

Sensors 2017, 17, x; doi: FOR PEER REVIEW www.mdpi.com/journal/sensors

Article 1

Accelerating the K-Nearest Neighbors Filtering 2

Algorithm to Optimize the Real-Time Classification 3

of Human Brain Tumor in Hyperspectral Images 4

Giordana Florimbi 1,* Himar Fabelo 2, Emanuele Torti 1, Raquel Lazcano 3, Daniel Madroñal 3, 5
Samuel Ortega 2, Ruben Salvador 3, Francesco Leporati 1, Giovanni Danese 1, Abelardo 6
Báez-Quevedo 2, Gustavo M. Callicó 2, Eduardo Juárez 3, César Sanz 3, Roberto Sarmiento 2 7

1 Department of Electrical, Computer and Biomedical Engineering. University of Pavia, Pavia 27100, Italy; 8
giordana.florimbi01@universitadipavia.it (G.F.); emanuele.torti@unipv.it (E.T.); leporati@unipv.it (F.L.); 9
gianni.danese@unipv.it (G.D.) 10

2 Institute for Applied Microelectronics (IUMA), University of Las Palmas de Gran Canaria (ULPGC), Las 11
Palmas de Gran Canaria 35017, Spain; hfabelo@iuma.ulpgc.es (H.F.); sortega@iuma.ulpgc.es (S.O.); 12
abaez@iuma.ulpgc.es (A.B.-Q.); gustavo@iuma.ulpgc.es (G.M.C.); roberto@iuma.ulpgc.es (R.Sar.); 13

3 Centre of Software Technologies and Multimedia Systems (CITSEM), Technical University of Madrid 14
(UPM), Madrid 28031, Spain; raquel.lazcano@upm.es (R.L.); daniel.madronal@upm.es (D.M.); 15
ruben.salvador@upm.es (R.Sal.); ejuarez@sec.upm.es (E.J.); cesar.sanz@upm.es (C.S.) 16

* Correspondence: giordana.florimbi01@universitadipavia.it; Tel.: +39 0382 985678 17

Academic Editor: name 18
Received: date; Accepted: date; Published: date 19

Abstract: The use of hyperspectral imaging (HSI) in the medical field is an emerging approach to 20
assist physicians in diagnostic or surgical guidance tasks. However, HSI data processing involves 21
very high computational requirements due to the huge amount of information captured by the 22
sensor. One of the stages with higher computational load is the K-Nearest Neighbors (KNN) 23
filtering algorithm. The main goal of this study is to optimize and parallelize the (KNN) algorithm 24
by exploiting the GPU technology to obtain real-time processing during brain cancer surgical 25
procedures. This parallel version of the KNN performs the neighboring filtering of a classification 26
map (obtained from a supervised classifier), evaluating the different classes simultaneously. The 27
undertaken optimizations and the computational capabilities of the GPU device throw a speedup 28
of up to 66.18x when compared to a sequential implementation. 29

Keywords: K-nearest neighbors filtering; hyperspectral imaging instrumentation; brain cancer 30
detection; image processing; graphics processing units. 31

 32

1. Introduction 33

Hyperspectral imaging (HSI) is a non-contact, non-ionizing and non-invasive imaging 34
technique suitable for medical applications [1,2]. HSI combines traditional imaging and 35
spectroscopy methods to obtain both spatial and spectral information of the captured scene [3]. 36
Currently, HSI is becoming more popular in surgery applications as a guidance tool for surgeons, 37
since it can provide more information than traditional imaging techniques, such as Magnetic 38
Resonance (MR), Computed Tomography (CT), Ultrasound (US) and Positron Emission 39
Tomography (PET), being a non-invasive and risk-free technique [4–7]. However, one of the main 40
handicaps of this technology is the high computational requirements needed to process the large 41
amount of data acquired by the sensor. The use of High Performance Computing (HPC) and highly 42
parallelized algorithms is mandatory to obtain HSI intra-operative real-time processing [8]. 43

Sensors 2017, 17, x FOR PEER REVIEW 2 of 20

The work presented in this paper is focused on the optimization, parallelization and 44
implementation onto a Graphics Processing Unit (GPU) of the K-Nearest Neighbors (KNN) filtering 45
algorithm to obtain real-time performance. This work has been done taking into account the results 46
and intermediate data obtained during the deployment of the HELICoiD (HypErspectraL Imaging 47
Cancer Detection) European FET project [9–12]. The goal of this project was to apply the HSI 48
technique to discriminate between tumor and normal brain tissue during neurosurgical operations 49
in real-time. Employing the developed system, surgeons will have a guidance tool to assist them 50
during the brain tumor resection, avoiding unintentionally leaving behind small remnants of tumors 51
and the excessive extraction of normal tissue. This accurate delimitation of the tumor boundaries 52
will improve surgery outcomes, therefore improving the patient’s quality of life. 53

The KNN algorithm is a classifier widely used in several research areas and also in the field of 54
HSI, where a pixel-wise classification is performed [13]. The most relevant part of this method is the 55
K-Nearest Neighbors searching, which is a highly demanding task in terms of computational time. 56
Since the main goal of the majority of the works in the state of the art is to execute this algorithm in 57
real-time or at least with reduced execution times, it becomes necessary to exploit high performance 58
devices, being GPUs a highly appealing option. As a massively parallel architecture, this kind of 59
devices has been widely used for exploiting data parallelism in several applications from different 60
scientific fields [14–16] and also in HSI [17,18]. 61

Concerning the KNN algorithm, several parallel CUDA implementations have been proposed 62
in the scientific literature. The results reported by these previous works point out that this 63
technology is able to provide very high speedups compared to serial codes. For example, in [19], 64
authors provide two CUDA versions of this algorithm, one characterized by custom kernels and the 65
other exploiting the CUBLAS library [20]. Using synthetic data, they obtain speedups equal to 64x 66
and 189x, respectively, compared to the highly optimized ANN (Approximate Nearest Neighbors) 67
C++ library. They also apply the two parallel versions of the KNN algorithm to the high dimensional 68
SIFT (Scale-Invariant Feature Transform) feature matching, obtaining speedups of 25x and 62x, 69
respectively. In addition, in [21], the authors exploit the GPU technology to implement a new 70
version of the KNN algorithm called Sweet KNN. This new algorithm is based on a Triangle 71
Inequality (TI) approach, which tries to reduce the number of distance computations, since the goal 72
of the work is to find a good balance between redundancy minimization and regularity preservation 73
for various datasets. This work presents a speedup with an average value equal to 11x compared to 74
the existing GPU implementations on KNN, with a maximum speedup of 120x. 75

Recent uses of the KNN algorithm show that it is not restricted to only a classification role. In 76
the last few years it has also been used as a filtering technique, able to improve the results of spectral 77
classifications by adding spatial domain information [22]. In this work it is presented a parallel 78
implementation of the KNN filtering algorithm, which can integrate the output of the SVM (Support 79
Vector Machines) classifier with the one-band representation of a hyperspectral (HS) cube generated 80
using the PCA (Principal Component Analysis) algorithm. The goal of the entire system is to 81
perform the real-time classification of brain cancer, where real-time restrictions for this application 82
are considered to be met when the processing time is lower than the time elapsed between the 83
consecutive acquisitions of two images of the exposed brain (~1 minute). 84

2. Materials and Methods 85

This section presents the HSI instrumentation employed to obtain the in-vivo HS brain cancer 86
image database, the serial implementation of the algorithm as well as the optimizations and the 87
parallelization analysis applied to the KNN filtering algorithm. 88

2.1. Hyperspectral Acquisition System 89

To obtain the HS in-vivo brain image dataset used in this study, a customized HS acquisition 90
system was employed [12]. The acquisition system is composed by a VNIR (Visual and Near 91
Infra-Red) pushbroom camera (Hyperspec® VNIR A-Series, Headwall Photonics Inc., Fitchburg, MA, 92
USA). This camera is able to capture images within the spectral range between 400 and 1000 nm, 93

Sensors 2017, 17, x FOR PEER REVIEW 3 of 20

obtaining 826 spectral bands with a spectral resolution of 2-3 nm and a pixel dispersion of 0.74 nm. 94
In order to capture the complete HS cube, the camera uses a pushbroom scanning technique, which 95
allows the 2-D detector to capture the complete spectral dimensions and one spatial dimension of 96
the scene. By shifting the camera’s field of view relative to the scene, the second spatial dimension is 97
acquired. Figure 1 shows the HS acquisition system while capturing an image of the exposed brain 98
surface during a surgical operation at the University Hospital Doctor Negrin of Las Palmas de Gran 99
Canaria (Spain). 100

