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I 

Abstract (ITA) 
Lo sviluppo di array di sensori differenziali rappresenta una delle più promettenti linee di ricerca in 

ambito sensoristico. [1, 2] In particolare, la possibilità di coniugare misure colorimetriche, basate su 

immagini digitali, con un’elaborazione multivariata dei dati consente sia la misura facile, rapida ed 

efficace di un numero anche elevato di analiti sia il monitoraggio di processi, anche complessi. [3, 

4] 

Fra le diverse applicazioni, il monitoraggio della freschezza degli alimenti rappresenta una delle sfide 

più interessanti, sia per la complessità dei processi degradativi, che per i requisiti fondamentali 

richiesti per questi dispositivi e per l’impatto sociale e ambientale. Il crescente interesse dei 

consumatori per alimenti freschi, di qualità e senza additivi e conservanti ha spinto diversi gruppi di 

ricerca di tutto il mondo ad esplorare varie strategie per lo sviluppo di sensori per il monitoraggio 

della freschezza, comunemente chiamati intelligent packaging o smart labels. [5, 6] Fra i diversi 

alimenti, una particolare attenzione è stata posta sugli alimenti a base proteica. [5, 6] 

Sulla base del background del gruppo di ricerca e dei risultati preliminari ottenuti nel corso della mia 

Tesi di Laurea Magistrale, abbiamo individuato un approccio vincente per lo sviluppo di questo 

genere di sensori. Come dispositivo sensibile, abbiamo utilizzato degli array di sensori generalizzati 

che, posti all’interno delle confezioni alimentari, mostrassero delle variazioni cromatiche nel corso 

della degradazione indicative della freschezza in tempo reale. L’elaborazione dei dati prevede 

l’acquisizione delle fotografie degli array a tempi prestabili ed in condizioni di illuminazione costanti, 

l’acquisizione delle terne RGB selezionando manualmente l’area del sensore e la loro successiva 

analisi tramite opportune tecniche chemiometriche a supporto dell’analisi visiva. A seconda delle 

applicazioni, sono state applicate tecniche unsupervised o supervised finalizzate allo sviluppo di 

modelli soft descrittivi o predittivi del processo di degradazione. 

Basandoci sullo studio dei meccanismi chimici e microbiologici alla base della degradazione degli 

alimenti e delle caratteristiche dei sottoprodotti target, abbiamo costruito un panel di recettori 

commerciali adatti al monitoraggio della freschezza e abbiamo operato la selezione dei più efficaci 

direttamente con esperimenti di monitoraggio di alimenti proteici conservati in frigorifero. Abbiamo 

inoltre testato diversi supporti solidi, disponibili in commercio, di basso costo e di facile 

implementazione nel packaging.  

Dopo un primo screening condotto usando come supporto solido l’Acchiappacolore©, 

commercializzato in Italia da Grey, [7, 8, 9] abbiamo messo a punto e brevettato [10, 11, 12, 13] 

una procedura per l’attacco tramite legame covalente dei recettori a diversi materiali, fra cui l’alcol 

etilenvinilico (EVOH), polimero plastico in uso nel packaging alimentare come film barriera, [14, 15, 

16] e la carbossimetilcellulosa (CMC), derivato cellulosico usato come additivo alimentare. Entrambi 

questi materiali sono stati investigati come supporto solido per smart labels, mettendo a punto 

un’opportuna strategia di produzione e applicazione.  



 
II 

La preparazione dei sensori è stata messa a punto applicando tecniche di Disegno Sperimentale, 

ove possibile, e definendo in ogni dettaglio procedure di preparazione riproducibili ed affidabili. Sono 

state testate diverse tipologie di alimenti, fra cui carni bianche e rosse, pesci e latte, e, per ognuno 

di essi è stata verificata la possibilità di monitoraggio della freschezza in condizioni di conservazione 

quanto più possibile vicine a quelle domestiche. Ove possibile, il funzionamento del dispositivo è 

stato validato tramite opportune analisi strumentali di riferimento. 

I risultati ottenuti nel corso della ricerca sono stati decisamente incoraggianti e rappresentano un 

importante passo in avanti nel campo delle smart labels non solo in ambito accademico ma anche 

industriale. Per questo motivo, abbiamo dato grande importanza non solo alla partecipazione a 

congressi nazionali ed internazionali e alla pubblicazione di lavori su riviste di settore ma anche al 

deposito dei brevetti e all’industrializzazione dei dispositivi più promettenti attraverso la costituzione 

della start-up innovativa SAFER Smart Labels.  
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Abstract (ENG) 
In the sensing field, the development of differential sensors arrays represents one of the most 

promising trends. [1, 2] In particular, the possibility of jointly exploiting digital images colorimetric 

analysis and multivariate data elaboration allows the easy, fast and efficient analysis of a high 

number of analytes or even complex processes monitoring. [3, 4] 

 Among the various applications, food freshness monitoring poses an interesting challenge due to 

the spoilage processes complexity, the key requirements for this kind of devices and the 

environmental and social impact. The consumers increasing interest for fresh, high-quality, minimally 

processed, foods has encouraged many research groups around the world to explore various 

strategies for the development of freshness monitoring devices, usually called intelligent packaging 

or smart labels. [5, 6] 

Based on our research group’s background and on the preliminary results collected during my Master 

Degree Thesis, we identified a winning approach for the smart labels development. As sensing 

device, we used different arrays of generalised sensors that, located inside food packages, show 

colour transitions during food spoilage according to the actual food freshness. Data elaboration 

includes the first acquisition of arrays’ photographs at given times and in constant lighting 

conditions, the following RGB triplets acquisition manually selecting the region of interest and the 

final multivariate analysis to support the naked-eye evaluation. Depending on the applications, both 

unsupervised and supervised techniques were exploited to develop either descriptive or predictive 

soft models for spoilage process rationalisation. 

Starting from a deep investigation of the chemical and microbiological mechanisms responsible for 

food degradation and of the main features of target by-products, we built a panel of commercial 

receptors suitable for freshness monitoring and we selected the most effective ones directly 

performing freshness monitoring experiments on chilled stored protein foods. Furthermore, we 

tested different solid supports, cheap, commercially available and easy to be implemented in food 

packaging. 

The first screening was performed using Colour Catcher©, sold in Italy by Grey [7, 8, 9]. Then we 

developed and patented [10, 11, 12, 13] a synthetic pathway for the covalent anchoring of the 

receptors to various solid materials, such as ethylenvinyl alcohol (EVOH), plastic copolymer used in 

food packaging industry as film barrier, [14, 15, 16] and carboxymethylcellulose (CMC), cellulose-

based derivative employed as food additive. Both these materials were tested as solid supports for 

the smart labels, developing a suitable strategy for their production and application. 

In any case, the sensors’ preparation was developed applying Design of Experiments, when possible, 

and specifically defining reproducible and reliable preparation procedures. Various protein foods 

were tested, such as meats, fishes and milk, and for each one the devices applicability as smart 

labels in domestic conditions was verified. When possible, sensors performances were validated by 

independent instrumental methods.  
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The results obtained during this project were definitely encouraging and represents a significant step 

forward in the field of smart labels both in academia and industry. For this reason, we gave great 

attention, on one hand, to contributions in national and international congresses and to publications 

on peer review journals while, on the other hand, to patents deposition and to industrial scale-up of 

the most promising devices, through the constituition of the innovative start-up SAFER Smart Labels. 
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1. Introduction 
The introductive part of this thesis has been organised in three sections. In the first section, a general 

discussion on sensing devices is conducted, starting from basic definition to more complex 

application, highlighting the key points for this project. In the second part, the topic of food freshness 

is discussed, considering both the chemical and microbiological mechanisms related to protein foods 

degradation and the most recent literature on devices for spoilage monitoring. In the last part, the 

aim of the project is described, summarising the general features characterising the experimental 

work, the key points of our freshness sensing approach and the main characteristics of the 

developed devices. 

1.1 Sensing devices: from definitions to applications 

1.1.1 Sensors: definition and classification 

A chemical sensor is a device that transforms chemical information, ranging from the concentration 

of a specific sample component to total composition analysis, into an analytically useful signal. 

Chemical sensors contain two basic functional units: receptor and transducer. In the receptor, the 

chemical information is transformed into a form of energy which may be measured by the transducer. 

The transducer is a device capable of transforming the energy converting the chemical information 

into a useful analytical signal. [17] 

Chemical sensors may be classified according to the operating principle of the transducer: [17] 

• Optical devices transform changes of optical phenomena, which are the result of an 

interaction of the analyte with the receptor part. This group may be further subdivided 

according to the type of optical properties which have been applied in chemical sensors: 

absorbance, reflectance, luminescence, fluorescence and others. 

• Electrochemical devices transform the effect of the electrochemical interaction analyte-

electrode 

into a useful signal.  

• Electrical devices are based on measurements, where no electrochemical processes take 

place, but the signal arises from the change of electrical properties caused by the interaction 

of the analyte. 

• Mass sensitive devices transform the mass change, caused by the accumulation of the 

analyte at a specially modified surface into a change of a property of the support material.  

• Magnetic devices are based on the change of paramagnetic properties of gas being 

analysed.  

• Thermometric devices are based on the measurement of the heat effects of a specific 

chemical reaction or adsorption which involves the analyte.  
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Among the various sensing devices, colourimetric sensors provide desirable features for many 

applications because of the potential for high sensitivity, good selectivity, rapidity of analysis, 

portability of instrumentation and overall cost-effectiveness. [2] 

Colourimetric sensors detect the change in colour of a pigment upon interaction with an analyte 

vapour or solution. The dyes most commonly used are solvatochromic, Lewis base sensitive, pH-

sensitive, or redox reactive. This colour change can be either detected visually for rapid qualitative 

analysis or measured by a suitable instrument for quantitative detection. [2] 

1.1.2 Selective vs. generalised devices 

In addition to the previously discussed classifications, sensors are distinguished in specific or 

selective and differential or generalised, referring to receptors’ different binding characteristics. 

Selective receptors exhibit high selectivity towards specific analytes, while differential ones have 

different binding characteristics, none of which are necessarily specific or even very selective. [1]  

This difference is well depicted in Figure 1.1 reported by J. J. Lavigne and E. J. Anslyn. [1] Selective 

receptors mimic the lock-and-key approach to molecular recognition, typical of several biological 

systems, as represented in the upper part of Figure 1.1. This high specificity approach has been used 

successfully in some cases, but it has several drawbacks that limit its applicability to many sensing 

challenges. Firstly, the rational design of receptors is impractical for analytes that have not been fully 

characterized; secondly, the synthetic work required to actually make the receptor can be an 

overwhelming task in itself. Last but not least, analysing complex mixtures of analytes using a lock-

and-key approach requires the design and synthesis of receptors for each component in the mixture, 

which is often an incredibly time-consuming undertaking. [2] 
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Figure 1.1: Schematic representation of receptors and transducer operating principle in selective and 

differential receptors. In the top part, a specific binding event (the lock and key paradigm), which exhibits 

a large degree of complementarity between the host and guest. In the bottom part an array of generalized 

receptors interacting with one or multiple analytes. [1] 

 

Opposite, differential receptors, represented in the lower part of Figure 1.1, mimic the binding 

scenario used in the mammalian senses of taste and smell; they require an array of sensors to be 

created and a composite signal to be evaluated and interpreted, usually exploiting multivariate tools. 

[1] These receptors need neither to be designed nor to be highly specific for any one analyte and 

allow the discrimination of analytes or analyte mixtures that have not been exhaustively 

characterized. [2] 

The last years scientific production of our research group includes several selective sensing devices 

for environmental and biomedical applications [18, 19, 20, 21, 22, 23, 24, 25, 26, 27]. Preliminary 

investigations were performed on differential sensing devices which were studied in deep during this 

project.  
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1.1.3 Multivariate approach to generalised sensors arrays 

The differential sensing is accomplished using sets of cross-reactive receptors and pattern 

recognition algorithms to process the large amount of data generated which is not usually 

interpretable by visual inspection of the data set or by basic calibrations like a simple linear 

regression. Therefore, chemometric methods are routinely used to reduce the dimensionality of the 

data and present it in graphical form for visual interpretation. [2] 

Among the unsupervised chemometric techniques, Principal Component Analysis (PCA) is definitely 

the most commonly employed for the first data rationalisation, visualisation and preliminary pattern 

recognition. In fact, when a visual inspection of a PCA plot detects not only close clustering between 

data points, representing repetitions of the same analyte class, but also good separation between 

data points, referring to different analyte classes, as shown in Figure 1.2, preliminary discrimination 

of the analytes has been successfully achieved. Furthermore, analysing the loading values for each 

receptor, which represent the contribution of that receptor to each PC axis, the most informative 

ones in the array can be identified. [2, 4] 

 

 

Figure 1.2: PCA displays the variance in the data set with PC 1 representing the largest variance. [2] 

 

After the exploratory data analysis, suitable supervised chemometric tools are usually applied both 

for qualitative and quantitative analysis when an independent reference method is available.  

In the first case, the most common supervised classification and modelling techniques employed are 

linear discriminant analysis (LDA), partial least squares discriminant analysis (PLS-DA), K-nearest 

neighbours (KNN) and soft independent modelling by class analogy (SIMCA). [4] Thanks to these 

methods, a mathematical rule or model is built, allowing to characterize a sample with respect to a 

peculiar qualitative property, which can be coded as class membership. The main importance of 

multivariate classification methods is given by the possibility of predicting the class membership 

based on some experimentally measurable predictors. It is mandatory to build and validate 

classification rules/models on a suitable and representative training set. [28] 
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In the second case, multivariate calibration models should be developed, evaluated and validated. 

Multiple Linear Regression (MLR), Principal Component Regression (PCR) and Partial Least Square 

regression (PLS) are the most commonly employed tools in sensing applications. [4] Multivariate 

calibration finds relationships between one or more response variables y and measurable predictors 

x and, also in this case, once built and validated the model on a suitable training set, it can be 

exploited to predict the y values for unknown samples. [29] 

1.1.4 Sensors’ development challenges 

From a practical point of view, there are many challenges involved in developing an effective sensor 

since an ideal sensor should satisfy certain characteristics like selectivity, sensitivity, robustness, 

accuracy, precision, minimal error, reproducibility, linearity and others. [30] To fulfil these 

requirements, several features have to be defined during sensors’ development. 

Firstly, the best receptors have to be identified, choosing from either selective or generalised 

molecules, synthetic or natural and commercially available or innovative. Secondly, the ideal solid 

support has to be investigated, also in this case, ranging from natural or synthetic materials, 

commercial or innovative but also plastic-based or biocompatible. The choice of receptors and the 

solid support is strongly related to the linkage mechanisms exploited to fix the sensing unit to the 

support: the most commonly employed are ion exchange, H bond, anchoring by covalent or ionic 

bonds.  

Once defined the main components of the device, operating features has to be defined according to 

the final application meant for the sensors. The best operating principle of the transducer and 

detection technique is selected among those listed in Section 1.1.1 while the data elaboration 

approach depends on the receptors selected and the final purpose. Whether selective or generalised 

receptors are used, and qualitative or quantitative analyses are performed, the most suitable 

univariate or multivariate approach to data elaboration has to be identified. 

Last but not least, the preparation procedure, namely all the steps required to prepare and apply the 

device, and all the parameters involved have to be defined and its reproducibility, efficiency and 

reliability have to be verified. The winning strategy to optimise and validate the preparation procedure 

involves the employment of Design of Experiments, a versatile chemometric tool that allows to 

investigate a large number of variables of different nature and to calculate their effect on one or 

more selected responses of interest.  

1.1.5 Colourimetric sensors arrays, digital imaging and chemometrics 

To sum up the topics discussed above, colourimetric sensors arrays, in which different generalised 

receptors are exploited, represent one of the hottest research topics in the last years, thanks to their 

versatility, wide applicability and ideal features. Colourimetric sensor arrays generally provide naked 

eye analysis, overcoming some limitations of traditional array-based sensors, i.e., electronic-noses, 

such as the generally low selectivity and the need for electrochemical instrumentation and statistical 

tools for data analysis. [7]  
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As an alternative, thanks to digital imaging colourimetry (DIC), colourimetric sensor arrays provide a 

simple and efficient approach for the rapid detection and identification of several analytes. [3] DIC 

refers to a colourimetric analysis method based on digitizing images collected by some image 

acquisition tools such as mobile phones, digital cameras, webcams, scanners, and so on. [3] DIC is 

becoming a powerful, fast and low-cost tool for analysing the concentration of target analyte with 

visual assessment of colour changes of an obtained digital image, especially for users who want to 

perform colourimetric analyses with little effort, low costs and independently from the location. [3] 

The use of digital images could replace the naked eyes, eliminating the subjective error of the naked-

eye observation and, to promote a standardized specification, different colour systems were used to 

define a three-dimensional coordinate space, where each colour is represented by a single point. 

The commonly used colour spaces (colour models) include RGB, CMYK, XYZ, L*a*b* and HSV. [3] 

These three-dimensional coordinates represent the eligible input dataset for multivariate approach, 

both applying unsupervised and supervised techniques, depending on the type of application. The 

so-called Chemometrics-assisted colour histogram-based analytical systems (CACHAS), have been 

widely tested for various applications, applying both pattern recognition and multivariate calibration, 

among which food accounts for the main part, as summarised in Figure 1.3. [4] 

 

 

Figure 1.3: Distribution of the publications employing CACHAS by means of (A) pattern recognition and 

multivariate calibration techniques for analysis of (B) food, agricultural, fuels (and related), biomedical, 

microbiological, and drug samples [4] 
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1.2 Freshness of protein foods: from spoilage mechanisms to intelligent 

packaging prototypes 

1.2.1 Chemical composition and bacterial degradation 

The term “protein foods” or “high protein foods” commonly refers to protein-rich foodstuffs both of 

vegetable and animal origin such as meat, fish, dairy products, legumes and others. Focusing our 

attention on animal-based products, their spoilage mechanism is a very complex combination of 

processes, related to the activity of different bacteria, which, depending on food composition and 

external conditions, are responsible for the oxidation of glucose, lactic acid, fatty acid and, eventually, 

the degradation of proteins. [31] Despite the wide biodiversity of microorganisms, the spoilage 

process of all proteinaceous foods is similar and it is caused by one predominant group, termed the 

specific spoilage organism (SSO). [32]  

Meat and fish spoilage process 

A consortium of bacteria, commonly dominated by Pseudomonas spp., is in most cases responsible 

for spoilage of meat and fish stored aerobically at different temperatures. [33, 34] The population of 

pseudomonads to the arbitrary level of 107-8 CFU/g, has been attributed to slime and off-odours 

formation. [33] However, in practice, both these characteristics become evident when the 

pseudomonads have exhausted the glucose and lactate present in meat and begin to metabolise 

nitrogenous compounds such as amino acids. [33] 

In fact, for these foodstuffs, two different spoilage steps can be identified: early spoilage and spoilage 

[35]. During the early spoilage, the chemical spoilage index (CSI) is associated with the consumption 

of glucose, lactic acid and their derivatives and the consequent production of EtOH, 3-methyl-1-

butanol, and free fatty acids, mainly acetic acid, which are definitively the dominant VOCs. [35, 36] 

It must be underlined that any meat or fish at this stage is still a safe product since no toxic by-

products are released by bacteria. [8]. Only when no more glucose and none of its direct metabolites 

are left, the catabolism of proteins starts, and the production of amines and thiols is manifested as 

off-odours and discolouration. [35] Due to the toxicity of these classes of by-products, [37] 

consumption of meat at this stage could be a severe hazard. For this reason, the presence of the so-

called “biogenic amines” (putrescine, cadaverine, histamine, tyramine, spermidine, spermine, and 

ethylamine) is an important indicator of food quality and hygiene. [8] 

Milk spoilage 

Spoilage microorganisms or their enzymes (e.g., oxidases, polymerases, proteases, esterases, 

lipases) are capable of milk components degradation such as proteins, fat and carbohydrates in 

order to yield compounds suitable for their growth. [38] The quality of milk for human consumption 

is determined by the number of bacteria present in milk at a given time: depending on the specific 

nature of spoilage and microbial types, the spoilage detection level can range from 106 to 108 

cells/ml. [38] The bacteria mainly involved in the milk spoilage are acid-forming bacteria (Lactic acid 

bacteria LAB) which ferment lactose to lactic acid. [38] 
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In general, the pH of raw milk decreases with time due to bacterial growth, hydrolysis of fat and 

protein, and the production of lactic acid from lactose. [38, 39] The pH value of raw milk is around 

6.5−6.7, making it slightly acidic, but during spoilage, many of the bacteria create lactic acid as a by-

product, which causes a gradual and slight decrease in the pH value. [38, 39, 40] The standard for 

“spoiled” milk is subjective and can be interpreted in many ways. Nevertheless, there is a general 

consensus among consumers and manufacturers that characteristics such as off-flavours, colour 

changes, and loss of consistent texture can signal spoilage. [41]  

1.2.2 Spoilage during distribution and the role of smart packaging 

In the last years, the control of food quality has risen in its importance and it is of great concern in 

our daily life because of the ever-increasing demand for good quality and hygienic food products. 

[33, 42, 43] Consumers’ requests for mildly preserved, minimally processed, easily prepared and 

ready-to-eat “fresher” foods, together with the globalization of the food business, and the logistics of 

distribution from processing centres make food quality control a significant challenge. [44, 45, 46] 

In this scenario, both the regulations about expiration dates and the traditional methods for 

determining food freshness, based on physical, chemical, microbiological measurement and human 

sensory evaluation, have proven insufficient and need to be updated or even replaced by rapid, low 

cost and non-destructive techniques to be implemented directly on food packaging. [8, 5] 

The efforts made in recent years have led to a promising emerging field, comprised of innovative 

packaging technologies showing the potential to substitute conventional materials. [5] Traditionally, 

common packaging technologies consist of the use of passive, inactive, and inert barriers with the 

function to prevent moisture, oxygen, and contaminants from becoming in contact with the food 

products. On the contrary, innovative food packages, usually defined as “smart packaging”, may 

present one or multiple active functions able to play an active role in food preservation and quality 

indication. [5]  

Smart packaging systems are commonly divided into active and intelligent packaging. Active 

packaging systems contain active agents (antimicrobial, antioxidant, emitters, nanoparticles) that 

absorb or release ingredients into or from the packed food or environment surrounding the food 

package to elongate its shelf-life. On the other hand, intelligent food packaging is defined as a 

packaging system that can monitor the quality of food in real-time and inform food conditions to 

consumers by emitting a signal (colourimetric, optical, chemical, electric, etc.) in response to 

changes in the packaging environment and food quality in real-time. [47]  

We will focus our attention on intelligent packaging, alternatively called smart labels, and on the 

most relevant sensors proposed in literature for this application. 
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1.2.3 Intelligent packaging systems  

Since this theme has been on the front burner in the last years, a large variety of devices have been 

proposed so far to monitor to comply with market demand. We can include in this category mainly 

biosensors, electronic devices (e-nose and e-tongue) and colourimetric sensors but we will focus our 

attention on the last group. [9] 

Intelligent packaging systems can be classified according to the target Food Quality Indicator (FQI), 

namely specific indicators able to indicate the quality state of food products, connected to physical 

or chemical modifications that occur in a certain product. Table 1.1 summarizes the main food 

quality indicators and their applications in real-time monitoring. [5] 

 Table 1.1: Summary of the main FQI and their main applications in food packages. 

FQI Working Principle Main Applications 

O2 

Luminescence-based 

Redox-based 

Colourimetric assay-based 

Modified atmosphere packages 

CO2 
Luminescence-based 

Colourimetric assay-based 
Modified atmosphere packages 

Humidity 

Inductor and capacitor-based 

Colourimetric assay-based 

Photonic crystal-based 

Modified atmosphere packages 

Dry food products 

pH 

Colourimetric assay-based 

Electrochemical assay-based 

Photonic crystal-based 

Meat, fish and dairy products 

(aerobic storage) 

Temperature Colourimetric assay-based Frozen food products 

Nitrogen 
Antibodies-based 

Colourimetric assay-based 
Meat and fish products 

 

Among all, those relying on pH as food quality indicator and pH indicators as the sensing unit, seem 

to be highly promising for intelligent packaging systems. In fact, the use of several pH indicators with 

bright colours, having different logKa values to cover a wide pH range, ensures a reliable methodology 

for food degradation evaluation by the naked eye. [14]  

The various smart labels proposed in literature in the last years for industrial application are well 

summarised in several recent reviews. [38, 5, 47, 48, 6, 49, 50, 51] It must be underlined that the 

proposed devices have some limitations in common: firstly, they are mainly developed in 

experimental conditions far from the actual domestic ones, using synthetic samples, enriched foods 

or foodstuffs stored at RT. Secondly, when one or two sensors are included in the device, naked-eye 

analysis is not so clear, and the final users are expected to distinguish between very similar colour 

shades. [7, 8, 9, 14, 15, 52] 
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1.3 Aim of this project 

1.3.1 General features 

In this scenario, we aimed to develop a panel of colourimetric sensors arrays, coupled with 

multivariate data elaboration, to be used as an intelligent packaging solution for real-time monitoring 

of protein foods freshness. To be actually suitable for industrial application, these devices must 

exhibit some key requirements listed below: 

• Low cost 

• Naked-eye detection 

• Suitability for untrained operators 

• Wide applicability 

• Biocompatibility or compostability 

• Efficiency during chilled storage 

• Scalable production 

• Ease to implement in packaging 

To fulfil these requirements, we produced our devices exploiting commercially available and cheap 

materials, we tested them directly on various real samples, chilled stored in a domestic fridge, we 

coupled naked eye evaluation, always verified, with various chemometric tools for spoilage 

visualisation and modelling and, last but not least, we validated the devices' responses by 

independent instrumental analyses. 

Despite the different receptors and solid support tested, a common approach in freshness sensing 

was applied, derived from a precise analysis of spoilage processes and by-products released and 

verified directly on real samples. 

1.3.2 Freshness sensing approach 

Meat and fish products 

As discussed in Section 1.2.1, the early spoilage and the spoilage are characterised by the bacterial 

release of by-products with different acid-base behaviour and volatility. In the early spoilage, a large 

amount of volatile fatty acids is released in the package headspace. The most sensitive strategy to 

detect these molecules is using as receptor one or more pH indicators with logKa value above 7, 

equilibrated at alkaline form, which show a complete transition from the alkaline to the neutral or 

acidic form after the reaction with these by-products. [7, 8, 9, 14, 52] 

Opposite, during spoilage, thiols and amines are the main by-products. Thiols are mainly small 

volatile molecules that distribute in the headspace and can be detected by a specific receptor for 

molecules containing the -SH group. [32, 35, 45, 53] As for amines, an assortment of these 

molecules is produced, characterised by different dimensions, molecular weights, acid-base 

behaviours and, therefore, volatilities. The most significant class of amines, in terms of toxicity, is 
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represented by biogenic amines (BA) and, in fact, the overwhelming majority of papers on this topic 

have stubbornly focused on sensing BAs in the headspace. [52]  

Undoubtedly, the presence of BAs in meat has been widely proven by instrumental methods [54, 55] 

and could be quantified by the standard methods to determine TVB-N. [56] Nevertheless, their 

existence in the solid does not imply finding them into the headspace: BAs are weak bases and many 

of them are involved in one or more protonation equilibria. Considering that only neutral molecules 

can pass into the headspace and in all biological matrices the pH is buffered at a value around seven, 

it must be observed that, at these pH values, all the amines present a positively charged protonated 

form and cannot pass into the vapour phase. [52] As an example, in Figure 1.4 the acid-base 

speciation of some BAs calculated on their logKa values is reported. In each diagram, the grey area 

corresponds to the pH range in which BAs are present over 10% in the fully deprotonated and actually 

volatile form, which is always much higher than 7. [52] 

 

 

Figure 1.4: Acid-base speciation scheme of some BAs calculated from logKa values found in the literature. 

The vertical line corresponds with the pH values at which the fraction of the fully deprotonated form (L) is 

10%. The shadow area represents the L domain, where the L fraction is above 0.1. [52] 

 

Having this in our mind, the most sensitive strategy to detect these molecules is using as receptor 

one or more pH indicators with logKa value much below 7, equilibrated at acidic form, which show a 

complete transition from the acidic to the neutral or alkaline form. The choice of pH indicators that 

turns its colour at acidic pH is fundamental to detect the very slight increase in the headspace pH 

related to the end of acidic by-products release and the presence of alkaline molecules in the meat 

or fish. 
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Milk  

As discussed in Section 1.2.1, the decrease in the pH of raw milk with time is a direct consequence 

of bacterial growth, hydrolysis of fat and protein, and production of lactic acid from lactose. [15] 

Differently from meat and fish, milk is no longer eatable when a certain acidity threshold is crossed 

and the easiest technique to evaluate this parameter is represented by Soxhlet-Henkel titration, 

reference method for titratable acidity determination. [57, 15] Alongside the case of BAs in meat and 

fish, it must be underlined that also milk is a buffer solution thus a considerable amount of acid 

should be produced before these pH changes will be detectable and the actual pH decrease, 

corresponding to threshold crossing, is definitely small. Therefore, the most accurate sensing 

strategy to detect the threshold crossing is using as receptor one or more pH indicators with logKa 

value around 7, equilibrated at alkaline form, which show a complete transition from the alkaline to 

the neutral or acidic form. In this case, the selection of the ideal receptor must be performed directly 

on milk samples during chilled storage and validated by a reference method to assure that the colour 

change occurs in correspondence with the threshold crossing. 

1.3.3 Chemometric approach to sensors development and data elaboration 

Together with the sensitive freshness sensing approach, previously described, the extensive 

application of various chemometric tools played a crucial role in our sensors arrays development. 

During this project, chemometrics was applied in two different steps of sensors development. 

Upstream, Design of Experiments (ED) was exploited to investigate the influent factors and their 

effect and to define the experimental procedures. Downstream, Multivariate Analysis was used to 

extract information from the raw data extracted from sensors pictures or by other measurements. All 

the techniques exploited are widely discussed in literature [58, 59] therefore I will not go into details 

of the theoretical aspects, but I will only generally describe how and when we applied these 

techniques.  

For the multivariate data treatment, we always used the open-source program Chemometric Agile 

Tool (CAT), that has proved to be a robust and implementable tool, for the easy management of 

matrixes, even of big dimensions, clarity of output and data portability. [60] 

Design of Experiments 

Design of Experiments was applied several times during this project and, for brevity’s sake, here only 

the most interesting applications are reported. It must be underlined that, in this thesis, every time 

ED was applied the term “optimisation” was used: from a strictly theoretical point of view, this term 

should be used only when quadratic models are applied and thus our use of this term is wrong. 

Nevertheless, being this thesis for a wider readership, we used the term “optimisation” to distinguish 

from the most common “one variable at time” approach. 
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Design of Experiments was exploited to investigate several types of variables, ranging from 

quantitative, to qualitative at two or more levels and mixture variables. When possible, Full Factorial 

Design was applied while, for more complex cases, tailored Designs were developed. Eventually, the 

models were always validated performing the experiments at the centre point and comparing the 

average experimental response, usually on three replicates, with the predicted value. 

Multivariate Analysis 

Multivariate Analysis tools were the eligible techniques to extract information from the data acquired 

during freshness monitoring experiments. As already discussed in Section 1.1.5, the colour of 

colourimetric sensors can be described by exploiting different colour models with different 

characteristics, pros and cons that I will not describe in detail.  

In all the applications, we used the RGB colour model to describe sensors’ colouration and the 

lighting conditions were kept constant and well-defined to avoid undesirable variability between the 

pictures. The open-source GIMP software [61] was used to acquire the RGB triplets from the .jpg files 

straight from the camera, manually selecting the region of interest, exploiting the “Intelligent 

Scissors” tool. 

