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Abstract: The use of hyperspectral imaging (HSI) in the medical field is an emerging approach to 20 
assist physicians in diagnostic or surgical guidance tasks. However, HSI data processing involves 21 
very high computational requirements due to the huge amount of information captured by the 22 
sensor. One of the stages with higher computational load is the K-Nearest Neighbors (KNN) 23 
filtering algorithm. The main goal of this study is to optimize and parallelize the (KNN) algorithm 24 
by exploiting the GPU technology to obtain real-time processing during brain cancer surgical 25 
procedures. This parallel version of the KNN performs the neighboring filtering of a classification 26 
map (obtained from a supervised classifier), evaluating the different classes simultaneously. The 27 
undertaken optimizations and the computational capabilities of the GPU device throw a speedup 28 
of up to 66.18x when compared to a sequential implementation.  29 

Keywords: K-nearest neighbors filtering; hyperspectral imaging instrumentation; brain cancer 30 
detection; image processing; graphics processing units. 31 

 32 

1. Introduction 33 

Hyperspectral imaging (HSI) is a non-contact, non-ionizing and non-invasive imaging 34 
technique suitable for medical applications [1,2]. HSI combines traditional imaging and 35 
spectroscopy methods to obtain both spatial and spectral information of the captured scene [3]. 36 
Currently, HSI is becoming more popular in surgery applications as a guidance tool for surgeons, 37 
since it can provide more information than traditional imaging techniques, such as Magnetic 38 
Resonance (MR), Computed Tomography (CT), Ultrasound (US) and Positron Emission 39 
Tomography (PET), being a non-invasive and risk-free technique [4–7]. However, one of the main 40 
handicaps of this technology is the high computational requirements needed to process the large 41 
amount of data acquired by the sensor. The use of High Performance Computing (HPC) and highly 42 
parallelized algorithms is mandatory to obtain HSI intra-operative real-time processing [8].     43 
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The work presented in this paper is focused on the optimization, parallelization and 44 
implementation onto a Graphics Processing Unit (GPU) of the K-Nearest Neighbors (KNN) filtering 45 
algorithm to obtain real-time performance. This work has been done taking into account the results 46 
and intermediate data obtained during the deployment of the HELICoiD (HypErspectraL Imaging 47 
Cancer Detection) European FET project [9–12]. The goal of this project was to apply the HSI 48 
technique to discriminate between tumor and normal brain tissue during neurosurgical operations 49 
in real-time. Employing the developed system, surgeons will have a guidance tool to assist them 50 
during the brain tumor resection, avoiding unintentionally leaving behind small remnants of tumors 51 
and the excessive extraction of normal tissue. This accurate delimitation of the tumor boundaries 52 
will improve surgery outcomes, therefore improving the patient’s quality of life. 53 

The KNN algorithm is a classifier widely used in several research areas and also in the field of 54 
HSI, where a pixel-wise classification is performed [13]. The most relevant part of this method is the 55 
K-Nearest Neighbors searching, which is a highly demanding task in terms of computational time. 56 
Since the main goal of the majority of the works in the state of the art is to execute this algorithm in 57 
real-time or at least with reduced execution times, it becomes necessary to exploit high performance 58 
devices, being GPUs a highly appealing option. As a massively parallel architecture, this kind of 59 
devices has been widely used for exploiting data parallelism in several applications from different 60 
scientific fields [14–16] and also in HSI [17,18]. 61 

Concerning the KNN algorithm, several parallel CUDA implementations have been proposed 62 
in the scientific literature. The results reported by these previous works point out that this 63 
technology is able to provide very high speedups compared to serial codes. For example, in [19], 64 
authors provide two CUDA versions of this algorithm, one characterized by custom kernels and the 65 
other exploiting the CUBLAS library [20]. Using synthetic data, they obtain speedups equal to 64x 66 
and 189x, respectively, compared to the highly optimized ANN (Approximate Nearest Neighbors) 67 
C++ library. They also apply the two parallel versions of the KNN algorithm to the high dimensional 68 
SIFT (Scale-Invariant Feature Transform) feature matching, obtaining speedups of 25x and 62x, 69 
respectively. In addition, in [21], the authors exploit the GPU technology to implement a new 70 
version of the KNN algorithm called Sweet KNN. This new algorithm is based on a Triangle 71 
Inequality (TI) approach, which tries to reduce the number of distance computations, since the goal 72 
of the work is to find a good balance between redundancy minimization and regularity preservation 73 
for various datasets. This work presents a speedup with an average value equal to 11x compared to 74 
the existing GPU implementations on KNN, with a maximum speedup of 120x.     75 

Recent uses of the KNN algorithm show that it is not restricted to only a classification role. In 76 
the last few years it has also been used as a filtering technique, able to improve the results of spectral 77 
classifications by adding spatial domain information [22]. In this work it is presented a parallel 78 
implementation of the KNN filtering algorithm, which can integrate the output of the SVM (Support 79 
Vector Machines) classifier with the one-band representation of a hyperspectral (HS) cube generated 80 
using the PCA (Principal Component Analysis) algorithm. The goal of the entire system is to 81 
perform the real-time classification of brain cancer, where real-time restrictions for this application 82 
are considered to be met when the processing time is lower than the time elapsed between the 83 
consecutive acquisitions of two images of the exposed brain (~1 minute). 84 

2. Materials and Methods  85 

This section presents the HSI instrumentation employed to obtain the in-vivo HS brain cancer 86 
image database, the serial implementation of the algorithm as well as the optimizations and the 87 
parallelization analysis applied to the KNN filtering algorithm.  88 

2.1. Hyperspectral Acquisition System 89 

To obtain the HS in-vivo brain image dataset used in this study, a customized HS acquisition 90 
system was employed [12]. The acquisition system is composed by a VNIR (Visual and Near 91 
Infra-Red) pushbroom camera (Hyperspec® VNIR A-Series, Headwall Photonics Inc., Fitchburg, MA, 92 
USA). This camera is able to capture images within the spectral range between 400 and 1000 nm, 93 
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obtaining 826 spectral bands with a spectral resolution of 2-3 nm and a pixel dispersion of 0.74 nm. 94 
In order to capture the complete HS cube, the camera uses a pushbroom scanning technique, which 95 
allows the 2-D detector to capture the complete spectral dimensions and one spatial dimension of 96 
the scene. By shifting the camera’s field of view relative to the scene, the second spatial dimension is 97 
acquired. Figure 1 shows the HS acquisition system while capturing an image of the exposed brain 98 
surface during a surgical operation at the University Hospital Doctor Negrin of Las Palmas de Gran 99 
Canaria (Spain). 100 

 

Figure 1. Hyperspectral acquisition system capturing an image during a neurosurgical 101 
operation. 102 

