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Abstract— Fostered by the development of new technologies, 

micro-electro-mechanical systems (MEMS) are massively present 

on board of vehicles, within information equipment as well as in 

medical and healthcare equipment. A smart approach to the 

design of MEMS devices is in terms of the simultaneous 

optimization of multiple objective functions subject to a set of 

constraints. This leads to the family of solutions minimizing the 

degree of conflict among the objectives (Pareto front). 

Accordingly, in the paper a procedure of optimal shape design of 

MEMS based on evolutionary computing is proposed and 

validated on three case studies.  

 
Index Terms— Field analysis and synthesis, finite-element 

method, multi-objective optimal shape design, MEMS, comb-

drive electrostatic microactuator, magnetic micromirror, 

pancake inductor. 

 

I. INTRODUCTION 

PTIMIZATION plays a key role in the design of any 

device or system, and MEMS are no exception. The issue 

is to find a design space for a device which will satisfy the 

performance specifications. Often, they include several design 

criteria which cannot all be met at the same time. In this case, 

a designer is supposed to decide how the criteria should be 

ranked. This leads to the concept of multi-objective 

optimization, i.e. a search which attempts to satisfy several 

goals simultaneously: the theoretical background is based on 

the Pareto optimality theory [1]. 

While the basic concept of optimization – i.e. find the 

minimum or maximum value of an objective function 

dependent on a set of variables – is fairly obvious, 

implementing this process under the frame of the design 

procedure of a MEMS device is not obvious. From the very 

beginning, the goal of the process should be clearly defined: 

for instance, a design process of a device may well have as its 

goal an improvement in an existing prototype, rather than 

obtaining the best possible device. 

Computational cost is another critical issue: in fact, a 

feasible combination of design variables requires at least one 

field analysis to determine its performance; this task can be 
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computationally expensive, because electromagnetic analysis 

is based on two- or three-dimensional finite-element models. 

Moreover, field analysis might imply the numerical solution to 

costly problems, like e.g. multiphysics problems which in turn 

might be non-linear or time-dependent. 

As far as algorithms are concerned, within a design space 

which is approximated to be locally quadratic, the gradient 

information can be used to drive the search from a guess 

solution towards a local optimum. This is known as a 

deterministic optimization process, and the optimal direction 

to move in can be determined by a minimization process such 

as the sequential quadratic programming [3]. However, the 

gradient may not be directly available from a numerical 

solution; therefore, such a process is difficult to implement. In 

addition, it converges to the local minimum nearest to the 

starting point. As an alternative, the design space could be 

sampled according to a stochastic law around the current 

point: if a better point nearby is found, then this is used as the 

updated current solution. There are several gradient-free 

approaches which have been developed, and the most popular 

are those based on evolutionary algorithms which attempt to 

mimick biological adaptation [2]; in fact, they have proven to 

be able to approximate the region where the global optimum is 

located. 

The impressive advance of technology at both the 

micrometer and nanometer scales requires the development of 

powerful and flexible modelling tools to help the designer of 

devices and systems [7],[10],[16]. For instance, in [14] a 

topology optimization method to design a piezoelectrically-

driven microgripper is proposed: four design criteria are 

considered, and the two-dimensional Pareto fronts trading off 

various pairs of criteria are identified by means of a genetic 

algorithm. A different approach to a similar subject was 

investigated in [20]. In turn, in [19] the design optimization of 

an electromagnetic valve actuator is proposed, and a suitable 

combination of three design criteria is exploited. In [15] the 

magnetic field in a permanent-magnet spherical motor at no-

load is recovered, after inverting the magnetic induction 

measured along an accessible surface; the final aim is to 

compute the on-load torque by means of the Lorentz’s law. 

In a sense, it appears that the impact of modern numerical 

methods on MEMS design has been rather limited so far; a 

contribution to bridge this gap is here proposed. The paper is 

organized as follows; after a review of field-based 

multiobjective optimization theory, a procedure of 

evolutionary computing is proposed and used to solve three 
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case studies: the improvement of an electrostatic comb-drive 

microactuator, the magnetic actuation of a micromirror, and 

the induction heating of a graphite disk for Si wafer epitaxial 

growth, respectively. 