Figure 1. Hyperspectral acquisition system capturing an image during a neurosurgical 101
operation. 102

2.2. Hyperspectral brain cancer image database 103

In this study, a set of five in-vivo brain surface HS images were employed to evaluate the 104
performance of the KNN filtering implementation. These images were captured using the HS 105
acquisition system, belonging to adult patients undergoing craniotomy for resection of intra-axial 106
brain tumor. Images were obtained at the University Hospital Doctor Negrin of Las Palmas de Gran 107
Canaria (Spain) from four different patients with a confirmed grade IV glioblastoma tumor by 108
histopathology. The study protocol and consent procedures were approved by the Comité Ético de 109
Investigación Clínica-Comité de Ética en la Investigación (CEIC/CEI) of University Hospital Doctor 110
Negrin and written informed consent was obtained from all subjects. 111

HS images were obtained intra-operatively after craniotomy and resection of the dura. Before 112
the images were captured, the operating surgeon initially identified the approximate location of 113
normal brain and tumor. Rubber ring markers were then placed on these locations and the images 114
were taken with markers in situ. At that point, tissue samples were resected from the marked areas 115
and sent to pathology for tissue diagnosis. Depending on the location of the tumor, images were 116
acquired at various stages of the operation. In those cases with superficial tumors, some images were 117
obtained immediately after the dura was removed, while in the cases with deep laying tumors, 118
images were obtained during the actual tumor resection. 119

The selected HS images were pre-processed following the pre-processing chain presented in 120
[12]. The pre-processing chain is composed by four steps: image calibration, noise filtering, band 121
averaging and pixel normalization. In the first step, after the image acquisition, the HS raw data are 122
calibrated using a white reference image (captured from a certified white reference tile in the same 123
illumination conditions in which the images were captured) and a dark reference image (obtained by 124
keeping the camera shutter closed). This calibration is performed to avoid the problem of the 125
spectral non-uniformity of the illumination device and the dark currents of the camera sensor. Next, 126
due to the high spectral noise generated by the camera sensor, a set of steps are applied with the goal 127
of removing this noise from the spectral signatures and to reduce the number of bands of the 128
samples without losing the main spectral information. Finally, a normalization step is performed in 129
order to homogenize the spectral signatures in terms of the reflectance level. The final HS cube is 130
formed by 128 spectral bands, covering the range between 450 and 900 nm [12]. 131

Sensors 2017, 17, x FOR PEER REVIEW 4 of 20

Figure 2a shows an example of the synthetic RGB representation of an HS cube from the HS 132
brain cancer image database used in this study. Furthermore, each one of these HS images was 133
processed employing a supervised SVM classifier (Figure 2b), and a one-band representation was 134
obtained using a PCA algorithm (Figure 2c). Table 1 details the characteristics of each HS image, 135
where PXCY stands for Patient X and Capture Y. 136

Four different classes were labeled in the images for the supervised classification: tumor tissue, 137
normal tissue, hypervascularized tissue (mainly blood vessels) and background (other materials or 138
substances that can be presented in the surgical scene that are not relevant for the tumor resection 139
process). These classes were represented in the classification maps with the following colors: red, 140
green, blue and black, respectively. 141

(a) (b) (c)

Figure 2. Example of an in-vivo HS human brain image dataset employed in the study (P2C1). 142
(a) Synthetic RGB representation of the HS cube; (b) Supervised classification map obtained 143
using the SVM classifier; (c) One-band representation of the HS cube obtained employing 144
PCA algorithm. 145

Table 1. HS brain cancer image database. 146

Image ID #Pixels
Dimensions

(width x height x bands)

P1C1 251,532 548 x 459 x 128

P1C2 264,408 552 x 479 x 128

P2C1 219,232 496 x 442 x 128

P3C1 185,368 493 x 376 x 128

P4C1 124,691 329 x 379 x 128

2.3. K-Nearest Neighbors filtering algorithm 147

As introduced in Section 1, the KNN algorithm has recently been widely used in the field of HSI 148
as a filtering technique [22] to refine outputs from classifiers, in this case a SVM, with the spectral 149
information computed trough the PCA algorithm. As shown in Figure 3, the KNN-based filtering 150
algorithm [22][23] receives an input image P, which is composed of the probability maps estimated 151
by the SVM classifier, and a guidance image I, that is the one-band representation of the HS cube, 152
generated using a dimensional reduction algorithm, such as PCA. The output of this algorithm is a 153
filtered classification map based on the highest probability assigned to each pixel in the previous 154
classification stage [22]. 155

Figure 3. Block diagram of the KNN based spatial-spectral classification. 156

Sensors 2017, 17, x FOR PEER REVIEW 5 of 20

In this method, the nearest neighbors of a certain pixel are searched in a feature space, which 157
contains both the pixel value and the spatial coordinates. This space is defined by a feature vector F 158
as shown in Equation (1): 159

𝐹(𝑞) = (𝐼(𝑞), 𝜆 ∙ 𝑙(𝑞), 𝜆 ∙ ℎ(𝑞)) (1)

where I(q) is the normalized pixel value of the guidance image and l(q) and h(q) refer to the 160
normalized coordinates of pixel q. The spectral value of the pixel and its spatial coordinates are 161
weighted with λ, which is a balance parameter to weigh the importance of the spatial information 162
in the searching of the neighbors. If λ is zero, the spatial information will not be considered. If its 163
value is higher than zero, more influence is given to the local neighborhood in the filtering process 164
[22][23]. 165

The KNN searching requires the computation of the distances between pixels on the base of 166
the data contained in the feature vector. The distance from a given pixel located at (r, c) coordinates 167
of the image to any other pixel at (i, j) can be computed using the Euclidean distance, i.e. the 168
2-norm: 169

𝑑(𝐼(𝑟𝑐), 𝐼(𝑖𝑗)) = √(𝐼𝑟𝑐 − 𝐼𝑖𝑗)2 + (𝑟 − 𝑖)2 + (𝑐 − 𝑗)2 (2)

where 𝐼𝑟𝑐 is the normalized pixel value of the guidance image I at row r and column c and 𝐼𝑖𝑗 is 170

the value of every other pixel at row i and column j. 171
In this work, also the Manhattan metric (Equation (3)) has been used to compute the distances, 172

considering always all the data contained in the feature vector. In section 3, it will be presented a 173
comparison between the implementations performed using these two metrics, underlining both the 174
differences in terms of processing time and classification results. 175

𝑑(𝐼(𝑟𝑐), 𝐼(𝑖𝑗)) = |𝐼𝑟𝑐 − 𝐼𝑖𝑗| + |𝑟 − 𝑖| + |𝑐 − 𝑗| (3)

Once the distances for each pixel are computed, the algorithm has to sort them to select the K 176
nearest neighbors. After the KNN searching is concluded, the algorithm continues with the filtering 177
step whose output is the optimized probability O(q). For each pixel, it computes a number of 178
outputs equal to the number of SVM classes. In particular, for each pixel q and each SVM class, it 179
computes the optimized probability O(q), defined as follows: 180

𝑂(𝑞) =
∑ 𝑃(𝑠)

𝐾
, 𝑠 ∈ 𝜔𝑞 (4)

where P is the original probability map (one per class) generated by the SVM classifier, 𝜔𝑞 181

indicates the set of K nearest neighbors of the pixel q and s is the index related to each neighbor of 182
the previous set [23]. 183

The last step of the algorithm consists of assigning a label to each pixel to generate a new final 184
classification map. The label that is assigned to each pixel of the image is the class with the highest 185
optimized probability. 186

2.4. KNN filtering algorithm implementation 187

After describing all the steps of the KNN algorithm, this section will introduce the 188
optimizations and the parallelization analysis performed to the algorithm in order to reduce its 189
computational cost. 190

2.4.1. KNN Search optimization 191

After an extensive analysis of the computational cost of the KNN filtering algorithm, it is 192
possible to determine that the neighbors searching phase is the most consuming part of the code. For 193
this reason, the first optimization proposed is the definition of a search window in the neighbors’ 194
selection. This search window is a region close enough to the pixel whose neighbors are going to be 195
chosen. In the original algorithm, this step consisted on computing, for each pixel, a number of 196
distances equal to Npixels - 1, where Npixels is the number of pixels in the image. Our approach is to 197
search the K nearest neighbors of a pixel within this window, not considering the entire image, in 198

