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Reconstructing neuronal microcircuits through computational models is fundamental to

simulate local neuronal dynamics. Here a scaffold model of the cerebellum has been

developed in order to flexibly place neurons in space, connect them synaptically, and

endow neurons and synapses with biologically-grounded mechanisms. The scaffold

model can keep neuronal morphology separated from network connectivity, which can

in turn be obtained from convergence/divergence ratios and axonal/dendritic field 3D

geometries. We first tested the scaffold on the cerebellar microcircuit, which presents

a challenging 3D organization, at the same time providing appropriate datasets to

validate emerging network behaviors. The scaffold was designed to integrate the

cerebellar cortex with deep cerebellar nuclei (DCN), including different neuronal types:

Golgi cells, granule cells, Purkinje cells, stellate cells, basket cells, and DCN principal

cells. Mossy fiber inputs were conveyed through the glomeruli. An anisotropic volume

(0.077 mm3) of mouse cerebellum was reconstructed, in which point-neuron models

were tuned toward the specific discharge properties of neurons and were connected

by exponentially decaying excitatory and inhibitory synapses. Simulations using both

pyNEST and pyNEURON showed the emergence of organized spatio-temporal patterns

of neuronal activity similar to those revealed experimentally in response to background

noise and burst stimulation of mossy fiber bundles. Different configurations of granular

and molecular layer connectivity consistently modified neuronal activation patterns,

revealing the importance of structural constraints for cerebellar network functioning. The

scaffold provided thus an effective workflow accounting for the complex architecture of

the cerebellar network. In principle, the scaffold can incorporate cellular mechanisms at

multiple levels of detail and be tuned to test different structural and functional hypotheses.

A future implementation using detailed 3D multi-compartment neuron models and

dynamic synapses will be needed to investigate the impact of single neuron properties

on network computation.
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INTRODUCTION

The causal relationship between components of the nervous
system at different spatio-temporal scales, from subcellular
mechanisms to behavior, still needs to be disclosed, and this
represents one of the main challenges of modern neuroscience.
The issue can be faced using bottom-up modeling, which allows

propagating microscopic phenomena into large-scale networks
(Markram, 2012; Markram et al., 2015; D’Angelo and Wheeler-
Kingshott, 2017).This reverse engineering approach integrates
available details about neuronal properties and synaptic
connectivity into realistic computational models and allows to

monitor the impact of microscopic variables on the integrated

system. Realistic modeling can predict emerging collective
behaviors producing testable hypotheses for experimental
and theoretical investigations (Llinas, 2014) and might also
play a critical role in understanding neurological disorders
(Soltesz and Staley, 2018). In practice, realistic modeling of
microcircuit dynamics and causal relationships among multi-
scale mechanisms poses complex computational problems. First,
the modeling strategy needs to be flexible accounting for a variety
of neuronal features and network architectures, to be easy to
update as new anatomical, or neurophysiological data become
available, and to be easy to modify in order to test different
structural and functional hypotheses. Secondly, the modeling
tools need to be scalable to the dimension of the network and to
the nature of the scientific question (Destexhe et al., 1996), to
be suitable for available simulation platforms, e.g., pyNEST and
pyNEURON (Brette et al., 2007; Eppler et al., 2008; Hines et al.,
2009), and to efficiently exploit High-Performance Computing
(HPC) resources.

Markram et al. recently carried out a digital reconstruction
of the neocortical microcolumn by integrating experimental
measurements of neuronal morphologies, layer heights,
neuronal densities, ratios of excitatory to inhibitory neurons,
morphological and electro-morphological composition,
electrophysiological properties of neurons, and synapses
(Markram et al., 2015). Neuron parameters were derived
from databases specifically addressing cerebro-cortical neuron
properties (e.g., Blue Brain Project and Allen Brain Atlas;
Markram, 2006; Sunkin et al., 2013). Microscopic network
wiring was then estimated computationally through a touch
detection algorithm, that is based on a probability/proximity
rule (i.e., the probability that morphologically defined dendrites
and axons make a synaptic connection depends on their spatial
proximity). This approach, in which the reconstruction of
microcircuit connectivity depends on the 3D morphology of the
axonal and dendritic processes of individual cells, may apply
to brain structures for which datasets comparable to neocortex
are available. However, such specific datasets are not available
in general for all brain regions and it seems convenient in
principle to keep separated neuronal morphology from network
connectivity, which is reported as convergence/divergence
ratios and axonal/dendritic field geometries in the literature in
many cases.

The cerebellum hosts the second largest cortical structure
of the brain and contains about half of all brain neurons.

Modeling the cerebellum brings about specific issues reflecting
the peculiar properties of this circuit, which shows a
quasi-crystalline geometrical organization well-defined by
convergence/divergence ratios of neuronal connections and
by the anisotropic 3D orientation of dendritic and axonal
processes (Figure 1) (D’Angelo et al., 2016). Moreover, the
morphological reconstruction of axonal and dendritic processes
of cerebellar neurons is not as developed as for other brain
microcircuits, like cerebral cortex, and hippocampus (e.g.,
see the NeuroMorpho.org repository —https://www.re3data.
org/repository/r3d100010107; Akram et al., 2018). Therefore
modeling the cerebellum relies on a knowledge base that differs
from that available for the cerebral cortex and thus requires
a more general approach than in the Markram’s modeling
workflow (Markram et al., 2015).

Some recent models were purposefully designed to reproduce
a limited section of the cerebellar cortex, the granular layer
(Maex and De Schutter, 1998; Solinas et al., 2010; Sudhakar
et al., 2017), in great detail and incorporated Hodgkin-Huxley-
style mechanisms and neurotransmission dynamics (D’Angelo
et al., 2001; Solinas et al., 2007a,b; Nieus et al., 2014; Masoli
et al., 2015, 2017; Masoli and D’Angelo, 2017). Other models
were designed to simulate, in a simplified form, large-scale
computationally efficient networks of the olivo-cerebellar system

FIGURE 1 | Reconstruction of a scaffold model of the cerebellar network.

Schematic representation of the cerebellar network (from D’Angelo et al.,

2016). Glomeruli (Glom); mossy fiber (mf); Granule cells (GrC); ascending axon

(aa); parallel fiber (pf); Golgi cells (GoC); stellate cell (SC); basket cell (BC);

Purkinje cell (PC); Deep Cerebellar Nuclei cell (DCNC). Gloms transmit mf

inputs to GrCs, which emit aa and pf, which in turn activate GoCs, PCs, SCs,

and BCs. GoCs inhibit GrCs, SCs and BCs inhibit PCs. DCN cells are inhibited

by PCs and activated by mf. Note the precise organization of PC dendrites,

SC/BC dendrites and GoC dendritic arborization mainly on the parasagittal

plane. The same abbreviations are used also in the following figures.
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(Medina and Mauk, 2000; Yamazaki and Nagao, 2012). In this
work, a new cerebellum scaffold model has been developed
and tested, allowing to incorporate axonal/dendritic field
geometries specifically oriented in a 3D space and to reconnect
neurons according to convergence/divergence ratios typically
well-defined for the cerebellum (D’Angelo et al., 2016). The
cerebellum scaffold model maintains scalability and can be
flexibly handled to incorporate neuronal properties on multiple
scales of complexity and to change its connectivity rules. For
the sake of simplicity, here we used first simplified neuron
and synaptic models to evaluate the impact of construction
rules. The cerebellum scaffold model was validated by testing
its ability to reproduce the structural properties anticipated
experimentally and the emergence of complex spatiotemporal
patterns in network activity. The model was run on the pyNEST
and pyNEURON simulators (Brette et al., 2007; Eppler et al.,
2008; Hines et al., 2009) and a test workflow was integrated into a
large-scale neuroinformatics infrastructure, the Brain Simulation
Platform (https://collab.humanbrainproject.eu/).

