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Abstract 16 

The use of a remotely piloted aircraft system (RPAS) and digital photogrammetry is valuable 17 

for the detection of discontinuities in areas where field mapping and terrestrial photogrammetry 18 

or laser scanner surveys cannot be employed because the slope is unsafe, inaccessible, or 19 

characterized by a complex geometry with areas not visible from the ground. Using the 20 

Structure-from-Motion method, the acquired images can be used to create a 3D texturized 21 

digital outcrop model (TDOM) and a detailed point cloud representing the rock outcrop. 22 

Discontinuity orientations in a complex rock outcrop in Italy were mapped in the field using a 23 

geological compass and by manual and automated techniques using a TDOM and point cloud 24 

generated from RPAS imagery.  There was a good agreement between the field measurements 25 

and manual mapping in the TDOM.  Semi-automated discontinuity mapping using the point 26 

cloud was performed using the DSE, qFacet FM, and qFacet KD-tree methods applied to the 27 

same 3D model. Significant discrepancies were found between the semi-automatic and manual 28 

methods. In particular, the automatic methods did not adequately detect discontinuities that are 29 

perpendicular to the slope face (bedding planes in the case study). These differences in 30 

detection of discontinuities can adversely influence the kinematic analysis of potential rock 31 

slope failure mechanisms. We use the case study to demonstrate a workflow that can be 32 

considered a powerful approach to accurately map discontinuities with results comparable to 33 

field measurements.  The combined use of TDOM and RPAS dramatically increases the 34 

discontinuity data because RPAS is able to supply a good coverage of inaccessible or hidden 35 
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portions of the slope and TDOM is a powerful representation of the reality that can be used to 36 

map discontinuity orientations including those that are oriented perpendicular to the slope. 37 

 38 
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1 Introduction 42 

Detection and mapping of rock discontinuities are important not only for geological studies 43 

(structural geology, rock mechanics, etc.), but also for engineering and industrial applications 44 

(e.g., slope stability, tunneling, quarry activity, CO2 and nuclear waste storage, oil and gas 45 

exploitation). Therefore, the acquisition of accurate quantitative discontinuity data, which are 46 

not affected by biases and censoring is very important. A recent tool that can be useful for this 47 

purpose is a Digital Outcrop Model (DOM) (Powers et al., 1996). 48 

In the past twenty years, the applications in geosciences of remote sensing investigations for 49 

the construction of DOM have rapidly improved (e.g. Powers et al., 1996; Xu et al., 2000; 50 

Pringle et al., 2004; Bellian et al., 2005; Sturzenegger and Stead, 2009; Jaboyedoff et al., 2012; 51 

Westoby et al., 2012; Humair et al., 2013; Bemis et al., 2014; Spreafico et al., 2016; Tavani et 52 

al., 2016). The most common techniques used to generate highly detailed DOMs are terrestrial 53 

laser scanning and digital photogrammetry. While laser scanning can be very expensive and 54 

requires complex survey planning (heavy and bulky equipment), digital photogrammetry 55 

allows for acquisition of high-resolution data with a lower cost and with more user-friendly 56 

survey planning (Remondino and El-Hakim, 2006; Westoby et al., 2012). Developments in 57 

RGB cameras and Remotely Piloted Aircraft Systems (RPAS) (Colomina and Molina, 2014) 58 

have increased the applications of RPAS-based Digital Photogrammetry (RPAS-DP) in 59 

geosciences (e.g. Niethammer et al., 2012; Westoby et al., 2012; ; Lucieer et al., 2013; Bemis 60 

et al., 2014; Tannant 2015; Casella et al., 2016; Salvini et al., 2016; Chesley et al., 2017; Török 61 

et al., 2017). RPAS-DP can be used in a wide variety of scenarios (Nex and Remondino, 2014; 62 

Fig. 1), from meter scale (e.g. Cawood et al., 2017; Tannant et al., 2017) to kilometer scale 63 
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(e.g. Gonçalves and Henriques, 2015) and from simple geometries (e.g. Chesley et al., 2017) 64 

to complex geometries (e.g. Cawood et al., 2017). Moreover, RPAS-DP can also overcome the 65 

occlusion effects that often affect terrestrial photogrammetry and laser scanning techniques 66 

because the RPAS platform can remotely move the camera to more optimum user-inaccessible 67 

positions. The use of different points of view is important for the reduction of occlusions or 68 

areas that cannot be measured using terrestrial technologies that are restricted to data collection 69 

from the ground. 70 

 71 

Fig. 1. Applicability of different mapping techniques in relation to the outcrop dimensions 72 

and geometry complexity (modified after Nex and Remondino, 2014). 73 

Due to the presence of a GNSS/INS system on an RPAS platform, it is possible to measure the 74 

camera location for each image that is taken. This then allows for direct georeferencing of 75 

photogrammetric products produced using Structure-from-Motion (SfM) digital processing of 76 

the images (Nex and Remondino, 2014). 77 

The principal products from SfM-based image processing are: (i) Point Cloud (PC), (ii) Digital 78 

Surface Model (DSM), (iii) orthoimage, and (iv) 3D texturized model. In geoscience, the latter 79 

product is also called Texturized Digital Outcrop Model (TDOM). The resolution of these SfM-80 

based photogrammetric products depends directly on the resolution of the camera sensor 81 

(number of pixels and pixel size), the camera lens (focal length) and the distance between the 82 

camera and the object. The accuracy depends on the quality of the camera and RPAS 83 

components (e.g. camera shutter, internal and external camera stabilizer, GNSS/IMU system), 84 

the RPAS-DP survey planning (e.g. image overlap, weather and lighting conditions, presence 85 
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or absence of ground control points) and the SfM processing (e.g. camera calibration and 86 

orientation). 87 

Giordan et al. (2015) proposed two different kinds of RPAS-DP surveys for landslide 88 

applications (Fig. 2): (a) RPAS-DP survey for steep slopes (slope angle >40°, usually rock 89 

slopes) and (b) RPAS-DP survey for moderate to gentle slopes (slope angle <40°). These two 90 

kinds of survey differ by camera view direction. When conducting the survey, an oblique or 91 

even horizontal camera view may work best for steep slopes whereas a vertical or nadir camera 92 

view is typically best for gentle slopes. A multirotor RPAS is often used for steep slopes while 93 

multirotor or fixed-wing RPAS can be used for gentle slopes. This conceptual differentiation 94 

of RPAS surveys can be applied not only to landslide studies but also to other geological studies 95 

in similar terrain. 96 

 97 

 98 

Fig. 2. Different RPAS survey options proposed by Giordan et al. (2015) for (a) steep rock 99 

slopes and (b) gentle to moderate slopes. 100 

In geoscience applications, the DSM and orthoimage can be managed with GIS software and 101 

base-level computers. However, the PC and TDOM typically requires specific 3D rendering 102 

software and a computer with a medium to high-level graphics card. Usually, due to the 103 

presence of a large amount of information, a TDOM requires a higher graphics card 104 

performance than a PC. For the analysis of discontinuities in a rock outcrop, a PC or TDOM 105 

are required because they allow for selection of 3D point positions that belong to a discontinuity 106 

thus allow for a fitting of a plane to a set of points representing the discontinuity. Whereas a 107 

