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Abstract

Consumer electronics, wearable and personal health devices, power networks, microgrids, and
hybrid electric vehicles (HEVs) are some of the many applications of lithium-ion batteries. Their
optimal design and management are important for safe and profitable operations. The use of
accurate mathematical models can help in achieving the best performance. This article provides a
detailed description of a finite volume method (FVM) for a pseudo-two-dimensional (P2D) Li-ion
battery model suitable for the development of model-based advanced battery management systems.
The objectives of this work are to provide: (i) a detailed description of the model formulation, (ii)
a compiled and parametrizable Matlab framework for battery design, simulation, and control of
Li-ion cells or battery packs, (iii) a validation of the proposed numerical implementation with
respect to the commercial software COMSOL MultiPhysics and the Newman’s DUALFOIL code,
and (iv) some demonstrative simulations involving thermal dynamics, a hybrid charge-discharge
cycle emulating the throttle of a HEV, a model predictive control of state of charge, and a battery
pack simulation.

1 Introduction

The increasing demand for portable devices (e.g., smartphones) and hybrid electric vehicles (HEVs)
calls for the design and management of storage devices of high power density and reduced size and
weight. During the many decades of research, different chemistries of batteries have been developed,
such as Nickel Cadmium (NiCd), Nickel Metal Hydride (NiMH), Lead Acid and Lithium ion (Li-
ion) and Lithium ion Polymer (Li-Poly) (e.g., see [1, 2, 3, 4]). Among electrochemical accumulators,
Li-ion batteries provide one of the best tradeoff in terms of power density, low weight, cell voltage,
and low self-discharge [5]. Mathematical models can support the design of new batteries as well
as the development of new advanced battery management systems (ABMS) [6, 7, 8]. According
to the literature, mathematical models for Li-ion battery dynamics fall within two main categories:
Equivalent Circuit Models (ECMs) and Electrochemical Models (EMs). ECMs use only electrical
components to model the dynamic behaviour of the battery. ECMs include (i) the Rint model where
only a resistance and a voltage source are used to model the battery, (ii) the RC model (introduced
by the company SAFT [9]) where capacitor dynamics have been added to the Rint model [10], and
(iii) the Thevenin model, which is an extension of the RC model (e.g., see [11, 12] and references
therein). In contrast, EMs explicitly represent the chemical processes that take place in the battery.
While ECMs have the advantage of simplicity, EMs are more accurate due to their ability to describe
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detailed physical phenomena [13]. The most widely used EM in the literature is the porous electrode
theory-based pseudo-two-dimensional (P2D) model [14], which is described by a set of tightly coupled
and highly nonlinear partial differential-algebraic equations (PDAEs). In order to exploit the model
for simulation and design purposes, the set of PDAEs are reformulated as a set of ordinary differential-
algebraic equations (DAEs). The model reformulation is very challenging to carry out in a way that is
simultaneously computationally efficient and numerically stable for a wide range of battery parameters
and operating conditions. To the authors’ best knowledge, no publication is available in the literature
that provides a detailed step-by-step description of the numerical implementation of the P2D model or
a freely available Matlab framework suitable for simulation, design, and development of ABMS for Li-
ion batteries. In this article, starting from the P2D model, a computationally efficient and numerically
stable finite volume DAE formulation is described in detail in order to facilitate implementation
by the reader, while also addressing potential pitfalls and relative loopholes. Boundary conditions
used to enforce physical meaningfulness of the system are thorough discussed and their numerical
implementation clarified. Particular attention is addressed to the handling of interface boundary
conditions across different sections of the battery. Due to possible discontinuities between adjacent
sections, a mishandling of such conditions may lead to unmeaningful physical solutions. Due to its
intrinsic properties, the finite volume method has been chosen to easily deal with these particular
interface conditions. Finally, based on the proposed finite volume discretization, we provide the Li-
ION SIMulation BAttery Toolbox (LIONSIMBA), a fully customizable Matlab-compiled framework
suitable for simulating the dynamic behavior of Li-ion batteries. The framework is freely downloadable
at http://sisdin.unipv.it/labsisdin/lionsimba.php . This article describes the features of our
software. The user can implement his/her own custom-defined control algorithm to test different
ABMS strategies, simulate cell behavior, optimize manufacturing parameters or test battery packs
composed of series-connected cells. The package also allows the ready implementation of algorithms
to estimate indices such as the State of Charge (SOC) and the State of Health (SOH). The SOC is
an important property of batteries that quantifies the amount of remaining charge (e.g., [15]) and can
be used to prevent damage, ensure safety, and minimize charging time [16]. The SOH index measures
the ability of the battery to store and deliver electrical energy; similar to the SOC, estimation-based
approaches are used to predict the value of the SOH (e.g., see [17, 18, 19]). The SOH tracks the
long-term changes in a battery and its knowledge can help ABMS to anticipate problems through
online fault diagnosis while providing charging profiles to slow down the battery aging. The package
comes with the experimental parameters of the battery reported in [20]. An initialization file allows
changes in battery and simulator parameters. The simulator works under Matlab using IDA [21] to
solve the set of resulting DAEs with a good trade-off between accuracy and computational time.

In the following a description of the battery model and its numerical implementation is given. The
proposed framework is then validated with respect to the results obtained using the commercial soft-
ware COMSOL MultiPhysics [22] and the Newman’s Fortran code named DUALFOIL [23]. Finally, to
demonstrate the effectiveness of the proposed software, simulations of thermal dynamics, model pre-
dictive control of state of charge, hybrid charge-discharge cycles and battery pack of series-connected
cells are provided. The toolbox is equipped with all the Matlab source files able to reproduce the
simulations presented in this work.

2 Battery Model

The P2D model consists of coupled nonlinear PDAEs for the conservation of mass and charge in the
three sections of the battery – cathode, separator, and anode – denoted respectively by the indices
p, s, and n. The positive and negative current collectors are denoted by a and z. The index i ∈ S
is used to refer to a particular section of the battery, where S := {a, p, s, n, z}. All model equations
are reported in Tables 1 and 2. Variables ce(x, t), c

avg
s (x, t), and c∗s(x, t) ∈ R+ denote the electrolyte

concentration, the average concentration in the solid particles, and the surface concentration in the
solid particles of Li-ions respectively, where time t ∈ R+ and x ∈ R is the spatial direction along which
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the ions are transported. Assuming spherical coordinates, the diffusion inside the solid particles with
radius Rp is described using the Fick’s law

∂cs(r, t)

∂t
=

1

r2

∂

∂r

[
r2Ds

p

∂cs(r, t)

∂r

]
, (1)

with boundary conditions

∂cs(r, t)

∂r

∣∣∣∣
r=0

= 0,
∂cs(r, t)

∂r

∣∣∣∣
r=Rp

= −j(x, t)
Ds

eff ,i

,

where r represents the radial direction along which the ions intercalate within the particles. This model
introduces a pseudo-second dimension (r). In order to reduce complexity and computational burden,
the authors in [24] and [25] proposed different efficient reformulations for the solid-phase diffusion
equation. As discussed by the authors in [26], according to the particular application, different model
reformulations can be employed while maintaining good accuracy. For low to medium C rates, the
diffusion length method [27] or the two-terms polynomial approximation method can be used without
lack of precision. By increasing the C rates higher-order polynomial approximations or Pseudo Steady
State (PSS) [28] approximation can be employed. For more details, refer to [26] and the references
therein.