Sensors 2017, 17, x FOR PEER REVIEW 6 of 20

order to reduce the number of computed distances, as the probability to find smaller distances in 199
further zones of the image tend to 0. 200

Concerning the parameter setting, in [23] it is asserted that λ=1 and K=40 are a good 201
compromise for this medical imaging application. This value of λ gives a high importance to the 202
spatial information, in particular to the local neighborhood. Taking into account this value, and the 203
fact that the values of the guidance image I (i.e. the first term in Equation (2)) are normalized to 1, it 204
is easy to foresee the behavior of the sorting algorithm in the neighbors selection. This allows 205
introducing heuristic considerations that will help reducing the execution time. For any given pixel 206
𝐼𝑟𝑐 in the image, the distance computation will follow a pattern determined by the spatial distance, 207
i.e. the last two terms in Equation (2), which are related to the spatial coordinates of the pixel. These 208
two values will hence dominate the equation once they overcome the spectral value (i.e. the first 209
term in Equation (2)), since they will contribute to a distance value for any other pixel that will be 210
always predominant if such pixels are far enough from the location of the pixel under consideration. 211
In other words, it is a sufficient condition to sort only a certain subset of pixels in a region close 212
enough to the pixel whose neighbors are being searched. This effectively reduces the search space 213
and the computational cost. 214

Section 3 compares the computational time and classification results for both the serial and the 215
parallel implementations varying the window sizes (WSize). After several analysis, a window with 216
Wsize=14, i.e. 14 rows of the image, has been selected, so the search space contains a number of 217
pixels equal to 14 rows x total number of columns. A row-wise window has been selected instead of a 218
column-wise one in order to have all the data stored sequentially. The version characterized by this 219
window size has been chosen as the reference result because the classification results are the same 220
compared to the implementation that considers the entire window. 221

The window is considered in a symmetric way relatively to the pixel that is being processed, so 222
one half of the window is evaluated over the pixel and the other half below it (Figure 4). In order to 223
avoid the effect of the borders, those pixels near them are treated separately. In this case, to 224
maintain a certain spatial coherence, the size of the window for the pixels in the top-most rows is 225
smaller at first, so as not to search further than Wsize/2 down in the image. This way, the band 226
grows with each further pixel being processed until the steady state is reached. This happens when 227
the number of pixels above the one being processed reaches Wsize/2 and it is kept until an 228
analogous situation happens in the lower zone of the image. 229

Figure 4. KNN window searching method example. (A) Minimum window size of the first 230
pixel; (B) Intermediate window size of a pixel near the upper border; (C) Maximum window 231
size of a pixel in the center of the image; (D) Intermediate window size of a pixel near the 232
bottom border; (E) Minimum window size of the last pixel. 233

2.4.2. Serial implementation 234

The serial implementation of the KNN algorithm is written in C language and presents three 235
main phases, as shown in Figure 5. The first one concerns the declaration and initialization of all the 236
variables, arrays and structures needed in the computation. For example, for each pixel, two types 237
of structures are defined: the former, featureMatrixNode, contains all the parameters needed in the 238
computation of the Euclidean distance, shown in Equation (2). The latter, featureDistance, contains 239

Sensors 2017, 17, x FOR PEER REVIEW 7 of 20

the distances (between the considered pixel and the pixels within its window) and the indexes of 240
these pixels. 241

The second phase refers to the K nearest neighbors searching. Considering every pixel in the 242
image (Algorithm 1, line 1), the algorithm computes the distances between it and all the pixels 243
inside its window (Algorithm 1, lines 2-4), exploiting the Euclidean metric in Equation (2). After 244
storing all the distances in the featureDistance structure, the algorithm sorts them in ascending order 245
through the Merge Sort algorithm (Algorithm 1, line 5) and selects the indexes of the K pixels 246
characterized by the lower distances (Algorithm 1, line 6). At the end of this phase, the parameters 247
related to the window sizes are updated (Algorithm 1, line 7) on the base of the pixel location, as 248
described in section 2.4.1. 249

Once all the neighbors of each pixel have been computed, the KNN filtering phase starts 250
(Figure 5, Algorithm 2). Its goal is to assign a label to each pixel considering the probability maps 251
generated by the SVM algorithm. In this phase, the algorithm computes, for each pixel, a number of 252
optimized probabilities O(q), described in Equation (4), equal to the number of the SVM classes, 253
which are four in this work. In particular, for each class, the SVM probabilities of all the neighbors 254
of the pixel that is going to be processed are added (Algorithm 2, lines 1-5). Then, the result is 255
divided by the number of neighbors (K) (Algorithm 2, line 6). After computing the four optimized 256
probabilities O(q) for each pixel, the algorithm selects the highest value and assigns the label of the 257
corresponding class to the pixel (Algorithm 2, lines 8-9). 258

Figure 5. Flow diagram of the serial implementation of the KNN filtering algorithm. 259

2.4.3. Parallel implementation 260

A parallel version of the KNN filtering algorithm has been developed in CUDA in order to 261
exploit the NVIDIA GPU technology. The basic idea followed in this approach is that each CUDA 262
core has to assign a label to each pixel in parallel. Figure 6 shows the main phases of the parallel 263
implementation. The flow starts on the host with the declaration and initialization of all the 264
variables (First phase in Figure 6). The main difference between this first phase and the 265
corresponding one of the serial code is that, in this parallel implementation, the number of arrays, 266
structures and variables allocations is decreased in order to save memory. 267
After the first phase, the algorithm transfers to the device the guidance image 𝐼 generated by the 268
PCA algorithm and the probability maps generated by the SVM classifier. The flow proceeds with 269
the resources allocation on the device (Second phase in Figure 6). The first step of the KNN filtering 270
algorithm on the GPU device concerns the execution of a kernel that evaluates the borders and the 271
size of the windows in parallel through the pixels (Third phase in Figure 6). Contrary to the serial 272
code execution, where the parameters related to the window dimensions are updated at the end of 273
the neighbors’ selection for each pixel, in the parallel version the algorithm needs to know these 274
variables before starting the KNN filtering computation. In fact, in the following steps, it is 275
important to copy the PCA and SVM data (already transferred to the device) from the global to the 276

Sensors 2017, 17, x FOR PEER REVIEW 8 of 20

local memory of the GPU, shared by the threads within a block. For this reason, each thread copies 277
the part of the data (delimited by the window parameters) needed in the computation. Then, the 278
results are copied to the global memory only at the end of the kernel execution. This step is crucial 279
to decrease the execution time since the accesses to the global memory are very slow. 280

Figure 6. Flow diagram of the parallel implementation of the KNN filtering algorithm. 281

In the fourth phase, which corresponds to the second phase of the serial code, each thread 282
evaluates the K nearest neighbors of a pixel in parallel (Figure 6, Algorithm 3). First, the PCA data 283
required by each block are copied from global to the local memory (Algorithm 3, line 1). Then, each 284
thread of the block declares an array called neighbors_distances, whose dimension is equal to the 285
number of K neighbors, which is set to 40 in this work. This array is initialized with large values 286
and will contain the 40 lowest distances computed between the pixels (Algorithm 3, line 2). The 287
implementation proceeds computing the distance between pixel i, represented by the thread, and all 288
the pixels within its window (Algorithm 3, lines 3-4). If the distance between the pixels i and j is 289
smaller or equal to the last element of the neighbors_distances array, this distance will be stored in the 290
last position of the array (Algorithm 3, lines 5-6). It is important to highlight that this if condition is 291
always verified considering the first 40 pixels in the window (i.e. first 40 for loop iterations). Once the 292
first 40 iterations are executed, in the last position of the array there will be a real distance (not the 293
initialization value) and it will be the highest value among those already present in the array. This is 294
verified because every time that a new distance is stored in the array, the algorithm calls a sort 295
function in order to sort the elements of the array in ascending order, keeping track of their indexes 296
(Algorithm 3, line 7). The K indexes of the selected neighbors are the output of the kernel and will be 297
copied to the global memory (Algorithm 3, line 10). 298

Figure 7 shows an example of the evaluation of a new distance by the KNN searching 299
algorithm. After the first 40 iterations, the array contains 40 distances stored in ascending order 300
(Figure 7A). When a new distance is computed (in this example its value is 61), it is compared with 301
the last element of the array, in this case located in position 39 and whose value is 98 (Figure 7B). 302
Since the new distance is lower than 98, it is stored in the last position of the array (Figure 7C). At 303
this point, the array is sorted again (Figure 7D). Due to the reduced dimension of the array to be 304
sorted, the sort function implemented in this work is the shell sort algorithm. 305

