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While task-dependent responses of specific brain areas during cognitive tasks are
well established, much less is known about the changes occurring in resting state
networks (RSNs) in relation to continuous cognitive processing. In particular, the
functional involvement of cerebro-cerebellar loops connecting the posterior cerebellum
to associative cortices, remains unclear. In this study, 22 healthy volunteers underwent
a multi-session functional magnetic resonance imaging (fMRI) protocol composed of
four consecutive 8-min resting state fMRI (rs-fMRI) scans. After a first control scan,
participants listened to a narrated story for the entire duration of the second rs-fMRI
scan; two further rs-fMRI scans followed the end of story listening. The story plot
was purposely designed to stimulate specific cognitive processes that are known to
involve the cerebro-cerebellar loops. Almost all of the identified 15 RSNs showed
changes in functional connectivity (FC) during and for several minutes after the story.
The FC changes mainly occurred in the frontal and prefrontal cortices and in the
posterior cerebellum, especially in Crus I-II and lobule VI. The FC changes occurred
in cerebellar clusters belonging to different RSNs, including the cerebellar network
(CBLN), sensory networks (lateral visual network, LVN; medial visual network, MVN) and
cognitive networks (default mode network, DMN; executive control network, ECN; right
and left ventral attention networks, RVAN and LVAN; salience network, SN; language
network, LN; and working memory network, WMN). Interestingly, a k-means analysis
of FC changes revealed clustering of FCN, ECN, and WMN, which are all involved in
working memory functions, CBLN, DMN, and SN, which play a key-role in attention
switching, and RSNs involved in visual imagery. These results show that the cerebellum
is deeply entrained in well-structured network clusters, which reflect multiple aspects of
cognitive processing, during and beyond the conclusion of auditory stimulation.
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INTRODUCTION

The brain is known to operate through multiple loops forming
networks consisting of spatially distributed, but functionally
connected regions that continuously share information with each
other (van den Heuvel and Hulshoff Pol, 2010). Functional
connectivity (FC) can be defined as the temporal correlation
of neural activity patterns between anatomically separated brain
regions (Friston et al., 1993; Biswal et al., 1997; Friston, 2011).
Even at rest, the brain is organized in networks, known as resting
state networks (RSNs), in which distinct brain areas exhibit
consistent synchronization (Beckmann et al., 2005; Buzsaki,
2006; Sadaghiani et al., 2010; Boubela et al., 2013; Lee et al.,
2013; Chen and Glover, 2015). The organization and integration
of processing into RSNs can be effectively investigated using
independent component analysis (ICA) of T∗2-weighted fMRI
time series as proposed for resting state fMRI (rs-fMRI) (Fox
and Raichle, 2007). Traditionally, rs-fMRI is based on the
assumption of temporal stationarity, in which linear correlation
of BOLD signals has been used to assess FC across regions
computed over the whole duration of a single-session scan (Fox
and Raichle, 2007). However, there is growing evidence from
MRI and animal electrophysiology that RSNs are affected by
interfering physiological factors, like arousal and attention, or
by performing naturalistic tasks, like watching a movie (Hasson
et al., 2010; Kauppi et al., 2010), or listening to a narration
(Hasson et al., 2009), so that their stationarity can be lost over
time; in this situation, RSN changes can be used to investigate
brain dynamics (Deco et al., 2011; Menon, 2012; Elton and Gao,
2015; Hansen et al., 2015; Spadone et al., 2015; Yuste and Fairhall,
2015). Some studies have shown that brain state-dependent FC
changes may be related to a variety of different causes such as
mental tasks, sleep, and learning (Hutchison et al., 2013). Despite
this, how RSNs are recruited and operate during continuous
cognitive processing under naturalistic stimulation in humans
in vivo is still elusive and it is unclear whether and how long
for the RSNs engagement persists after the conclusion of sensory
stimulation (Hasson et al., 2009; Berns et al., 2013; Mackey et al.,
2013).