The RGB values matrixes, properly organised depending on the specific application, were then 

submitted to multivariate analysis, always applying only centring as data pretreatment, being the 

RGB values intrinsically scaled from 0 to 255.  

The two main unsupervised techniques employed were Principal Component Analysis (PCA) and 3-

Way Principal Component Analysis. PCA was used to deal with 2-dimensional dataset which means 

dataset made by the sensors’ RGB acquired during spoilage. Therefore, PCA allows to visualise and 

rationalise the results of freshness monitoring experiments of replicates of the same food. 3-Way 

PCA was exploited to deal with 3-dimensional data set which means dataset made by the sensors’ 

RGB (variables) acquired during the spoilage (conditions) of various foods or, in general, different 

types of samples (objects). This 3-Way PCA allows to compare the results of freshness monitoring 

experiments of different foods, always analysed in replicates, or on synthetic samples. It must be 

underlined that PCA can be applied to every dataset, of any dimension, while 3-Way PCA can be run 

only on completely symmetrical matrixes in which the variables are acquired for each object at each 

condition and vice versa. 

When possible, also supervised techniques are exploited both for classification and multivariate 

calibration purposes. Among all the classification techniques, Linear Discriminant Analysis was 

preferred for the specific application for milk freshness prediction since it gave the best results 

compared to k-NN and QDA, which were also tested. As for multivariate calibration, Partial Least 

Square regression was preferred among the various techniques. This tool was exploited in milk 

freshness sensing, to build a soft model able to calculate °SH from the sensors’ colour, and in pH 

measurement, to predict pH from the most informative sensors’ colouration.  
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1.3.4 Summary of developed devices 

To conclude, the previously described sensing strategy and chemometric tools are applied in the 

development of four main classes of devices, distinguished by the solid support exploited: 

• Colour Catcher-based devices, described in Chapter 2 

• EVOH (32%)- based devices, described in Chapter 3 

• EVOH (29%)- based devices, described in Chapter 4 

• CMC- based devices, described in Chapter 5 

Per each solid support, the state of art is presented, the selection of the receptors and the 

experimental procedures are described, the results obtained are presented and conclusions are 

drive together with the patent deposited, the congress contributions and the published papers. 
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2. CC-based devices 
In this chapter, the Colour Catcher-based devices are discussed. Firstly, the state of art is presented 

providing a brief description of the recent literature on this topic. The selection of the receptors and 

the experimental procedures are described; the results obtained are presented. Eventually, the main 

conclusions are driven, the publications on this topic are summarised and the insights for further 

development are discussed. 

2.1 State of art 

The employment of commercially available and ready to use supports represents a common trend in 

sensing devices development. In the last years, Colour Catcher®, distributed in Italy by Grey, in 

England by Dylon (Figure 2.1a), partners of Henkel Company, has been widely exploited as low-cost 

support for devices for environmental applications. [26, 27, 62, 25, 63] This support is a soft sheet 

of paper (Figure 2.1b and c), insoluble and stable in water solution for days, under stable conditions. 

It is a commercial product of the washing powder market, distributed in Italy by Grey, that exhibits 

sequestration properties towards molecules and ions when they are released by clothes. [25] For its 

peculiar property as ionic exchanger, our research group has widely exploited this material as low-

cost and disposable support for several anionic dyes, like Ellman reagent [26], Eriochrome Black T 

(EBT) and 1-(2-pyridylazo)-2-naphthol (PAN) [27] and Alizarine Red S [25], to develop colourimetric 

sensors for environmental analysis. 

 

 

Figure 2.1: Colour Catcher® packaging (a) and SEM images at increasing magnitude (b and c).

 

Colour Catcher® was also used as solid support in the very first part of the development of 

colourimetric sensors for protein foods monitoring. [7, 8] Having selected a panel of pH indicators 

with logKa values around neutrality, the amount of sorbed dye was defined, sorption kinetic and 

reproducibility were investigated, the miniaturisation and preparation procedure were developed. [7] 

The final sensors array was tested for freshness monitoring of chicken breasts samples, stored at 

different temperatures, both by naked-eye evaluation and chemometric-assisted modelling, and 

sensors attribution were validated by independent instrumental analysis. [8] 
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Based on the encouraging results, it seemed worthwhile to extend the application of the device to 

other protein foods, like fish, pork and beef, and to explore the sensitivity of the array, in terms of 

the minimum amount of samples suitable for freshness monitoring. [9]  
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2.2 Materials and methods 

2.2.1 Receptors  

The panel of reactive dyes used is composed of six different molecules. The first five sensing moieties 

are acid-base indicators, belonging to the class of sulphonphtaleins: m-cresol purple (1), o-cresol red 

(2), bromothymol blue (3), thymol blue (4) and chlorophenol red (5). The chemical formula of these 

dyes and their logKa values, as reported in literature, [64, 65, 66] are shown in Figure 2.2.  

 

 

Figure 2.2: Chemical formula of the six dyes employed as sensing moieties and their log Ka values.

 

The sixth receptor is the 5,5’-dithiobis(2-nitrodibenzoic acid) (6) (DTNB), generally called Ellman’s 

reagent: it is a molecule with two electron-deficient phenyl groups linked by a sulphydryl bridge. In 

the presence of thiols, it readily undergoes a trans-sulforation reaction with the reduction of the 

sulfhydryl group that releases a highly chromogenic product, the 5-thio-2-nitrobenzoate (TNB), with 

an intense absorption band at 412 nm. [53] All these molecules present one or two, in the case of 

Ellman’s reagent, permanent negative charges and can thus be easily linked to CC® via ion exchange 

mechanism to obtain the final sensors. 

2.2.2 Preparation of Dye-CC@ 

The preparation of the Dye-CC@ follows the same procedure presented in previous works. [7, 8] The 

CC® is cut in circles of 0.4 cm diameter of approximatively 0.0015(3) g (average weight calculated 

by weighting 20 CC® spots), obtained with a hole punch for paper. The acid-base form of the dye is 

of paramount importance since the ion exchange sorption reaction on CC® causes the dyes to 

change into their basic colour. Table 2.1 reports the defined conditions to prepare the final sensors. 
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Table 2.1: Experimental conditions for the preparation of the Dye-CC@ sensors. 

Dye Dye concentration (µM) μL HNO3 10-3 M 

m-cresol purple (1) 7 20 

o-cresol red (2) 4 40 

bromothymol blue (3) 9 40 

thymol blue (4) 8 10 

chlorophenol red (5) 7 500 

Ellman’s reagent (6) 24 100 

 

An amount of 1 mL of the dye solution, at the concentration reported in the second column of Table 

2.1, is placed in an Eppendorf tube. After adding the proper amount of acid (reported in the third 

column), one CC® spot is added per each Eppendorf tube and the samples are left to equilibrate 

overnight at ambient temperature, on a stirring plate. Subsequently, the CC spots are dried and kept 

ready for use. When needed, they are placed on a stripe of Scotch 3M Magic Tape in order 1 to 6 

(from left to right) and put over the tray to offer the free side to the inner part of the packaging. 

2.2.3 Protein foods freshness monitoring 

Experimental setup 

The protein foods used for these experiments are chicken breast slices, beef slices, pork slices and 

codfish fillets. Food samples are purchased in a local supermarket. The trays are taken from the 

shelf on the day of the delivery from the producer to ensure the homogeneous lifetime of all samples. 

Within ten minutes, the samples are in the lab, the plastic film is removed, the stripes with sensors 

are placed over the tray and a new plastic film is fixed around the tray. The samples are stored at RT 

for 2 or 3 days, depending on the type of protein food. Figure 2.3 shows a picture of the experimental 

setup for different food samples. 

 

 

Figure 2.3: An example of the array placed over trays containing chicken breast slices (a), beef slices (b) 

and pork slices (c) and codfish fillets (d).
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Colour analysis & Chemometrics 

At given times, photos of the array are acquired by a Smartphone Samsung Galaxy S7 in a lightbox 

to ensure a constant and reproducible light exposition. To extract the RGB triplets for each sensing 

unit during freshness monitoring, GIMP software is employed which allows defining the area of the 

photo to be analysed, usually the entire spot, and gives the average values of RGB triplets for each 

selected area [61]. 

A multivariate approach is employed for the data treatment. Firstly, Principal Component Analysis 

(PCA) is performed to model the spoilage of each food type and to evaluate sensors array sensitivity. 

RGB triplets are used as input dataset, applying only centring as transformation, but not scaling the 

data since the RGB triplets are intrinsically scaled (RGB values vary from 0 to 255). Moreover, for 

each food, the most informative receptors, which are the ones with the highest contributions in the 

loading plot, are individuated. 

Then, 3-Way PCA is employed to compare the spoilage processes of different protein foods, stored 

in the same conditions. This data elaboration aims to demonstrate that different protein foods 

undergo a typical spoilage process, characterized by the same steps, in terms of nutrients attacked 

and by-products released; what differs among them is the spoilage timing. Again, RGB triplets of the 

sensors are employed as variables, centred but not scaled, to study the degradation process, taking 

into account the composition of different foods, labelled as objects, over time, referred to as 

conditions. For this comparison, we have to use a few tricks: firstly, the entire array is used because 

the selection of the most informative receptors depends on the food under investigation. Secondly, 

for the difference in perishability and spoilage timing, the shortest timeline must be used, which is 

in this case the codfish fillets timeline.  

The open-source Chemometric Agile Tool (CAT) program is employed both for PCA and later for 3-Way 

PCA analysis [60], as for other chemometric tools employed in this thesis project. 

Training and test sets 

To model each spoilage process, the training set is composed of five samples of similar mass per 

food type. Therefore, the input matrixes have 18 columns (3 RGB indexes per 6 Dye-CC@ sensors) 

and respectively 40, 50 and 70 rows in the case of chicken breast slices, beef and pork slices and 

codfish fillets (8, 10 or 14 acquisition times per 5 replicates). The average masses of foods are 

reported in the first column of Table 2.2. The average mass amount is selected as the most 

commonly used in the supermarket for each type of food. The training set is also used in the 

comparison of spoilage processes by 3-Way PCA.  

To validate the PCA models, two samples of similar mass amounts, reported in the second column 

of Table 2.2, are projected as external test set.  
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Table 2.2: Mass of samples of different foods, employed as the training and test set. 

Food type Training set Av. mass (g) Test set Av. mass (g) 

Chicken breast slices (a) 333(18) 338(3) 

Beef slices (b) 157(6) 160(4) 

Pork slices (c) 138(5) 141(4) 

Codfish fillets (d) 200(6) 215(7) 

 

Dataset for sensitivity test 

Once developed and validated the models, an evaluation of sensors array sensitivity is performed 

for meat samples. In fact, from everyday life experience, we noticed that the amount of meat in the 

selling tray could widely vary, depending on the type of meat, the quality and even the supermarket. 

When decreasing the amount of sample on the same tray, the analytes dilute progressively and it is 

relevant to estimate the lowest amount of meat or fish that produces an equal colour evolution. For 

this reason, decreasing fractions of meat mass used for the model development (100%; 50%; 25%; 

12.5% and 6.75%), are sealed in the common tray and analysed following the procedure explained 

before. In this case, PCA input matrixes have 18 columns (3 RGB indexes per 6 Dye-CC@ sensors) 

and respectively 36 rows (6 acquisition times per 6 decreasing fractions of meat). 
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2.3 Results and discussion 

2.3.1 Dye-CC@ sensors array colour evolution over protein foods 

Being our final aim a smart label for naked-eye reading, the first step of the monitoring always 

consists of a naked-eye analysis of the colour evolution, shown by the sensors array during the 

degradation process. As an example, in Figure 2.4, the colour evolution of sensors array during 

spoilage monitoring, when exposed over one of the samples in the training set, per each food type, 

is displayed. 

 

 

Figure 2.4: Dye-CC@ sensors array colour evolution over chicken breast slices (a), beef slices (b), pork 

slices (c) and codfish fillets (d), stored at RT.

 

At first glance, we can notice that similar behaviour is detected in all the food, despite the different 

timelines, because, as already highlighted, the same spoilage process is occurring. In particular, two 

clear steps can be identified. Firstly, the evolution of alcohol and acids arises from sugar catabolism 

by bacteria, as discussed above, detected by pH indicators that turn their colour from the violet/blue 

basic form into the yellow acidic one. For this purpose, four dyes (from 1 to 4) with logKa higher than 

seven have been included in the array.  

When sugars and their derivates are eventually depleted, the bacteria attack the proteins, releasing 

amines and thiols. Both these classes of molecules are definitively unwanted and dangerous. 

However, they differ widely in their volatility, especially in the buffered pH typical of the biological 

matrix: in fact, amines are present in their protonated form, and can pass into the headspace only 

at an insignificant amount, as discussed before; on the other hand, thiols are neutral and volatile 

molecules that are present in great abundance in the headspace. For this reason, during the second 

step, only a slight increase in the pH is expected, while thiols can be easily detected. Chlorophenol 

red-CC@ (5), whose logKa = 6.0, exposed in the acidic yellow form, shows an appreciable colour 
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change to violet (basic form) in all the samples, at different times. However, the other receptors with 

higher logKa, even if in their acidic colour and form, remain unchanged.  

Meanwhile, Ellman’s reagent (6), which has been included in the array to detect the presence of 

thiols, reacts in all the foods tested but with very different timings: in chicken and fish samples, 

intense yellow colour is observed after 21 h, while in beef and pork meat, the detection occurs only 

after 48 h. 

To rationalize these preliminary findings and to model the entire spoilage process, PCA is performed 

on all the RGB data of the samples, as described in Section 2.2.3. 

2.3.2 Spoilage modelling by PCA models  

As explained before, PCA is employed in this case to visualise and model the degradation process of 

different meats, without claims of classification. After model development, two independent samples 

of similar mass are used as test set to be projected in the score plot to preliminarily validate the 

model. 

Figure 2.5 shows the score plots on the first two components for all the foods, reporting both the 

training set (coloured spots) and the test set (blue squares). 
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Figure 2.5: The score plots of the PCA models on the first two principal components, built on the training 

set and validated by projection of the test set, for chicken breast slices (a), beef slices (b), pork slices (c) 

and codfish fillets (d). The ellipsoids are exclusively added as a simplification of the different groups: 

SAFE, WARNING and HAZARD.

 

In all the score plots of the first two components, which explain a variance from 95.1% to 72.7%, a 

clear evolution is observed during monitoring and the samples form quite evident clusters.  

For meat samples (Figure 2.5 from a to c), three groups can be detected, called SAFE, WARNING and 

HAZARD. In the case of chicken breast slices (Figure 2.5a), the clusters are well separated while, for 

beef (Figure 2.5b) and pork slices (Figure 2.5c), the WARNING and HAZARD zones are partially 

overlapped. In general, samples in the first hours are located in the lower-left part of the score plot; 

then, during the spoilage process, the samples move to the right side. As a consequence, we can 

assess that, here, the first component explains the spoilage, but PC2 is still the fundamental 

component for the separation of the clusters. During the WARNING step, the score of PC2, generally 

increases, while it decidedly decreases for samples that fall into the HAZARD zone.  

The score plot of codfish fillets (Figure 2.5d) is utterly different compared to other meat, a diversity 

much more evident in these graphs rather than in the spot evolution of Figure 2.4. It is common 

knowledge that fish is an extremely perishable food and its spoilage process is very fast, even if 

stored in appropriate conditions. The PCA model on the RGB triplets makes it manifest: only two 

clusters are identified, corresponding to SAFE and HAZARD zone, without any intermediate step. In 
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particular, the SAFE cluster is in the lower part of the graph; as the spoilage goes on, the samples 

move to the higher part of the graph, i.e., at the high value of PC2, which definitively give a significant 

contribution to the cluster separation.  

As for model validation, we can observe that all the samples in the test set are located in the right 

cluster, near training samples with similar times. This evidence is essential both to assure the 

reproducibility of the sensors’ responses and to validate the models developed by PCA. 

After the development and validation of PCA models, a preliminary selection of the most informative 

dye for each food can be performed, analysing the colour evolution and the loading plots, reported 

in Figure 2.6. 

 

 

Figure 2.6: The loading values of the PCA models on PC1 (in foreground) and PC2 (in background) for 

chicken breast slices (a), beef slices (b), pork slices (c) and codfish fillets (d).

 

The most informative receptors are the ones that give the highest contribution in the loading plots. 

It is interesting to note that some dyes are significant for each food, such as bromothymol blue (3) 

and Ellman’s reagent (6); conversely, the other pH indicators can be informative or not, depending 

on the type of food.  

2.3.3 Sensitivity evaluation  

The goal of these experiments is to estimate the minimum mass of food characterized by an evident 

and similar colour evolution as that previously observed in training and test samples. Such 

estimation cannot be performed by a simple naked-eye analysis of the colour evolutions with 

sufficient certainty, but PCA can be useful, at least for a preliminary estimation. For this reason, for 

each food, we run PCA on the RGB triplets of sensors array exposed over subsamples of reduced 

mass, as reported in Section 2.2.3, and we analyse the resulting score plots, which are reported in 

Figure 2.7. The loading plots are reported in Figure 8.1 in Appendix III: Loading and score plots. 
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Figure 2.7: The score plots of the PCA models on the first two principal components, built on the sensitivity 

dataset for chicken breast slices (a), beef slices (b) and pork slices (c).

 

The trays with similar mass to training and test samples, i.e., 100%, are considered the reference 

tray and their degradation process was used as the “reference pathway” in the score plot. We notice 

that, down to a certain amount of mass, colour evolution overlaps that of the reference. It means 

that samples in the score plot fall near the reference ones, following the same “pathway”. 
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Below this mass value, the colour evolution significantly differs, resulting in a different allocation in 

the score plot. In Figure 2.7, for each food, only reference points and samples above critical mass 

are highlighted and labelled with the corresponding reference mass percentage; the critical mass 

percentage corresponds to 50% in the case of chicken and pork, and 25% for beef. As previously 

argued, this is not an absolute value since the analyte concentration depends on both the amount 

of food and headspace volume. For this reason, the sensitivity of the array, in terms of meat mass, 

can be sharply improved by using smaller trays with lower volume. 

2.3.4 Spoilage processes comparison by 3-Way PCA 

To conclude, we perform a comparison between the spoilage processes of the different protein foods, 

as described above, using 3-Way PCA. Five samples for each food under investigation, already 

defined as training set, are employed as objects (20 in all), the acquisition times are identified as 

conditions (six in all), while the RGB triplets of the entire array are used as variables (18 in all).  

Table 2.3: Cumulative % variance explained after unfolding. 

Mode PC1 PC1&2 

Objects 37.92% 63.93% 

Variables 42.67% 69.40% 

Conditions 53.56% 84.49% 

 

The variance explained by the [2 2 2] Tucker3 model (50.81%) is somehow lower than the lowest 

variance explained by the PCA on the three unfolded matrices (63.93%). This means that part of the 

information contained in the dataset is lost when the common degradation process is taken into 

account. In our opinion, this loss is mainly due to the significant difference in spoilage duration for 

the considered types of meat. As already observed, after 48 h, codfish fillets were in an advanced 

state of decomposition, while spoilage was still ongoing for the other samples. This information is 

inevitably lost by analysing the common degradation. Nevertheless, the percentage of explained 

variance is fully satisfying, considering the high variability of the system, the types of data employed 

for the analysis, and the necessary reduction in the data set. 
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Figure 2.8: The loading plots of the 3-Way PCA model on the first two axes: objects (a), conditions (b) and 

variables (c) loading plots. In graph c, the variables loadings on Axis 1 are in foreground, the ones on Axis 

2 in background.

 

Moving to results interpretation, in the plot of objects (Figure 2.8a), different protein foods are 

separated along the x-axis (Axis 1). In particular, fish samples occupy the right part of the graph; 

chicken samples are in the centre, while beef and pork are on the left. These last two have slightly 

different loading values on the y-axis (Axis 2), but they are too near to be distinguished with sufficient 

certainty. Comparing this graph with the plot of variables (Figure 2.8c) we can conclude that the most 

informative receptors in objects separation are the ones with a higher loading value on Axis 1, in the 

foreground, and therefore are o-cresol red (2), bromothymol blue (3) and Ellman’s reagent (6). This 

conclusion is in good agreement with what was previously observed during the analysis of each 

degradation: both these pH indicators, namely (2) and (3), do not turn completely to an acidic colour. 

However, they show a different behaviour according to the food under investigation. At the same 

time, Ellman’s reagent (6) reacts at different times depending on the type of meat or fish. 

In the plot of conditions (Figure 2.8b), times follow a well-defined trajectory from negative to positive 

loadings along Axis 2: the very first degradation steps are located in the lower part of the graph, 

while, during the spoilage process, the loading values on Axis 2 increase. Again, from the plot of 

variables (Figure 2.8c), the most critical receptors in conditional separation are identified, based on 

the value of the loading on Axis 2, in the background, which are m-cresol purple (1), bromothymol 

blue (3) and thymol blue (4). We compared the spoilage profile of protein foods with widely different 

compositions and perishability. Even if the number of conditions is reduced, even if we are well aware 

that these results are only an indication, they are profoundly coherent and have a precise sense. 
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First, the order of perishability is maintained as fish, chicken, beef and pork (Figure 2.8a) secondly, 

the conditions, even if compressed, clearly show a clear difference between the early stage and the 

subsequent stages.  



2.CC-based devices 

 

 
29 

2.4 Conclusions 

The Dye-CC@ sensors array was developed and tested on various protein foods as “proof of concept” 

to demonstrate not only that our monitoring strategy can be applied to a wide variety of protein foods 

but, even more, that the array can be adapted and optimized for the food of interest by selecting the 

proper receptors. 

It must be underlined that, to develop the prototype of an intelligent label, suitable for industrial 

production and large-scale application, this solid support would no longer be suitable, both for its 

physical characteristics and for the reversible linkage mechanism that allows dye release when in 

contact with solutions or even humidity.  

For this reason, new materials were tested as solid supports, both plastic-based, described in 

Chapter 3 and 4, and bio-based, described in Chapter 5, and covalent linkage between solid phase 

and receptors was investigated. 

To conclude, the results discussed in this Chapter, together with those reported in my Master Degree 

Thesis, were presented as oral communication at the “International Symposium on MEtal 

Complexes” (Florence, 2018), at the “XXVII Congresso della Divisione di Chimica Analitica” (Bologna, 

2018) and at “Merck Young Chemists’ Symposium” (Rimini, 2019). The publication of these results 

on Journal of Agricultural and Food Chemistry (ACS) [7, 8] and on Foods (MDPI) [9] was possible only 

after the first patent deposition in March 2019 [10]. 
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3. EVOH (32%)-based devices 
In this chapter, the EVOH(32%)-based devices are discussed. Firstly, the state of art is presented 

providing a brief description of the recent literature on this topic. The selection of the receptors, the 

physicochemical and optical characterization and the experimental procedures are described; the 

results obtained are presented. Eventually, the main conclusions are driven, the publications on this 

topic are summarised and the insights for further development are discussed 

3.1 State of art 

In the field of sensing devices for food application, a large number of linkage mechanisms are 

commonly exploited and, in particular, immobilization strategies are preferred mainly on inorganic 

supports, [67, 68, 69] filter paper [31] and different mixtures of cellulose derivatives and 

polyethylene glycol (PEG) [44, 70]. All these reversible anchoring strategies have in common the risk 

of dye release, as already argued in the case of CC®, that would provoke unwanted changes like 

coloured spots, drops or halos on food samples or even health risks for the consumers. To avoid dye 

release and related issues, we investigated the possibility of covalently binding our receptors to a 

polymeric plastic-based material, an approach seldomly followed in literature. [14] 

 

 

Figure 3.1: Chemical structure of EVOH (a) and EVOH beads, as commercially available.

 

As polymeric support, ethylene vinyl alcohol copolymers (EVOH), composed of hydrophilic (vinyl 

alcohol) and hydrophobic (ethylene) segments in a single macromolecule (Figure 3.1a), were 

selected. These unique copolymers are biocompatible, insoluble in water and have excellent barrier 

properties, which made them suitable for food packaging films, especially for those foods that are 

sensitive to certain levels of oxygen or carbon dioxide. [71, 72] The presence of quite reactive 

hydroxyl moieties in polymer structure makes EVOH an excellent candidate for covalent anchoring of 

different classes of molecules, as reported in recent papers by our and other research groups [71, 

72, 73] and, eventually, EVOH-based materials are usually extrudable, which, in principle, is much 

more convenient for a practical application. [74, 75, 76, 77, 78] 

This copolymer is commercially available in form of beads (Figure 3.1b) with different monomers 

ratios, ranging from 29% to 44% of ethylene content. Among all, EVOH (32% ethylene) is the most 

commonly employed in food packaging and was first selected as solid support for our sensing device, 
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to facilitate the industrial scale-up and the implementation in typical food packaging, significantly 

reducing the costs.  

The Dye-EVOH@ sensors array was synthesised, characterised from a physicochemical and analytical 

point of view and tested for freshness monitoring of protein foods both solid, like chicken breast 

slices and codfish fillets [14], and liquid, like whole, semi-skimmed and skimmed milk. [15]  
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3.2 Materials and methods 

3.2.1 Receptors  

The panel of reactive dyes used is composed of six different pH indicators, belonging to the class of 

sulphonphtaleins: m-cresol purple (1), o-cresol red (2), bromothymol blue (3), thymol blue (4), 

chlorophenol red (5) and bromophenol blue (6). The chemical formula of these dyes and their logKa 

values, as reported in literature, [64, 65, 66] are shown in Figure 2.2.  

 

 

Figure 3.2: Chemical formula of the six dyes employed as sensing moieties and their log Ka values.

 

All these molecules present one sulphonic group, not involved in the protonation and deprotonation 

equilibria, that can be exploited to link the reactive dyes to the polymeric support, following the 

synthetic pathway described below. 

3.2.2 Synthesis and pressing of Dye-EVOH@ 

The synthesis of the reactive polymeric material, internationally patented, [10, 11, 13, 12] consists 

of two reaction steps: (i) dye activation through chlorination and (ii) polymer functionalization by 

nucleophilic substitution.  

In the first step, a selected dye is dissolved in SOCl2 and the mixture is heated at reflux for some 

time; the chlorinated dye can be stored by leaving it under the SOCl2 solution for 18 h before use. 

The SOCl2 excess is evaporated just before the second step.  
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In the second step, EVOH is poured in DMA at 110 °C, under stirring and a nitrogen atmosphere, 

and solid NaOH is added as the catalyst. When the polymer is completely dissolved, a freshly 

prepared sulfonyl chloride DMA solution is added dropwise to the polymer solution. After 4 h at 110 

°C, the reaction mixture is cooled at room temperature and then in an ice bath. The functionalized 

polymer is precipitated in cooled DCM under stirring, and the temperature is kept around 0 °C 

because the process is strongly exothermic; this procedure helps to increase the final yield. 

The solid material is then filtered under vacuum, washed with DCM to remove the unreacted dye 

excess, and left to dry overnight. A further drying step is conducted under vacuum at 60 °C for 24 h 

in an Abderhalden apparatus. 

After the synthesis, the functionalized polymer comes in the form of small blocks of irregular shapes 

(Figure 3.3a) and needs to be pressed to have the final sensitive films (Figure 3.3b), from which the 

miniaturised sensors (Figure 3.3c) are obtained.  

 

 

Figure 3.3: Dye-EVOH@ small blocks after synthesis (a), thin films after pressing (b) and miniaturised 

sensors of different shapes (c).

 

A dual heated plate manual press is employed, and pressing parameters are optimised by Full 

Factorial Experimental Design 24, using EVOH functionalised with thymol blue, (4)-EVOH@. The 

experimental matrix is reported in Table 8.1 in Appendix IV, where the variables taken into account 

are time (x1), pressure (x2), polymer mass (x3) and temperature (x4) and the responses analysed are 

film quality (y1) and n° sensors obtained (y2). 

3.2.3 Dye-EVOH@ characterization 

The characterization is performed on different samples of each synthesized Dye-EVOH@. Apart from 

DSC analyses, all of the other measurements are taken on the final films, obtained after pressing. 

Physicochemical measurements 

Differential scanning calorimetry (DSC) analyses are performed by heating the samples (∼5 mg) from 

−80 to 250 °C at a rate of 5 °C/min under a N2 atmosphere. For selected samples, a second 

heating−cooling cycle is appended to verify the reversibility of the processes. 

Fourier transform infrared (FT-IR) spectra are acquired using a spectrometer equipped with an 

attenuated total reflectance (ATR) sampling accessory by co-adding 32 scans in the range from 4000 

to 650 cm−1 with the resolution set at 4 cm−1. 
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Elemental analyses of the films are performed by energy dispersive X-ray analysis (EDX) by an X-max 

50 mm2 probe connected to an EVO MA10 scanning electron microscope (SEM). The films are 

supported on graphite bi-adhesives fixed on Al stubs and subsequently transferred into the SEM 

chamber. EDX measurements are performed under ultrahigh vacuum at a working distance of 8.5 

mm and with an electron generation voltage of 20 kV. 

The thickness of three samples for each Dye-EVOH@ film is measured by a profilometer, applying 2 

mg force. 

Optical measurements 

UV−vis spectra of Dye-EVOH@ films are recorded at different pH, after equilibration for 24 h in 0.1 M 

HNO3, phosphate buffer at pH 7.00, and 0.1 M NaOH and compared with the corresponding spectra 

of the dye dissolved in aqueous solutions (∼10 μM). 

3.2.4 Dye-EVOH@ sensing performances 

Apart from the physicochemical characterization of sensitive films, sensing performances of Dye-

EVOH@ sensors array need to be evaluated before testing the device for real samples freshness 

monitoring. For these experiments, miniaturised sensors, circular (diameter 0.5cm) or squared 

(0.5x0.5 cm) of Dye-EVOH@ of approximately 0.0025(2) g (average weight calculated by weighting 

20 Dye-EVOH@ sensors), cut with a hole punch for paper of different shapes, are used. 

Reproducibility 

Reproducibility of the final sensors, which includes, in this case, the variability of both the 

functionalised material and the pressing procedure, is firstly investigated.  In our research, the term 

“reproducibility” could refer also to the image acquisition method, but this parameter was already 

studied in previous researches [7] and is kept unchanged. To evaluate sensors reproducibility, for 

each Dye-EVOH@, 10 independent sensing spots, obtained from different films, are equilibrated by 

2-hours immersion in 10 mL of proper solutions, as reported in Table 3.1, and analysed by photo 

acquisition. The reproducibility is assessed, based on the RGB values collected and compared. 

Table 3.1: Equilibration conditions used to test sensors reproducibility for each Dye-EVOH@ 

Dye-EVOH@ Equilibration A Equilibration B Equilibration C 

1-EVOH@ HNO3 0.1M NaOH 0.1M Phosphate buffer pH=7 

2-EVOH@ HNO3 0.1M NaOH 0.1M Phosphate buffer pH=7 

3-EVOH@ HNO3 0.1M NaOH 0.1M --- 

4-EVOH@ HNO3 0.1M NaOH 0.1M Phosphate buffer pH=7 

5-EVOH@ HNO3 0.1M NaOH 0.1M --- 

6-EVOH@ HNO3 0.1M NaOH 0.1M --- 
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Colour change kinetic in solution and vapour 

As for colour change kinetic, from preliminary experiments, 2-hours immersion in 1 mL of 0.1M 

solutions of strong acids or bases per sensor is sufficient to assure homogeneous colouration of 

sensors and this methodology is thus followed to equilibrate the sensors before every analysis.  

