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A new optimization method, combining design of experiments with evolutionary computing, is proposed: it handles a set of design 

variables, the size of which changes during the process: initially, most sensitive variables are activated; subsequently, the whole set of 

variables is activated. The optimal synthesis of a magnetic field for magneto-fluid treatment is considered as the case study. 
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I. INTRODUCTION 

HEN TACKLING problems of optimal shape design in 

magnetics, characterized by Finite Elements (FE) field 

analyses for solving the associated direct problem, the so-

called parametric approach is normally adopted: a set of many 

design variables, defining the unknown shape of the device to 

synthesize, is searched for, usually exploiting algorithms of 

evolutionary computing. In particular, in multi-objective 

problems, the search for the Pareto-optimal front of the 

problem is based on popular algorithms like e.g. Non-

Dominated Genetic Algorithm (NSGA) or Multi Objective 

Particle Swarm Optimization (MOPSO) [1]–[9]. When the 

dimensionality of the design problem, mainly dictated by the 

number of design variables, is high, a combinatorial increase 

of feasible design points occurs: in case, cost-effective 

procedures of optimization can be implemented exploiting e.g. 

surrogate models, i.e. identifying response surfaces that 

replace the objective functions at a lower cost [10]–[12]. 

Alternatively, one might think of subdividing the design 

variable set in e.g. two subsets, in such a way that the first part 

of the optimization is driven by the most sensitive variables, in 

order to approach fast the region of Pareto-optimal solutions, 

and then switching to the full set of variables, in order to focus 

on the details of the search region. Progressively enhancing 

the design variable set emulates what happens in the real-life 

behavior of a device designer. In fact, the rationale behind the 

proposed method is based on the ‘natural’ process of design 

undertaken by the human being: first, the most influential 

variables are modified to substantially improve the design 

criterion, next marginal improvements are searched for by 

‘squeezing’ least sensitive variables. 

II. PROPOSED OPTIMIZATION METHOD 

The proposed optimization method combines Design Of 

Experiments (DOE) [13] with NSGA [4], and acts on a set of 

design variables, the size of which changes during the 

optimization process. The SV-NSGA-DOE (SV, switched 

variables) algorithm works as shown in Fig 1. At the 

beginning the whole set of design variables is defined with 

relevant intervals. Initially, the DOE analysis is used to define 

the subset of design variables that are more sensible within the 

prescribed intervals. To this end, exploiting Placket-Burmann 

tables [13], a cost-effective evaluation of sensitivity is 

performed: a number NDOE of FE analyses makes it possible to 

approximate the sensitivity Sxi of each out of NV design 

variables. Then, the average sensitivity, Sm, is computed: 
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The most sensitive design variables are defined as those for 

which Sx,i > Sm, i=1,..NV. This way, a reduced set of design 

variables is activated. The sensitivity evaluation (1) takes 

place only once, before the NSGA-based optimization is 

started. In fact, the first approximation of the Pareto front is 

obtained by applying NSGA-II just on the reduced set of 

design variables; meanwhile, the complementary subset of 

design variables are ‘frozen’ to their initial value. After a 

number of iterations, according to the criterion explained in 

the following, it is decided to make a switch: the full set of 

design variables is eventually activated. Therefore, NSGA 

optimization is performed in two steps (Fig. 1): in the former 

only the reduced set of most sensitive design variables is 

considered, while in the latter the full set of design variables is 

considered. Npop individuals are selected in the initial 

population, which NDOE individuals used for the DOE analysis 

are added to. Therefore, the initial population contains NDOE + 

Npop individuals. A first selection, ruled by non-dominated 

sorting, reduces the population size to Npop. At each iteration 

the stopping criterion is evaluated: if it is fulfilled, the 

algorithm ‘switches’ and all the design variables are activated 

in the optimization procedure. The optimization handling the 

full set of design variables ends when the same stopping 

criterion is fulfilled. 
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Fig. 1. Flow chart of SV-NSGA-DOE algorithm.  

The NSGA algorithm generally stops when the maximum 

number of iteration is achieved. In this work, an automatic 

stopping criterion, based on the evaluation of the front 

displacement, is implemented. In particular, in the 

chromosome of the h-th iteration the distance of each 

individual from the origin of the objective space or from 

utopia point, dj(h)  j=1,…,Npop, is computed. Then, the average 

distance, dm(h), is evaluated as: 
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This average distance is compared with the one at the 

previous generation, dm(h-1). If the relative difference is lower 

than a prescribed threshold, d%,th (e.g. 1%), the front is 

considered to be stationary and the NSGA can either ‘switch’ 

to the full set of design variables (first step) or stop (second 

step). In practice, the switch or stop event is decided by 

averaging some, e.g. 10, percentage differences, d%(h).  