In the following, the model is presented assuming that the diffusion inside solid particles is described
using the two-term polynomial approximation. Concentration profiles inside the particle are assumed
to be a parabola in r and eq. (1) is approximated by means of average and surface solid particles
concentration

∂cavg
s (x, t)

∂t
= −3

j(x, t)

Rp
,

c∗s(x, t)− cavg
s (x, t) = −Rp

Ds
p

j(x, t)

5
.

This reformulation leads to a one-dimensional problem in x by removing the pseudo-second dimension
r. Despite the reduced computational burden, such approximation could lead to a decrease of the
prediction accuracy for high rates, short time responses or pulse currents [26]. For these applications,
higher-order polynomials or Fick’s law of diffusion are recommended, as later discussed in Section 4.2.

The electrolyte and solid potential are represented by Φe(x, t) and Φs(x, t) ∈ R, while T (x, t) and
j(x, t) represent the temperature and the ionic flux. Note that the ionic flux is present only in the
positive and negative electrode, and not in the separator. The open circuit voltage (OCV) is denoted
by U while the entropic variation of the OCV is denoted by ∂U

∂T . The cathode, anode, and separator
are composed of different materials; for a given section i, different electrolyte diffusion coefficients Di,
solid-phase diffusion coefficients Ds

i , electrolyte conductivities κi, porosities εi, thermal capacities Cp,i,
thermal conductivities λi, densities ρi, solid-phase conductivities σi, particle surface area to volume
ai, maximum solid phase concentration cmax

s,i , overpotentials ηi, and particle radius Rp,i can be defined.
The terms R and F are the universal gas constant and the Faraday constant, respectively, with t+
representing the transference number. The applied current density is Iapp(t), and Tref denotes the
environment temperature. In order to take into account for the properties of the different materials
used in the battery, effective diffusion and conductivity coefficients are evaluated according to the
Bruggeman’s theory, with “eff” suffixes representing effective values of such coefficients. The thickness
of the overall battery is L, where L =

∑
k lk and lk, k ∈ {a, p, s, n, z} represents the length of each

battery section. Due to physical constraints, it is necessary to impose (i) zero-flux boundary conditions
for the ce diffusion equation at the two ends of the battery, (ii) Newton’s cooling law for the dissipation
of heat in the system, and (iii) null-flux conditions for Φs at the interface between electrodes and the
separator as well as the enforcement of Ohm’s law at the end of the electrodes. Given that only
potential differences are measurable, without loss of generality, Φe can be set to zero at the end of the
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anode. Similarly, on the cathode side, zero-flux conditions are imposed. Within the battery, interface
conditions are imposed across the different materials. In order to get a more detailed description of the
conductivity and diffusion phenomena inside the electrolyte, all the related coefficients are determined
as a function of ce and T , as discussed in [29].

Excessive heat generation may lead to performance degradation or, in extreme cases, thermal
runaway of the cell [30, 31]. In order to address these possible safety issues, thermal dynamics are
coupled to the set of conservation equations describing the system. Three different source terms
are present, which are the ohmic, reversible, and reaction generation rates Qohm, Qrev, and Qrxn,
respectively [32]. The ohmic generation rate takes into account heat generated as a consequence
of the motion of Li-ions in the solid/liquid phase. The reaction generation rate accounts for heat
generated due to ionic flux and over-potentials, and the reversible generation rate takes into account
the heat rise due to the entropy change in the electrodes’ structure. The next section uses the notation
x̂0 = la, x̂p = la + lp, x̂s = la + lp + ls, and x̂n = la + lp + ls + ln. For a clearer comprehension, bold is
used in tables for coefficients whose dependence on other variables is made explicit in other equations.
The nomenclature of the variables is reported in Table 9. Model equations have been taken from the
work in [14], where for convenience the electrolyte potential is related to the ionic flux j(x, t) rather
than to the applied current density [33, 34]. The thermal model is taken from [32], while all the
parameters describing the particular chemistry have been taken from [20].

3 Numerical Implementation

Most numerical methods for model-based estimation and control algorithms require the model to
be formulated in terms of AEs or DAEs rather than PDAEs. Different numerical methods can be
used to achieve this objective. The reformulation process from PDAEs to AEs or DAEs is carried
out by discretizing the domains of the independent variables (e.g., the time domain t and the n-
dimensional spatial domain x ∈ Rn). The discretization can involve both time and space, to produce
AEs, or only space, to produce DAEs. An example of discretization in time and space is given by
the FTCS (Forward-Time Central-Space) approach [35]. Other techniques, like the method of lines
(MOL) [36], discretize only the space domain and leave the time as a continuous variable. When this
latter approach is used, finite volume, finite difference, or finite element methods can be employed
to obtain the set of DAEs. Alternatively other approaches can be used. For instance the authors in
[20] provides a numerical implementation where an orthogonal collocation approach together with an
efficient coordinate transformation is proposed to solve the set of resulting DAEs. In this paper, in
order to exploit the properties of variable-step solvers, MOL is used to reformulate the original set of
PDAEs. In particular, the finite volume method (FVM) is employed. Due to its ability to conserve
properties with high accuracy (within numerical roundoff), the FVM has been used in literature to
discretize models in a wide range of applications, such as heat transfer problems [37], flow and transport
in porous media [38], or more general applications for hyperbolic problems as discussed in [39]. In
particular, the FVM together with the harmonic mean (HM) have been used to deal with possible
discontinuities across different sections of the cell. To the best of authors knowledge, no work exists
in literature which addresses in detail the numerical issues related to the implementation of the Li-ion
cell model and, in particular, the handling of boundary conditions that ensure physical meaningfulness
of the obtained solutions. For this reason, in the following, all the numerical details are addressed.