MATERIALS AND METHODS

This paper reports the design and implementation of a
scaffold model of the cerebellum microcircuit. The model
architecture is scalable and is designed to host different types of
neuronal models and to determine their synaptic connectivity
from convergence/divergence ratios and axonal/dendritic field
geometries reported in literature. The workflow encompasses
two main modules in cascade: cell placement into a user-
defined volume; connectivity among neurons. The scaffold can
then be used for functional simulations of network dynamics
(Figure 1).The scaffold is designed to be embedded into different
simulators, e.g., pyNEST and pyNEURON. This workflow, by
allowing a flexible reconstruction of the cerebellar network,
will eventually allow to evaluate physiological, and pathological
hypotheses about circuit functioning.

Cell Placement Module
The Cell Placement Module placed the cells in a virtual network
volume divided in layers based on morphological definitions.
The process took into consideration the different cerebellar
neuron types: the Golgi Cell (GoC), Granule Cell (GrC),
Purkinje Cell (PC), Stellate Cell (SC), Basket Cell (BC), Deep
Cerebellar Nuclei glutamatergic GAD-positive Cell (DCNC), and
glomerulus (Glom). Glom is actually a mossy fiber terminal and
is represented as a neuronal element at the input stage, while
DCNCs are placed at the output stage of the circuit. For each
neuron type, the density value in a specific layer was derived from
literature, and geometric features (including soma radius and 3D-
oriented dendritic and axonal fields) were defined according to
experimental data. Through ad hoc algorithms (Bounded Self-
Avoiding Random Walk Algorithm and Purkinje Cells placement
algorithm, see below; and details in Supplementary Material

Placement workflow), the cells were positioned in the 3D volume
of each layer, according to their density, soma radius, and
anisotropic extension, ensuring that their somata did not overlap.
The module was implemented in Python, and its output was

saved in an .hdf5 file containing the unique identification number
(ID) of each cell, its corresponding type (an integer value between
1 and 7, as in Table 1), and the three spatial coordinates of
the soma center (x, y, z). To evaluate the effectiveness of the
cell positioning algorithms, we derived a continuous distribution
of pair-wise distances using kernel density estimation (KDE),
in which the Gaussian kernel had fixed bandwidth for each
cell population. KDE yielded a single maximum when pair-wise
distances were distributed homogeneously (GrC, GoC, SC, BC,
DCNC) and multiple local maxima when distances were placed
according to different geometric rules (PC). A reconstructed
network volume and pair-wise soma distances yielded by this
module are illustrated in Figure 2.

GrCs, GoCs, SCs, BCs, and DCNCs were placed in thin
sublayers (with height = 1.5x soma diameter) using a bounded
self-avoiding random walk algorithm. In each sublayer, the cells
were initially distributed in 2D and then sublayers were piled one
on top of the others. The first cell was placed randomly and each
subsequent one was positioned nearby along a random angular
direction. The overlap among somata was avoided since, along
the selected direction, the minimum distance to place the next
cell was equal to the soma diameter. A term was added to the
minimum distance to scatter the somata. In details, a potential
volume for each cell was computed from density values, then
deriving the difference between this compound sphere radius
and the soma radius (ε); a value was randomly sampled from
as a normal distribution around ε (minimum 0.75· ε, maximum
1.25· ε). This guarantees natural randomness but at the same
time a good exploitation of the whole available volume, avoiding
undesired clusters or not uniform occupancy. If the surrounding
space was completely occupied, i.e., there was insufficient space
to place a further cell, a new starting point was selected resetting
the random walk process for the remaining neurons in that sub-
layer. Once completed, the 2D sub-layer was piled on top of
the underlying one. Then, a vertical coordinate was assigned
to each cell, from a random uniform distribution within the
sublayer height (Korbo et al., 1993). This approach maintained
randomness achieving a realistic quasi-Gaussian distribution of
pair-wise inter-neuron distances (see Figure 2C) and proved
computationally efficient.

TABLE 1 | Neuron types, size, and density.

Type Soma radius

(µm)

Density (neurons/

µm3) *(/ µm2)

Golgi cell (GoC) 8 9 × 10−6

Glomerulus (Glom) 1.5 3 × 10−4

Granule cell (GrC) 2.5 3.9 × 10−3

Purkinje cell (PC) 7.5 0.45 × 10−3*

Basket cell (BC) 6 0.5 × 10−4

Stellate cell (SC) 4 0.5 × 10−4

DCN glutamatergic cell (DCNC) 10 5 × 10−7

The table reports the density of neurons in the layer volume (neurons/µm3 ), *except for

PCs for which the planar density is used (neurons/µm2 ). Data for Glom, GrC, GoC, PC,

SC, BC from Korbo et al. (1993). The density of DCNC was estimated from the ratio of

PCs to DCNCs (Person and Raman, 2012).
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FIGURE 2 | Cell placement and network architecture. (A) The cells are placed in the network 3D space using a Bounded Self-Avoiding Random Walk Algorithm. The

figure shows the volume of 400 × 400 × 900 µm3 containing 96,737 neurons and 4,220,752 synapses used for simulations. (B) Projection of GrC axons to the

molecular layer hosting the PCs (green dots in the PC layer are the somata, the thin green parallelepipeds above are the corresponding dendritic trees occupying the

molecular layer). The figure shows two clusters of GrCs and the corresponding aa and pf, illustrating that the cerebellar network connectivity respects the 3D

architecture shown in Figure 1. (C) Distributions of 3D pair-wise inter-soma distances within each neuronal population: GrCs, SCs, GoCs, BCs, and PCs. Note that

the distributions are nearly normal, except for the PCs.

The PCs were distributed in a single sub-layer forming an
almost planar grid between the granular and molecular layers.
The PC inter-soma distances over this plane were constrained by
the dendritic trees, which are flat and expand vertically on the
parasagittal plane (about 150µm radius× 30µmwidth) without

overlapping (Masoli et al., 2015). Since PC somata do not arrange
in parallel arrays but are somehow scattered, a noisy offset was

introduced creating an average angular shift of about 5◦ between

adjacent PCs. As for the other neuron types, a small randomnoise
was also imposed on the vertical coordinate (Korbo et al., 1993).