II. MULTIOBJECTIVE FORMULATION OF A MEMS DESIGN 

PROBLEM 

In engineering practice, a designer usually has to consider 

multiple objectives to fulfil at a time in the design of a device 

or a system, while the presence of a single objective is 

somewhat an exception or a simplification. There is a number 

of reasons for that: 

• in general, industrial problems have multiple solutions 

which fulfil objectives and constraints, thus multiple optimal 

solutions arise;  

• often, in industrial applications, some solutions can be 

preferred to others, so it is better to get a spread of feasible 

solutions from the design procedure rather than a single 

solution;  

• when a set of optimal solutions is available, the selection 

is left to an external decision maker (usually, the designer) 

who can express his or her final preference.  

In fact, design problems arising in MEMS design often 

exhibit multiple objective functions to be optimized 

simultaneously. Formally, considering nv variables, a 

multiobjective optimization problem can be cast as follows: 

 

 given vn
0x  , find ( ) vn

x
x,xFinf   (1) 

 

fulfilling nc inequality and ne equality constraints 

 

 
( ) ci n,1i,0xg =  (2) 

 ( ) ej n,1j,0xh ==  (3) 

 

and also vn2  side bounds 

 

 vkkk n,1k,ux =  (4) 

 

Equations (1)-(4) are subject to the solution of the relevant 

field analysis problem [4]; in general, those referred to are 

boundary-value problems governed by Maxwell’s equations of 

electromagnetic field, as well as Fourier’s equation of heat 

transfer and Lamé’s equation of elasticity [13]. When two, or 

more, physical domains coexist and interact in the same 

device, a coupled-field – or multiphysics – problem is 

originated. 

In (1), ( ) ( ) ( )  f

f

n
n1 xf,...,xfxF =  is the objective vector 

composed of 2n f   terms. Therefore, F defines a 

transformation from the design space vn
  to the 

corresponding objective space fn
 . Often, the nf objectives 

have different physical dimensions: they might refer to various 

characteristics or performances of the device (e.g. cost of 

materials, device volume, field homogeneity, power loss and 

so forth), to be optimized simultaneously. Therefore, the 

designer is forced to look for best compromises among all the 

objectives. In order problem (1)-(4) to be non-trivial, the pair 

(fi(x), fj(x)) must represent conflicting objectives for ji  ; in 

other words, a solution x~  minimizing all the objectives 

simultaneously does not exist. A survey of the state-of-the-art 

of optimal design methods in electromagnetism can be found 

e.g. in [5]. The proposed method of multiobjective optimal 

design of MEMS, based on algorithms of evolutionary 

computing, aims at approximating the most general solution to 

problem (1)-(4) in terms of the Pareto front of non-dominated 

solutions, i.e. those for which the decrease of an objective 

function is not possible without the simultaneous increase of at 

least one of all the other objective functions. Basically, this 

means to have a family of optimal solutions to be compared; a 

posteriori, the designer can select a single solution according 

to extra criteria of decision making. 

III. FIELD-BASED OPTIMAL SHAPE DESIGN 

In a shape design problem, design vector x represents the 

geometric variables of the device to be optimized. This feature 

in itself makes the dependence of the j-th objective 

fj n,1j,f = , rather complex. In fact, both the direct 

problem, through field equations, and the optimization 

problem, through objective functions, depend on geometry x. 

As a consequence, since objective fj is usually a field-based 

quantity, it depends on x explicitly and also implicitly, by 

means of the field solution s(x). In general, the following 

mapping applies:  

 

   ( ) ( )( ) fj n,1j,xs,xfxsx =→→  (5) 

 

Accordingly, the minimization problem correctly reads: 

 

 find ( )( ) f
n

j
x

n,1j,Rx,xs,xfinf v =    (6) 

 

In a problem of shape design, in fact, two aspects are always 

involved: the optimal synthesis of field s which takes place in 

the device, and the optimal design of device geometry x; 

formulation (6) points out that these two aspects are tightly 

interconnected. The situation is even more complicated, 

because inequality constraints might be prescribed for the 

field; in other words, a set 

 