To better estimate colour change rate at lower analyte’s concentrations, kinetic experiments in 

solution are performed; dilute solutions of nitric acid and sodium hydroxide are used to test extremely 

acidic and basic pH while phosphate buffer is used to mimic neutral buffered biological matrices, 

like milk. Dye-EVOH@ sensors array, made of 6 miniaturised sensors, one per pH indicator, are 

immersed in 10 mL of different solutions, always previously equilibrating the sensors at the proper 

pH, acidic or basic depending on test solution pH. A summary of kinetic experiments in solution is 

reported in the first four rows of Table 3.2. 

Being the final aim of these sensors the detection of acidic or basic volatile by-products, also kinetic 

in the vapour phase is tested. Acetic acid is used to simulate volatile acid by-products released during 

spoilage process, ammonia to mimic volatile bases, following the procedure already used for Dye-

CC@ sensors optimization. [7] Opposite, phosphate buffer is used as “blank analysis” to evaluate 

the stability of sensors colours, in absence of specific acidic or basic analytes. Dye-EVOH@ sensors 

array is equilibrated at the proper pH, as discussed before, and located in a sealed box (V=1 L) over 

20 mL of various test solutions. A summary of kinetic experiments and “blank analyses” in the vapour 

is reported in the last eight rows of Table 3.2 

Table 3.2: Test solutions and equilibration conditions for kinetic experiments in solutions (rows 1-4), in 

vapour (rows 5-10) and for blank analysis (rows 11-12). 

 Name Test solution Equilibration conditions 

1 Solution A HNO3 0.01M NaOH 0.1M 

2 Solution B NaOH 0.01M HNO3 0.1M 

3 Solution C Phosphate buffer pH=7 NaOH 0.1M 

4 Solution D Phosphate buffer pH=7 HNO3 0.1M 

5 Vapour A CH3COOH 0.1M NaOH 0.1M 

6 Vapour B CH3COOH 0.01M NaOH 0.1M 

7 Vapour C CH3COOH 0.001M NaOH 0.1M 

8 Vapour D NH3 0.1M HNO3 0.1M 

9 Vapour E NH3 0.01M HNO3 0.1M 

10 Vapour F NH3 0.001M HNO3 0.1M 

11 Blank Analysis A Phosphate buffer pH=7 NaOH 0.1M 

12 Blank Analysis B Phosphate buffer pH=7 HNO3 0.1M 
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3.2.5 Protein foods freshness monitoring 

Experimental setup 

First, the sensors are equilibrated at the proper pH by being immersed for 2 h in 10 mL of 0.1 M 

HNO3 or 0.1 M NaOH, to be able to detect both acidic and basic by-products released during spoilage 

process. Subsequently, the Dye-EVOH@ spots are dried, placed on a stripe of Scotch 3M Magic Tape, 

and taped over the selling tray. 

The chicken breast slices and codfish fillets are purchased in a local supermarket. The trays are 

taken from the shelf, a few minutes after the preparation to ensure a homogeneous lifetime of all 

samples. Within 10 min, the samples are in the lab, the plastic film is removed, the stripes with 

sensors are placed over the tray, and a new plastic film is fixed around the tray. The samples are 

stored at RT for 2 days.  

The same procedure is applied for the analysis of both protein foods except for the preliminary 

equilibration step: for chicken breast slices, dyes 1−5 are dipped in a basic solution and only dye 6 

is immersed in an acidic solution; for fish samples, also dye 5 is previously equilibrated at acidic pH. 

Colour analysis & Chemometrics 

At given times, photos of the array are acquired by a Smartphone Samsung Galaxy S7 in a lightbox 

to ensure a constant and reproducible light exposition. To extract the RGB triplets for each sensing 

unit during freshness monitoring, GIMP software is employed [61], as previously commented. 

Principal component analysis (PCA) is performed on RGB triplets, only centring the data because 

these indexes are intrinsically scaled from 0 to 255, to rationalize the colour evolution and visualize 

spoilage process.  

The open-source Chemometric Agile Tool (CAT) program was employed for PCA [60].  

Training and test sets 

For each protein food, the training set consists of two samples used to monitor the spoilage process 

at room temperature (around 22 °C). Therefore, the input matrixes have 18 columns (3 RGB indexes 

per 6 Dye-EVOH@ sensors) and respectively 22 and 18 rows in the case of chicken breast slices and 

codfish fillets (11 or 9 acquisition times per 2 replicates). The average masses of foods are 300(15) 

g for chicken breast slices and 206(13) g for codfish fillets, both amounts in good agreement with 

what is argued in Section 2.2.3.   

Then, for each food, one new sample of similar mass (309 g of chicken breast meat and 220 g of 

codfish fillets) is projected as external test set.  

Validation by independent instrumental analyses 

For each test sample, almost the entire quantity is left in the tray with the array and kept as a 

reference, while the rest is divided into subsamples for instrumental analyses, performed to 

corroborate the assumptions derived from PCA.  
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Each analysis is performed in triplicate, and each sample is split into two parts, one for the solid 

analysis and one for the identification of the volatile in the headspace.  

For the analysis of the solid, we follow the procedure suggested in the literature [55, 54]. In the case 

of chicken meat, each piece of meat is cut in a blender, 4 g is extracted with a homogenizer and 5% 

TCA and then centrifuged. On the contrary, for codfish fillets, the first part of the procedure is slightly 

modified to improve amine extraction. 20 g is chopped, using a common kitchen mixer, left to 

equilibrate in 20 mL of 10% TCA at the proper temperature, and centrifuged.  

For both protein foods, after the centrifugation step, the supernatants are collected and purified on 

SPE STRATA X cartridges (conditioned with 4 mL of methanol followed by 4 mL of Milli-Q water). Then, 

2 mL of the sample (supernatant), with a pH adjusted to around 11 upon addition of 200 μL of 28% 

NH4OH, is passed through the cartridges. After sample loading has reached completion, cartridges 

are rinsed with 2 mL of a MeOH/H2O mixture [5:95 (v/v)] and dried under vacuum to remove the 

excess of water. Analytes are eluted from the STRATA X sorbents with 2 + 2 mL of a solution of a 

methanol/acetic acid mixture [99:1 (v/v)]. The eluting solution is dried with nitrogen gas, and the 

residue is collected with 2 mL of 0.1 M HCl, filtered, and injected into the LC-MS/MS instrument. 

On the contrary, for volatile analysis, samples (∼5 g) are placed in the vials equipped with the solid 

phase, kept under the same storage conditions of samples, and then analysed. The analyses are 

performed directly using headspace solid phase microextraction (HSSPME) coupled with gas 

chromatography and mass spectrometry (GC/MS). The following experimental parameters are used: 

polydimethylsiloxane/divinylbenzene (PDMS/DVB) fibre, 65 μm; extraction temperature, 35 °C; 

extraction time, 20 min; desorption temperature, 250 °C; desorption time, 4 min. GC/MS analysis 

is performed on a single-quadrupole GC/MS system equipped with a MS capillary column [30 m, 

0.25 mm (inside diameter), 0.25 μm film thickness], with helium as the carrier gas at a constant flow 

rate of 1.0 mL/min. The injector temperature is set at 250 °C, and the injector is operated in splitless 

mode. The oven is held at 35 °C for 2 min, and then the temperature is increased to 80 °C at a rate 

of 5 °C/min, ramped to 300 °C at a rate of 10 °C/min, and finally held at 300 °C for 2 min. The GC 

transfer line temperature is 270 °C.  

All mass spectra are acquired in electron impact mode (ionization energy of 70 eV and source 

temperature of 250 °C), with spectra acquired in full scan mode (mass range of m/z 15−650 and 

scan speed of 832 amu/s). Assignment of chemical structures to chromatographic peaks is based 

on the comparison with the databases for the GC/MS NIST Mass Spectral Library (NIST 08) and the 

Wiley Registry of Mass Spectral Data (8th edition). Xcalibur MS Software version 2.1 (Thermo 

Scientific Inc.) and the AMDIS Program for the automated deconvolution of mass spectra are used 

for GC/MS data interpretation. 
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3.2.6 Milk freshness monitoring 

Experimental setup  

In the case of milk, microbial spoilage process results in an increasing acidity therefore Dye-EVOH@ 

sensors are tested to select the most informative one, which is, in principle, the one that turns its 

colour when milk is no longer eatable. The sensors are equilibrated at basic pH by 2-hours immersion 

in 10 mL NaOH 0.1 M and, after the drying step, they are ready to be employed for milk monitoring.  

Different types of fresh milk, whole, semi-skimmed or skimmed, are purchased in a local 

supermarket the day of the dairy’s delivery to ensure a homogeneous lifetime of all samples and 

monitor the entire degradation process. Within ten minutes, the bottles are carried in the lab and 

divided into subsamples of 20 mL in sterile plastic containers, in which the Dye-EVOH@ sensors array 

is dipped.  

Colour analysis & Chemometrics 

At given times, during storage at a different temperature, photos of the array are acquired by a 

Smartphone Samsung Galaxy S7 in a lightbox to ensure a constant and reproducible light exposition 

and sensing spots RGB triplets are extracted using GIMP software [61]. 

Being the sensors dipped in milk, they must be separated from the white liquid to acquire the 

photographs. For facilitating this step, all the sensors are poked with a needle (Figure 3.4a) and a 

thread was put through the hole of each sensor (Figure 3.4b). When dipping the sensors in the milk, 

both the thread ends are kept out of the liquid (Figure 3.4c) and used to collect the sensors to acquire 

the photographs. The sensors are fixed in the thread in order 1 to 6 starting from the left. 

 

 

Figure 3.4: Example of one sensor immobilization to facilitate separation from milk: poking with a needle 

(a), immobilization using a thread (b) and immersion in milk (c).

 

Different chemometric techniques are employed in the data treatment. Firstly, Principal Component 

Analysis, PCA, is performed on RGB triplets of the most informative sensors, only centring the data, 

to visualise the degradation process.  

Then, 3-Way PCA is employed to compare the spoilage processes of whole, semi-skimmed and 

skimmed milk. The aim of this is to demonstrate the versatility of the sensing device, which could be 

applied to different milk types with no need for further modification. Following the same approach of 

Section 2.2.3, RGB triplets of the sensors are employed as variables, centred but not scaled, to study 
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the degradation process, taking into account the different types of milk, labelled as objects, over 

time, referred to as conditions.  

Eventually, a very first attempt of classification is performed on the RGB indexes of the most 

informative sensors, using Linear Discriminant Analysis, LDA. Two classes are identified, SAFE for 

fresh milk suitable for human consumption and HAZARD for uneatable milk, according to their 

location in PCA score plot. The pictures of Dye-EVOH@ sensors array at different times compose the 

overall data set; the training set is built using 60 samples whose attribution is sure while the 

remaining 84 samples are used as a test set. 

The open-source Chemometric Agile Tool (CAT) program is employed for data elaboration [60]. 

Training and test sets 

For each type of milk, the training set consists of two samples stored at RT (around 22°C) and two 

in the fridge (around 4°C). Therefore, the input matrixes have 9 columns (3 RGB indexes per 3 Dye-

EVOH@ informative sensors) and 48 rows (9 acquisition times at 22°C per 2 replicates and 15 

acquisition times at 4°C per 2 replicates). 

Validation by independent analyses 

Several techniques are employed to validate the degradation models obtained from Dye-EVOH@ 

sensors colours.  

Firstly, at each test time, milk pH is measured by the mean of a pH meter. Secondly milk acidity, after 

24-hours storage at 22°C and 4°C, is determined by titration, according to the Soxhlet-Henkel 

methodology with slight modifications: 50 mL of milk sample is added of 2 mL of phenolphthalein 

solution (1% w/v in ethanol) and the mixture is titrated with standardized 0.1 M NaOH until the colour 

change to pink. The determination is performed on three replicates and the results are expressed as 

°SH/100 mL, calculated as reported in Equation 3.1 [15, 40, 57, 79]  

 

°𝑆𝐻 =
𝑀𝑁𝑎𝑂𝐻 × 𝑉𝑣𝑖𝑟 × 2

0.25𝑀
 

Equation 3.1: °SH calculation  

  

Eventually, we perform an instrumental analysis to identify volatile by-products in the headspace at 

each degradation step, similarly to other research groups in the literature. [80] This analysis is done 

using 10 mL samples stored for 24 hours at 22°C and 4°C, in triplicate per each milk type, following 

the same procedure used for solid protein foods (Section 3.2.5). 
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3.3 Results and discussion 

3.3.1 Pressing optimisation by Full Factorial Design 24 

The same synthesis is successfully performed for all of the dyes, and no differences are observed 

among the dyes. Moreover, yields are sufficiently high for our purpose in all of the syntheses, with 

more than 4.5 g of the functionalized polymer obtained after the last drying step.  

The optimisation of the pressing procedure, performed using Full Factorial Design 24, is crucial to 

obtain suitable sensitive films. In Table 3.3 the parameters under investigation and the 

corresponding upper and lower levels are reported. 

Table 3.3: Level definitions for the parameters under investigation 

Parameter  Upper level (+) Lower level (-) 

Time (s) x1 60 30 

Pressure (psi) x2 2000 1000 

Polymer mass (mg) x3 300 150 

Temperature (°C) x4 180 160 

 

After parameters selection and level definition, we identified a suitable response that represents the 

characteristics of the obtained film and the possibility to use it as source of sensing units. Since a 

representative measurable parameter is not available, we select two different responses. The first 

one (Y1) is the judgment of film quality on a scale from 1 to 5, always given blindly by the same 

trained judge. The second one (Y2) is the number of usable sensing spots (diameter 0.5 cm) obtained 

by the film. This Experimental Design aims to increase both the responses to obtain films with better 

quality and more productive, in terms of sensors derived. The general model equation, calculated for 

both responses, is reported below while the experimental matrix and the responses under 

investigation are reported in Table 8.1 in Appendix IV.  

 

𝑌 = 𝑏0 + 𝑏1𝑋1 + 𝑏2𝑋2 + 𝑏3𝑋3 + 𝑏4𝑋4 + 𝑏12𝑋1𝑋2 + 𝑏13𝑋1𝑋3 + 𝑏14𝑋1𝑋4 + 𝑏23𝑋2𝑋3 + 𝑏24𝑋2𝑋4 + 𝑏34𝑋3𝑋4 

Equation 3.2: General model equation for Full Factorial Design 24 

 

In Table 3.4, the main statistics for the models are reported. The models have in common both the 

maximum leverage value in the experimental domain (0.6875) and the number of degrees of 

freedom (5), being these figures determined by the number and location of the experimental points. 

As for response Y1, % explained variance is quite low due to by the subjectivity of the response 

parameter employed, specifically a judgment given by one single judge. Opposite, for response Y2, 

better results are obtained in terms of % explained variance. 
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Table 3.4: Statistics for pressing model 

Statistic parameters 
Value 

Y1 Y2 

Maximum leverage 0.6875 0.6875 

Degrees of freedom 5 5 

% Explained Variance 34.15% 86.39 

 

In Figure 3.5 the coefficients plots for both responses are shown while, in Table 3.5, the numerical 

values, semi-amplitude of confidence intervals and significance are listed. Analysing the coefficients 

calculated for the first response, film quality, shown in Figure 3.5a, the significant parameters are 

highlighted: the polymer mass has a positive effect on response Y1 and has to be set at upper value 

to improve film quality. Conversely, temperature has a negative effect on the response, therefore, 

has to be put at lower value. Eventually, the interaction between time and polymer mass presents a 

significant positive effect on the response Y1 thus, setting polymer mass at upper value, also time 

has to be set at the highest value. As for the second response, N°sensors, the only significant 

parameter is polymer mass, with a positive effect, thus it has to be set at the upper value. (Figure 

3.5b) As a general comment, the two responses under investigation are correlated since from better 

films a higher number of sensors is obtained; as a consequence, the two coefficients plots are very 

similar and the variables have the same effect on both responses. 

 

 

Figure 3.5: Coefficients plot for Y1, film quality, (a) and Y2, N°sensors, (b).
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Table 3.5: Coefficients and significance (* p≤0.05, ** p≤0.01, *** p≤0.001) calculated for Y1, film 

quality, and Y2, N°sensors. Conficence interval is reported in the headers between brackets. 

Coefficients 
 Y1 Y2 

 Value (±0.32) Significance Value (±4.2) Significance 

 b0 3.56  16.9  

Time (t) b1 -0.25  -0.4  

Pressure (p) b2 0.06  0.6  

Pol. mass (mass) b3 0.44 * 6.5 * 

Temperature (T) b4 -0.63 * -2.6  

t*p b12 0.00  0.9  

t*mass b13 0.38 * 3.3  

t*T b14 0.06  -1.1  

p*mass b23 0.06  0.8  

p*T b24 -0.25  0.6  

mass*T b34 -0.13  0.5  

 

For both responses, three replicates at the point [0 0 0 0] are prepared and the average value, 

standard deviation and confidence interval (CI) at 95% confidence level are reported in Table 3.6. In 

both cases, the predicted value fits into the confidence interval, thus the models are validated. 

Table 3.6: Model validation by three replicates at point [ 0 0 0 0] 

 Y1 Y2 

Average value 3.2 17 

Standard deviation 0.3 4 

Upper bound CI 3.9 26 

Lower bound CI 2.5 8 

Predicted response 3.6 17 

 

Since the aim of the design is to increase both responses, analysing the coefficients plots (Figure 

3.5), we selected the pressing parameters reported in Table 3.7. Since pressure was never found 

significant, the value was set at the upper value since it was easier to be set in the dual heated plate 

manual press employed. 

Table 3.7: Optimized parameters for Dye-EVOH@ pressing. 

Parameter  Optimized level 

Time (s) x1 30 

Pressure (psi) x2 2000 

Polymer mass (mg) x3 300 

Temperature (°C) x4 160 
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3.3.2 Characterization: physicochemical measurements 

DSC analyses are performed on the irregular blocks obtained after the synthesis and the profiles per 

each Dye-EVOH@ sensor are reported in Figure 8.10 in Appendix V. The calorimetric profile shows 

for all of the samples, after a second-order transition (evident for only some of them), an endothermic 

melting peak upon being heated. The process is fully reversible, as evidenced in the cooling part of 

the calorimetric curve. In Table 3.8, the onset and peak temperature for the melting process of all of 

the investigated polymeric materials are reported. 

The thermal behaviour of Dye-EVOH@ affects the temperature required for pressing the 

functionalised polymers. To obtain the final sensitive films, melting temperature has to be reached 

but not exceeded, in fact, for 4-EVOH@, 160°C is set as optimized temperature for pressing (see 

Table 3.7) which corresponds to the peak temperature. Based on this evidence, all Dye-EVOH@ 

polymers are pressed at a temperature equal to or slightly higher than the peak temperature, 

reported in the third column of Table 3.8. 

Table 3.8: Onset, peak and pressing temperatures for the melting of each Dye-EVOH@. 

Dye-EVOH@ Onset T (°C) Peak T (°C) Pressing T (°C) 

1-EVOH@ 125.69 152.17 160 

2-EVOH@ 152.00 170.16 170 

3-EVOH@ 147.50 170.68 170 

4-EVOH@ 137.85 160.19 160 

5-EVOH@ 148.74 168.43 170 

6-EVOH@ 145.59 167.97 170 

 

The remaining part of the characterization is performed on the films obtained after pressing, 

following the procedure described in Section 3.3.1. 

FT-IR spectra of the pH indicator powders, starting EVOH copolymer, and Dye-EVOH@ films are 

reported in Figure 8.11 in Appendix V. The same signals characterize the spectra of EVOH before and 

after the functionalization; the only difference is the presence of a band at 1615 cm−1, due to the 

formation of a sulphonic ester from the reaction between the receptor’s sulphonic group, previously 

activated, and the polymer’s hydroxyl group, demonstrating the successful modification of the 

starting copolymer. 

Electron images of the films are acquired, and elementary analysis is performed. In Figure 3.6, the 

SEM images acquired on the surface of the polymeric film at increasing magnitudes, in secondary 

electron mode, and the results of EDX analysis are displayed in the case of 3-EVOH@. The SEM 

images show a compact and homogeneous surface, with no pores and no holes on it, while from the 

elemental analysis, it is possible to evidence the presence of S in the sample. Because S is present 

only in the receptor’s structure, from the atomic per cent of this element (∼0.3%) we can estimate 

the millimoles of the receptor, successfully bonded to the polymer matrix, per sensor (∼0.2 μmol per 
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spot of 0.5 cm diameter). Because the weight of one spot is∼2.5 mg, this means a roughly estimated 

capacity of 0.1 mmol g-1. 

 

 

Figure 3.6: SEM images of 3-EVOH@ at different magnifications (a,b) and quantitative results of elemental 

analysis of 3-EVOH@ (c).

 

Eventually, the film thickness is measured multiple times on samples functionalized with different 

receptors. This physical parameter is crucial in the development of new sensors. On one hand, 

thinner sensors ensure both higher sensitivity and homogeneity in colour shade and colour changes. 

On the other hand, the thickness must be reproducible to guarantee the same sensing performances 

for all of the spots and to minimize the differences among the sensors. From these measurements, 

we observe that no significant differences were highlighted, in films containing different pH 

indicators, and 168(11) μm is found to be the medium thickness value. This result is satisfying in 

terms of both thickness and reproducibility. 

3.3.3 Characterization: optical measurements 

The optical behaviour of Dye-EVOH@ films is first investigated by UV−Vis spectroscopy. Rectangles 

(2 cm × 2.5 cm) are cut and employed to register UV-Vis spectra. For each receptor under 

investigation, we want to compare the optical behaviour of the molecule in an aqueous solution and 

after functionalization at different pH values. In Figure 3.7, the results for all dyes in solution (~10 

μM) and Dye-EVOH@ are displayed: UV−Vis spectra and corresponding photographs after 

equilibration at acidic, basic, and neutral pH. 
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Figure 3.7: UV−Vis spectra and corresponding photographs of a ~10 μM dye solution (graphs on the left, 

dashed lines) and Dye-EVOH@ (graphs on the right, solid lines) in order from dye 1 to 6.

 

Many conclusions can be drawn from these experiments. First, the maximum of the absorbance 

band, for acid and alkaline forms of the indicators, is located at a very similar wavelength in solution 

and films and only a small shift is observed. Consequently, from the naked-eye analysis of the 

photographs, the colours of solutions and films are similar at extremely acidic and alkaline pH. The 

spectra present a different absorbance value at the maximum due to the different amounts of dye 

in the solution and film, but this is not relevant for the qualitative investigation of the optical 

behaviour of the polymers. 

As for the samples at pH=7, the optical behaviour of dye n°3 and n°5 is particularly interesting. 

These pH indicators have logKa values respectively of 7.1 and 6.0 and the UV-Vis spectra in solution 

confirm this evidence. Opposite, after covalent binding to EVOH, completely different behaviour is 

observed. For dye n°3, the main absorbance peak was the one related to the acidic form, while the 

peak at 628 nm was not even visible and, indeed, the sensing film is completely yellow. For dye n°5, 

both the peaks are visible, with similar absorbance value, and the film shows a brownish colour, from 

the mixture of yellow and violet forms. Because, after the preparation, a sufficiently long time is set 

to ensure the equilibration of the reactive material with the buffered solution, the only possible 

explanation for this behaviour is that, together with the functionalization, a shift toward higher logKa 
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values occurs, with respect to the values of the receptors in solution [64, 65], as suggested by other 

research groups. [81, 82, 83, 84]  

A rough estimation of logKa values shift is about 1 pH unit but this point will be further discussed in 

the next Chapter. To avoid misunderstandings, the apparent logKa values after functionalisation, 

even if not systematically calculated but only experimentally estimated, are labelled as logKa’ to be 

distinguished from protonation constant in solution. 

This aspect is of paramount importance in the choice of the Dye-EVOH@ sensors selected for building 

the sensing device since it is expected that different receptors can be employed in EVOH-based 

devices, compared to CC-based devices. 

3.3.4 Sensing performances: reproducibility 

The reproducibility of the sensing material, in terms of colour shade and homogeneity, is of 

paramount importance for colourimetric sensors since the differences in the starting material must 

not influence the sensing performances and the evaluation of colour changes. To assess this 

parameter, 10 independent sensors, obtained from different films, are equilibrated in different 

conditions, photos of the sensors are acquired and RGB triplets analysed.  

 

 

Figure 3.8: Bar plots representing the average value of RGB triplets for both acidic and basic form (a) and 

corresponding sensors picture (b) in the case of 3-EVOH@.

 

Dye n°3, 5 and 6, which have only one logKa’ value and thus only two different forms, are equilibrated 

at acidic and basic pH to evaluate the reproducibility of both the acidic (yellow) and basic (blue/violet) 

form. In Figure 3.8, the results for 3-EVOH@ are reported as an example: the bar plots shows the 

average value and confidence interval of RGB triplets and the picture of the original sensor is 

presented. 
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Figure 3.9: Bar plots representing the average value of RGB triplets acidic, neutral and basic form (a) and 

corresponding sensors picture (b) in the case of 4-EVOH@.

 

The other dyes, n°1, 2 and 4, have two logKa’ values and thus three different forms, acid, neutral 

and basic, whose reproducibility is tested. As an example, in Figure 3.9, the results for 4-EVOH@ are 

presented. 

For all Dye-EVOH@, the RGB reproducibility is judged to be satisfactory and no differences of colour 

shade are observed by naked-eye evaluation. 

3.3.5 Sensing performances: colour change kinetic   

From kinetic experiments in solution, we observe that complete protonation of Dye-EVOH@ sensors 

is very fast also in 0.01 M H+ solution and it is completed in less than 1 minute while deprotonation 

in 0.01 M OH- solution is much slower and it took 3 hours. The equilibrium in buffered solution at 

pH=7 is reached in 2 hours both starting from the acidic and basic form of Dye-EVOH@ sensors array. 

From kinetic experiments in vapour, we observe that, exposed over acetic acid 0.1 M, all Dye-EVOH@ 

sensors turn their colour into the acidic or neutral form, depending on their logKa’ value, within 4 

hours. The same occurs for Dye-EVOH@ sensors exposed over acetic acid 0.01 M within 22 hours 

while, for acetic acid 0.001 M, only dye n°4, which had the higher logKa’ value, partially turns to the 

neutral colour. As for basic volatile analytes, the equilibrium is reached in 30 minutes, when Dye-

EVOH@ sensors are exposed to ammonia 0.1 M, and all the sensors turn into their basic form, apart 

from dye n°4 which remained neutral. Decreasing ammonia concentration to 0.01 M, the equilibrium 

is reached in 2 hours and only dye n°5 and 6 turn into their basic colour. Eventually, the lowest 

ammonia concentration, 0.001 M, is detected only by dye n°6 turning into the blue form in 22 hours. 

Finally, from the “blank analyses”, no significant changes are observed by naked-eye evaluation in 

Dye-EVOH@ sensors colour after equilibration of sensors either in acidic or basic form for 96 hours. 

3.3.6 Protein foods: Dye-EVOH@ sensors array colour evolution 

Having equilibrated the sensing spots at the proper pH value and having prepared the samples, as 

reported in Section 3.2.5, we register the evolution of Dye-EVOH@ sensors array colour over chicken 

breast slices, Figure 3.10a, and codfish fillets, Figure 3.10b. 

  



Lisa Rita Magnaghi 

 
50 

 

 

Figure 3.10: Dye-EVOH@ sensors array colour evolution over chicken breast slices (a), and codfish fillets 

(b), stored at RT.

 

The behaviour of the sensing units is very similar in both cases. In the first part of the degradation 

process, the receptors with logKa’ values of >7 (Dyes 1 to 4), previously equilibrated at basic pH, 

partially turn to the acid form due to the reaction with acid volatiles released by bacteria.  

Then, in the second part of the spoilage process, the pH of the headspace undergoes a slight 

increase, due to the end of acid production and the formation of amines in the meat, and thus, the 

receptor with the lowest logKa’ value, dye n°6, turns into the blue basic form. This reaction starts 

after 44 hours, for chicken breast slices, and after 21 hours, for codfish fillets which is much more 

perishable. Dye n°5 turns out to be unreactive, and therefore useless, after basic equilibration in 

spoilage monitoring of chicken samples and can be discarded for a future large-scale 

implementation. In codfish fillets samples, it partially turns to the basic colour in the last monitoring 

hours.  

This means that the resulting pH in the headspace is higher in the case of fish than in the case of 

chicken, and the spoilage process of this food is much faster, according to common knowledge. 

Nevertheless, even in the case of fish, we cannot consider the pH of the headspace “alkaline” 

because the other receptors, with slightly higher logKa’ values remain in the acid form (see sensors 

from 1-EVOH@ to 4-EVOH@). 



3.EVOH (32%)-based devices 

 

 
51 

3.3.7 Protein foods: spoilage modelling by PCA 

PCA is then performed on the RGB triplets of the sensors during degradation to visualise the 

degradation process of the two samples. Both the loading plots are displayed in Figure 8.2 in 

Appendix III: Loading and score plots. For chicken breasts slices, analysing the score plot reported in 

Figure 3.11a, we notice that the score value on PC1, which accounts for 61.80% variability, increased 

during time and could be correlated to degradation while PC2 accounted for the variability among 

samples. Moreover, three different clusters, called SAFE, WARNING, and HAZARD, can be identified, 

with widely different values on PC1. 

 

 

Figure 3.11: The score plots of the PCA models on the first two principal components, built on the training 

set and validated by projection of the test set, for chicken breast slices (a) and codfish fillets (b). The 

ellipsoids are exclusively added as a simplification of the different groups.

 

As for codfish fillets, the score plot is reported in Figure 3.11b. PC1 (87.12% variability) is correlated 

with the spoilage process, and PC2 (6.86% variability) with the differences between the samples 

analysed. On PC1, two well-separated clusters, called SAFE and HAZARD, can be identified since, at 

room temperature, one night is enough to observe the complete spoilage of the food, 

For both foods, new samples are projected in the PCA model to verify the degradation pathway and 

the correct allocation, labelled as test set in Figure 3.11a and b. Test samples show the same 

degradation pathway of the training set and are located in the right clusters. 

For both chicken and fish samples, these analyses are a proof of concept to demonstrate that the 

polymer-based device can be employed in food freshness monitoring because the colour evolution 

observed is in line with CSI and volatile by-products released during spoilage. 

3.3.8 Protein foods: validation by instrumental analysis 

To demonstrate that the clusters are not artefacts, but are characterised by significant differences 

in the solid and headspace composition, qualitative analyses are performed both on the solid food, 

to extract and identify BAs, and on the headspace, to analyse the volatile composition. 
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As for the analysis of the solid, the results are displayed in Figure 3.12. For chicken meat (Figure 

3.12a), qualitative identification of BAs present in the solid is enough to clearly distinguish the 

samples belonging to different clusters. In the SAFE zone, no amines are detected; in the WARNING 

zone, four of seven are found, while all of the BAs under investigation are detected in the HAZARD 

zone.

 

 

Figure 3.12: Bar plots representing peak area of BA identified in chicken (a) and codfish (b) samples at 

different degradation steps through HPLC-ESI/MS analysis.

 

On the contrary, in the case of codfish fillets (Figure 3.12b), almost all of the BAs can be detected 

even in the SAFE zone. It is well known that fish samples contain a large number of amines, even 

when it is fresh, and even the fishy odour is due to volatile amines, in particular trimethylamine. 

Moreover, this food is highly perishable, and for this reason, the production of BA is very fast and 

significant even in the small time required for the analysis. Nevertheless, a substantial difference 

between the SAFE and HAZARD zones in the amount of BAs was detected: from the peak areas we 

notice that the entire quantity of each amine is much higher, in the HAZARD zone rather than in the 

SAFE one. 

Eventually, the headspace composition is analysed, and the results are reported below in Table 3.9.  

