, and albumin may support the predominance of catabolic 
condition and the impairment of glucose homeostasis within the body. To 
the best of our knowledge, this was the first study describing glucose-insulin 
metabolic disorders in a pediatric population affected by MIS-C [173]. 
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Figure A.1: Spearman correlation coefficients between clinical and 
biochemical parameters and homeostasis model analysis-insulin resistance 
(HOMA-IR) index. BMI: Body Mass Index; HbA1c: glycated hemoglobin; 
ALT: alanine transaminase; GGT: gamma-glutamyl transferase; NT-
proBNP: N-Terminal pro-Brain Natriuretic Peptide; IL-6: interleukin-6; 
TSH: thyroid-stimulating hormone. 

 

Figure A.2: Spearman correlation coefficients between clinical and 
biochemical parameters and homeostasis model analysis-insulin resistance 
(HOMA-IR) index. BMI: Body Mass Index; HbA1c: glycated hemoglobin; 
ALT: alanine transaminase; GGT: gamma-glutamyl transferase; NT-
proBNP: N-Terminal pro-Brain Natriuretic Peptide; IL-6: interleukin-6; 
TSH: thyroid-stimulating hormone. 
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Figure A.3: Bar representation of average time in ranges. 

 

Figure A.4: Glycemic fluctuations in a patient 48-hours monitoring window. 
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Appendix B 
7 Temporal abstractions workflows 

Table B.1 presents the implementation details of XML workflows included 
in the AID-GM platform for detecting diabetes-specific patterns, based on 
basic, aggregation, and complex temporal abstraction, as described in 
Section 3.3.2. Each pattern can be searched either considering all the 
monitoring data or contextualizing the search based on the Fitbit tag. In 
particular, the suffix “S” indicates that the corresponding pattern is based on 
sleep intervals, the suffix “W” specifies that the search is restricted to 
workout intervals, while the suffix “R” is used when the search excludes both 
sleep and training periods. Instead, Table B.2 describes the parameters used 
in pattern definition for making the relational operators more or less 
restrictive. 

Table B.1: Workflows parameters of the implemented patterns. 

Filename ID Data 
Input 

Step Relati
onal 

Opera
tor 

Comb
iner 

parameters type subtype 

BGDecDuring
Hypo 

BGDec BG BGSlowDec BASIC BASIC_TRENDSL
IDINGWINDOW - - 

Hypo BG 
qualitativeGlycemia 
HighLevelAgg_Hy

po 

BASIC 
AGGRE
GATION 

BASIC_QUALITA
TIVE 

AGGREGATION_
HIGHLEVEL 

- - 

BGDec 
Hypo 

BGDec 
Hypo DURING - - DURI

NG 
FirstIn
Series 

BGDecreasing BGDec BG BGDec BASIC BASIC_TRENDSL
IDINGWINDOW - - 

BGIncreasing BGInc BG BGInc BASIC BASIC_TRENDSL
IDINGWINDOW - - 

BGSlowDecre
asing BGDec BG BGSlowDec BASIC BASIC_TRENDSL

IDINGWINDOW - - 

BGStationary BGStat BG BGStat BASIC BASIC_TRENDSL
IDINGWINDOW - - 

Bradycardia Brady HR qualitativeHR BASIC BASIC_QUALITA
TIVE - - 
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HighLevelAgg_Bra
dy 