The data required for cell positioning in the cerebellar cortex
were obtained from literature (Eccles et al., 1967; Magyar et al.,
1972; Mezey et al., 1977; Hamori and Somogyi, 1983; Jakab and
Hamori, 1988; Korbo et al., 1993; Sultan, 2001; Santamaria et al.,
2007; Barmack and Yakhnitsa, 2008; Solinas et al., 2010) and are
summarized in Table 1. GoCs, GrCs, and Gloms were placed

into the granular layer; BCs and SCs in the lower and upper
half of the molecular layer, respectively. A certain number of
DCNCs was randomly distributed in DCN volume according
to the PC/DCNC ratio, since more specific parameters are still
missing (Gauck and Jaeger, 2000; Aizenman et al., 2003; Person
and Raman, 2012). Special care was given to the GrC ascending
axon (aa) that, starting directly from the soma, makes its way
up vertically toward the molecular layer. The height of each
ascending axon was chosen from a Gaussian distribution in the
range of 181± 66µm (Huang et al., 2006). This value represents
also the vertical coordinate of the corresponding parallel fiber
(pf), running transversally and parallel to the cerebellar surface.

Connectivity Module
The connectivity module created structural connections between
pairs of neurons belonging to specific types. Each neuron type
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formed input and output connections with other neurons of
the same or different types. Therefore, once the placement
was completed, it was possible to reconstruct the connectome
applying intersection-connectivity rules based on proximity of
neuronal processes and on statistical ratios of convergence
and divergence. When available, morphological and statistical
literature data were used, otherwise plausible physiological
constraints were applied. In our scaffold, 16 connection types
were generated (the most important are shown in Figure 3),
from the volume covered by pre-synaptic axonal processes to that
covered by post-synaptic dendritic trees of specific neuron types:

1. From glomeruli to granule cells (Glom-GrC);
2. From glomeruli to basolateral dendrites of Golgi

cells (Glom-GoC);
3. From Golgi cells to Gloms (GoC-Glom): this is fused together

with Glom-GrC to generate directly GoC-GrC connections;
4. Among Golgi cells (GoC-GoC);
5. From ascending axons of granule cells to Golgi cells (aa-GoC);
6. From parallel fibers of granule cells to apical dendrites of Golgi

cells (pf-GoC);
7. Among stellate cells (SC-SC);
8. Among basket cells (BC-BC);
9. From parallel fibers of granule cells to stellate cells (pf-SC);
10. From parallel fibers of granule cells to basket cells (pf-BC);
11. From stellate cells to Purkinje cells (SC-PC);
12. From basket cells to Purkinje cells (BC-PC);
13. From ascending axons of granule cells to Purkinje

cells (aa-PC);
14. From parallel fibers of granule cells to Purkinje cells (pf-PC);
15. From Purkinje cells to DCN cells (PC-DCNC);
16. From glomeruli to DCN cells (Glom-DCNC).

Given a connection type, for each pre-synaptic neuron, the
potential post-synaptic cells were identified as those that
met geometric neuron-specific constraints. Then, given the
convergence and divergence ratios, post-synaptic neurons were
selected among the potential ones, through a pruning process
using distance-based probability functions specific for each
volume direction (details and examples in Figure S1). The
module was implemented in Python, and its output saved in
an .hdf5 file containing a matrix for each connection type,
in which each row was defined by three values: the unique
ID of the pre-synaptic neuron, the unique ID of the post-
synaptic neuron and the inter-soma 3D distance between that
pair (see Figure 4A).The plots in Figures 4B,C compare, for each
connection type, the divergence and convergence ratios reported
by literature to the values obtained after scaffold reconstruction
in a sample volume. The cell placement and connections rules
yielded indeed a very good approximation of the anatomical and
physiological parameters reported in literature.

Functional Simulations
In order to test the functionality of the scaffold, single
neuron models were placed in the corresponding positions
of the connectome matrix. In this first version of the
cerebellar microcircuit, spiking point-neuron models based
on Integrate&Fire (I&F) dynamics with conductance-based

exponential synapses (i.e., synaptic inputs cause an exponential-
shaped change in synaptic conductances) were used. The output
files of these simulations contained all the spike events (neuron
IDs and relative spike times). Glomeruli were represented as
“parrot neurons” just able to pass the imposed stimulation
patterns unaltered. Each other neuron type was characterized by
specific values, directly related to neurophysiological quantities
(Cm, τm, EL, 1tref , Ie, Vr , Vth), corresponding to biological
values taken from literature available from animal experiments
or databases (https://neuroelectro.org/) (Tripathy et al., 2014;
Table 2). In order to account for the neuron-specific dynamics
of GABA and AMPA receptor currents, also the decay times of
the excitatory and inhibitory synaptic exponential functions (τexc,
τinh) were set differently for each neuron type (Table 2). Each
synaptic connection type was characterized by specific values
of weight and delay (Table 3). These estimates approximated
literature data values so that, for example, the synaptic delay
was shorter when fibers impinging on PCs came from aa than
pf synapse.

The input stimulus was set by defining the volume where
Gloms were activated, the onset time, the duration and the
frequency of spikes. A background activity was generated by a
Poisson process of stochastic neuronal firing at 1Hz on all the
glomeruli. Superimposed on it, a burst at 150Hz lasting 50ms
(Rancz et al., 2007) was activated 300ms after the beginning of
simulation. Indeed, mossy fibers have a low basal activity, but in
response to sensorimotor stimuli, can fire at rates beyond 100Hz.
The stimulated volume had a radius of 140µm; the simulation
lasted 1 sec, including 300ms pre-stimulus, 50ms stimulus, and
650 ms post-stimulus.

In a specific set of simulations (see Figure 8), we tested
the partial contribution of SCs and BCs to the spatiotemporal
diffusion of activity among PCs. BCs axonal plexus is
preferentially oriented along the parasagittal axis (see Eccles et al.,
1967). In these simulations, we oriented the SC and BC axonal
plexus orthogonally one to each other and concentrated the
stimulation burst in a sphere of 30 µm radius.

Network Data Analysis
For each neuron population, mean frequency rates were extracted
in three time windows: baseline pre-stimulus, during stimulus,
and steady-state after-stimulus. We then generated peri-stimulus
time histograms (PSTH) for each neuronal population with time
bins of 3ms. For each neuron population, we also separated
excited from inhibited sub-groups, responding with an increased,
or decreased firing rate during the stimulus. To do so, we
compared the number of spikes during stimulus vs. pre-stimulus
normalized by the time-window durations. If the pre-stimulus
firing frequency (i.e., baseline) was at least doubled during
stimulation, then the cell was classified as excited. Conversely,
to classify the inhibited cells. For GrCs, we added a second
constraint: to be labeled as excited, a GrC should fire more than 1
spike during stimulation, allowing to exclude spikes determined
by the background noise. For DCNC, all cells stopped firing
during the stimulation time-window. For each PC, a further ad-
hoc analysis allowed to identify burst–pause responses. The cells
showing a significant stimulus-induced pause (Cao et al., 2012;
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FIGURE 3 | Cell connectivity: examples for specific connections. Examples of divergence and convergence at different connections in the cerebellar network space.