Sensors 2017, 17, x FOR PEER REVIEW 9 of 20

Figure 7. KNN searching new distance evaluation example. 306

After computing all the neighbors for all the pixels, the fifth step of the KNN algorithm starts. In 307
this phase, the KNN filtering is computed by every thread of each block (Figure 6, Algorithm 4). 308
First, each thread copies the SVM probabilities of their corresponding neighbors from the global to 309
the local memory (Algorithm 4, line 1). For each class, the algorithm computes the 310
temporary_probability value of each pixel, which is the sum of the SVM probabilities of all the 311
neighbors of the reference pixel (Algorithm 4, lines 3-6). If the algorithm is executing the first 312
iteration of the first for loop (i.e. if it is considering the first class), the variable max_probability 313
assumes the value of temporary_probability variable and the index of the class is stored in label 314
(Algorithm 4, lines 7-10). In the following iterations, after computing the temporary_probability, its 315
value is stored only if it is higher than the max_probability value (which represents the highest 316
probability value of the previous classes). In this case, the index of the class is also stored (Algorithm 317
4, line 11-14). At the end of the for loop that iterates on the number of classes, the algorithm selects 318
the label of the pixel corresponding to the highest sum of probabilities among the four classes. It is 319
worth noting that the algorithm evaluates immediately if the sum of probabilities could be the 320
highest among the classes or not. This fact means that some arrays declared in the serial version can 321
be replaced with a few variables, thus saving memory. At the end of this phase, the label of the pixel, 322
which is the output of this step, is stored in the global memory (Algorithm 4, line 18). 323

Once the KNN algorithm execution ends on the GPU device, an array containing the labels of 324
all the pixels is transferred from the GPU device to the CPU host. At this point, the memory can be 325
released (Sixth phase in Figure 6). 326

3. Experimental Results and Discussion 327

This section presents the results of the implementations of the KNN-based filtering algorithm 328
by evaluating different sets of parameters in order to evaluate them, analyzing both the 329
computational times and the classification accuracy. 330

3.1. KNN window search optimization results with Euclidean distance 331

In section 2.4.1, it was described an important optimization introduced in the serial and parallel 332
implementations concerning the computation of the distances between pixels inside a window and 333
not within the entire image. Reducing the space where the algorithm evaluates the distances ensures 334
a significant decrease of the computational time, as shown in Table 2. In particular, the table 335
provides the execution times for all the images, considering both the case in which the neighbors are 336
searched within the entire image (EI) and within a window with 14 rows (WSize14). The speedup 337
obtained with the optimization has been also included. In addition, this table shows the total 338
number of pixels of each image and the number of pixels inside the smallest and the biggest window 339
in the WSize14 implementation. The times refer to tests where the Euclidean distance has been 340
considered. The simulations of the serial code have been carried out on an Intel i7 processor, 341
working at 3.50 GHz, equipped with 16 GB RAM. 342

 343

Sensors 2017, 17, x FOR PEER REVIEW 10 of 20

Table 2. Execution times of the serial code considering as search space both the entire 344
image (EI Time) and a window with 14 rows (WSize14 Time). 345

Image ID #Pixels EI Time [s] WSize14 Time [s] Speedup Min WSize14 [#Pixels] Max WSize14 [#Pixels]

P1C1 251,532 17,173.74 503.89 34.08x 3,836 7,672

P1C2 264,408 19,135.58 509.16 37.58x 3,864 7,728

P2C1 219,232 15,630.77 374.67 41.72x 3,472 6,944

P3C1 185,368 9,788.58 322.86 30.32x 3,451 6,902

P4C1 124,691 4,015.89 139.30 28.83x 2,303 4,606

Data presented in Table 2 show that this optimization allows a huge decrease in the execution 346
times. For example, considering the biggest image of the dataset, P1C2, the time of the 347
implementation that considers the entire image is 19,135.58 seconds (about 5 hours and 30 minutes). 348
Considering a window of 14 rows as neighbors search space, this time decreases to 509.16 seconds 349
(about 8 minutes). The reason of this huge time difference is that, when the algorithm has to 350
consider the entire image, it has to compute a number of distances equal to (264,408-1) for each 351
pixel, where 264,408 is the number of pixels of the P1C2 image. Considering the window technique, 352
the algorithm computes a number of distances that, for the same image, varies from (3,864-1) to 353
(7,728-1), where 3,864 and 7,728 are the number of pixels inside the windows with the minimum 354
and the maximum sizes respectively (depending whether the pixel is in the borders or in the center 355
of the image). Concerning to the classification results, it is important to notice that there are no 356
differences in the results, and therefore all the pixels are classified with the same labels, using either 357
the entire image or a window. 358

Considering this significant result, the computational time variations were evaluated when the 359
window size was reduced. Furthermore, since the main goal of the work was to reach real-time 360
execution, a parallel version of the algorithm was developed in CUDA language to exploit the GPU 361
technology. The GPU device used during the tests was an NVIDIA Tesla K40 GPU. This board is 362
based on the Kepler architecture (working at 875 MHz) and it is equipped with 2,880 CUDA cores 363
and 12 GB GDDR5 memory with a peak bandwidth of 288 GB/s [24]. The board is connected to the 364
CPU host trough a PCI Express 2.0. Errore. L'origine riferimento non è stata trovata. shows the 365
execution times of the serial and parallel implementations characterized by window sizes that vary 366
from 14 to 2 with decrements of 2. In addition, the speedups between the serial and the parallel 367
codes are presented. 368

Table 3. Execution time results of the serial and parallel implementations using the 369
Euclidean distance employing different window sizes. 370

Image

ID

Processing

Type

Processing Time [s]

WSize14 WSize12 WSize10 Wsize8 Wsize6 Wsize4 WSize2

P1C1

Serial 503.89 406.32 383.71 262.00 221.71 118.25 59.08

CUDA 12.83 11.49 6.23 5.52 3.85 2.29 1.22

Speedup 39.25x 35.33x 61.59x 47.42x 57.52x 51.44x 48.10x

P1C2

Serial 509.16 424.22 408.52 276.06 235.76 125.34 62.36

CUDA 13.53 12.09 6.47 5.73 3.99 2.39 1.26

Speedup 37.62x 35.08x 63.07x 48.11x 59.04x 52.31x 49.15x

P2C1

Serial 374.67 315.73 302.54 239.58 151.23 95.02 47.06

CUDA 10.55 5.70 5.18 3.62 2.67 1.70 1.03

Speedup 35.51x 55.39x 58.30x 66.18x 56.58x 55.76x 45.62x

P3C1

Serial 322.86 263.40 254.30 202.56 122.16 78.47 39.97

CUDA 9.00 4.92 4.45 3.15 2.30 1.51 0.92

Speedup 35.85x 53.46x 57.06x 64.17x 52.92x 51.80x 43.16x

P4C1

Serial 139.30 118.94 115.07 90.81 55.29 35.84 18.11

CUDA 3.21 2.34 2.16 1.63 1.12 0.83 0.60

Speedup 43.38x 50.63x 53.23x 55.61x 49.01x 42.82x 30.13x

 371

Sensors 2017, 17, x FOR PEER REVIEW 11 of 20

The reduction of the window size supposes a decrease in the execution times because the 372
algorithm has to compute a lower number of distances. For example, considering the P1C2 image, 373
the time varies from 509.16 seconds (~8 minutes) to 62.36 seconds (~1 minute) in the serial versions of 374
WSize14 and WSize2, respectively. If the parallel implementation of the same image is considered, 375
the times present a further decrease. In fact, for the same image the parallel version of WSize14 is 376
~37x times faster than the serial version, taking only 13.53 seconds instead of ~8 minutes. At the same 377
time, the parallel execution of WSize2 takes only 1.26 seconds instead of ~1 minute (the speedup is 378
~49x). Concerning all the images in the reference implementation WSize14, the speedups are always 379
higher than 35x and in the best case (P4C1) it reaches 43x. If we consider all the other versions, with 380
the decreased windows sizes, the parallel code shows even higher speedups. For example, 381
considering the P1C2 image and the window size WSize10, the parallel code takes 6.48 seconds while 382
the serial version takes 408.52 seconds (~6 minutes), obtaining a speedup of ~63x. Nevertheless, it is 383
necessary to examine these times and speedups also taking into account the classification results. It 384
is very important to consider if, reducing the window size, there are pixels classified with different 385
labels compared to the reference version (WSize14). Table 4 shows the number of misclassified pixels 386
between the reference result and other window sizes. Additionally, the percentage of the difference 387
is shown. 388

