
  

  

 
Abstract— Measuring human movement has many useful 

applications ranging from fall risk assessment, to quantifying 
sports exercise, studying people habits and monitoring the 
elderly. Here we present a versatile, wearable device based on a 
9-degrees-of-freedom inertial measurement unit conceived for 
providing objective measurements of trunk or limb movements 
for the assessment of motor and balance control abilities. The 
proposed device measures linear accelerations, angular velocities 
and heading and can be configured to either wirelessly transmit 
the raw or preprocessed data to a computer for online use, e.g. 
visualization or further processing, or to store the acquired data 
locally for long term monitoring during free movement. Further, 
the device can work in either single sensor or multiple sensors 
configuration, to simultaneously record several body parts for 
monitoring full body kinematics. Here, we compare body sway 
and trunk kinematic data computed based on our sensor with 
those based on data from a force platform and a marker-based 
motion tracker, respectively, during the evaluation of both static 
and dynamic exercises drawn from clinical balance scales. 
Results from these experiments on two populations of healthy 
subjects are encouraging and suggest that the proposed device 
can be effectively used for measuring limb movements and to 
assess balance control abilities. 
 

I. INTRODUCTION 
 

ROM THE standpoint of balance control the human body 
can be modeled as an inverted pendulum, i.e. a pendulum 

with its center of mass above the pivot joint, which is an 
inherently unstable system. The control of balance during quiet 
standing, movements and locomotion is therefore a complex 
task involving several sensory systems, i.e. vestibular, 
proprioceptive and visual, as well as the motor system, which 
is needed to counteract the natural tendency to loose the 
unstable equilibrium point of the system. Postural and balance 
control abilities gradually decline with age, so that one third of 
the population aged over 65 fall at least once per year. Those 
affected with balance disorders typically suffer from multiple 
impairments, e.g. multi-sensory loss, weakness, orthopedic 
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constraints and cognitive impairments [1]-[3]. Clinically, 
balance control abilities are typically assessed using clinical 
balance scales. The clinician oversees the execution of a set of 
simple, everyday-life movements, or items, and scores each 
one of them on a predefined scale. The scores of each item are 
added up and compared to predefined thresholds, providing a 
diagnosis of balance control abilities or of fall risk. The most 
common clinical scales are: the Tinetti test [4], [5], the Berg 
balance scale [6], and the BEST test [7]. In all these scenarios 
the physiatrist or the physiotherapist commonly evaluates the 
subject's performance by observing the execution of each 
exercise. Such evaluation process is therefore affected by 
subjective factors causing possible inter- and even intra-
evaluator variability of judgment, so that a more objective 
approach to the evaluation of balance is called for. On the other 
hand, technological advances continue to reduce the size, 
weight, and cost of MEMS inertial sensors, so that they are 
increasingly used for monitoring human movement through 
body-worn devices [8]-[17]. In particular, custom-made 
systems based on a single three-axes accelerometers are used in 
[9,10,11,12,14]. Wireless IMUs are presented in [15] and [17], 
but one integrates only a 3-axes accelerometer and a 2-axes 
magnetometer, whereas the other one integrates a 3-axes 
accelerometer and a 3-axes gyroscope. A few commercially 
available nine-degrees-of-freedom wireless IMUs have been 
used for research projects [8,13,16] and some considerations 
and a comparison with our system will be presented later on in 
the text.  

Based on our previous experience with the development of 
an instrumented insole for measuring comfort and movement 
parameters [18], we have recently designed and built a novel, 
portable, low-cost 9-degrees-of-freedom inertial measurement 
unit embedding a three axial accelerometer, a three axial 
gyroscope, and a three axial magnetometer, aimed at providing 
objective measurements of limb movements for the assessment 
of motor and balance control abilities (Fig. 1(a)). While a 
preliminary overview of the system has been reported in [19], 
hereinafter we provide a detailed description of the device, 
highlighting the features that differentiate it from similar 
commercial devices and presenting new experimental results 
for validating its measurements. 