III. CASE STUDY: POWER INDUCTOR FOR MAGNETIC 

NANOPARTICLE HEATING 

A. Direct problem 

Fig. 2(a) shows the cross section of the axi-symmetric 

geometry of the device used to test NPs in cell culture for 

Magnetic Fluid Hyperthermia applications [14]–[16]. The 

Petri dish is placed in a thermally insulated box where a water 

flow keeps the temperature of the system at 37°C. The 

magnetic field device is a two-turn inductor with a radius of 

83 mm with five ferrite blocks placed as in Fig. 2(a) in order 

to concentrate the magnetic flux lines [17], [18]. The magnetic 

field analysis problem, based on the A-V formulation, is 

solved in time-harmonics conditions using a FE code [19]. The 

inductor is to be supplied by means of a voltage generator, 

applying 600 Vrms at 350 kHz. A typical FE mesh exhibits 

23,000 nodes and 13,000 elements. 

The magnetic problem is solved in terms of the phasor of 

magnetic vector potential, A, and electric scalar potential, V. 

When the Coulomb gauge is applied on the magnetic vector 

potential, i.e. 0= A , the following two coupled equations 

are solved [20]: 

 V j     -1 −=+ −− 11  AA  (3) 

 

0 V)   j( =+ −
A 1  (4) 

 

subject to suitable boundary conditions, where  and µ are the 

material resistivity and permeability, respectively and  the 

field pulsation. Fig. 2 (b) shows typical magnetic field lines.  

The problem has been studied assuming a voltage supply of 

600 Vrms for the inductor, which is an acceptable value for a 

generator rating a power of 10 kW in the frequency range of 

150-400 kHz [18].  

B. Inverse problem 

The inverse problem is characterized by seven design 

variables that define the inductor geometry, namely: vertical 

positions (d0, d1, d2) of the ferrite rings on the top, vertical size 

HS and turn step ST of the inductor turns, sizes (LF, HFS) of the 

ferrite block at the bottom, respectively. The design variables 

range is reported in Table I.  

TABLE I: DESIGN VARIABLES RANGE IN [MM]. 

 d0 d1 d2 Hs ST LF HFS 

min 1.0 1.0 1.0 5.0 1.0 20.0 5.0 

max 30.0 30.0 30.0 50.0 20.0 75.0 20.0 

The aim of the optimization problem is twofold: to 

minimize the inhomogeneity (f1) of the magnetic field, H, in 

the Petri dish with a tolerance interval of H = 10 A/m, and 

to minimize the inverse (f2) of the average magnetic field 

strength in the Petri dish bottom. The inhomogeneity has been 

computed according to the proximity criterion. This criterion 

takes into account the number of grid points where the 

magnetic field strength exceeds a tolerance band H around a 

given reference value. In practice, the lowest number of points 

falling outside the tolerance band is searched for [21]–[23]. 
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Fig. 2. (a) Model geometry, mesh, design variables. (b) Magnetic flux lines. 

IV. RESULTS 

Fig. 3 and 4 shows the approximated Pareto fronts obtained 

starting from the same initial population of Npop individuals 

and applying one out of the following three methods: 

a. NSGA-II algorithm in the standard version (results 

referred as #_NSGA); 

b. SV-NSGA-DOE, the modified NSGA algorithm 

including the switching strategy (results referred as 

#_SV); 

c. NSGA-II algorithm in the standard version in which 
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the initial population incorporates also the DOE-

evaluated individuals (named NSGA-DOE, results 

referred as #_DOE). 

In the case study here considered, three design variables are 

selected as the most sensitive in the reduced set (d2, ST and 

HFS in Fig 2). In Fig. 3 it appears that the Pareto front 

obtained using the proposed SV-NSGA-DOE algorithm is 

broader than the one found via a standard NSGA-II algorithm. 

Fig. 4 compares the approximated Pareto fronts obtained by 

means of classical implementation of NSGA-II algorithm 

starting from the population including Npop individuals, or 

starting from the population including also the individuals 

generated by the DOE analysis. It turns out to be that 

incorporating the extra individuals used in the initial DOE 

analysis contributes to enhance the approximated Pareto front. 

Moreover, it can be noted that the solutions obtained by means 

of reduced design variable set are located at the ends of the 

Pareto front.  
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Fig. 3. Pareto fronts obtained applying methods a and b with the same initial 
population (start). Pareto_#= individuals on Pareto front, DOE= individuals of 

the DOE analysis, stop_SV= individuals at switching iteration using b. 
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Fig. 4. Pareto fronts obtained applying methods a and c. 
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Fig. 5. History of the f1 objective function: the switch line from reduced to 

full set of design variables is shown. 

In Fig. 5 the evolution of the f1 objective function is shown, 

considering at each iteration the best out of Npop values. It can 

be noted that substantial function variations take place both 

before and after the switch of design variables. 

Considering the automatic stop criterion (2), it turns out to 

be that NSGA stops after 30 iterations, NSGA-DOE after 48, 

and SV-NSGA-DOE after 53 (the design variables switch 

occurs after 36 iterations). Table II reports a selection of 

solutions computed nearby the switching iteration: between 

iterations 34 and 35 only three out of seven design variables 

were active and underwent modifications (in bold); in contrast, 

between iterations 35 and 36 all the seven design variables 

were activated. 

TABLE II: SELECTION OF INDIVIDUALS (DESIGN VARIABLES IN [MM], 
OBJECTIVE FUNCTIONS F1 DIMENSIONLESS AND F2 IN [A/M]) BEFORE 

SWITCHING (BS) AND AT SWITCHING (S).  