Table 4. Number of pixels with different classification result using the Euclidean distance 389
between the different computed windows sizes and the reference one (Wsize14). 390

Image

ID
#Pixels

#Different pixels (% of difference) compared to the reference (Wsize14)

WSize12 WSize10 WSize8 WSize6 WSize4 WSize2

P1C1 251,532 0 (0.000%) 0 (0.000%) 65 (0.026%) 3,672 (1.460%) 9,096 (3.616%) 20,476 (8.141%)

P1C2 264,408 0 (0.000%) 1 (0.000%) 60 (0.023%) 2,845 (1.076%) 7,705 (2.914%) 22,054 (8.341%)

P2C1 219,232 0 (0.000%) 4 (0.002%) 65 (0.030%) 2,606 (1.189%) 6,532 (2.979%) 18,015 (8.217%)

P3C1 185,368 0 (0.000%) 1 (0.000%) 49 (0.026%) 2,273 (1.226%) 5,604 (3.023%) 13,981 (7.542%)

P4C1 124,691 3 (0.002%) 7 (0.005%) 71 (0.057%) 1,498 (1.201%) 3,733 (2.993%) 10,089 (8.091%)

Considering the first three windows sizes (WSize12, WSize10, WSize8) for all the images, the 391
number of pixels classified with different labels is very low, taking into account the final application 392
of the system. In fact, the highest percentage of different pixels is 0.057% and it is related to the P4C1 393
image, which, in the version WSize8, presents 71 different pixels on a total amount of 124,691 pixels. 394
Concerning the other three windows sizes, the highest percentage of different pixels for window 395
WSize6 is 1.46% considering the P1C1 image (3,672 different pixels on 251,532). For the window 396
WSize4, the percentage of different pixels is ~3.62%, referred also to the P1C1 image (9,096 different 397
pixels on 251,532) and for WSize2, the highest percentage is ~8.341%, considering the biggest image 398
of the database, P1C2 (22,054 different pixels on 264,408). At this point, there is a further evaluation 399
that can be made considering that this algorithm is part of a system whose main goal is to 400
discriminate between tumor and healthy tissue. Despite this, the classification is made between four 401
classes that are normal tissue, tumor tissue, hypervascularized tissue and background [23]. From the 402
surgical and medical point of view, it is clear that a wrong discrimination between tumor and 403
healthy tissue has much greater and transcendental relevance than just a misclassification issue 404
between tumor and any other classes (hypervascularized and background) or between healthy, 405
hypervascularized and background classes. It is possible to re-evaluate again the results of Table 4, 406
considering that in the different WSize executions only a low percentage of different pixel labels are 407
exchanged between tumor and normal tissue. Figure 8 shows the percentage of pixels that are 408
misclassified between tumor and healthy tissues, tumor and hypervascularized tissues and tumor 409
and background, considering all the windows sizes for each image compared to the reference 410
version. In addition, the graph presents the classification differences between healthy, 411
hypervascularized and background classes (called Others). 412

 413

Sensors 2017, 17, x FOR PEER REVIEW 12 of 20

Figure 8. Percentage of pixels that have been misclassified using the Euclidean distance between 414
tumor and healthy tissues (blue), tumor and hypervascularized tissues (orange), tumor 415
tissue and background (gray) and the other misclassifications between healthy, 416
hypervascularized and background (yellow). The results were obtained per each window 417
size implementations compared to the WSize14 for each image of the dataset. 418

As it can be seen in Figure 8, only in the case of the P3C1 image using the WSize8, the algorithm 419
misclassifies approximately 2% of the pixels (1 out of 49 pixels), exchanging the labels between 420
tumor and healthy tissues. In all the other implementations of WSize8, the classification differences 421
do not involve the tumor class. Furthermore, in the versions related to the three smallest windows 422
(WSize6, WSize4, WSize2), the percentage of the pixels exchanged between these two classes is lower 423
than the percentages of pixels exchanged between the other classes. For example, for the biggest 424
image of the database (P1C2), in the WSize6 implementation, the classification difference between 425
tumor and healthy tissue represents 2.43% out of 2,845 different pixels. Considering the same image 426
in the WSize4 and in the WSize2 implementations, this percentage is of 2.60% out of 7,705 pixels and 427
1.89% out of 22,054 pixels, respectively. The highest percentage of difference between these two 428
classes is found in the WSize6 version regarding the P1C1 image, where it is about 3.57% out of 3,672 429
pixels. According to these data, it is clear that the algorithm can correctly distinguish the tumor from 430
the healthy tissue, while it makes more errors in separating the tumor from the hypervascularized 431
tissue. The highest percentages of misclassified pixels between the tumor and the hypervascularized 432
classes reach 26.28% of the total number of different pixels (P3C1 image, WSize4 version). In fact, 433
according to what it is said in [23], these two classes referred to tissues with similar spectral 434
signatures that can produce some misclassifications. On the other hand, the spectral signatures of 435
tumor and healthy tissues present remarkable differences that allow the algorithm to distinguish 436
these two classes in the classification. 437

3.2. KNN window search optimization results using Manhattan distance 438

As it was said before, the neighbors search supposes the heaviest computational load of the 439
KNN filtering algorithm. Although the distances computation is the most time-consuming task, the 440
number of evaluated distances has been reduced in this study by considering a window, so a 441
smallest area is considered instead of the entire image. To further reduce the execution time of this 442
phase, the Manhattan metric has been tested instead of the Euclidean one, as described in Equation 443
(3). Table 5 compares the times of the serial code using both the entire image (EI) and the reference 444
window (WSize14), employing both the Euclidean and the Manhattan distances. The speedup 445
obtained using the Manhattan distance and the percentages of pixels that are different in the results 446
are also presented in this table. 447

As said in the previous paragraph, searching the neighbors inside a window instead of the 448
entire image allows saving time without changing the results of the classification. A further 449
reduction of the execution time is obtained using the Manhattan metric in the distance 450
computations. In fact, for the biggest image of the database (P1C2), the time is reduced from ~5 451
hours (19,135.58 seconds) using the Euclidean distance to ~2 hours (7,683.44 seconds) in the case of 452
using the entire image. If the neighbors are searched within the window (for the same image), the 453

Sensors 2017, 17, x FOR PEER REVIEW 13 of 20

time decreases to ~3 minutes (202.42 seconds) using the Manhattan distance. Concerning all the 454
images, it is possible to reach speedups from 2.22x to 3.33x, considering the versions with the entire 455
image, and from 2.49x to 2.66x in the WSize14 executions. Comparing the implementations that 456
exploit the Manhattan distance and the ones that use the Euclidean metric, the number of pixels 457
classified with different labels is quite low: the highest percentage of different pixels is 1.33% in the 458
P1C1 image. Furthermore, it is important to highlight that there are no differences in the 459
classification results comparing the entire image and the WSize14 versions, using the Manhattan 460
distance. 461

Table 5. Comparison of the execution time of the serial versions obtained employing the 462
Euclidean and Manhattan distances with the entire image (EI) and the WSize14. The 463
table also presents the classification differences between the Euclidean and 464
Manhattan implementations. 465

Distance Type
P1C1 P1C2 P2C1 P3C1 P4C1

EI WSize14 EI WSize14 EI WSize14 EI WSize14 EI WSize14

Euclidean [s] 17,173.75 503.89 19,135.58 509.17 15,630.77 374.67 9,788.58 322.87 4,015.89 139.30

Mahattan [s] 7,222.13 190.02 7,683.44 202.42 4,735.87 146.93 3,382.84 121.37 1,807.91 55.91

Speedup 2.38x 2.65x 2.49x 2.51x 3.3x 2.55x 2.89x 2.66x 2.22x 2.49x

Difference 1.33% 0.99% 1.03% 1.10% 1.06%

At this point, it is interesting to evaluate how the execution times can be reduced changing the 466
size of the windows using the Manhattan metric in the distances computation. The results shown in 467
Table 6 confirm that decreasing the number of distance computations, i.e. the variations of the 468
window sizes, allows further reductions of the computational time. The lowest execution times are 469
obtained exploiting the GPU technology that can run the parallel algorithm taking ~8 seconds 470
(compared to ~3 minutes) if the biggest image (P1C2) with the WSize14 version is considered. The 471
speedups obtained using this device and the optimizations introduced in the code are significant 472
and they can reach up to 33.2x (P2C1-WSize12). For some images and for some window dimensions, 473
the algorithm takes only a few seconds, but what is even more important to consider is the number 474
of pixels that are misclassified when the window size decreases (0). 475