PC is composed of 3D points, TDOMs are 3D meshes consisting of triangular facets filled with 108 
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image texture in the space between the points defining the facet vertexes. Therefore, a TDOM 109 

can significantly improve the identification and the correct interpretation of discontinuity traces 110 

that cannot be detected in a PC. 111 

The detection of discontinuities in a DOM can be done manually or automatically. Recently, 112 

several different algorithms for the semi-automatic detection of discontinuities have been 113 

proposed, such as DSE (Riquelme et al., 2014) and qFacet (Dewez et al., 2016), etc. Most of 114 

these methods work on a PC and use an algorithm of the k-nearest neighbor (knn). 115 

In this study, RPAS-DP was used as a tool to identify and map the discontinuities contained 116 

within a sub-vertical rock slope. The rock slope has a complex geometry, and it generates 117 

rockfalls. The discontinuity detection was done using both manual and automatic methods, and 118 

the results from each method are compared in terms of discontinuity geometry and kinematic 119 

instability analysis. The case study demonstrates a workflow for the detection of discontinuities 120 

in a sub-vertical rock slope. 121 

2 Study site 122 

The study area is located in the western portion of the Ligurian Alps, near the village of Ormea 123 

(CN, Italy), along the Tanaro Valley (44.147° lat., 7.919° long.). On the right side of the river, 124 

a vertical rock slope characterized by recurrent instability phenomena imperils roads, a bridge, 125 

some houses, and the riverbed that are just below it (Fig. 3). 126 
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Fig. 3. RPAS-based images: (a) nadir image of the rock slope and the village below and (b) 129 

orthorectified image of the rock outcrop. Red dots indicate the position of the control planes 130 

measurable in the field and visible and measurable in the images acquired by RPAS. 131 

The rock slope is approximately 100 m wide and 80 m high and is composed principally of 132 

quartzites. The studied area is characterized by the presence of several large joints at the base 133 

of the slope that can cause the collapse of large sections of the rock bluffs, especially in the 134 

central sector. These joints are monitored by ARPA Piemonte (Regional Environmental 135 

Protection Agency), and some movements were registered after a flood event that occurred in 136 

the Piemonte in November 2016. Furthermore, some unstable blocks were detected in the 137 

southwestern sector immediately after the flood. For this reason, some blocks were removed, 138 

and rockfall nets were installed at the base of the slope. 139 

The field investigations were conducted with a goal to measure the main joint sets and to 140 

identify the most unstable areas. Due to the presence of inaccessible unstable sectors of the 141 

rock wall, an innovative solution that considered the use of remote sensing techniques was 142 

evaluated for a better characterization of these areas. The complex geomorphology, 143 

topography, and the existence of trees at the site, immediately highlighted the main limitations 144 

of terrestrial photogrammetry and laser scanning. These methods were only able to acquire data 145 

for limited portions of the slope. In addition, the presence of potential unstable blocks limited 146 

safe access to the entire slope for a manual acquisition of discontinuities. For this reason, the 147 

use of RPAS was considered a good solution for the acquisition of a nadir and oblique dataset 148 

(Fig. 3). 149 
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2.1 Geology 150 

In the Ormea area, the different geological units that compose the central Ligurian Alps 151 

(External and Internal Briançonnais, Pre-Piedmont and Piedmont Ligurian units) are stacked 152 

upon each other (Fig. 4). The slope that was examined is formed by a succession of rock 153 

belonging to the lower part of the External Briançonnais. These lie over a Pre-Namurian 154 

metamorphic basement and the clastic Permian succession of the Ollano Formation, which are 155 

not exposed in the area. The following lithological units are present: 156 

 Melogno Porphiroids (Early Permian) – calc-alkaline rhyolitic and rhyodacitic volcanic 157 

ignimbrites and pyroclastics. 158 

 Verrucano Formation (Late Permian) – well-rounded polygenic conglomeratic continental 159 

deposits, strongly cemented, with interbedded green and violet schists and whitish 160 

conglomerates and sandstones. The formation rests paracomformably on the eroded top of 161 

the volcanic complex of the Melogno Porphiroids. 162 

 Ponte di Nava Quartzites (Early Triassic) – coarse-grained grey quartz arenites and 163 

conglomerates with fining-upwards cycles. The lower part of the formation is 164 

characterized by a coarser facies with rough bedding, while the upper part is composed of 165 

thinner beds of medium-to-fine quartz arenites interbedded with greenish pelites. 166 

 San Pietro dei Monti Dolomite (Ladinian) – massive to well-bedded grey dolostones and 167 

limestones forming a thick carbonate platform succession (about 200 m). 168 

Along the right slope of the Tanaro valley, the described succession is tectonically truncated at 169 

the level of the San Pietro dei Monti Dolomite by the large sub-horizontal fault that thrusts the 170 

Inner Units (Internal Briançonnais, Pre-Piedmont, and Piedmont Ligurian units) over the 171 

External Briançonnais. 172 

The rock cliff in the study area contains sub-horizontal bedding and large sub-vertical 173 

discontinuities that delineate rocky pinnacles characterized by rockfalls and instability 174 

phenomena. To the north of the cliff, some NE to ENE tectonic lineaments were detected by 175 

the analysis of two sets of aerial photographs and partially verified by field surveys (Fig. 4). 176 

One of them coincides with a fault that borders the Melogno Porphiroids. 177 
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 178 

Fig. 4. Geological map of the study area. 179 

3 Methodology 180 

A RPAS was used to acquire a series of high-resolution images of the inaccessible rock cliff 181 

that is characterized by a complex geometry with several areas that cannot be seen from the 182 

ground level. The images were then converted into a TDOM using Structure-from-Motion 183 

(SfM) software. 184 

A classic field survey with a geological compass-clinometer was performed to measure 145 185 

discontinuities in a lateral part of the slope, where the field conditions allowed for safe manual 186 

acquisition of direct measurements. Differences between the compass-based field 187 

measurements of the orientations of the control planes and discontinuities and the orientations 188 
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extracted from the TDOM were evaluated. We also measured the orientation of 8 control planes 189 

found near the toe of the rock slope. These planes were also visible in images acquired by 190 

RPAS. This dataset was used to evaluate the accuracy of the discontinuities identified in the 191 

TDOM, and were used to validate the TDOM orientation without the use of GCPs. 192 

Discontinuity analysis using the TDOM was done with semi-automatic and manual mapping 193 

methods. In this paper, we present the results from both approaches, and we propose a 194 

composite method for discontinuity identification that involves manual validation of 195 

preliminary automatic mapping results. In particular, the manual mapping using the highly 196 

detailed TDOM allows for the recognition of discontinuities that are orthogonal to the rock 197 

wall and that are often identifiable only as traces without 3D relief and no visible plane surfaces 198 