2.2. Hyperspectral brain cancer image database 103 

In this study, a set of five in-vivo brain surface HS images were employed to evaluate the 104 
performance of the KNN filtering implementation. These images were captured using the HS 105 
acquisition system, belonging to adult patients undergoing craniotomy for resection of intra-axial 106 
brain tumor. Images were obtained at the University Hospital Doctor Negrin of Las Palmas de Gran 107 
Canaria (Spain) from four different patients with a confirmed grade IV glioblastoma tumor by 108 
histopathology. The study protocol and consent procedures were approved by the Comité Ético de 109 
Investigación Clínica-Comité de Ética en la Investigación (CEIC/CEI) of University Hospital Doctor 110 
Negrin and written informed consent was obtained from all subjects.  111 

HS images were obtained intra-operatively after craniotomy and resection of the dura. Before 112 
the images were captured, the operating surgeon initially identified the approximate location of 113 
normal brain and tumor. Rubber ring markers were then placed on these locations and the images 114 
were taken with markers in situ. At that point, tissue samples were resected from the marked areas 115 
and sent to pathology for tissue diagnosis. Depending on the location of the tumor, images were 116 
acquired at various stages of the operation. In those cases with superficial tumors, some images were 117 
obtained immediately after the dura was removed, while in the cases with deep laying tumors, 118 
images were obtained during the actual tumor resection.  119 

The selected HS images were pre-processed following the pre-processing chain presented in 120 
[12]. The pre-processing chain is composed by four steps: image calibration, noise filtering, band 121 
averaging and pixel normalization. In the first step, after the image acquisition, the HS raw data are 122 
calibrated using a white reference image (captured from a certified white reference tile in the same 123 
illumination conditions in which the images were captured) and a dark reference image (obtained by 124 
keeping the camera shutter closed). This calibration is performed to avoid the problem of the 125 
spectral non-uniformity of the illumination device and the dark currents of the camera sensor. Next, 126 
due to the high spectral noise generated by the camera sensor, a set of steps are applied with the goal 127 
of removing this noise from the spectral signatures and to reduce the number of bands of the 128 
samples without losing the main spectral information. Finally, a normalization step is performed in 129 
order to homogenize the spectral signatures in terms of the reflectance level. The final HS cube is 130 
formed by 128 spectral bands, covering the range between 450 and 900 nm [12]. 131 
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Figure 2a shows an example of the synthetic RGB representation of an HS cube from the HS 132 
brain cancer image database used in this study. Furthermore, each one of these HS images was 133 
processed employing a supervised SVM classifier (Figure 2b), and a one-band representation was 134 
obtained using a PCA algorithm (Figure 2c). Table 1 details the characteristics of each HS image, 135 
where PXCY stands for Patient X and Capture Y.  136 

Four different classes were labeled in the images for the supervised classification: tumor tissue, 137 
normal tissue, hypervascularized tissue (mainly blood vessels) and background (other materials or 138 
substances that can be presented in the surgical scene that are not relevant for the tumor resection 139 
process). These classes were represented in the classification maps with the following colors: red, 140 
green, blue and black, respectively.  141 

   
(a) (b) (c) 

Figure 2. Example of an in-vivo HS human brain image dataset employed in the study (P2C1). 142 
(a) Synthetic RGB representation of the HS cube; (b) Supervised classification map obtained 143 
using the SVM classifier; (c) One-band representation of the HS cube obtained employing 144 
PCA algorithm.  145 

Table 1. HS brain cancer image database.  146 

Image ID #Pixels 
Dimensions 

(width x height x bands) 

P1C1 251,532 548 x 459 x 128 

P1C2 264,408 552 x 479 x 128 

P2C1 219,232 496 x 442 x 128 

P3C1 185,368 493 x 376 x 128 

P4C1 124,691 329 x 379 x 128 

2.3. K-Nearest Neighbors filtering algorithm 147 

As introduced in Section 1, the KNN algorithm has recently been widely used in the field of HSI 148 
as a filtering technique [22] to refine outputs from classifiers, in this case a SVM, with the spectral 149 
information computed trough the PCA algorithm. As shown in Figure 3, the KNN-based filtering 150 
algorithm [22][23] receives an input image P, which is composed of the probability maps estimated 151 
by the SVM classifier, and a guidance image I, that is the one-band representation of the HS cube, 152 
generated using a dimensional reduction algorithm, such as PCA. The output of this algorithm is a 153 
filtered classification map based on the highest probability assigned to each pixel in the previous 154 
classification stage [22]. 155 

 

Figure 3. Block diagram of the KNN based spatial-spectral classification. 156 
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In this method, the nearest neighbors of a certain pixel are searched in a feature space, which 157 
contains both the pixel value and the spatial coordinates. This space is defined by a feature vector F 158 
as shown in Equation (1): 159 

𝐹(𝑞) = (𝐼(𝑞), 𝜆 ∙ 𝑙(𝑞), 𝜆 ∙ ℎ(𝑞)) (1) 

where I(q) is the normalized pixel value of the guidance image and l(q) and h(q) refer to the 160 
normalized coordinates of pixel q. The spectral value of the pixel and its spatial coordinates are 161 
weighted with λ, which is a balance parameter to weigh the importance of the spatial information 162 
in the searching of the neighbors. If λ is zero, the spatial information will not be considered. If its 163 
value is higher than zero, more influence is given to the local neighborhood in the filtering process 164 
[22][23]. 165 

The KNN searching requires the computation of the distances between pixels on the base of 166 
the data contained in the feature vector. The distance from a given pixel located at (r, c) coordinates 167 
of the image to any other pixel at (i, j) can be computed using the Euclidean distance, i.e. the 168 
2-norm: 169 

𝑑(𝐼(𝑟𝑐), 𝐼(𝑖𝑗)) = √(𝐼𝑟𝑐 − 𝐼𝑖𝑗)2 + (𝑟 − 𝑖)2 + (𝑐 − 𝑗)2 (2) 

where 𝐼𝑟𝑐 is the normalized pixel value of the guidance image I at row r and column c and 𝐼𝑖𝑗  is 170 

the value of every other pixel at row i and column j. 171 
In this work, also the Manhattan metric (Equation (3)) has been used to compute the distances, 172 

considering always all the data contained in the feature vector. In section 3, it will be presented a 173 
comparison between the implementations performed using these two metrics, underlining both the 174 
differences in terms of processing time and classification results.  175 

𝑑(𝐼(𝑟𝑐), 𝐼(𝑖𝑗)) = |𝐼𝑟𝑐 − 𝐼𝑖𝑗| + |𝑟 − 𝑖| + |𝑐 − 𝑗| (3) 

Once the distances for each pixel are computed, the algorithm has to sort them to select the K 176 
nearest neighbors. After the KNN searching is concluded, the algorithm continues with the filtering 177 
step whose output is the optimized probability O(q). For each pixel, it computes a number of 178 
outputs equal to the number of SVM classes. In particular, for each pixel q and each SVM class, it 179 
computes the optimized probability O(q), defined as follows: 180 

𝑂(𝑞) =
∑ 𝑃(𝑠)

𝐾
, 𝑠 ∈ 𝜔𝑞 (4) 

where P is the original probability map (one per class) generated by the SVM classifier, 𝜔𝑞 181 

indicates the set of K nearest neighbors of the pixel q and s is the index related to each neighbor of 182 
the previous set [23].  183 