Table 6. Execution time results of the serial and parallel implementations using the 476
Manhattan distance and using different window sizes. 477

Image

ID

Processing

Type

Processing Time [s]

WSize14 WSize12 WSize10 Wsize8 Wsize6 Wsize4 WSize2

P1C1

Serial 190.02 192.19 158.15 129.54 81.61 54.14 28.70

CUDA 7.63 7.07 5.04 4.62 3.38 2.04 1.18

Speedup 24.90x 27.15x 31.34x 27.99x 24.09x 26.47x 24.13x

P1C2

Serial 202.41 204.65 169.23 138.12 84.98 57.51 29.75

CUDA 8.01 7.40 5.21 4.84 3.51 2.09 1.22

Speedup 25.26x 27.64x 32.48x 28.52x 24.20x 27.45x 24.28x

P2C1

Serial 146.92 152.20 125.60 102.94 63.90 42.57 21.81

CUDA 6.44 4.58 4.27 3.16 2.34 1.52 1.00

Speedup 22.81x 33.20x 29.35x 32.50x 27.25x 27.86x 21.66x

P3C1

Serial 121.37 126.98 104.79 86.83 55.09 36.24 18.54

CUDA 5.57 4.03 3.76 2.79 2.04 1.37 0.90

Speedup 21.75x 31.47x 27.86x 31.11x 26.88x 26.42x 20.54x

P4C1

Serial 55.91 58.06 42.62 39.42 24.39 16.62 8.66

CUDA 2.81 2.12 1.98 1.49 1.04 0.80 0.60

Speedup 19.87x 27.27x 21.46x 26.46x 23.31x 20.59x 14.42x

 478

Sensors 2017, 17, x FOR PEER REVIEW 14 of 20

Table 7. Number of pixels with different classification results using the Manhattan 479
distance between the computed window sizes and the Wsize14 Manhattan. 480

Image

ID
#Pixels

#Different pixels (% of difference) compared to the Wsize14 (Manhattan) version

WSize12 WSize10 WSize8 WSize6 WSize4 WSize2

P1C1 251,532 2 (0.001%) 65 (0.026%) 1,832 (0.728%) 4,507 (1.792%) 8,889 (3.534%) 19,783 (7.865%)

P1C2 264,408 3 (0.001%) 56 (0.021%) 1,483 (0.561%) 3,891 (1.471%) 7,839 (2.965%) 21,714 (8.812%)

P2C1 219,232 3 (0.001%) 44 (0.020%) 1,320 (0.602%) 3,483 (1.589%) 6,743 (3.075%) 17,653 (8.052%)

P3C1 185,368 2 (0.001%) 48 (0.026%)
1,033

(0.557411%)
2,825 (1.524%) 5,474 (2.953%) 13,436 (7.248%)

P4C1 124,691 2 (0.001%) 35 (0.028%) 699 (0.560%) 2,014 (1.615%) 3,831 (3.072%) 9,613 (7.709%)

As it can be seen in the results shown in 0, WSizes12 and WSizes10 present a reduced number of 481
different pixels compared to the other implementations. Analyzing the Euclidean distance results 482
presented in Table 4, this consideration can be made for the first three tests (WSizes12, WSizes10 and 483
WSize8) but, in this case, the number of different pixels in WSize8 is higher than the first two 484
versions. Despite this, it is important to highlight that the classification differences shown in 0 are 485
not very relevant for the final application of the system. In this application, a solution with a good 486
compromise between real-time execution and classification accuracy of the results has to be selected. 487
In addition, it is also important to evaluate the percentage of different pixels that are misclassified 488
between tumor and healthy tissues and between tumor and the other classes. 489

Figure 9 shows the percentage of pixels that are misclassified using the Manhattan metric 490
between the different classes. In this figure, it is possible to notice that the algorithm misclassifies 491
more pixels between tumor and hypervascularized classes than between tumor and healthy classes. 492
In fact, the highest percentage of pixels misclassified is 30.77% related to the P1C1 image with 493
WSize10, where the algorithm exchanges the labels of 20 pixels (between tumor and 494
hypervascularized tissue) out of a total amount of 65 different pixels compared to the reference 495
version WSize14 (0). Concerning the comparison between tumor and healthy classes, the number of 496
pixels with an exchanged label is very low: the worst case is always the P1C1 image (WSize8), where 497
66 out of 1,832 different pixels are misclassified, being a 3.60% of pixels. 498

Figure 9. Percentage of misclassified pixels using the Manhattan distance between tumor and 499
healthy tissues (blue), tumor and hypervascularized tissues (orange), tumor tissue and 500
background (gray) and the other misclassifications between healthy, hypervascularized and 501
background (yellow). The results were obtained per different window sizes implementation 502
compared to the WSize14 for each image of the dataset. 503

3.3. Summary 504

In this study, the results of serial and parallel versions of the KNN filtering algorithm for the 505
classification of in-vivo brain tumor from hyperspectral images are presented. In particular, the 506
importance of reducing the area of the neighbors search in order to decrease the elaboration time is 507
explained. In fact, the results prove that searching the neighbors of a pixel within a window instead 508
of the entire image supposes a significant reduction of the computation time. It is important to notice 509
that introducing a window (characterized by 14 rows with the reference pixel in the center) does not 510
affect the result of the classification. For this reason, this version has been defined as the reference 511

Sensors 2017, 17, x FOR PEER REVIEW 15 of 20

one (WSize14). Reducing the window size compared to the reference one, the time of the 512
computation drastically decreases but the number of pixels that the algorithm misclassifies 513
increases. At this point, it is important to select the best versions that have a good tradeoff between 514
performance and number of misclassifications. 515

In the previous sections, the percentages and the number of different pixels between versions 516
with different window sizes were analyzed. Concerning the implementations that exploit the 517
Euclidean distance, Table 4 demonstrated that by using the window sizes WSize12, WSize10 and 518
WSize8, the number of different pixels was lower than those obtained using the WSize6, WSize4 and 519
WSize2, compared with the reference test (WSize14). 520

In Figure 10, the KNN filtered maps obtained from the P2C1 image and the binary maps are 521
shown, where the differences between the evaluated window size version and the reference version 522
are highlighted. Despite the differences between the first and the last three versions shown in Table 523
4, it is possible to see that the KNN filtered maps of the implementations for WSize6 and WSize8 do 524
not present relevant dissimilarities. In fact, it is important to remember that the main goal of these 525
maps is to delineate the tumor area, in order to provide a guidance tool to the surgeons during the 526
tumor resection. In this context, it is clear that the number of different pixels in WSize8 and WSize6 527
versions are not so significant for the final application of the system, since the surgeon always resect 528
a security margin around the tumor tissue. 529

In the previous paragraph, the data showed that the algorithm is able to correctly discriminate 530
between tumor and healthy classes. This consideration can also be seen in the KNN filtered maps, 531
where the area related to the tumor tissue (red) remains roughly the same in the implementations 532
WSize6, WSize8, WSize10 and WSize12 compared to the WSize14 one. Considering the WSize4 and the 533
WSize2 versions, it is possible to appreciate that the margins of the tumor are not as evident and well 534
defined as in the other images, confirming what has been said in the previous paragraphs analyzing 535
the classification results. 536

Figure 10. Results of the KNN filtering algorithm obtained from the P2C1 image using the 537
Euclidean distance. The first row shows the filtered classification maps generated using 538
different window sizes. The second row presents the binary maps where the pixels 539
differences between the current generated map and the reference one (WSize14) are shown. 540
In addition, the percentage of differences and the execution time results are detailed. 541