3.1 Finite Volume formulation

Consider a general diffusion-convection equation defined on a domain in RN of the form

∂φ

∂t
+∇(ηφ) = ∇(Γ∇φ) + s (2)

where φ is the unknown variable, η is the velocity, Γ is a diffusion coefficient and s a source term.
Both the unknown φ and the source term s depend on time t and space x ∈ RN . For convenience
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define f(φ) := ηφ− Γ∇φ. Integrating (2) over a spatial domain Ω ⊂ RN and applying the divergence
theorem produces the integral form of the conservation law:∫

Ω

∂φ

∂t
dV +

∮
dΩ

(f(φ) · n) dS =

∫
Ω
sdV (3)

where dΩ is the boundary of the domain Ω, n is the outward pointing unit normal on the boundary
of the domain, and dV and dS represent the infinitesimal volume of Ω and the infinitesimal surface
of the boundary dΩ respectively. Alternatively, this integral equation could be written directly as an
exact conservation equation over any prescribed spatial domain.

According to the FVM, the spatial domain Ω is divided into a set of disjoint control volumes (CVs)
Ωk centered in xk ∈ RN , such that Ω = ∪kΩk and Ωi ∩ Ωj = ∅ ,∀i 6= j. The average value of the
unknown variables for each CV is

φ̄k(t) ≈ 1

Gk

∫
Ωk

φ(x, t) dV

where Gk represents the volume of Ωk. Using this equation, the integrals in (3) can be reformulated
as

˙̄φk(t) +
∑

j∈C(k)

(F (φ̄) · n)k,j ≈ s̄k(t) (4)

where C(k) is the set of the neighbor cells to the kth CV and (F (φ̄) ·n)k,j is the normal component of
the numerical approximation of f(φ) ·n, directed toward xj starting from xk. An illustrative example
of the set C(k) is given in Fig. 1. Suitable numerical approximations need to be employed for the
term F (φ̄); given that the average values of the unknown variables φ̄ are computed in the FVM,
interpolation techniques are employed to recover the value of such unknowns at the edges of the CVs
[40]. The approximation of F (φ̄) is discussed in next section.

3.2 Discretization of the governing equations

The discretization method introduced in Section 3.1 is exploited to reformulate the set of governing
equations summarized in Table 1. Given that all the unknowns of the Li-ion cell model are functions
of the variables t ∈ R+ and x ∈ R, the development of a 1D FVM model is addressed. In order to
correctly carry out the discretization process, a mesh structure of the spatial domain is defined by
subdividing the spatial domain into Na+Np+Ns+Nn+Nz non-overlapping volumes with geometrically
centered nodes (as depicted in Fig. 2). Every CV is associated with a center xk and spans the interval
[xk− 1

2
;xk+ 1

2
]. To facilitate the treatment of boundary and interface conditions, the edges of each CV

are aligned with the domain boundaries and internal interfaces. The width of every CV is defined as
∆xi = li/Ni, where i represents a particular section of the battery.

Once the discretization mesh is structured, the governing equations are discretized as summarized
in Table 3. All the interface conditions used to enforce continuity between adjacent materials are
discussed in Section 3.3.

Particular attention is required for the thermal dynamics. The reversible and reactive heat sources
can be discretized as

Q̄rev,k = Fai j̄i,k(t) T̄k(t)
∂Ui,k

∂T
Q̄rxn,k = Fai j̄i,k(t) η̄i,k(t)
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whereas the derivatives present in the ohmic source are numerically approximated as

∂Φs(x, t)

∂x

∣∣∣∣
xk

≈
Φ̄s,k+1(t)− Φ̄s,k−1(t)

2∆xi

∂Φe(x, t)

∂x

∣∣∣∣
xk

≈
Φ̄e,k+1(t)− Φ̄e,k−1(t)

2∆xi

∂ ln ce(x, t)

∂x

∣∣∣∣
xk

≈
c̄e,k+1(t)− c̄e,k−1(t)

2∆xi c̄e,k(t)

using a central differencing scheme. Finally the term Q̄source,k := Q̄ohm,k + Q̄rev,k + Q̄rxn,k.
Equation (C2) in Table 3 requires the evaluation of T (x, t), ce(x, t), and κeff at the edges of the

CVs. For example, consider Fig. 3, where the value of the unknown T̄ has to be evaluated at the
interface between two CVs. In order to recover such value, linear interpolation techniques are used.
The same approach is also applied for ce and κeff.

As discussed in Section 3.1, a suitable numerical approximation for F (φ̄) is needed. Given that
no convective terms are present in the set of governing equations, numerical approximation is only
required for the diffusive terms (e.g., −Γ∇φ). In this work, all the diffusive terms are numerically
approximated with a first-order scheme:

∂φ(x, t)

∂x

∣∣∣∣
x
k+1

2

≈ φ̄k+1(t)− φ̄k(t)

∆x

∂φ(x, t)

∂x

∣∣∣∣
x
k− 1

2

≈ φ̄k(t)− φ̄k−1(t)

∆x

All the values coming from the additional equations in Table 2 are obtained as a function of the
average values of the unknowns. Equation (T) is used to obtain the values of T ; and equations (M1),
(M2), and (M3) are used to obtain the values of ce, c

avg
s , and c∗ respectively. The values of Φs are

obtained from (C1) while the values of Φe are calculated through (C2).

3.3 Implementation of Boundary and Interface conditions

Boundary conditions must be enforced to have a physically meaningful solution. As shown in Table 1,
null-flux boundary conditions on the electrolyte diffusion equation ce can be straightforwardly enforced
by imposing ∂ce

∂x = 0 at x = x̂0 and x = x̂n. The same procedure can be used to enforce ∂Φe
∂x = 0

at x = x̂0, while Φe = 0 at x = x̂n is enforced by setting to zero the value of Φe at the last CV of
the anode. Solid-phase potential boundaries are enforced by substituting ∂Φs

∂x at x = x̂0 and x = x̂n
the value of −Iapp/σeff,i. Similarly, at x = x̂p and x = x̂s,

∂Φs
∂x is replaced by the value 0. To enforce

heat exchange with the surrounding environment, the terms ∂T
∂x evaluated at x = 0 and x = L are

substituted with the terms h(Tref − T̄1) and h(T̄end − Tref) respectively. The suffixes 1 and end refer to
the first and last CV of the entire mesh. All these conditions have been formulated also for the FVM
discretization as shown in Table 3.

Due to changes in material properties along the length of the battery, interface conditions are
required to enforce continuity of the solution. For this reason, the values of different coefficients (e.g.,
Deff,i, κeff,i, λi) need to be evaluated at the interface between two different materials. The easiest way
would be to use an arithmetic mean; however, in some cases, this approach cannot accurately handle
the abrupt changes of coefficients that may occur. Instead, the HM is employed to evaluate the value
at the edges of the CVs. The HM of two generic coefficients (k1 and k2) can be expressed as

k1k2

βk2 + (1− β)k1

where β represents a weight to account for the difference between the different CV widths. A common
value for β is β = ∆x1

∆x2+∆x1
, where ∆x1 and ∆x2 represent the CV widths. This formulation produces
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results that are more robust in presence of the abrupt changes of the coefficients, without requiring a
excessively fine grid in the vicinity of the interface [41].