The last step of the algorithm consists of assigning a label to each pixel to generate a new final 184 
classification map. The label that is assigned to each pixel of the image is the class with the highest 185 
optimized probability. 186 

2.4. KNN filtering algorithm implementation 187 

After describing all the steps of the KNN algorithm, this section will introduce the 188 
optimizations and the parallelization analysis performed to the algorithm in order to reduce its 189 
computational cost. 190 

2.4.1. KNN Search optimization 191 

After an extensive analysis of the computational cost of the KNN filtering algorithm, it is 192 
possible to determine that the neighbors searching phase is the most consuming part of the code. For 193 
this reason, the first optimization proposed is the definition of a search window in the neighbors’ 194 
selection. This search window is a region close enough to the pixel whose neighbors are going to be 195 
chosen. In the original algorithm, this step consisted on computing, for each pixel, a number of 196 
distances equal to Npixels - 1, where Npixels is the number of pixels in the image. Our approach is to 197 
search the K nearest neighbors of a pixel within this window, not considering the entire image, in 198 
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order to reduce the number of computed distances, as the probability to find smaller distances in 199 
further zones of the image tend to 0. 200 

Concerning the parameter setting, in [23] it is asserted that λ=1 and K=40 are a good 201 
compromise for this medical imaging application. This value of λ gives a high importance to the 202 
spatial information, in particular to the local neighborhood. Taking into account this value, and the 203 
fact that the values of the guidance image I (i.e. the first term in Equation (2)) are normalized to 1, it 204 
is easy to foresee the behavior of the sorting algorithm in the neighbors selection. This allows 205 
introducing heuristic considerations that will help reducing the execution time. For any given pixel 206 
𝐼𝑟𝑐 in the image, the distance computation will follow a pattern determined by the spatial distance, 207 
i.e. the last two terms in Equation (2), which are related to the spatial coordinates of the pixel. These 208 
two values will hence dominate the equation once they overcome the spectral value (i.e. the first 209 
term in Equation (2)), since they will contribute to a distance value for any other pixel that will be 210 
always predominant if such pixels are far enough from the location of the pixel under consideration. 211 
In other words, it is a sufficient condition to sort only a certain subset of pixels in a region close 212 
enough to the pixel whose neighbors are being searched. This effectively reduces the search space 213 
and the computational cost. 214 

Section 3 compares the computational time and classification results for both the serial and the 215 
parallel implementations varying the window sizes (WSize). After several analysis, a window with 216 
Wsize=14, i.e. 14 rows of the image, has been selected, so the search space contains a number of 217 
pixels equal to 14 rows x total number of columns. A row-wise window has been selected instead of a 218 
column-wise one in order to have all the data stored sequentially. The version characterized by this 219 
window size has been chosen as the reference result because the classification results are the same 220 
compared to the implementation that considers the entire window.  221 

The window is considered in a symmetric way relatively to the pixel that is being processed, so 222 
one half of the window is evaluated over the pixel and the other half below it (Figure 4). In order to 223 
avoid the effect of the borders, those pixels near them are treated separately. In this case, to 224 
maintain a certain spatial coherence, the size of the window for the pixels in the top-most rows is 225 
smaller at first, so as not to search further than Wsize/2 down in the image. This way, the band 226 
grows with each further pixel being processed until the steady state is reached. This happens when 227 
the number of pixels above the one being processed reaches Wsize/2 and it is kept until an 228 
analogous situation happens in the lower zone of the image. 229 

 

Figure 4. KNN window searching method example. (A) Minimum window size of the first 230 
pixel; (B) Intermediate window size of a pixel near the upper border; (C) Maximum window 231 
size of a pixel in the center of the image; (D) Intermediate window size of a pixel near the 232 
bottom border; (E) Minimum window size of the last pixel. 233 

2.4.2. Serial implementation 234 

The serial implementation of the KNN algorithm is written in C language and presents three 235 
main phases, as shown in Figure 5. The first one concerns the declaration and initialization of all the 236 
variables, arrays and structures needed in the computation. For example, for each pixel, two types 237 
of structures are defined: the former, featureMatrixNode, contains all the parameters needed in the 238 
computation of the Euclidean distance, shown in Equation (2). The latter, featureDistance, contains 239 
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the distances (between the considered pixel and the pixels within its window) and the indexes of 240 
these pixels.  241 

The second phase refers to the K nearest neighbors searching. Considering every pixel in the 242 
image (Algorithm 1, line 1), the algorithm computes the distances between it and all the pixels 243 
inside its window (Algorithm 1, lines 2-4), exploiting the Euclidean metric in Equation (2). After 244 
storing all the distances in the featureDistance structure, the algorithm sorts them in ascending order 245 
through the Merge Sort algorithm (Algorithm 1, line 5) and selects the indexes of the K pixels 246 
characterized by the lower distances (Algorithm 1, line 6). At the end of this phase, the parameters 247 
related to the window sizes are updated (Algorithm 1, line 7) on the base of the pixel location, as 248 
described in section 2.4.1.  249 

Once all the neighbors of each pixel have been computed, the KNN filtering phase starts 250 
(Figure 5, Algorithm 2). Its goal is to assign a label to each pixel considering the probability maps 251 
generated by the SVM algorithm. In this phase, the algorithm computes, for each pixel, a number of 252 
optimized probabilities O(q), described in Equation (4), equal to the number of the SVM classes, 253 
which are four in this work. In particular, for each class, the SVM probabilities of all the neighbors 254 
of the pixel that is going to be processed are added (Algorithm 2, lines 1-5). Then, the result is 255 
divided by the number of neighbors (K) (Algorithm 2, line 6). After computing the four optimized 256 
probabilities O(q) for each pixel, the algorithm selects the highest value and assigns the label of the 257 
corresponding class to the pixel (Algorithm 2, lines 8-9). 258 

 

Figure 5. Flow diagram of the serial implementation of the KNN filtering algorithm. 259 

2.4.3. Parallel implementation 260 

A parallel version of the KNN filtering algorithm has been developed in CUDA in order to 261 
exploit the NVIDIA GPU technology. The basic idea followed in this approach is that each CUDA 262 
core has to assign a label to each pixel in parallel. Figure 6 shows the main phases of the parallel 263 
implementation. The flow starts on the host with the declaration and initialization of all the 264 
variables (First phase in Figure 6). The main difference between this first phase and the 265 
corresponding one of the serial code is that, in this parallel implementation, the number of arrays, 266 
structures and variables allocations is decreased in order to save memory.  267 
After the first phase, the algorithm transfers to the device the guidance image 𝐼 generated by the 268 
PCA algorithm and the probability maps generated by the SVM classifier. The flow proceeds with 269 
the resources allocation on the device (Second phase in Figure 6). The first step of the KNN filtering 270 
algorithm on the GPU device concerns the execution of a kernel that evaluates the borders and the 271 
size of the windows in parallel through the pixels (Third phase in Figure 6). Contrary to the serial 272 
code execution, where the parameters related to the window dimensions are updated at the end of 273 
the neighbors’ selection for each pixel, in the parallel version the algorithm needs to know these 274 
variables before starting the KNN filtering computation. In fact, in the following steps, it is 275 
important to copy the PCA and SVM data (already transferred to the device) from the global to the 276 
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local memory of the GPU, shared by the threads within a block. For this reason, each thread copies 277 
the part of the data (delimited by the window parameters) needed in the computation. Then, the 278 
results are copied to the global memory only at the end of the kernel execution. This step is crucial 279 
to decrease the execution time since the accesses to the global memory are very slow.   280 