The plots have base area (400 × 400 µm2) and thickness specific for each layer. The plots show a randomly selected pre-synaptic cell together with its connected

post-synaptic neurons (divergence) or viceversa (convergence). (A) Connections of GrCs and GoCs. (B) Connections of PCs, SCs, and BCs. (C) Connections of

DCNCs.

Herzfeld et al., 2015) were recognized as those in which the first
Inter-Spike-Interval (ISI) after the end of the stimulus was >2
standard deviation (sd) of the pre-stimulus ISIs. This comparison
was computed within-cell, i.e., for each PC individually.

Center-Surround Analysis
The Excitatory-Inhibitory balance (EI) and Center-Surround
(CS) were calculated from firing rates (FR) according to Mapelli
and D’Angelo (2007) and Solinas et al. (2010) by considering that
inhibition occurs only after a delay following the beginning of

stimulation. GrC firing rate was then measured 0–20ms (T1) and
20–40ms (T2) after the beginning of stimulation in response to
50ms at 150Hz bursts, both in control (con)and with GoC-GrC
inhibition switched off (in_off ). The CS and EI were calculated
as follows:

EI = FRconT2 − FRin_offT2

CS = FRconT1 − EI

The CS values were normalized between 1 and−1. The extension
of the center and surround was calculated by including zones
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FIGURE 4 | Cell connectivity: pair-wise distance prediction and convergence/divergence validation. (A) Pair-wise distance prediction deriving from the placement and

subsequent cell-to-cell connectivity. The data that find correspondence in literature are indicated as asterisks. For each connection type, the pair-wise distances

between connected cells (inter-soma distance) are reported. Data from: (1) (D’Angelo et al., 2013), (2) (Barmack and Yakhnitsa, 2008), (3) (Rieubland et al., 2014).

(B,C) The plots compare divergence and convergence for the different connections of the scaffold with those anticipated experimentally. The regression lines show a

very close correspondence of the model to experimental results. Linear regression lines are fitted to the data (divergence: r2 = 0.98, slope = 0.88; convergence: r2 =

0.99, slope = 0.99). Data from: (1) (Nieus et al., 2006), (2) (Dieudonne, 1998), (3) (D’Angelo et al., 2013), (4) (Solinas et al., 2010), (5) (Kanichay and Silver, 2008), (6)

(Cesana et al., 2013), (7) (Hull and Regehr, 2012), (8) (Lennon et al., 2014), (9) (Huang et al., 2006), (10) (Jorntell et al., 2010), (11) (Sultan and Heck, 2003), (12)

(Person and Raman, 2012), (13) (Boele et al., 2013).

with CS > 0.5 in the center, and zones with CS < −0.5 in the
surround. The center and surround relative areas could then
be calculated by counting the respective number of pixels and
normalizing by the total number of pixels (see Figure 7C).

Oscillation Analysis
In order to determine the presence and properties of coherent
oscillations in granular layer activity, the activity in a subset of
GoCs with overlapping incoming parallel fibers and the related
GrCs was analyzed (Maex et al., 2000) during a 5 s at 5Hz noisy
background mossy fiber activity. The autocorrelations of GoCs
and GrCs spike trains and the cross correlation between GrCs
and GoCs spike trains were calculated using the equation

C =

∑len(A)
n=0

(

abs(An)
)

len(A)

Where C is the index of coherence, A is the array of
autocorrelation values, and len(A) is the size of the spike
train data array. The same calculus was executed also for
the crosscorrelation.

Simulations in pyNEST, pyNEURON, and
Implementation on the Brain
Simulation Platform
The microcircuit was implemented and simulated both in
pyNEST version 2.14 (Eppler et al., 2008) and in pyNEURON
(Hines et al., 2009). These neural simulators are commonly
used for applications starting from realistic neuron models
and up to more abstract representations. These tests were run
using external HPC and local resources, maximizing available
parallel computing. The time resolution for both simulators was
0.1ms. As internal validation tests, some exemplificative ad-hoc
structural and functional alternatives (see Figure 5) were made
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TABLE 2 | Neuron-specific parameters.

Cell type Cm[pF] τm(= Cm*Rin) [ms] EL[mV] 1tref(spike width)[ms] Ie[pA] Vr[mV] Vth[mV] τexc[ms] τinh[ms]

GoC 76 21 −65 2 36.8 −75 −55 0.5 10

GrC 3 2 −74 1.5 0 −84 −42 0.5 10

PC 620 88 −62 0.8 600 −72 −47 0.5 1.6

BC 14.6 14.6 −68 1.6 15.6 −78 −53 0.64 2

SC 14.6 14.6 −68 1.6 15.6 −78 −53 0.64 2

DCNC 89 57 −59 3.7 55.8 −69 −48 7.1 13.6

The table shows the parameters used to define specific neuronal properties in the model. Cm, membrane capacitance; τm, membrane time constant; Rin, input membrane resistance;

EL, leakage resting potential; 1tref, refractory period; Ie, endogenous current; Vr, reset potential; Vth, threshold potential; τexc, τ inh, excitatory and inhibitory synaptic exponential time

constants). Data are obtained from NeuroElectro (https://neuroelectro.org/) (Tripathy et al., 2014).

TABLE 3 | Synaptic parameters for each connection type.

Connection types Weight [nS] Delay[ms]

Glom-GrC 9.0 4.0

Glom-GoC 2.0 4.0

GoC-GrC (GoC-Glom-GrC) −5.0 2.0

GoC-GoC −8.0 1.0

aa-GoC 20.0 2.0

pf-GoC 0.4 5.0

SC-SC −2.0 1.0

BC-BC −2.5 1.0

pf-SC 0.2 5.0

pf-BC 0.2 5.0

SC-PC −8.5 5.0

BC-PC −9.0 4.0

aa-PC 75.0 2.0

pf-PC 0.02 5.0

PC-DCNC −0.0075 4.0

Glom-DCNC 0.006 4.0

The parameters result from a tuning procedure based on data reported in different papers

and summarized in Maex and De Schutter (1998), Solinas et al. (2010), and Sudhakar et al.

(2017). A main additional constraint is that the connection weight is larger from aa then

pf connections, both for GoCs and PCs (Sims and Hartell, 2005; Cesana et al., 2013).

in the network and then the same simulations were run (in
pyNEST). The firing rates of each cell population and their sub-
groups affected by stimulus are reported in Table 4 and Figure 5

to illustrate the spiking network behaviors.
The entire scaffold can be built and run as a Jupyter

Notebook in the Brain Simulation Platform (BSP), one of
the platforms of Human Brain Project (Markram, 2012).
The BSP is an internet-accessible collaborative platform that
comprises a suite of software tools and workflows to reconstruct
and simulate multi-level models of the brain at different
levels of description, from abstract to highly detailed. Here,
cells, network, and volume configuration parameters can be
easily read and modified, since they are stored in a single
Python script. Such flexible parametric approach allows to
continuously include and tune relevant neurophysiological
information and to operate at different simplification levels.
A test version of the scaffold model is running on the Brain

Simulation Platform at https://www.humanbrainproject.eu/en/
brain-simulation/brain-simulation-platform/.