The proposed device was designed in order to fulfill 
different kinds of monitoring needs: long term monitoring for 
balance hazards detection during real life activities, real-time 
balance monitoring for fall prevention or balance research 
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studies, or even the need for simultaneously monitoring the 
activity of more than one limb in kinematics analyses of gait or 
other gestures. The developed instrument has therefore been 
conceived as a modular device (Fig. 1(b)) which can be used in 
different scenarios: 1) single unit wirelessly connected to a PC 
or handheld device (laboratory experiments, short-term 
monitoring); 2) single unit capable of storing the acquired data 
on a local memory (patient/subject’s home, long-term 
monitoring); 3) body network, i.e. multiple units deployed on 
the subject’s body and wired to a gateway unit which can have 
a local memory or a wireless connection to a PC or handheld 
device (full body monitoring of exercises, several scenarios). 
Although a number of wearable IMU devices that can be used 
for monitoring posture and movements are available on the 
market, we preferred to build our own IMU “platform” to grant  
us maximum flexibility for adding custom features. This is 
hardly possible with commercial devices, as they generally 
come with their own software and, in particular, their firmware 
cannot be modified as needed. Among them, Lumoback (Lumo 
BodyTech, Inc., CA, USA) seems a very interesting system, 
but can only be connected to an Apple device with a 
proprietary application. Table I shows a list of other wireless 
IMUs available on the market that have been used for research 
purposes. Only six out of the nine listed devices can be used 
either as data loggers or as wireless sensors networks (WSNs). 
Most (eight out of nine) come with software development kits 
that allow the user to build his/her own applications. 
Nevertheless, only one of them (SHIMMER3 by Shimmer, 
Ireland) offers the user the capability of reprogramming its 
firmware (e.g. adding an onboard custom processing). 

Besides having both data logger and WSN features, our 
system is provided with LabVIEW and Python libraries for 
software application development. Moreover, the 
microcontroller’s firmware can be reprogrammed via a USB 
connection by means of an integrated development 
environment (IDE) with a C/C++ compiler and debugger (free 
versions for up to 64KB of code can be easily found on the 
Internet). C-code libraries for communicating with the 
accelerometer, gyroscope and magnetometer are already 
available; in the future we will develop ad-hoc libraries to be 
used in fall detection and activity recognition applications. 
With respect to the above mentioned SHIMMER3, which is 
based on a 24 MHz 16-bit CPU (MSP430 microcontroller by 
Texas Instruments, USA) our system is based on a 72 MHz 32-
bit CPU (STM32F303VC by ST Microelectronics, 
Switzerland) which grants higher computing power allowing 
for more complex processing features. A number of digital and 
analog inputs and outputs are also made available on the 
printed circuit board of the device. In particular, synchronous 
and asynchronous serial connections and IN/OUT digital ports 
can be used for sharing data and to manage external devices 
(e.g. electro stimulators). 

II. SYSTEM DESCRIPTION 
The device described in the present work is an autonomous 

system aimed at monitoring the movements of the subject 
wearing it. The circuit layout was designed to minimize the 

size of the final device and the battery was selected to 
minimize its weight, in order to obtain a wearable system well 
suited for acquiring inertial signals generated by the activity of 
the wearer without impeding his/her movement. Sensor 
components were also chosen among those having a linearity 
range and a sensitivity allowing to properly carry out 
measurements of human movements. Our instrument is based 
on a STM32F303VC microcontroller (by ST Microelectronics) 
embedding a high performance ARM Cortex M4 32-bit RISC 
core operating at a frequency of up to 72 MHz. Although in the 
initial experimental trials such as those reported in section IV 
of this paper our IMU has been used to collect raw data that 
have been processed off-board, the device was conceived as an 
inertial platform that can perform online processing, i.e. 
filtering or parameter extraction, of the acquired data. 
Moreover, in a body network scenario, the gateway unit 
processes the data coming from its sensors and from the other 
connected units. For these reasons, we decided to select a high 
performance microcontroller nonetheless allowing the design 
of low-power consumption applications. The STM32F303VC 
is able to interact with external devices through an extensive 
range of peripherals, while maintaining relatively small 
dimensions (7 mm ´ 7 mm ´ 1.6 mm). The same package hosts 
also a 256 Kbytes flash memory, for permanent data storage, 
and 40 Kbytes of SRAM for temporary data storage.  