Among subcortical structures, special interest has recently
been raised by the cerebellum, since growing evidence indicates
that, in humans, it plays a relevant role in high-level cognitive
and behavioral processing (Schmahmann and Caplan, 2006; Ito,
2008; Buckner, 2013; D‘Angelo and Casali, 2013; Sokolov, 2018).
Neuronal recordings in monkeys have demonstrated that the
cerebellum does perform sophisticated internal computations
essential for motor learning through prediction (Brooks et al.,
2015). Moreover, the cerebellum has been shown to connect
tightly to associative cerebro-cortical areas and to take part in
networks involved in cognitive processing (Castellazzi et al., 2014;
Palesi et al., 2015, 2017; Pezoulas et al., 2017) including attention
switching, language, imagery and visuo-spatial processing,
decision making and reasoning (Ito, 2008; Stoodley, 2012) as well
as cognitive control (O’Connell and Basak, 2018). This complex
set of operations is expected to involve multiple sub-networks
and different cerebellar modules associated with various cortical
regions.

In this work, we have developed a framework to estimate
and classify FC changes of the RSNs during a multi-session
protocol, designed to identify how RSNs FC changes before,
during and after listening to a narrated story. The story was
enriched with elements of movement and mental manipulation,
error/novelty detection, working memory and planning to
enhance the engagement of working memory and executive
functions supported by the cerebro-cerebellar loops.

MATERIALS AND METHODS

Subjects
Magnetic resonance imaging acquisitions were performed on 22
healthy subjects (mean age 27.68 ± 3.53, 11 males, all Italians).
All subjects had normal hearing and high educational level (mean
years of education = 18.45 ± 1.89). The study was approved by
the ethics committee of the IRCCS Mondino Foundation and all
subjects provided written informed consent.

MRI Acquisitions
All subjects underwent MRI examination using a 3T Siemens
Skyra scanner (Siemens, Erlangen, Germany) with a 32-channel
head coil. For each subject, an fMRI scan consisted in acquiring
images using a gradient echo - echo planar imaging (GE-EPI)
sequence with TR/TE = 3010/20 ms, flip angle = 89◦, voxel
size = 2.5 mm isotropic, FOV = 224 mm2, 60 slices, 160 volumes,
total acquisition time 8.05 min. For anatomical reference a high-
resolution 3D T1-weighted (3DT1) volume was collected using a
MPRAGE sequence with TR/TE = 2300/2.95 ms, TI = 900 ms,
flip angle = 9◦, voxel size = 1 mm × 1 mm × 1.2 mm,
FOV = 270 mm, 144 sagittal slices, acquisition time 6.31 min.
The overall acquisition protocol involved repeating the fMRI
scan four times and the total acquisition time was approximately
40 min.

fMRI Experimental Design
The experiment was designed to study RSN changes in response
to an evolving complex cognitive stimulation, resembling the
ecological context of every-day life. This was achieved by
delivering a narrated story (in Italian). The full text of the
story is available as Supplementary Material in the original
Italian language and in its English translated version. In order
to investigate the intervention of the cerebellum in cognition,
the story was purposely written following a categorization
of functions based on extensive literature revisitation at the
physiological, psychological, and neurological level (D‘Angelo
and Casali, 2013). Elements that were embedded in the story
are movement and mental manipulation of objects in space,
error/novelty detection, working memory and mental planning of
the consequences of events (prediction). In order to place the
story in a context familiar to most listeners, and easy to engage
with, the story plot was set in a “school of magic,” which is
also the title. The story was recorded on an audio-CD by a
female voice. The audio-stimulus had a length of 8.05 min and
was presented to the subjects binaurally using a digital audio
system.
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FIGURE 1 | Schematic illustration of the fMRI study design. The acquisition protocol included four consecutive fMRI scans (labeled, respectively, pre, story, post1,
and post2). During the second scan (story) subjects were asked to listen to an 8.05 min-long narrated story. The MRI acquisition session had a total duration of
40 min. We imposed an interval of about 15 min between the end of the fMRI with the story (story) and the beginning of the last fMRI (post2) in order to have a
temporal window suitable to detect the evolution of the FC magnitude and spatial extent of each RSN.