 

Figure 6. Flow diagram of the parallel implementation of the KNN filtering algorithm. 281 

In the fourth phase, which corresponds to the second phase of the serial code, each thread 282 
evaluates the K nearest neighbors of a pixel in parallel (Figure 6, Algorithm 3). First, the PCA data 283 
required by each block are copied from global to the local memory (Algorithm 3, line 1). Then, each 284 
thread of the block declares an array called neighbors_distances, whose dimension is equal to the 285 
number of K neighbors, which is set to 40 in this work. This array is initialized with large values 286 
and will contain the 40 lowest distances computed between the pixels (Algorithm 3, line 2). The 287 
implementation proceeds computing the distance between pixel i, represented by the thread, and all 288 
the pixels within its window (Algorithm 3, lines 3-4). If the distance between the pixels i and j is 289 
smaller or equal to the last element of the neighbors_distances array, this distance will be stored in the 290 
last position of the array (Algorithm 3, lines 5-6). It is important to highlight that this if condition is 291 
always verified considering the first 40 pixels in the window (i.e. first 40 for loop iterations). Once the 292 
first 40 iterations are executed, in the last position of the array there will be a real distance (not the 293 
initialization value) and it will be the highest value among those already present in the array. This is 294 
verified because every time that a new distance is stored in the array, the algorithm calls a sort 295 
function in order to sort the elements of the array in ascending order, keeping track of their indexes 296 
(Algorithm 3, line 7). The K indexes of the selected neighbors are the output of the kernel and will be 297 
copied to the global memory (Algorithm 3, line 10). 298 

Figure 7 shows an example of the evaluation of a new distance by the KNN searching 299 
algorithm. After the first 40 iterations, the array contains 40 distances stored in ascending order 300 
(Figure 7A). When a new distance is computed (in this example its value is 61), it is compared with 301 
the last element of the array, in this case located in position 39 and whose value is 98 (Figure 7B). 302 
Since the new distance is lower than 98, it is stored in the last position of the array (Figure 7C). At 303 
this point, the array is sorted again (Figure 7D). Due to the reduced dimension of the array to be 304 
sorted, the sort function implemented in this work is the shell sort algorithm. 305 
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Figure 7. KNN searching new distance evaluation example. 306 

After computing all the neighbors for all the pixels, the fifth step of the KNN algorithm starts. In 307 
this phase, the KNN filtering is computed by every thread of each block (Figure 6, Algorithm 4). 308 
First, each thread copies the SVM probabilities of their corresponding neighbors from the global to 309 
the local memory (Algorithm 4, line 1). For each class, the algorithm computes the 310 
temporary_probability value of each pixel, which is the sum of the SVM probabilities of all the 311 
neighbors of the reference pixel (Algorithm 4, lines 3-6). If the algorithm is executing the first 312 
iteration of the first for loop (i.e. if it is considering the first class), the variable max_probability 313 
assumes the value of temporary_probability variable and the index of the class is stored in label 314 
(Algorithm 4, lines 7-10). In the following iterations, after computing the temporary_probability, its 315 
value is stored only if it is higher than the max_probability value (which represents the highest 316 
probability value of the previous classes). In this case, the index of the class is also stored (Algorithm 317 
4, line 11-14). At the end of the for loop that iterates on the number of classes, the algorithm selects 318 
the label of the pixel corresponding to the highest sum of probabilities among the four classes. It is 319 
worth noting that the algorithm evaluates immediately if the sum of probabilities could be the 320 
highest among the classes or not. This fact means that some arrays declared in the serial version can 321 
be replaced with a few variables, thus saving memory. At the end of this phase, the label of the pixel, 322 
which is the output of this step, is stored in the global memory (Algorithm 4, line 18). 323 

Once the KNN algorithm execution ends on the GPU device, an array containing the labels of 324 
all the pixels is transferred from the GPU device to the CPU host. At this point, the memory can be 325 
released (Sixth phase in Figure 6). 326 

3. Experimental Results and Discussion 327 

This section presents the results of the implementations of the KNN-based filtering algorithm 328 
by evaluating different sets of parameters in order to evaluate them, analyzing both the 329 
computational times and the classification accuracy. 330 

3.1. KNN window search optimization results with Euclidean distance 331 

In section 2.4.1, it was described an important optimization introduced in the serial and parallel 332 
implementations concerning the computation of the distances between pixels inside a window and 333 
not within the entire image. Reducing the space where the algorithm evaluates the distances ensures 334 
a significant decrease of the computational time, as shown in Table 2. In particular, the table 335 
provides the execution times for all the images, considering both the case in which the neighbors are 336 
searched within the entire image (EI) and within a window with 14 rows (WSize14). The speedup 337 
obtained with the optimization has been also included. In addition, this table shows the total 338 
number of pixels of each image and the number of pixels inside the smallest and the biggest window 339 
in the WSize14 implementation. The times refer to tests where the Euclidean distance has been 340 
considered. The simulations of the serial code have been carried out on an Intel i7 processor, 341 
working at 3.50 GHz, equipped with 16 GB RAM.   342 

 343 
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Table 2. Execution times of the serial code considering as search space both the entire 344 
image (EI Time) and a window with 14 rows (WSize14 Time).  345 

Image ID #Pixels EI Time [s] WSize14 Time [s] Speedup Min WSize14 [#Pixels] Max WSize14 [#Pixels] 

P1C1 251,532 17,173.74 503.89 34.08x 3,836 7,672 

P1C2 264,408 19,135.58 509.16 37.58x 3,864 7,728 

P2C1 219,232 15,630.77 374.67 41.72x 3,472 6,944 

P3C1 185,368 9,788.58 322.86 30.32x 3,451 6,902 

P4C1 124,691 4,015.89 139.30 28.83x 2,303 4,606 

Data presented in Table 2 show that this optimization allows a huge decrease in the execution 346 
times. For example, considering the biggest image of the dataset, P1C2, the time of the 347 
implementation that considers the entire image is 19,135.58 seconds (about 5 hours and 30 minutes). 348 
Considering a window of 14 rows as neighbors search space, this time decreases to 509.16 seconds 349 
(about 8 minutes). The reason of this huge time difference is that, when the algorithm has to 350 
consider the entire image, it has to compute a number of distances equal to (264,408-1) for each 351 
pixel, where 264,408 is the number of pixels of the P1C2 image. Considering the window technique, 352 
the algorithm computes a number of distances that, for the same image, varies from (3,864-1) to 353 
(7,728-1), where 3,864 and 7,728 are the number of pixels inside the windows with the minimum 354 
and the maximum sizes respectively (depending whether the pixel is in the borders or in the center 355 
of the image). Concerning to the classification results, it is important to notice that there are no 356 
differences in the results, and therefore all the pixels are classified with the same labels, using either 357 
the entire image or a window. 358 