Table 3.9: Classes of substances detected in chicken (column 1-3) and codfish (column 4-5) samples at 

different degradation steps using HSSPME coupled with GC/MS. 

 Chicken breast slices Codfish fillets 

 SAFE WARNING HAZARD SAFE HAZARD 

Alcohols ✓ ✓ ✓ ✓ ✓ 

Aldehydes ✓ ✓ ✓ ✓ ✓ 

Ethanol ✓ ✓ ✓ ✓ ✓ 

Acids ✓ ✓ ✓ ✓ ✓ 

Ketones - ✓ ✓ ✓ ✓ 

Esters - ✓ ✓ ✓ ✓ 

Thiols - ✓ ✓ ✓ ✓ 

Volatile amines - - - - ✓ 

Biogenic amines - - - - - 

Indole - - ✓ - ✓ 
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The case of chicken meat is easier to interpret because in the SAFE zone very few classes are 

detected and, above all, a large number of acid compounds are found, as suggested by the colour 

evolution of Dye-EVOH@ sensors array. In the WARNING zone, ketones and esters are released after 

the bacterial catabolism of sugars and their derivatives, but no amines are detected even if, at this 

stage, they are present in the meat. In the HAZARD cluster, when all of the BAs were detected in 

large amounts in the solid, amines are not found in the headspace, confirming our previous 

assumption about this topic. [7, 8, 9, 52] The main qualitative difference between these two last 

clusters is the presence of indole in the HAZARD zone. 

As for codfish fillets, the composition of the headspace in the two clusters is very similar, but 

important details are nevertheless observed. At first, small volatile amines are present only in the 

HAZARD step, but BAs are again never detected; second, indole is revealed in the second part of the 

degradation process, which is similar to what is observed in chicken meat samples. 

In conclusion, the instrumental analysis of the headspace during degradation confirms Dye-EVOH@ 

sensors array behaviour. BAs are produced, even in large quantities, in the solid when food is no 

longer eatable, but due to the buffered pH of the solid phase, they are present in their protonated 

form so they do not fly and, consequently, can not be detected in the headspace at any step. 

Therefore, only a very slight increase in the headspace pH is observed and only the receptor with a 

very low logKa value shows a complete reaction to the basic form due to the reduction of acid volatile 

by-products released or, only for fish samples, to the presence of small volatile amines. 

3.3.9 Milk: Dye-EVOH@ sensors array colour evolution 

Having equilibrated the sensing spots at basic pH and having prepared the samples, as reported in 

Section 3.2.6, we register the evolution of Dye-EVOH@ sensors array colour dipped in different types 

of milk. Firstly, the evolution during storage at RT is displayed in the case of whole, semi-skimmed 

and skimmed milk, reported in Figure 3.13. 
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Figure 3.13: Dye-EVOH@ sensors array colour evolution dipped in whole (a), semi-skimmed (b) and 

skimmed (c) milk, stored at RT.

 

The colour evolution is similar between different types of milk. Moreover, only the first three sensors 

on the left, in each array, turn out to be informative to follow the spoilage, namely 1-EVOH@, 2-EVOH@ 

and 3-EVOH@, which show a clear conversion from the alkaline to the acidic form between 4 and 20 

hours. As for the others, 4-EVOH@ is useless since it showed complete conversion to the yellow acidic 

form in the first hour of monitoring, having the highest logKa’ value both, while, on the contrary, 5-

EVOH@ and 6-EVOH@ remain in their alkaline form, respectively violet and blue, during the entire 

time length, having lower logKa’ values than the other receptors. 
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Figure 3.14:The colour evolution of the sensors array dipped in whole (a), semi-skimmed (b) and skimmed 

(c) milk, stored at 4°C.

 

Very similar conclusions are drawn analysing the colour evolution during storage at 4°C, displayed 

in Figure 3.14. Slight differences are observed between the three types of milk under investigation, 

mainly for long storage times. Again, the last three sensors, starting from the left, are not suitable to 

follow the degradation process, being either too alkaline or too acid for the overall acidity of the 

samples, and are thus discarded from the following multivariate analysis. The first three sensors are 

much more informative, showing the gradual conversion mentioned above from basic to acidic form 

gradually during the degradation. The starting and the final colours are equal for all milk types while 

a different time evolution is observed, depending on sample composition. This evidence is of 

paramount importance to set the following chemometrics investigation. 

3.3.10 Milk: spoilage modelling by PCA 

PCA is applied on the RGB triplets of the three selected sensors per each milk type, during storage 

both at RT and at 4°C. In each case, the overall percentage variance explained by the first two 

components is sufficient, considering the intrinsic variability of the system under investigation.  

In Figure 8.3 in Appendix III: Loading and score plots the loading plots are shown. The score plots, 

reported in Figure 3.15, are analysed to visualise and model the degradation process occurring at 

the different temperatures. For facilitating the interpretation of the score plots, the samples kept at 

room temperature are represented as circles of three different colours: GREEN for the first day of 
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monitoring, YELLOW for the second day and RED for the third; instead, the samples chilled stored 

are represented as X icons of different colours: GREEN before the expiry date reported on the bottle, 

YELLOW around the expiry date and RED after the expiry date.

 

 

Figure 3.15: The score plots of the PCA models on the first two principal components, for whole (a), semi-

skimmed (b) and skimmed (c) milk.

 

For all milk types, the score value on PC1 increased during the monitoring: for samples stored at 

room temperature, an evident increase is observed during the first 4 hours (green circles), suggesting 

a fast bacterial degradation promoted by the high temperature, and after the first night (yellow 

circles). After that, no great differences are further observed even after 2 days of storage: at this 

stage, milk is no longer suitable for human consumption and the matrix pH is acid enough to provoke 

the complete conversion of our sensors to the acidic yellow form, but still around neutrality due to 

the presence of several natural buffering agents.  

As for the samples chilled stored, the score value on PC1 increases much more slowly and gradually 

since the refrigeration reduces the bacterial degradation rate but, around (yellow X) and after (red X) 

the expiry date, the samples are located in the same region of the spoiled samples stored at room 

temperature (RT) suggesting that milk is no longer eatable.   
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3.3.11 Milk: milk types comparison by 3-Way PCA 

As highlighted before, no significant difference is observed between the three milk types under 

investigation, thus suggesting us to exploit 3-Way PCA to compare the three spoilage processes. The 

variance percentage explained after unfolding, reported in Table 3.10, is slightly lower than the 

Tucker model’s value (77.1%). This result suggests that, considering the common degradation 

process, only a small part of the overall information contained in the dataset is lost and thus the 

degradation is very similar in the three milk types. Moreover, the percentage of explained variance 

is fully satisfying, considering the high variability of the system and the types of data employed for 

the analysis. 

Table 3.10: Cumulative % variance explained after unfolding. 

Mode PC1 PC1&2 

Objects 70.67% 86.41% 

Variables 68.44% 88.09% 

Conditions 66.85% 83.47% 

 

 

 

Figure 3.16: The loading plots of the 3-Way PCA model on the first two axes: conditions (a), objects (b) 

and variables (c) loading plots. In graph c, the variables loadings on Axis 1 are in foreground, the ones on 

Axis 2 in background.

 

Moving to results interpretation, in the plot of conditions (Figure 3.16a), times are well separated 

along the x-axis: the very first degradation steps are located in the left part of the graph, while, during 

the spoilage process, the loading values on Axis 1 increase, with different spoilage rates depending 
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on the storage temperature. In contrast, in the plot of objects (Figure 3.16b), different milk types are 

separated along the y-axis (Axis 2). Considering the low value of explained variance associated with 

this axis, we can affirm that the difference between the three types is not evident and, much more 

important, our device shows promising results in monitoring all the types of milk. Finally, from the 

variables loadings, shown in Figure 3.16c, the most informative sensor in conditions separation, 

which is the ones with a higher loading value on Axis 1, in the foreground, turns out to be 3-EVOH@, 

while the other sensors are more informative in objects separation. 

3.3.12 Milk: preliminary classification by LDA  

Having demonstrated that our sensing device can be successfully used to monitor and model the 

degradation of milk, regardless of milk type and temperature storage, a very first attempt of 

classification using LDA on RGB indexes is performed. Two classes are identified, SAFE for fresh milk 

suitable for human consumption and HAZARD for uneatable milk, according to their location in PCA 

score plot. The overall dataset is split in two groups. Samples whose attribution is sure, which means 

at the very beginning and at the end of the monitoring, are used as training samples while samples 

located in the central part of PCA score plot are exploited as test set. We are well aware that this 

approach is not rigorous and, in fact, it was exploited only as proof of concept, nevertheless the 

results are worth of attention. A more systematic approach will be followed in the next Chapter, 

working with the final device 

In cross-validation, the prediction is 100% satisfactory and thus the prediction of the unknown 

samples of the test set is performed. The software CAT gives, as an output, the Mahalanobis distance 

from the two classes of each sample. To aid interpretation, in Figure 8, the reciprocal of the distance 

is reported for each sample of the test set, so for each sample, the highest bar represents the class 

closest to that sample, so the assigned one. [8]  
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Figure 3.17: Results of prediction of test samples for whole (a), semi-skimmed (b) and skimmed (c) milk, 

stored at different temperatures, reporting storage time and temperature on the x-axis and the inverse of 

Mahalanobis distance from each of the two classes on the y axis.

 

In 2 cases out of 84, highlighted with the striped bars, the samples are wrongly assigned to the SAFE 

class but, remembering that LDA gives a dichotomic answer (a sample is or in or out of the class) 

without uncertainty, it is worth noting that the distance between these samples and the two classes 

is more or less equal. In all the other samples, during the spoilage process, the distance from the 

SAFE class increases while that from the HAZARD class decreases; at a certain point, slightly different 

among the milk types and in quite good agreement with the expiry date, the sample is nearer to the 

HAZARD class than to the SAFE one and is thus labelled as uneatable.  

3.3.13 Milk: validation procedures 

From the multivariate analysis of sensors colours during milk degradation, the presence of two main 

spoilage steps arises, the so-called SAFE and HAZARD steps. Verifying this assumption by an 

independent method is of paramount importance to validate our models and demonstrate the 

device's applicability to milk freshness detection. For fulfilling this goal, several methods have been 

tested based on different chemical principles. 

On the one hand, we want to independently measure the increasing milk acidity during monitoring 

time to confirm the accuracy of sensors’ responses. For this reason, at each test time, milk pH is 

measured but this approach reveals unfruitful since the measured pH remains almost constant at 

room temperature and a slight decrease is observed during chilled storage. These results are 

probably strongly affected by the electrode used, and the calibration performed. 

Better results are obtained using the Soxhlet-Henkel methodology to determine milk acidity in the 

two identified classes, SAFE and HAZARD, following the procedure reported in Section 3.2.6. Table 
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3.11 reports, the titration results, expressed as average °SH/100 mL on three replicates, are 

reported, with standard deviations between parenthesis. 

Table 3.11: Average milk acidity (°SH/100 mL) for SAFE and HAZARD class, determined by Soxhlet-

Henkel methodology 

Milk type Acidity in SAFE 

(°SH/100 mL) 

Acidity in HAZARD 

(°SH/100 mL) 

Whole milk 8.01 (5) 9.08 (8) 

Semi-skimmed milk 7.88 (8) 8.12 (8) 

Skimmed milk 7.80 (8) 8.12 (8) 

 

Different reference values are reported for this methodology, but the value of 8°SH/100 mL is 

commonly considered the dividing line between eatable and uneatable milk. In this case, an increase 

in the acidity is observed per each milk type moving from the SAFE to the HAZARD class identified by 

the sensors array. The °SH values are below or equal to the threshold for SAFE samples and above 

for the HAZARD. From this preliminary investigation, it is clearly evident that Soxhlet-Henkel titration 

is preferable to pH measurements as an independent method to validate multivariate models, in our 

case. Therefore, the reliable results obtained with Soxhlet-Henkel titration will be used in the 

following Chapter in applying in a more systematic way supervised chemometric tools as LDA and 

PLS.  

Another interesting aspect is the possibility of relating the sensors’ responses to the different classes 

of by-products released during spoilage, not only in solution but also in the headspace. The results 

of analyses obtained with the Headspace Solid-Phase Microextraction (HSSPME), coupled with gas 

chromatography−mass spectrometry (GC/MS), performed on the headspace of the same samples 

used for Soxhlet-Henkel titration are summarized in Table 3.12 

. For this qualitative analysis, no evident difference between different milk types is observed while a 

clear difference between the two classes arises. Alkanes, aromatic compounds and ketones are 

detected in samples belonging to the SAFE class while, at the HAZARD steps, acids and esters appear 

and aromatic compounds are no longer identified. This qualitative investigation thus reveals a 

significantly different headspace composition in correspondence of different spoilage steps. 

Table 3.12: Classes of substances detected in milk samples at different degradation steps using HSSPME 

coupled with GC/MS. 

 SAFE HAZARD 

Alkanes ✓ ✓ 

Aromatic compounds ✓ - 

Acids - ✓ 

Ketones ✓ ✓ 

Esters - ✓ 
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3.4 Conclusions  

The synthetic pathway to obtain Dye-EVOH@ sensing material, starting from commercially available 

EVOH (32% ethylene) was successfully developed. From physicochemical characterization, 

information about material characteristics was acquired and, from optical measurements, pH 

indicators behaviour after covalent anchoring to EVOH was investigated.  

Once defined the sensing performances of the device, it was tested on both solid and liquid protein 

foods with promising results. The application of Dye-EVOH@ device as smart label for milk freshness 

monitoring was definitely the most successful since also monitoring during chilled storage was 

possible. Opposite, in the case of solid protein foods, promising results were obtained during storage 

at RT but, in the case of chilled storage, the device turned out to be not enough sensitive. In fact, at 

a lower temperature, both bacterial activity and by-products volatility were reduced, resulting in a 

slower spoilage process and lower analytes’ concentration in the headspace. In this condition, Dye-

EVOH@ sensors array was still able to detect the HAZARD step but with a delay of around 24 hours, 

revealed by instrumental analysis. 

To overcome the sensitivity issue, two main improvements were made, as described in Chapter 4. 

Firstly, EVOH copolymers with different ethylene content, and thus different permeability and 

hydrophilicity, were tested. Secondly, a more efficient sensing approach was used, aiming at 

reducing both the number of sensing units required and the delay of detection, in the case of chilled 

storage. 

To conclude, the results discussed in this Chapter were presented as oral communication at the 

“International Symposium on Dyes and Pigments” (Sevilla, 2019) and, as poster communication, at 

“Merck Young Chemists’ Symposium” (Rimini, 2019). The synthetic procedure for Dye-EVOH@ 

sensors and their application as smart labels has been patented in Italy, Europe and USA [10, 11, 

13, 12]. All these data were finally collected in two papers published on ACS Food Science and 

Technology [14, 15]. 
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4. EVOH (29%)-based devices 
In this chapter, the EVOH(39%)-based devices are discussed. Firstly, the preliminary experiments 

performed for the selection of the most suitable EVOH copolymer and receptors are presented 

providing a brief description of the most relevant results. Then selected receptors are listed and the 

experimental procedures and data elaboration approach for each specific application are described. 

The results obtained are divided according to the final application and presented. Eventually, the 

main conclusions are driven, the publications on this topic are summarised and the insights for 

further development are discussed. 

4.1 Preliminary experiments 

As discussed in Section 3.4, EVOH (32%)-based device successfully detects the spoilage of milk and 

RT stored protein foods but, in the case of chilled storage, its sensitivity turned out to be too low to 

real-time detect the spoilage onset. To improve the device sensitivity and large-scale applicability, 

we followed two strategies, discussed in the following sections: 

1. Selection of the best EVOH copolymer 

2. Selection of the most informative receptors for the specific application 

The final version of Dye-EVOH@ device was then tested for freshness monitoring of various protein 

foods [85] and milk types [16] but also as a plastic-based chemometrics-assisted litmus test. 

4.1.1 EVOH copolymer selection  

As hinted in Section 3.1, EVOH copolymers commercially available differs from each other by both 

ethylene content and melt flow rate (MFR). As deeply discussed in literature [78, 86], higher ethylene 

content results in higher oxygen permeability, lower water vapour permeability and lower Tm and Tg, 

thus easier processability. Opposite, MFR influence is never investigated in literature, up to our 

knowledge.  

Aiming at increasing our device sensitivity towards weakly acid or alkaline spoilage by-products, four 

different commercial EVOHs, provided by Nippon Goshei, were tested as solid support. In Table 4.1 

ethylene content and MFR of commercial EVOHs under investigation are reported. 

Table 4.1: Ethylene content and melt flow rate (MFR) of commercial EVOHs under investigation 

Commercial name Ethylene content (mol%) Melt Flow Rate (MFR) 

DT2904 29% 3.8 

D2908 29% 8 

AT4403 44% 3.5 

A4412 44% 12 
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For this first screening, three pH indicators out of six were selected as more informative, 

bromothymol blue (1), thymol blue (2) and bromophenol blue (3), and were covalently bound to the 

four EVOHs, following the experimental procedure described in Section 3.2.2.  

Sensing performances of the different Dye-EVOH@ devices were tested firstly on synthetic samples, 

according to the procedures described in Section 3.2.4, and then real ones. Codfish fillets were 

selected as test protein food and the freshness monitoring was performed at 4°C, according to the 

previously described procedure (Section 3.2.5). In Figure 4.1, the colour evolution of Dye-EVOH@ 

devices over codfish fillets during chilled storage is displayed, with sensors in order from 1-EVOH@ 

to 3-EVOH@ for each device. 

 

 

Figure 4.1: Dye-EVOH@ sensors array colour evolution over codfish fillets, stored at 4°C, using DT2904 

(a), D2908 (b), AT4403 (c) and A4412 (d) as solid support 

 

As clearly visible, the same pH indicators covalently bound to different EVOHs showed the same 

colour evolution but with different timing. In particular, EVOHs with 29% ethylene content (Figure 

4.1a and Figure 4.1b) were able to detect both the WARNING step after 19h and the HAZARD step 

after 44 h, while EVOHs with 44% ethylene content (Figure 4.1c and Figure 4.1d) showed almost no 

colour changes during the entire monitoring. In addition, D2908 (Figure 4.1b) colour transitions were 

more glaring than DT2904 (Figure 4.1a) therefore this EVOH was selected as the best solid support. 

4.1.2 Receptors’ selection 

In Chapters 2 and 3, a panel of reactive dyes was tested for various applications. This approach is 

suitable for screening experiments but, aiming at large-scale application, the large number of dyes 

results in higher production costs and harder naked-eye evaluation, due to the large number of 

sensing units and reference colour. Consequently, in the final version of the device described in this 
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Chapter, for each application only the essential receptors were selected, reducing the number of 

sensing units with a preference for glaring colour transitions or “traffic-light” sensing mechanism. As 

for EVOH selection previously described, also receptors selection was always performed directly on 

real samples under investigation, in the same storage conditions of the final application. 
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4.2 Materials and methods 

4.2.1 Receptors 

Protein foods 

The selection of the receptor, performed directly on real samples, has led to o-cresol red (CR) as the 

best receptor, already used in EVOH (32%)-based devices (Chapter 3) labelled as 2-EVOH@.This pH 

indicator is involved in two protonation equilibria, one at alkaline and one at acid pH, and thus could 

detect both weakly acid and alkaline spoilage by-products. In Figure 4.2, the protonation equilibria 

and the correspondent log Ka values in solution are reported [64, 65]; it must be underlined that, 

after the covalent linkage to EVOH, an increase of around 1 unit for each logKa’ value is observed, 

as already discussed in Section 3.3.3.  

 

 

Figure 4.2: Protonation equilibria of o-cresol red and correspondent log Ka, as found in literature [64, 65]. 

 

CR-EVOH@ assures an enhanced sensitivity towards alkaline spoilage by-products, characteristics of 

the HAZARD spoilage step, compared to bromophenol blue (logKa’~5), used in Chapter 3, having a 

logKa’ value more than 2 units lower (logKa’~2). Therefore, an even lower concentration of weak 

bases is required to obtain the complete conversion from H2CR+ to HCR. 

Milk  

Testing the sulphonphtaleins with logKa around neutrality, after covalent linkage to EVOH, directly on 

milk freshness monitoring at 4°C, bromocresol purple (BCP) turned out to be the most informative 

dye for the present application, showing a glaring colour transition from green to yellow. The chemical 

structure of the dye and its logKa value in solution are reported in Figure 4.3; [64] after 

functionalisation, a logKa’~7 is expected for this receptor that was not used in EVOH (32%)-based 

devices described in Chapter 3. 
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Figure 4.3: Chemical formula of bromocresol purple and its log Ka value [64]. 

 

Chemometric-assisted litmus test 

The extremely high variety of possible pH indicators and the versatility of our synthetic pathway 

suggest the possibility to create a Chemometric-assisted litmus test (CLT). To cover the widest pH 

range, ideally, from 0 to 14, a panel of commercially available pH indicators, belonging to different 

classes, has been selected. All these molecules have in common the presence of either sulphonic or 

carboxylic groups in their structure, fundamental for covalent linkage to EVOH, and bright colours at 

both protonated and deprotonated forms. In Table 4.2 the pH indicators and their logKa values in 

solution, as found in literature, are reported. Among them, the previous labels of the receptors 

already employed in EVOH (32%)-based devices, described in Chapter 3, are reported in the last 

column. 

Table 4.2: pH indicators selected for the chemometric-assisted litmus test, corresponding logKa values 

and previously assigned labels in Chapter 3. 

n pH indicator logKa logKa1 logKa2 Reference EVOH (32%)-based sensors 

1 phenol red -- 8.32 1.57 [64, 65]  

2 o-cresol red -- 8.20 1.11 [64, 65] 2-EVOH@ 

3 thymol blue -- 8.9 1.50 [64, 65] 4-EVOH@ 

4 m-cresol purple -- 8.32 1.57 [64, 65] 1-EVOH@ 

5 methyl orange 3.42 -- -- [87]  

6 Congo red 4.1 -- -- [66]  

7 bromocresol green 4.35 -- -- [64]  

8 chlorophenol red 6.0 -- -- [64] 5-EVOH@ 

9 bromothymol blue 7.1 -- -- [64] 3-EVOH@ 

10 alizarin red S -- 11.0 4.5 [66]  

11 alizarin yellow R 11.5 -- -- [66]  

12 Clayton yellow 12 -- -- [66]  
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4.2.2 Dye-EVOH@ sensors preparation 

For Dye-EVOH@ sensors preparation, the same procedures described in Section 3.2.2 are applied. 

Dye-EVOH@ raw materials are synthesised following the internationally patented procedure [10, 11, 

13, 12], Dye-EVOH@ films are obtained by pressing under heating, setting the previously optimised 

parameters, reported in Section 3.3.1. Physicochemical measurements confirm similar results to 

those obtained for EVOH (32% ethylene)-based device.  

Dye-EVOH@ sensors of 0.5 cm diameter are cut from the polymeric films by the means of a hole 

punch for paper and used as final sensing unit for different applications. The main difference 

between EVOH (32%) and EVOH (29%) lies in functionalised films thickness: Dye-EVOH(29%)@ films 

present a less homogeneous thickness therefore, cutting the sensors from different areas of the 

film, different sensors thickness is obtained. This parameter is of paramount importance for final 

device sensitivity, in particular for real samples monitoring, and has to be controlled, ideally on every 

sensor. 

4.2.3 Dye-EVOH@ sensors thickness selection 

For both CR-EVOH@ and BCP-EVOH@, a rapid method to verify sensors thickness is developed. For 

brevity’s sake, only the case of BCP-EVOH@ is presented. 72 sensors with various thicknesses are 

equilibrated at alkaline pH by 2-hours immersion in 100 mL NaOH 0.1M. The pictures of the sensors 

are then acquired. RGB triplets of each sensor are extrapolated [61] and used as input dataset for 

PCA, only centring the data [60]. Then 8 sensors, representative of the various thicknesses, are 

selected and tested on real samples to evaluate the most effective thickness for the final application. 

4.2.4 Protein foods freshness monitoring 

Experimental setup 

For this application, a dual sensors device is used, made of two CR-EVOH@ previously equilibrated 

one at the completely deprotonated form (CR-), from now called b-CR-EVOH@, and one at the 

completely protonated one (H2CR+), from now defined a-CR-EVOH@. Equilibrations are performed by 

1 h immersion in 2 mL NaOH (b-CR-EVOH@) or HNO3 (a-CR-EVOH@) 0.1 M, resulting respectively in 

violet and pink sensors. In the absence of spoilage markers, the stability of both b-CR-EVOH@ and a-

CR-EVOH@ has been verified for up to five days. [85]  

Chicken breast slices and various fish products fillets are purchased at the local supermarket, 

choosing tray containing similar weights of food, and are carried to the lab within 10 minutes. The 

plastic film is removed, the CR-EVOH@ device is taped to the bottom of the PP tray using 3M Magic 

Tape, as already discussed, and a new plastic film is fixed to seal the package. Samples are stored 

in a domestic fridge at 4°C for 10 days, in the case of chicken, or for 5 days, for fish products. 

Colour analysis & Chemometrics 

At given times, photos of the device are acquired by a Nikon COOLPIX S6200 in a lightbox to ensure 

a constant and reproducible light exposition. To extract the RGB triplets for each sensing unit during 

freshness monitoring, GIMP software is employed [61]. 
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For each food under investigation, Principal component analysis (PCA) is performed on RGB triplets, 

only centring the data because these indexes are intrinsically scaled from 0 to 255, to rationalize 

the colour evolution and visualize spoilage process.  

3-Way PCA is also applied to evaluate the effect on spoilage of source and dimension of fish fillets, 

being the eligible technique to deal with a 3-dimensional dataset. 

The open-source Chemometric Agile Tool (CAT) program was employed for multivariate data 

elaboration [60]. 

Training and test sets 

For chicken breast slices, the training set consists of five samples of similar mass, purchased the 

same day of the delivery from the supplier. Therefore, the input matrix has 6 columns (3 RGB indexes 

per 2 CR-EVOH@ sensors) and 135 rows (27 acquisition times per 5 replicates). 

Then, to preliminary validate the model, two new samples of similar mass are projected as external 

test set, one purchased the same day of the delivery and the other one two days after. This test aims 

to verify the correct device behaviour even if implemented in foods already under degradation. 

As for fish products, this class includes a wide variety of foods that differ in fish characteristics, like 

dimension, meat composition and nutritional values, and transformation and distribution 

procedures. To explore the widest panel, we select four types of fish fillets that are commonly frozen, 

delivered to the supermarket, defrosted and sold in sealed packages. The fish products under 

investigation, the average fish and fillets weight and the type of sales package are reported in the 

first four rows of Table 4.3. For each fish product, five samples are used as training set and an 

independent sample is exploited as test-set. Therefore, the training set input matrixes have 6 

columns (3 RGB indexes per 2 CR-EVOH@ sensors) and 60 rows (12 acquisition times per 5 

replicates). 

Table 4.3: The fish products under investigation, the average fish and fillets weight and type of sales 

package.  

Fish product Av. Fish weight (kg) Av. Fillet weight (g) Sales package 

Swordfish 250 200 Sealed 

Codfish 40 150 Sealed 

Plaice 4 150 Sealed 

Scorpionfish 2 150 Sealed 

Gurnard <1 30 Unsealed 

 

In addition, gurnard fillets are also tested to evaluate the device applicability towards fish products 

directly filleted in the supermarket, with small fillets and sold in an unsealed package. The 

characteristics of this food are reported in the last row of Table 4.3. Three gurnard fillets package of 

the same foods’ weight but different fillets dimension and weight are purchased and monitored, 
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inserting three devices per each package. Therefore, the input matrix has 6 columns (3 RGB indexes 

per 2 CR-EVOH@ sensors) and 99 rows (11 acquisition times per 9 replicates). 

4.2.5 Milk freshness monitoring 

Experimental setup  

For this application, BCP-EVOH@ sensor is equilibrated at basic pH by 1-hour immersion in 2 mL 

NaOH 0.1 M and, after drying step, dipped in 100 mL milk sample.  

Fresh milk bottles, whole, semi-skimmed or skimmed, are purchased in a local supermarket the day 

of the dairy’s delivery to ensure a homogeneous lifetime of all samples and monitor the entire 

degradation process. Within ten minutes, the bottles are carried in the lab and divided into 

subsamples of 100 mL in sterile plastic containers, in which BCP-EVOH@ sensor is dipped. Samples 

are stored at 4°C per ten days in a domestic fridge.  

Colour analysis & Chemometrics 

At given times during storage, photos of the array are acquired by a Nikon COOLPIX S6200 in a 

lightbox to ensure a constant and reproducible light exposition and sensing spots RGB triplets are 

extracted using GIMP software [61]. 

To facilitate and speed up this step, similarly to what was previously described in Section 3.2.6, all 

the sensors are poked with a needle, and a thread is put through the hole of each sensor. When 

dipping the sensors in the milk, both thread ends are kept out of the liquid; in this way, it is simple 

to extract the sensors and acquire the photographs. Furthermore, before shooting the picture, the 

sensors are dried using common adsorbent paper to remove the white milk residue on the surface 

that would affect the RGB index.  

As for chemometric data treatment, firstly unsupervised techniques are exploited to visualize and 

rationalize the overall data set: Principal Component Analysis was applied separately to each type of 

milk and 3-Way PCA jointly to the entire dataset, always applying the only centring as data pre-

treatment.  

Then supervised techniques are used to develop predictive models, both qualitative (Linear 

Discriminant Analysis, LDA) and quantitative (Partial Least Square regression, PLS), based on °SH 

measurement by Soxhlet-Henkel titration, described below. For these techniques, a stepwise 

approach is used to develop the final models, here described. 

• Step 1: Milk types are analysed separately. Each dataset is split into training and test set 

(10:7 ratio). Models are built on the training set and validated by the prediction of the test 

set. If validation is successful, a total model is built per each milk type. 

• Step 2: Total models are used to predict the overall training set of both the other milk types, 

repeating this operation per each milk type. If the prediction is correct, a general model is 

built on the entire dataset, including different milk types. 
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• Step 3: General model was validated by predicting unknown samples, totally independent 

from the first dataset. 

The open-source Chemometric Agile Tool (CAT) program is employed for data elaboration [60]. 

Training and test sets 

For each type of milk, the training set consists of five milk samples stored at 4°C in which one BCP-

EVOH@ sensor is dipped. Therefore, the input matrixes have 3 columns (3 RGB indexes per 1 BCP-

EVOH@ sensors) and 95 rows (19 acquisition times per 5 replicates). 

As already pointed out in the previous Chapter, °SH values can be successfully exploited for a proper 

validation of this sort of sensing devices. Therefore, each BCP-EVOH@ sensor picture has to be 

correlated to the actual correspondent °SH value. To avoid volume changes during monitoring, per 

each replicate, per each milk type, 1.5 L of milk, homogenized in a sterile bottle, 100 mL sample is 

used for BCP-EVOH@ monitoring, and the remaining part is gradually consumed to measure °SH. 

The two portions are stored at the same temperature and kept out of the fridge only for the minimum 

time required for picture acquisition and titration. 

This entire procedure is repeated for the first dataset for 5 samples of each milk type (whole W, semi-

skimmed SS and skimmed S) while, for the test set, for 2 replicates of each milk type, measured only 

once a day. 

Validation by independent analyses 

Milk titratable acidity is usually measured by Soxhlet-Henkel methodology and expressed as 

°SH/100 mL, according to the procedure reported in Section 3.2.6. To systematically apply 

supervised chemometric tools, at every picture shot the titration was performed on each one of the 

replicates. 

Dye release in simulated conditions 

To check BCP release in water, UV-Vis spectroscopy can be used, exploiting the intense absorption 

of the deprotonated form of BCP at 589 nm. In this case, dye release can not be measured directly 

on milk samples due to the white colour of milk but is tested in two different conditions, using 

phosphate buffer 0.1M at pH=7 [88] to mimic milk. 