 ( ) ( )( ) ckkk n,1k,c,cxs,xgxsC ==  (7) 

 

can be defined. In this case, the minimization problem reads 

like (6) subject to (7), i.e. ( ) Cxs  . The form of the j-th 

objective function fj suggests a way to classify shape design 

problems; in fact, it might represent the discrepancy between 

computed and prescribed value, or the value of a local quantity 

(e.g. a field component in a part of the device) or, more 

generally, some characteristics of the device, like weight or 

volume or cost. The solution to (6) is quite troublesome: in 
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fact, function fj may be neither differentiable nor convex; from 

the numerical viewpoint, fj could be non-smooth a function. 

Moreover, the function evaluation in (6) or the constraint 

evaluation in (7) is costly, because any function call requires 

at least a solution to the field equation, which might be a non-

linear one. This is the main source of insidiousness for field-

based optimization problems, which calls for a trade-off 

among accuracy, runtime, and storage. 

From the numerical viewpoint, the solution of optimal 

design problems requires, as a rule, a module for calculating 

the field, associated with a module performing the 

minimization of an objective function. Usually, field analysis 

can be performed either by differential methods originating 

from Maxwell’s equations: finite-difference method (FDM), 

finite-element method (FEM), or by integral methods 

amenable to Green’s theorems: boundary element method 

(BEM). In turn, numerical minimization can be achieved by 

means of deterministic or evolutionary methods; the 

combination of any method for analysis and any method for 

minimization gives origin to families of iterative procedures 

for solving an optimal design problem. Nowadays, most of 

commercially available codes devoted to electromagnetic field 

analysis are based on the FEM: in fact, it offers a general-

purpose and flexible tool of field simulation. 

 

 

fixed electrode

(supplied)

x-direction

movable

electrode

(grounded)

ground plane

dielectric gas

g

wm

g/2 g/2

wf

z1 z2

hm

s.a.

hf

z

yx

s.a.

 
 

Fig. 1  Comb-drive cross-sectional view (fixed and movable electrode pair). 

 

 

 
 

Fig. 2  Mesh detail of the comb drive model. 

 

The proposed method of optimal design of MEMS has been 

validated by means of three case studies. Always, the field 

analysis problem relies on FEM, while the optimal design 

problem is solved by means of non-dominated sorting genetic 

algorithm (NSGA-II), a popular algorithm of evolutionary 

multiobjective optimization [6],[23]. Starting from an initial 

population of individuals distributed in the feasible design 

space, the Pareto criterion of non-dominated solution is 

applied to each individual in order to generate a suitable off-

spring. The population is sorted according to the level of non-

domination by applying a rank value depending on the front 

they belong to. Next, a crowding distance operator is used to 

maintain the diversity of the population. Finally, the 

individuals are selected based on their rank value and 

crowding distance.  

IV. CASE STUDY: ELECTROSTATIC COMB-DRIVE 

MICROACTUATOR 

A. Device model 

A prototype model of comb drive device (Fig. 1), 

characterized by (wm, wf, hm, hf) = (4,4,2,2) [μm], where w 

and h are width and height of the movable (m) and the fixed 

(f) electrodes, respectively, is assumed as the first case study 

[8]. The device exhibits 10+9 electrodes and the 

corresponding distribution of electric potential u is shown in 

Fig. 3. The geometry of the device are amenable to the 

lumped-parameter model proposed in [9]. Moreover, the fixed 

and movable electrodes of the comb drive are 2 μm thick and 

4 μm wide, respectively; the air-gap distance g between them 

is 2 μm wide, the same as their distance z1 = z2 from the 

grounded substrate.  