The overall acquisition protocol consisted in four repetitions
of the rs-fMRI scan, labeled, respectively: pre, story, post1 and
post2. The protocol started with the acquisition of the first rs-
fMRI repetition (i.e., pre), which represented the baseline, i.e.,
the first control scan of the experiment. During the second rs-
fMRI repetition (i.e., story), the recording of “School of magic”
was played. A third rs-fMRI repetition (i.e., post1) was acquired
with no stimulus straight after the story scan to capture the initial
return to baseline. The post1 acquisition represented the second
control scan of the experiment. Since we hypothesized that
cognitive processing and working memory-related changes in FC
might continue for several minutes (Barnes et al., 2009; Hasson
et al., 2009; Gordon et al., 2014), we acquired a second post-
stimulus rs-fMRI repetition (i.e., post2) as far away as possible
in time from the story to verify the complete recovery of the
resting state baseline status. The post2 acquisition represented,
therefore, the third control scan of the study. In order to keep
the overall experiment time feasible and avoid dead periods
while the subjects were in the scanner, we performed a high
resolution 3DT1 acquisition in between post1 and post2. The time
between the end of story and the beginning of post2 was therefore
maximized to 14.36 min. The experimental design is summarized
in Figure 1, where timings between the beginning of each fMRI
acquisition and the following one are also indicated.

The participants remained inside the MRI scanner for the
entire duration of the multi-session acquisition protocol, which
was run without any break. The acquisition protocol was
explained to each participant rigorously before the start of the
MRI examination, asking them to pay attention to the story

narration, which they heard in the scanner for the first time.
Participants were also informed that they would be required to
fill in a verification questionnaire at the end of the experiment
in order to check their level of attention as well as their level
of comprehension of the story content. No vocal inputs were
delivered to the participants in the scanner after the starting of the
MRI acquisition to avoid any sort of listening inputs, other than
the naturalistic stimulus, that might interfere with the purpose of
the study.

fMRI Analysis
In this study, rs-fMRI images were treated with the ICA followed
by a dual regression technique to identify the RSNs and their
changes in relation to the naturalistic stimulation. To investigate
the networks’ trends of changes across the four scans of the
rs-fMRI protocol, we introduced a relative total change (rcT)
index, derived from specific dual regression maps; we then
performed a k-means clustering to group the networks depending
on their specific patterns of rcT changes. We used the k-means
results to speculate about the similarity of the RSNs’ responses
to the naturalistic task. The details of each analysis are reported
below.

Data Pre-processing
All fMRI analysis was performed with FSL (FMRIB Software
Library, version 5.0.91). Individual subject’s pre-processing
consisted in motion correction, brain extraction, spatial

1http://www.fmrib.ox.ac.uk/fsl/
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smoothing using a Gaussian kernel of full-width-at-half-
maximum (FWHM) of 5 mm, and high pass temporal filtering
equivalent to 120 s (0.008 Hz). Individual fMRI volumes
were registered to the corresponding structural 3DT1 scan
using FMRIB’s Linear Image Registration Tool (FLIRT) and
subsequently to standard space (MNI152) using FMRIB’s
Non-linear Image Registration Tool (FNIRT) with default
options.

For each subject, rs-fMRI images were analyzed using the
ICA first during pre-processing at single-subject level (single-
ICA) for denoizing, using the ICA-based X-noiseifier (FIX) tool
(Salimi-Khorshidi et al., 2014) as implemented in FSL. ICA was
then applied at group-level (group-ICA) on the pre-processed rs-
fMRI data using the Multivariate Exploratory Linear Optimized
Decomposition into Independent Components (MELODIC)
method in order to characterize the RSNs (Beckmann et al.,
2005).