RESULTS

The cerebellar network is unique for its precise geometrical
organization (Figure 1), which was reconstructed generating
a scaffold model capable of handling neuronal placement,
connectivity, and simulations. The neurons were represented as
single-point leaky integrate-and-fire (LIF) models (Maas, 1997),
tuned to match the input resistance and capacitance, basal
discharge, and input-output relationship of the specific cerebellar
neuron types. The choice of LIF neuronmodels was motivated by
the need to focus first onto the two main construction operations
of the scaffold, cell placement and connectivity, and on the role
of these latter in determining network properties.

The scaffold is demonstrated here through the exemplar
reconstruction and testing of a cerebellar volume of 0.077 mm3.
The cerebellar cortex volume had 400 × 400 µm2 base and
330µm height subdivided into different layers: molecular layer
(150µm), Purkinje cell layer (30µm), granular layer (150µm).
The DCN layer had 200 × 200µm2 base (1/4 of cortex) and
600µm height. As a whole, the model contained 96,734 cells. It
should be noted that these parameters were all user-defined and
may bemodified depending on the needs, as themodel is scalable.

Cell Placement
The Bounded Self-Avoiding Random Walk algorithm (see
section Materials and Methods) successfully placed the neurons
into all cerebellar regions with the only exception of PCs,
which were positioned using a specific algorithm designed to
respect their regular spatial organization (Figure 2A). Figure 2B
shows a row of almost equally distanced PCs connected
to incoming parallel fibers, faithfully reproducing the typical
PCs geometrical organization. These examples show that the
placement algorithms can be flexibly configured to account for
complex and variable rules of cellular positioning.

As an internal validation, the distribution of pair-wise
distances for each cell type was calculated (Figure 2C). For all cell
types (except PCs), pair-wise distances were distributed almost
normally and the minimum inter-soma distance equated twice
the soma radius. As expected, KDE for GrC, GoC, SC, and BC
pair-wise distances returned a single maximum (at 180.1, 191.0,
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FIGURE 5 | Neuronal discharge. Raster plot and PSTH of the different neuron populations of the cerebellar network model in response to a mossy fiber burst (50ms

at 150Hz on 2,932 gloms) superimposed on a 1Hz random background. The two simulations used the same cerebellar scaffold and neurons, which were translated

from pyNEST into pyNEURON. The basal activity of the different cell populations is visible before and after the stimulus. The Glom patterns at the input are imposed,

so they are identical for both simulations. The mean population firing rates for GrCs are similar between the two simulations, probably due to the very high number of

GrCs. Minor differences are detectable for the other neuron types.
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TABLE 4 | Firing rates.

Neuron type N.cells N. Excited (or

inhibited) cells (%)

Before

(300ms) [Hz]

During

(50ms) [Hz]

After

(300ms) [Hz]

Gloms 7,070 ENEST: 2,932 (41%) 1.0 ± 1.8 140.8 ± 4.2 0.9 ± 1.8

ENEURON: 2,932 (41%) 1.0 ± 1.8 140.8 ± 4.2 0.9 ± 1.8

GrCs 88,158 ENEST: 26,195 (29%) 2.0 ± 2.6 114.0 ± 32.2 1.8 ± 2.5

ENEURON: 25,240 (28%) 2.0 ± 2.6 114.8 ± 32.8 1.8 ± 2.5

GoCs 219 ENEST: 146 (66%) 22.7 ± 13.1 157.1 ± 37.2 23.5 ± 11.3

ENEURON: 153 (69%) 22.1 ± 12.4 154.2 ± 28.9 24.9 ± 12.0

SCs 603 ENEST: 445 (73%) 33.9 ± 15.7 126.2 ± 17.4 37.0 ± 14.3

ENEURON: 452 (74%) 34.2 ± 15.9 131.8 ± 19.6 36.9 ± 15.0

BCs 603 ENEST: 429 (71%) 30.1 ± 15.1 124.1 ± 18.4 33.6 ± 14.0

ENEURON: 447 (74%) 29.1 ± 15.3 123.3 ± 24.9 33.8 ± 14.4

PCs 69 ENEST: 45 (65%) 58.5 ± 8.5 255.5 ± 63.0 62.8 ± 8.3

ENEURON: 47 (68%) 60.0 ± 9.3 256.5 ± 63.8 63.0 ± 11.6

DCNCs 12 INEST: 12 (100%) 16.1 ± 1.2 0.0 ± 0.0 16.3 ± 0.9

INEURON: 12 (100%) 16.6 ± 0.0 0.0 ± 0.0 16.6 ± 0.0

For each neuronal population, the firing rates (mean ± sd) are reported before, during and after stimulation. Excited (inhibited) cells are defined as those increasing (decreasing) the

number of spikes during the stimulus (see Methods). Simulation results are shown for pyNEST (white rows) and for pyNEURON (gray rows). In the column “During stim,” the values

indicate the firing rates only averaged on the sub-group “Excited (Inhibited) cells.”

184.6, and 188.5µm, respectively), while for PCs three local
maxima occurred (at 48.6, 142.1, and 267.0µm) (for DCNC,
KDE analysis was meaningless, given the low number of cells).

Cell Connectivity
The connection rules adopted in this work were designed to
account for the rich and specific information available from
literature (Eccles et al., 1967; Palay and Chan-Palay, 1974; Korbo
et al., 1993), which accounts for convergence/divergence ratios,
number of synapses, and spatial distribution of axons and
dendrites (Figure 3). The connecting algorithm imposed these
geometrical constraints allowing to wire the different neuronal
types for a whole of 16 connection types. Five connection
types did not require other than these geometric constraints,
while pruning was needed in the other 11 cases (either for
convergence or divergence or both). The resulting connectome
was then compared to the experimental one for validation.
Figure 4 shows that the connection ratios of the scaffold were
indeed correctly scaling to the physiological ones. Some specific
cases are considered below.

Concerning Glom-GrC connectivity, experimental data
demonstrated that granule cell dendrites have a maximum length
of 40µm, with a mean value of ∼13µm (Solinas et al., 2010).
By imposing a convergence value of 4 (each GrC received one
Glom on each of its 4–5 dendrites), a mean dendrite length of
about ∼12µm was found, therefore matching experimental and
theoretical determinations (Hamori and Somogyi, 1983; Billings
et al., 2014).

Concerning connectivity between the aa and PC dendrites
(aa-PC), connections were possible only when the aa-segment
was very close to the PC dendritic plane. By analyzing the
placement of GrCs in the x-z plane and the vertical extension
of the aa, it is estimated that only ∼20% of GrCs developed
an aa that is sufficiently close to a PC dendrite tree to form a

synaptic contact (Bower and Woolston, 1983; Gundappa-Sulur
et al., 1999). This estimate was indeed closely matched by the
scaffold reconstruction.