Considering this significant result, the computational time variations were evaluated when the 359 
window size was reduced. Furthermore, since the main goal of the work was to reach real-time 360 
execution, a parallel version of the algorithm was developed in CUDA language to exploit the GPU 361 
technology. The GPU device used during the tests was an NVIDIA Tesla K40 GPU. This board is 362 
based on the Kepler architecture (working at 875 MHz) and it is equipped with 2,880 CUDA cores 363 
and 12 GB GDDR5 memory with a peak bandwidth of 288 GB/s [24]. The board is connected to the 364 
CPU host trough a PCI Express 2.0. Errore. L'origine riferimento non è stata trovata. shows the 365 
execution times of the serial and parallel implementations characterized by window sizes that vary 366 
from 14 to 2 with decrements of 2. In addition, the speedups between the serial and the parallel 367 
codes are presented. 368 

Table 3. Execution time results of the serial and parallel implementations using the 369 
Euclidean distance employing different window sizes. 370 

Image 

ID 

Processing 

Type 

Processing Time [s] 

WSize14 WSize12 WSize10 Wsize8 Wsize6 Wsize4 WSize2 

P1C1 

Serial 503.89 406.32 383.71 262.00 221.71 118.25 59.08 

CUDA 12.83 11.49 6.23 5.52 3.85 2.29 1.22 

Speedup 39.25x 35.33x 61.59x 47.42x 57.52x 51.44x 48.10x 

P1C2 

Serial 509.16 424.22 408.52 276.06 235.76 125.34 62.36 

CUDA 13.53 12.09 6.47 5.73 3.99 2.39 1.26 

Speedup 37.62x 35.08x 63.07x 48.11x 59.04x 52.31x 49.15x 

P2C1 

Serial 374.67 315.73 302.54 239.58 151.23 95.02 47.06 

CUDA 10.55 5.70 5.18 3.62 2.67 1.70 1.03 

Speedup 35.51x 55.39x 58.30x 66.18x 56.58x 55.76x 45.62x 

P3C1 

Serial 322.86 263.40 254.30 202.56 122.16 78.47 39.97 

CUDA 9.00 4.92 4.45 3.15 2.30 1.51 0.92 

Speedup 35.85x 53.46x 57.06x 64.17x 52.92x 51.80x 43.16x 

P4C1 

Serial 139.30 118.94 115.07 90.81 55.29 35.84 18.11 

CUDA 3.21 2.34 2.16 1.63 1.12 0.83 0.60 

Speedup 43.38x 50.63x 53.23x 55.61x 49.01x 42.82x 30.13x 

 371 
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The reduction of the window size supposes a decrease in the execution times because the 372 
algorithm has to compute a lower number of distances. For example, considering the P1C2 image, 373 
the time varies from 509.16 seconds (~8 minutes) to 62.36 seconds (~1 minute) in the serial versions of 374 
WSize14 and WSize2, respectively. If the parallel implementation of the same image is considered, 375 
the times present a further decrease. In fact, for the same image the parallel version of WSize14 is 376 
~37x times faster than the serial version, taking only 13.53 seconds instead of ~8 minutes. At the same 377 
time, the parallel execution of WSize2 takes only 1.26 seconds instead of ~1 minute (the speedup is 378 
~49x). Concerning all the images in the reference implementation WSize14, the speedups are always 379 
higher than 35x and in the best case (P4C1) it reaches 43x. If we consider all the other versions, with 380 
the decreased windows sizes, the parallel code shows even higher speedups. For example, 381 
considering the P1C2 image and the window size WSize10, the parallel code takes 6.48 seconds while 382 
the serial version takes 408.52 seconds (~6 minutes), obtaining a speedup of ~63x. Nevertheless, it is 383 
necessary to examine these times and speedups also taking into account the classification results. It 384 
is very important to consider if, reducing the window size, there are pixels classified with different 385 
labels compared to the reference version (WSize14). Table 4 shows the number of misclassified pixels 386 
between the reference result and other window sizes. Additionally, the percentage of the difference 387 
is shown. 388 

Table 4. Number of pixels with different classification result using the Euclidean distance 389 
between the different computed windows sizes and the reference one (Wsize14).  390 

Image 

ID 
#Pixels 

#Different pixels (% of difference) compared to the reference (Wsize14) 

WSize12 WSize10 WSize8 WSize6 WSize4 WSize2 

P1C1 251,532 0 (0.000%) 0 (0.000%) 65 (0.026%) 3,672 (1.460%) 9,096 (3.616%) 20,476 (8.141%) 

P1C2 264,408 0 (0.000%) 1 (0.000%) 60 (0.023%) 2,845 (1.076%) 7,705 (2.914%) 22,054 (8.341%) 

P2C1 219,232 0 (0.000%) 4 (0.002%) 65 (0.030%) 2,606 (1.189%) 6,532 (2.979%) 18,015 (8.217%) 

P3C1 185,368 0 (0.000%) 1 (0.000%) 49 (0.026%) 2,273 (1.226%) 5,604 (3.023%) 13,981 (7.542%) 

P4C1 124,691 3 (0.002%) 7 (0.005%) 71 (0.057%) 1,498 (1.201%) 3,733 (2.993%) 10,089 (8.091%) 

Considering the first three windows sizes (WSize12, WSize10, WSize8) for all the images, the 391 
number of pixels classified with different labels is very low, taking into account the final application 392 
of the system. In fact, the highest percentage of different pixels is 0.057% and it is related to the P4C1 393 
image, which, in the version WSize8, presents 71 different pixels on a total amount of 124,691 pixels. 394 
Concerning the other three windows sizes, the highest percentage of different pixels for window 395 
WSize6 is 1.46% considering the P1C1 image (3,672 different pixels on 251,532). For the window 396 
WSize4, the percentage of different pixels is ~3.62%, referred also to the P1C1 image (9,096 different 397 
pixels on 251,532) and for WSize2, the highest percentage is ~8.341%, considering the biggest image 398 
of the database, P1C2 (22,054 different pixels on 264,408). At this point, there is a further evaluation 399 
that can be made considering that this algorithm is part of a system whose main goal is to 400 
discriminate between tumor and healthy tissue. Despite this, the classification is made between four 401 
classes that are normal tissue, tumor tissue, hypervascularized tissue and background [23]. From the 402 
surgical and medical point of view, it is clear that a wrong discrimination between tumor and 403 
healthy tissue has much greater and transcendental relevance than just a misclassification issue 404 
between tumor and any other classes (hypervascularized and background) or between healthy, 405 
hypervascularized and background classes. It is possible to re-evaluate again the results of Table 4, 406 
considering that in the different WSize executions only a low percentage of different pixel labels are 407 
exchanged between tumor and normal tissue. Figure 8 shows the percentage of pixels that are 408 
misclassified between tumor and healthy tissues, tumor and hypervascularized tissues and tumor 409 
and background, considering all the windows sizes for each image compared to the reference 410 
version. In addition, the graph presents the classification differences between healthy, 411 
hypervascularized and background classes (called Others). 412 

