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ABSTRACT. In the paper, a benchmark in the area of induction heating is presented in order 
to test methods and codes of field analysis in a comparative way. In particular, the transient 
thermal analysis of a magnetic steel cylindrical billet is considered: the coupled-field problem 
is characterized by a twofold non linearity, i.e. the dependence of magnetic permeability on 
both field strength and temperature.  

 
INTRODUCTION  

In the community of computational electromagnetics, the set of benchmark problems 
proposed by the TEAM (Testing Electromagnetic Analysis Methods) series of workshop is a 
reference for testing numerical methods in a comparative way [1]. Nevertheless, there is a 
lack of benchmarks specifically focused on induction heating devices, as far as numerical 
modelling is concerned. In [2,3,4] a benchmark of induction heating was proposed, but the 
attention was on the inverse problem related to inductor optimization rather than on the direct 
problem of field analysis. In fact, computational induction heating problems are challenging 
because they involve different physical domains; therefore, the development of non-linear 
coupled-field models and the consequent choice of suitable solvers are mandatory[5]. Too 
often commercially available numerical solvers, e.g. the finite-element ones, are used as 
general-purpose black boxes. 

Moving from this background, it is here proposed a benchmark of coupled-field analysis. 
The problem is a classical one, well known in industrial applications of induction heating: it 
deals with the transient thermal analysis of a steel cylindrical billet, subject to a time varying 
magnetic field produced by a multi-turn inductor coil [6]. 

It is an example showing that even in case of quite simple geometries complex analysis 
problems may arise. 

The solution of induction heating coupled electromagnetic and thermal problem is usually 
carried out by resorting to a weak coupling scheme, solving independently the Maxwell’s 
equations in sinusoidal steady-state and Fourier’s equation time dependent by a suitable 
algorithm, e.g. Euler or Crank-Nicolson, that subdivides the process time in several time-
steps. The coupling terms are the spatial distribution of the Joule’s losses, calculated by 
solving the Electro-Magnetic (EM) problem and applied as source of thermal problem, and 
the temperature field, calculated by solving the transient thermal problem, that modifies the 
material properties dependant on temperature at each time step. The time constants that 
characterize the natural response of the EM and Thermal (TH) problems, respectively, differ 



of orders of magnitude, and this allows to independently solve the electromagnetic and 
thermal equations. 

The main aim of this work is to discuss the impact of different models applied to describe 
the dependence of the magnetic permeability on the magnetic field as well as the temperature, 
even if several different choices regarding the numerical model may affect the result quality, 
like e.g. mesh dimension, duration of time steps, and description of thermal losses. 

 
DEVICE DESCRIPTION  

The device under study is composed of a solenoidal inductor coil and a coaxial cylindrical 

steel billet with the same axial length. 
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Figure 1.  Inductor-load system geometry of the benchmark 

Geometry  
With reference to the symbols of Fig. 1, the geometrical data of the benchmark induction 

heating system are those summarized in Table 1. 

The inductor coil is composed of 20 circular turns, made of copper tube, series connected 

and uniformly spaced along the Y axis. 

Table 1.Numerical data of the model geometry 

Parameter  Description Value [mm] 

h Billet axial length 1000 
hcoil=h Inductor coil axial length 1000 

r Billet external radius 30 
rc Inductor coil internal radius 48 
hc Coil turn axial length     40 
wc Coil turn radial width 20 
tc Copper turn conductor thickness 3 

 
Material properties  

The billet is made of C45 steel, whose material properties, specific heat capacity, thermal 

conductivity and electrical conductivity, are given in Fig. 2 (a), (b) and (c) as a function of 

temperature.  