 
 

Fig. 1  (a) The assembled device and casing. (b) System architecture.



  

TABLE I.  COMPARISON OF VARIOUS WIRELESS IMUS AVAILABLE ON THE MARKET AND ALREADY USED FOR RESEARCH PURPOSES 

Device Dimensions / 
Weight 

Sensors Battery life Wireless 
connectivity 

Sensor 
network? 

Data 
logging? 

Software  
library? 

MotionNode Bus 
Motion 
Workshop, 
Seattle, USA 
[20] 

Sensor: 35 mm ´ 35 
mm ´ 15 mm / 10 g 
Controller: 80 mm ´ 
40 mm ´ 20 mm / 80 
g 
 
Battery: 180 g 

3-axes 
accelerometer; 3-
axes gyroscope; 3-
axes magnetometer 

5 sensors:  
7.00 h 
10 sensors:  
5.50 h 
15 sensors:  
4.75 h 

802.11g Yes  
Up to 20 sensors 
wired to host unit 
providing 
wireless PC 
connection 

Yes  
4 GB 
internal 
flash 
memory 

Yes 
open source 
SDK in C++, 
C#, Java, and 
Python 

Opal 
APDM™, Inc., 
Portland, USA 
[21] 

48.4 mm ´ 36.1 mm 
´ 13.4 mm / 22 g 
(with battery) 

3-axes 
accelerometer; 3-
axes gyroscope; 3-
axes magnetometer 

Wireless 
Streaming: 8 h 
Synchronous 
Logging: 12 h 
Asynchronous 
Logging: 16 h 

Low-power 
wireless 
communicatio
n protocol 

Yes 
A wireless 
network of up to 
24 devices is 
possible 

Yes 
8 GB  
internal 
flash 
memory 

Yes  
SDK includes 
support for 
MATLAB, 
Java, Python, 
and C 

MTw 
Development Kit 
Xsens 
Technologies 
B.V., Enschede, 
The Netherlands 
[8],[22] 

34.5 mm ´ 57.8 mm 
´ 14.5 mm / 27g 
 

3-axes 
accelerometer; 3-
axes gyroscope; 3-
axes 
magnetometer; 
static pressure 
sensor 

Continuous use 
(typical): ~3.5 h 
Stand-by:  
90.0 h  

Awinda radio 
protocol 

Up to 32 MTw’s 
in a configurable 
wireless-area 
network 

No 
(only data 
buffering) 

Yes 
Examples code 
for C, C++ and 
Matlab 

Memsense W2 
IMU 
Memsense, Rapid 
City, USA 
[23] 

40.1 mm ´ 33.5 mm 
´ 15.2 mm / not 
specified 

3-axes 
accelerometer; 3-
axes gyroscope; 3-
axes 
magnetometer; 
temperature and 
atmospheric 
pressure sensor 

5 h Bluetooth No No No 
(proprietary 
software) 

STT-IBS 
STT Engineering 
and systems, San 
Sebastian, France 
[24] 

36.0 mm ´ 15.0 mm 
46.5 mm / 30 g 
 

3-axes 
accelerometer; 3-
axes gyroscope; 3-
axes magnetometer 

Not specified WiFi, 
Bluetooth 

No 
(multiple sensors 
need appropriate 
software 
application) 

Yes 
(memory 
capacity 
not 
specified) 

Yes 
SDK that can be 
integrated in 
.NET and C++ 
environments 

Colibri Wireless 
TRIVISIO 
Prototyping 
GmbH, Trier, 
Germany. [25] 

56 mm ´ 42 mm ´ 17 
mm / 41 g (with 
battery) 
 

3-axes 
accelerometer; 3-
axes gyroscope; 3-
axes 
magnetometer; 
temperature sensor 