B. Field analysis of the prototype 

The equation governing the analysis problem of the 

modelled device is the Laplace’s equation of the electric scalar 

potential u in the computational domain. Second-order 

Lagrangian shape functions were considered in the finite-

element model: a typical mesh (Fig. 2) is composed of 

170,000 elements with 240,000 unknowns [21], 

approximately. The device is considered electrically isolated: 

the boundary condition of the air subdomain is set to zero 

charge density; moreover, the fixed electrodes are at the same 

potential as the grounded substrate, while the movable 

electrodes are subject to voltage u0 = 1 V. The device 

components are made of poly-cristalline Si exhibiting a 

relative permittivity r = 4.5. In addition to the drive force in 

the direction of electrodes (shortly, x-directed drive force), the 

force due to electric field in the orthogonal direction (shortly, 

z-directed levitation force) takes place. The two force-

displacement curves (drive and levitation, respectively) have 

been computed by means of the Maxwell’s stress tensor 

method, taking the surface of the grounded electrodes as the 

integration surface. The elementary displacement was equal to 

1 μm in the x direction (14 steps) and 0.3 m in the z direction 

(7 steps): results are shown in Fig.s 4 and 5, respectively. The 

calculated force values are in agreement with reference values 

[10]; in particular, the approximated model Fz = k(z-z0) holds 
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for the levitation term: k is named “electrostatic spring” 

constant, i.e. the z-directed force density per unit voltage  

[NV-2m-1], while z0 is the equilibrium height of the movable 

electrode in the absence of a return spring force, i.e. the height 

towards which the electrodes spontaneously tend to move. 

It can be remarked that the drive force abruptly decreases 

for small displacements between fixed and movable electrodes 

(Fig. 4), while for larger displacements it tends to be constant. 

Moreover, according to the levitation force vs angle curve, the 

equilibrium point z0 is located at 1.2 μm with respect to the 

substrate (Fig. 5). 
 

C. Field synthesis 

A comb-drive actuator needs to be as coplanar as possible 

with respect to its sets of movable and fixed electrodes. To 

this end, various solutions have already been considered [11]. 

In the case study, a grounded substrate is laid under the set of 

electrodes as an attempt to cancel the vertical force. This way, 

however, the electric field distribution is no longer  

 

 
 

Fig. 3  Plot of the electric potential map. 

 

 
 

Fig. 4  Drive force Fx(x) vs x-displacement. 

 

 
 

Fig. 5  Levitation force Fz(z) vs z-displacement. 

symmetric and the movable electrodes tend to levitate when 

the comb drive is energized. This vertical perturbation must be 

kept as low as possible while simultaneously the drive force 

should be increased. 

Therefore, the ultimate goal of the optimal shape design 

problem is to find the family of geometries which maximize 

the x-directed drive force between movable and fixed 

electrodes, and simultaneously minimize the z-directed 

levitation force: a bi-objective optimization problem is so 

originated. To this end, the four-dimensional vector a = (wm, 

wf, hm, hf) of design variables has been defined; they are 

discrete-valued (step 0.1 μm) and can range from 2 to 8 μm. 

Moreover, a two-dimensional vector F = (f1, f2) of objective 

functions has been defined, such that: 

1. drive f1(a) = Fx(x,a) for z = 0 and  0 ≤ x ≤ 14 μm, to be 

maximized with respect to vector a; 

2.  levitation f2(a) = Fz(z,a) for x = -13 μm and 0 ≤ z ≤ 1.8 

μm, to be minimized with respect to vector a. 

In practice, the average value of the Fx vs x curve (Fig. 4) is 

maximized, and simultaneously the slope of the Fz vs z-

displacement curve was minimized (Fig. 5). 
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Fig. 6  Approximated Pareto front (f1 - Fx force [N], f2 - slope of Fz vs z 

displacement [N/µm]). 