• Concentrated samples: around 100 mg BCP-EVOH@ sensors, equilibrated at alkaline pH 

likewise monitoring experiments, are dipped in 25 mL phosphate buffer 0.1M at pH=7, 

stored at 22°C for 10 days 

• Simulated samples: one BCP-EVOH@ sensor, equilibrated at alkaline pH likewise monitoring 

experiments, is dipped in 100 mL phosphate buffer 0.1M at pH=7, stored at 4°C for 10 days 

In both cases, UV-Vis spectra are acquired once per day starting from Day 2 and the amount of dye 

released is calculated. 
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4.2.6 Chemometrics-assisted Litmus Test (CLT) 

Experimental setup 

In this case, Dye-EVOH@ sensors are used without previous equilibration since buffered solutions 

are used as samples and there is no need to enhance sensors sensibility.  

The twelve Dye-EVOH@ sensors are poked with a needle and fixed to inert plastic support by the 

means of a thread to obtain the 3x4 sensing array shown in Figure 4.4. The arrays are then dipped 

in 100 mL samples of solutions at different pH, ranging from 1 to 13 and are left equilibrating 

overnight. 

 

 

Figure 4.4: Example of 3x4 sensing array used as chemometrics-assisted litmus test. Dye-EVOH@ sensors 

are numbered from 1 to 12, according to the numbering in Table 4.2 

 

Colour analysis & Chemometrics 

After the equilibration, Dye-EVOH@ arrays are removed from the solution, dried by common 

adsorbent paper and photos of the array are acquired by a Nikon COOLPIX S6200 in a lightbox to 

ensure a constant and reproducible light exposition. Dye-EVOH@ sensors RGB triplets are used as 

experimental data while pH value, measured after equilibration by the means of a pH-meter, is used 

as reference value for the following multivariate data treatment. 

From preliminary investigations, a two-step approach, combining Principal Component Analysis (PCA) 

and Partial Least Square regression (PLS) has proven to be the best data elaboration method, in 

terms of model robustness and predictive performances. PCA is firstly run on the entire data set and, 

from the resulting score plot, three pH subintervals partially overlapped are highlighted, 

characterised by the same informative Dye-EVOH@ sensors. Then, PLS is applied separately for each 

pH subinterval, developing a tailored model from the RGB triplets of the Dye-EVOH@ sensors that 

turn their colour in the pH range under investigation. This approach allows to improve accuracy and 

to avoid gross predictive errors, sometimes occurring due to those Dye-EVOH@ sensors with similar 

colours, in terms of RGB values, at extremely acid and alkaline pHs. 
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Training and test set 

Both for the training and the test set, 1 L stock solution at defined composition and pH are prepared 

and then divided into 100 mL samples. For the training set, 4 replicates are prepared from each 

solution, for the test set, only 1. Therefore, the training input matrix has 36 columns (3 RGB indexes 

per 12 Dye-EVOH@ sensors) and 56 rows (14 stock solutions per 4 replicates) while the test set 

matrix has 36 columns (3 RGB indexes per 12 Dye-EVOH@ sensors) and 36 rows (9 stock solutions 

per 4 replicates). 

In Table 4.4 the solutions used for training set samples are listed. For extremely acid and alkaline 

pH, dilute strong acid and base are exploited while, in the other cases, common buffers are used, 

avoiding buffering agents with one or more volatile species involved in the acid-base equilibria which 

may evaporate during the analysis and modify the samples’ composition. Furthermore, ionic strength 

was buffered at 0.1M adding NaNO3 in the solution with lower content of acid-base species (from B 

to O). 

Table 4.4: Solutions used for the training set samples  

Solution Acid-base species Concentration (M) I buffer Concentration (M) Exp. pH 

A HNO3 0.1 -- -- 1.12 

B HNO3 0.01 NaNO3 0.1 2.06 

C NaH2PO4 0.01 NaNO3 0.1 2.19 

D NaH2PO4 0.01 NaNO3 0.1 3.07 

E Citric acid 0.01 NaNO3 0.1 3.97 

F Citric acid 0.01 NaNO3 0.1 4.97 

G Citric acid 0.01 NaNO3 0.1 6.02 

H Na2HPO4 0.01 NaNO3 0.1 7.01 

I Na2HPO4 0.01 NaNO3 0.1 8.05 

L NaHCO3 0.01 NaNO3 0.1 8.99 

M NaHCO3 0.01 NaNO3 0.1 10 

N NaHCO3 0.01 NaNO3 0.1 11.06 

O NaOH 0.01 NaNO3 0.1 12.13 

P NaOH 0.1 -- -- 13.04 

 

In Table 4.5 the solutions used for test set samples are listed. We aim to test the model robustness 

in the case of different ionic strength and buffering agents. Therefore, solutions from a to f are 

prepared using already employed buffering agents but with I=1M (a-c) and I=0.01M (d-f) while 

solutions from g to i are prepared using Good’s buffers at I=0.1M. 
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Table 4.5: Solutions used for test set samples 

Solution Acid-base species Concentration (M) I buffer Concentration (M) Exp. pH 

a Citric acid 0.01 NaNO3 1 4.04 

b Na2HPO4 0.01 NaNO3 1 6.95 

c HCO3 0.01 NaNO3 1 9.82 

d Citric acid 0.01 NaNO3 0.01 4.08 

e Na2HPO4 0.01 NaNO3 0.01 7.08 

f HCO3 0.01 NaNO3 0.01 9.97 

g MES 0.01 NaNO3 0.1 5.52 

h PIPES 0.01 NaNO3 0.1 7.00 

i EPPS 0.01 NaNO3 0.1 8.45 

 

Dye release 

In this case, dye release is checked only for two out of twelve Dye-EVOH@, having demonstrated that 

no significant differences are observed changing the dye. UV-Vis spectroscopy is used, as already 

argued in Section 4.2.5, registering the spectra at alkaline pH to exploit the intense absorption of 

the deprotonated form of the test dyes, which are Dye n°3 (596 nm) and n°7 (617 nm). Dye release 

is tested dipping around 100 mg Dye-EVOH@ sensors in 25 mL NaOH 0.1M, registering UV-Vis 

spectra after 2, 5, 8 and 10 days and calculating the amount of dye released. 

Evaluation on logKa shift after functionalisation 

In order to evaluate the logKa shift, occurring after dye covalent linkage to EVOH, a collaboration with 

Prof. Remelli’s group from the University of Ferrara is established, having as purpose the 

potentiometric titration of dyes in solution and Dye-EVOH@ by the means of an automated titration 

system (pH meter Orion EA 940; combined microelectrode Metrohm 6.0234.100, automatic burette 

Hamilton with 500 µL microsyringe Hamilton; titration vessel with thermostat jacket Metrohm and 

circulation thermostat Lauda L100). This investigation is performed by selecting the same test 

sensors used for release experiments: 3-EVOH@ and 7-EVOH@. 

Dye logKa value is calculated both in solution (0.002mmol dye) and after functionalisation (10 Dye-

EVOH@ sensors, around 20 mg), in 5 mL of 10% EtOH aqueous solution I=0.1M (KCl), starting from 

acid pH and adding NaOH. The equilibration kinetic is unknown and thus two different modes are 

firstly tested: 

• variable times: ΔV/t = 0.002 mV/s and tmax= 2 hours per each titrant addition 

• fixed times: t = 15–18 min after each titrant addition 

Considering that, from the variable times' mode, quite rapid titrations are performed, the results 

obtained by the fixed times' mode are considered reliable.  



4.EVOH (29%)-based devices 

 

 
75 

Furthermore, the exact amount of dye linked to EVOH is not known. From the EDX results, reported 

in Section 3.3.2, a rough estimation of 0.1 mmol/g has been performed, which means around 0.002 

mmol per 10 Dye-EVOH@ sensors, but this value is inaccurate. For this reason, to calculate the logKa’ 

value, both the theoretical and refined dye amount is used in the data elaboration, performed using 

Hyperquad [89]. 
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4.3 Results and discussion 

4.3.1 Sensors thickness selection 

A rapid method is developed to verify sensors thickness and select the most effective thickness 

range. Neither weighing each sensor, having a very low average mass of 0.002(1) g (average weight 

calculated by weighting 20 Dye-EVOH@ sensors), nor measuring each one's thickness using a 

profilometer, requiring too much experimental effort, can be exploited for this purpose. Exploiting the 

relationship between thickness and colour intensity turns out to be a more suitable approach in this 

context. 

Here below the results for BCP-EVOH@ are described while the results for CR-EVOH@ are reported in 

Appendix VI: CR-EVOH@ sensors thickness selection. 72 BCP-EVOH@ sensors, obtained from one 

batch synthesis exhibiting different thicknesses, are equilibrated at alkaline pH both to enhance the 

colour intensity and to mimic the sensor preparation for real sample monitoring. This batch of 

sensors is used as the training set to map the entire experimental domain. RGB triplets are used as 

input dataset for PCA to reduce the data's dimensionality and obtain a single parameter 

representative of sensors thickness. The loading plot is reported in Figure 8.4 in Appendix III: Loading 

and score plots.  

From the score plot, shown in Figure 4.5a, important assumptions are driven. More than 96% of the 

dataset variance is explained by PC1, which is oppositely related to sensors thickness: the lower the 

score value on PC1, the higher the sensor thickness. Thus, the score value on PC1 can be used to 

estimate sensor thickness, both for the training set and any other following sensor, by projection in 

the score plot. 

 

 

Figure 4.5: PCA score plot on the first two components based on RGB triplets of 72 sensors of various 

thicknesses (white circles); the sensors tested for real samples monitoring are highlighted with green and 

red x, and the suitable thickness range is identified by the green oval (a). Pictures of the 72 sensors used 

to build the PCA model. The sensors tested for milk monitoring are highlighted in green and red (b).  

 

  



4.EVOH (29%)-based devices 

 

 
77 

Once this parameter is measured, the most effective thickness range has to be identified, bearing in 

mind that too thin sensors show faded colours, difficult to be analysed by naked-eye, opposite thick 

sensors have lower sensing rate, resulting in a delay in spoilage monitoring. Therefore, from the 72 

sensors, reported in Figure 4.5b ordered by increasing score on PC1, thus by decreasing thickness, 

8 sensors, representative of various thicknesses are selected and used in preliminary real samples 

monitoring. 4 out of 8 sensors, highlighted in green in Figure 4.5, present a suitable colour transition 

during milk freshness monitoring. In comparison, the remaining 4 sensors were either too thick 

(sensor #1) or too faded (sensors #44, #61 and #63) to be used. 

In conclusion, only sensors within the thickness range identified by the green circle in Figure 4.5a 

will be used for real samples monitoring. The same analysis is performed also for CR-EVOH@ sensors 

selecting the suitable thickness range for real samples monitoring, using chicken breast slices as 

test food. 

4.3.2 Protein foods: CR-EVOH@ dual sensors device colour evolution 

After thickness selection and sensors equilibration, we register CR-EVOH@ dual sensors device 

colour evolution during spoilage process of chicken breast slices, codfish fillets, swordfish fillets, 

plaice fillets, scorpionfish fillets and gurnard fillets, stored at 4°C. All these foods present very similar 

colour evolution, apart from gurnard fillets discussed below, thus only the training sets of chicken 

breast slices and codfish fillets are shown in Figure 4.6.  
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Figure 4.6: CR-EVOH@ dual sensors device colour evolution over chicken breast slices (a) and codfish 

fillets (b), stored at 4°C. 

 

As hinted before, naked-eye analysis of colour evolution represents a crucial step in the device 

development since, in the final application, the device has to work like a traffic light for protein foods 

freshness and should be readable for untrained consumers. Therefore, the device has to show a 

clear and glaring colour transition according to headspace composition and thus food freshness.  

Analysing Figure 4.6, we can observe that, for both foods, in the first spoilage step, the so-called 

“early spoilage”, weak acid volatile by-products released by bacteria, are detected by b-CR-EVOH@ 

that turns its colour from violet (CR-) to yellow (HCR). The conversion occurs between Day 4 and Day 
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6 for chicken breast slices and between Day 2 and 4 for codfish fillets, with a slightly different timing 

between the replicates due to the high intrinsic variability of foods under investigation.  

Then, in the second spoilage step, the so-called “spoilage”, bacterial proteins degradation begins 

with the consequent release of thiols and amines. As deeply discussed in the literature [52], only a 

few of these by-products are volatile at buffered pH typical of biological matrixes; thus, only a slight 

increase of pH could be observed. a-CR-EVOH@ detects this headspace atmosphere modification by 

changing its colour from pink (H2CR+) to yellow (HCR). This colour change occurs within Day 7 and 9 

for chicken breast slices and within Day 4 and Day 5 for codfish fillets. The other fish products share 

the same colour evolution but with slightly different timing. 

Finally, gurnard fillets are selected to prove the applicability of our device also for fish products 

filleted directly in the supermarket, or the fishery, presenting various fillets dimensions and sold in 

an unsealed package. In Figure 4.7, the colour evolution of the dual sensors device during spoilage 

monitoring is reported. Considering the even higher experimental variability associated with this kind 

of food, three gurnard fillets package of the same whole fillets weight are monitored, inserting three 

devices per package. 

 

 

Figure 4.7: CR-EVOH@ dual sensors device colour evolution over gurnard fillets packages containing fillets 

with an average weight of 35 g (a), 25 g (b) and 20 g (c), stored at 4°C. 

 

Even from naked-eye analysis, it is visible that not only storage time but also the average weight, or 

dimension, of the fillets inside the package influence the spoilage rate. The colour evolution of the 

device corresponds to that shown in Figure 4.6 but the timing is different in the package with 

different fillets dimensions. Bigger fillets (Figure 4.7a) present slower spoilage than smaller fillets 



Lisa Rita Magnaghi 

 
80 

(Figure 4.7c) probably due to the lower surface area. A similar effect is observed for the different 

spoilage rates of minced meat, compared to thick steaks, for instance, as it is well-known in daily life 

experience. 

4.3.3 Protein foods: spoilage modelling by PCA 

Naked-eye analysis of colour evolution allows qualitative information about spoilage process, which 

can be visualized and modelled by multivariate elaboration of CR-EVOH@ dual sensors RGB triplets. 

Therefore, PCA is then performed on the RGB triplets of the sensors during degradation to visualise 

the degradation process of each food training set. In Table 4.6, the % explained variance on the first 

two components per protein food under investigation is reported. 

Table 4.6: % Explained variance on PC1, PC2 and PC1+PC2 per protein food. 

Protein food % Exp. Var PC1 % Exp Var PC2 % Exp Var PC1+PC2 

Chicken breast slices 85.43% 8.26% 93.7% 

Swordfish fillets 78.01% 16.53% 94.5% 

Codfish fillets 89.57% 5.23% 94.8% 

Plaice fillets 81.13% 11.53% 92.7% 

Scorpionfish fillets 65.44% 20.67% 86.1% 

 

In all cases, the % explained variance on the first two components is very high thus, these two 

components are selected for the final models. All the loading plots are reported in Figure 8.5 in 

Appendix III: Loading and score plots. Being all the plots very similar, in Figure 4.8, only the score 

plots, built on the training set and preliminarily validated by projecting the test set, for chicken breast 

slices and codfish fillets are reported while the other score plots are displayed in Figure 8.6 in 

Appendix III: Loading and score plots.  

 

 

Figure 4.8: The score plots of the PCA models on the first two principal components, built on the training 

set and validated by projection of the test set, for chicken breast slices (a) and codfish fillets (b). 
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In both cases, PC1, which accounts for the main % explained variance, represents the ongoing 

spoilage process, and the samples' score values on the x-axis increase during spoilage. PC2 

meaning, instead, slightly differs in the two cases: for chicken breast slices (Figure 4.8a), it can be 

specifically related to the “spoilage” step, occurring between Day 6 and Day 10. In this time lapse, 

samples’ score values on PC1 continue to increase while the PC2 values significantly decrease.  

Opposite, for codfish fillets (Figure 4.8b) and the other fish products, PC2 accounts for the 

experimental variability, both in terms of sensors and fish products, and the higher variability results 

in the higher % explained variance on this component. Therefore, for the different fish products, the 

overall experimental variability increases in the following order: codfish < plaice < swordfish < 

scorpionfish fillets. It must be underlined that in samples chilled stored the spoilage process is slower 

and progressive thus the well-defined clusters, observed in the previous sections, are replaced by a 

gradual transition of the samples in the plot during degradation. 

As for test set projection, the new samples acquired the same day of the delivery from the supplier 

show a similar degradation process and are correctly located in the score plots in both cases. Much 

more interesting is the case of the test sample acquired two days after the delivery: Dye-EVOH@ 

sensors device can detect the lower freshness of the food and, as spoilage goes on, a shift of two 

days is observed in the location of the sample in the score plot, with test sample at Day 3 aligned on 

PC1 to training samples at Day 5 and so on. 

4.3.4 Protein foods: evaluation of source and dimension of fish fillets’ effect on 

spoilage by 3-Way PCA 

As already hinted before, 3-Way PCA represents the eligible tool to deal with 3-dimensional datasets; 

in our case, this technique is of paramount importance to evaluate the effect of various parameters 

on the spoilage process. In these cases, CR-EVOH@ RGB triplets (labelled as variables) of fish fillets 

of different source or dimensions (named as objects) are acquired at given times during degradation 

(labelled as conditions) and are analysed jointly to evaluate the cumulative effect of time and the 

other specific parameter on the spoilage process registered by the device.  

As for the first case, the source of fillets represents the parameter of interest and the training sets 

of swordfish, codfish, plaice and scorpionfish fillets (five replicates per each) are used as input 

dataset. Therefore, the overall matrix has 6 columns (3 RGB indexes per 2 CR-EVOH@ sensors) and 

300 rows (12 acquisition times per 25 samples). The cumulative % explained variance after 

unfolding for each mode is reported in the first two columns of Table 4.7, while the Tucker 3 model 

value is 76.8%. The % explained variance is generally satisfactory, and the small difference between 

the Tucker 3 model value and the cumulative values after unfolding means that very little information 

is lost in considering the common spoilage process rather than the single ones. 
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Table 4.7: Cumulative % explained variance after unfolding for each mode for 3-Way PCA models of fish 

fillets of different sources (Columns 1 and 2) or dimension (Column 3 and 4). 

Mode 
Fillets source Fillets dimension 

PC1 PC1&2 PC1 PC1&2 

Conditions 79.56% 97.58% 58.56% 91.15% 

Objects 58.18% 79.96% 59.78% 85.17% 

Variables 60.92% 80.91% 79.46% 89.49% 

 

In Figure 4.9a, 3-Way PCA triplot, showing the loading values for conditions, objects and variables, 

is reported. Acquisition times (conditions) show a decreasing loading value on the y-axis during 

storage time, and a clear separation between the first two and the last three days is observed. 

Opposite, replicates of fish products (objects) are located in well-defined clusters, except for 

scorpionfish fillets which present a higher variability. As for the variables, a-CR-EVOH@ Green and 

Blue, associated with the pink-yellow transition, have the higher loading value on Axis 1 while b-CR-

EVOH@ Blue, related to violet-yellow turn, is the main effect on Axis 2. We could assume that the a-

CR-EVOH@, which detects the final spoilage, has the main influence in objects separation alongside 

Axis 1, while b-CR-EVOH@, which detects the early spoilage, determines the conditions’ distribution 

alongside Axis 2. 

 

 

Figure 4.9: 3-Way PCA triplot reporting the loading values for conditions (diamonds), objects (square) and 

variables (spots) for fillets of different source (a) and dimension (b). 

 

In the second case, the average dimension, or weight, of small fish fillets on spoilage rate is 

investigated. As discussed before, the RGB triplets of nine CR-EVOH@ dual sensors devices, inserted 

three per each fish package, containing gurnard fillets of different average weights, represent the 
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input dataset for this analysis. Therefore, the overall matrix has 6 columns (3 RGB indexes per 2 CR-

EVOH@ sensors) and 99 rows (11 acquisition times per 9 samples). The difference between the 

cumulative % explained variance after unfolding, reported in the last two columns of Table 4.7, and 

the Tucker 3 model value (81.6%) is even lower than before since the objects are much more similar 

to each other and thus even less information is lost in considering the overall spoilage process. 

In Figure 4.9b, 3-Way PCA triplot is displayed. As for conditions, the loading value on the x-axis 

increases during storage time while on the y-axis, it has a maximum on Day 3; opposite, as for 

objects, the loading value on both axes increases for lower average fillets weight. The variables 

loading values interpretation is very interesting. b-CR-EVOH@ presents a violet colour, which means 

high Blue value, in the bottom left of the plot, i.e., at the beginning of storage and for heavier fillets, 

while opposite it turns to yellow at the top right, i.e., at the end of the storage. As for a-CR-EVOH@, it 

remains pink (high value of Red and Blu, low value of Green) up to Day 3, and then it turns to yellow 

while the average fillets mass is much less related to this sensor colour evolution. From this plot, we 

could confirm that the difference in the average fillets weight mainly influences b-CR-EVOH@ 

behaviour, and thus the detection of the early spoilage, while it slightly influences a-CR-EVOH@ colour 

evolution, which means the final spoilage recognition. 

4.3.5 Milk: BCP-EVOH@ sensor colour evolution 

We register BCP-EVOH@ sensor colour evolution during spoilage process of whole, semi-skimmed 

and skimmed milk, stored at 4°C. In Figure 4.10, the pictures of two out of five replicates per each 

milk type are displayed. A very similar behaviour, with slightly different timing, is observed for the 

three milk types and three steps can be highlighted. During Day 1, BCP-EVOH@ sensors equilibration 

at neutral pH is observed, with the colour transition from blue to green. A stable green colour is 

registered from Day 2 to Day 8-9 with no appreciable change in the sensor's hue. During Day 9-10, 

sensors showed a transition from light green to yellow corresponding to pH decrease after milk 

spoilage. Further information can be extracted by multivariate analysis of the pictures, considering 

that pictures during Day 1 have to be excluded from multivariate analysis because the colour 

transition, showed by the sensors, depends on the equilibration at milk pH rather than on milk 

freshness monitoring. 
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Figure 4.10: Colour evolution of two out of five sensors dipped in whole (a), semi-skimmed (b) and 

skimmed (c) milk during 10-days storage at 4°C, followed by photo acquisition 3 (Day 1-4) or 2 (Day 5-

10) times per day. 

 

4.3.6 Milk: spoilage modelling and comparison by PCA and 3-Way PCA 

Firstly, PCA is applied separately to each milk type to visualize the spoilage process but, due to the 

large number of samples, the score plots required a laborious interpretation. In Appendix III: Loading 

and score plots, the loading (Figure 8.7) and score (Figure 8.8) plots are reported. In this case, the 

output of 3-Way PCA is much easier to analyse and more informative. Similarly to the previous case, 

described in Section 4.3.4, acquisition times (17), milk samples (15) and sensors RGB indexes (3) 

are labelled respectively as conditions, objects and variables. Therefore, the input matrix has 3 

columns (3 RGB indexes per 1 BCP-EVOH@ sensors) and 255 rows (17 acquisition times per 15 milk 

types). The first step in 3-Way PCA interpretation consists of comparing the cumulative % explained 

variance after unfolding, reported in Table 4.8, and the Tucker 3 model value (87.71%). 

Table 4.8: Cumulative % explained variance after unfolding  

Mode PC1 PC1&2 

Conditions 60.51% 92.95% 

Objects 60.13% 89.31% 

Variables 76.89% 99.38% 

 

The Tucker 3 model value is slightly lower than the other values, meaning that, considering the 

common spoilage process, only a small part of the overall information is lost, and the spoilage 

process presents no significant differences in the three milk types. Moreover, all the values related 

to the % explained variance are definitively high, considering the variability of the system. 

As interpretation is concerned, the loading values of each mode are jointly displayed in the triplot, 

reported in Figure 4.11. As for the objects, they are located alongside the x-axis, no clear separation 

is observed among different milk types, but whole and semi-skimmed samples are located at lower 
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x values than skimmed samples, suggesting similar spoilage. Opposite, a clear separation is 

observed for the conditions loadings alongside the y-axis: the y value increases with time, but times 

from Day 2 to Day 8 are separated by the final two days when almost all milk samples are spoilt. As 

for the variables, they all have a positive loading value on the x-axis, with a B value higher than the 

others, which means that they all play a similar role in objects' location. Opposite, on the y-axis, R 

and G have positive loading values, and B has a negative value, suggesting that, during spoilage, R 

and G indexes increase while B index decreases, which correspond to the numerical effect of 

transition from green to yellow on the variables. 

 

 

Figure 4.11: 3-Way PCA triplot reporting the loading values for conditions (diamonds), objects (square) 

and variables (spots) for different milk types 

 

4.3.7 Milk: titratable acidity determination by Soxhlet-Henkel method 

Unsupervised chemometric techniques, like PCA and 3-Way PCA, are suitable for visualizing the 

spoilage process monitored by BCP-EVOH@. Nevertheless, to develop qualitative or quantitative 

predictive models, supervised methods are needed, and a reference value, independently measured, 

is required. For this purpose, we use the Soxhlet-Henkel titration to determine the titratable acidity 

of milk samples during spoilage, expressed as °SH/100 mL. The value °SH=8 is commonly referred 
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to as the threshold value for milk suitable for human consumption: milk samples with °SH<8 are 

safe while °SH>8 identifies spoilt milk. 

In Figure 4.12, the average °SH values and the related standard deviations are reported. In the 

histogram the different spoilage rate of the milk types is displayed: whole milk presents °SH>8 at 

Day 10, semi-skimmed milk from Day 9 and skimmed milk from Day 8. Moreover, after threshold 

crossing, °SH value remains between 8 and 8.5 for whole and semi-skimmed milk, while it reaches 

values between 9.5 and 10 for skimmed milk. This behaviour is probably due to the different matrix 

compositions of the samples: skimmed milk undergoes more processing steps, resulting in a matrix 

with lower buffering capacity. Consequently, when spoilage is ongoing, the acidic by-products are 

less buffered than in the other milk types and provoke a higher pH decrease. 

 

 

Figure 4.12: Average °SH and standard deviation measured 3 or 2 times per day by Soxhlet-Henkel 

titration for the three milk types (W, SS and S) during 10-days storage at 4°C. 

 

4.3.8 Milk: samples classification by LDA 

Aiming at the final application as smart labels, developing a classification model that discriminates 

between fresh and spoilt milk is paramount. For this purpose, LDA is applied to the dataset, 

identifying 2 classes, fresh and spoilt, and selecting °SH=8 as the delimiter [28]. Indeed, differently 

from the first classification attempt with EVOH (32%)-based device, described in the previous 

Chapter, here an independent measure is always associated with the sensor’s photo making possible 

a rigorous application of this chemometric technique. 

As described in detail in the previous section, a stepwise approach is used, and LDA is applied three 

times on a dataset progressively bigger and more complex. In Step 1, each milk type is analysed 

separately. The dataset, consisting of the RGB indexes of the 5 BCP-EVOH@ during 10-days 

acquisition, is split into training and test (10:7). The model is developed on the training set and 

exploited to predict the test set. This step aims to verify the correct location of samples of the same 

type and with the same sensors. The % correct prediction in cross-validation (CV) and prediction (P) 
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are reported in Table 4.9: for whole and semi-skimmed milk, both values are 100%, while a bit lower 

percentage is observed for skimmed milk. 

Table 4.9: % correct predictions in cross-validation and prediction for LDA (Step 1) 

Milk type % Correct prediction CV % Correct predictions P 

Whole 100% 100% 

Semi-skimmed 100% 100% 

Skimmed 98.8% 96.7% 

 

In Step 2, the total model is developed per each milk type, exploiting as input data the entire dataset, 

and they are used to predict the dataset of the two other milk types. This step aims to verify the 

location of samples of different milk types but with sensors of the same batch. The % correct 

prediction in cross-validation (CV) and prediction (P) are reported in Table 4.10: the value referring 

to cross-validation is similar to Step 1 while, in prediction, the percentage value ranges from 94 to 

100%. 

Table 4.10: % correct predictions in cross-validation and prediction using different milk type datasets as 

test samples for LDA (Step 2) 

Milk type % Correct prediction CV % Correct predictions P 

  Whole 

milk 

Semi-skimmed 

milk 

Skimmed 

milk 

Whole 100% -- 94.6% 97.2% 

Semi-skimmed 100% 100% -- 94% 

Skimmed 98.3% 100% 100% -- 

 

Finally, in Step 3, a general model is developed, including the three datasets of all milk types. It is 

exploited to predict an unknown test set, completely independent from the first dataset. This step 

aims to verify the location of samples of different milk types and to observe the effect of sensors 

obtained from a different batch. For this model, the % correct prediction in CV is 97.7% while in P is 

91.7%. In Figure 4.13, the reciprocal of the Mahalanobis distance from each class for the unknown 

samples is displayed: for each sample, the highest bar represents the class closest to that sample, 

so the assigned one. The only wrong location is the sample labelled as W_7 at Day 8, highlighted 

with the striped bars. 
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Figure 4.13: Prediction of the unknown test set by general LDA model (Step 3). On the y-axis, the inverse 

of each sample's Mahalanobis distance from each of the two classes is reported 

 

To conclude, only one cheap sensor, the BCP-EVOH@, allows a definitely satisfying classification of 

any type of milk with a very simple, easy and rapid analysis. 

 

4.3.9 Milk: °SH calculation by PLS 

A further possible level of interpretation consists of developing a regression model able to calculate 

°SH during spoilage, based on BCP-EVOH@ sensor colour. For this purpose, PLS is applied to the 

dataset, using as a reference value, for each sensor acquisition, the correspondent °SH measured 

by Soxhlet-Henkel titration. Also, for PLS, the previously described stepwise approach is followed to 

gradually increase the complexity of the system under investigation. It must be underlined that, in all 

the cases, starting from 3 variables, the best performances are obtained with 3-components models, 

so no variables reduction is performed but, being the number of variables very low, this is not 

considered a problem further analysis. 

In Table 4.11, the % explained variance in CV, Root Mean Square Error in CV (RMSECV) and P 

(RMSEP) for the Step 1 models are reported. The whole and semi-skimmed milk models present 

similar errors, while the skimmed milk model is characterized by definitely higher RMSECV and 

RMSEP, suggesting a worse performance for this milk type. 

Table 4.11: % explained variance in CV, RMSECV and RMSEP for PLS (Step 1) 

Milk type % Exp. Var. CV RMSECV RMSEP 

Whole 66.51% 0.1619 0.1438 

Semi-skimmed 83.54% 0.1810 0.1805 

Skimmed 74.19% 0.4562 0.6665 
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Moving on to Step 2, whose statistics are reported in Table 4.12, the total model developed per each 

milk type presents very similar RMSECV but, in the prediction of samples of different nature, very 

different performances are found. When semi-skimmed milk samples are predicted by the whole 

milk model and vice versa, RMSEP is around 0.3, slightly higher than the error in prediction in Step 

1, consequently not so different from predicting the same milk employed for the training set. 

Opposite, predicting skimmed milk samples or exploiting the skimmed milk model to predict the 

other two, RMSEP is always around 1 or even higher. Based on this evidence, a general model 

including skimmed milk can not be developed; thus, only the whole and semi-skimmed milk samples 

are modelled jointly in Step 3. 