(Seers and Hodgetts, 2016; Biber et al., 2018). For this reason, the semi-automatic methods 199 

based on the coplanarity test of the points of the PC can often underestimate these geological 200 

structures (e.g. Dewez et al., 2016). 201 

The main steps of the proposed methodology are schematically indicated in Fig. 5. 202 

 203 

Fig. 5. Conceptual scheme of the proposed workflow. 204 
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3.1 RPAS digital photogrammetric survey and image processing 205 

The RPAS-based digital photogrammetric survey was conducted with an oblique orientation 206 

for the on-board camera and 236 digital photographs were acquired. The collected images had 207 

a minimum overlap and sidelap of about 90% and 80%, respectively. In order to capture the 208 

complex geometry of the outcrop and to improve the precision of the generated TDOM, the 209 

images were acquired from positions parallel (strips of photographs taken along a fly line) and 210 

convergent to the outcrop (Birch, 2006). The average distance from the camera to the closest 211 

rock surface was 32 m, with a standard deviation of 11 m (Fig. 6). The flights were flown under 212 

manual control in a sequence of back-and-forward flight lines to cover the full vertical extent 213 

of the rock outcrop. 214 

 215 

Fig. 6. Front and top view of the rock outcrop showing the camera locations. Point colors 216 

indicate the camera-outcrop distance. 217 

The features of the RPAS platform and on-board camera are reported in Table 1.  218 
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Table 1. RPAS and on-board camera specifications. 219 

RPAS system specifications 

RPAS type Dimension Engines Rotor Diameter Empty weight Payload 

V-shaped 

quadcopter 

56 x 80 x 17 

cm 
4 brushless 381 mm 6.9 kg 8.3 kg 

On-board camera specifications 

Camera Sensor type Sensor size Image size Pixel size 
Focal 

length 

SenseFly Albris CCD 
10 × 7.5 

mm 
7152 × 5368 px 1.4 x 1.4 µm 8 mm 

The RPAS was equipped with a GNSS/IMU and all the acquired images were georeferenced 220 

in a WGS84/UTM32N metric coordinate system. Moreover, to obtain a high accuracy model 221 

22 points on the slope were measured with a total station Topcon GPT-7001L total station (15 222 

were used as Ground Control Points – GCPs - and 7 as Check Points - CKPs). The GCPs and 223 

CKPs positions are shown in Figure 7. The GCPs network was georeferenced using four 224 

different points acquired by the robotized total station and a Leica 1200 GPS RTK. 225 

 226 

Figure 7. 3D Point cloud of the rock slope. Red and yellow dots indicate the position of GCPs 227 

and CKPs, respectively.  228 

 229 

The TDOMs or 3D digital models were created with the Structure-from-Motion (SfM) 230 

technique using Photoscan Professional v.1.2.5 software (Agisoft, 2016), which is widely 231 
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employed in earth sciences studies (e.g. Turner et al., 2014; Goncalves and Henriques, 2015; 232 

Casella et al., 2016; Cawood et al, 2017; Jordá Bordehore et al., 2017; Salvini et al., 2017). 233 

Due to the presence of the 22 GCPs acquired using a total station we decided to develop two 234 

different 3D models. The procedures used during the processing were the same for the two 235 

models, except for the use of GCPs for the direct-georeferenced model versus georeferencing 236 

using only the RPAS on-board GPS. For a detailed description of the technique, see Lucieer et 237 

al. (2013) and Turner et al. (2014).  The processing steps are summarized below. 238 

Image pre-processing. All the 236 images were georeferenced using the coordinates registered 239 

by the on-board GPS; 12 images with blur effects were discarded. 240 

Image matching, bundle block adjustment, and creation of sparse PC. 224 images were aligned 241 

using the highest accuracy (full resolution matching) and using the pair pre-selection method 242 

that takes into account the image positions registered by the RPAS-GPS. Then the bundle block 243 

adjustment was computed using the positions of the 15 GCPs measured using the total station. 244 

The accuracy of the GCPs was imposed as 50 mm. A sparse PC of 505081 points was obtained. 245 

Dense PC creation. Due to the resolution of the images (38 Mpx), the dense PC was developed 246 

using the high quality parameters of the Photoscan procedure (i.e. all the images were 247 

subsample for a factor 2 in each dimension), and a mild depth filtering. A dense PC of ~98 248 

million of points was generated at the end of the process. The mean surface density of the PC 249 

was around 1000 points per m2. 250 

Mesh creation. After a manual removal of the highly vegetated areas, a 3D mesh was 251 

constructed selecting the high face count suggested by the software. A mesh with ~35 million 252 

faces for a total surface of 12744 m2 was developed at the end of the process. 253 

Texture mapping and orthophoto mosaic generation. A generic texture mapping and a mosaic 254 

blending mode were used to obtain the texture for the mesh, considering only the images with 255 

a quality value > 0.7 and developing a texture atlas composed of 10 files with 8 Mpx. Finally, 256 

an orthophoto mosaic (Fig. 3b) with a resolution of 6.45 mm/pixel was generated as a TIFF 257 

file. 258 
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Export of PC and TDOM. The PC and TDOM were exported using a WGS84 metric coordinate 259 

system. In particular, the dense PC was exported as a xyz.txt file including the RGB color value 260 

for each point. The TDOM was exported as an OBJ file including the vertex normal and texture. 261 

3.2 Accuracy 262 

The absolute accuracy of the two DOMs (one directly  georeferenced using the on-board GPS 263 

coordinates and the other by means of 22 GCPs and check points widely distributed across 264 

the target area) were calculated by comparing GCPs and check point coordinates measured 265 

by the total station and with coordinates of the same points in the models (Table 2).  266 

Table 2. Absolute accuracies of GCP and directly georeferenced models evaluated on 15 267 

GCPs and 7 CKPs. 268 

  DOM GCP-georeferenced DOM directly georeferenced 

  GCP errors (m) CKP errors (m) GCP and CKP errors (m) 

  Horizontal Vertical Horizontal Vertical Horizontal Vertical 

Mean 0.023 0.015 0.033 0.009 0.807 9.401 

St. Dev. 0.012 0.012 0.023 0.005 0.136 0.208 

Min 0.005 0.001 0.008 0.004 0.611 9.005 

Max 0.039 0.049 0.082 0.019 1.097 9.719 

 269 

The comparison shows a satisfying absolute accuracy of the GCP-model, while the model 270 

that is directly georeferenced using the on-board GPS coordinates for each photograph is 271 

affected by a significant shift, especially in altitude. A shift or translation of the model 272 

coordinates is commonly observed when using just the coordinates from the RPAS GPS as 273 

these tend to be incorporate an off-set from the actual coordinates. While the RPAS GPS 274 

coordinates may be shifted from the actual coordinates, the relative positioning of the 275 

coordinates is typically far more accurate.  The relative accuracy of the directly 276 

georeferenced model was evaluated by comparing the lengths and azimuths of vectors joining 277 

pairs of points in the model with the corresponding lengths and azimuths from the GCP-278 

georeferenced model. The maximum angular differences in attitude (Table 3) and length of 279 