Fig. 2 (d) gives the B-H curve of the steel at 20 °C, assumed as a given (experimental) data 

in the benchmark. To this curve correspond the values of the relative permeability 20 at 20 

°C of Table 2.   
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Figure 2. Material properties of steel C45: (a) specific heat capacity cp, (b) thermal 

conductivity , (c) electrical conductivity  as a function of temperature; (d) B-H curve at 

T=20 °C implemented in Model A 

Table 2. Relative permeability 20 at T=20°C. 

m

 0 500 1000 1500 2000 2500 3000 

20 0 350 500 600 525 450 390 

m

 4000 8000 15900 23900 39900 79700 159400 

20 305 164 89.2 62.3 39.7 21 11.1 

m

 239100 318800 358700 398500 477000 557000  

20 7.8 6.1 5.5 5.1 4.4 3.9  

However, permeability is strongly dependent also on temperature and its correct 

description is a very critical point for modelling the heating transient near the Curie 

temperature.  
“In fact variations of magnetic permeability with temperature are a very complicated 

problem and information about it is quite insufficient, especially for "industrial" steels 

typically used in induction heating processes, such as carbon and low alloyed steels [7].  

The analysis of literature shows that in low magnetic fields the permeability drops with 

temperature much slower than in the strong fields” [8,9,10,11].  

Therefore, in the benchmark two different models are proposed, used in some well-known 

numerical packages, for describing the non-linear variations of the B-H curve with 

temperature [12,13,14].  

In view of collecting and comparing the results obtained by various authors with different 



numerical methods, future contributors will make a choice between the B-H models here 

proposed depending on the package and the solver used.  

The two models of non-linear permeability proposed for the benchmark are the following. 

Model A 

The relative magnetic permeability r is approximated with the formula:  

)H()T(f1)H,T( 20r                                          (1) 

where 20 is the field-dependent relative permeability at room temperature T=20°C, and the 

function f(T) is calculated with the relationships: 
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The constant C is usually selected by users for fitting the approximated curve with 

experimental data. In the benchmark the value C=20 °C and the Curie temperature Tc = 770 

°C have been chosen in order to fit with the given B-H curve of Fig. 2 (d) via (1). 

Another way of approximating the given (experimental) B-H curve is based on the 

following relationship: 
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Figure 3. Relative magnetic permeability as function of temperature and magnetic field 

strength according to eqns.(1) and (2) [(a) C=100; (b) C=20] 

In this model the relative magnetic permeability is described by means of its initial value 

r,i, the saturation value of the induction field Bs of 2.05 T and a knee adjusting coefficient, a. 

The temperature dependence is again given by eqns.(1)-(2). 

The given B-H curve can be approximated by eqn. (3) with the triplet of parameters 

r,i=600, Bs = 2.05 T and a=0.5. The temperature dependence is again given by eqn. (2). 

 

Using equations (1) and (2) families of permeability dependent on temperature and 

magnetic field strength can be drawn (Fig. 3). 



Model B 

The relative magnetic permeability r is modelled as a function of magnetic field strength 

H and temperature T by the relationship: 
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where Tc is set at 770 °C and  is a parameter selected by the user [13]. The influence of  on 

r(T,H) is shown in figure 4.  
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(a) (b) 
Figure 4. Relative magnetic permeability as function of temperature and magnetic field 

strength according to eqn. (4) [(a) =6; (b) =16] 
 

FIELD ANALYSIS 

The EM and TH problems can be solved using a 2D axisymmetric model. The EM 

problem is solved in time-harmonic conditions, whereas the TH one is solved in transient 

conditions with thermal sources due to the power density induced in the billet. The 

electromagnetic domain is composed of half of the inductor, half of the billet and surrounding 

air, whereas the thermal one is composed only of half of the billet. The inductor is assumed to 

be supplied at 2 kHz with a sinusoidal current with amplitude of 3,500 Arms. This assumption 

corresponds to a current driven supply; alternatively, a voltage driven supply can be assumed, 

but in this case the model equation should incorporate the circuit equations relating the supply 

voltage to the winding current.  

The electromagnetic and thermal problems are coupled because most of the material 

properties of C45 steel are temperature dependent, and permeability depends both on 

temperature and field strength; hence, at each time step of the transient thermal analysis, a 

time-harmonics electromagnetic analysis must be solved too.  