In the second row of Figure 10 are presented the binary maps that show the pixel differences 542
between all the window sizes versions and the reference implementation (WSize14). In particular, by 543
analyzing the binary maps of WSize4 and WSize2, it is possible to identify several differences 544
compared to WSize14. For this reason, these two versions should not be chosen for the final solution. 545
However, in the binary maps of WSize6 and WSize8, there are few differences, and they are barely 546
appreciated analyzing the KNN filtered maps. It is important to remember that the suitable version 547
for this application is the option that offers a good compromise between accurate classification and 548
fast execution. Exploiting the GPU technology, the parallel version of the KNN algorithm with 549
WSize8 employs ~3.62 seconds to filter the P2C1 image, while the WSize6 implementation is executed 550
in ~2.67 seconds. For the biggest image of the database (P1C2), the WSize6 implementation allows to 551
save ~2 seconds compared to the WSize8 version. According to these results, the WSize8 version has 552
been selected as the best solution, giving priority to the classification accuracy but considering also a 553

Sensors 2017, 17, x FOR PEER REVIEW 16 of 20

fast implementation. On the contrary, the WSize6 implementation has be chosen as the fastest 554
implementation with acceptable accuracy results. 555

Similarly, the same evaluation can be done considering the implementations that exploit the 556
Manhattan metric for the computation of the distances. Analyzing the computational times in the 557
previous sections, it is evident that this metric leads to faster executions than using the Euclidean 558
distance. In the first row of Figure 11 are shown the KNN filtered maps of the P2C1 image using 559
different window sizes and employing the Manhattan distance. In the second row are presented the 560
binary maps to evaluate the differences between the developed versions compared to the WSize14 561
implementation. 562

Figure 11. Results of the KNN filtering algorithm obtained from the P2C1 image using the 563
Manhattan distance. The first row shows the filtered classification maps generated using 564
different window sizes. The second row presents the binary maps where the pixels 565
differences between the current generated map and the WSize14. In addition, the percentage 566
of differences and the execution time results are detailed. 567

According to the data shown in 0, in Figure 11 it is possible to see that the KNN filtered maps of 568
the versions WSize12 and WSize10 are practically identical to the map obtained with the WSize14. 569
The number of different pixels is low enough to not perceive the differences between the 570
classification maps. In Table 7, it is also evident that the number of different pixels from the WSize8 571
to the WSize2 implementations drastically increases. Concerning the KNN filtered maps of the 572
WSize4 and, in particular, the WSize2 implementations, the differences are very clear since the 573
margin of the tumor is not as well defined as in the other maps. Instead, in the filtered maps of the 574
WSize8 and WSize6 implementations, the classification differences are not so evident, especially 575
taking into account the tumor tissue area. The differences between all the versions compared to the 576
WSize14 implementation can be evaluated in the binary maps (Figure 11, second row). Even if the 577
WSize4 and WSize2 are the fastest implementations, their binary maps clearly show that these two 578
versions cannot be chosen because the amount of different pixels compared to WSize14 is too high. 579
However, in the binary maps of WSize12 and WSize10, it is evident that these implementations offer 580
the highest accuracy but the slowest execution times. Finally, concerning the WSize8 and WSize6 581
implementations, it is possible to determine that the WSize8 version has the highest accuracy but the 582
execution time is slower than the WSize6 version (the former exhibits 3.16 seconds and the latter 2.34 583
seconds). Also in this case, the best solution is chosen on the base of the degree of accuracy and the 584
time constraints that the application requires. 585

At this point, the best solutions selected between the Manhattan versions (WSize8 and WSize6) 586
have to be compared with the reference test WSize14 that exploits the Euclidean distance. In fact, the 587
original algorithm is characterized by the use of the Euclidean metric in the neighbors search within 588
the entire image. Since the WSize14 Euclidean implementation does not have any differences in the 589
classification results compared to the original version, the results of the Manhattan best solutions 590
have to be compared with the reference results. 591

By analyzing the results comparison shown in Figure 12, it is possible to see that all these 592
versions have a reduced percentage of different pixels compared to the WSize14-Euclidean 593
implementation. In all the obtained KNN filtered maps, the boundaries of the tumor area are 594
accurately defined. The solutions where the results are more similar to the reference implementation 595

Sensors 2017, 17, x FOR PEER REVIEW 17 of 20

are the WSize8-Euclidean and WSize8-Manhattan versions, which differ 0.029% and 0.978% 596
respectively, compared to the WSize14-Euclidean reference. The versions characterized by a window 597
with 6 rows are less accurate than the previous ones, but they are faster. Concerning the 598
computational times, the parallel execution of the reference solution is executed in ~10.55 seconds, 599
while the WSize8-Euclidean and WSize8-Manhattan versions are executed in 3.62 and 3.16 seconds 600
respectively. The WSize6-Euclidean and WSize6-Manhattan implementations require 2.67 and 2.34 601
seconds respectively. Finally, a figure of merit (FoM in Equation (5)) which relates the execution 602
time (t) and the classification results (err) was considered to select the best solution that offers the 603
highest value. The version WSize8-Euclidean is chosen as the best solution since it presents the 604
highest value of FoM (Figure 13). To the best of our knowledge, the state of the art does not provide 605
implementations of the KNN filtering algorithm that could be a touchstone for a fair comparison 606
with the presented work. 607

𝐹𝑜𝑀 =
1

(𝑡 ∗ 𝑒𝑟𝑟)
 (5)

 608

Figure 12. Results comparison of the KNN filtered maps from the P2C1 image using Manhattan 609
and Euclidean distances. The first row shows the filtered classification maps generated 610
using different window sizes and distance metrics. The second row presents the binary 611
maps where the pixels differences between the current generated map and the reference one 612
(WSize14-Euclidean) are shown. In addition, the percentage of differences and the execution 613
time results are detailed. 614

Figure 13. Figure of metric computed comparing (A) the Euclidean versions WSize8, WSize6, 615
WSize4 and WSize2 with the reference WSize14-Euclidean, (B) the Manhattan versions 616
WSize8, WSize6, WSize4 and WSize2 with the reference WSize14-Euclidean. 617

 618

Sensors 2017, 17, x FOR PEER REVIEW 18 of 20

4. Conclusions 619

This work presents the development of a parallel version of the KNN filtering algorithm 620
exploiting the NVIDIA Tesla K40 board. The goal of the implementation was to reduce the execution 621
time of the KNN filter to reach real-time constraints, which is mandatory considering the final 622
application of the system. This application is related with the detection and identification of in-vivo 623
brain tumor boundaries during neurosurgical operations by using hyperspectral images. For every 624
pixel of the image, the parallel version of the algorithm computes each phase of the algorithm 625
simultaneously. A first optimization was to introduce a search window in the K nearest neighbors 626
search step, which is the most time-consuming part of the algorithm. The selection of the neighbors 627
within a region close enough to the pixel, instead of the entire image, allows to significantly reduce 628
the computational time of the algorithm. Furthermore, variations of the window sizes have been 629
explored in order to evaluate the accuracy of the results and a possible reduction of the 630
computational time. All the variations were considered exploiting both the Euclidean and the 631
Manhattan metrics for the distance computation. The results obtained in this analysis show that, for 632
the proposed final application, the implementation characterized by a search window of 8 rows 633
using Euclidean distance is the best solution. This version performs the classification of the 634
considered images in less than 6 seconds, with speedups up to 102.5x and 4317.9x compared with 635
the Wsize14-Euclidean and the entire image versions, respectively. Further developments must be 636
carried out to integrate this parallel version of the KNN filtering algorithm with the other parts of 637
the brain cancer detection algorithm (i.e., SVM classifier and PCA) in a single system capable of 638
computing the classification maps of the hyperspectral brain cancer images in surgical-time to assist 639
neurosurgeons during the resection of the tumor tissues. 640

Acknowledgments: This work has been supported in part by the Canary Islands Government through the 641
ACIISI (Canarian Agency for Research, Innovation and the Information Society), ITHACA project 642
“Hyperespectral identification of Brain tumors” under Grant Agreement ProID2017010164. This work has been 643
also supported in part by the European Commission through the FP7 FET (Future Emerging Technologies) 644
Open Programme ICT- 2011.9.2, European Project HELICoiD “HypErspectral Imaging Cancer Detection” under 645
Grant Agreement 618080. Additionally, this work has been supported in part by the 2016 PhD Training 646
Program for Research Staff of the University of Las Palmas de Gran Canaria and the 2017 PhD Training 647
Program for Research Staff of the Canary Islands Government through the ACIISI (Canarian Agency for 648
Research, Innovation and the Information Society). The authors would like to thank NVIDIA Corporation for 649
the donation of the NVIDIA Tesla K40 GPU used for this research. 650