20 measured vectors are ±1° and 0.3%, respectively.  Similarly, a comparison of 11 plane 280 

attitudes on both models (Table 3) shows a maximum angular difference of ~1°.  281 
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Table 3. Relative accuracies of TDOMs evaluated by angular differences in attitude of 20 282 

measured vectors and 11 plane attitudes. 283 

  Lines errors Planes errors 

  Trend Plunge Angle Dip Dip Azimuth Angle 

N° of measures 10 10 10 11 11 11 

Mean 1.0 1.2 1.6 0.8 0.5 1.0 

St. Dev. 0.4 1.2 1.6 0.4 0.2 0.4 

Min. 0.3 0.1 0.2 0.3 0.2 0.4 

Max. 1.7 3.3 5.7 1.5 1.0 1.8 

 284 

Moreover, to validate the results of the RPAS survey, the control planes manually identified 285 

using the TDOM were compared with those measured in the field with a geological compass. 286 

During the field survey, only a small number of control planes were measured at the toe of 287 

the slope because the rest of the outcrop was largely inaccessible and unsafe to work on. The 288 

field-measured control planes were chosen because they were clearly visible from the RPAS 289 

survey. 290 

The mean angle between the orientations of the control planes determined directly in the field 291 

and those measured manually from the TDOM was 3°, with a maximum of about 6° (Table 292 

4). This value suggests that both methods gave similar results given that the typical precision 293 

obtained for field collection of discontinuity orientations by a compass is typically between 294 

2° and 5°. Moreover, manual sampling can be affected by an orientation bias due to the local 295 

variation of surface orientations, whereas DOM sampling often overcomes this problem 296 

because the best-fit plane covers a larger surface area of the discontinuity. 297 
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Table 4. Comparison between the dip direction/dip (°) of the control planes measured directly 298 

on the outcrop (average measurement for a single control plane) and those acquired by 299 

manual detection on TDOM. 300 

Plane Compass 
No. 

measurements 
TDOM 

Angle between 

planes (°) 

a 039/69 10 043/75 6.1 

b 040/72 8 043/73 1.3 

c 040/70 11 043/70 1 

d 039/78 13 44/79 5 

e 227/80 8 228/85 5.1 

f 180/82 6 180/78 4 

g 041/86 15 043/87 1 

h 226/87 6 221/88 1 

 301 

These results confirm the validity of the DOMs. For geological outcrop studies, having a 302 

model that is at the correct scale and orientation is certainly more important than having it 303 

precisely georeferenced because the measurements (e.g., attitudes of plane and surfaces) 304 

calculated in a DOM characterized by good relative accuracy are equivalent to measurements 305 

made on the outcrop. 306 

3.3 Discontinuity Analysis 307 

Automatic and semi-automatic procedures to identify and map discontinuities have been 308 

developed and used by several authors (Slob et al., 2004; Jaboyedoff et al., 2007; Vöge et al., 309 

2013; Gigli and Casagli, 2011; Chen et al., 2016; Dewez et al., 2016; Gomes et al., 2016; Jordá 310 

Bordehore et al., 2017; Guo et al., 2017) and represent important improvements in the use of 311 

digital terrain models and/or point-clouds. In this paper, we present the results obtained by 312 

manual and semi-automatic procedures, and we show the impact that these two approaches can 313 

have on the identification of discontinuity sets and potential instabilities. 314 
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3.3.1 Manual detection and mapping of discontinuities 315 

The manual recognition and measurement of the discontinuities were conducted by visualizing 316 

and analyzing the TDOM in a stereoscopic environment using a Planar Stereoscopic Mirror 317 

SD2220W device. This device has two separate display monitors placed one above the other 318 

in a clamshell configuration with a half-silvered glass plate bisecting the angle between the two 319 

displays. It is important to emphasize that the identification of the discontinuities was realized 320 

by the stereoscopic inspection of the images texturized on the 3D model and not only by 321 

examining the point cloud. In fact, the stereo-vision of the texturized model (i.e. examining the 322 

real photographic images of the outcrop) allows for a better understand the real nature and 323 

geometry of the structures to be analyzed (strata, discontinuities, traces of fractures, lineations) 324 

and avoids misinterpretation due to 2D visualization on standard monitors of 3D objects 325 

depicted by a point cloud. 326 

The measurement of planes that represent discontinuities was performed using the tools in the 327 

open-source software CloudCompare v.2.9. After the visual identification of a discontinuity, 328 

the points in the cloud belonging to the discontinuity were digitized, and the 3D discontinuity 329 

plane to these points was determined using a least-squares best-fit approach. Several 330 

measurements were collected for each discontinuity plane or trace, and the average 331 

measurement was taken to represent the discontinuity geometry. 332 

The discontinuities were sampled for their entire visible exposure as planes and/or traces to 333 

calculate not only their orientation (dip and dip direction) and position, but also their 334 

dimensions (discontinuity length). 335 

To evaluate the robustness of the manual detection results obtained using the free software 336 

CloudCompare, we repeated the manual mapping of discontinuities using a different 337 

commercial software. Another operator used 3DM Analyst© photogrammetric software 338 

(ADAM Technology) to identify the discontinuities in the same studied area. 3DM Analyst© 339 

has a dedicated application for the identification and mapping of discontinuities that helps the 340 

operator to map them easily. In this work, we started from the same image dataset and created 341 

a digital model using the procedure proposed by ADAM. At the end of the model generation, 342 

32 stereo-pairs were selected to have a complete 3D representation of the studied area. The 32 343 
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stereo-pairs provided a 3D view of the studied area that was used to detect and map the 344 

discontinuities. The obtained results are compared in Chapter 4. 345 

3.3.2 Semi-automatic detection of discontinuities 346 

The point cloud generated using the SfM-based photogrammetric procedure in Agisoft 347 

Photoscan was analyzed with three different open-source algorithms for the semi-automatic 348 

detection of discontinuities: i) Discontinuity Set Extractor (DSE) proposed by Riquelme et al. 349 

(2014), ii) qFacet Fast Marching and iii) qFacet Kd-tree. The second and third algorithms are 350 

plugins for CloudCompare proposed by Dewez et al. (2016). 351 

The first method identifies and defines the algebraic equations for different planes by applying 352 

an analysis based on a coplanarity test on neighboring points, finding principal orientations by 353 

Kernel Density Estimation, and identifying clusters by the Density-Based Scan Algorithm with 354 

Noise (see Riquelme et al., 2014 for details). The other methods are based on two algorithms 355 

(qFacet Fast Marching and qFacet Kd-tree) that divide the initial point cloud into sub-cells, 356 

compute elementary planar objects, and then progressively aggregate the planar objects 357 

according to a planarity threshold into polygons. The boundaries of the polygons are adjusted 358 

around segmented points with a tension parameter, and the facet polygons can be exported as 359 