Concerning connectivity of parallel fibers with receiving
neurons (pf-GoC, pf-SC, pf-BC, pf-PC synapses), the literature
is incomplete and shows variable estimates. This most likely
reflects difficulties in estimating exact numbers, since the pf
can be several millimeters long and they are often cut on the
parasagittal plane in histological preparations. In the scaffold
reconstruction, the maximum pf length (along z-direction) was
bounded to 400µm (Barbour, 1993; Huang et al., 2006) and pf
from GrCs beyond this length were not taken into account.

The statistical distribution of distances between connected
cells (Table 4) shows a good matching with anatomical values.
This validation of the connectome supports the appropriateness
of cell placement and connecting rules. Biological randomness in
the 3D placement with uniform occupancy of appropriate layers
ensures that the resulting connectivity (based on geometrical
proximity) has plausible biological values and variability for
statistical convergence/divergence ratios, and for distances
among connected neurons.

Neuronal Activations in the Cerebellar
Network Following Mossy
Fiber Stimulation
The aim of these simulations was to assess the emergence of
typical spatio-temporal patterns of cerebellar network activity as
a consequence of mossy fiber inputs. Simulations were carried
out both in pyNEST and pyNEURON. For simplicity, the
following data and figures are taken from pyNEST simulations,
except for a comparison of the two in Figure 5 and Table 4. As
expected, the two simulators yielded similar firing rates in each
cell population. The Glom patterns at the input were imposed,
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so they were identical for both simulation platforms, while very
small differences were detectable for the other neuron types.

Evoked activity simulating the effect of natural sensory
stimulation (Chadderton et al., 2004; Roggeri et al., 2008;
Ramakrishnan et al., 2016)was elicited over a noisy background
(see above) by a 150 Hz−50ms mossy fiber burst. The mossy
fiber activity spread over about 0.012 µm3 of the granular
layer involving 2,932 glomeruli out of the 7,070 placed in the
reconstructed volume. Glomeruli had mean firing rate of ∼1Hz
before the burst, 140Hz during the burst, and ∼1Hz after the
burst. The burst induced transient activity changes, specific for
each neuronal population, which reverted back to baseline after
the end of the stimulus (Figure 5). The sequence of neuronal
activations depended on synaptic delays that were set according
to physiological data (Eccles et al., 1967; Figure 6). The response
of the individual neuronal populations was as follows (Figures 5,
6, and Table 4):

• The GrCs discharged at 1.8Hz at rest and at 114Hz during
burst stimulation, consistent with in-vivo data showing that
GrCs had sparse activity characterized by low background
firing rates (partly due to the presence of tonic GABAergic
inhibition) and high-frequency bursts in response to evoked
sensory stimulation (Chadderton et al., 2004).

• GoCs discharged above 22Hz at rest and above 150Hz during
burst stimulation, consistent with in-vivo data (Heine et al.,
2010). The basal GoCs firing rate was raised by the noisy
background over the autorhythmic frequency and showed a
high variability among cells.

• Molecular layer interneurons, SCs and BCs (N = 603
for each cell type), discharged at ∼30Hz at rest and
above 120Hz during burst stimulation, consistent with
the observation of high-frequency activity during sensory
stimulation (Chu et al., 2012).

• PCs discharged at ∼58–60Hz at rest and at ∼255Hz during
burst stimulation consistent with in-vivo data (Heine et al.,
2010). Interestingly, PCs showed either bursts, or pauses, or
burst-pause responses as observed in vivo (Herzfeld et al.,
2015): out of 69 PCs, the burst was observed in 48 PCs and
the pause in 41 PCs. Of the PCs that showed a pause, in 17
PCs it occurred after a burst, while in the other 24 PCs it
happened alone.

• DCNCs discharged at ∼16Hz at rest and were completely
silenced during burst stimulation. This behavior was expected
from the convergent inhibition coming from PCs, supporting
the hypothesis that cortico-nuclear synapses act as simplified
inverters (Person and Raman, 2012).

Center-Surround Organization of Granular
Layer Responses
A relevant aspect of network activation that emerged in
electrophysiological and imaging experiments is the center-
surround organization (Mapelli and D’Angelo, 2007; Diwakar
et al., 2011; Gandolfi et al., 2014). In the scaffold, the neuronal
response of the granular layer to mossy fiber stimulation
showed a typical center-surround organization (Figure 6). This
reflected the excitatory/inhibitory ratio (see sectionMaterials and

Methods) with the center more excited than the surround due to
lateral inhibition provided by GoCs. The center-surround had a
diameter of about 50µm and GrCs inside the core discharged
up to 3–4 spikes organized in a short burst, reflecting previous
experimental estimates (Gandolfi et al., 2014). Therefore, the
scaffold correctly predicts the consequences of activity in bundles
of mossy fibers.

Recently the connectivity of GoCs and GrCs has been
extended by the demonstration of new synapses, in particular
those between the GrC ascending axon and GoCs (aa-GoC,
excitatory) (Cesana et al., 2013) and between GoCs (GoC-GoC,
inhibitory) (Hull and Regehr, 2012). The selective switch-off
of aa-GoC connections enhanced the center and reduced the
surround, the switch-off of GoC-GoC connections reduced the
center and increased the surround, while smaller effects followed
the switch-off of pf-GoC or mf-GoC synapses (Figure 9C).

The Impact of Molecular Layer
Interneurons on PC Activation
The molecular layer is critical to regulate PC activity in a way
that is still debated (e.g., see Rokni et al., 2007; Santamaria et al.,
2007). The first assumption is a differential orientation of SC cell
axons (mostly transversal or “on-beam”) vs. BC axons (mostly
sagittal or “off-beam”) (Eccles et al., 1967). Moreover, both aa and
pf are used to activate PCs, as reported in literature (Jaeger and
Bower, 1994; Canepari et al., 2001; Figure 8). Consistently, in the
scaffold model, PC responses were circumscribed into a central
spot overlaying the center/surround generated in the granular
layer with little diffusion along either transversal or sagittal axis.
On both axes, in turn, some PCs were clearly inhibited by the
molecular layer interneuron inhibitory network.

Then, the effect of disconnecting different network elements
was tested. Following the switch-off of both SC and BC
inhibition, the responsiveness of PCs increased, as expected from
SC and BC inhibitory action on PCs. As expected from anatomy,
when only BCs were present (i.e., selective switch-off of SCs),
excitation extended more effectively along the transverse axis,
while when only SCs were present (i.e., selective switch-off of
BCs) excitation extended more effectively along the sagittal axis.
However, in both cases there was a diffused (though slight)
increase of excitation, due to the reduced background inhibition
exerted by intrinsic SC and BC discharge. It should also be
noted that the activation of PCs in the central spot remained
poorly altered, suggesting that these PCs were already nearly
maximally activated in control. The selective switch-off of aa
synapses caused a diffuse reduction of PC activation, while the
selective switch-off of pf synapses had a much smaller effect.
Therefore, changes in molecular layer connectivity consistently
modified the PC discharge patterns both on-beam and off-beam
and extended to a distance that reflects the propagation of activity
through the pfs and the molecular layer interneuron network.