Identification of RSNs
For each recruited subject, pre-processed fMRI images
underwent group-ICA analysis to characterize RSNs. Specifically,
pre-processed functional data, containing 160 time points
(volumes) for each subject, were temporally concatenated
across subjects to create a single 4-dimensional data set. The
dataset was decomposed into independent components (ICs),
with an automatic estimation of the number of components,
which resulted in spatial maps used subsequently for assessing
parameters’ time course over the four fMRI scans. Model order
was estimated using the Laplace approximation to the Bayesian
evidence for a probabilistic principal component model. Some
of the ICs were identified as noise while others as RSNs, based
on their frequency spectra and spatial patterns (Beckmann et al.,
2005; Smith et al., 2009). In other words, this processing is run
on the entire dataset (i.e., the total 4 fMRI acquisitions × 26
subjects = 104 fMRI scans) and decomposes data into spatial
maps that are the independent components (ICs) relative to the
total processed dataset, or the multi-subject ICA components.
This means that ICs are the same for each subject and represent
the maps within which inference between scans (pre, story,
post1, and post2) is then evaluated applying the dual regression
processing step (see the section “Dual Regression Analysis”).

Dual Regression Analysis
A non-parametric permutation test, referred to as “dual
regression” technique, was then applied to detect statistically
significant differences in the ICs, including the RSNs, among the 4
consecutive repetitions of the fMRI protocol. The dual regression
analysis was carried out on the total ICs using age, gender and
score of questionnaire as additional covariates (Filippini et al.,
2009). In detail, the spatial ICs were used in a linear model
fit against each individual fMRI data set (spatial regression),
to create matrices that described the temporal dynamics for
each component and subject’s session (i.e., pre, story, post1,
and post2 for each single subject) separately. Subsequently
these matrices were used in another linear model fit against
the associated subject’s session data set (temporal regression)
to estimate subject’s session-specific spatial correlation map.

Spatial maps of all subjects’ sessions were then collected into
single dimensional files for each original IC and tested voxel-
wise for group-comparison contrasts, where in this study group
means scan session; we also assessed the group mean effect
(ME) contrasts (labeled MEpre, MEstory, MEpost1 and MEpost2)
running non-parametric permutation tests (i.e., FSL randomize
algorithm) (Winkler et al., 2014) with 5,000 permutations. In
detail, the group-comparison contrasts were first used to identify
significant FC changes within the RSNs when looking at the story
scan vs. all the other scans (pre, post1, and post2) taken together.
This first comparisons (e.g., story scan > all other scans and
story scan < all other scans) allowed us to investigate whether
there were FC differences between the resting state signal in the
presence of the story stimulus and all conditions without the
stimulus. Direct comparisons of a single scan session vs. another
one (e.g., story > pre) were then assessed for a more detailed
analysis of the FC changes within the RSNs during different
stages of the experiment. The group ME contrasts were instead
calculated and fed into a clustering analysis (see the section
“Clustering of RSNs Changes” for full details).

For each tested contrast, the resulting statistical maps were
corrected for both family-wise error (FWE) and threshold-free
cluster enhancement (TFCE). The FWE-TFCE-corrected maps’
voxels that survived a statistical threshold of p ≤ 0.05 were
considered significant.

Clustering of RSNs Changes
For an objective assessment of the RSN changes across the four
scans of the fMRI protocol, we performed a clustering analysis
using indexes derived from the group ME maps we obtained from
the randomize step (see the section “Dual Regression Analysis”).

For each RSN and for each scan, we used the corresponding
ME map to evaluate its spatial extent (SpE, i.e., number of
significant non-zero voxels). We used the individual subject’s
mean FC maps to obtain values of FC magnitude for each voxel
and for each RSN, averaged across the group (i.e., mean FC
value of non-zero voxels per scan across subjects) over the areas
identified by the corresponding ME maps. For each network, we
calculated two parameters that we labeled “relative change in FC”
(rcFC) and “relative change in spatial extent” (rcSpE) by applying a
normalization of FC and SpE specific to each RSN. In detail, the
values of FC magnitude and SpE for each RSN and for each scan
were normalized, respectively, to the values of FC magnitude and
SpE measured in pre, as well as at their peak values, as described
in formulas (1) and (2):rcFC(j) =

(
meanFCj−meanFCpre

meanFCpre

)
meanFCpeak


RSN

(1)

rcSpE(j) =

(
SpEj−SpEpre

SpEpre

)
SpEpeak


RSN

(2)

where j represents the scans of interest for the evaluation of the rc
indices (i.e., pre, story, post1, or post2). We visually inspected the
overall RSNs behavioral changes by plotting rcFC and rcSpE for
each fMRI run. Values of rcFC and rcSpE calculated from different
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fMRI scans were also statistically compared using the repeated
measures ANOVA test with Bonferroni correction using SPSS
(version 23.0, Chicago, IL, United States).