3D polygon shape files. See Dewez et al. (2016) for details. 360 

As a preprocessing step to improve the results of the semi-automatic detection, we removed 361 

from the point cloud all points that belong to vegetation. Two filter procedures were applied: 362 

the first is based on color attributes of the points (RGB, hue, saturation, etc.) and was 363 

implemented in Agisoft software, while the second was performed by masking the sectors with 364 

a lower density of points that characterize the vegetated areas (Fig. 8). It was impossible to 365 

completely remove all points corresponding to vegetation, especially in areas of sort dry grass 366 

and small shrubs. Thus their presence in the final point cloud may affect the correct recognition 367 

of discontinuities. 368 
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Fig. 8 Vegetation removal process: (a) initial point cloud, (b) classification of points for 370 

removal (blue areas) based on RGB attributes of the points and the low density of the PC in 371 

vegetated areas, (c) final PC obtained after the use of the filters. 372 

The semi-automatic detections of the discontinuities were performed on a PC characterized by 373 

a point surface density of approximately 10386 points per m2 (mean spacing between points 374 

approximately 10 mm). The parameter settings used in the different algorithms for the 375 

automatic detection of the discontinuities are described in Section 4.2. 376 

3.3.3 Rock slope kinematic analysis 377 

A stereonet-based kinematic analysis of the main rock slope failure mechanisms (planar 378 

sliding, wedge sliding, flexural toppling, and direct and oblique toppling) was performed on 379 

the discontinuity systems detected by the manual and automatic analyses to highlight the 380 

possible differences and inconsistencies. The kinematic analyses assumed a friction angle of 381 

30° and a lateral limit value (Goodman, 1980; Hudson and Harrison, 1997) of ±20° from the 382 

dip direction of the outcrop face. 383 

Whereas the planar sliding and flexural toppling kinematic analyses were performed using the 384 

orientation of all identified discontinuities, the wedge sliding and direct and oblique toppling 385 

kinematic analyses used the detected intersections between the identified discontinuities. The 386 

intersections were calculated considering the discontinuities as circular objects with a diameter 387 

equal to the maximum extension of the discontinuity trace and/or plane measured on the 388 

TDOM and considering its position in 3D space (Fig. 9). Due to the good exposure of the 389 

outcrop, the estimate of the maximum extension of the fractures can be considered reliable. If 390 

two discontinuities cross each other, a discontinuity intersection is calculated and plotted on 391 

the stereonet by its trend and plunge. The kinematic analysis was first performed for an overall 392 

slope face dipping 75° towards 300°.  393 
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 394 

Fig. 9. Example showing lines of intersection of circular discontinuities. 395 

4 Results 396 

The results from using the different discontinuity detection methods are presented in this 397 

section along with results from kinematic analyses of different possible structurally-controlled 398 

failure mechanisms.  The purpose of this section is to compare and contrast the different 399 

discontinuity detection methods and their influences on the subsequent failure mode analyses. 400 

4.1 Manual detection of discontinuities 401 

The manual analysis of the TDOM representing the rock slope identified 1036 discontinuities 402 

using Cloud Compare. The availability of a high-resolution 3D model was very useful for the 403 

recognition of discontinuities with different orientations. In particular, the texture of the model 404 

supported the identification of discontinuities that are orthogonal to the rock wall. These 405 

discontinuities can be very difficult to detect when examining only the point-cloud. 406 

In Fig. 10 we present the measurements of the discontinuities manually obtained using Cloud 407 

Compare, those acquired by another operator that analyzed the same image dataset by 3DM 408 

Analyst© photogrammetric software, and those achieved during a field survey conducted in 409 

two accessible positions of the rock slope using a compass-clinometer. 410 
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 411 

Fig. 10 Comparison of the discontinuity orientation (stereographic projections – equal angle, 412 

lower hemisphere) measured by (a) Cloud Compare, (b) 3DM Analyst software, and (c) field 413 

survey; the main discontinuity sets are indicated in (a). 414 

 415 

Fig. 10 clearly shows that all approaches recognize 3 sets of discontinuities. The dominant 416 

discontinuity set (S1) is the bedding, which is sub-horizontal. Nearly vertical, cross-cutting 417 

joints that are roughly perpendicular to the bedding are also common. These cross-cutting joints 418 

have a wide range of strikes, and they can be subdivided into different subsets (S2 and S3). 419 

The results from the three approaches are similar, and therefore for the remainder of this paper, 420 

we consider only the dataset (1036 measurements) obtained using CloudCompare, a freely 421 

available open-source software. 422 

The kinematic analysis for a planar sliding mechanism indicates that 10% of the discontinuity 423 

planes (essentially formed by random discontinuities) could act as a sliding surface (Fig. 11a). 424 

The critical discontinuities for a flexural toppling failure mechanism (Fig. 11b) consist of about 425 

4% of the total detected discontinuities and were essentially due to discontinuities in set S2. 426 
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 427 

Fig. 11 Kinematic analysis of possible failure mechanisms involving individual 428 

discontinuities (a - planar sliding and b - flexural toppling). The critical pole locations fall 429 

inside the pink areas (equal angle, lower hemisphere, stereographic projections). 430 

 431 

Starting with the detected discontinuities, 4667 possible intersections were considered for the 432 

identification of possible wedge sliding and toppling (direct and oblique) instabilities. The most 433 

common failure mechanism that was identified from the kinematic analysis (Fig. 12) was 434 

wedge sliding, which involves 12% of the 4667 intersections. In particular, the most critical 435 

wedges are those formed by intersections between discontinuities in sets S2 and S3. 436 

The kinematic analysis of the direct and oblique toppling failure mechanisms indicates that 7% 437 

of the discontinuity intersections could be critical for the block toppling mechanism (2% for 438 

direct toppling and 5% for oblique toppling). 439 
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 440 

Fig. 12 Kinematic analysis of possible failure mechanisms involving intersections between 441 

discontinuities (a - direct and oblique toppling and b - wedge sliding). The critical 442 

intersection locations fall inside the pink areas. 443 

4.2 Semi-automatic detection of discontinuities 444 

4.2.1 Discontinuity Set Extractor (DSE) algorithm 445 

The DSE algorithm (Riquelme et al., 2014) was run with Matlab© version 2.0.2 software. This 446 

method detects the structural discontinuities using a 3D point cloud by measuring the attitude 447 

of the outcrop at each point. If the point is surrounded by other coplanar points, the method 448 

statistically determines the orientation of the plane that represents these points. The parameters 449 

used to calculate the normal vector at each point, the density of the poles, and the different 450 

discontinuity sets are defined in Table 5 (see Riquelme et al., 2014 for details). 451 