AGGRE
GATION 

AGGREGATION_
HIGHLEVEL 

BradyPrecNor
mo 

Brady HR 
qualitativeHR 

HighLevelAgg_Bra
dy 

BASIC 
AGGRE
GATION 

BASIC_QUALITA
TIVE 

AGGREGATION_
HIGHLEVEL 

- - 

Normo HR 
qualitativeHR 

HighLevelAgg_Nor
moHR 

BASIC 
AGGRE
GATION 

BASIC_QUALITA
TIVE 

AGGREGATION_
HIGHLEVEL 

- - 

BradyPrec
Normo 

Brady 
Normo 

PRECEDES_Brady
Normo - - PREC

EDES 
LastIn
Series 

DawnEffect 

NormoSle
ep 

BGSlee
p 

qualitativeGlycemia 
HighLevelAgg_Nor

moDawn 

BASIC 
AGGRE
GATION 

BASIC_QUALITA
TIVE 

AGGREGATION_
HIGHLEVEL 

- - 

HyperMor
ning 

BGRou
tine 

qualitativeGlycemia 
HighLevelAgg_Iper

Alba 

BASIC 
AGGRE
GATION 

BASIC_QUALITA
TIVE 

AGGREGATION_
HIGHLEVEL 

- - 

DawnEffe
ct 

Normo
Sleep 
Hyper

Mornin
g 

BEFORE_Dawn - - BEFO
RE Union 

DecreasingHyp
o 

BGDec BG BGDec BASIC BASIC_TRENDSL
IDINGWINDOW - - 

Hypo BG 
qualitativeGlycemia 
HighLevelAgg_Hy

po 

BASIC 
AGGRE
GATION 

BASIC_QUALITA
TIVE 

AGGREGATION_
HIGHLEVEL 

- - 

Decreasin
gHypo 

BGDec 
Hypo OVERLAPS - - OVER

LAPS 
Interse
ction 

Euglycemia Eu BG 
qualitativeGlycemia 
HighLevelAgg_Nor

moBG 

BASIC 
AGGRE
GATION 

BASIC_QUALITA
TIVE 

AGGREGATION_
HIGHLEVEL 

- - 

Glycemia_141
_180 Normo BG 

qualitativeGlycemia
_NormoLev 

HighLevelAgg_Nor
moBG 

BASIC 
AGGRE
GATION 

BASIC_QUALITA
TIVE 

AGGREGATION_
HIGHLEVEL 

- - 

HRDecreasing HRDec HR HRDec BASIC BASIC_TRENDSL
IDINGWINDOW - - 

HRFastIncreasi
ng HRIncFast HR HRFastInc BASIC BASIC_TRENDSL

IDINGWINDOW - - 

HRIncreasing HRInc HR HRInc BASIC BASIC_TRENDSL
IDINGWINDOW - - 

HRStationary HRStat HR HRStat BASIC BASIC_TRENDSL
IDINGWINDOW - - 

Hyperglycemia Hyper BG 
qualitativeGlycemia 
HighLevelAgg_Hy

per 

BASIC 
AGGRE
GATION 

BASIC_QUALITA
TIVE 

AGGREGATION_
HIGHLEVEL 

- - 

Hyperglycemia
_H2207 Hyper BG_H2

207 

qualitativeGlycemia 
HighLevelAgg_Hy

per 

BASIC 
AGGRE
GATION 

BASIC_QUALITA
TIVE 

AGGREGATION_
HIGHLEVEL 

- - 
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Hyperglycemia
_Lev1 Hyper BG 

qualitativeGlycemia 
HighLevelAgg_Hy

perLev1 

BASIC 
AGGRE
GATION 

BASIC_QUALITA
TIVE 

AGGREGATION_
HIGHLEVEL 

- - 

Hyperglycemia
_Lev1_2207 Hyper BG_H2

207 

qualitativeGlycemia 
HighLevelAgg_Hy

perLev1 

BASIC 
AGGRE
GATION 

BASIC_QUALITA
TIVE 

AGGREGATION_
HIGHLEVEL 

- - 

Hyperglycemia
_Lev2 Hyper BG 

qualitativeGlycemia 
HighLevelAgg_Hy
perglycemia_Lev2 

BASIC 
AGGRE
GATION 

BASIC_QUALITA
TIVE 

AGGREGATION_
HIGHLEVEL 

- - 

HypoBeforeHy
per 

Hypo BG 
qualitativeGlycemia 
HighLevelAgg_Hy

po 

BASIC 
AGGRE
GATION 

BASIC_QUALITA
TIVE 

AGGREGATION_
HIGHLEVEL 

- - 

Hyper BG 
qualitativeGlycemia 
HighLevelAgg_Hy

per 

BASIC 
AGGRE
GATION 

BASIC_QUALITA
TIVE 

AGGREGATION_
HIGHLEVEL 

- - 

HypoHype
r 

Hypo 
Hyper 

BEFORE_HypoHy
per - - BEFO

RE Union 

HypoContains
Tachy 

Hypo BG 
qualitativeGlycemia 
HighLevelAgg_Hy

po 

BASIC 
AGGRE
GATION 

BASIC_QUALITA
TIVE 

AGGREGATION_
HIGHLEVEL 

  

Tachy HR 
qualitativeHR 

HighLevelAgg_Tac
hy 

BASIC 
AGGRE
GATION 

BASIC_QUALITA
TIVE 

AGGREGATION_
HIGHLEVEL 

  