16 h Wireless 2.4 
GHz band 
operation 

Yes 
Up to 10 trackers 
synchronized in 
the wireless 
network 

No  
(1 KB non-
volatile 
memory for 
user data) 

Yes 
API for 
implementing 
extended 
Kalman filter 
for tracking 
orientation  

I2M Motion SXT  
NexGen 
Ergonomics Inc., 
Pointe Claire, 
Canada. [26] 

48.5 mm ´ 36.0 mm 
´ 12.0 mm / 22 g 

3-axes 
accelerometer; 3-
axes gyroscope; 3-
axes magnetometer 

Wireless 
streaming:  
> 8 h 
Logging:  
> 16 h 

Proprietary 
low-power 
wireless 
communicatio
ns protocol. 

Yes 
Up to 24 STXs  
(wireless mode)/ 
up to 18 SXTs 
(logging mode) 

Yes 
8 GB 
internal 
flash 
memory 

Yes 
Support for 
MATLAB™, 
Java, Python, 
and C 

SHIMMER3 
Shimmer, Dublin, 
Ireland 
[13] 

51 mm ´ 34 mm ´ 14 
mm / not specified 

3-axes 
accelerometer; 3-
axes gyroscope; 3-
axes 
magnetometer; 
altimeter 

Not specified Bluetooth Yes 
(max number of 
nodes not 
specified) 

Yes 
(memory 
capacity 
not 
specified) 

Yes 
LabVIEW, 
Matlab, 
Java/Android, 
C# drivers 

Physilog 
Gait Up SA,  
Avenue d’Ouchy, 
Switzerland 
[16]  

50.0 mm ´ 37.0 mm 
´ 9.2 mm /  
19 g 

3-axes 
accelerometer; 3-
axes gyroscope; 3-
axes 
magnetometer; 
barometric 
pressure sensor 

< 21 h 
depending on 
model and 
programming 

Bluetooth Yes 
(max number of 
nodes not 
specified) 

Yes 
4 GB 
internal 
memory 

Yes 
Ready to use 
code in 
MATLAB, 
C/C++, or 
Python 

Proposed device 
University of 
Pavia, Italy 

60 mm ´ 35 mm ´ 20 
mm / 36 g 
 

3-axes 
accelerometer; 3-
axes gyroscope; 3-
axes magnetometer 

Wireless 
streaming:  
~ 6 h 
Logging:  
> 16 h 

Bluetooth Yes 
Up to 10 nodes 

Yes 
Extractible 
Micro 
Secure 
Digital card 

Yes 
LabVIEW and 
Python libraries 
for software 
development; 
reprogrammable 
firmware 

 



  

 
Body movements are measured using three inertial 

sensors: an accelerometer; a magnetometer and a gyroscope. 
We chose to use ST Microelectronics sensors mostly for our 
extended experience with them, so that we had access to their 
reference designs and to existing libraries.  

The LSM303DLHC (ST Microelectronics) provides 
measurements of the three-dimensional accelerations as well 
as those related to the magnetic field; it is a system-in-
package featuring a 3D digital linear acceleration sensor and 
a 3D digital magnetic sensor. Magnetic and accelerometer 
sensors can be enabled or put into power-down mode 
separately, thereby allowing to reduce the power 
consumption when one of these features is not required.  

The three dimensional angular rate is instead provided by 
the L3G4200D (ST Microelectronics), a digital low-power 
three-axes angular rate sensor. The full-scale values of the 
sensors can be modified by means of specific commands sent 
by the microcontroller [27][28]. In the experiments presented 
in this paper, we used the following configuration: +/-2g for 
the accelerometer; +/-8.1 G for the magnetometer; +/-250 °/s 
for the gyroscope. 