Consider Fig. 4 where the interface across the last volume of the cathode and the first volume of
the separator is depicted. Remember that, as discussed in Section 3.2, the mesh structure has been
chosen in order to align the CV edges with the interfaces or physical boundaries of the battery. The
value of Deff,k+ 1

2
can be obtained using the HM as

Deff,k+ 1
2

=
Deff,kDeff,k+1

βDeff,k+1 + (1− β)Deff,k

where β =
∆xp

∆xp+∆xs
. The electrolyte diffusion in the last volume of the cathode is

εp
∂c̄e,k(t)

∂t
= De

eff

(c̄e,k+1(t)− c̄e,k(t))

∆xp(∆x̃)

−Deff,k− 1
2

(c̄e,k(t)− c̄e,k−1(t))

∆x2
p

+ ap (1− t+) j̄p,k(t)

whereas

εs
∂c̄e,k+1(t)

∂t
= Deff,k+ 3

2

(c̄e,k+2(t)− c̄e,k+1(t))

∆x2
s

−De
eff

(c̄e,k+1(t)− c̄e,k(t))

∆xs(∆x̃)

in the first volume of the separator, with ∆x̃ =
∆xs+∆xp

2 . The same approach is used to enforce
interface conditions where needed.

When dealing with battery packs, in particular with series-connected cells, all the aforementioned
numerical scheme have to be replicated for each cell. Moreover, when temperature dynamics are
considered, the numerical scheme has to be adapted in order to account for continuity fluxes across
the cells. Indeed, if two cells are connected in series, at the current collectors interface across the two
cells (e.g., at x = x∗) must hold that

−λz,1
∂T1(x, t)

∂x

∣∣∣∣
x=x∗

= −λa,2
∂T2(x, t)

∂x

∣∣∣∣
x=x∗

,

where Ti(x, t) refers to the temperature of the current collector of the i-th cell. Finally, Fourier’s law
for heat conductivity has to be enforced respectively at the cathode of the first cell and at the anode
of the second cell.

4 Li-ion Simulation Battery Toolbox (LIONSIMBA)

Different implementations of Li-ion cell simulation can be found in literature which are written in
languages such as Maple, Matlab, and Fortran (DUALFOIL [23]). Commercial software such as
COMSOL Multiphysics [22] or Modelica [42] provide a variety of models to simulate the behavior of
a Li-ion cell. The lack of freely available Matlab-based software able to simulate Li-ion cells makes it
difficult to have a reference simulation environment for the design and evaluation of different ABMSs.
For this reason, in this work, the Matlab-based Li-ION SIMulation BAttery Toolbox (LIONSIMBA)
has been developed. Due to its native integration with the Matlab environment, the proposed software
facilitates the development of other types of algorithms (e.g., identification of Li-ion cell parameters,
control algorithms for optimal control etc...). LIONSIMBA is freely downloadable at:

http://sisdin.unipv.it/labsisdin/lionsimba.php
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Based on the Li-ion cell model presented in the previous sections, LIONSIMBA is a Matlab package
whose objective is to facilitate the development of different ABMSs, providing a reliable and ready-to-
use simulation environment. The package comes with compiled Matlab files and editable .m scripts:1

• electrolyteDiffusionCoefficients.m: computes the electrolyte diffusion coefficients.

• electrolyteConductivity.m: computes the electrolyte conductivity coefficients.

• openCircuitPotential.m: used to compute the Open Circuit Potential (OCP).

• reactionRates.m: computes the reaction rate coefficients for the ionic flux.

• solidPhaseDiffusionCoefficients.m: computes the solid phase diffusion coefficients.

All the parameters related to the simulator and to the battery are managed through the script
Parameters init.m. The customization of this script allows the user to disable features such as the
thermal dynamics, change the number of CVs of the mesh, enable real-time display of results, and
change the battery section lengths, thermal conductivities, porosities, and so on. The user can define
the operating mode of the charge/discharge cycle by selecting between galvanostatic, potentiostatic,
or variable current profile operations.

The script getInputCurrent.m contains an example for the definition of the variable current
profile, and can be used to apply a customized current profile during the simulation of the Li-ion
battery. A generic nonlinear function can be used for this purpose; extra parameters can be used
inside this function: current time instant t, initial integration time t0, final integration time tf , and a
structure-containing extra user data. For example, a possible implementation is

I(t) = α
t− t0
tf − t0

+ ξ, [α, ξ] ∈ R

More sophisticated control strategies such as model predictive control (MPC) can also be implemented
in this framework (see the next section for an example). An additional degree of freedom is set by the
possibility of defining a custom algorithm for the estimation of SOC and SOH. Within the Parame-
ters init.m script, the user can set custom functions to be externally called after each integration step;
these functions will receive all the integration data of the battery and an extra structure-containing
user-defined data.

A simulation can be initiated by calling from the Matlab command line:

out = s ta r tS i mu l a t i on ( t0 , t f , i n i t i a l S t a t e s , I , param )

where

• t0: represents the initial integration time.

• tf: represents the final integration time.

• initialStates: represents the structure of initial states.

• I: represents the value of the applied input current.

• param: represents the cell array of parameters structures to be used in simulation.

The structure initialStates can be used as initial state from which to start a simulation. If left empty,
LIONSIMBA will automatically compute a set of consistent initial conditions (CICs) starting from
which the simulation will run. If initialStates is used as a parameter, it has to be a set of CICs for the
battery model in Table 3. In case it is not a set of CIC, the numerical integrator will fail to converge
and no results will be provided. The param array, if passed, is used as the set of parameters for the

1This set of scripts refer to version 1.02 of the software; modifications or other scripts can be added in future releases
of the software.

8



simulation. If empty, the software will use a set of parameters according to the settings defined by
the user in the script Parameters init.m. When designing ABMSs for battery packs with series-
connected cells, a cell-wise balancing has to be guaranteed during charging [43, 44]. LIONSIMBA
can support the user in this task by providing a full independent parametrization of each cell of the
series. Indeed, if the param array contains multiple parameters structure, the software will perform
a simulation of a battery pack composed of several cells connected in series as shown in Section 5.1.
Each element of the pack can be parametrized individually, leading to independent simulations of each
cell. Finally, the out structure will contain the values of all the dependent variables and parameters
used in the simulations. The package requires the SUNDIALS [21] suite to be installed and correctly
configured with Matlab; in particular, the solver IDA is used.

To obtain further help on any single script, the user can type

help <scriptname>

from the Matlab command line or refer to the software manual.
The numerical implementation of the LIONSIMBA has been carried out according to the rules

outlined in Section 3 and the cell considered is a LiCoO2 and LiC6 system. All the parameter values
have been taken from the real battery data in [20], and are summarized in Table 4.