A cluster analysis was performed which considers that all points of a cluster belong to a set if 452 

they have a similar normal vector and setting the parameter kσ = 1.5 to test whether two clusters 453 

should be merged. Only clusters with more than 100 points are considered as discontinuity 454 

planes. 455 

Table 5 Parameters used in the DSE algorithm. 456 

knn h nbins anglevppal cone kσ 

30 0.2 64 10 30° 1.5 
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The DSE algorithm detected 13185 discontinuity planes in the point cloud. The orientation of 457 

the poles to these planes are plotted in Fig. 13 and they show a high dispersion with the highest 458 

pole concentration occurring in the SE quadrant of the stereonet. It is difficult to assign the 459 

detected discontinuities to distinctive discontinuity sets because of their dispersion. However, 460 

a comparison of these results with the manual mapping shows that the S1 set has lower visibility 461 

and blends into discontinuities from set S2. The DSE algorithm most frequently identified the 462 

steeply dipping discontinuities assigned to set S2. The S2 set has a high orientation dispersion 463 

and appears to include planes dipping at lower angles to the NW. Another minor set of 464 

discontinuities (S3) that steeply dips toward the SW was also found. These discontinuities are 465 

roughly orthogonal to Sets S2 and S1. 466 

 467 

Fig. 13 Stereographic projection (lower hemisphere, equal area) of the poles to the 468 

discontinuities detected by the DSE algorithm and contour plot of pole concentrations. 469 

A kinematic analysis of possible failure mechanisms suggests that planar sliding (Fig. 14) could 470 

occur on 31% of the 13185 discontinuities. These discontinuities typically occur in set S2 471 

(72%). Flexural toppling (Fig. 14) involves 11% of the total number of the detected 472 

discontinuities, and these belong to set S2.  473 
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 474 

Fig. 14 Kinematic analysis of possible failure mechanisms involving individual 475 

discontinuities detected by the DSE algorithm (a - planar sliding and b - flexural toppling). 476 

The critical pole locations fall inside the pink areas (equal angle, lower hemisphere, 477 

stereographic projections). 478 

The wedge sliding failure mechanism involves 39% of the 83684 discontinuity intersections. 479 

The critical intersections for wedge sliding involve discontinuities from sets S2 and S3. Direct 480 

and oblique toppling modes involve respectively 2% and 10% of the total number of the 481 

discontinuity intersections. 482 

 483 

Fig. 15 Kinematic analysis of the possible failure mechanisms involving intersections 484 

between discontinuities detected by the DSE algorithm (a - direct and oblique toppling and b 485 

- wedge sliding). The critical intersections fall inside the pink areas. 486 
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4.2.2 qFacet Fast Marching (FM) algorithm 487 

The qFacet FM algorithm (Dewez et al., 2015) was run using the CloudCompare v.2.9 488 

software. The qFacet FM algorithm divides the point cloud into clusters of adjacent co-planar 489 

points using a regular lattice subdivision specified by the octree structure, measures the 490 

orientation of elementary facets and groups them into encompassing planes, and classifies 491 

parallel planes into sets. 492 

The parameters used to calculate the cell fusion (octree level), the maximum distance of a point 493 

to a best-fitting plane, the minimum number of points per facet, and the maximum edge length 494 

used to extract the plane perimeter are defined in Table 6 (see Dewez et al., 2015 for details). 495 

Table 6 Parameters used in the qFacet Fast Marching algorithm. 496 

octree level 
max distance @ 

99% 

minimum point 

per facet 

max edge 

length 

8 (0.13 m) 0.1 m 100 0.86 m 

Using the parameters in the Table 6, the qFacet FM algorithm detected 10460 discontinuity 497 

planes. Similar to the DSE algorithm, the orientation of the poles to these planes (Fig. 16) show 498 

a high dispersion with the highest concentration occurring in the SE quadrant of the stereonet. 499 

Three principal sets of discontinuities can be recognized. The S1 set is sub-horizontal or dips 500 

slightly to the NW. The S2 set dips towards the NW with a dip angle between 50° and 90°. The 501 

S3 set is sub-vertical with a strike of approximately E-W. 502 

 503 

Fig. 16 Stereographic projection (lower hemisphere, equal area) of the poles of the 504 

discontinuities detected by the qFacet FM algorithm and contour plot of pole concentrations.  505 
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A kinematic analysis of potential slope failure mechanisms reveals that planar and wedge 506 

sliding are potentially the most critical mechanisms (Fig. 17 and 18). Planar sliding could 507 

involve 33% of the 10469 discontinuities, essentially those in set S2. Wedge sliding shows that 508 

34% of the 58269 discontinuity intersections could be critical, involving mostly discontinuities 509 

from S1 and S3. A kinematic analysis of the different toppling mechanisms indicates that these 510 

mechanisms should play a minor role in the instability of the rock slope. In particular, flexural 511 

toppling could be caused by 7% of all the detected discontinuities and direct and oblique 512 

toppling could be caused respectively by 2% and 5% of all the discontinuity intersections. 513 

 514 

Fig. 17 Kinematic analysis of possible failure mechanisms involving individual 515 

discontinuities detected by the qFacet FM algorithm (a - planar sliding and b - flexural 516 

toppling). The critical pole locations fall inside the pink areas (equal angle, lower 517 

hemisphere, stereographic projections).  518 
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 519 

Fig. 18 Kinematic analysis of the possible failure mechanisms involving intersections 520 

between discontinuities detected by the qFacet FM algorithm (a - direct and oblique toppling 521 

and b - wedge sliding). The critical intersections fall inside the pink areas.  522 

4.2.3 qFacet Kd-tree algorithm 523 

The qFacet Kd-tree algorithm was run using the CloudCompare v.2.9 software. The qFacet 524 

Kd-tree is similar to the qFacet FM algorithm. Both divide the point cloud into sub-cells, then 525 

compute elementary planar facets and aggregate them progressively according to a planarity 526 

threshold into polygons. However, the Kd-Tree algorithm recursively subdivides a 3D cloud 527 

into quarter cells until all points within the cell fit a best-fitting plane using the threshold 528 

defined by the root-mean-square of the maximum distance. With this technique, a lattice of 529 

elementary cells of unequal sizes is used to define the discontinuity planes. 530 

The parameters used to calculate the cell fusion (maximum angle and maximum relative 531 

distance), the maximum distance of a point to a best-fitting plane, the minimum points per 532 

facet, and the maximum edge length used to extract the facet contour are listed in Table 7 (see 533 

Dewez et al., 2015 for details). 534 

Table 7 Parameters used by the qFacet Kd-tree algorithm. 535 

max angle 
max relative 

distance 

max distance 

@ 99% 

minimum points 

per facet 

max edge 

length 

10° 1 m 0.1 m 100 0.86 m 
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Using the parameters described in Table 7, the qFacet Kd-tree algorithm detected 34376 536 

discontinuity planes. This is significantly more planes than was detected by the qFacet FM and 537 

DSE algorithms. Again, the planes have a high dispersion in their orientation, and the 538 

maximum pole concentration occurs in the SE quadrant of the stereonet (Fig. 19). Similar to 539 

the previous methods, three principal discontinuity sets can be recognized (Fig. 20b) with the 540 

same general orientations as identified before. 541 

 542 

Fig. 19 a) stereographic projection (lower hemisphere and equal area) of the poles of the 543 

discontinuities detected by the qFacet Kd-tree algorithm and b) relative contour plot. 544 