Table 4.12: % Explained variance in CV, RMSECV and RMSEP, using different milk type datasets as test 

samples, for PLS (Step 2) 

Milk type %Exp. Var. CV RMSECV RMSEP 

   W SS S 

Whole 68.84% 0.1620 -- 0.3049 1.067 

Semi-skimmed 83.28% 0.1886 0.2903 -- 1.109 

Skimmed 74.36% 0.5206 0.9349 1.041 -- 

 

Finally, in Step 3, the general model for whole and semi-skimmed milk samples is developed and 

exploited to predict an unknown test set, completely independent from the first dataset. For this 

model, the % of explained variance was 69.54%, and RMSECV was 0.2129, both values similar to 

those reported in Table 4.12 for these milk types. As for the prediction, RMSEP was 0.6526, 

definitively higher than the previous one, but it must be underlined that, in this set of unknown 

samples, also the variability of sensors from different synthetic procedures is taken into account, in 

addition to the food samples intrinsic variability. In Figure 4.14a, the comparison between 

experimental and fitted values, referred to the training set, is displayed: despite the intrinsic 

variability of the system, already discussed before, the distinction between samples before and after 

spoilage is clear. 
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Figure 4.14: Experimental vs. Fitted plot for samples of whole and semi-skimmed milk, used as a training 

set for general PLS model (Step 3) (a) and for skimmed milk samples, used as test set, with an example 

of sensors colour in the different spoilage steps (b). 

 

In Figure 4.14a, it appears evident that there are clusters of samples in some regions since milk °SH 

do not increase gradually during spoilage but present a neat gap before and after spoilage. From a 

strictly theoretical point of view, this model is biased since the training samples are not 

homogeneously distributed in the experimental domain. On the other hand, to obtain a 

homogeneous distribution, naturally spoiling milk samples can not be exploited but spoilage should 

be simulated by the gradual addition of acidic compounds. Since a compromise must be found 

between these two issues, we preferred to avoid any samples manipulation and to work on real 

spoiling milk, even if this approach leads to formally biased models, having in mind the final 

application as an intelligent packaging prototype. 

In conclusion, the case of skimmed milk is evaluated more in detail. Exploiting the general model to 

predict °SH of skimmed milk dataset, the location of the samples in the Exp. Vs. Fitted values plot 

makes the matter clearer. Before spoilage (°SH<8), samples are predicted with errors similar to that 

of the training set. Opposite, samples after spoilage (°SH>8) are affected by a negative bias. There 

are two possible explanations: firstly, skimmed milk after spoilage presents °SH values much higher 

than the other milk types due to different matrix composition and lower buffering capacity, as already 

hinted above, and thus the model is used to predict sample out of the experimental domain mapped 

by the training set. Secondly, and much more influential, the sensor relies on one single pH indicator, 

BCP, able to detect pH changes in a defined pH range: at fresh milk pH, the equilibrium between 

blue deprotonated and yellow protonated forms results in the green colour. After spoilage, when °SH 

value rises to 8, pH decrease causes the complete protonation of BCP and the consequent yellow 

colouration, but any further pH decrease, or °SH increase, can not be detected since the sensor 
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colour remains unchanged. For these reasons, °SH values of skimmed milk samples after spoilage, 

typically between 9.5 and 10, can not be correctly calculated by the BCP-EVOH@ sensor. 

4.3.10 Milk: comparison between BCP-EVOH@ sensor and reference method 

The results of Figure 4.14 can be visualised plotting the average values of measured °SH and PLS 

output per each acquisition time, as shown in Figure 4.15, to perform an easier comparison between 

the two methods. The case of the whole milk is presented in Figure 4.15a and the one of semi-

skimmed milk in Figure 4.15b. As it is visible, both the methods allow to clearly identify the threshold 

value crossing, which means the complete spoilage, and a good agreement between the average 

values is observed during the entire monitoring. Standard deviations are generally higher for the PLS 

model than for the reference method, but it is obvious because the PLS model is built relying on the 

Soxhlet-Henkel titration reference value. It means that it takes into account the errors of both the 

reference model and the colourimetric sensor. Nevertheless, this encouraging result suggests the 

prospective capability of measuring milk spoilage with this cheap, easy and rapid sensor as an 

alternative to laborious and time-consuming Soxhlet-Henkel titration. 

 

 

Figure 4.15: Average value and standard deviation of °SH calculated by PLS and measured by the 

reference method for whole (a) and semi-skimmed (b) milk 
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4.3.11 Milk: BCP-EVOH@ sensor dye release  

In Figure 4.16, UV-Vis spectra registered for concentrated (Figure 4.16a) and simulated (Figure 

4.16b) samples are reported. In concentrated samples, BCP is released in solution at increasing 

amounts from Day 2 to Day 8, while dye concentration in solution is only slightly increased in the last 

two days.  

 

 

Figure 4.16: UV-Vis spectra of solutions from release experiments in concentrated (a) and simulated (b) 

samples 

 

In Table 4.13, BCP concentration in solution (μM) and BCP release, expressed as μmol per BCP-

EVOH@ g, are reported. Considering the estimated value of 0.1 mmol/g of BCP content in BCP-

EVOH@, dye release ranges from 0.6% to 2% of total BCP content in 10 days. Taking into account 

the low amount of dye released, even in concentrated conditions, the slow release kinetic and the 

equilibrium reached in the last days we can assume that, during the synthetic procedure, the washing 

step is not efficient enough and, during BCP-EVOH@ polymerisation, some BCP not linked to the 

polymer matrix is not washed away and remains within the polymeric chains. These BCP molecules 

are then slowly released after immersion in aqueous solutions. 

Table 4.13: Absorbance value at 589nm, BCP concentration in solution (μM) and BCP release (mmol/g) 

for release experiments in concentrated and simulated samples 

Time (d) 
Concentrated samples Simulated samples 

A (589nm) [BCP] (µM) BCP release (μmol/g) A (589nm) [BCP] (µM) 

Day 2 0.062 2.3 0.57 0.016 <LOD 

Day 3 0.101 3.6 0.91 0.006 <LOD 

Day 4 0.134 4.8 1.20 0.007 <LOD 

Day 5 0.159 5.7 1.43 0.006 <LOD 

Day 8 0.198 7.1 1.78 0.013 <LOD 

Day 9 0.214 7.7 1.92 0.008 <LOD 

Day 10 0.226 8.1 2.03 0.014 <LOD 
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As for simulated samples, the concentration of BCP released is below the LOD for UV-Vis 

measurements, as clearly visible from the spectra reported in Figure 4.16b, but, assuming the same 

release process, after 10 days of equilibration in milk of one BCP-EVOH@ sensor (estimated average 

weight 2.5 mg), the amount of BCP released in milk is around 5 nmol or 3 µg.  

In conclusion, the amount of BCP released is definitely low, considering that this material has not 

been found to be a carcinogen nor produce genetic, reproductive, or developmental effects, and 

could be further reduced by improving the washing step during the synthetic procedure. Moreover, 

the device can be employed, not only as intelligent label, but also, possibly with easier 

implementation, as control device in dairy industry. 

4.3.12 CLT: Dye-EVOH@ sensors array colour evolution 

As for the training set, pictures of Dye-EVOH@ sensors arrays are acquired for each replicate and 

each test solution described in Table 4.4. Contrary to the previous cases, the large number of Dye-

EVOH@ sensors in the array makes impossible the direct naked-eye analysis of the arrays’ pictures. 

For this reason, the pictogram, displayed in Figure 4.17, is built as following. For each Dye-EVOH@ 

sensor at each experimental pH, the average R, G and B values for the 4 replicates are calculated. 

Then, using PowerPoint, 12 rectangles of constant dimensions, one per each Dye-EVOH@ sensor in 

the array, labelled according to the numbering in Table 4.2, are coloured using the “Gradient fill” and 

setting, at each experimental pH, the average RGB triplet as “Gradient stop”. The final pictogram well 

summarises the colour evolution of Dye-EVOH@ sensors array in a pH range from 0 to 14 

 

 

Figure 4.17: Pictogram reporting the colour evolution of Dye-EVOH sensors in a pH range from 0 to 14. 

Coloured rectangles are labelled on the left according to the numbering in Table 4.2 while pH values are 

reported in the axis above the pictogram.  
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At a glance, we can observe that Dye-EVOH@ sensors colour changes are equally distributed within 

the pH range and, at acidic pH, sensors from 1-EVOH@ to 6-EVOH@ are the most informative, at 

neutral pH, sensors from 7-EVOH@ to 10-EVOH@ and, at basic pH, sensors from 1-EVOH@ to 4-

EVOH@ and from 10-EVOH@ to 12-EVOH@. Furthermore, comparing the pH values of colour turning 

of Dye-EVOH@ sensors to those of dyes in solution, the logKa value increase of around 1 unit is again 

observed, as discussed below.  

4.3.13 CLT: pH screening by PCA 

As hinted in Section 4.2.6, PCA is firstly applied on the RGB triplets of Dye-EVOH@ sensors array of 

training set to visualise the colour evolution and to identify the main clusters. This 2-steps approach 

allows identifying pH subintervals in which the same Dye-EVOH@ sensors are informative and thus 

to develop tailored PLS models, relying only on the informative receptors for the specific pH 

subinterval. Also direct application of PLS on the entire pH range is possible but two main problems 

arise. Firstly, some dyes present similar colours, in terms of RGB values, at extremely acidic and 

alkaline pH, which compromises the accuracy and makes gross predictive errors possible. Secondly, 

working on the entire pH range, all the Dye-EVOH@ sensors are needed while, in many applications, 

the attention is focused only on a specific pH interval and thus the number of Dye-EVOH@ sensors 

can be reduced to the actual informative ones for the specific application. 

The PCA model is built considering only the first two components, which explain the 69.1% of the 

experimental variance, and the resulting score plot is reported in Figure 4.18a. The samples display 

an arch-shaped distribution in the plot, from the lower right to the lower left at increasing pH values 

and three main clusters, partially overlapped, can be identified: 

• Cluster A: for pH below 4, samples are separated alongside PC2 and their score value on 

this component is directly related to pH (red ellipsoid) 

• Cluster B: for pH between 4 and 9: samples are mainly separated alongside PC1 and their 

score value on this component is directly related to pH (green ellipsoid) 

• Cluster C: for pH above 9: samples are separated alongside both PC1 and PC2, with PC1 

score value increasing and PC2 score value decreasing at increasing pH (violet ellipsoid) 
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Figure 4.18: The score plot of the PCA model on the first two principal components, built on the training 

set (a) and validated by projection of the test set (b). The ellipsoids in (a) are added to identify the cluster 

A, B and C used for the PLS models described below. 

 

The PCA model is firstly validated by projection of the test set, as reported in Figure 4.18b: both 

samples with a different buffering agent and ionic strength are correctly located in the score plot. 

After validation, the PCA model is exploited to divide the entire pH range into subintervals for the 

following PLS application and to identify the corresponding reactive Dye-EVOH@ sensors. These 

subintervals correspond to the clusters described before and are highlighted in the plot by the 
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coloured ellipsoids while, for the informative Dye-EVOH@ sensors selection, the loading values, 

displayed in Figure 4.19, has to be analysed. 

 

 

Figure 4.19: The loading values of the PCA model on PC1 (white, in foreground) and PC2 (black, in 

background) 

 

Analysing the loading values, we can observe that Dye-EVOH@ sensors which turn their colour at 

neutral pH present a high loading value on PC1 while Dye-EVOH@ sensors which react at both acidic 

and alkaline pH give the highest contribution on PC2, in good agreement with what was argued 

before. The selection of the informative Dye-EVOH@ sensors per each PLS model is performed based 

on the loading and the logKa values after functionalisation. It must be underlined that a neat 

separation between the PLS models should be avoided while a partial overlap of the pH subintervals 

leads to a better result, in particular for those samples at the boundary between the two models. For 

each cluster, the limits of pH subinterval and the informative Dye-EVOH@ sensors are listed in Table 

4.14 

Table 4.14: pH subintervals limit and informative Dye-EVOH@ sensors for each cluster identified by PCA 

Cluster/Model Min. pH Max. pH Informative Dye-EVOH@ sensors 

A 1 5 From 1-EVOH@ to 8-EVOH@ 

B 3 10 From 7-EVOH@ to 11-EVOH@ 

C 9 13 From 1-EVOH@ to 4-EVOH@ and from 10-EVOH@ to 12-EVOH@ 

 

4.3.14 CLT: pH calculation by PLS 

Once defined the pH subintervals and the corresponding informative Dye-EVOH@ sensors, PLS is 

applied, using the training samples RGB triplets as input data, and three PLS models are developed 

to predict pH value from Dye-EVOH@ sensors array colours. The models are then validated predicting 

the test samples and comparing the experimental value with the calculated one. 

In Table 4.15, number of components used to build the model, the % explained variance in CV, Root 

Mean Square Error in CV (RMSECV), the test samples used for validation, labelled as reported in 

Table 4.5, and the corresponding error (RMSEP) for models are reported for each model. 
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Table 4.15: n° components, % explained variance in CV, RMSECV, test samples for validation and RMSEP 

for PLS models 

Model n° comp. % Exp. Var. CV RMSECV Test samples RMSEP 

A 2 87.36% 0.4907 a,d 0.4903 

B 2 95.56% 0.4687 a-i 0.5536 

C 1 95.67% 0.2937 c,f 0.3312 

 

For Models A and B, the minimum global RMSECV is obtained considering 2 components while, for 

Model C, the best model is obtained considering only 1 component; in all cases, the % explained 

variance in CV is definitely high, more than 87% for Model A and 95% for Models B and C. As for 

RMSECV, they are around 0.5 units for Model A and B and a bit lower, around 0.3 unit, for Model C: 

these values are definitely high if compared with the pH-meter performances but the main 

contribution is represented by the intrinsic variability of Dye-EVOH@ sensors obtained from the lab-

scale synthetic procedure. In fact, also for the prediction of test samples, similar errors are obtained 

meaning that the models’ performances are affected neither by ionic strength nor by the buffering 

agent or, at least, that their effect is much lower than the Dye-EVOH@ sensors variability’s one. 

Finally, in Figure 4.20, the plots reporting the experimental vs fitted values for each model are shown. 

As we can see, for all the models, there is a good agreement between experimental and fitted values 

and no significant difference is observed between training and test samples, confirming the models' 

robustness towards the type of buffering agent and ionic strength. To further improve the models’ 

accuracy and to reduce the RMSEs, Dye-EVOH@ sensors reproducibility should be improved, mainly 

in terms of sensors thickness. 

 

 

Figure 4.20: Experimental vs. Fitted plot for training (coloured x) and test (black stars) samples for Model 

A (a), B (b) and C (c). 
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4.3.15 CLT: Dye-EVOH@ sensors dye release 

In Figure 4.21, UV-Vis spectra registered during release experiments in the case of 3-EVOH@ (Figure 

4.21a) and 7-EVOH@ (Figure 4.21b) are reported. Similar behaviour is observed for these two dyes 

and BCP in concentrated samples, described in Section 4.3.11, suggesting that all the dye have 

similar behaviour and the specific dye does not influence release kinetic which is mainly determined 

by the polymeric support.  

 

 

Figure 4.21: UV-Vis spectra of solutions registered during release experiments in the case of 3-EVOH@ (a) 

and 7-EVOH@ (b) 

 

In Table 4.16, dyes concentration in solution (μM) and dyes release, expressed as μmol per Dye-

EVOH@ g, are reported. Considering the estimated value of 0.1 mmol/g of dye content in Dye-EVOH@, 

dye release ranges from 0.8% to 1% for 3-EVOH@ and from 0.4% to 0.8% for 7-EVOH@ of total dye 

content in 10 days. As already discussed in Section 4.3.11, the low amount of dye released, the slow 

release kinetic and the equilibrium reached in the last days suggest that only dye molecules not 

covalently bound to EVOH are released in these experiments. This issue can be solved by improving 

the washing step during the synthetic procedure. 

Table 4.16: Absorbance value at maximum absorption wavelength, dye concentration in solution (μM) 

and dye release (mmol/g) for release experiments in the case of 3-EVOH@ and 7-EVOH@ 

Time 

(d) 

3-EVOH@ 7-EVOH@ 

A (596nm) [Dye] 

(µM) 

Dye release 

(μmol/g) 

A (617nm) [Dye] (µM) Dye release 

(μmol/g) 

Day 2 0.065 3.2 0.79 0.047 1.6 0.39 

Day 5 0.082 4.0 1.01 0.078 2.7 0.67 

Day 8 0.087 4.3 1.08 0.085 2.9 0.73 

Day 10 0.084 4.2 1.04 0.096 3.3 0.83 

 



4.EVOH (29%)-based devices 

 

 
99 

4.3.16 CLT: logKa shift estimation after functionalisation 

In Table 4.17, the results of the preliminary investigation about logKa shift are summarised. As for 

dyes in solution, the logKa values reported in literature [64, 65] is confirmed for Dye n°3 while a 

slightly higher value is found for Dye n°7. As for Dye-EVOH@, the logKa shift hypothesized from UV-

Vis spectra and sensors optical behaviour is confirmed: for 3-EVOH@, the experimental logKa’ value 

is 9.7(1), considering the theoretical dye amount of 0.002 mmol, or 10.2(1), refining the dye amount 

at 0.003 mmol. For 7-EVOH@, logKa’ is calculated only for the theoretical dye amount, obtaining 

6.2(1) while it is not possible to refine the dye amount value. 

Table 4.17: logKa value reported in literature and calculated for dye n°3 and 7, both in solution and after 

covalent functionalisation to EVOH, considering the theoretical and refined dye amount, for Dye-EVOH@ 

Sample 
logKa  Dye amount (mmol) 

(theoretical) 

Exp. logKa  Dye amount (mmol) 

(refined) 

Exp. logKa  

3 in solution 8.9 0.002 9.01(6) -- -- 

3-EVOH@ -- 0.002 9.7(1) 0.003 10.2(1) 

7 in solution 4.35 0.002 4.74(2) -- -- 

7-EVOH@ -- 0.002 6.2(1) -- -- 

 

These preliminary results confirm both the logKa shift previously assumed and the dye amount linked 

to EVOH, estimated from EDX analyses. Further investigations could be performed on this aspect 

but, at the moment, it is out of the purpose of our research. 
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4.4 Conclusions  

To conclude, the main issue encountered using EVOH (32% ethylene) as solid support, which was 

the delay in spoilage detection during chilled storage, has been successfully solved by changing the 

solid support and, as a consequence, the choice of receptors was optimised for each specific 

application. 

Spoilage monitoring, both by naked-eye and multivariate data elaboration, was verified for various 

solid protein foods and milk types and also the applicability as Chemometric-assisted Litmus Test 

was demonstrated. For all these prototypes, a large-scale synthesis need to be optimized but they 

can be easily implemented on sales packages and used either as smart labels for food freshness 

monitoring or for specific applications alongside the entire food supply chain, as it could be for both 

solid and liquid foods continuous monitoring anywhere it is needed. 

The main disadvantage of these devices was represented by the plastic nature of the solid support 

used, which is not in line with the new trends, in general, and in food packaging, in particular, mainly 

focused on biocompatible and biodegradable materials. For this reason, bio-based materials were 

also tested for smart labels production, as described in Chapter 5. 

To conclude, the results discussed in this Chapter were presented in two oral communications at the 

“XXVII Congresso Nazionale Della Società Chimica Italiana” (Milano, 2021), at the “International 

Symposium on MEtal Complexes” (Białystok, 2021), and as poster communication, at “RETASTE: 

RETHINK FOOD WASTE Conference 2021” (Athens, 2021). As for data publication, a paper focused 

on the application for milk spoilage monitoring has been recently accepted for publication on Talanta 

(Elsevier) while manuscripts containing the results for protein foods freshness monitoring and for 

chemometric-assisted litmus test are still under preparation. 
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5. CMC-based devices 
In this chapter, the CMC-based devices are discussed. Firstly, the state of art is presented providing 

a brief description of the recent literature on this topic. The selection of the receptors, the synthetic 

pathway, the physicochemical and optical characterization are described and the related results are 

presented. For this solid support, two different deposition strategies were tested: in both cases, the 

optimisation of the preparation procedure by Design of Experiments is described in detail. For the 

first deposition strategy, the sensing performances and the applicability of the sensors for food 

freshness monitoring was also investigated. Eventually, the main conclusions are driven, the 

publications on this topic are summarised and the insights for further development are discussed. 

5.1 State of art 

In recent years, the environmental concerns surrounding conventional petroleum-based materials 

have stimulated the research on natural macromolecules which guarantee biodegradability and 

sustainability [90]. This trend has been particularly followed in the field of food packaging, both for 

flexible and rigid packages, due to the always increasing volume of waste generated by the extensive 

disposal of food packaging [90]. For this reason, many biodegradables, renewable and even edible 

materials have been proposed to partially replace petroleum-based plastics, ranging from 

polysaccharides to proteins [90, 91, 92, 93, 94, 95]. 

These materials have been also widely investigated for active packaging solutions in which the 

packaging materials act as a carrier for antimicrobial or antioxidant species and several strategies 

have been tested to integrate bioactive compounds in biodegradable packaging materials [91, 92, 

93, 94, 95]. On the other side, biodegradable materials are also exploited for intelligent packaging 

solutions, thanks to their versatility towards chemical modification or functionalization [96].  

Among the wide variety of natural macromolecules and derivatives, our choice fell on 

carboxymethylcellulose (CMC), a cellulose derivative in which some of the hydroxyl groups of the 

glucopyranose units are substituted by sodium carboxymethyl groups (−CH2COONa) [97, 98]. In 

Figure 5.1 the chemical structure of CMC and a picture of CMC powder commercially available are 

shown. CMC guarantees both large availability (production around 583.782 ton/y) and appealing 

properties like biodegradability, biocompatibility, improved solubility in aqueous or organic solvents, 

and presence of reactive functions [97, 98]. Thanks to its unique features, this material has been 

widely exploited both as an additive to improve mechanical properties of biodegradable films 

containing starch [92, 99, 100], PVA [100, 101, 102] and others [91, 94, 95] and as a substrate for 

chemical modifications. In fact, the presence of reactive carboxyl groups onto a CMC backbone paves 

the way toward its further chemical modification, currently performed mainly by amidation and 

esterification reactions, in the presence of carbodiimides as coupling reagents [97, 98]. 
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Figure 5.1: Chemical structure of CMC (a) and CMC powder, as commercially available.

 

 

All the experiments were performed using Carbocel MM250, provided by Lamberti Spa. The synthetic 

pathway, firstly developed for EVOH functionalisation, was successfully adapted to CMC 

functionalisation [11, 13] and two different deposition strategies were investigated, applying tailored 

ED techniques: drop and film casting deposition.  
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5.2 Materials and methods 

5.2.1 Receptors 

CMC is firstly functionalised with the panel of pH indicators already tested with EVOH(32% 

ethylene):m-cresol purple (1), o-cresol red (2), bromothymol blue (3), thymol blue (4), chlorophenol 

red (5) and bromophenol blue (6), described in Section 3.2.1. Then, for protein foods freshness 

monitoring, in light of the interesting results obtained with CR-EVOH@ dual sensors device, described 

in Chapter 4, o-cresol red (CR) is selected as sensing unit; the acid-base behaviour of this molecule 

has been already discussed in Section 4.2.1. 

5.2.2 Synthesis of Dye-CMC@ 

The synthetic pathway previously developed for EVOH covalent functionalisation and internationally 

patented, [10, 11, 13, 12] is adapted for CMC. 

The first step of dye activation is performed as described in Section 3.2.2. In the second step, unlike 

the EVOH functionalisation procedure, the covalent anchoring is performed without CMC dissolution: 

CMC powder is poured in toluene at 65 °C, under stirring, and a freshly prepared sulfonyl chloride 

toluene solution is added dropwise to the powder dispersion. After 3 h at 65°C, the reaction mixture 

is evaporated to reduce by half the toluene volume, then cooled at room temperature and in an ice 

bath. The functionalized powder is filtered under vacuum, washed with DCM and left to dry overnight.  

After the synthesis, the functionalized CMC comes in the form of coloured powder (Figure 5.2a) and 

needs to be dissolved in water with proper additives (Figure 5.2b) to perform both drop (Figure 5.2c) 

and film casting deposition (Figure 5.2d). 

 

 

Figure 5.2: Dye-CMC@ in powder, as obtained after synthesis (a), aqueous mixtures of Dye-CMC@ and 

additives (b), Dye-CMC@ based sensors obtained by drop (c) and film (d) casting deposition. 
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5.2.3 Dye-CMC@ powder characterisation 

The powder characterization is performed on CR-CMC@, being the final sensitive material for real 

samples monitoring.  

Physicochemical measurements 

Differential scanning calorimetry (DSC) analyses are performed by heating the samples (∼5 mg) from 

−20 to 250 °C at a rate of 5 °C/min under a N2 atmosphere. The heating process is preceded by an 

isothermal to remove the sorbed humidity. 

Fourier transform infrared (FT-IR) spectra are acquired using a spectrometer equipped with an 

attenuated total reflectance (ATR) sampling accessory in the range from 4000 to 650 cm−1. 

Optical measurements 

UV−vis spectra of CR-CMC@ solutions 0.5% (w/V) in 0.1 M HNO3, phosphate buffer at pH 7.00, and 

0.1 M NaOH are acquired and compared with the corresponding spectra of the dye dissolved in the 

same media (∼10 μM). 

5.2.4 Dye-CMC@ drop-casting deposition optimisation 

Dye-CMC@ drop-casting deposition is optimised by Design of Experiments, applying a tailored model 

for the variables under investigation: glycerol and starch amount, drop volume and type of cellulose-

based support. The selection of variables and the development of the tailored design are deeply 

discussed in Section 5.3 while the experimental matrixes are reported in Appendix IV. 

Sensors’ preparation general procedure 

Dye-CMC@ concentration in aqueous solutions is fixed at 5% (w/V) and the solutions are obtained 

by pouring Dye-CMC@ powder and additives in 10 mL, under heating and stirring till complete 

dissolution. Then a defined volume of solution is collected by a positive displacement pipette and 

dropped on the cellulose-based support. The drop-deposited sensors are finally dried at RT for 2 

hours before the application 

SEM characterisation 

SEM analyses of the drop-deposited Dye-CMC@ sensors, (dd)Dye-CMC@, on different cellulose-based 

supports are performed by an EVO MA10 scanning electron microscope (SEM). The sensors are 

supported on graphite bi-adhesives fixed on Al stubs and subsequently transferred into the SEM 

chamber. 

Response collection 

The aim of this design is the optimisation of (dd)Dye-CMC@ sensors’ sensing performances in terms 

of sensitivity, colour change rate and colour homogeneity over the sensors’ surface. These 

performances can not be quantified by a single measurable parameter therefore colour change 

kinetics are performed in defined conditions. For this specific experiment, chlorophenol red (5) is 

used as receptor since it is less sensitive than o-cresol red towards alkaline volatile molecules thus 

more efficient sensors can be easily distinguished even using synthetic samples.  
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(dd)5-CMC@ sensors on each support, equilibrated at acid pH by addition of 10 µL of HNO3 0.1 M, 

are exposed to vapours generated by 20 mL NH3 0.005M in a sealed box (V=125 mL). The boxes are 

stored at RT and pictures of the sensors are acquired at defined times. 

Based on preliminary experiments, drop deposited sensors may present an inhomogeneous colour 

change, starting from the border and moving to the middle of the sensor. To control this issue, per 

each sensor, deposited on different supports and analysed at different times, three different RGB 

triplets are acquired, taking into account different fractions of the sensor’s surface, as displayed in 

Figure 5.3, to evaluate colour homogeneity [61]: 

• Average RGB (Figure 5.3a): the entire surface area is investigated, as usually performed in 

the previously described experiments 

• Border RGB (Figure 5.3b): only the border of the drop-deposited sensor is analysed 

• Middle RGB (Figure 5.3c): the border is excluded from the selection which comprehends only 

the middle 

 

 

Figure 5.3: Sensor’s surface fraction selected to acquire Average (a), Border (b) and Middle (c) RGB 

triplets 

 

The overall dataset is then submitted to 3-Way PCA to check if it was possible to rationalise the colour 

change kinetic and reduce the dataset dimensionality to one informative parameter. This approach 

is followed to overcome response selection issue, which is of paramount importance in every 

Experimental Design. Depending on the results, the loading values could summarise the information 

of interest and thus could be exploited as response for the Experimental Design. 

Model validation 

The model, developed applying Experimental Design, is validated preparing three replicates at the 

point [0 0 0 D], registering and analysing colour change kinetics performed in the same conditions. 

The average experimental response value is finally compared with the calculated value. 
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5.2.5 (dd)Dye-CMC@ stock aqueous solutions preparation for drop deposition 

Once defined the ideal mixture composition for (dd)Dye-CMC@ sensors preparation, stock aqueous 

solutions are prepared dissolving 1 g glycerol, and 1 g Dye-CMC@ powder in 20 mL H2O, under 

heating and stirring till complete reagent dissolution. The aqueous mixtures are then stocked in a 

closed bottle away from direct light. 

5.2.6 (dd)Dye-CMC@ sensing performances 

Sensing performances of (dd)Dye-CMC@ sensors array need to be evaluated before the final 

application. These experiments are performed on drop-deposited sensors made of each Dye-CMC@ 

but, for brevity’s sake, only the results for CR-CMC@ are reported, being this last the final sensor for 

protein food freshness monitoring. 

(dd)Dye-CMC@ sensors “titration” 

Per each (dd)Dye-CMC@ sensor at each acid-base form, the stoichiometric amount of strong acid or 

base to obtain the complete conversion of the entire sensor’s surface is determined by dropwise 

addition of increasing amounts of HNO3 or NaOH to sensors replicates. Each addition consists of 

10µL of HNO3 or NaOH, either 0.01 M or 0.1 M and sensors are left drying and equilibrating before 

new additions. The final acid or base amount added is reported as mmol H+ or OH-. A picture of each 

sensor is acquired after the addition and the stoichiometric amount is determined by naked-eye 

evaluation. 

Reproducibility 

To evaluate sensors reproducibility, for each (dd)Dye-CMC@, 10 independent drop-deposited sensors 

are equilibrated by the addition of the proper amount of strong acid or base in 10 mL, as reported in 

Table 5.1, and analysed by photo acquisition. The reproducibility is assessed, based on the RGB 

values collected and compared. 

Table 5.1: Equilibration conditions used to test sensors reproducibility for each drop-deposited Dye-CMC@ 

(dd)Dye-EVOH@ Equilibration A Equilibration B Equilibration C 

1-CMC@ 4 µmol HNO3 1 µmol NaOH No addition 

2- CMC @ (CR-CMC@) 4 µmol HNO3 1 µmol NaOH No addition 

3- CMC@ No addition 1 µmol NaOH --- 

4- CMC@ 3 µmol HNO3 1 µmol NaOH No addition 

5- CMC@ 2 µmol HNO3 1 µmol NaOH --- 

6- CMC@ 3 µmol HNO3 No addition --- 
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5.2.7 Protein foods freshness monitoring by (dd)CR-CMC@ dual sensors device 

Experimental setup 

As previously described in Section 4.2.4, a dual sensors device is used, made of two (dd)CR-CMC@ 

sensors, previously equilibrated one at the completely deprotonated form (CR-), from now called b-

(dd)CR-CMC@, and one at the completely protonated one (H2CR+), from now defined a-(dd)CR-CMC@. 

Equilibrations are performed adding 10 µL NaOH 0.1M, for b-(dd)CR-CMC@, or 40 µL HNO3 0.1 M, 

for a-CR-CMC@, resulting respectively in violet and pink sensors.  

Chicken breast slices and codfish fillets are purchased at the local supermarket, choosing a tray 

containing similar weights of food, and are carried to the lab within 10 minutes. The plastic film is 

removed, the (dd)CR-CMC@ dual sensors device is taped to the bottom of the PP tray using 3M Magic 

Tape, as already discussed, and a new plastic film is fixed to seal the package. Samples are stored 

in a domestic fridge at 4°C for 10 days, in the case of chicken, or for 6 days, for fish products. 