4.1 LIONSIMBA Validation

While the experimental validation of the P2D model has been addressed by the authors in [14], in
the following the numerical implementation of LIONSIMBA is validated by comparing the results
coming from the proposed framework with the ones coming from the commercial software COMSOL
MultiPhysics and the Fortran code DUALFOIL. While COMSOL has been supplied with the same
model used in our framework, where a heat diffusion PDE is used to describe the thermal dynamics,
DUALFOIL neglects the spatial distribution of the temperature and averages the heat generation
rates over the cell [45]. For this reason, the comparison among the three different codes is carried
out considering isothermal conditions. For completeness, the validation of the thermal enabled code
is carried out only with respect to COMSOL. For isothermal and thermal enabled scenarios, a 1C
discharge cycle is performed, while the same set of parameters are maintained across the different
codes.

The comparison among the cell potentials V (t) in the isothermal case is shown in Fig. 5(a): the
results coming from the LIONSIMBA framework (circles) fits the results obtained using COMSOL
(solid line) and DUALFOIL (diamonds), which are almost identical. Similarly, the electrolyte con-
centrations ce(x, t) and potentials φe(x, t), presented in Fig. 5(b) and 5(d) respectively, show good
fitting performance. Finally the surface solid phase concentrations c∗s(x, t) results are presented in
Fig. 5(c). For the thermal enabled scenario, in Fig. 6(a) the V (t) profiles are shown, where the solid
line represents COMSOL results while the circles LIONSIMBA data. As in the previous case, the fit
shows good performance of LIONSIMBA. Internal states are depicted in Fig. 6(b), Fig. 6(c) and 6(d)
where ce(x, t), c

∗
s(x, t) and Φe(x, t) are represented respectively. Finally, in Fig. 6(e) the comparison

between temperature profiles is shown.

4.2 Solid-phase diffusion models

As introduced in Section 2, according to the P2D model developed in [14], the diffusion process inside
the solid particles is described using Fick’s law, where the presence of a second-pseudo dimension (r)
can significantly increase the computational burden. However, according to the particular application
under study, different approximations of eq. (1) can be employed without an important loss of ac-
curacy. The choice of the solid-phase diffusion model has to be cautious: indeed when dealing with
scenarios comprising high rate of charge/discharge, short time simulations or pulse currents, the usage
of approximate models may have a negative impact on the accuracy of the results [26]. For this reason,
LIONSIMBA allows the user to chose among three different models for the solid-phase diffusion:
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• Fick’s law diffusion equation (including the pseudo-second dimension r):

∂cs(r, t)

∂t
=

1

r2

∂

∂r

[
r2Ds

eff

∂cs(r, t)

∂r

]

with boundary conditions

∂cs(r, t)

∂r

∣∣∣∣
r=0

= 0
∂cs(r, t)

∂r

∣∣∣∣
r=Rp

= −j(x, t)
Ds

eff ,i

• two-parameters polynomial approximation [25]:

∂cavg
s (x, t)

∂t
= −3

j(x, t)

Rp

c∗s(x, t)− cavg
s (x, t) = − Rp

Ds
eff ,i

j(x, t)

5

• higher-order polynomial approximation [25]:

∂cavg
s (x, t)

∂t
= −3

j(x, t)

Rp

∂q(x, t)

∂t
= −30

Ds
eff ,i

R2
p

q(x, t)− 45

2

j(x, t)

R2
p

c∗s(x, t)− cavg
s (x, t) = −j(x, t)Rp

35Ds
eff ,i

+ 8Rpq(x, t)

To evaluate the prediction accuracy of each approximate model, a comparison among the different
V (t) profiles is here addressed. In particular the influence of different C rates is considered. Let define
the model summarized in Table 1 using the Fick’s law of diffusion as the ”full model”. In Fig. 7(a) and
Fig. 7(b) the comparison among the full model and approximate ones is depicted. When dealing with
low to medium C rates (1C-2C) the adoption of two-parameters polynomial approximation is able to
accurately represent the cell behavior. Despite this, while working at higher rates (5C), higher-order
polynomial approximations give better results as shown in Fig. 7(c). Finally, when working with
high C rates (i.e. HEV applications which run at 10C-20C), two-terms approximations are not able
to represent accurately the cell behavior, while higher-order approximation still produces reasonable
results as depicted in Fig. 7(d). To quantify the performance of each approximate model, root
mean square error (RMSE) indices and normalized time indices (NTI) are summarized in Table 6.
In each case the RMSEs are evaluated comparing approximate models solutions with respect to the
full model solutions, while the normalized times are obtained as the ratio between the computational
time required by approximate models and the time required by the full one to simulate the different
scenarios. As it is possible to see, a two-terms polynomial approximation has good results for low
C rates. Performance are lowered when higher C rates are considered. In all the scenarios, this
approximation takes ≈ 80% less time than the full model to simulate the cell. As expected, by using
a higher-order polynomial approximations, the RMSEs for each scenario are lowered. Compared to
the two-terms model, due to the addition of a set of ODEs, a significant increase in the computational
time is recorded. Nevertheless, it is worth highlighting that at 10C the higher-order approximation
has a RMSE of 1.8701%. This aspect, together with a computational time which is ≈ 37% less than
the full model one, makes this approximation a reasonable candidate for simulation up to 10C for this
particular chemistry.
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5 Simulations

Simulation results were obtained using Matlab R2014b on a Windows 7@3.2GHz PC with 8 GB of
RAM for the experimental battery parameters in [20] with a cutoff voltage of 2.5 V and environmental
temperature of 298.15 K. For the proposed chemistry, the 1C value is ≈ 30 A/m2. The effectiveness
and ease of use of the proposed framework is shown.

In the first scenario (Fig. 8), −1C discharge simulations are compared for a very wide range of
heat exchange coefficient h, with high h being the most challenging for retaining numerical stability in
dynamic simulations. As expected, decreasing the value of the parameter h leads to a faster increase
of the cell temperature. Moreover, due to the coupling of all the governing equations, it is possible to
note the influence of different temperatures on the cell voltage. In the second scenario (Fig. 9), for
a fixed value of h = 1 W/(m2 K), different discharge cycles are compared at −0.5C, −1C, and −2C.
According to the different applied currents, the temperature rises in different ways; it is interesting
to note the high slope of the temperature during a −2C discharge, mainly due to the electrolyte
concentration ce being driven to zero in the positive electrode by the high discharge rate. In the third
scenario, the framework is used to simulate a hybrid charge-discharge cycle, emulating the throttle of a
HEV. During breaking, the battery gets charged. Table 5 resumes the configuration of the car throttle
during simulations. In Fig. 10 it is possible to analyze the response of a single cell inside an HEV pack
under a hybrid charge-discharge cycle. In this case effects of temperature among the different cells
have been neglected. The solid potential behavior is primarily due to the different applied C rates,
with discontinuous changes producing voltage drops. Different slopes of the voltage curve are related
to the different C rates applied. Temperature rise is recorded in the first 50 seconds of simulations,
which are followed by a slight decrease of the temperature mainly due to the exchange of heat with
the surrounding environment (h = 1 W/(m2 K)) and due to the lower current density applied. At
around 250 s, temperature starts to increase due to the −1C rate applied during moderate speed; high
slope of increase at around 410 s is due to the higher value of the discharge current which during an
overtake reaches the value of −2C. Returning to moderate speed makes the temperature slope more
gentle. During the last 10 seconds, temperature decreases due to the significant change in applied
current and due to dissipation of heat with surrounding ambient. A sketch of the code used for this
simulation is presented in Algorithm 1.