 413 
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Figure 8. Percentage of pixels that have been misclassified using the Euclidean distance between 414 
tumor and healthy tissues (blue), tumor and hypervascularized tissues (orange), tumor 415 
tissue and background (gray) and the other misclassifications between healthy, 416 
hypervascularized and background (yellow). The results were obtained per each window 417 
size implementations compared to the WSize14 for each image of the dataset. 418 

As it can be seen in Figure 8, only in the case of the P3C1 image using the WSize8, the algorithm 419 
misclassifies approximately 2% of the pixels (1 out of 49 pixels), exchanging the labels between 420 
tumor and healthy tissues. In all the other implementations of WSize8, the classification differences 421 
do not involve the tumor class. Furthermore, in the versions related to the three smallest windows 422 
(WSize6, WSize4, WSize2), the percentage of the pixels exchanged between these two classes is lower 423 
than the percentages of pixels exchanged between the other classes. For example, for the biggest 424 
image of the database (P1C2), in the WSize6 implementation, the classification difference between 425 
tumor and healthy tissue represents 2.43% out of 2,845 different pixels. Considering the same image 426 
in the WSize4 and in the WSize2 implementations, this percentage is of 2.60% out of 7,705 pixels and 427 
1.89% out of 22,054 pixels, respectively. The highest percentage of difference between these two 428 
classes is found in the WSize6 version regarding the P1C1 image, where it is about 3.57% out of 3,672 429 
pixels. According to these data, it is clear that the algorithm can correctly distinguish the tumor from 430 
the healthy tissue, while it makes more errors in separating the tumor from the hypervascularized 431 
tissue. The highest percentages of misclassified pixels between the tumor and the hypervascularized 432 
classes reach 26.28% of the total number of different pixels (P3C1 image, WSize4 version). In fact, 433 
according to what it is said in [23], these two classes referred to tissues with similar spectral 434 
signatures that can produce some misclassifications. On the other hand, the spectral signatures of 435 
tumor and healthy tissues present remarkable differences that allow the algorithm to distinguish 436 
these two classes in the classification.   437 

3.2. KNN window search optimization results using Manhattan distance 438 

As it was said before, the neighbors search supposes the heaviest computational load of the 439 
KNN filtering algorithm. Although the distances computation is the most time-consuming task, the 440 
number of evaluated distances has been reduced in this study by considering a window, so a 441 
smallest area is considered instead of the entire image. To further reduce the execution time of this 442 
phase, the Manhattan metric has been tested instead of the Euclidean one, as described in Equation 443 
(3). Table 5 compares the times of the serial code using both the entire image (EI) and the reference 444 
window (WSize14), employing both the Euclidean and the Manhattan distances. The speedup 445 
obtained using the Manhattan distance and the percentages of pixels that are different in the results 446 
are also presented in this table. 447 

As said in the previous paragraph, searching the neighbors inside a window instead of the 448 
entire image allows saving time without changing the results of the classification. A further 449 
reduction of the execution time is obtained using the Manhattan metric in the distance 450 
computations. In fact, for the biggest image of the database (P1C2), the time is reduced from ~5 451 
hours (19,135.58 seconds) using the Euclidean distance to ~2 hours (7,683.44 seconds) in the case of 452 
using the entire image. If the neighbors are searched within the window (for the same image), the 453 
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time decreases to ~3 minutes (202.42 seconds) using the Manhattan distance. Concerning all the 454 
images, it is possible to reach speedups from 2.22x to 3.33x, considering the versions with the entire 455 
image, and from 2.49x to 2.66x in the WSize14 executions. Comparing the implementations that 456 
exploit the Manhattan distance and the ones that use the Euclidean metric, the number of pixels 457 
classified with different labels is quite low: the highest percentage of different pixels is 1.33% in the 458 
P1C1 image. Furthermore, it is important to highlight that there are no differences in the 459 
classification results comparing the entire image and the WSize14 versions, using the Manhattan 460 
distance.  461 

Table 5. Comparison of the execution time of the serial versions obtained employing the 462 
Euclidean and Manhattan distances with the entire image (EI) and the WSize14. The 463 
table also presents the classification differences between the Euclidean and 464 
Manhattan implementations. 465 

Distance Type 
P1C1 P1C2 P2C1 P3C1 P4C1 

EI WSize14 EI WSize14 EI WSize14 EI WSize14 EI WSize14 

Euclidean [s] 17,173.75 503.89 19,135.58 509.17 15,630.77 374.67 9,788.58 322.87 4,015.89 139.30 

Mahattan [s] 7,222.13 190.02 7,683.44 202.42 4,735.87 146.93 3,382.84 121.37 1,807.91 55.91 

Speedup 2.38x 2.65x 2.49x 2.51x 3.3x 2.55x 2.89x 2.66x 2.22x 2.49x 

Difference 1.33% 0.99% 1.03% 1.10% 1.06% 

At this point, it is interesting to evaluate how the execution times can be reduced changing the 466 
size of the windows using the Manhattan metric in the distances computation. The results shown in 467 
Table 6 confirm that decreasing the number of distance computations, i.e. the variations of the 468 
window sizes, allows further reductions of the computational time. The lowest execution times are 469 
obtained exploiting the GPU technology that can run the parallel algorithm taking ~8 seconds 470 
(compared to ~3 minutes) if the biggest image (P1C2) with the WSize14 version is considered. The 471 
speedups obtained using this device and the optimizations introduced in the code are significant 472 
and they can reach up to 33.2x (P2C1-WSize12). For some images and for some window dimensions, 473 
the algorithm takes only a few seconds, but what is even more important to consider is the number 474 
of pixels that are misclassified when the window size decreases (0).  475 

Table 6. Execution time results of the serial and parallel implementations using the 476 
Manhattan distance and using different window sizes. 477 

Image 

ID 

Processing 

Type 

Processing Time [s] 

WSize14 WSize12 WSize10 Wsize8 Wsize6 Wsize4 WSize2 

P1C1 

Serial 190.02 192.19 158.15 129.54 81.61 54.14 28.70 

CUDA 7.63 7.07 5.04 4.62 3.38 2.04 1.18 

Speedup 24.90x 27.15x 31.34x 27.99x 24.09x 26.47x 24.13x 

P1C2 

Serial 202.41 204.65 169.23 138.12 84.98 57.51 29.75 

CUDA 8.01 7.40 5.21 4.84 3.51 2.09 1.22 

Speedup 25.26x 27.64x 32.48x 28.52x 24.20x 27.45x 24.28x 

P2C1 

Serial 146.92 152.20 125.60 102.94 63.90 42.57 21.81 

CUDA 6.44 4.58 4.27 3.16 2.34 1.52 1.00 

Speedup 22.81x 33.20x 29.35x 32.50x 27.25x 27.86x 21.66x 

P3C1 

Serial 121.37 126.98 104.79 86.83 55.09 36.24 18.54 

CUDA 5.57 4.03 3.76 2.79 2.04 1.37 0.90 

Speedup 21.75x 31.47x 27.86x 31.11x 26.88x 26.42x 20.54x 

P4C1 

Serial 55.91 58.06 42.62 39.42 24.39 16.62 8.66 

CUDA 2.81 2.12 1.98 1.49 1.04 0.80 0.60 

Speedup 19.87x 27.27x 21.46x 26.46x 23.31x 20.59x 14.42x 

 478 
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Table 7. Number of pixels with different classification results using the Manhattan 479 
distance between the computed window sizes and the Wsize14 Manhattan.  480 