HypoCont
ainsTachy 

Hypo 
Tachi 

CONTAINS_Hypo
Tachy   CONT

AINS Union 

Hypoglycemia Hypo BG 
qualitativeGlycemia 
HighLevelAgg_Hy

po 

BASIC 
AGGRE
GATION 

BASIC_QUALITA
TIVE 

AGGREGATION_
HIGHLEVEL 

- - 

Hypoglycemia
_H2207 Hypo BG_H2

207 

qualitativeGlycemia 
HighLevelAgg_Hy

po 

BASIC 
AGGRE
GATION 

BASIC_QUALITA
TIVE 

AGGREGATION_
HIGHLEVEL 

- - 

Hypoglycemia
_Lev1 Hypo BG 

qualitativeGlycemia 
HighLevelAgg_Hy

poLev1 

BASIC 
AGGRE
GATION 

BASIC_QUALITA
TIVE 

AGGREGATION_
HIGHLEVEL 

- - 

Hypoglycemia
_Lev1_H2207 Hypo BG_H2

207 

qualitativeGlycemia 
HighLevelAgg_Hy

poLev1 

BASIC 
AGGRE
GATION 

BASIC_QUALITA
TIVE 

AGGREGATION_
HIGHLEVEL 

- - 

Hypoglycemia
_Lev2 Hypo BG 

qualitativeGlycemia 
HighLevelAgg_Hy
poglycemia_Lev2 

BASIC 
AGGRE
GATION 

BASIC_QUALITA
TIVE 

AGGREGATION_
HIGHLEVEL 

- - 

Hypoglycemia
_Lev2_2207 Hypo BG_H2

207 

qualitativeGlycemia 
HighLevelAgg_Hy
poglycemia_Lev2 

BASIC 
AGGRE
GATION 

BASIC_QUALITA
TIVE 

AGGREGATION_
HIGHLEVEL 

- - 

HypoPrecBrad
y Hypo BG 

qualitativeGlycemia 
HighLevelAgg_Hy

po 

BASIC 
AGGRE
GATION 

BASIC_QUALITA
TIVE - - 
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AGGREGATION_
HIGHLEVEL 

Brady HR 
qualitativeHR 

HighLevelAgg_Bra
dy 

BASIC 
AGGRE
GATION 

BASIC_QUALITA
TIVE 

AGGREGATION_
HIGHLEVEL 

- - 

HypoPrec
Brady 

Hypo 
Brady 

PRECEDES_Tachy
Hypo - - PREC

EDES Union 

HypoPrecTach
y Hypo BG 

qualitativeGlycemia 
HighLevelAgg_Hy

po 

BASIC 
AGGRE
GATION 

BASIC_QUALITA
TIVE 

AGGREGATION_
HIGHLEVEL 

- - 

 Tachy HR 
qualitativeHR 

HighLevelAgg_Tac
hy 

BASIC 
AGGRE
GATION 

BASIC_QUALITA
TIVE 

AGGREGATION_
HIGHLEVEL 

- - 

 HypoPrec
Tachy 

Hypo 
Tachi 

PRECEDES_Tachy
Hypo - - PREC

EDES Union 

IncreasingHyp
er 

BGInc BG BGInc BASIC BASIC_TRENDSL
IDINGWINDOW - - 

Hyper BG 
qualitativeGlycemia 
HighLevelAgg_Hy

per 

BASIC 
AGGRE
GATION 

BASIC_QUALITA
TIVE 

AGGREGATION_
HIGHLEVEL 

- - 

Increasing
Hyper 

BGInc 
Hyper OVERLAPS X X OVER

LAPS 
Interse
ction 

NormoBefore
Hyper 

Normo BG 
qualitativeGlycemia 
HighLevelAgg_Nor

moBG 

BASIC 
AGGRE
GATION 

BASIC_QUALITA
TIVE 

AGGREGATION_
HIGHLEVEL 

- - 

Hyper BG 
qualitativeGlycemia 
HighLevelAgg_Hy

per 

BASIC 
AGGRE
GATION 

BASIC_QUALITA
TIVE 

AGGREGATION_
HIGHLEVEL 

- - 

NormoHy
per 

Normo 
Hyper 

BEFORE_HypoHy
per - - BEFO

RE Union 

Normocardia Normocar
dia HR 

qualitativeHR 
HighLevelAgg_Nor

moHR 

BASIC 
AGGRE
GATION 

BASIC_QUALITA
TIVE 

AGGREGATION_
HIGHLEVEL 

- - 

NormoPrecTac
hy 

Normo HR 
qualitativeHR 

HighLevelAgg_Nor
moHR 

BASIC 
AGGRE
GATION 

BASIC_QUALITA
TIVE 

AGGREGATION_
HIGHLEVEL 

- - 