The microcontroller can manage the external sensors 
through two different kinds of synchronous serial 
communication interfaces: an Inter Integrated Circuit (I2C) 
and a Serial Peripheral Interface (SPI). The I2C exploits only 
two digital lines and allows the interaction with the 
LSM303DLHC module, whereas the SPI is a communication 
based on 3 digital lines and is used to send commands and 
receive data from the L3G4200D gyroscope. The SPI 
interface is also used to store data as ASCII files on a micro 
Secure Digital (µSD) card, which can then be extracted and 
read on different devices such as a PC or smartphone for data 
visualization and processing. Alternatively, the acquired data 
can also be wirelessly sent to a remote device (such as 
notebook, tablet or smartphone) using a RN-41 class 1 
Bluetooth® radio module (by Microchip Technology Inc., 
USA). This small (13.4 mm ´ 25.8 mm ´ 2.0 mm), low 
power (30 mA connected, < 10 mA sniff mode) module 
exchanges data with the microcontroller through a Universal 
Asynchronous Receiver/Transmitter (UART) interface, and 
delivers a data rate of up to 3 Mb/s for distances up to 100 
meters. A custom designed 4 layers, 55 mm ´ 30 mm ´ 2 
mm, printed circuit board hosts the above listed components 
and provides the wiring for data transmission.  

The circuit is powered by a very small (5 mm ´ 25 mm ´ 
35   mm), extremely lightweight (9 g) 3.7 V Polymer Lithium 
Ion battery with a nominal capacity of 400 mAh, including a 
built-in protection against over voltage, over current, and 
minimum voltage. Battery charging is simplified by 
providing a USB plug on the main circuit board. The power 
consumption pie chart for the working device is presented in 
Fig. 2. The system is currently capable of continuously 
acquiring and transmitting data to a PC for about 6 hours, but 
we are implementing power saving techniques in order to 
further extend the battery life. These include putting the 

system into sleep-mode when no movements are detected, or 
decreasing the sampling frequency when the subject’s 
activity is low. The capability of LSM303DLHC to generate 
interrupt signals based on acceleration thresholds as well as 
on the orientation of the device itself is extremely helpful for 
this purpose.  

 

 
Fig. 2  Device power consumption. *The reported value of µSD power 
consumption refers to the case when all data coming from the 3 sensors, 
acquired at 100 Hz, are stored in the µSD. This results in 28 pages of 256 
bytes written every second. 

 
The entire device, including the circuit board, the 

Bluetooth module and the battery, are enclosed in a 60 mm ´ 
35 mm ´ 20 mm box, which is made of translucent plastic, 
allowing to easily see the working LED indicators available 
on the board. The developed prototype is lightweight (36 g) 
and unobtrusive, and its small packaging allows to easily 
wear it on any limb or portion of the trunk using elastic 
Velcro straps or a similar support. The wearable device has 
currently been used for measuring data on trunk and thigh 
movements in over 100 clinical trials without inducing any 
complaint on freedom of movement or on discomfort.  

 

III. SYSTEM APPLICATION 
As mentioned, the device was  conceived with three kinds 

of scenarios [19] in mind. 
In the first scenario, a single unit is attached to the limb of 

interest, or to the trunk, and wirelessly connected via 
Bluetooth® to a PC or other device for on-line processing of 
the acquired signals while the subject performs some 
predefined movements (e.g. exercises drawn from a clinical 
balance scale). 

In the second scenario, the single unit is used for long-term 
monitoring, such as while the patient/subject is at home or 
freely moving in everyday life. In this case the Bluetooth® 
module is not necessary and therefore, once the presence of a 
µSD card with an appropriate configuration file is verified, it 
is simply switched off. The configuration file is a text file on 
the local µSD memory card specifying the sensors axes to be 
enabled, the sensors ranges, the sampling frequency, the size 
and the name of the log files. The acquisition starts when the 
user button (Fig. 1(a)) is pressed, thereby activating data 



  

logging to the local µSD memory card where the collected 
data samples are arranged in text spreadsheet files until the 
user button is pressed again. A blinking led (visible through 
the transparent case) informs the user that the acquisition is in 
progress. When the device is returned back to the 
laboratory/clinic, the µSD is extracted and the files can be 
downloaded to a PC for further processing. In this setting the 
device is capable of continuously acquiring and storing data 
for more than 11 hours (at the maximum sampling rate). 
Power saving techniques (i.e. reducing the sampling rate or 
going into sleep mode when the subject is not moving) allow 
for longer acquisition times. 