Image 

ID 
#Pixels 

#Different pixels (% of difference) compared to the Wsize14 (Manhattan) version 

WSize12 WSize10 WSize8 WSize6 WSize4 WSize2 

P1C1 251,532 2 (0.001%) 65 (0.026%) 1,832 (0.728%) 4,507 (1.792%) 8,889 (3.534%) 19,783 (7.865%) 

P1C2 264,408 3 (0.001%) 56 (0.021%) 1,483 (0.561%) 3,891 (1.471%) 7,839 (2.965%) 21,714 (8.812%) 

P2C1 219,232 3 (0.001%) 44 (0.020%) 1,320 (0.602%) 3,483 (1.589%) 6,743 (3.075%) 17,653 (8.052%) 

P3C1 185,368 2 (0.001%) 48 (0.026%) 
1,033 

(0.557411%) 
2,825 (1.524%) 5,474 (2.953%) 13,436 (7.248%) 

P4C1 124,691 2 (0.001%) 35 (0.028%) 699 (0.560%) 2,014 (1.615%) 3,831 (3.072%) 9,613 (7.709%) 

As it can be seen in the results shown in 0, WSizes12 and WSizes10 present a reduced number of 481 
different pixels compared to the other implementations. Analyzing the Euclidean distance results 482 
presented in Table 4, this consideration can be made for the first three tests (WSizes12, WSizes10 and 483 
WSize8) but, in this case, the number of different pixels in WSize8 is higher than the first two 484 
versions. Despite this, it is important to highlight that the classification differences shown in 0 are 485 
not very relevant for the final application of the system. In this application, a solution with a good 486 
compromise between real-time execution and classification accuracy of the results has to be selected. 487 
In addition, it is also important to evaluate the percentage of different pixels that are misclassified 488 
between tumor and healthy tissues and between tumor and the other classes. 489 

Figure 9 shows the percentage of pixels that are misclassified using the Manhattan metric 490 
between the different classes. In this figure, it is possible to notice that the algorithm misclassifies 491 
more pixels between tumor and hypervascularized classes than between tumor and healthy classes. 492 
In fact, the highest percentage of pixels misclassified is 30.77% related to the P1C1 image with 493 
WSize10, where the algorithm exchanges the labels of 20 pixels (between tumor and 494 
hypervascularized tissue) out of a total amount of 65 different pixels compared to the reference 495 
version WSize14 (0). Concerning the comparison between tumor and healthy classes, the number of 496 
pixels with an exchanged label is very low: the worst case is always the P1C1 image (WSize8), where 497 
66 out of 1,832 different pixels are misclassified, being a 3.60% of pixels.  498 

 

Figure 9. Percentage of misclassified pixels using the Manhattan distance between tumor and 499 
healthy tissues (blue), tumor and hypervascularized tissues (orange), tumor tissue and 500 
background (gray) and the other misclassifications between healthy, hypervascularized and 501 
background (yellow). The results were obtained per different window sizes implementation 502 
compared to the WSize14 for each image of the dataset. 503 

3.3. Summary 504 

In this study, the results of serial and parallel versions of the KNN filtering algorithm for the 505 
classification of in-vivo brain tumor from hyperspectral images are presented. In particular, the 506 
importance of reducing the area of the neighbors search in order to decrease the elaboration time is 507 
explained. In fact, the results prove that searching the neighbors of a pixel within a window instead 508 
of the entire image supposes a significant reduction of the computation time. It is important to notice 509 
that introducing a window (characterized by 14 rows with the reference pixel in the center) does not 510 
affect the result of the classification. For this reason, this version has been defined as the reference 511 
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one (WSize14). Reducing the window size compared to the reference one, the time of the 512 
computation drastically decreases but the number of pixels that the algorithm misclassifies 513 
increases. At this point, it is important to select the best versions that have a good tradeoff between 514 
performance and number of misclassifications.  515 

In the previous sections, the percentages and the number of different pixels between versions 516 
with different window sizes were analyzed. Concerning the implementations that exploit the 517 
Euclidean distance, Table 4 demonstrated that by using the window sizes WSize12, WSize10 and 518 
WSize8, the number of different pixels was lower than those obtained using the WSize6, WSize4 and 519 
WSize2, compared with the reference test (WSize14).  520 

In Figure 10, the KNN filtered maps obtained from the P2C1 image and the binary maps are 521 
shown, where the differences between the evaluated window size version and the reference version 522 
are highlighted. Despite the differences between the first and the last three versions shown in Table 523 
4, it is possible to see that the KNN filtered maps of the implementations for WSize6 and WSize8 do 524 
not present relevant dissimilarities. In fact, it is important to remember that the main goal of these 525 
maps is to delineate the tumor area, in order to provide a guidance tool to the surgeons during the 526 
tumor resection. In this context, it is clear that the number of different pixels in WSize8 and WSize6 527 
versions are not so significant for the final application of the system, since the surgeon always resect 528 
a security margin around the tumor tissue.  529 

In the previous paragraph, the data showed that the algorithm is able to correctly discriminate 530 
between tumor and healthy classes. This consideration can also be seen in the KNN filtered maps, 531 
where the area related to the tumor tissue (red) remains roughly the same in the implementations 532 
WSize6, WSize8, WSize10 and WSize12 compared to the WSize14 one. Considering the WSize4 and the 533 
WSize2 versions, it is possible to appreciate that the margins of the tumor are not as evident and well 534 
defined as in the other images, confirming what has been said in the previous paragraphs analyzing 535 
the classification results.  536 

 

Figure 10. Results of the KNN filtering algorithm obtained from the P2C1 image using the 537 
Euclidean distance. The first row shows the filtered classification maps generated using 538 
different window sizes. The second row presents the binary maps where the pixels 539 
differences between the current generated map and the reference one (WSize14) are shown. 540 
In addition, the percentage of differences and the execution time results are detailed.  541 

In the second row of Figure 10 are presented the binary maps that show the pixel differences 542 
between all the window sizes versions and the reference implementation (WSize14). In particular, by 543 
analyzing the binary maps of WSize4 and WSize2, it is possible to identify several differences 544 
compared to WSize14. For this reason, these two versions should not be chosen for the final solution. 545 
However, in the binary maps of WSize6 and WSize8, there are few differences, and they are barely 546 
appreciated analyzing the KNN filtered maps. It is important to remember that the suitable version 547 
for this application is the option that offers a good compromise between accurate classification and 548 
fast execution. Exploiting the GPU technology, the parallel version of the KNN algorithm with 549 
WSize8 employs ~3.62 seconds to filter the P2C1 image, while the WSize6 implementation is executed 550 
in ~2.67 seconds. For the biggest image of the database (P1C2), the WSize6 implementation allows to 551 
save ~2 seconds compared to the WSize8 version. According to these results, the WSize8 version has 552 
been selected as the best solution, giving priority to the classification accuracy but considering also a 553 
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fast implementation. On the contrary, the WSize6 implementation has be chosen as the fastest 554 
implementation with acceptable accuracy results. 555 