#it d0 d1 d2 Hs ST LF HFS f1 f2 

34BS 1.21 14.68 28.81 35.11 17.58 49.11 19.99 1081 8197 

35BS 1.21 14.68 28.71 35.11 17.52 49.11 20.00 1081 8197 

35BS 1.00 30.00 26.80 50.00 3.19 75.00 12.95 1075 7937 

36S 1.01 29.29 26.70 50.00 1.00 74.04 13.30 1075 8000 

35BS 1.21 14.68 28.82 35.11 17.60 49.11 20.00 1081 8197 

36S 1.22 14.68 28.67 35.15 17.54 48.99 19.94 1081 8197 

35BS 1.00 30.00 30.00 50.00 1.36 5.00 6.73 1077 8000 

36S 1.00 29.79 26.79 49.99 3.22 74.98 12.93 1075 7937 

Fig. 6 shows the three geometries (data reported in 

Table III) that exhibit the lowest magnetic field 

inhomogeneity for each optimization strategies, NSGA-II, 

SV-NSGA-DOE and NSGA-DOE. Considering the 

tolerance interval of the proximity criterion (H = 10 

A/m) and the current average value of the magnetic field 

strength, Hav, the inhomogeneity is computed as the ratio 

of the tolerance band, H, to the average magnetic field 

strength, Hav ; its value is close to 0.3% for all the three 

solutions shown in Fig. 6. Alternatively, after evaluating 

the inhomogeneity as the ratio of the largest discrepancy of 

magnetic field in the Petri dish bottom to Hav, it turns out 

to be 1.9 %, 0.5 % and 1.5 % for case a, b and c, 

respectively. It appears that the geometries of the device 

are different; moreover, the switched variable algorithm 

shows a lower inhomogeneity for higher magnetic field 

strength (case b: higher than 7000 A/m; case a and c: close 

to 6500 and 6900 A/m, respectively).  

TABLE III: BEST SOLUTIONS ON THE PARETO FRONT. DESIGN VARIABLES 

[MM], OBJECTIVE FUNCTIONS F1 DIMENSIONLESS AND F2 [A/M]. 

 d0 d1 d2 Hs ST LF HFS f1 f2 

a 26.8 23.3 23.6 27.0 18.8 44.9 7.5 402 6536 

b 30.0 30.0 30.0 50.0 1.0 75.0 6.6 78 7092 

c 2.4 4.8 1.0 49.4 11.0 53.1 8.3 224 6897 

Figs. 7 and 8 show the approximated Pareto fronts obtained 

starting from a different initial population. The individuals 

evaluated using DOE marginally improve the front, but the 

best improvement is obtained by means of the design variable 

switching strategy. Considering the automatic stop criterion 

(2), it turns out to be that NSGA stops after 16 iterations, 

NSGA-DOE after 23, and SV-NSGA-DOE after 42; the 

design variable switch occurs after 20 iterations. Fig. 9 shows 

the three geometries (data in Table IV) that exhibit the 

lowest magnetic field inhomogeneity, obtained for each 

optimization strategies: NSGA-II, SV-NSGA-DOE and 

NSGA-DOE. Again, it appears that the optimal geometries 

of the device are different.  
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Fig. 6 Optimal geometries obtained using: a= NSGA-II, b= SV-NSGA-DOE 

and c=NSGA-DOE. Case 1. 
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Fig. 7. Pareto fronts obtained starting from the same initial population (start) 

and applying methods a and b.  
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Fig. 8. Pareto fronts obtained from the same initial population (start) with the 

methods a and c.  

TABLE IV: BEST SOLUTIONS ON THE PARETO FRONT. DESIGN VARIABLES 

[MM], OBJECTIVE FUNCTIONS F1 DIMENSIONLESS AND F2 [A/M].  

 d0 d1 d2 Hs ST LF HFS f1 f2 

a 25.5 24.2 23.6 27.8 19.6 45.9 7.1 400 6536 

b 28.5 30.0 30.0 50.0 4.3 75.0 17.5 149 7092 

c 30.0 29.5 29.6 49.9 19.9 74.8 20.0 409 6897 

b ca

 
Fig. 9 Optimal geometries obtained using: a= NSGA-II, B= SV-NSGA-DOE 

and c=NSGA-DOE. Case 2. 

Comparing results with the ones of the previous case, it 

appears that in the case of NSGA-II algorithm the better 

solution in terms of lowest inhomogeneity of magnetic field is 

close to the one obtained in the previous case starting from a 

different initial population and reported in Fig. 6. Moreover, 

the geometry of the solution obtained via NSGA-DOE is 

different with respect to the one of the previous case and 

reported in Fig. 6. Finally, the geometry of the solutions 

obtained using SV-NSGA-DOE exhibits a dependence on the 

initial population.  

V. CONCLUSIONS 

The proposed algorithm, based on the automatic switch of 

design variables, has proven to be able to improve the 

approximated Pareto front with respect to the one obtained 

using standard NSGA strategy. 
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