Synchronous Oscillations Caused by Noisy
Background Activity in Mossy Fibers
Recordings from the granular layer in vivo have revealed
low-frequency local field potential oscillations that occur
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FIGURE 6 | Cerebellar network response to a mossy fiber burst. (A) Spikegrams of all cerebellar neurons in the model. A burst in gloms causes a burst-to-burst

propagation in GrCs and PCs. GoCs, SCs, and BCs also generate bursts that, by being inhibitory, contribute to terminate the GrC, and PC bursts and to generate the

burst-pause PC response. The DCN cells show a pause during stimulation. (B) Raster plot of one cerebellar neuron for each population in the model. Note the spread

of the mf bursts inside the cerebellar cortical networks and the corresponding pause in the DCN. (C) Spike-time response plot showing the temporal sequence of

neuronal activation and inhibition. The arrows represent the connectivity (solid lines show excitatory connections, dashed lines inhibitory connections). The stars

represent the post-synaptic neuron response: white stars are excited neurons, black stars are inhibited neurons.

synchronously over distances of several hinders of micrometers
(Pellerin and Lamarre, 1997; Hartmann and Bower, 1998).
Similar properties were observed also in previous granular layer
models (Maex and De Schutter, 1998; Solinas et al., 2010;
Sudhakar et al., 2017). In the scaffold model, spontaneous circuit
activity clearly emerged due to background firing in the mossy
fibers, provided that the frequency of the background mossy
fiber discharge was increased from 1 to 5Hz and pfs-GoCs
connection weight was increased from 0.4 to 30.4, supporting
the concept that oscillations require a specific synaptic balance
to emerge (Maex and De Schutter, 1998; Solinas et al., 2010;
Sudhakar et al., 2017; Figure 9). In response to the input,
GrCs sparsely discharged at low frequencies (GrCs do not show
intrinsic spontaneous activity), while the intrinsic activity of all
the other neurons was modulated (GoC, PC, MLI, and DCNC
are autorhythmic) (see Ie values in Table 3). Interestingly, the
neurons of the granular layer (GrCs and GoCs) showed a
pattern of low-frequency oscillations (mean frequency of 1.8Hz)
that was evident across the whole network. The oscillation
frequency is the same in autocorrelograms of both GrCs
and GoCs, and in the cross-correlogram between Golgi and
granule cells. This ensemble behavior is probably due to the

inhibitory feedback from GoCs to GrCs in the following way:
(1) GrCs activity sums up in several GoCs, (2) GoCs, which are
synchronized through parallel fibers and reciprocal inhibitory
synapses, discharge almost synchronously, (3) a large population
of GrCs is phasically inhibited, (4) inhibition terminates and
GrCs recover responsiveness to the background mossy fiber
input, then restarting the cycle.

DISCUSSION

In this paper a new scaffold modeling strategy is presented,
that is used to simulate fundamental functional properties of
the cerebellar microcircuit. The cerebellar scaffold includes the
canonical neuron types (GrCs, GoCs, PCs, SCs, BCs, DCNCs),
each one with specific geometry of dendritic and axonal fields and
with specific convergence/divergence ratios for connectivity. The
neurons were purposefully simplified into single point models
in order to focus on network connectivity before involving
more complex neuronal geometries and properties. The circuit
functionality was then tested by applying background activity
and burst stimuli and evaluating the network responses. In
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FIGURE 7 | Center-surround organization of activity in the granular layer. (A) In response to a mossy fiber burst (40 gloms at 150Hz for 50ms), the granular layer

responds with a core (red area) of activity surrounded by inhibition (blue area). (B) PSTH of GrCs in the center-surround. The activity in the core is characterized by

robust spike bursts, while just sporadic spikes are generated in the surround. No activity changes are observed outside the center-surround structure. (C) The

histogram shows the changes in center-surround extension that occur following selective switch-off of synapses impinging on GoCs. Note the prominent role of

aa-GoC synapses and GoC-GoC synapses (bars are values normalized to control).

addition to faithfully reproduce a broad range of experimental
observations, the cerebellar scaffold shows the emergence of
complex spatiotemporal patterns of activity similar to those
observed in vivo and eventually predicts the critical role of local
connectome for network functionality.

The Scaffold Design
The scaffold includes two modules: cell placement and
connectivity. The first module placed neurons in their
corresponding layers according to density values derived
from literature. Cell placement exploited a bounded self-
avoiding random walk algorithm, except for PCs, which
required a placement rule accounting for their regular
disposition and quasi-planar non-intersecting dendritic trees.
The second module generated microcircuit connectivity
by defining the pre- and post-synaptic neurons among
those intersecting their dendritic and axonal fields and then
establishing the corresponding number of synapses through
specific connection probabilities. Geometrical constraints and
divergence/convergence ratios derived from literature played

a critical role to implement the microcircuit connectome.
The distributions of soma distances, both for cell positioning
and connectivity, were assessed and provided an internal
validation for the network construction processes. The cerebellar
scaffold was then implemented using LIF neuron models,
whose parameters were tuned to approximate the basal firing
and input-output relationships of cerebellar neurons. Finally,
functional simulations required the scaffold to be uploaded into
a neuro-simulator, either pyNEST or pyNEURON, that worked
equivalently well for this purpose.

The scaffold modeling strategy used for the cerebellum
microcircuit differs from that used for the cortical microcolumn
mostly because here the connectivity rules are based on
available statistical and geometrical information rather than
on single neuron morphologies and touch-detection (Markram
et al., 2015). This allows the scaffold to fully exploit the
experimental data available in the cerebellar literature despite
incomplete availability of detailedmorphological reconstructions
of cerebellar neurons. By considering that neuron models based
on detailed morphological reconstructions are still unavailable
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FIGURE 8 | Maps of PC activation and sensitivity to molecular layer connectivity. (A) The maps show the activity change of PCs in response to a mossy fiber burst (40

glom at 150Hz for 50ms). The pattern of activity is determined by various connection properties that are tested in turn. (all active) PC inhibition is achieved through a

differential orientation of SC axons (mostly transversal or “on-beam”) vs. BC axons (mostly sagittal or “off-beam”) and that PC excitation depends on both aa and pf

synapses with specific origin from GrCs. Alternative patterns are generated by (SC off) the specific switch-off of SC, (BC off) the specific switch-off

of BC, or (SC&BC off) the complete switch-off of both SC and BC, (aa off) the specific switch-off of aa synapses, (pf off) the specific switch-off of pf synapses. It should be

(Continued)

Frontiers in Neuroinformatics | www.frontiersin.org 14 May 2019 | Volume 13 | Article 37

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Casali et al. Cerebellar Scaffold Model

FIGURE 8 | noted that these changes in network connectivity modify the PC discharge patterns both on-beam and off-beam and extend to a distance that reflects

the propagation of activity through the molecular layer interneuron network. The circles indicate the location of the underlying active spots of activity in the granular

layer. The bottom plot represents the activity of GoCs (blue) and GrCs (red) before, during and after the stimulus burst. This activity occurs in a spot (enlarged in the

inset) corresponding to the center-surround shown in Figure 7. (B) The schematic diagrams show the orientation of fibers and connections in the network. (C) The

PC activity was averaged into 3 × 3 matrices in order to better appreciate where activity changes take place. Note the emergence of the central spot in several cases.