Algorithm 1 Car cycling example code

Input setup:
1: I = {−29.5, 14.75,−14.75,−29.5,−58,−29.5, 14.75} . Simulation current densities
2: time = {50, 10, 150, 200, 5, 200, 10} . Duration of each element of Iapplied (in seconds).
3: t0 = 0; . Init all the useful variables
4: tf = 0;
5: initialStates.Y = [ ];
6: initialStates.YP = [ ];
7: Phis tot = [ ];
8: t tot = [ ];
9: T tot = [ ];

Core script:
10: for i = 1:length(I) do
11: tf = tf + time(i);
12: results = startSimulation(t0,tf,initialStates,I(i),[ ]);
13: Phis tot = [Phis tot;results.original.Phis]; . Concatenate results
14: T tot=[T tot;results.original.Temperature];
15: t0 = time(i);
16: initialStates = results.initialStates; . Update initial states for the next simulation
17: end for
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In Fig. 11, the application of an ABMS is addressed. In this particular simulation, a model
predictive control algorithm [8] is adopted to drive the SOC of the battery to a given value, while
accounting for input and output constraints. The initial SOC was around 20% and its reference value
was set to 85%. According to LIONSIMBA, the estimation of the SOC can be easily carried out by
defining a custom function. In this particular scenario, the SOC has been computed as

SOC(t) =
1

ln cmax
s,n

∫ ln

0
cavg
s (x, t) dx

The temperature maximum bound was set to 313.5K, with the voltage set to 4.2 V. The BMS applies
a current density which is almost fixed at 1C value for the entire simulation, while starting to drop
as the SOC approaches its final value. The behavior of the SOC is almost linear during the first
2500 s, while starting to change according to the current drop, in order to approach smoothly the
final stage of charge. In Fig. 12 it is possible to see that, according to the different charging stages,
the electrolyte concentration diffuses in different ways. Starting from cinit

e = 1000 mol/m3, the input
current induces a drop of concentration within the battery sections due to the diffusion of ions from the
cathode to the anode. Approaching the final stage of charging, the concentration starts to converge
back to the initial value of 1000 mol/m3 and, around 5500 s, reaches the steady value. This behavior
emphasizes the property of the FVM to conserve properties within numerical roundoff. Algorithm 2
provides a high-level description of how to implement a closed-loop controller in LIONSIMBA. In Fig.

Algorithm 2 High level control code

Init script:
1: t0 = 0;
2: tf = dt; . Simulations are run over a sampling time periods
3: initialStates.Y = [ ];
4: initialStates.YP = [ ];
5: Condition = 1;

Core script:
6: while Condition do
7: I = ComputeControlLaw(initialStates);
8: results = startSimulation(t0,tf,initialStates,I,[ ]);
9: [...] . Elaborate and concatenate the results and update the time indices

10: initialStates = results.initialStates; . Update initial states for the next simulation
11: if SOC reached reference value then
12: Condition = 0
13: end if
14: end while

13, simulations have been run disabling the thermal dynamics leading to an isothermal environment.
This particular configuration can be exploited in order to assess the influence of different constant
temperatures at which the battery can operate.

All the results of the proposed simulations can be reproduced by running the example scripts
available with LIONSIMBA. Finally, Table 7 shows the times required by the simulator to perform
the different scenarios, which are all under 100 s.

5.1 Battery pack of series-connected cells

In Figures 14 and 15 the results of a battery pack simulation are proposed. To emphasize the ability
to independently parametrize each cell, in this scenario the SOC of cell #1 is set to the 95% of its
initial value while the thickness of the cathode of cell #2 is doubled with respect to its initial value.
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All the other parameters are the same for the three cells. In Fig. 14 the behavior of the output voltage
of the overall pack versus each cell is depicted. It is possible to see that the starting voltage of the
pack is around 12.1 V and decreases subjected to a 1C discharge current. In 3346 s the pack get
completely discharged due to cell #1 which approaches earlier the cutoff voltage (set to 2.5 V). The
lowered starting SOC has determined this behavior. In Fig. 15 the comparison among the electrolyte
and solid-phase surface concentrations as well as the electrolyte potentials are shown. The cell #2 has
a significant different behavior mainly due to the presence of a cathode with a thickness doubled with
respect to the other two cells. Note that this variation has effects over the output voltages, as shown
in Fig. 14. Besides cell # 1 which is starting from a different SOC value, the different behaviors of
V (t) between cell #2 and cell #3 are driven by the thickness variation.

6 Conclusions

This work describes a detailed procedure for the numerical implementation of the P2D model developed
by the authors in [14]. By considering an approximate model for the solid-phase diffusion, the pseudo-
second dimension is removed to reduce the computational complexity. The treatment of boundary
conditions is addressed with particular attention to the interface conditions across the different sections
of the battery. Following the procedures and rules outlined in Section 3, the reader can implement
his/her own version of the model in different programming languages. Moreover, a freely available
Matlab framework LIONSIMBA is provided that is suitable for battery design, simulation, and control.
The framework is extended to account for different solid-phase diffusion models to meet required
accuracy. The simulations demonstrate high numerical stability for different operating scenarios. The
effectiveness of LIONSIMBA is verified considering a heterogeneous sequence of applied current coming
from an HEV and through the assessment of an ABMS strategy, in particular, the model predictive
control of state of charge. A battery pack composed of series-connected cells can be simulated by
considering several independent cells with their own parameters. Due to its integration with the
Matlab environment, the framework facilitates the development and test of different algorithms such
as control algorithms, identification procedures or optimization of manufacturing parameters and so on.
A timing benchmark of the proposed framework has been performed and the results are summarized in
Table 8. The comparison among DUALFOIL, COMSOL and LIONSIMBA is presented. For each code,
a 1C discharging cycle in isothermal conditions is simulated repeatedly; average simulation times are
considered. At a first glance, timings appear to be all comparable among the different implementations.
In particular, the average time of DUALFOIL results to be less or equal than the other two: this is
mainly due to the fully compiled nature of the code. Due to its pseudo-compiled implementation,
the LIONSIMBA framework has to be completely interpreted by MATLAB at runtime; this explains
the slight increase in simulation time with respect to DUALFOIL. However, in all the scenarios, both
LIONSIMBA and DUALFOIL outperform the performance of COMSOL. These preliminary results
highlight the promising nature of the proposed framework as a reliable, efficient and freely available
Matlab-based software for the P2D model simulation. Further developments (e.g. code optimization
and distribution of compiled versions) can only concur to improve the current performance. Moreover,
as the proposed simulations were written in standard serial mode, the computation time could be
reduced by at least a factor of ten by using a multicore CPU using parallel DAE solvers. Modern
versions of Matlab have easy-to-implement built-in options for distributing calculations among multiple
cores on a single CPU, and among multiple CPUs.
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Figure 1: Example of a 2D FVM mesh where the set of neighbor cells C(k) is represented by the green
cells.