 

 

 

TABLE I 

OPTIMAL SOLUTIONS TRADING OFF DRIVE AND LEVITATION 

Width of 

movable 

electrodes 
wm [µm] 

Width of 

fixed 

electrodes 

wf [µm] 

Height of 

movable 

electrodes 

hm [µm] 

Height of 

fixed 

electrodes 

hf [µm] 

Fx drive 

force 
[N]·10-10 

Slope of 

Fz vs. z 
[N/m]·10-

10 

6 6 6.2 6.1 3.8848 2.7915 

7.7 7.8 7.7 7.8 5.8568 4.0328 

7.1 7.3 7.5 7.4 5.3189 3.2187 

6.1 6.1 6.2 6.1 3.9496 2.862 

7.6 7.7 7.8 7.9 5.8543 3.7876 

7.7 7.7 7.8 7.8 5.8491 3.702 

7.6 7.8 7.7 7.8 5.8385 3.5745 

7.1 7.2 7.5 7.4 5.3614 3.2781 

7.5 7.7 7.7 7.8 5.7529 3.4235 

7.7 7.8 7.7 7.8 5.7975 3.5168 
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D. Optimal design results 

The initial number of individuals processed was set to 15; the 

optimization procedure was stopped after 10 generations: this 

way, 10 non-dominated solutions approximating the Pareto 

front were identified (Fig. 6 and Table I). 

V. CASE STUDY: MAGNETIC ACTUATION OF A MICROMIRROR 

A micromagnetic device used as an optical switch [17],[18] 

is considered (Fig. 7) as the second case study: it consists of a 

NdFeB magnet, two conductors carrying like currents, and a 

ferromagnetic plate free to rotate around its axis. The residual 

induction of magnet is 1.2 T, while values of relative magnetic 

permeability equal to 103 and 1.05 are assumed for plate and 

magnet, respectively; moreover, the depth of the model is w = 

500 m. 

The torque holding the plate at the prescribed angle is due to 

the field of the permanent magnet in the absence of current, 

while the actuation torque necessary to switch the plate angle 

is due to the field variation caused by a current pulse in the 

conductors. The field analysis problem consists of finding the 

magnetic field distribution for a given plate angle. In this 

respect, a typical finite-element mesh is composed of 2,300 

triangles; second-order polynomial Lagrangian elements are 

considered, originating approximately 75,000 unknowns [21]. 

The corresponding torque-angle curve (Fig. 8) has been 

computed based on the virtual work principle. 

In turn, the design problem reads: having prescribed lower 

thresholds for holding and actuation torque, given the plate 

angle  = 10°, find the geometry of magnet and conductors, as 

well as the amplitude of the current pulse, such that the power 

loss in the conductors and the magnet volume are both 

minimized. From the viewpoint of computational cost, it can 

be remarked that the evaluation of magnet volume wx1x2 and 

power loss ( ) 1
54

2
7 xxwx

−
  with  = 6 107 Sm-1 is immediate, 

while the evaluation of both holding and actuation torque at  

= 10° is field dependent. In order to deal with feasible design 

configurations, suitable geometric constraints have been 

considered; moreover, the upper bound  x7(x4x5)-1 < 5 109  

Am-2 have been fulfilled for the pulsed current density. 

An approximation of the Pareto front in the power-loss vs 

magnet-volume space is shown in Fig. 9. The initial number of 

individuals processed was set to 20; the optimization 

procedure was stopped after 40 generations.  

VI. CASE STUDY: INDUCTION HEATING OF A GRAPHITE DISK 

Induction heating is used in various industrial processes, 

because it is able to localize the heat sources inside the 

workpiece with high efficiency and good temperature control. 

In Silicon wafer production - which is a preliminary step in 

MEMS fabrication - there is the need of achieving a 

prescribed temperature distribution in the graphite disk 

supporting the wafers. Specifically, an industrial equipment 

used for the epitaxial growth of Si wafers is considered; a 

typical chemical-vapour-deposition (CVD) reactor system is 

shown in Fig. 10. 

Epitaxial growth of Silicon requires that the susceptor, i.e. 

the graphite disk that is heated by induction, reaches a 
 

j

y

xx4

x3

x1

x7 x7

x6/2 x5

x2

 
 

Fig. 7 Geometry of the magnetic MEMS and design variables: x1 magnet 

height, x2 magnet length, x3 magnet air-gap, x4 conductor height, x5 

conductor length, x6 conductor air-gap, x7 current pulse amplitude. The 

plate gravity-centre is located 500 m above the x axis. 