In the third, and most complex scenario several basic units 
are simultaneously worn by the subject, e.g. one at the level 
of L3, two on the thighs, two on the wrists or arms and one 
on the head, for detailed monitoring of full body kinematics. 
One of these devices, typically the one on L3 for wiring ease, 
acts as a gateway and relay node that it is wired to all the 
other devices and collects their data. It may then process the 
data and extract parameters of interest, if needed, and either 
store data and computed figures on the µSD card or transmit 
them wirelessly to a PC. The peripheral units are connected 
to the gateway unit using a multiprocessor serial 
communication protocol, implementing a single master – 
multiple slaves architecture. The system allows for a body 
network with up to ten (9 slave and 1 master) units, with 9 
signals (3 accelerations, 3 angular velocities, 3 magnetic field 
signals) provided by each unit, sampled at up to 400 Hz per 
channel. 

IV. EXPERIMENTAL TRIALS 
In order to test the system’s performance in measuring 
movements and balance control abilities, we carried out two 
experiments in which selected items drawn from common 
clinical balance scales were simultaneously recorded using 
both our sensor in single-unit wireless mode (1st scenario) 
and a reference instrument for comparison. 

In the first experiment we evaluated postural control 
abilities during quiet standing using the accelerometer as an 
inclinometer on low-pass filtered data, thereby neglecting 
inertial accelerations, to obtain trunk inclination with respect 
to the gravity vertical. In the second experiment, we 
evaluated postural control abilities in dynamic conditions, i.e. 
when inertial acceleration is not negligible, and the sensor’s 
motion was computed by integrating accelerometer and 
gyroscope signals during specific movements. 

In the first experiment we asked a group of 10 healthy 
subjects to perform four static exercises, each one lasting 40s: 
1) standing with eyes open (SEO), 2) standing with eyes 
closed (SEC), 3) standing with eyes open on a soft foam 
cushion (SEO_F), 4) standing with eyes closed on a soft 
foam cushion (SEC_F). The first two items were selected 
from the Tinetti Test [5], whereas the last two were drawn 
from the BESTest [7].  

We recorded each subject’s Centre of Pressure (CoP) at a 
frequency of 30 Hz by means of a Wii Balance Board (WBB) 

(Nintendo, Kyoto, Japan). The WBB is a force platform, the 
typical gold standard for CoP measurements, which has 
proven to be a valid and reliable tool for assessing CoP 
displacements [29], in spite of its affordability. We estimated 
the subjects’ Centre of Mass (CoM) displacements on the 
horizontal plane (X, Y) by applying a 0.4 Hz low pass filter 
to CoP displacements recorded by the WBB, as suggested in 
[30].  

The accelerometer data from the IMU worn using an 
elastic belt at the level of L3-L4, i.e. at the approximate CoM 
height,were acquired on a laptop via Bluetooth. Pitch and roll 
inclinations of the trunk, with respect to gravity, were 
calculated based on IMU data, using the accelerometer as an 
inclinometer after low pass filtering its data at 0.4 Hz. 
Assuming an inverted pendulum model of the body, CoM 
displacements on the horizontal plane (X, Y) were thus 
estimated as the projection of the sensor location on the 
ground using pitch and roll angles [31] and considering the 
height of the sensor on the subject’s body as the pendulum 
length.  
 

 
 

Fig. 3  Accelerometer (a), gyroscope (b) and magnetometer (c) raw 
signals acquired while a subject places each foot alternately on a stool during 
standing unsupported (SOS, 8 steps for 20 seconds of recording). The sensor 
was worn at the level of L3-L4 on the back of the subject. Accelerometer and 
gyroscope signals were used to reconstruct roll trunk inclination during the 
exercise, providing the results shown in Fig. 4(f).  