The calculated number of discontinuity intersections was more than 140,000. Due to this large 545 

number, only the planar sliding and flexural toppling failure modes are considered. A kinematic 546 

analysis suggests that planar sliding could be a critical failure mechanism for 34% of the 34376 547 

detected discontinuities, and these discontinuities essentially occur in set S2. A kinematic 548 

analysis for flexural toppling suggests that only the 8% of the detected discontinuities could be 549 

critical for this mechanism. 550 
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 551 

Fig. 20 Kinematic analysis of the possible failure mechanisms involving the discontinuities (a 552 

- planar sliding and b - flexural toppling) formed by the discontinuities detected by the qFacet 553 

Kd-tree algorithm. The critical intersections fall inside the colored areas (equal angle, lower 554 

hemisphere, stereographic projections). 555 

4.3 Comparison of manual and semi-automatic detection methods 556 

The discontinuities in the study outcrop were identified and measured by both manual and 557 

automatic analysis of the 3D model derived from a digital photogrammetric survey using a 558 

remotely piloted aircraft. A comparison between these methods is based on the overall number 559 

of identified discontinuities and the general discontinuity orientations and lengths. 560 

4.3.1 Number of identified discontinuities 561 

A comparison between the manually and automatically detected datasets highlights that the 562 

automatic detection methods recognize roughly 10 to 30 times more discontinuities than the 563 

manual digital mapping method (Table 8). In terms of the automatic identification methods, 564 

the qFacet Kd algorithm, as used in this study, found nearly three times more discontinuities 565 

than the other two methods. The automatic methods for discontinuity detection tend to 566 

subdivide some planes into smaller planes owing to local variations of the surface undulation 567 

and roughness, and thereby identify a larger number of presumed smaller discontinuities. 568 
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4.3.2 Discontinuity lengths 569 

A summary of the discontinuity length characteristics obtained from the different methods is 570 

shown in Table 8. The length of discontinuities that were identified using the manual detection 571 

method is greater than the length of the automatically detected discontinuities. The manual 572 

detection method recognized 1036 discontinuities with a mean length of approximately 6 m 573 

(mode, whereas the automatic methods, with the parameters used, recognized a larger 574 

number of discontinuities (>10460) with a smaller length (mean length <2.14 m, mode 0.75 575 

- 1.0) (Table 8; Fig. 21). 576 

Table 8. Discontinuity length characteristics obtained with different detection methods 577 

(length in m). 578 

  
Manual detection 

on TDOM 

DSE 

detection 

qFacet FM 

detection 

qFacet Kd 

detection 

Number of discontinuities  1036 13185 10460 34276 

Mean length of discontinuities 5.96 2.13 1.88 1.11 

Median discontinuity length 3.61 1.56 1.33 0.87 

Mode of discontinuity length 1.75 - 2.00 1.00 - 1.25 0.75 - 1.00 0.50 - 0.75 

Standard deviation of 

discontinuity length 
6.37 2.13 1.62 0.80 

Maximum discontinuity 

length 
40.4 42.3 18.3 14.7 

Minimum discontinuity 

length  
0.40 0.40 0.36 0.38 
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579 

 580 

Fig. 21 Histograms of the discontinuity lengths detected by the different methods (number of 581 

bins = 100 for each histogram - solid lines show the log-normal distribution curves. 582 

4.3.3 Discontinuity orientations 583 

The steeper dipping discontinuities identified by manual detection were also found by the semi-584 

automatic detection methods although there are some minor differences in the concentrations 585 

of the discontinuity dip directions. The bedding planes that are horizontal to gently dipping are 586 

arguably the most dominant discontinuity set in the rock mass. These features were easily 587 

identified during manual mapping of the TDOM. However, the automatic discontinuity 588 

detection methods do not clearly recognize this set. The bedding often appears only as a trace 589 

on the nearly vertical rock faces. The automatic discontinuity detection methods can miss these 590 

features even when the bedding trace was large and was the most relevant geomechanical 591 

feature in the rock wall. The automatic detection methods can only identify planar facets, and 592 

these are often very small along the trace of the bedding and are not detected. 593 

The automatic discontinuity detection methods return numerous planes that dip towards the 594 

NW that are not visible from the manual inspection of the 3D model. The false detection of 595 

some of these discontinuities seems to be associated with the presence of small patches of 596 

debris or grassy slopes visible along the wall (Fig. 22). The automatic detection algorithms do 597 

not properly discriminate between features that are discontinuities and those that are caused by 598 

other features captured in the 3D model. 599 
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 600 

Fig. 22 Images of (a) 3D rock slope model and (b) enlargement of regions showing examples 601 

of the discontinuity planes erroneously detected by the DSE (c)(f), qFacet FM (d)(g) and qFacet 602 

Kd-tree (e)(h) algorithms due to the misinterpretation of small patches of debris and vegetation.  603 

To avoid the false detection of discontinuities due to small parts of the outcrop characterized 604 

by debris and natural slope surfaces, and taking into account the differences in the dimensions 605 

of the detected planes, we have considered only the recognized discontinuities that have a 606 

length of more than 0.5, 1 and 2 m (Fig. 23). In fact, the length can be one of the more sensitive 607 

parameters conditioning the semi-automatic recognition of the fractures. 608 
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 609 

Fig. 23 Comparison of discontinuity datasets with different length cutoffs, detected by manual 610 

and semi-automatic methods. The number of discontinuities with length >2 m are 9%, 9% and 611 

1% of the total planes identified by DSE, FM and Kd methods, respectively. 612 

The results of this analysis (Fig. 23) indicate that as the cutoff length is increased: a) the number 613 

of the planes identified by the manual and automatic methods decreases and approaches a more 614 
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similar number, b) the dispersion in the fracture orientation considerably decreases, and c) the 615 

overall discontinuity orientations resulting from the automatic detection methods used during 616 

this study (DSE, qFacet FM, and qFacet Kd) become more similar to each other and do not 617 

show any noteworthy differences. 618 

Nevertheless, remarkable differences remain between the manual and automatic datasets: a) 619 

the numerous automatically detected planes (but not discontinuities) that dip towards the NW 620 

are still present, and b) the bedding (i.e., the most dominant discontinuity set) is still not clearly 621 

identified by the automatic methods. In any case, the choice to discriminate the detected 622 

fractures by their length appears somewhat arbitrary and may not be justifiable a priori. 623 

4.3.4 Instability mechanisms inferred from identified discontinuities 624 

The differences in the results from the manual and semi-automatic methods affect the 625 

interpretation of possible structurally-controlled failure mechanisms expected in the rock slope. 626 