To have an overall view of the dynamical changes for each RSN
between scans over time, we calculated a composite “relative total
change” parameter, rcT , as:[

rcT(j) = rcFC(j) · rcSpE(j)
]

RSN (3)

Finally, we run a k-means clustering analysis (Duda et al., 2000)
using as input argument rcT values for each RSN and each scan
of interest, i.e., story, post1 and post2. The k-means algorithm
was run initialized the cluster centroids applying the k-means++
method (Arthur and Vassilvitskii, 2007) and used Euclidean
distance as dissimilarity metrics to iteratively (300 repetitions)
assign inputs to the closest centroid (Duda et al., 2000). The
Silhouette score was used to automatically determine the optimal
number of clusters (k) in the data. Specifically, this method
computes the average silhouette of observations for different
values of k measures, with 2 ≤ k ≤ 10, determining at each run
how well each object laid within its cluster. The optimal number
of clusters k is the one that maximizes the average silhouette
over the range of possible values for k (Kaufman and Rousseeuw,
1990).

The clustering analysis was carried out using the Orange
software tool (version 3.9).

RESULTS

In this study, 22 healthy subjects underwent rs-fMRI, during
which they listened to a narrated story. At the end of the
recording, the subjects were interrogated about the story content
demonstrating their attentive engagement.

RSN Identification
The results of ICA processing on all fMRI scans resulted in
57 independent components, 15 of which were recognized as
plausible networks based on their frequency spectra and spatial
pattern (Smith et al., 2009; Castellazzi et al., 2014). The remaining
42 components, reflected artifacts like movement, physiological
noise or cerebro-spinal fluid (CSF) partial volume effects.

The resulting 15 RSNs were (Figure 2): sensory motor
network (SMN), lateral visual network (LVN), medial visual
network (MVN), auditory network (AN), default mode network
(DMN), executive control network (ECN), frontal cortex network
(FCN), right (R) and left (L) ventral attention networks (VAN),
task positive network (TPN), precuneus network (PN), salience
network (SN), language network (LN), working memory network
(WMN), and the cerebellar network (CBLN).

SMN, LVN, MVN, and AN are directly implicated in sensory
processing, while DMN, FCN, ECN, VAN (RVAN and LVAN),
TPN, PN, SN, LN, and WMN are associated with higher cognitive
functions (Papanicolaou, 2017). As such, we will refer to this
latter group of RSNs as “cognitive” RSNs. The CBLN is usually
considered a sensorimotor network, although recent studies
highlight its involvement in cognitive circuitries too (Stoodley,
2012).

Furthermore, with the exception of CBLN, which involved
almost the entire cerebellar cortex, 9 out of the 15 identified RSNs
included clusters in the cerebellum (Figure 2). Hence cerebellar
nodes were present in the majority of the sensory processing
networks (LVN and MVN) and of the cognitive ones (DMN,
ECN, RVAN, LVAN, SN, LN, and WMN).

Figure 3 shows the time course signal for each RSN as output
by ICA.

Changes in RSNs During Naturalistic
Stimulation
Group-Comparisons: FC Changes in RSNs
For each RNS, dual regression analysis was firsts used to reveal
the presence of significant FC differences between the story scan
versus all the remaining scans (pre, post1, and post2) considered
altogether as a single (“all”) group (i.e., story < all, story > all).
This comparison yielded the following results:

- story < all: no significant changes were observed when
looking for reduced FC areas in story versus the remaining
scans of the fMRI protocol (i.e., all group).

- story > all: significant areas (p < 0.05, FWE-TFCE-
corrected) of increased FC in story compared to the other
scans altogether were found in nine RSNs: MVN, AN,
DMN, RVAN, LVAN, TPN, SN, LN, and CBLN (Figure 4).
Large clusters (>50 voxels) of increased FC were located
in the precuneus (involving the posterior DMN and MVN)
and in the middle and superior frontal gyrus (LVAN,
SN, TPN and the anterior part of DMN). Large clusters
(30 < voxels < 50) of increased FC were found in
lobule VI of the posterior cerebellum (CBLN, LVAN, and
RVAN), culmen and lobule V of the anterior cerebellum
(CBLN), posterior cingulum (LVAN, SN), thalamus (LN)
and superior and middle temporal gyrus (LVAN, TPN,
RVAN, and AN).