 
Comparisons of a representative subject’s X and Y CoM 

displacements, estimated based on the WBB and on our 
device during SEO and SEC_F, are shown in Fig. 4 (a)-(d). 
The median value of Pearson’s linear correlation coefficients 
and confidence intervals are shown (lower bound has been 
computed as difference between the median, i.e. the 2nd 
quartile, and the 1st quartile, whereas the upper bound as the 



  

difference between the 3rd quartile and the median value). For 
all static exercises (SEO, SEC, SEO_F, SEC_F), linear 
correlation coefficients were computed directly on WBB and 
IMU estimated CoM displacement signal. 
 

 
 
Fig. 4  Top two rows. Comparison of X and Y CoM displacements 
estimated based on IMU data (gray solid line) and WBB (black dashed line) 
data, recorded during the SEO (panel (a), (c), small oscillations) and SECF 
(panel (b), (d), large oscillations). Bottom row. Comparison of trunk 
inclination angles estimated based on IMU (gray line) and SIMI Motion 
(black dashed line) data recorded during the SU (panel (e), pitch angle) and 
SOS (panel (f), roll angle) exercises performed by a representative subject. 
Data in panel (f, gray line) are calculated from signals shown in Fig, 3(a, b).  
 

To further assess the reliability of our tool, we considered 
three features that are typically used in the evaluation of 
upright stance in static balance exercises and compared their 
values obtained using the estimated CoM displacements 
based on IMU data with those obtained using the CoP data 
obtained from the WBB. The features we considered are 
computed as in [32], and represent: the root mean square 
distance (RDIST) from the mean; the 95% confidence ellipse 
area (CEA), and the mean velocity (MVELO). 

Fig. 5 (b)-(d) presents a comparison of the results obtained 
with the two techniques, showing very good correlations of 
the computed features.  

In the second experiment, we have recorded a population 
of eight healthy subjects performing a series of dynamic 
exercises, i.e. items, also drawn from common clinical 
balance scales, with the single sensor attached to the subjects’ 
back at the level of L3-L4 by means of a strap-on band being 
wirelessly acquired by a laptop. Subjects were 
simultaneously recorded using a SIMI Motion 3D (Simi 
Reality Motion Systems GmbH, Germany), a passive marker 
motion capture system with 4 synchronized cameras. The X, 
Y and Z coordinates of two markers (placed on the subjects 
at the level of L3-L4 and Th10 respectively) were acquired at 

a frequency of 100 Hz and used to compute roll and pitch 
angles of the trunk. The selected exercises were the 
following: 1) stand-up (SU); 2) sit down (SD); 3) place each 
foot alternately on a stool while standing unsupported (SOS); 
4) reaching forward while standing (RF). 
 

 
 
Fig. 5 (a)  Stabilogram of projected CoM displacement (gray line) for the 
subject in Fig. 4 (b), (d) and ellipse including 95% of data (dark line). 
(b),(c),(d) RDIST, CEA, MVELO, respectively. The parameters computed 
from sensor data are plotted against those computed from BB data. Points 
represent SEO, stars SEC, squares SEOF and circles SECF.  The slope, the 
intercept of the linear regression and the Pearson’s correlation coefficients 
are reported. 

 
Again, the first two items were drawn from the Tinetti test 

[5], whereas the last two were drawn from the Berg balance 
scale [6]. Sensor’s data were also acquired at 100 Hz 
sampling frequency (setup as in the scenario 1). We 
estimated the orientation of the worn device, and hence of the 
trunk, using the Kalman filter algorithm in [33] and the 
sensor signal model reported in [34]: the estimate is based on 
the integration of the angular velocity provided by the 
gyroscope, with a correction based on the inclination 
computed using data from the accelerometer for 
compensating integration errors. These data were then 
compared to the roll and pitch trunk inclination angles 
computed based on the SIMI Motion data. An example of 
such comparison on a representative subject is shown in Fig. 
4: panel (e) shows the pitch angle computed from the sensor 
mounted on the subject’s lower back together with the trunk 
inclination computed based on the SIMI Motion data during a 
SU exercise. The difference in inclination that can be noted at 
the end of the exercise may be due to the sensor taking into 
account the lumbar curvature in standing upright, whereas the 
straight line between the L3-Th10 markers neglects it. Panel 



  

(f) shows the roll angles during a SOS exercise (computed 
based on the raw signals shown in Fig. 3 (a, b)). Table III 
presents the median value of Pearson’s linear correlation 
coefficients and confidence intervals between the two signals, 
for all items considered (pitch angles are shown for the SU, 
SD, RF items, whereas roll angles are considered for the 
SOS). 