FIGURE 9 | Coherent low-frequency oscillations in granular layer neurons. Activity of GrCs (red) and GoCs (blue) during sustained 5Hz random mf input. (A) Raster

plots from exemplar GrCs and GoCs. Note that synchronous patterns are visible in the neuronal response (arrows). In this regimen, GoC activity is more intense than

GrC activity due to the autorhytmic discharge of GoC neurons. The neurons are not necessarily part of a center-surround and therefore not all activities appear

correlated. (B) Cumulative PSTH of the whole GrC and GoC populations of the model along a 5 s period. Note that the two PSTH show marked low-frequency

oscillations (average 1.8Hz) around their average level of activity. (C) Autocorrelograms of activity in the GrC and GoC populations and crosscorrelogram of the GrC

and GoC populations (in this example the inhibition among GoCs is switched off). Note the high level of correlation in all the three cases on the same main frequency

of 1.8Hz.

in most neuronal circuits, the strategy adopted here for
the cerebellum has a large potential for applicability in a
variety of different brain microcircuits. It should be noted
that our “intersection-connection” rule is formally similar to
the “proximity-connection” rule used for touch-detection in

Markram et al. (2015). Eventually, the touch detection strategy
could be implemented in the scaffold providing a construction
alternative, in which connectivity is directly constrained by
neuronal morphology. The advantage would be to specifically
connect synapses on specific positions of the dendritic tree,
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fully exploiting non-linear dendritic computations. Also the data
positioning rules could be changed, for example by importing cell
positions from the Allen Brain Atlas directly (available at https://
portal.bluebrain.epfl.ch/) or using network growing algorithms
(Setty et al., 2011; Nguyen et al., 2016).

Simulation and Validation of Cerebellar
Network Properties
Following background random inputs and punctuate sensory
stimulation, the scaffold model predicted a set of relevant
network response properties that matched experimental
observations. In the granular layer, the GrC and GoC
activity in response to random mossy fiber inputs showed
loose synchronicity, as observed in vivo (Pellerin and
Lamarre, 1997; Hartmann and Bower, 1998). The GrC and
GoC activity in response to bursts in mossy fiber bundles
revealed a center-surround organization, as reported in
vitro (Mapelli and D’Angelo, 2007; Diwakar et al., 2011;
Gandolfi et al., 2014), which was enhanced by aa synapses
(Cesana et al., 2013). At the level of molecular layer, the
spatial PC discharge patterns depended on the geometry
of SC and BC inhibition (Santamaria et al., 2007), and
PC burst-pause discharges were generated (Herzfeld et al.,
2015). The local PC response was enhanced by granule cell
aa, as anticipated by Bower and Woolston (1983), Walter
et al. (2009), and Cesana et al. (2013), supporting the
vertical organization of GrC-PC transmission (Rokni et al.,
2007).

Interestingly, despite the use of simplified LIF neuron
models, the observation of these activity patterns suggests
that structural constraints play a critical role in determining
local neuronal dynamics. In particular, connectivity allows
the emergence of center-surrounds in the granular layer
and spots of PC activity in the molecular layer. There
are several aspects that remain to be assessed and will
be easily incorporated into more advanced versions of the
cerebellar scaffold.

First of all, assessing the role of non-linear neuronal
properties, like intrinsic oscillations, resonance bursting
and rebounds, requires to incorporate into the scaffold
realistic ionic-channel based neuronal models. Along with
this, dendritic computation needs morphologically detailed
neuron models that are currently under construction and
testing. These include the PCs model (e.g., De Schutter
and Bower, 1994; Masoli et al., 2015; Masoli and D’Angelo,
2017), the GrC model (Masoli et al., 2017), the GoC model
(Solinas et al., 2007a,b; Kanichay and Silver, 2008), the SC
and BC model (currently under construction), the DCN
model (Steuber and Jaeger, 2013). Dynamic synapses (Tsodyks
and Markram, 1997; Nieus et al., 2006; Migliore et al., 2015)
will likewise be incorporated to introduce synaptic strength
modulation mechanisms.

Secondly, the scaffold could be used to evaluate the
trade-off between computational efficiency and precision.
Therefore, the present LIF single point neurons could be
substituted by others (extended generalized LIF, E-GLIF)

embedding non-linear firing properties (e.g., Brette and
Gerstner, 2005; Geminiani et al., 2018) and accounting for
synaptic dendritic location by modifying the transmission
weight depending on the distance of synapses from the
soma (Rössert et al., 2016) or based on experimental data
when available.

Thirdly, fully implementing cerebellar connectivity requires
the introduction of models of the inferior cerebellar olive
(IO) (Libster and Yarom, 2013; De Gruijl et al., 2014). This
will complete the DCN-PC-IO cerebellar circuit, allowing
the model to simulate oscillations in the olivo-cerebellar
circuit, their impact on PC dendritic calcium signaling
and computation, and eventually climbing fiber control
of plasticity at parallel fiber synapses (Coesmans et al.,
2004).

Finally, the addition of novel connections and cells,
like the PC to GrC inhibition (Guo et al., 2016) in the
anterior cerebellum, the unipolar-brush cell subcircuit
in the flocculo-nodular lobe (Mugnaini and Floris, 1994;
Subramaniyam et al., 2014), or the DCN to granular
layer connections (Gao et al., 2016) will allow to further
expand the simulation of cerebellar processing in different
cerebellar modules.

CONCLUSIONS

The scaffold model was able to reconstruct the complex
geometry and neuronal interactions of the cerebellar
microcircuit based on intersection-connection rules. Given
its architectural design, that puts in series interchangeable
programming modules, the scaffold could now be used
to plug-in different network configurations into neuronal
simulators like e.g., pyNEST and pyNEURON. Both the
cell placement algorithm, the neuron model types and the
connectivity rules could be substituted to assess different
construction strategies and adapted to available data to probe
specific functional hypotheses. For example, the connectivity
could be recalculated using realistic neuronal morphologies
and touch-detection algorithms (proximity-connection rule),
as in the cortical microcolumn model (Markram et al.,
2015). We envisage that this scaffold modeling strategy,
given its versatility, will also be able to host microcircuits
different from cerebellum, thus providing a new tool for
neurocomputational investigations. It should be noted that
the reconstruction procedure is python-based and can be
imported in many different simulation frameworks. For
example, translation of the scaffold model into PyNN would
facilitate neurorobotic and neuromorphic hardware applications
(Davison et al., 2008).
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