Table 9 shows the percentage of the discontinuity planes and intersections that could be critical 627 

for each dataset, for a slope dipping 75° towards 300° and assuming a friction angle of 30°. A 628 

lateral instability limit of 20° was also used. In particular, the three datasets based on semi-629 

automatic detection overestimate the planar and wedge sliding mechanisms by a factor of 630 

roughly 3 times compared the manual discontinuity mapping. Effectively, a preliminary 631 

analysis of the collapse phenomena that have already affected the slope confirms how the 632 

toppling (flexural, oblique and direct) is probably the most widespread and dangerous 633 

instability mechanism, while the planar and wedge sliding are less frequent. This observation 634 

was also supported by the geologists of ARPA Piemonte. 635 
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Table 9 Comparison of the kinematic analyses for different detection methods for a slope 636 

dipping 75° towards 300°. 637 

Discontinuity 

detection 

method 

Planar sliding Flexural toppling Wedge sliding Direct toppling Oblique toppling 

(% of all detected discontinuities) 
(% of calculated intersections of all detected 

discontinuities) 

manual  10% 4% 12% 2% 5% 

DSE  31% 11% 39% 2% 10% 

qFacet FM  33% 7% 34% 2% 5% 

qFacet Kd  34% 8% n/a n/a n/a 

 638 

5 Conclusions 639 

In this work, we presented a workflow for the detection of the discontinuities exposed in a sub-640 

vertical rock slope using a remotely piloted aircraft system and digital photogrammetry (Fig. 641 

5). This approach is particularly useful in areas where field mapping and terrestrial 642 

photogrammetry or laser scanner surveys cannot be used because the slope is inaccessible, 643 

unsafe, and characterized by a complex geometry with several shadow areas not visible from 644 

the ground. Results based on the use of CloudCompare software to measure the discontinuity 645 

orientation are presented. To evaluate the quality of the discontinuity mapping, we compared 646 

the obtained results with in situ manual mapping and with the well-known software 3DM 647 

Analyst©. 648 

The proposed procedure results in the generation of a 3D digital model of the rock slope; this 649 

can be referred to as a texturized digital outcrop model (TDOM). This model can be used to 650 

visually recognize and manually map discontinuities in the outcrop. In our case, a planar 651 

stereoscopic mirror device (SD2220W) that allows a stereoscopic view of the model was used. 652 

Mapping the recognized discontinuities was performed by sampling the points in the TDOM 653 

belonging to each discontinuity plane and calculating the 3D best-fit plane by a least-squares-654 

fit approach. The discontinuity orientations were verified by comparing the manual digital 655 

mapping in the TDOM with the orientation of some control planes measured directly on the 656 

field with a compass-clinometer. The manual digital mapping generated results that are 657 

equivalent to the field measurements because the orientations were within 3° of each other. 658 
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A comparison of TDOMs generated with and without the use of GCPs shows that the difference 659 

in the relative accuracy is small. While the use of ground control points is usually the best 660 

solution, it usually takes less effort and is much faster to acquire field data only relying on the 661 

GPS coordinates recorded by the UAV. The resulting TDOM created using the digital images 662 

and their GPS coordinates may be offset from the real coordinates but its scale and orientation 663 

should be relatively accurate.  664 

Three different techniques to semi-automatically detect discontinuities in the TDOM were 665 

tested (DSE, qFacet FM, and qFacet KD-tree). These techniques identify planes within the 666 

point cloud by finding groups of points falling within planar regions. A comparison of the 667 

results with the manual analysis shows that the semi-automatic methods tend to recognize 668 

roughly 10 to 30 times more discontinuities than the manual digital mapping method. The semi-669 

automatic methods also tend to find smaller discontinuities, due to their tendency to subdivide 670 

the actual discontinuities into smaller planes. The automatic methods can erroneously identify 671 

planar features that do not represent real discontinuities (e.g., patches of debris or a natural 672 

slope). 673 

The most important observation is that the automatic methods do not work well for detection 674 

of discontinuities that are perpendicular to the slope face such as bedding planes in our case 675 

study. Geological structures that are primarily exposed on rock faces as traces, (bedding planes 676 

in the case study), are frequently the most relevant structures. The case study showed that the 677 

automatic mapping algorithms did not identify many of the bedding planes even when these 678 

occur as long trace length features in the 3D model. In contrast, the texture corresponding to 679 

these traces, which is provided in the TDOM, along with the experience of the mapper allow 680 

manually digital mapping to capture the bedding planes. The difference in detection of 681 

discontinuities can adversely influence the kinematic analysis of the rock slope failure 682 

mechanisms. 683 

While the automatic methods have some limitations, their prime advantage is the large number 684 

of features that can be automatically mapped in a relatively short time, which could be 685 

important during an emergency operation. However, the obtained results must be accurately 686 

checked by manual validation before using them, and this can take a great deal of time. 687 

niccolomenegoni
Evidenziato

niccolomenegoni
Nota
meglio dire solo DOM (perchè il riconoscimento è sulla nuvola)
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The proposed procedure for discontinuity detection using the RPAS-DP illustrated in Fig. 5 688 

takes into account the advantages and limitations of this technique and the algorithms for the 689 

automatic detection of discontinuities. The use of the virtual outcrop model obtained from 690 

RPAS-DP solves many practical challenges for mapping discontinuities that exist with other 691 

techniques. The advantages and limitations of the method are listed in Table 10. With a TDOM, 692 

it is possible to repeat discontinuity analysis by different operators and to use different manual 693 

and automated techniques. A high-resolution TDOM (<1 cm) allows an accurate manual 694 

analysis of a rock slope, especially if the TDOM is examined using a stereoscopic device that 695 

gives the mapper a better understanding the rock slope geometry. Nevertheless, it is important 696 

to note that field surveys are still important for validating the orientation of the TDOM and for 697 

evaluating discontinuities parameters such as aperture, roughness, and infilling. 698 

Table 10. Advantages and limitations of RPAS-DP. 699 

Advantages  Limitations 

Can accurately map discontinuities by creating a 

high-resolution TDOM (<1 cm) with results 

comparable to field measurements 

 

Complex vertical rock slopes could require 

RPAS with proximity sensors (more expensive 

RPAS) 

Dramatic increase of data because inaccessible 

or hidden portions of the slope are captured in 

the model 

 
Possible regulatory restrictions on RPAS flights 

(e.g., licenses and permits) 

Substantial time savings during discontinuity 

orientation measurements 
 

Wind or critical meteorological conditions can 

hamper image acquisition using RPAS 

Repeatability of measurements by different 

operators at different times 
 

Time of flight is limited by battery duration 

which can be critical for investigation of large 

areas 

Safe methodology especially for an unstable 

rock slope 
 

If the morphology of study area is complex, 

manual remote control of RPAS can be 

necessary; this requires good piloting skills  

Considering the time required to obtain the final results, we found that the automatic mapping 700 

procedures are faster than the manual method in the identification of discontinuities. However, 701 

taking into account the time needed for effective filtering of vegetation (mandatory for the 702 

automatic procedures and not so important for manual), and the validation of results, the 703 

difference in time and effort between the manual and automatic mapping becomes small. 704 

Manual mapping does depend on the experience of the operator, but the result is a sequence of 705 

selected and validated discontinuity measurements. The time that is required to complete the 706 

discontinuity mapping is important in particular if the operation is performed in an emergency 707 



39 

condition, and the choice of manual or automatic procedure should consider the complexity of 708 

the area being mapped. 709 

This case study discussed many critical issues when using images collected by a RPAS for the 710 

identification of rock wall discontinuities and we hope that this paper can be a useful guide to 711 

others using a RPAS for discontinuity measurements. 712 
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