Tachi HR 
qualitativeHR 

HighLevelAgg_Tac
hy 

BASIC 
AGGRE
GATION 

BASIC_QUALITA
TIVE 

AGGREGATION_
HIGHLEVEL 

- - 

NormoPre
cTachy 

Normo 
Tachi 

PRECEDES_Norm
oTachy - - PREC

EDES 
LastIn
Series 

Tachycardia Tachi HR 
qualitativeHR 

HighLevelAgg_Tac
hy 

BASIC 
AGGRE
GATION 

BASIC_QUALITA
TIVE 

AGGREGATION_
HIGHLEVEL 

- - 

TachyPrecDecr Tachi HR 
qualitativeHR 

HighLevelAgg_Tac
hy 

BASIC 
AGGRE
GATION 

BASIC_QUALITA
TIVE 

AGGREGATION_
HIGHLEVEL 

- - 
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BGDec BG BGFastDec BASIC BASIC_TRENDSL
IDINGWINDOW - - 

TachyPrec
Decr 

Tachy 
BGDec 

PRECEDES_Tachy
Dec - - PREC

EDES Union 

TachyPrecHyp
o 

Tachi HR 
qualitativeHR 

HighLevelAgg_Tac
hy 

BASIC 
AGGRE
GATION 

BASIC_QUALITA
TIVE 

AGGREGATION_
HIGHLEVEL 

- - 

Hypo BG 
qualitativeGlycemia 
HighLevelAgg_Hy

po 

BASIC 
AGGRE
GATION 

BASIC_QUALITA
TIVE 

AGGREGATION_
HIGHLEVEL 

- - 

TachyPrec
Hypo 

Tachy 
Hypo 

PRECEDES_Tachy
Dec - - PREC

EDES Union 

Table B.2:. Parameters for making the relational operators more or less 
restrictive. 

Relational operator Parameters [in minutes] 

BEFORE 
• ls= 540 
• rs= 120 
• gap= 60 

BEFORE_Dawn 
• ls= 540 
• rs= 240 
• gap= 45 

BEFORE_HR 
• ls= 180 
• rs= 180 
• gap= 4 

BEFORE_HypoHyper 
• ls= 540 
• rs= 240 
• gap= 30 

BGDec 

• minLen= 35 
• label= Decreasing 
• minSlope= -200 
• maxSlope= -1 
• gap= 30 

BGFastDec 

• minLen= 30 
• label= Decreasing 
• minSlope= -200 
• maxSlope= -1.5 
• gap= 30 

BGFastInc 

• minLen= 30 
• label= Increasing 
• minSlope= 1.5 
• maxSlope= 200 
• gap= 30 

BGInc 

• minLen= 35 
• label= Increasing 
• minSlope= 1 
• maxSlope= 200 
• gap= 30 

BGSlowDec 

• minLen= 20 
• label= Decreasing 
• minSlope= -300 
• maxSlope= -0.3 
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• gap= 30 

BGSlowInc 

• minLen= 20 
• label= Increasing 
• minSlope= 300 
• maxSlope= 0.3 
• gap= 30 

BGStat 

• minLen= 10 
• label= Stationary 
• minSlope= -0.1 
• maxSlope= 0.1 
• gap= 30 

CONTAINS_HypoTachy 
• ls= 40 
• rs= -90 
• gap= -150 

DURING 
• ls= -700 
• rs= 800 
• gap= 750 

HighLevelAgg_Brady 

• gap= 10 
• minLen= 5 
• label= Bradycardia 
• levels= bradycardia 

HighLevelAgg_Hyper 

• gap= 60 
• minLen= 13 
• label= Hyperglycemia 
• levels= 

hyperglycemia,hyperglycemia_Lev2 

HighLevelAgg_Hyperglycemia_Lev2 

• gap= 60 
• minLen= 13 
• label= Hyperglycemia_Lev2 
• levels= hyperglycemia_Lev2 

HighLevelAgg_HyperLev1 

• gap= 60 
• minLen= 13 
• label= Hyperglycemia 
• levels= hyperglycemia 

HighLevelAgg_Hypo 

• gap= 60 
• minLen= 13 
• label= Hypoglycemia 
• levels= hypoglycemia, hypoglycemia_Lev2 