 

 
Fig. 8 Holding torque vs angular position  for the device shown in Fig. 7, 

when x7=0. Geometric data: x1 = 100 [m], x2 = 1.2 [mm], x3 = 50 [m], x4 

= 50 [m], x5 = 200 [m], x6 = 600 [m], x7 =10 [], plate length = 1 mm, 

plate height = 25 m. 

 
working temperature of 1050 - 1100 °C at steady state. 

Obtaining a good level of thermal uniformity is not easy; in 

fact, no power is induced in the disk region close to the axis, 

while the external edge of the disk has not enough power to 

compensate the losses due to convection and radiation. 

The design of the inductor heating the disk implies the 

solution of coupled electromagnetic and thermal fields, along 

with the use of optimal design procedures to identify the best 

possible device or process. An approach in terms of 

multiobjective design is presented with reference to a 

particular induction heating system [12].  

The inductor winding exhibits 3 groups of 4 circular and 

plane turns (so-called pancake inductor); all turns are series 

connected and carry a current of 1 kArms at 1 kHz. Fig. 11 

shows 1/12 of the three-dimensional model of the inductor 

with the graphite disk to heat; the design variables are also 

represented: they are the mean radius Rk of each group of 
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Fig. 9 Optimization results in the volume-loss space (20 individuals, 40 

generations). Constraints: holding torque > 1 nNm, actuation torque > 0.25 

nNm. 

 

 

 
 

Fig. 10  A CVD reactor system driving the epitaxial growth of five Si wafers. 
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z
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Fig. 11  Geometry of pancake inductor with design variables. 

turns, the radial distance dk between turns in each group, the 

axial distance Hk of each group from the disk (k = 1,3 : in 

total, nine variables). 

A. Direct problem: multiphysics field analysis 

Even if the model is axial-symmetric, a 3D geometry is 

simulated for the sake of generality, eventually including a 

more complex model with non-symmetric effects. The 

electromagnetic (EM) problem is solved in time-harmonics 

conditions, in terms of −T  formulation [4], in a domain 

including inductor winding, disk, and surrounding air. 

According to the latter, in the low frequency limit, magnetic 

field vector H  and electric vector potential T  differ by the 

gradient of a harmonic function  (magnetic scalar potential) 

 

 −= TH  (8) 

 

Since electric vector potential is used in conducting regions 

only, while magnetic scalar potential is used elsewhere, a save 

of computational cost is obtained. In time-harmonics 

conditions, the governing equations for complex vector T


 

and complex scalar   in a domain D with boundary  follow: 

 

 0

2
JTjT


−=−  (9) 

 

with 0J


 complex vector of impressed current density and  

electric conductivity, and 

 

 0j2 =−   (10) 

 

subject to appropriate boundary conditions.  

The actual distribution of current in each turn, simulated as 

a solid conductor, is taken into account in order to evaluate the 

inductor efficiency in terms of the volume integral of the 

power density. Specifically, it is defined as the ratio of the 

active power transferred to the disk to the one supplied to both 

disk and winding: 
 

 





+



=
−−

−

winding

2
1

w

disk

2
1

d

disk

2
1

d

dTdT

dT









  (11) 

 

with d and w electrical conductivities of graphite and 

copper, respectively. In turn, the thermal problem is solved in 

steady state condition, assuming the power density in the disk, 

which is derived from the EM field analysis, as the source 

term. The thermal domain is the graphite disk, along the 

boundary of which a suitable condition of heat exchange 

holds. Values of both electrical and thermal conductivities are 

considered at the expected steady-state average temperature.  

The governing equation for temperature T is the Fourier’s 

equation at steady state: 
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 ( )
2

1 TT


=− −  (12) 

with  thermal conductivity; along the disk boundary, the 

Fourier’s equation is subject to the adiabatic condition at r = 0, 

and 

 

 ( )0TTh
n

T
−=




−  (13) 

 

elsewhere; in (13) h is a thermal exchange coefficient 

incorporating the radiation loss effect, while T0 is the 

environment temperature equal to 50 °C. 

The numerical solution of the coupled electromagnetic and 

problem is based on a FEM tool [22] for three-dimensional 

field analysis; approximately, a typical solution mesh is 

composed of 130,000 linear tetrahedral elements. 