Colour analysis & Chemometrics 

At given times, photos of the device are acquired by a Nikon COOLPIX S6200 in a lightbox to ensure 

a constant and reproducible light exposition. To extract the RGB triplets for each sensing unit during 

freshness monitoring, GIMP software is employed [61]. 

For each food under investigation, Principal component analysis (PCA) is performed on RGB triplets, 

only centring the data because these indexes are intrinsically scaled from 0 to 255, to rationalize 

the colour evolution and visualize spoilage process. The open-source Chemometric Agile Tool (CAT) 

program was employed for multivariate data elaboration [60]. 

Training and test sets 

Both for chicken breast slices and codfish fillets, the training set consists of five samples of similar 

mass, purchased the same day of the delivery from the supplier. Therefore, the input matrix has 6 

columns (3 RGB indexes per 2 CR-CMC@ sensors) and respectively 135 and 70 rows in the case of 

chicken breast slices and codfish fillets (27 or 14 acquisition times per 5 replicates). 

Then, to preliminary validate the model, one new sample of similar mass is projected as external test 

set, again purchased the same day of the delivery. 

5.2.8 First attempts of CR-CMC@ film casting optimisation 

Dye-CMC@ film casting deposition is optimised by Mixture and Process Design, applying a tailored 

model for the variables under investigation. The selection of variables and the development of the 

tailored design are deeply discussed in Section 5.3 while the experimental matrixes are reported in 

Appendix IV. 

Sensors’ preparation procedure 

Also in this case, aqueous solutions of CR-CMC@ powder and additives are prepared, adapting the 

preparation procedure found in literature [99]. The water volume is fixed at 20 mL and the total 

reagent mass, CR-CMC@, starch and glycerol, is fixed at 2 g. The solutions are obtained by pouring 



Lisa Rita Magnaghi 

 
108 

CR-CMC@ powder and additives in 20 mL, under heating and stirring till complete dissolution. Then 

5 mL solution is poured into a plastic Petri dish (Ø =5.2 cm) and dried overnight at 65°C in a closed 

oven at constant humidity. After the drying step, films are left equilibrating at RT for 30 minutes and 

peeled from the mould. 

Response collection 

For this very first investigation, only a qualitative response is collected and the samples are classified 

as successful or unsuccessful. More in detail, films are considered successful when they can be 

easily peeled from the mould and handled, otherwise they are unsuccessful. 
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5.3 Results and discussion 

5.3.1 Physicochemical and optical characterisation 

DSC analyses are performed on CR-CMC@ powder, obtained after the synthesis. Due to CMC 

hydrophilicity, the heating process is preceded by an isothermal to remove the sorbed humidity. In 

Figure 8.12a e Figure 8.12b  in Appendix V, the calorimetric profile of CMC and CR-CMC@ before the 

isothermal is reported as an example. After water removal, no significant transitions occur in the 

investigated range, analysing CMC powder before and after functionalisation, as clearly displayed by 

the profiles in Figure 8.12c e Figure 8.12d in Appendix V. 

FT-IR spectra of the pH indicator powders, starting CMC, and CR-CMC@ powder are reported in Figure 

8.13 in Appendix V. The same signals characterize the spectra of CMC before and after the 

functionalization, with different intensity, and it was not possible to confirm the successful covalent 

binding by this technique. 

The optical behaviour of Dye-CMC@ is investigated by UV−Vis spectroscopy. Dye-CMC@ powders are 

solubilised in water at a fixed concentration of 0.5% (w/V) and UV-Vis spectra are registered. For 

each receptor under investigation, we want to compare the optical behaviour of the molecule in an 

aqueous solution and after functionalization at different pH values. In Figure 5.4, the results for CR 

(~10 μM) and CR-CMC@ (0.5% w/V) in solution are displayed: UV−Vis spectra and corresponding 

photographs after equilibration at acidic, basic, and neutral pH. 

 

 

Figure 5.4: UV−Vis spectra and corresponding photographs of a ~10 μM CR solution (graphs on the left, 

dashed lines) and 0.5% (w/V) CR-CMC@ solution (graphs on the right, solid lines).

 

No significant differences in the optical behaviour are detected after dye anchoring in terms of 

maximum absorption wavelength. Assuming that the anchoring to CMC does not affect the molar 

absorption coefficient, CMC dye capacity, or CMC degree of functionalisation, is estimated from the 

absorbance value at 433 nm at pH=7: the estimated dye capacity turns out to be 0.002 mmol g-1.  
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This value is much lower than EVOH dye capacity, estimated by EDX analysis (Section 3.3.2) and 

confirmed by potentiometric titration (Section 4.3.16). It must be underlined that the commercial 

CMC employed, named Carbocel MM250 and commercialised by Lamberti Spa, is characterised by 

an average degree of substitution (D.S.) between 0.75 and 0.95. The degree of substitution is the 

average number of carboxymethyl groups substituted per monomer unit, ranging from 0 to 3 with 

the remaining R = H. Considering that dye anchoring occurs on substituted carboxymethyl groups, 

the low starting degree of substitution results in low dye capacity. Furthermore, the functionalisation 

is performed on CMC powder, without solubilising the solid, thus decreasing the available sites.  

Therefore, the difference between Dye-@EVOH and Dye-CMC@ IR spectra can be justified taking into 

account the different degree of functionalisation: for Dye-EVOH@, the higher degree of 

functionalisation makes visible the band corresponding to the formation of a sulphonic ester while, 

due to the lower number of functionalised sited in Dye-CMC@, the corresponding band is not visible 

in the spectra. 

As already hinted in the case of EVOH (32%)- based devices, the UV-Vis spectra at different pHs allow 

to preliminary investigate any differences in the logKa’ values of the target dyes in solution and after 

functionalisation. Opposite to the previously described material, in this case a shift to higher logKa’ 

values is no longer observed after dye anchoring to CMC and the spectra registered for CR and CR-

CMC@ solutions perfectly overlap. Nevertheless, it must be underlined that, in the case of Dye-

EVOH@, the UV-Vis spectra were acquired directly analysing the films while, in this case, CR-CMC@ 

powder is soluble in water and the spectra of CR-CMC@ solution are analysed. Furthermore, in the 

case of Dye-EVOH@, the solid films used to register the spectra were the same from which Dye-

EVOH@ final sensors were cut while, in this case, CR-CMC@ powder represents only the starting 

material for the deposition procedure, required to obtain the CR-CMC@ final sensors. Therefore, the 

absence of logKa’ shift in these spectra is not sufficient to claim that CR-CMC@ final sensors logKa’ 

values is equal to CR logKa values in solution. Further investigation on this aspect will be conducted 

in the future. 

5.3.2 Drop-casting deposition optimisation: Design setup 

Variables and experiments selection 

The drop-casting deposition is firstly optimised by Design of Experiments. When applying these 

chemometric techniques, the first step corresponds to variables selection. Based on preliminary 

experiments performed, Dye-CMC@ concentration is fixed at 5% (w/V) because this amount ensures 

sufficiently coloured and sensitive spots, making visible the colour evolution even at low 

concentrations of analytes.  

Based on the literature [92, 99, 100], starch and glycerol are the most commonly employed additives 

to improve the mechanical and physical properties of CMC-based films. Therefore, the amounts of 

both these additives are set as quantitative variables, considering the absence of the additives as 

minimum level and a concentration of 5% (w/V), equal to Dye-CMC@ amount, as the maximum level. 

Also the drop volume is analysed as a quantitative variable, ranging from 10 μL to 20 μL as limits of 
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the experimental domain. The last variable under investigation is the type of cellulose-based support 

used for the deposition: common filter paper and three different papers, provided by Barbè SRL, are 

tested.  

In Table 5.2 the quantitative variables under investigation and the corresponding levels are 

summarised, in Table 5.3 the qualitative variable’s levels are defined. 

Table 5.2: Level definitions for the quantitative variables 

Variable  Upper level (+) Lower level (-) 

Glycerol (%gly) x1 5% 0% 

Starch (%st) x2 5% 0% 

Drop volume (V) x3 20 10 

 

Table 5.3: Level definitions for the qualitative variable 

Variable  Level A Level B Level C Level D 

Support (Supp) x4 Filter paper Food grade paper Paperboard Pure cellulose 

 

To build the experiment list, a Full Factorial Design 23, considering only the quantitative variables in 

the defined experimental domain, is performed per each support. The 32 (dd)5-CMC@ sensors 

prepared, named Xy with X referring to the support (A-D) and y to the composition (a-h), are listed in 

Table 8.2 in Appendix IV.  

Model equation 

Classical Factorial Design can not be applied for qualitative variables with more than two levels 

therefore a tailored model is developed. As for quantitative variables, both linear terms and two 

factors interactions are calculated while, for the qualitative variable, the only linear terms can be 

determined. It must be underlined that, for qualitative variables with n levels, only n-1 independent 

factors can be defined and one of the levels is set as implicit, in this case support D. In Equation 5.1 

the final model equation is reported. 

 

 𝑌 = 𝑏0 + 𝑏1𝑋1 + 𝑏2𝑋2 + 𝑏3𝑋3 + 𝑏4𝐴𝑋4𝐴 + 𝑏4𝐵𝑋4𝐵 + 𝑏4𝐶𝑋4𝐶 + 𝑏12𝑋1𝑋2 + 𝑏13𝑋1𝑋3 + 𝑏23𝑋2𝑋3 

Equation 5.1: Model equation for Dye-CMC@ drop-casting deposition 

 

5.3.3 Drop-casting deposition optimisation: SEM characterisation 

Firstly, SEM characterisation of (dd)5-CMC@ sensors is performed to evaluate the interactions 

between the different supports and the drop deposited. Since no significant differences are observed 

analysing different compositions and drop volumes (samples a-h), in Figure 5.5, the SEM images 

only for sample a deposited on different supports, at different magnifications, are displayed. 
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Figure 5.5: SEM images of (dd)5-CMC@ at 75X (top row) and 500X (bottom row) deposited on filter paper 

(a), food grade paper (b), paperboard (c) and pure cellulose (d) 

 

In the images at a lower magnitude, shown in the top row of Figure 5.5, we can observe that support 

B and C present much more compact fibres than support A and D. In this last support, in particular, 

the fibres are not strictly assembled and present empty spaces in the lattice. The images at a higher 

magnitude, displayed in the bottom row of Figure 5.5, allow us to evaluate the interaction between 

support and drop and drop’s homogeneity. Drops deposited on support A and D are sorbed by the 

cellulose-based material and partially penetrate within the support fibres. Opposite, drops deposited 

on support B and, even more, on support C are not sorbed and remain on the surface, without 

penetrating; they also look much less homogeneous and present some cracks on the drop surface, 

in particular in the case of support C. In conclusion, the interaction between support and drop seems 

to improve in the order C<B<A<D. 

5.3.4 Drop-casting deposition optimisation: response collection  

As already discussed in Section 5.2.4, the entire colour change kinetic in defined conditions, 

rationalised by 3-Way PCA, is exploited as response for this design since the final aim consists in the 

optimisation of the sensing performances, including sensitivity, sensing rate and colour 

homogeneity. 

(dd)5-CMC@ colour change kinetic: colour evolution 

In Figure 5.6, the colour evolution of the 32 (dd)5-CMC@ sensors, labelled as reported in Table 8.2 

in Appendix IV, registered during the kinetic experiments described in Section 5.2.4, is displayed. 
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Figure 5.6: Colour evolution of (dd)5-CMC@ on support A (a), B (b), C (c) and D (d), previously equilibrated 

at the acidic form, registered during the exposition over 20 mL NH3 0.005M in a sealed box (V=125 mL) 

 

Some preliminary assumptions can be drawn by naked-eye analysis of the pictures reported in Figure 

5.6. The higher colour change rate is observed for sensors deposited on support D, followed by those 

on support A while sensors on support B and C react slower. Analysing the quantitative variables, 

samples labelled as c and g, which contain only starch as an additive, present more intense 

colouration but slower kinetic than the other while no significant differences are highlighted by naked 

eye between lower and higher drop volumes. 
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(dd)5-CMC@ colour change kinetic: 3-Way PCA 

The colour evolution shown in Figure 5.6 is rationalised by applying 3-Way PCA. This chemometric 

technique allows to jointly analyse the colour change process over time for the samples and to 

reduce the dataset dimensionality, ideally to one single informative parameter which can be used as 

response for the design. 

As already discussed in previous cases, acquisition times (6), (dd)5-CMC@ sensors (32) and sensors 

RGB indexes, acquired as described in Section 5.2.4, (9) are labelled respectively as conditions, 

objects and variables. The first step in 3-Way PCA interpretation consists of comparing the 

cumulative % explained variance after unfolding, reported in Table 4.8, and the Tucker 3 model value 

(85.27%). 

Table 5.4: Cumulative % explained variance after unfolding  

Mode PC1 PC1&2 

Conditions 69.64% 94.13% 

Objects 64.08% 86.76% 

Variables 64.14% 94.76% 

 

Both the cumulative % after unfolding and Tucker 3 model value are sufficiently high to assume that 

most of the information is taken into account by the model and, considering the common colour 

change process, only a small part of the overall information is lost. 

As for interpretation is concerned, the loading values of conditions, objects and variables are jointly 

displayed in Figure 5.7. The variables are firstly discussed: (dd)5-CMC@ sensors, equilibrated at the 

acidic yellow form and exposed to ammonia vapours, undergo complete deprotonation and 

consequent conversion to the alkaline violet form. This colour transition increases B value, compared 

to R and G, in the sensors’ RGB triplets; as a consequence, in the triplot, B loading values are 

separated from R and G. Alongside Axis 1, the objects are mainly separated and the B channel has 

the highest influence in their separation: objects with higher loading value in this Axis, which are 

mainly those deposited on support D and A, present higher B values, referred to the violet alkaline 

form, and better sensing performances. Analysing the three different RGB triplets acquired, the 

middle B value has the highest influence in objects separation and border B the lowest, confirming 

the tendency to change colour from the border to the middle, as hinted before. Opposite, the 

conditions are located alongside Axis 2, with a decreasing loading value during the kinetic 

experiment. Also in this case, B values are clearly divided by R and G, with negative loading values 

for B and positive for the other two channels, and middle B plays the most influent role in conditions 

separation. Therefore, the acquisition times are separated alongside Axis 2 depending upon the 

sensors’ conversion from yellow to violet, occurring from the border to the middle. 
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Figure 5.7: 3-Way PCA triplot reporting the loading values for conditions (diamonds), objects (square) and 

variables (spots) for 32 (dd)5-CMC@ sensors deposited on support A (light blue square), B (blue square), 

C (dark blue square) and D (violet square) 

 

In conclusion, objects loading value on Axis 1 accounts for a sufficient percentage of the overall 

experimental variance, represents an informative parameter to characterise the drop deposited 

sensors in terms of sensing performances and present higher values for better sensors. For these 

reasons, it is selected as response to be maximised in the previously described design. 

5.3.5 Drop-casting deposition optimisation: model solution and validation 

Model solution 

The model is calculated using 3-Way PCA objects loadings as response; the y value per each (dd)-5-

CMC@ is reported in the last column of Table 8.2 in Appendix IV. In Table 5.5, the main statistics for 

the model are reported. The maximum leverage value in the experimental domain is 0.3125 and the 

model has 22 degrees of freedom. This value is definitely high because the number of experiments 

performed is much higher than the coefficients present in the model equation (Equation 5.1). D-

Optimal Design could have been exploited to reduce the number of experiments but, requiring 32 

depositions, an acceptable experimental effort, it was not performed in this case. Both % explained 
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variance in model calculation and cross-validation (CV) are sufficiently high and RMSECV is enough 

low to consider the model reliable for the specific application. 

Table 5.5: Statistics for drop-casting deposition model 

Statistic parameters Value 

Maximum leverage 0.3125 

Degrees of freedom 22 

% Explained Variance 71.87% 

RMSECV 0.1127 

% Explained Variance CV 60.54% 

 

In Figure 5.8 the coefficients plot is shown while, in Table 5.6, the numerical values, semi-amplitude 

of confidence intervals and significance are listed. The significant parameters are, for quantitative 

variables, only the linear terms while, for the qualitative one, only support B and C. The addition of 

glycerol (%gly) has a positive effect on y while starch addition and drop volume have a negative effect. 

All the supports present a negative effect on the response compared to the implicit level (Support 

D), non-significant for Support A, while very significant for support B and C. Being the response 

maximisation the final aim of the design, glycerol amount has to be set at the higher value, starch 

and drop volume at the lower and either support A or D has to be used, with B and C abandoned. 

 

 

Figure 5.8: Coefficients plot for drop-casting deposition model 
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Table 5.6: Coefficients, semi-amplitude of confidence interval (CI) and significance (* p≤0.05, ** p≤0.01, 

*** p≤0.001) calculated for drop casting deposition model 

Coefficients  Value CI Significance 

 b0 0.135 0.069  

Glycerol (%gly) b1 0.049 0.034 ** 

Starch (%st) b2 -0.070 0.034 *** 

Drop volume (V) b3 -0.068 0.034 *** 

Support A (Supp A) b4A -0.045 0.097  

Support B (Supp B) b4B -0.178 0.097 *** 

Support C (Supp C) b4C -0.286 0.097 *** 

%gly*%st b12 -0.005 0.034  

%gly*V b13 0.026 0.034  

%st*V b23 0.001 0.034  

 

Model validation 

To validate the model, three replicates at the point [0 0 0 D] are prepared and the colour change 

kinetic is registered in the same conditions of the training samples. At this point, a clarification is 

needed: 3-Way PCA allows to rationalise the colour change kinetic, reduce the dataset dimensionality 

without losing information and easily interpret the results obtained from the triplot. Nevertheless, 

this tool does not allow to project unknown samples, as PCA does, because only loading values are 

calculated and reported in the triplot instead of the score values typically showed for PCA. Similarly, 

when running PCA, it makes no sense to calculate the loading values for projected samples. 

Therefore, the test set used for model validation can not be projected in the triplot, shown in Figure 

5.7, to obtain the objects loadings, used as response in the design.  

Two strategies can be followed. Firstly, 3-Way PCA is run on the overall dataset, including both the 

training samples and three replicates of the centre point, and objects loadings are calculated. From 

a technical point of view, this strategy is not correct because the response for the training and test 

set are not completely independent, but they are jointly calculated by the same 3-Way PCA. 

Nevertheless, having verified that no significant differences are observed in the objects loadings of 

training samples, calculated with or without the test set included in 3-Way PCA, this strategy can be 

exploited for model validation. 

As an alternative, 3-Way PCA can be replaced by PCA, differently organising the input dataset: the 32 

(dd)5-CMC@ sensors are used as samples and the RGB triplets acquired at every acquisition time, 

ordered for increasing times, as variables. In the loading plot, the effect of RGB triplets, acquired 

considering different fractions of sensors’ surface and at different times, is displayed while, in the 

score plot, the 32 experimental points are shown. At this point, the three replicates of the centre 

point can be here projected for validation purposes. 
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In Table 5.7, the results of validation performed according to the first strategy are reported: the 

predicted value fits into the confidence interval at 95% confidence level, thus the model is validated. 

Also applying the second strategy, model validation is successful but the interpretation is much more 

difficult and, for brevity’s sake, these results are not presented. 

Table 5.7: Model validation by three replicates at point [ 0 0 0 D] 

 Y 

Average value 0.10 

Standard deviation 0.02 

Upper bound CI 0.15 

Lower bound CI 0.04 

Predicted response 0.13 

 

Selection of the optimised conditions 

In Table 5.8, the optimised conditions for drop deposition casting of Dye-CMC@ sensors are 

summarised. 

Table 5.8: Optimized parameters for Dye-CMC@ sensors drop deposition. 

Parameter  Optimized level 

Glycerol (%gly) x1 5% 

Starch (%st) x2 0 

Drop volume (V) x3 10 µL 

Support (Supp) x4 Pure cellulose 

 

5.3.6 Sensing performances: (dd)Dye-CMC@ sensors titration 

Once defined the optimised conditions, the sensing performances are evaluated, starting from the 

sensors titration. The term “titration” refers to the determination of the amount of strong acid or base 

that has to be added to each sensor to convert Dye-CMC@ into the required acid-base form. This 

determination plays a crucial role in sensors development. In fact, differently from EVOH-based 

devices, whose low permeability and hydrophilicity allow to equilibrate the sensors by immersion in 

an excess of acid or base, CMC-based devices are highly hydrophile and prone to sorb humidity and 

water solutions. Meanwhile, the sorption of strong acid or base in excess will drastically decrease 

the sensors’ sensitivity towards weak acids or bases since the analytes firstly react with the excess 

of strong acid or base and, only in a second time, the reaction with the receptor, and the consequent 

sensing, occurs.  
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The case of (dd)-CR-CMC@ is discussed as an example. In Figure 5.9, the pictures of 13 independent 

sensors after the addition of a specific amount of strong acid or base are displayed; the solutions’ 

concentration and the added drop volume are set, respectively, at 0.1M and 10 µL, therefore the 

addition is performed multiple times to increase the added amount, waiting for complete drying 

between the additions. A uniform pink colouration is observed for acid additions equal or higher than 

4 µmol, which is set as stoichiometric amount while, as for the violet form, the transition partially 

occurs for base additions of 0.5 µmol and is complete for additions equal or higher than 1 µmol, 

which is set as the stoichiometric amount. 

 

 

Figure 5.9: (dd)-CR-CMC@ sensors pictures after addition of increasing amount of strong acid (HNO3) or 

base (NaOH). 

 

These experiments are performed for all the Dye-CMC@ under investigation and the stoichiometric 

amounts, per each dye and each acid-base form, are those already reported in Table 5.1. 

5.3.7 Sensing performances: (dd)Dye-CMC@ sensors reproducibility 

Secondly, the reproducibility of the sensors is evaluated by equilibrating 10 independent sensors at 

each acid-base form, depending on the Dye-CMC@ under investigation, acquiring the photos of the 

sensors and analysing the RGB triplets.  

In Figure 5.10 the case of (dd)CR-CMC@ is presented: the RGB reproducibility is judged to be 

satisfactory and no differences of colour shade are observed by naked-eye evaluation. 

 

 

Figure 5.10: Bar plots representing the average value of RGB triplets acidic, neutral and basic form (a) 

and corresponding sensors picture (b) in the case of (dd)CR-CMC@.
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5.3.8 Protein foods: (dd)CR-CMC@ dual sensors device colour evolution 

While the synthesis and characterisation of drop deposited sensors are performed for all Dye-CMC@, 

only (dd)CR-CMC@ sensors are exploited for protein foods freshness monitoring, applying the same 

approach previously discussed for CR-EVOH@ dual sensors device. The colour evolution during the 

spoilage process of chicken breast slices and codfish, stored at 4°C, is registered and the pictures 

of the training set are reported in Figure 5.11.  

 

 

Figure 5.11: (dd)CR-CMC@ dual sensors device colour evolution over chicken breast slices (a) and codfish 

fillets (b), stored at 4°C. 
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The colour evolution is very similar to the EVOH-based device ones. For both foods, in the “early 

spoilage”, weak acid volatile by-products released by bacteria, are detected by the alkaline (dd)CR-

CMC@ that turns its colour from violet to yellow. Then, in the second spoilage step, the so-called 

“spoilage”, the bacterial release of thiols and amines, among which only a few are volatile in these 

conditions [52] results in a slight increase of pH, detected by acidic (dd)CR-CMC@ by its conversion 

from pink to yellow (HCR). These assumptions are rationalised by applying PCA to RGB triplets, as 

already discussed. 

5.3.9 Protein foods: spoilage modelling by PCA 

PCA is then performed on the RGB triplets of the sensors during degradation to visualise the 

degradation process of both foods training sets.  

In both cases, the % explained variance on the first two components is satisfactory thus, these two 

components are selected for the final models. In Figure 8.9 in Appendix III: Loading and score plots 

the loading plots are shown while in Figure 5.12 the score plots, built on the training set and 

preliminarily validated by projecting the test set, for chicken breast slices and codfish fillets are 

reported. 

 

 

Figure 5.12: The score plots of the PCA models on the first two principal components, built on the training 

set and validated by projection of the test set, for chicken breast slices (a) and codfish fillets (b). 

 

As for chicken breast slices (Figure 5.12a), the samples’ score value on PC1 increases during the 

spoilage while, that on PC2 decreases during the early spoilage, from Day 1 to 4, and increases 

during the spoilage, from 5 to 10. Furthermore, in the first monitoring days, an higher variability 

among samples is observed while, after Day 5, all the samples present more similar behaviour. In 

general, once again the PCA score plot clearly rationalises the spoilage process, its characteristics, 

and samples behaviour.  

The case of codfish fillets (Figure 5.12b) is easier: PC1, which accounts for the main % explained 

variance, represents the ongoing spoilage process, and the samples' score values on the x-axis 
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increase during spoilage. PC2 meaning, instead, accounts for the experimental variability which 

decreases during spoilage, as already observed for chicken breast slices. 

As for test set projection, the new samples show a similar degradation process and are correctly 

located in the score plots in both cases. 

5.3.10 Film casting deposition optimisation: Design setup 

Variables’ definition 

Film casting deposition is secondly optimised by Design of Experiments. The variables’ selection is 

performed differently from the previous optimisation since from literature and preliminary 

experiments, various Dye-CMC@ amounts lead to films with suitable properties. Therefore, in this 

case, the total amount of CR-CMC@ and additives is set at 2g, the water volume for mixture 

preparation at 20 mL and the mixture volume poured in the mould at 5 mL to obtain films with 

constant weight and thickness.  

Also in this case, starch and glycerol are tested as additives to improve film properties [92, 99, 100], 

but, setting the total amount of reagents, the concentrations of the three compounds can not vary 

independently since the third compound amount is the difference between the total amount and the 

other two compound’s quantity. From a chemometric point of view, this situation is named as 

“mixture” and has to be investigated by a suitable mixture design. 3-components mixtures, as in this 

case, are usually represented as triangles, with each component corresponding to one of the 

vertices. 

In mixture design, the experimental domain can be set either by identifying the upper and lower level 

for each mixture variable or selecting a reference mixture composition and a variation range around 

this point. This second strategy is preferred since it leads to a triangular-shaped final domain with 

the vertices corresponding to the “pseudo components”, from now labelled as PCn; opposite the first 

approach results in an irregular-shaped domain. The reference mixture, reported in the first row of 

Table 5.9 and highlighted as a star in Figure 5.13, is selected from literature [99] and verified by 

preliminary experiments; the components’ amounts are reported as ratios, setting the total amount 

as 1. The semi amplitude of the variation range is set at 0.1 to determine the components’ ratios in 

the pseudo components. It must be underlined that, in the reference mixture, CR-CMC@ amount is 

0.1 and this value can not be further lowered since CR-CMC@ represents the sensitive part of the 

films. Therefore, instead of using the reference value as the centre of the variation range, for CR-

CMC@ this value represents the lower amount. The pseudo components composition is reported in 

Table 5.9 and, in Figure 5.13, the final triangular-shaped experimental domain is displayed. 
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Table 5.9: Reference mixture and pseudo components composition for film casting deposition 

optimisation 

Mixtures Starch (x1) Glycerol (x2) CR-CMC@ (x3) 

Reference  0.6 0.3 0.1 

PC1 0.7 0.2 0.1 

PC2 0.5 0.4 0.1 

PC3 0.5 0.2 0.3 

 

 

 

Figure 5.13: Experimental domain and pseudo components definition, referring to original mixture, for 

film casting deposition optimisation 

 

In addition to mixture composition, other two qualitative variables are investigated: the presence of 

citric acid as cross-linker and the source of starch. Citric acid is reported in literature as a suitable 

crosslinker for starch-based films and its amount is usually set at 10% (w/w) of the starch quantity 

[99, 103]. Since the starch amount is not fixed, the presence of citric acid is considered a qualitative 

variable with the lower level corresponding to its absence and the upper to the addition in a fixed 

ratio to starch, as summarised in Table 5.10. 

Table 5.10: Level definitions for qualitative variable “citric acid” film casting deposition optimisation 

Variable  Lower level (-) Upper level (+) 

Citric acid xz 0 10% (w/w) starch 

 

Finally, starch from different sources is characterised by widely different physical and mechanical 

properties [104, 105] which play a fundamental role in film production by casting deposition. For 



Lisa Rita Magnaghi 

 
124 

this investigation, starches from four different sources are tested, as reported in Table 5.11; all these 

starches are commercially available, being used for alimentary purposes. 

Table 5.11: Level definitions for the qualitative variable “starch source” film casting deposition 

optimisation 

Variable  Level A Level B Level C Level D 

Starch source xx Wheat Corn Potato Rice 

 

Model equation 

In this case, “Mixture and Process Design” is applied to jointly evaluate the two classes of variables 

and a tailored model is developed. As for mixture variables, linear terms, two and three factors 

interactions are calculated while, for the qualitative variables, only linear terms can be determined 

and, as already hinted before, for starch source, level D is set as implicit. In Equation 5.2 the final 

model equation is reported in which, for simplicity, PCn are labelled as Xn. 

 

 𝑌 = 𝑏1𝑋1 + 𝑏2𝑋2 + 𝑏3𝑋3 + 𝑏12𝑋1𝑋2 + 𝑏13𝑋1𝑋3 + 𝑏23𝑋2𝑋3 + 𝑏123𝑋1𝑋2𝑋3 + 𝑏𝑧𝑋𝑧 + 𝑏𝑥𝐴𝑋𝑥𝐴 + 𝑏𝑥𝐵𝑋𝑥𝐵 +

𝑏𝑥𝐶𝑋𝑥𝐶  

Equation 5.2: Model equation for CR-CMC@ film casting deposition optimisation 

 

Experiments definition and selection 

To build the experiment list, a reduced cubical model, considering only the mixture variables in the 

defined experimental domain, is performed per each level of each qualitative variable, obtaining the 

56 candidates (f)CR-CMC@ list reported in Table 8.3 in Appendix IV.  

Performing all the experiments requires an excessive experimental effort so D-Optimal Design is 

applied to reduce the number of experiments for model development. This chemometric tool allows 

identifying the best balance between model reliability and experimental effort, selecting the most 

informative experiments. In this case, the 28-experiments solution, reported in Table 8.4 in Appendix 

IV represent the best experiment list.  

In Mixture and Process design, diagrams, containing n triangular-shaped experimental domains for 

mixture variables, one per each level of each process variable. In Figure 5.14, 8 triangular-shaped 

experimental domains are displayed, the levels of “Starch source” qualitative variable are arranged 

in columns and the ones of “Citric acid” in rows. The 56 candidate points are highlighted as blue 

borderd circles and the 28 most informative experiments, selected by D-Optimal Design, are 

distinguished by full blue circles. 
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Figure 5.14: Summary diagram for Mixture and Process Design for film casting deposition optimisation. 

Candidate points (blue bordered circles) and experiments selected by D-Optimal Design (full blue circles) 

are highlighted. 

 

Analysing Figure 5.14, we can observe that the distribution of the selected experiments is highly 

symmetrical: each mixture reduced cubical model point (7) is selected four times, each level for 

“citric acid” (2) fourteen times and each level for “starch source” (4) seven times.  

5.3.11 Film casting deposition optimisation: response collection 

As already discussed in Section 5.2.4, for this preliminary investigation only a qualitative response 

is collected, labelling the films as successful or unsuccessful. The successful films are easily peeled 

from the mould and are sufficiently resistant to be handled while the unsuccessful ones crack or 

crumble and are unusable. From a chemometric point of view, this response is classified as 

qualitative: for this type of response, specific designs have been developed but, being this a 

preliminary investigation, it is out of our purpose to model this response. In fact, this design aims to 

define a suitable experimental domain and refine the model in terms of influent variables and 

coefficients. After that, a refined design will be run and quantitative responses, as those described 

for drop-casting deposition, will be acquired.  