Electromagnetic problem  
The electromagnetic 2D problem can be solved using the A-V formulation. The analysis of 

the magnetic problem is solved in terms of the phasor of the magnetic vector potential, A, 

coupled with the phasor of the electric scalar potential, V. The following coupled second 

order PDEs are originated: 
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where ro  is the material permeability,  field pulsation,  electrical conductivity and J  

and A  are the phasors of the current density and magnetic vector potential, respectively. 

Equation (5) is the equation governing the magnetic field, while equation (6) makes the total 

current to be solenoidal. Homogeneous Neumann boundary conditions are set along y=0, 

while homogeneous Dirichlet conditions are forced elsewhere. The rectangular air box 

incorporating the device was truncated at a suitable distance from the device axes. 

The solution of a sinusoidal steady state problem in terms of phasorial quantities requires that 

all the quantities are iso-frequential sinusoids. This assumption fails when the magnetic 

induction exhibits a nonlinear dependence from  magnetic field. Usually the EM solution in a 

nonlinear model considers a modified BH curve calculated in order to keep energetic 

equivalence between the real nonlinear model and the equivalent one [15].  

Thermal problem 

The thermal problem solves the Fourier equation: 

  )(
22 AT

t

T
cp





                                     (7) 

with T unknown temperature,  mass density, cp specific heat capacity and  thermal 

conductivity. The boundary conditions are: 
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where c is the convective exchange coefficient assumed equal to 7 Wm
-2

K
-1

 and Text the 

external temperature equal to 70°C along lateral surface of the billet (x = r = 3 cm), while Text 

= 25°C for the end surface (y = h/2 = 50 cm) and 

 

)()( 44
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where  is the emissivity coefficient equal to 0.8, kB the Stefan-Boltzmann constant and Text 

= 70 °C for the lateral surface (x = r = 3 cm), while Text = 25°C for the end surface (y = h/2 = 

50 cm). 

METHODS AND NUMERICAL SOLVERS 

Different numerical methods have been used to solve the field problem: the finite 

difference method (ELTA code [14]) and the finite element method codes (MagNet by 

Infolytica [13] and Flux by Cedrat [12]). 

For the electromagnetic problem solved with finite element method a 2D second-order 

mesh has been generated. A typical mesh exhibits 150,000 nodes and 75,000 elements in Flux 

model (Fig. 5), 775,000 elements in MagNet model.  

In MagNet and FLUX the conjugate gradient method is used for solving the system of 

equations from the finite element model. When the matrix system is nonlinear, it has to be 

linearized before solving the system. For linearizing the system, the Newton Raphson method 

is used by MagNet and FLUX. The B-H curves of the C45 steel versus the temperature are 

given to MagNet in the range from 10 °C to 1500 °C with subintervals of 10 degrees. In each 

subinterval, the dependence of the B-H curve on temperature is considered by means of a 



piecewise linear interpolation. The latter is obtained via a linear regression from equation (2), 

model A. In Flux the temperature dependent B-H curve is defined using equations (2) and (3). 

In ELTA the temperature dependent B-H curve is defined using equation (4). 
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Figure 5. Typical mesh of the electromagnetic problem 

COMPARISON OF RESULTS 
Starting from the analysis of the curves of figures 3 and 4, model A and model B have been 

compared with values of C equal to 20 and 100, and  to 6 and 16 respectively. 

Due to the shapes of Fig.s 3 and 4, the main differences in the results occur near the transition 

of Curie temperature, as shown in Fig. 6: 

 Fig. 6 (a) gives the variations of power induced in the workpiece during the heating 

transient. With the two models the peaks of induced power occur at different time 

instants and have different values which depend on the choice of the model 

parameters; in particular, the peak values are nearly the same for C=20 and =6.  