Similarly, the same evaluation can be done considering the implementations that exploit the 556 
Manhattan metric for the computation of the distances. Analyzing the computational times in the 557 
previous sections, it is evident that this metric leads to faster executions than using the Euclidean 558 
distance. In the first row of Figure 11 are shown the KNN filtered maps of the P2C1 image using 559 
different window sizes and employing the Manhattan distance. In the second row are presented the 560 
binary maps to evaluate the differences between the developed versions compared to the WSize14 561 
implementation.   562 

 

Figure 11. Results of the KNN filtering algorithm obtained from the P2C1 image using the 563 
Manhattan distance. The first row shows the filtered classification maps generated using 564 
different window sizes. The second row presents the binary maps where the pixels 565 
differences between the current generated map and the WSize14. In addition, the percentage 566 
of differences and the execution time results are detailed. 567 

According to the data shown in 0, in Figure 11 it is possible to see that the KNN filtered maps of 568 
the versions WSize12 and WSize10 are practically identical to the map obtained with the WSize14. 569 
The number of different pixels is low enough to not perceive the differences between the 570 
classification maps. In Table 7, it is also evident that the number of different pixels from the WSize8 571 
to the WSize2 implementations drastically increases. Concerning the KNN filtered maps of the 572 
WSize4 and, in particular, the WSize2 implementations, the differences are very clear since the 573 
margin of the tumor is not as well defined as in the other maps. Instead, in the filtered maps of the 574 
WSize8 and WSize6 implementations, the classification differences are not so evident, especially 575 
taking into account the tumor tissue area. The differences between all the versions compared to the 576 
WSize14 implementation can be evaluated in the binary maps (Figure 11, second row). Even if the 577 
WSize4 and WSize2 are the fastest implementations, their binary maps clearly show that these two 578 
versions cannot be chosen because the amount of different pixels compared to WSize14 is too high. 579 
However, in the binary maps of WSize12 and WSize10, it is evident that these implementations offer 580 
the highest accuracy but the slowest execution times. Finally, concerning the WSize8 and WSize6 581 
implementations, it is possible to determine that the WSize8 version has the highest accuracy but the 582 
execution time is slower than the WSize6 version (the former exhibits 3.16 seconds and the latter 2.34 583 
seconds). Also in this case, the best solution is chosen on the base of the degree of accuracy and the 584 
time constraints that the application requires. 585 

At this point, the best solutions selected between the Manhattan versions (WSize8 and WSize6) 586 
have to be compared with the reference test WSize14 that exploits the Euclidean distance. In fact, the 587 
original algorithm is characterized by the use of the Euclidean metric in the neighbors search within 588 
the entire image. Since the WSize14 Euclidean implementation does not have any differences in the 589 
classification results compared to the original version, the results of the Manhattan best solutions 590 
have to be compared with the reference results.  591 

By analyzing the results comparison shown in Figure 12, it is possible to see that all these 592 
versions have a reduced percentage of different pixels compared to the WSize14-Euclidean 593 
implementation. In all the obtained KNN filtered maps, the boundaries of the tumor area are 594 
accurately defined. The solutions where the results are more similar to the reference implementation 595 
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are the WSize8-Euclidean and WSize8-Manhattan versions, which differ 0.029% and 0.978% 596 
respectively, compared to the WSize14-Euclidean reference. The versions characterized by a window 597 
with 6 rows are less accurate than the previous ones, but they are faster. Concerning the 598 
computational times, the parallel execution of the reference solution is executed in ~10.55 seconds, 599 
while the WSize8-Euclidean and WSize8-Manhattan versions are executed in 3.62 and 3.16 seconds 600 
respectively. The WSize6-Euclidean and WSize6-Manhattan implementations require 2.67 and 2.34 601 
seconds respectively.  Finally, a figure of merit (FoM in Equation (5)) which relates the execution 602 
time (t) and the classification results (err) was considered to select the best solution that offers the 603 
highest value. The version WSize8-Euclidean is chosen as the best solution since it presents the 604 
highest value of FoM (Figure 13). To the best of our knowledge, the state of the art does not provide 605 
implementations of the KNN filtering algorithm that could be a touchstone for a fair comparison 606 
with the presented work. 607 

𝐹𝑜𝑀 =
1

(𝑡 ∗ 𝑒𝑟𝑟)
 (5) 

 608 

 

Figure 12. Results comparison of the KNN filtered maps from the P2C1 image using Manhattan 609 
and Euclidean distances. The first row shows the filtered classification maps generated 610 
using different window sizes and distance metrics. The second row presents the binary 611 
maps where the pixels differences between the current generated map and the reference one 612 
(WSize14-Euclidean) are shown. In addition, the percentage of differences and the execution 613 
time results are detailed. 614 

 

Figure 13. Figure of metric computed comparing (A) the Euclidean versions WSize8, WSize6, 615 
WSize4 and WSize2 with the reference WSize14-Euclidean, (B) the Manhattan versions 616 
WSize8, WSize6, WSize4 and WSize2 with the reference WSize14-Euclidean. 617 

 618 
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4. Conclusions 619 

This work presents the development of a parallel version of the KNN filtering algorithm 620 
exploiting the NVIDIA Tesla K40 board. The goal of the implementation was to reduce the execution 621 
time of the KNN filter to reach real-time constraints, which is mandatory considering the final 622 
application of the system. This application is related with the detection and identification of in-vivo 623 
brain tumor boundaries during neurosurgical operations by using hyperspectral images. For every 624 
pixel of the image, the parallel version of the algorithm computes each phase of the algorithm 625 
simultaneously. A first optimization was to introduce a search window in the K nearest neighbors 626 
search step, which is the most time-consuming part of the algorithm. The selection of the neighbors 627 
within a region close enough to the pixel, instead of the entire image, allows to significantly reduce 628 
the computational time of the algorithm. Furthermore, variations of the window sizes have been 629 
explored in order to evaluate the accuracy of the results and a possible reduction of the 630 
computational time. All the variations were considered exploiting both the Euclidean and the 631 
Manhattan metrics for the distance computation. The results obtained in this analysis show that, for 632 
the proposed final application, the implementation characterized by a search window of 8 rows 633 
using Euclidean distance is the best solution. This version performs the classification of the 634 
considered images in less than 6 seconds, with speedups up to 102.5x and 4317.9x compared with 635 
the Wsize14-Euclidean and the entire image versions, respectively. Further developments must be 636 
carried out to integrate this parallel version of the KNN filtering algorithm with the other parts of 637 
the brain cancer detection algorithm (i.e., SVM classifier and PCA) in a single system capable of 638 
computing the classification maps of the hyperspectral brain cancer images in surgical-time to assist 639 
neurosurgeons during the resection of the tumor tissues.  640 
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