HighLevelAgg_Hypoglycemia_Lev2 

• gap= 60 
• minLen= 13 
• label= Hypoglycemia_Lev2 
• levels= hypoglycemia_Lev2 

HighLevelAgg_HypoLev1 

• gap= 60 
• minLen= 13 
• label= Hypoglycemia 
• levels= hypoglycemia 

HighLevelAgg_NormoBG 

• gap= 60 
• minLen= 13 
• label= Euglycemia 
• levels= euglycemia 

HighLevelAgg_NormoDawn 

• gap= 60 
• minLen= 60 
• label= Euglycemia 
• levels= euglycemia 

HighLevelAgg_NormoHR 
• gap= 10 
• minLen= 5 
• label= Normocardia 
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• levels= normocardia 

HighLevelAgg_Tachy 

• gap= 10 
• minLen= 5 
• label= Tachycardia 
• levels= tachycardia 

HRDec 

• minLen= 6 
• label= Increasing 
• minSlope= -200 
• maxSlope= -1.3 
• gap= 30 

HRFastInc 

• minLen= 6 
• label= Increasing 
• minSlope= 3.5 
• maxSlope= 200 
• gap= 30 

HRInc 

• minLen= 6 
• label= Increasing 
• minSlope= 1.3 
• maxSlope= 200 
• gap= 30 

HRStat 

• minLen= 6 
• label= Stationarity 
• minSlope= -1.6 
• maxSlope= 1.6 
• gap= 30 

OVERLAPS 
• ls= 540 
• rs= 540 
• gap= -480 

PRECEDES 
• ls= 540 
• rs= 540 
• gap= 45 

PRECEDES_BradyNormo 
• ls= 60 
• rs= 60 
• gap= 25 

PRECEDES_HypoTachy 
• ls= 30 
• rs= 120 
• gap= 20 

PRECEDES_NormoTachy 
• ls= 60 
• rs= 60 
• gap= 25 

PRECEDES_TachyDec 
• ls= 30 
• rs= 120 
• gap= 20 

PRECEDES_TachyHypo 
• ls= 40 
• rs= 90 
• gap= 0 

qualitativeGlycemia* 

• label= hypoglycemia_Lev2,hypoglycemia, 
           euglycemia, 
           hyperglycemia,hyperglycemia_Lev2 

• th= 54,70,181,251 

qualitativeHR* • label= bradycardia,normocardia,tachycardia 
• th= 60,101 

ls: left shift; rs: right shift, minLen: minimum length of a pattern; maxSlope: 
maximum slope allowed in the pattern; minSlope: minimum slope allowed in the 
pattern. The asterisk (*) indicates that it is possible to use either fixed or subject-
specific thresholds. 
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Appendix C 
8 Descriptive statistics using Fitbit 

activities information 

Fitbit activity information have been used also to provide clinicians with 
visual overviews of patients’ conditions. Figure C.1 and Figure C.2 present 
a boxplot representation of HR measurements per patient, whereas the daily 
activities distribution is shown in Figure C.3 and Figure C.4, considering the 
pediatric and adult datasets, respectively. Then, the average number and 
average duration of automatically detected workouts per week are shown in 
Figure C.5 and Figure C.7 for pediatric patients, while in Figure C.6 and C.8 
for adult patients. Finally, sleep quality can be explored in Figure C.9 and 
Figure C.10. 

 

Figure C.1: Boxplot representation of heart rate (HR) measurements per 
patient in the pediatric dataset. 
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Figure C.2: Boxplot representation of heart rate (HR) measurements per 
patient in the adult dataset. 

 

 

Figure C.3: Average duration of daily activities by intensity level in the 
pediatric dataset. 
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Figure C.4: Average duration of daily activities by intensity level in the adult 
dataset. 

 

 

Figure C.5: Average number of automatically detected workouts per week 
in the pediatric dataset. 
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Figure C.6: Average number of automatically detected workouts per week 
in the adult dataset. 

 

 

Figure C.7: Average duration of automatically detected workouts per week 
in the pediatric dataset. 
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Figure C.8: Average duration of automatically detected workouts per week 
in the pediatric dataset. 