For this reason, we assigned a fictitious numerical value as response, referred to the success in film 

formation, and we analysed the response as quantitative. In detail, Y=1 is assigned for successful 

films while Y=0 for the unsuccessful ones; the response for each performed experiment is reported 

in the last column of Table 8.4 in Appendix IV. 

Overall, the successful films are 17 out of 28, highlighted as full dark blue circles in Figure 5.15. 

Analysing the diagram, we could observe that successful films are not homogeneously distributed in 

the experimental domain but twelve out of seventeen are located in the lower level of “Citric acid”, 

which means in absence of citric acid. Also “Starch source” levels A and B seem to be more promising 

than the other two levels but this effect is less evident.  
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Figure 5.15: Summary diagram for Mixture and Process Design, including the response, for film casting 

deposition optimisation. Candidate points (blue bordered circles), experiments selected by D-Optimal 

Design (full blue circles) and successful films (empty dark blue circles) are highlighted. 

 

5.3.12 Film casting deposition optimisation: model solution and refinement 

Model solution 

The model is calculated using the success in film formation as response; the Y value per each (f)-CR-

CMC@ is reported in the last column of Table 8.4 in Appendix IV. In Table 5.12, the main statistics 

for the model are reported. The upper leverage value in the experimental domain is 0.4048 and the 

model has 17 degrees of freedom. The model performances are definitely not satisfying, both in 

terms of % explained variance in model calculation and cross-validation (CV) and RMSECV, mainly 

due to the type of response used and the codification exploited. 

Table 5.12: Statistics for film casting deposition model 

Statistic parameters Value 

Maximum leverage 0.4048 

Degrees of freedom 17 

% Explained Variance 40.62% 

RMSECV 0.4939 

% Explained Variance CV 1.38% 

 

In Figure 5.16 the coefficients plot is shown while, in Table 5.6, the numerical values, semi-amplitude 

of confidence intervals and significance are listed. From the coefficients plot, shown in Figure 5.16, 

the significant variables can be identified for following model refinement. As for the Mixture part, 

pseudo components and linear terms will be kept unchanged since both PC2 and PC3 have a 

significant effect on the response while both two and three factors interactions will be excluded from 

the refined model being non-significant.  
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As for the Process part, “citric acid” has a significant negative effect on film formation thus it will be 

set at the lower level, which means that citric acid will not be used as a crosslinker. Opposite, the 

effect of different starch sources is non-significant in this model but, being the difference between 

the coefficients and the semi amplitude of confidence interval very small and considering the scarce 

performances of the model, this variable will be kept unchanged also in the refined model. 

 

 

Figure 5.16: Coefficients plot for film casting deposition model 

 

Table 5.13: Coefficients, semi-amplitude of confidence interval (CI) and significance (* p≤0.05, ** 

p≤0.01, *** p≤0.001) calculated for film casting deposition model 

Coefficients  Value CI Significance 

PC1 b1 0.29 0.50  

PC2 b2 1.05 0.50 *** 

PC3 b3 0.79 0.50 ** 

PC1*PC2 b12 0.5 2.0 *** 

PC1*PC3 b13 0.0 2.0  

PC2*PC3 b23 -0.5 2.0  

PC1*PC2*PC3 b123 -11 14  

Citric Acid bz -0.52 0.31 ** 

Source A  b4A 0.36 0.43  

Source B b4B 0.29 0.43  

Source C b4C 0.22 0.43  
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Model refinement 

Model refinement is performed following two approaches: firstly, variables and coefficients already 

investigated are selected according to the preliminary assumptions described above. In particular, 

citric acid is no longer added as a crosslinker since it presents a significant negative effect on films 

formation, interactions are not calculated because never found significant, while the other variables 

are kept unchanged. Secondly, the total reagent amount (Xm) is included as process variable, since 

this value is strongly related to final films thickness, a crucial parameter for sensitive films. The 

refined model equation is reported in Equation 5.3, labelling PCn as Xn. 

 

 𝑌 = 𝑏1𝑋1 + 𝑏2𝑋2 + 𝑏3𝑋3 + 𝑏𝑥𝐴𝑋𝑥𝐴 + 𝑏𝑥𝐵𝑋𝑥𝐵 + 𝑏𝑥𝐶𝑋𝑥𝐶 + 𝑏𝑚𝑋𝑚 

Equation 5.3: Refined model equation for CR-CMC@ film casting deposition optimisation 
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5.4 Conclusions  

To conclude, bio-based materials are successfully exploited to prepare smart labels for food 

freshness monitoring. Carboxymethylcellulose was used as solid support for the receptors, adapting 

the previously developed synthesis while other compounds, like glycerol, starch and citric acid, are 

used as additives. Functionalised CMC was characterised by performing physicochemical and optical 

measurements. 

Differently from EVOH-based devices, these compounds require suitable deposition procedures to 

obtain solid materials with good physical and mechanical properties. Up to our knowledge, for the 

first time, advanced chemometric tools have been employed to model these processes and to 

optimise these materials preparation. 

The first deposition procedure investigated was drop-casting deposition: the entire preparation 

workflow was optimised, the drop deposited sensors were characterised in terms of sensing 

performances and their application as smart labels for protein foods during chilled storage is 

demonstrated, obtaining similar results to the EVOH-based device. This type of CMC-based device 

represents a very interesting “proof of concept” in the development of printable compostable devices 

that will be investigated in the future. 

The second deposition strategy is film casting deposition: despite its widespread distribution and 

apparent simplicity, many factors are involved in the casting deposition technique and must be 

controlled and optimised to obtain films with suitable properties and to develop a reproducible film 

preparation procedure. Also in this case for the first time, Mixture and Process Design was applied 

to casting deposition and a preliminary evaluation of the variables’ effect is performed. Being the 

number of successful films too much low compared to the overall experiments performed, the 

preliminary results of this first model, together with background information, were exploited to refine 

the model, in terms of variables under investigation and coefficients calculated. In the future, the 

optimisation of film casting deposition will be performed, sensors will be cut from the films and 

characterised and their applicability as smart labels will be tested. 

It must be underlined that, differently from EVOH-based devices, the solubility in water represents 

the main disadvantage for CMC-based materials. Both the deposition strategies were investigated to 

partially overcome this limit, but we are well aware that, in the final application as smart label, even 

for solid foods, these devices must be covered by a functional permeable barrier to avoid Dye-CMC@ 

leaching in contact with water or humidity.  

To conclude, the results discussed in this Chapter were presented in an oral communication at 

“RETASTE: RETHINK FOOD WASTE Conference 2021” (Athens, 2021) and at the “Road to CAC2022” 

(Virtual Congress, 2021). As for data publication, the manuscript containing the results for (dd)CR-

CMC@ dual sensors device is under preparation while the film casting deposition experiments are 

still ongoing. 
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6. Conclusions and perspectives 
The last Chapter of this thesis is composed of two sections. In the “General conclusions”, the key 

results obtained during the project are summarised and the features of the developed devices are 

compared to the main requirements for smart labels, listed in the Introduction. In the “Perspectives”, 

the future experiments planned to complete or to wider the investigations are listed, divided 

according to the solid support. 

6.1 General conclusions 

The results of this research project, that I presented above, consists in a series of sensing devices 

that fulfil many of the requirements listed in the Introduction and here reported and commented: 

• Low cost: the lab-scale production cost for all the devices is estimated to be below 0.10 € 

per sensing device. 

• Naked-eye detection: relying on the PCA spoilage models, the average reference colours for 

each spoilage step were identified and the receptors that provide glaring colour changes 

were preferred among all. 

• Suitability for untrained operators: the colour changes were judged enough glaring and clear 

to be easily detected by consumers with no technical background. 

• Wide applicability: for all the devices, their applicability towards a wide panel of protein foods 

was verified, testing both meat and fish products or different milk types. 

• Biocompatibility or compostability: only CC and CMC-based devices are made of 

environmentally friendly solid support while EVOH-based devices rely on a plastic material 

which, however, is widely used in food packaging for its good barrier properties. 

• Efficiency during chilled storage: CC and EVOH (32%)-based devices were abandoned since 

not enough sensitive to immediately detect the spoilage during chilled storage and were 

substituted by EVOH (29%) and CMC-based devices, directly developed on chilled stored 

foods, which overcome this limitation. 

• Scalable production: CC-based devices were discarded since their preparation procedure 

was definitely not scalable; this aspect was partially solved with EVOH-based device 

developing and patenting a synthetic procedure, easy to be scaled for industrial application. 

Even more appealing were the CMC-based devices since the synthetic procedure is even 

easier and their water solubility opens to various employment possibilities, such as printable 

devices. 

• Ease to implement in packaging: EVOH-based devices could be implemented in common 

food packaging by heat sealing to the poly laminate film used to seal the package. Instead, 

(dd)CMC-based devices can be directly inserted in packages, both composed of plastic or 

compostable material, being a complete label. 
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Therefore, the presented results were definitely interesting both from an academic point of view, 

representing a clear improvement on the present literature, and from an industrial point of view, 

fulfilling almost all the requirements for smart labels suitable for large-scale implementation.  

As regarding the first part, my three-years research production is summarised in six research articles, 

[7, 8, 9, 14, 15, 16] published on international peer review journals, and a book chapter; [52] I am 

the first author in all the research articles and the corresponding author for the last five published. 

[7, 8, 14, 15, 16] Other minor contribution of mine, always in the optical sensors field, are in four 

research papers [25, 27, 26, 73] and three reviews [62, 106, 107] written in collaboration with my 

research group during the COVID-19 lockdown period.  

The encouraging results obtained with CC and EVOH-based devices and the interesting industrial 

application perspective led to the first Italian patent deposition in March 2019, [10] in which I am 

listed as author together with Raffaela Biesuz and Paolo Quadrelli. In the following years, the patent 

was extended to WIPO/PCT [11] and deposited in USA and Europe. [13, 12]  

Moreover, I have had a consistent participation to Italian and International congresses, being the 

presenting author in oral and poster contributions concerning my research. The congresses 

participations are listed at the end of each Chapter. 

As for the industrial application, an innovative start-up named SAFER Smart Labels was founded in 

July 2020 and I am one of the co-founder of this company. The main activity of the company is the 

investigation of the concrete possibility of our sensing devices implementation as smart labels, 

based on our findings, and the development of a scalable and implementable prototype for the food 

packaging marketing. [108]  
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6.2 Perspectives 

Despite all the results obtained, some conclusive experiments are still to be done and further areas 

of application are planned to be tested. For simplicity, the perspectives will be distinguished between 

EVOH and CMC-based devices and other materials. 

6.2.1 EVOH (29%)-based devices 

As for this class of devices, the focus will be placed on the instrumental methods to validate the 

devices responses and the spoilage models and to apply supervised and predictive chemometric 

tools. Instrumental validation will be focused on solid protein foods since, in the case of milk, a 

complete validation was already performed and classification and multivariate calibration were 

successfully applied. 

The very first validation will be performed calculating the TVB-N according to the European Standard 

methodology [56]; secondly, as already performed preliminarily, the composition of the solid food, in 

terms of BA, and of the headspace, in terms of VOCs and spoilage by-products, will be determined 

relying on standard methodologies. [8, 54, 55] In addition, specific microbiological assays will be 

performed to quantify the different bacterial populations forming the SSO and thus related to 

spoilage ongoing. The reference values acquired by one or more of these techniques will be exploited 

to build either classification or multivariate calibration models which allow, if validated, to predict the 

reference values for unknown samples. 

To verify even wider applicability, EVOH-based devices will be tested for freshness monitoring of 

protein foods stored under modified atmosphere (MAP). Since the storage atmosphere strongly 

influences the spoilage process and the headspace composition [33], the receptors’ selection will 

be updated for these conditions and the entire development process will be performed. The 

applicability towards MAP-stored foodstuffs will allow to further expand the panel of protein target 

foods like processed meat and salami. 

6.2.2 CMC-based devices 

As for this last class of the devices, first of all, the optimisation of the film casting deposition 

procedure will be completed relying on the refined model developed from the preliminary 

experiments described in the last part of Chapter 5. Once defined the main features for this device, 

the films will be characterised, the sensing performances will be evaluated and the applicability as 

smart label will be tested. 

Then, while instrumental validation will be performed in parallel with EVOH-based devices, the 

possibility to prepare printable smart labels exploiting Dye-CMC@ water solutions as inks will be 

investigated. This innovative approach is highly appealing for industrial applications since printable 

devices have much lower costs and require simpler and cheaper machinery for their production and 

implementation. 
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6.2.3 Future devices 

The reliable strategy for smart labels development, perfected during this project, can be applied to a 

wide panel of biological macromolecules, ranging from starches, cellulose-based derivatives and 

others. Therefore, the possible developments of this project are countless, considering the potential 

receptors, solid phases and deposition techniques that can be rationally investigated with a 

chemometric approach including the Design of Experiments for preparation procedure optimisation 

and Multivariate Data Analysis for data elaboration and spoilage modelling. 

.  
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8. Appendix 

8.1 Appendix I: Materials 

8.1.1 Reagents  

Receptors 

• m-cresol purple: CAS n°2303-01-7 

• o-cresol red: CAS n°1733-12-6 

• bromothymol blue: CAS n°34722-90-2 

• thymol blue: CAS n°76-61-9 

• chlorophenol red: CAS n°4430-20-0 

• Ellman's Reagent, 5,5-dithio-bis-[2-nitrobenzoic acid] (DTNB): CAS n°69-78-3 

• bromophenol blue: CAS n° 33551-92-7 

• bromocresol purple: CAS n° 115-40-2 

• phenol red: CAS n° 143-74-8 

• methyl orange: CAS n° 547-58-0 

• Congo red: CAS n°573-58-0 

• bromocresol green: CAS n°76-60-8 

• alizarin red S: CAS n°130-22-3 

• alizarin yellow R: CAS n°2243-76-7 

• Clayton yellow: CAS n°1829-00-1 

Solid supports and additives 

• Colour Catcher®, Grey 

• Ethylene vinyl alcohol (EVOH) copolymer (32% ethylene content) provided by Industria 

Termoplastica Pavese (ITP) 

• Ethylene vinyl alcohol (EVOH) copolymers (DT2904, D2908, AT4403 and A4412) provided 

by Nippon Goshei 

• Carboxymethylcellulose (CMC) (Carbocel MM250), provided by Lamberti Spa 

• Filter paper, provided by Whatman 

• Food grade paper, Paperboard and Pure cellulose, provided by Barbè Srl 

• Corn, Potato, Rice and Wheat starch, food grade commercial product by Paneangeli©, 

Cameo Spa 

Chemicals  

• Nitric acid ultrapure 65%: CAS n°7697-37-2 

• Sodium hydroxide: CAS n°1310-73-2 

• Ammonium hydroxide solution 28%: CAS n°1336-21-6 

• Acetic acid glacial: CAS n°64-19-7 
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• N,N-Dimethylacetamide: CAS n°127-19-5 

• Thionyl chloride solution in DCM (1M): CAS n°7719-09-7 

• Dichloromethane: CAS n°75-09-2 

• Toluene: CAS n°108-88-3 

• Potassium hydrogen phthalate: CAS n°877-24-7 

• Sodium carbonate: CAS n°497-19-8 

• Sodium hydrogen carbonate: CAS n° 144-55-8 

• Sodium hydrogen phosphate: CAS n° 7558-79-4 

• Sodium dihydrogen phosphate: CAS n°7558-80-7 

• Citric acid: CAS n°77-92-9 

• 2-(N-morpholino)ethanesulfonic acid (MES): CAS n°126615-59-1 

• piperazine-N,N′-bis(2-ethanesulfonic acid) (PIPES): CAS n°5625-37-6 

• N-(2-Hydroxyethyl)piperazine-N′-(3-propanesulfonic acid) (EPPS): CAS n°16052-06-5 

• Glycerol: CAS n°56-81-5 

8.1.2 Instruments  

• Smartphone Samsung Galaxy S7 

• NIKON COOLPIX S6200 

• Portable led lightbox (23x23x23 cm), equipped with 20 LEDs (550LM, colour temperature 

5500K) (PULUZ, Photography Light Box, Shenzhen Puluz Technology Limited). 

• Jasco V-750 spectrophotometer equipped with UCB-710 Rectangular Cell Holder and FLH-

740 film Holder 

• Orion 420 pH meter with a combined glass electrode 

• Analytical balance ORMA mod. BCA 120, capacità 120 g, n° serie 32340 

• Ultra-Turrax S 18N-10G homogenizer (IKA-Werke Gmbh & Co., Germany) 

• Potentionmetric titration equipment: pH meter Orion EA 940; combined microelectrode 

Metrohm 6.0234.100, automatic burette Hamilton with 500 µL microsyringe Hamilton; 

titration vessel with thermostat jacket Metrohm and circulation thermostat Lauda L100 

• Differential Scanning Calorimeter Q2000 interfaced with a TA 5000 data station (TA 

Instruments) 

• FT-IR iS10 spectrometer Nicolet (Madison, WI) equipped with an attenuated total reflectance 

(ATR) sampling accessory (Smart iTR with a diamond plate) 

• EVO MA10 scanning electron microscope (SEM) equipped with X-max 50 mm2 probe (Oxford 

Instrument) 

• KLA Tencor P-6 Stylus Profiler 

• Laboratory equipment 
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8.2 Appendix II: Abbreviations 

Abbreviation Meaning 

3-Way PCA 3-Way Principal Component Analysis 

ATR Attenuated Total Reflectance 

BA Biogenic Amines 

BCP BromoCresol Purple 

CACHAS Chemometrics-Assisted Colour Histogram-based Analytical Systems 

CAT Chemometric Agile Tool 

CC Colour Catcher 

CI Confidence Interval 

CLT Chemometrics-assisted Litmus Test 

CMC CarboxyMethyl Cellulose 

CMYK Cyan, Magenta, Yellow, BlacK colour model 

CR o-Cresol Red 

CSI Chemical Spoilage Index 

CV Cross Validation 

DCM DiChloroMethane 

DIC Digital Imaging Colourimetry 

DMA N,N-DiMethylAcetamide 

DSC Differential Scanning Calorimetry 

EBT Eriochrome Black T 

ED Experimental Design 

EDX Energy Dispersive X-ray analysis 

EVOH Ethylene Vinyl Alcohol copolymer 

FQI Food Quality Indicator 

FT-IR Fourier-Transform Infrared Spectroscopy 

GC/MS Gas Chromatography–Mass Spectrometry 

HSSPME HeadSpace Solid-Phase MicroExtraction 

HSV Hue Saturation Value colour model 

KNN k-Nearest Neighbour algorithm  

L*a*b* LAB colour model or CIELAB 

LAB Lactic Acid Bacteris 

LC-MS/MS Liquid Chromatography with tandem Mass Spectrometry 

LDA Linear Discriminant Analysis 

LOD Limit Of Detection 

MAP Modified Atmosphere Packaging 

MFR Melt Flow Rate 

MLR Multiple Linear Regression 
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PAN 1-(2-pyridylazo)-2-naphthol 

PC Pseudo Component 

 Principal Component 

PCA Principal Component Analysis 

PCR Principal Component Regression 

PDMS/DVB PolyDiMethylSiloxane/DiVinylBenzene 

PEG PolyEthylene Glycol 

PLS Partial Least Squares regression 

PLS-DA Partial Least Squares Discriminant Analysis 

PVA PolyVinyl Alcohol 

RGB Red Green Blue colour model 

RMSECV Root Mean Square Error in Cross Validation 

RMSEP Root Mean Square Error in Prediction 

RT Room Temperature 

SEM Scanning Electron Microscope 

SIMCA Soft Independent Modelling by Class Analogy 

SSO Specific Spoilage Organism 

TCA TriChloroAcetic acid 

VOC Volatile Organic Compound 

XYZ XYZ colour model or CIEXYZ 
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8.3 Appendix III: Loading and score plots 

8.3.1 CC-based devices 

Sensitivity evaluation: loading plots 

 

 

Figure 8.1: The loading plots of the PCA models on the first two principal components, built on the 

sensitivity dataset for chicken breast slices (a), beef slices (b) and pork slices (c). The loading values on 

PC1 are in the foreground, the ones on PC2 in the background.

 

 

8.3.2 EVOH (32%)-based devices 

Protein foods spoilage modelling: loading plots 

 

 

Figure 8.2: The loading plots of the PCA models on the first two principal components, built on the training 

set for chicken breast slices (a) and codfish fillets (b). The loading values on PC1 are in the foreground, 

the ones on PC2 in the background. 
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Milk spoilage modelling: loading plots 

 

 

Figure 8.3: The loading plots of the PCA models on the first two principal components, for whole (a), semi-

skimmed (b) and skimmed (c) milk. The loading values on PC1 are in the foreground, the ones on PC2 in 

the background. 

 

 

8.3.3 EVOH (29%)-based devices 

BCP-EVOH@ thickness selection: loading plot 

 

 

Figure 8.4: The loading plots of the PCA model on the first two principal components, built on the training 

set, for BCP-EVOH@ sensors thickness selection. The loading values on PC1 are in the foreground, the 

ones on PC2 in the background. 
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Protein foods spoilage modelling: loading plots 

 

 

Figure 8.5: The loading plots of the PCA models on the first two principal components, built on the training 

set for chicken breast slices (a), codfish fillets (b), swordfish fillets (c), plaice fillets (d) and scorpionfish 

fillets (e). The loading values on PC1 are in the foreground, the ones on PC2 in the background. 
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Protein foods spoilage modelling: score plots 

 

 

Figure 8.6: The score plots of the PCA models on the first two principal components, built on the training 

set and validated by projection of the test set, for swordfish fillets (a), plaice fillets (b) and scorpionfish 

fillets (c). 
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Milk spoilage modelling: loading plots 

 

 

Figure 8.7: The loading plots of the PCA models on the first two principal components, for whole (a), semi-

skimmed (b) and skimmed (c) milk. The loading values on PC1 are in the foreground, the ones on PC2 in 

the background. 
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Milk spoilage modelling: score plots 

 

 

Figure 8.8: The score plots of the PCA models on the first two principal components, for whole (a), semi-

skimmed (b) and skimmed (c) milk. 

 

 

8.3.4 CMC-based devices 

Protein foods spoilage modelling: loading plots 

 

 

Figure 8.9: The loading plots of the PCA models on the first two principal components, built on the training 

set for chicken breast slices (a) and codfish fillets (b). The loading values on PC1 are in the foreground, 

the ones on PC2 in the background. 
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8.4 Appendix IV: Experiments lists 

8.4.1 Dye-EVOH@ pressing procedure optimisation 

Table 8.1 : Experimental matrix for Dye-EVOH@ pressing procedure optimisation and responses collected 

per each experiment 

Experiment 
Variables Responses 

x1 x2 x3 x4 y1 y2 

1 1 1 1 1 4 25 

2 -1 1 1 1 3 22 

3 1 -1 1 1 3 20 

4 -1 -1 1 1 3 18 

5 1 1 -1 1 1 6 

6 -1 1 -1 1 3 9 

7 1 -1 -1 1 3 0 

8 -1 -1 -1 1 3.5 14 

9 1 1 1 -1 4.5 29 

10 -1 1 1 -1 5 23 

11 1 -1 1 -1 5 31 

12 -1 -1 1 -1 4.5 19 

13 1 1 -1 -1 4 12 

14 -1 1 -1 -1 4.5 14 

15 1 -1 -1 -1 2 9 

16 -1 -1 -1 -1 4 19 
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8.4.2 Dye-CMC@ drop-casting deposition optimisation 

Table 8.2 : Experimental matrix for Dye-CMC@ drop-casting deposition optimisation and response 

collected per each experiment 

Experiment 
Variables Response 

x1 x2 x3 x4 y1 

Aa -1 -1 -1 A 0.129 

Ab 1 -1 -1 A 0.176 

Ac -1 1 -1 A 0.102 

Ad 1 1 -1 A 0.082 

Ae -1 -1 1 A 0.047 

Af 1 -1 1 A 0.174 

Ag -1 1 1 A -0.011 

Ah 1 1 1 A 0.015 

Ba -1 -1 -1 B 0.183 

Bb 1 -1 -1 B 0.227 

Bc -1 1 -1 B -0.042 

Bd 1 1 -1 B -0.087 

Be -1 -1 1 B -0.185 

Bf 1 -1 1 B 0.043 

Bg -1 1 1 B -0.284 

Bh 1 1 1 B -0.200 

Ca -1 -1 -1 C 0.036 

Cb 1 -1 -1 C 0.071 

Cc -1 1 -1 C -0.081 

Cd 1 1 -1 C -0.092 

Ce -1 -1 1 C -0.292 

Cf 1 -1 1 C -0.150 

Cg -1 1 1 C -0.419 

Ch 1 1 1 C -0.281 

Da -1 -1 -1 D 0.108 

Db 1 -1 -1 D 0.233 

Dc -1 1 -1 D -0.016 

Dd 1 1 -1 D 0.173 

De -1 -1 1 D 0.158 

Df 1 -1 1 D 0.275 

Dg -1 1 1 D -0.102 

Dh 1 1 1 D 0.248 
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8.4.3 CR-CMC@ film casting deposition optimisation 

Candidate points matrix 

Table 8.3 : Candidate points matrix for CR-CMC@ film casting deposition optimisation 

Experiment 
Variables 

x1 x2 x3 x4 x5 

1 1 0 0 0 A 

2 0 1 0 0 A 

3 0 0 1 0 A 

4 0.5 0.5 0 0 A 

5 0.5 0 0.5 0 A 

6 0 0.5 0.5 0 A 

7 0.33 0.33 0.33 0 A 

8 1 0 0 1 A 

9 0 1 0 1 A 

10 0 0 1 1 A 

11 0.5 0.5 0 1 A 

12 0.5 0 0.5 1 A 

13 0 0.5 0.5 1 A 

14 0.33 0.33 0.33 1 A 

15 1 0 0 0 B 

16 0 1 0 0 B 

17 0 0 1 0 B 

18 0.5 0.5 0 0 B 

19 0.5 0 0.5 0 B 

20 0 0.5 0.5 0 B 

21 0.33 0.33 0.33 0 B 

22 1 0 0 1 B 

23 0 1 0 1 B 

24 0 0 1 1 B 

25 0.5 0.5 0 1 B 

26 0.5 0 0.5 1 B 

27 0 0.5 0.5 1 B 

28 0.33 0.33 0.33 1 B 

29 1 0 0 0 C 

30 0 1 0 0 C 

31 0 0 1 0 C 

32 0.5 0.5 0 0 C 

33 0.5 0 0.5 0 C 
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34 0 0.5 0.5 0 C 

35 0.33 0.33 0.33 0 C 

36 1 0 0 1 C 

37 0 1 0 1 C 

38 0 0 1 1 C 

39 0.5 0.5 0 1 C 

40 0.5 0 0.5 1 C 

41 0 0.5 0.5 1 C 

42 0.33 0.33 0.33 1 C 

43 1 0 0 0 D 

44 0 1 0 0 D 

45 0 0 1 0 D 

46 0.5 0.5 0 0 D 

47 0.5 0 0.5 0 D 

48 0 0.5 0.5 0 D 

49 0.33 0.33 0.33 0 D 

50 1 0 0 1 D 

51 0 1 0 1 D 

52 0 0 1 1 D 

53 0.5 0.5 0 1 D 

54 0.5 0 0.5 1 D 

55 0 0.5 0.5 1 D 

56 0.33 0.33 0.33 1 D 
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28-experiments D-Optimal Design solution 

Table 8.4 : 28-experiments D-Oprimal Design solution for CR-CMC@ film casting deposition optimisation 

and response collected per each experiment 

Experiment 
Variables Response 

x1 x2 x3 x4 x5 y1 

4 0.5 0.5 0 0 A 1 

5 0.5 0 0.5 0 A 1 

6 0 0.5 0.5 0 A 1 

8 1 0 0 1 A 0 

9 0 1 0 1 A 1 

10 0 0 1 1 A 1 

14 0.33 0.33 0.33 1 A 0 

16 0 1 0 0 B 1 

17 0 0 1 0 B 1 

18 0.5 0.5 0 0 B 1 

19 0.5 0 0.5 0 B 1 

22 1 0 0 1 B 0 

27 0 0.5 0.5 1 B 1 

28 0.33 0.33 0.33 1 B 0 

29 1 0 0 0 C 1 

31 0 0 1 0 C 1 

35 0.33 0.33 0.33 0 C 1 

37 0 1 0 1 C 1 

39 0.5 0.5 0 1 C 0 

40 0.5 0 0.5 1 C 0 

41 0 0.5 0.5 1 C 0 

43 1 0 0 0 D 0 

44 0 1 0 0 D 1 

48 0 0.5 0.5 0 D 1 

49 0.33 0.33 0.33 0 D 0 

52 0 0 1 1 D 0 

53 0.5 0.5 0 1 D 1 

54 0.5 0 0.5 1 D 0 
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8.5 Appendix V: Physicochemical measurements 

8.5.1 EVOH and Dye-EVOH@ DSC profiles  
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Figure 8.10: DSC profiles of EVOH (a), 1-EVOH@ (b), 2-EVOH, (c), 3-EVOH@ (d), 4-EVOH@ (e), 5-EVOH@ (f) 

and 6-EVOH@ 
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8.5.2 EVOH, dyes and Dye-EVOH@ IR spectra 
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Figure 8.11: IR spectra of EVOH film (a), dye 1 in powder (b) and 1-EVOH@ film (c), dye 2 in powder (d) 

and 2-EVOH@ film (e), dye 3 in powder (f) and 3-EVOH@ film (g), dye 4 in powder (h) and 4-EVOH@ film (i), 

dye 5 in powder (l) and 5-EVOH@ film (m), dye 6 in powder (n) and 6-EVOH@ film (o). 
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8.5.3 CMC and CR-CMC@ DSC profiles 

 

 

 

Figure 8.12: DSC profiles of CMC and CR-CMC@ before (a,b respectively) and after the isothermal (c,d) 

 

 

8.5.4 CMC and CR-CMC@ IR spectra 

 

 

Figure 8.13:IR spectra of CMC (a) and CR-CMC@ (b) 
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8.6 Appendix VI: CR-EVOH@ sensors thickness selection 

8.6.1 b-CR-EVOH@ 

Loading and score plots 

 

 

Figure 8.14: PCA loading (a) and score (b) plots on the first two components based on RGB triplets of 104 

b-CR-EVOH@ sensors of various thicknesses (white circles); the sensors tested for real samples 

monitoring are highlighted with green and red x, and the suitable thickness range is identified by the green 

oval. The loading values on PC1 are in the foreground, the ones on PC2 in the background. 

 

 

Pictures of b-CR-EVOH@ sensors ordered at increasing PC1 score 

 

 

Figure 8.15: Pictures of the 104 sensors used to build the PCA model. The sensors tested for protein 

foods monitoring are highlighted in green and red.  
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8.6.2 a-CR-EVOH@ 

Loading and score plots 

 

 

Figure 8.16: PCA loading (a) and score (b) plots on the first two components based on RGB triplets of 132 

a-CR-EVOH@ sensors of various thicknesses (white circles); the sensors tested for real samples 

monitoring are highlighted with green and red x, and the suitable thickness range is identified by the green 

oval. The loading values on PC1 are in the foreground, the ones on PC2 in the background. 
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Pictures of a-CR-EVOH@ sensors ordered at increasing PC1 score 

 

 

Figure 8.17: Pictures of the 132 sensors used to build the PCA model. The sensors tested for protein 

foods monitoring are highlighted in green and red.  
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