 

 

 
 

Fig. 13  Geometries of inductor corresponding to: (a) initial (start, f1 = 0.139, 

f2 = 155.79 °C), and (b) final temperature profile (stop_16, f1 = 0.137, 
f2 = 85.15 °C). 

B. Inverse problem: efficiency vs temperature optimization 

As far as the optimization problem is concerned, two design 

criteria have been defined. The complementary efficiency, 

1-,  to be minimized, and the temperature discrepancy in the 

graphite disk at thermal steady state, to be minimized. 

Accordingly, the following objective functions have been 

implemented: 

 

 ( ) ( )x1xf1 −=  (14) 

 

 )x(T)x(T)x(f minmax2 −=  (15) 

 

where Tmax and Tmin are maximum and minimum temperature 

values along a radial line  located 1 mm under the upper 

surface of the graphite disk, and x = (Rk,Hk,dk) , k=1,3 is the 

design vector. In practice, both functions (14) and (15) have to 

be minimized with respect to design variables shown in 

Fig. 11.  

Objective (14) refers to the magnetic domain, while objective 

(15) refers to the thermal one: a multiphysics and 

multiobjective optimization problem is so originated.  

C. Optimal design results 

Fig. 12 shows the approximated Pareto front of problem 

(15)-(16) after 10 (stop_10) and 16 (stop_16) iterations, 

respectively; an example of temperature profiles along the 

disk surface is also shown. The geometries of inductor 

winding, which correspond to initial and final temperature 

profiles, are shown in Fig. 13, while the relevant values are 

reported in Table II. 

The initial solution (start) is a dominated one, while the 

final solution (stop_16) is located along the numerically-

derived Pareto front. Apparently, there is an improvement of 

temperature uniformity on the disk surface without worsening
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Fig. 12.  Approximated Pareto front of problem (14)-(15) and example of initial (f1=0.139, f2=155.79 °C) and final temperature profile (f1=0.137, f2=85.15 °C). 

 
TABLE II 

DESIGN VARIABLES AND OBJECTIVE FUNCTION VALUES FOR THE GEOMETRIES IN FIG. 13. 

 d1 [mm] d2 [mm] d3 [mm] H1 [mm] H2 [mm] H3 [mm] R1 [mm] R2 [mm] R3 [mm] f1 f2 [°C] 

initial 13.47 12.73 5.43 25.89 3.00 26.88 72.57 179.54 273.70 0.139 155.79 

final 4.35 15.14 16.58 17.02 7.96 21.03 92.94 162.98 253.05 0.137 85.15 
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the efficiency of the inductor-disk system. Indeed, the decision 

maker is free to select other Pareto-optimal solutions in 

Fig. 12 according to his or her preferences. 

VII. CONCLUSION 

While there have been significant improvements in the 

capabilities in the area of multiobjective optimal design, the 

uptake by industrial designers has been somewhat limited. 

There are, possibly, two reasons for this. The first is that the 

evidence, at the industrial level, that computer-based 

optimization processes can actually enhance a designer ability 

to create a better product has been lacking. The second relates 

to the fact that most optimization packages currently available 

only handle a single objective and a limited number of design 

variables. In fact, suitable optimization systems, with  no 

restriction in the size of the design space to be explored, and 

with simple and flexible expressions of objectives and 

constraints, would help match the needs of the designer. 

In the paper, three case studies were investigated, and the 

relevant field analysis problem was solved by means of FEM; 

standard resources in terms of personal computing were 

sufficient to make the Paretian optimal design work. The 

optimal design method proposed is valid in general; in fact, it 

works pretty well, independently of the direct-model equations 

considered: in principle, Maxwell-Fourier’s equations or 

Maxwell-Fourier-Lamé’s equations for MEMS, but also e.g. 

Schroedinger’s equations of quantum electrodynamics, should 

a nanoscale physical domain be involved. Under this frame, 

the proposed approach puts the ground for a more general 

method devoted to the optimal shape design of any MEMS 

configuration; in fact, the application of multiobjective 

optimizations to this kind of devices is still at an early stage. 
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