 

 

Figure C.9: Average main sleep duration by type in the pediatric dataset. 
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Figure C.10: Average duration of automatically detected workouts per week 
in the adult dataset. 
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ARMA AutoRegressive Moving Average 
ARMAX AutoRegressive Moving Average with eXogenous inputs 
ARX  AutoRegressive with eXogenous inputs 
A-TS  Abstractions – Time-Series 
ATTD  Advanced Technologies and Treatments for Diabetes 
BG  Blood Glucose 
BGRI  Blood Glucose Risk Index 
BMI  Body Mass Index 
BPM  Beats Per Minute 
BPTT  Backward Propagation Trough Time 
CA-TS Complex Abstractions – Time-Series 
CDC  Center of Diseases Control and Prevention 
CEGA Clarke Error Grid Analysis 
CGM  Continuous Glucose Monitoring 
CHO  Carbohydrate 
CNN  Convolutional Neural Networks 
CONGA Continuous Overlapping Net Glycemic Action 
COVID-19 Coronavirus Disease – 2019 
CSII  Continuous Subcutaneous Insulin Infusion 
CV  Coefficient of Variation 
DCCT  Diabetes Control and Complications Trial 
DM  Diabetes Mellitus 
ESOD  Energy of the Second-Order Differences 
E-TS  Events – Time-Series 
FDA  Food and Drug Administration 
FGM  Flash Glucose Monitoring 
FPG  Fasting Plasma Glucose 
FPI  Fasting Plasma Insulin 
FTy  Fasting Triglycerides 
GGT  Gamma-Glutamyl Transferase 
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GOD  Glucose Oxidase 
GRADE Glycemic Risk Assessment Diabetes Equation 
GUI  Graphical User Interface 
GV  Glycemic Variability 
HbA1c Glycated Hemoglobin 
HBGI  High Blood Glucose Index 
HOMA-IR Homeostasis Model Analysis – Insulin Resistance 
HR  Heart Rate 
IDC  International Diabetes Center 
IDF  International Diabetes Federation 
IFCC  International Federation of Clinical Chemistry 
IGC  Index of Glycemic Control 
IGV  Ideal Glucose Value 
IL-6  Interleukin – 6 
IQR  Interquartile Range 
IR  Insulin Resistance 
isCGM Intermittently scanned Continuous Glucose Monitoring 
ISO  International Organization for Standardization 
ISPAD International Society for Pediatric and Adolescent Diabetes 
JDRF  Juvenile Diabetes Research Foundation 
JTSA  Java Time Series Abstractor 
LBGI  Low Blood Glucose Index 
LLTR  Lower Limit of Target Range 
LME  Linear Mixed Effects 
LS  Left Shift 
LSTM  Long-Short Term Memory 
LVX  Latent Variable with eXogenous input 
MA  Moving Average 
MAE  Mean Absolute Error 
MAGE Mean Amplitude of Glycemic Excursions 
MARD Mean Absolute Relative Difference 
MDI  Multiple Daily Injection 
MIS-C Multisystem Inflammatory Syndrome – Children 
MODD Mean Of Daily Difference 
MSPE  Mean Square Prediction Error 
NA  Not-Available 
NGSP  National Glycohemoglobin Standardization Program 
NN  Neural Network 
NT-proBNP N-Terminal – pro-Brain Natriuretic Peptide 
pCGM Professional Continuous Glucose Monitoring 
PFT  Personal Fitness Tracker 
PGHD Patient-Generated Health Data 
PH  Prediction Horizon 
PPG  Postprandial Glucose 
Q-Q  Quantile – Quantile 
RAD  Relative Absolute Deviation 
RCT  Randomized Controlled Trial 
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ReLU  Rectified Linear Unit 
RF  Random Forest 
RMSE Root Mean Square Error 
RNN   Recurrent Neural Network 
RS  Right Shift 
rtCGM Real-time Continuous Glucose Monitoring 
SARS-CoV-2 Severe acute respiratory syndrome – coronavirus – 2  
SD  Standard Deviation 
SDdm  Daily Means Standard Deviation 
SDw  Within-day Standard Deviation 
SI  Système Internationale 
SMBG Self-Monitoring of Blood Glucose 
SSGPE  Sum of Squares of the Glucose Prediction Error 
SVR  Support Vector Regression 
T1DM  Type 1 Diabetes Mellitus 
T2DM  Type 2 Diabetes Mellitus 
TA  Temporal Abstractions 
TAR  Time Above Range 
TAR_Lev1 Time slightly Above Range 
TAR_Lev2 Time severely Above Range 
TBR  Time Below Range 
TBR_Lev1 Time slightly Below Range 
TBR_Lev2 Time severely Below Range 
TIR  Time In Range 
TIT  Time in Target Range 
TSH  Thyroid-Stimulating Hormone 
TyG  Triglyceride-Glucose 
ULTR  Upper Limit of Target Range 
XML  eXtensible Markup Language 
WHO  World Health Organization 
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