Author Contributions: G.F. performed the GPU implementations, the algorithms optimizations, designed and 651
performed experiments, and wrote the manuscript. H.F. and E.T. designed and performed experiments and 652
edited the manuscript. R.L., D.M., S.O. and R.Sal. performed the serial algorithm implementation and 653
optimizations, performed experiments, and edit the manuscript. F.L., G.D., A.B.-Q., G.M.C., E.J., C.S. and 654
R.Sar. supervised the project and edited the manuscript. 655

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the 656
design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in 657
the decision to publish the results. 658

5. References 659

1. Calin, M. A.; Parasca, S. V.; Savastru, D.; Manea, D. Hyperspectral Imaging in the Medical Field: Present 660

and Future. Appl. Spectrosc. Rev. 2013, 49, 435–447, doi:10.1080/05704928.2013.838678. 661

2. Lu, G.; Fei, B. Medical hyperspectral imaging: a review. J. Biomed. Opt. 2014, 19, 10901, 662

doi:10.1117/1.JBO.19.1.010901. 663

3. Chang, C.-I. Hyperspectral imaging: techniques for spectral detection and classification; Springer Science & 664

Business Media, 2003; Vol. 1;. 665

4. Akbari, H.; Kosugi, Y. Hyperspectral imaging: A new modality in surgery. In Recent advances in 666

biomedical engineering; InTech, 2009. 667

Sensors 2017, 17, x FOR PEER REVIEW 19 of 20

5. Vo-Dinh, T. A hyperspectral imaging system for in vivo optical diagnostics. Eng. Med. Biol. Mag. IEEE 668

2004, 23, 40–49. 669

6. Panasyuk, S. V.; Yang, S.; Faller, D. V.; Ngo, D.; Lew, R. A.; Freeman, J. E.; Rogers, A. E. Medical 670

hyperspectral imaging to facilitate residual tumor identification during surgery. Cancer Biol. Ther. 2007, 671

6, 439–446, doi:10.4161/cbt.6.3.4018. 672

7. Mori, M.; Chiba, T.; Nakamizo, A.; Kumashiro, R.; Murata, M.; Akahoshi, T.; Tomikawa, M.; Kikkawa, 673

Y.; Yoshimoto, K.; Mizoguchi, M.; Sasaki, T.; Hashizume, M. Intraoperative visualization of cerebral 674

oxygenation using hyperspectral image data: a two-dimensional mapping method. Int. J. Comput. Assist. 675

Radiol. Surg. 2014, 9, 1059–1072, doi:10.1007/s11548-014-0989-9. 676

8. Plaza, A.; Plaza, J.; Paz, A.; Sanchez, S. Parallel Hyperspectral Image and Signal Processing. IEEE Signal 677

Process. Mag. 2011, 28, 119–126. 678

9. Kabwama, S.; Bulters, D.; Bulstrode, H.; Fabelo, H.; Ortega, S.; Callico, G. M.; Stanciulescu, B.; Kiran, R.; 679

Ravi, D.; Szolna, A.; others Intra-operative hyperspectral imaging for brain tumour detection and 680

delineation: Current progress on the HELICoid project. Int. J. Surg. 2016, 36, S140. 681

10. Salvador, R.; Ortega, S.; Madroñal, D.; Fabelo, H.; Lazcano, R.; Marrero, G.; Juárez, E.; Sarmiento, R.; 682

Sanz, C. HELICoiD: Interdisciplinary and collaborative project for real-time brain cancer detection. In 683

ACM International Conference on Computing Frontiers 2017, CF 2017; 2017. 684

11. Szolna, A.; Morera, J.; Piñeiro, J. F.; Callicó, G. M.; Fabelo, H.; Ortega, S. Hyperspectral Imaging as A 685

Novel Instrument for Intraoperative Brain Tumor Detection. Neurocirugia 2016, 27, 166. 686

12. Fabelo, H.; Ortega, S.; Lazcano, R.; Madroñal, D.; M. Callicó, G.; Juárez, E.; Salvador, R.; Bulters, D.; 687

Bulstrode, H.; Szolna, A.; Piñeiro, J. F.; Sosa, C.; J. O’Shanahan, A.; Bisshopp, S.; Hernández, M.; Morera, 688

J.; Ravi, D.; Kiran, B. R.; Vega, A.; Báez-Quevedo, A.; Yang, G.-Z.; Stanciulescu, B.; Sarmiento, R. An 689

intraoperative visualization system using hyperspectral imaging to aid in brain tumor delineation. 690

Sensors 2018, 18, doi:10.3390/s18020430. 691

13. Kuo, B. C.; Yang, J. M.; Sheu, T. W.; Yang, S. W. Kernel-based KNN and Gaussian classifiers for 692

hyperspectral image classification. In International Geoscience and Remote Sensing Symposium (IGARSS); 693

2008; Vol. 2. 694

14. Petaccia, G.; Leporati, F.; Torti, E. OpenMP and CUDA simulations of Sella Zerbino Dam break on 695

unstructured grids. Comput. Geosci. 2016, 20, 1123–1132, doi:10.1007/s10596-016-9580-5. 696

15. Florimbi, G.; Torti, E.; Danese, G.; Leporati, F. High Performant Simulations of Cerebellar Golgi Cells 697

Activity. In 2017 25th Euromicro International Conference on Parallel, Distributed and Network-based 698

Processing (PDP); 2017; pp. 527–534. 699

16. Wang, Y.; Li, L.; Wang, J.; Tian, R. GPU Acceleration of Smoothed Particle Hydrodynamics for the 700

Navier-Stokes Equations. 2016 24th Euromicro Int. Conf. Parallel, Distrib. Network-Based Process. 2016, 478–701

485, doi:10.1109/PDP.2016.28. 702

17. Torti, E.; Fontanella, A.; Plaza, A. Parallel real-time virtual dimensionality estimation for hyperspectral 703

images. J. Real-Time Image Process. 2017, doi:10.1007/s11554-017-0703-6. 704

18. Torti, E.; Cividini, C.; Gatti, A.; Danese, G.; Leporati, F.; Fabelo, H.; Ortega, S.; Callicò, G. M. The 705

HELICoiD Project: Parallel SVM for Brain Cancer Classification. Proc. - 20th Euromicro Conf. Digit. Syst. 706

Des. DSD 2017 2017, 445–450, doi:10.1109/DSD.2017.33. 707

19. Garcia, V.; Debreuve, E.; Nielsen, F.; Barlaud, M. K-nearest neighbor search: Fast GPU-based 708

implementations and application to high-dimensional feature matching. Proc. - Int. Conf. Image Process. 709

ICIP 2010, 3757–3760, doi:10.1109/ICIP.2010.5654017. 710

Sensors 2017, 17, x FOR PEER REVIEW 20 of 20

20. NVIDIA cuBLAS Available online: https://docs.nvidia.com/cuda/cublas/index.html (accessed on May 9, 711

2018). 712

21. Chen, G.; Ding, Y.; Shen, X. Sweet KNN: An efficient KNN on GPU through reconciliation between 713

redundancy removal and regularity. Proc. - Int. Conf. Data Eng. 2017, 621–632, 714

doi:10.1109/ICDE.2017.116. 715

22. Huang, K.; Li, S.; Kang, X.; Fang, L. Spectral–Spatial Hyperspectral Image Classification Based on KNN. 716

Sens. Imaging 2016, 17, 1–13, doi:10.1007/s11220-015-0126-z. 717

23. Fabelo, H.; Ortega, S.; Ravi, D.; Kiran, B. R.; Sosa, C.; Bulters, D.; Callicó, G. M.; Bulstrode, H.; Szolna, 718

A.; Piñeiro, J. F.; Kabwama, S.; Madroñal, D.; Lazcano, R.; J-O’Shanahan, A.; Bisshopp, S.; Hernández, 719

M.; Báez, A.; Yang, G.-Z.; Stanciulescu, B.; Salvador, R.; Juárez, E.; Sarmiento, R. Spatio-spectral 720

classification of hyperspectral images for brain cancer detection during surgical operations. PLoS One 721

2018, 13, 1–27, doi:10.1371/journal.pone.0193721. 722

24. NVIDIA TESLA K40 GPU ACTIVE ACCELERATOR Board Specification Available online: 723

https://www.nvidia.com/content/PDF/kepler/Tesla-K40-Active-Board-Spec-BD-06949-001_v03.pdf 724

(accessed on May 9, 2018). 725

 726

© 2018 by the authors. Submitted for possible open access publication under the 727
terms and conditions of the Creative Commons Attribution (CC BY) license 728
(http://creativecommons.org/licenses/by/4.0/). 729