 Fig. 6 (b) shows the corresponding transient temperature distributions 
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Figure 6. Examples of results obtained with models A) and B) and different model parameters 

(a) induced power during heating; (b) corresponding transient temperature distribution 

 

From these results a logical conclusion seems to propose for the benchmark the values 

C=20 in model A and =6 in model B. 

However, it should be noted that this choice has a certain influence only on power and 

temperature distributions near Curie point, but it has low influence on the final values of 

temperature and heating time at the end of the process. In fact, the total energies induced in 

the workpiece, calculated for A) and B) models, differ for less than 3% (see Table 3). 



Table 3. Induced total energy equivalence for model A and B 

 α = 6, mod B α = 16, mod B C = 20, mod A C = 100, mod A 

Energy 10
7
 [J] 2.42 2.45 2.48 2.42 

 

Effect of the mesh: Curie front movement and penetration depth  
 

Because the magnetic relative permeability is strongly temperature dependent, in particular 

when it is close to the Curie temperature, it happens that, for some time instants, the billet 

material exhibits substantial changes of permeability value depending on the temperature. It 

behaves like a non-linear magnetic material in the region of the billet below the Curie 

temperature, while it behaves like a non-magnetic one in the region of the billet being above 

the Curie temperature. In Fig 7b the temperature profile versus the radius of the billet is 

shown for t =62.5 s: it can be noted that approximately one half of the billet is under the Curie 

temperature, while the other half is above it. 

The space transition between the two regions depends on time, and it is critical from the 

numerical point of view. In fact, if the discretization  is not enough refined, a ripple effect like 

the one shown in Fig. 7a might arise. The ripple can be eventually attributed to the very steep 

decrease of permeability around the Curie temperature. 
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Figure 7. Relative permeability versus radius of the billet (a) and temperature versus radius of 

the billet (b), at the time instant t = 62.5 s. 

 

In order to save computational time, it could be effective to divide the billet domain into two 

regions: the one below the Curie temperature and the one above it. This way, two different 

penetration depth can be considered, namely cold and hot , respectively: cold , related to the 

region below the Curie temperature, is lower than hot related to the region above the Curie 

temperature. In turn. the penetration depth is temperature dependent because both electrical 

conductivity and magnetic permeability are temperature dependent. 

Hence, the finite element mesh could be structured accordingly: below the Curie temperature 

the problem, especially the magnetic one, should be solved with high accuracy, hence the 

maximum element size of the mesh could be set to e.g. 0.5 cold which is about 2 10
-4

 m. In 

contrast, in the region of the billet above the Curie temperature, the maximum element size of 

the mesh could be set to e.g. 2 hot, which is about 1.1 10
-2

 m, as shown in Fig. 8. 



 
Figure 8. Structured mesh: the right part is 5 10

-4
 m width and the maximum element size is 6 

10
-5

 m, the left part of the mesh has a maximum element size of 7 10
-4

 m.  

 

Because the transition zone between the hot and the cold regions of the billet is time-varying, 

as shown in Fig. 9, it is necessary that the mesh of the billet is structured in space and updated 

in time in order to track the Curie front movement.  
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Figure 9. Relative permeability versus radius of the billet for different time instants: the ripple 

due to a coarse mesh identify the position of the Curie front, which is time-varying. 

 

Unfortunately, this kind of mesh control is not usually implemented in the commercially 

licensed FE codes. Consequently, the maximum element size of the mesh should be set to 0.5 

cold in the whole billet; consequently, however, the extra load could be fatal in terms of 

runtime for field analysis. 

 

 

 



 
CONCLUSIONS  

In the paper a benchmark in the field numerical calculations of induction heating systems 
with magnetic loads is proposed. Scope of this benchmark is to define a simple reference 
example used for collecting and comparing results obtained by different authors with different 
numerical software. The results presented in the paper have shown that a critical point of 
calculations is the description of the variations of magnetic permeability with temperature and 
magnetic field strength. Solutions of the proposed benchmark with different numerical 
methods and results obtained by different authors are therefore welcome, in order to set up a 
reference collection of data in the area of computational induction heating.  
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