Figure 2: One-dimensional finite volume mesh

Figure 3: Interpolation technique to recover edge values of the unknowns.

Figure 4: Electrolyte diffusion process: interface across the cathode and separator.
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(a) Cell potential (b) Electrolyte Li-ions concentration

(c) Solid phase Li-ions concentration (d) Electrolyte potential

Figure 5: Validation of the proposed numerical implementation in isothermal conditions
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(a) Cell potential (b) Electrolyte Li-ions concentration

(c) Solid phase Li-ions concentration (d) Electrolyte potential

(e) Temperature

Figure 6: Validation of the proposed numerical implementation with thermal dynamics
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(a) 1C rate comparison (b) 2C rate comparison

(c) 5C rate comparison (d) 10C rate comparison

Figure 7: Comparison of the three different solid-phase diffusion equations implemented in LION-
SIMBA.
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Figure 8: −1C discharge cycle run under different heat exchange parameters: blue line h = 0.01W/(m2

K), dashed orange line h = 1 W/(m2 K) and dot-dashed yellow line h = 100 W/(m2 K).
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Figure 9: Full discharge cycle run under different C rates: −2C (dot-dashed yellow), −1C (dashed
orange line), and −0.5C (blue line).
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Figure 10: Hybrid charging-discharging cycle.
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Figure 11: ABMS control : an MPC algorithm [8] is used to drive the charge of the battery from 20%
to 85% while considering voltage, temperature, and current constraints.
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Figure 12: ABMS control – Electrolyte concentration: The behavior of the first and last volume of
each section of the battery is depicted, where the countinous lines belong to the cathode, the dashed
lines to the separator and the dotted lines to the anode.

Figure 13: Full discharge cycle in an isothermal environment: blue line −0.5C, dashed orange line
−1C, and dot-dashed yellow line −2C.
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Figure 14: Simulation of a 3-cells pack. The upper curve represents the overall voltage of the 3 series
connected Li-ion cells, while the lower plots depict the voltage of each cell in the pack. The different
parametrization of each cell determines different behaviors.

Figure 15: Simulation of a 3-cells pack. Different internal states profiles inside the three cells. Indi-
vidual parametrizations leads to different behaviors.
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Current Collectors, i ∈ {a, z} Boundary Conditions

ρiCp,i
∂T (x, t)

∂t
=

∂

∂x

[
λi
∂T (x, t)

∂x

]
+
I2
app(t)

σeff ,i

−λa
∂T (x, t)

∂x

∣∣∣∣
x=0

= h(Tref − T (x, t))

−λz
∂T (x, t)

∂x

∣∣∣∣
x=L

= h(T (x, t)− Tref)

Positive and Negative Electrodes, i ∈ {p, n}

εi
∂ce(x, t)

∂t
=

∂

∂x

[
Deff ,i

∂ce(x, t)

∂x

]
+ ai(1− t+)ji(x, t)
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= 0
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s (x, t)

∂t
= −3

ji(x, t)
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c∗s(x, t)− cavg
s (x, t) = − Rp,i

Ds
eff ,i

ji(x, t)
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Table 1: Li-ion P2D model governing equations

24



Open Circuit Potential (Thermal dependence)

Up = Up,ref + (T (x, t)− Tref)
∂Up

∂T

∣∣∣∣
Tref

Un = Un,ref + (T (x, t)− Tref)
∂Un

∂T

∣∣∣∣
Tref

Entropy change

∂Up

∂T
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Tref

= −0.001
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p − 0.6115448939999998θ3
p
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p
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n
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Open Circuit Potential (Reference value)
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Heat source terms (Anode and Cathode)
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Heat Source terms (Separator)
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Various Coefficients
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Table 2: Additional equations
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Current Collectors, i ∈ {a, z} Boundary Conditions
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∂T̄k(t)

∂t
=

1

∆xi

[
λi
∂T (x, t)

∂x

] ∣∣∣∣xk+1
2

x
k− 1

2

+
I2
app(t)

σeff ,i

[
λi
∂T (x, t)

∂x

] ∣∣∣∣
0

= h(Tref − T̄1(t))[
λi
∂T (x, t)

∂x

] ∣∣∣∣
L

= h(T̄end(t)− Tref)

Positive and Negative Electrodes, i ∈ {p, n}

(M1) εi
∂ce,k(t)

∂t
=

1

∆xi

[
Deff ,i

∂ce(x, t)

∂x

] ∣∣∣∣xk+1
2

x
k− 1

2

+ ai(1− t+)j̄i,k(t)
∂ce(x, t)

∂x

∣∣∣∣
x̂0

= 0

∂ce(x, t)

∂x

∣∣∣∣
x̂n

= 0

(M2)
∂c̄avg

s (t)

∂t
= −3

j̄k(t)

Rp,i

(M3) c̄∗s(t)− c̄avg
s (t) = − Rp,i

Ds
eff ,i

j̄k(t)

5

(C1)

[
σeff ,i

∂Φs(x, t)

∂x

] ∣∣∣∣xk+1
2

x
k− 1

2

= ai F j̄i,k(t) ∆xi

[
σeff ,i

∂Φs

∂x

] ∣∣∣∣
x̂0,x̂n

= −Iapp

∂Φs(x, t)

∂x

∣∣∣∣
x̂p,x̂s

= 0

(C2)

[
κeff ,i

∂Φe(x, t)

∂x

] ∣∣∣∣xk+1
2

x
k− 1

2

−
[
κeff ,iT (x, t)Υ

∂ ln ce(x, t)

∂x

] ∣∣∣∣xk+1
2

x
k− 1

2

=

∆xi ai F j̄i,k(t)

∂Φe(x, t)

∂x

∣∣∣∣
x̂0

= 0

Φ̄e,end = 0

(T) ρiCp,i
∂T̄k(t)

∂t
=

1

∆xi

[
λi
∂T (x, t)