Given the significant changes observed when considering
story > all, three further comparisons were tested in order
to detect significant areas (p < 0.05, FWE-TFCE-corrected) of
increased FC in story compared to either pre (i.e., story > pre),
post1 (i.e., story > post1) or post2 (i.e., story > post2) scans. The
following results were found (see also Figure 5):

- story > pre: significant areas of increased FC in story
compared to the pre scan were found in six networks: DMN,
RVAN, LVAN, TPN, SN, and CBLN. In detail, large clusters
(>70 voxels) of increased FC were found in the cingulate
gyrus [Brodmann area (BA)23 and BA3], involving LVAN
and DMN, in the superior and middle frontal gyri (BA9-10,
BA46) involving LVAN, SN, and RVAN and in the middle
temporal gyrus (BA39) involving SN and RVAN. Smaller
clusters (20 < voxels < 50) of increased FC were detected
in the precentral gyrus (BA4) of the anterior DMN, in
the parahippocampal gyrus involving SN, in the inferior
parietal cortex (BA40) of LVAN and TPN, and in the
cerebellar Crus II of the CBLN and LVAN networks.

- story > post1: compared to post1, in story significant areas
of increased FC were found in four networks: LVN, DMN,
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FIGURE 2 | Illustration of the 15 RSNs identified in this study. From top left: sensory motor network (SMN), lateral visual network (LVN), medial visual network (MVN),
auditory network (AN), default mode network (DMN), executive control network (ECN), frontal cortex network (FCN), right (R) and left (L) ventral attention networks
(VAN), task positive network (TPN), precuneus network (PN), salience network (SN), language network (LN), working memory network (WMN) and the cerebellar
network (CBLN). Each RSN is presented as a blue mask on a sagittal, coronal and axial view. For each RSN, the last column of each trio of views show the
cerebellar areas (in red-yellow scale) of the network plotted on a flatmap of the cerebellar cortex. With the exception of CBLN which involved the almost the entire
cerebellum, nine RSNs showed at least one cerebellar node.
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FIGURE 3 | Fluctuations of the ICA time courses associated to the 15 identified RSNs during the entire experiment. The time interval during which the naturalistic
stimulus has been delivered (i.e., during story scan) is highlighted with a gray panel in the plot. Note that switching brain activity from a resting state (i.e., brain
condition during the pre scan) into an active state (condition during the story scan) and then back again to resting state (post1 scan condition), over a time scale of
several minutes, is associated to a marked change in the amplitude of the RSNs’ time course signals.

LVAN, and SN. A large cluster (>50 voxels) of increased
FC was centered in the lingual gyrus involving SN. Smaller
clusters (20 < voxels < 50) were found in the middle frontal
gyrus (BA9-10) involving DMN and SN, in the anterior
cingulate gyrus of DMN, in the cuneus (BA19) involving SN
and LVN, in the superior temporal gyrus (BA41-42) of SN
and in the cerebellar areas of Crus I and lobule VI involving
DMN and LVAN.

- story > post2: significant clusters of increased FC in
story compared to the post2 scan were found in five
networks: LVN, MVN, DMN, TPN, and SN. A large cluster
(>1,000 voxels) of increased FC was located in the occipital
lobe, mainly involving LVN and MVN and extended
to the superior parietal lobule, cuneus and precuneus
involving areas of DMN, TPN, and SN. Smaller clusters
(50 < voxels < 150) were found in the middle (BA9-10)
and inferior (BA45-46) frontal gyri involving TPN and
DMN. Furthermore, a small cluster (50 < voxels < 100) of
increased FC was also detected in the cerebellar Crus I and
lobule VI involving LVN.