V. CONCLUSION 
We have developed a custom IMU sensor aimed at 

monitoring human movement in several scenarios of interest 
for both the scientific and the clinical fields, ranging from 
long term balance assessment, i.e. a Holter monitor for 
balance, to kinematic analysis of multiple limb movements 
for monitoring the execution of full body gestures or 
exercises, in the general context of movement control, 
balance assessment and fall prevention. We have validated 
the device for its use as a balance monitoring tool by 
simultaneously recording healthy subjects performing 
exercises drawn from commonly used balance assessment 
scales, with both our device worn at the level of L3-L4 and 
reference instrumentation. 

TABLE II.  STATIC EXERCISES CORRELATION COEFFICIENTS 

Static 
CorrX  CorrY 

median 2nd Q- 
1st Q 

3nd Q- 
2st Q 

median 2nd Q- 
1st Q 

3nd Q- 
2st Q 

SEO 0.5980 -0.1539 0.3043 0.7795 -0.0502 0.0435 
SEC 0.8658 -0.3461 0.0559 0.7588 -0.0746 0.1220 

SEO_F 0.9143 -0.0495 0.0403 0.5894 -0.3888 0.1431 
SEC_F 0.9331 -0.1307 0.0207 0.6932 -0.1345 0.0655 

 

TABLE III.  DYNAMIC EXERCISES CORRELATION COEFFICIENTS 

Dynamic Corr  
median 2nd Q- 1st Q 3nd Q- 2st Q 

SUpitch 0.9690 -0.0872 0.0039 
SDpitch 0.9947 -0.0641 0.0011 
RFpitch 0.9926 -0.0120 0.0021 
SOSroll 0.9462 -0.0085 0.0088 
 
The data relative to the four quiet standing exercises were 

compared based on the estimated CoM displacements and on 
features commonly used for sway path evaluation. The 
comparison between the CoM’s X and Y displacements 
computed based on the data acquired by our device and by 
the Nintendo Wii Balance Board in the SEC, SEO_F, SEC_F 
conditions show good to very good correlation coefficients. 
The X coordinate, in particular, shows very good correlation 
coefficients in those exercises where relatively larger body 
oscillations are present, and a good correlation in the other 
cases, in which only small oscillations are expected in 
healthy subjects. We further tested whether the data acquired 
using the proposed device allowed reliable computation of 
the figures that are commonly used for evaluating 
posturography data, thus comparing the mean velocity, the 
root mean square distance and the 95% confidence ellipse 
area computed on the WBB COP data with its estimate based 
on the IMU and found very good correlations. Finally, data 

relative to the four dynamic exercises were compared based 
on estimated trunk inclination angles computed using the 
IMU and the SIMI Motion 3D data. We found very good 
correlations between the angles of interest of all considered 
items.  

These experimental tests strongly argue for the reliability 
of the proposed sensor in such configuration. The system 
(single unit for short-term acquisition, first scenario) is being 
used in an experimental campaign where both its quantitative 
measurements, and expert examiners’ judgments are recorded 
while a group of patients and controls carry out motor tasks, 
i.e. items, drawn from the most common clinical balance 
scales (e.g., Tinetti test, Berg Balance Scale, BESTest). 

In the tests we performed the proposed device has proven 
comfortably wearable by the subjects and easy to use by the 
operators. We are currently developing a proper 
computational framework for analyzing the data acquired 
while performing the selected set of exercises in order to 
identify appropriate behavioral features allowing to classify 
the individuals in terms of their fall risk [35]. Quantitative 
features describing balance control abilities are thus used for 
patients’ fall risk classification. 
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