∂x

] ∣∣∣∣xk+1
2

x
k− 1

2

+ Q̄source,k

j̄i,k(t) = 2keff ,i

√
c̄e,k(t)(cmax

s,i − c̄∗s,k(t))c̄∗s,k(t) sinh
[

0.5R
FT̄k(t)

η̄i,k(t)
]

η̄i,k(t) = Φ̄s,k(t)− Φ̄e,k(t)− Ū i,k

Separator, i = s

(M1) εi
∂ce,k(t)

∂t
=

1

∆xi

[
Deff ,i

∂ce(x, t)

∂x

] ∣∣∣∣xk+1
2

x
k− 1

2

(C2)

[
κeff ,i

∂Φe(x, t)

∂x

] ∣∣∣∣xk+1
2

x
k− 1

2

−
[
κeff ,iT (x, t)Υ

∂ ln ce(x, t)

∂x

] ∣∣∣∣xk+1
2

x
k− 1

2

= 0

(T) ρiCp,i
∂T̄k(t)

∂t
=

1

∆xi

[
λi
∂T (x, t)

∂x

] ∣∣∣∣xk+1
2

x
k− 1

2

+ Q̄ohm,k

Table 3: FVM P2D equations
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Time (s) C rate Description

0–50 −1 C Moderate speed

50–60 0.5 C Charge

60–210 −0.5C Normal speed

210–410 −1C Moderate speed

410–415 −2C Overtaking

415–615 −1C Moderate speed

615–620 0.5C Charge

Table 5: Throttle configuration for hybrid charging-discharging simulation

1C 2C 5C 10C

RMSE NTI RMSE NTI RMSE NTI RMSE NTI

two-parameters 0.0822% 20.0265% 0.2535% 18.3982% 1.5849% 22.4554% 6.5403% 23.6452%

higher-order 0.0165% 37.2567% 0.0532% 44.4125% 0.3575% 60.2540% 1.8701% 62.7276%

Table 6: Comparison of different approximation methods for the diffusion in the solid particles. Root
Mean Square Error (RMSE) and the Normalized Time Index (NTI) are shown.

C rate h value Simulation Duration Effective Simulation Time

1C 0.01 3523 s 72 s

1C 1 3523 s 81 s

1C 100 3523 s 77 s

0.5C 1 7050 s 56 s

2C 1 1522 s 85 s

Table 7: Timing comparisons of different simulation scenarios

# of discrete nodes
10 20 30 40 50

COMSOL 96 s 114 s 143 s 189 s 244 s

DUALFOIL 28 s 57 s 97 s 137 s 185 s

LIONSIMBA 28 s 69 s 105 s 134 s 223 s

Table 8: Timing comparisons among different P2D model implementations. The number of discretized
nodes has been set equal for each section of the cell.
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Iapp(t) Applied current density [A/m2]

ce(x, t) Electrolyte salt concentration [mol/m3]

cavg
s (x, t) Solid-phase average concentration [mol/m3]

c∗s(x, t) Solid-phase surface concentration [mol/m3]

j(x, t) Ionic flux [mol/(m2s)]

Φe(x, t) Electrolyte potential [V]

Φs(x, t) Solid potential [V]

T (x, t) Temperature [K]

Ds
eff Effective solid-phase diffusion coefficient [m2/s]

Deff Effective electrolyte diffusion coefficient [m2/s]

σeff Effective solid-phase conductivity [S/m]

κeff Effective electrolyte conductivity [S/m]

keff Effective reaction rate

Qohm Ohmic heat source term [W/m3]

Qrev Reversible heat source term [W/m3]

Qrxn Reaction heat source term [W/m3]

U ref Open Circuit Voltage [V]

∂U

∂T

∣∣∣∣
Tref

Open Circuit Potential Entropic Variation [V/K]

Table 9: Nomenclature
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7 Figures captions

Figure 1: Example of a 2D FVM mesh where the set of neighbor cells C(k) is represented by the green
cells.

Figure 2: One-dimensional finite volume mesh

Figure 3: Interpolation technique to recover edge values of the unknowns.

Figure 4: Electrolyte diffusion process: interface across the cathode and separator.

Figure 5: Validation of the proposed numerical implementation in isothermal conditions
Figure 5(a): Cell potential

Figure 5(b): Electrolyte Li-ions concentration

Figure 5(c): Solid phase Li-ions concentration

Figure 5(d): Electrolyte potential

Figure 6: Validation of the proposed numerical implementation with thermal dynamics
Figure 6(a): Cell potential

Figure 6(b): Electrolyte Li-ions concentration

Figure 6(c): Solid phase Li-ions concentration

Figure 6(d): Electrolyte potential

Figure 7: Comparison of the three different solid-phase diffusion equations implemented in LION-
SIMBA.

Figure 7(a): 1C rate comparison

Figure 7(b): 2C rate comparison

Figure 7(c): 5C rate comparison

Figure 7(d): 10C rate comparison

Figure 8: −1C discharge cycle run under different heat exchange parameters: blue line h = 0.01W/(m2

K), dashed orange line h = 1 W/(m2 K) and dot-dashed yellow line h = 100 W/(m2 K).

Figure 9: Full discharge cycle run under different C rates: −2C (dot-dashed yellow), −1C (dashed
orange line), and −0.5C (blue line).

Figure 10: Hybrid charging-discharging cycle.

Figure 11: ABMS control : an MPC algorithm [8] is used to drive the charge of the battery from
20% to 85% while considering voltage, temperature, and current constraints.

Figure 12: ABMS control – Electrolyte concentration: The behavior of the first and last volume

30



of each section of the battery is depicted, where the countinous lines belong to the cathode, the
dashed lines to the separator and the dotted lines to the anode.

Figure 13: Full discharge cycle in an isothermal environment: blue line −0.5C, dashed orange line
−1C, and dot-dashed yellow line −2C.

Figure 14: Simulation of a 3-cells pack. The upper curve represents the overall voltage of the 3
series connected Li-ion cells, while the lower plots depict the voltage of each cell in the pack. The
different parametrization of each cell determines different behaviors.

Figure 15: Simulation of a 3-cells pack. Different internal states profiles inside the three cells. Indi-
vidual parametrizations leads to different behaviors.

8 Tables captions

Table 1: Li-ion P2D model governing equations

Table 2: Additional equations

Table 3: FVM P2D equations

Table 4: List of parameters used in simulation [20]

Table 5: Throttle configuration for hybrid charging-discharging simulation

Table 6: Comparison of different approximation methods for the diffusion in the solid particles. Root
Mean Square Error (RMSE) and the Normalized Time Index (NTI) are shown.

Table 7: Timing comparisons of different simulation scenarios

Table 8: Timing comparisons among different P2D model implementations. The number of dis-
cretized nodes has been set equal for each section of the cell.

Table 9: Nomenclature
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