Clustering of RSNs According to Their
Dynamic Changes
In order to identify possible RSN clusters, a k-means analysis
was performed. The Silhouette index resulted maximum for
k = 3, which indicates the optimal number of clusters to be used
for k-means (Figures 6A,B). When the k-means algorithm was
instructed to group data into three clusters (k = 3), the RSNs
turned out to be sorted as follows. The first cluster (C1) included
eight networks: LVN, MVN, SMN, AN, RVAN, TPN, PN, and
LN. The second cluster (C2) included the four RSNs: DMN, SN,
LVAN, and CBLN. The third cluster (C3) included the remaining

three networks: ECN, FCN, and WMN (Figure 7A). These
three clusters were functionally related to sensory processing,
cognitive processing and working memory (see “Discussion”
section below).

In order to quantitatively inspect the kinetics of FC alterations
typical of the three clusters identified by k-means analysis, the
mean rcT signal was computed by averaging the rcT values across
scans in each cluster (Figure 7B). In C1, the mean rcT trend
peaked in story and remained almost at the same level even in
post1 before recovering toward the initial value (as in pre) in
post2. In C2, the mean rcT trend peaked in post1 and partially
recovered its initial value in post2. We called the C2 trend as
“long-lasting” pattern of changes. In C3, the mean rcT trend
reached the maximal alteration in story and recovered rapidly
already during post1, defining therefore what was called a “short-
lasting” pattern of changes.

DISCUSSION

This paper shows that the cerebellum is deeply entrained in
well-structured RSN clusters, which reflect multiple aspects
of cognitive processing during and beyond the conclusion
of auditory stimulation. While it is well known that RSNs
(Beckmann et al., 2005; Buzsaki, 2006; Sadaghiani et al., 2010;
Sporns, 2013) can change their FC in some physiological and
pathological conditions (Hasson et al., 2010; Kauppi et al., 2010),
this paper further demonstrates that appropriate paradigms can
capture RSN changes occurring when brain activity switches from
the actual resting state to a continuous cognitive processing (two
states that we will call quiescent and engaged) during a naturalistic
stimulation, i.e., while listening to a narrated story.
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FIGURE 4 | Global FC changes within the RSNs in story > all. On top (A): in red, brain areas showing significantly increased FC (p ≤ 0.05, FWE-TFCE-corrected)
within the RSNs when comparing the story scan to the remaining scans (pre, post1, and post2) considered altogether as a unique (“all”), i.e., story > all. The red bar
plot on the bottom (B) shows, for story > all, the ranking of the RSNs according to the percentage of their alteration calculated as the per cent ratio between the
number of altered voxels in the specific RSN (Ntstat ) and the number of voxels of the RSN mask (NRNS) as it output from ICA.

In this study, 15 RSNs were identified (Figure 2), comprising:
SMN, LVN, MVN, AN, which are directly implicated in sensory
processing; DMN, FCN, ECN, RVAN, LVAN, TPN, PN, SN,
LN, WMN, which are associated with higher cognitive functions
(Papanicolaou, 2017); and CBLN, which is usually considered
a sensorimotor network, but has recently been correlated to
cognitive processing too (Stoodley, 2012). In addition to CBLN,
9 out of the 15 RSNs showed clusters in the cerebellum,
including both sensory networks (LVN and MVN) and cognitive
networks (DMN, ECN, RVAN, LVAN, SN, LN, and WMN).
Interestingly, in addition to frontal and occipital cortex, the
posterior cerebellum showed amongst the most marked FC changes

inside these networks. This observation supports the role of the
cerebellum in processing movement and mental manipulation,
error/novelty detection, working memory and planning through
extended cerebro-cerebellar loops (Palesi et al., 2017).

The switching of brain state from quiescent to engaged and
then back to quiescent over a time scale of several minutes, was
associated with a marked change in RSNs activity (Figures 3,
7B). Local FC was changed during the story in all the RSNs,
consistent with the knowledge that attentive brain activity is
associated with BOLD signal changes (Buzsaki, 2006; Huettel
et al., 2009; Hasson et al., 2010; Deco et al., 2011; Golkowski
et al., 2017). Consistently, several brain areas showed significantly
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FIGURE 5 | Global FC changes within the RSNs in story > pre, story > post1 and story > post2. The picture show in green the brain areas significantly increased in
story > pre (A), story > post1 (B), and story > post2 (C). Below each 3D brain pictures are reported the bar plot which show, for each contrast (A–C) the ranking of
the RSNs according to the percentage of their alteration calculated as described in Figure 3 legend.

higher FC during the story than before or after it. The visual
networks (LVN and MVN) and the cognitive networks (TPN,
LVAN, SN, and DMN) were those presenting the largest areas
of increased FC (Figures 4, 5). This is not surprising given that
MVN (which involves the primary visual cortex, V1), and DMN
are involved in mental imagery (Zvyagintsev et al., 2013; Pearson
et al., 2015; Zhang et al., 2018), while DMN and SN are known
to play a key role in attention switching (Seeley et al., 2007;
Menon, 2011). There are only far and few articles considering
changes during naturalistic stimuli. Some papers reported an
FC reduction during naturalistic stimulation (Fransson and
Marrelec, 2008; Hasson et al., 2009; Arbabshirani et al., 2013),
but a direct comparison is difficult since they used acquisition
and analysis protocols very different from ours (e.g., seed-
based approaches and connectomics). Other studies comparing
FC at rest versus speech listening report indeed strengthened
connectivity among the language related brain regions during
the naturalistic stimulation (Hampson et al., 2002). Moreover,
Shirer et al. (2012), using whole brain connectivity, reports
increased FC during memory and subtraction tasks among task-
related regions compared to rest condition. A strengthening of
connectivity may indeed subtend the requirement for high-level
functional integration among distant brain areas during cognitive
processing.

This study shows a strong cerebellar involvement in
cognitive processing of a narrated story as demonstrated by the
characteristic localization of FC changes (Figure 8). None of
these areas are localized in the anterior cerebellum, which is
related to motor control. The cerebellar changes are all localized
in the posterior lateral cerebellum, primarily involving Crus-
I, Crus-II, and lobule VI, that have previously been related to
cognitive processing (Stoodley, 2012). Looking at Figure 2 it
is evident that, these cerebellar areas are part not only of the
CBLN, but they are also nodes shared with high-order cognitive

networks, such as those processing working memory, attention,
internal versus external state switching and language (WMN,
VANs, DMN, SN, LN). Specifically, activation in lobule VI could
be related to mental rotation or spatial transformations of objects,
as observed during fMRI tasks (Vingerhoets et al., 2002; Zacks
et al., 2002; Weiss et al., 2009; Stoodley et al., 2010). Activation in
Lobule VI and Crus-I could be related to language processing, as
demonstrated during reading and lexical decision making tasks
(Booth et al., 2007; Carreiras et al., 2007), also in connection
with basal ganglia (Booth et al., 2007), and during emotional
processing elicited by actions observed in others (Singer et al.,
2004; Schulte-Rüther et al., 2007).

The dynamic cognitive processing required for elaborating the
story is thought to involve multiple operations (Eysenck, 2012)
that can be summarized as follows. Semantic content is analyzed
to extract the information required to generate, in association
with previous memory, an internal representation of objects
and scenes (visual mental imagery). This representation has to
account for relative movement and involves mental manipulation
(spatial transformations and rotation) of the objects in time and
space. Working memory is required to bind temporally distant
elements, while error/novelty-detection allows the identification
of violations of expectation elaborated on the basis of the ongoing
information flux. The occurrence of unexpected elements (either
“wrong” or novel) determines attention switching and stimulates
planning of new internal schemes. At the same time, some
learning processes are expected to take place in order to
memorize the story and follow its content. How are our results
fitting with this overall processing scheme? The network changes
that we observed in our study automatically identified, indeed,
three clusters of RSNs that we could speculate are associated
with three main mental functions: mental imagery, attention
switching and working memory (C1, C2, C3 in Figure 7A).
Mental imagery can be associated to the cluster (C1) that includes
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FIGURE 6 | Details of the Silhouette scoring. (A) Silhouette plot offering a graphical representation of consistency within the three clusters (C1 in blue, C2 in green
and C3 in magenta) identified by k-means with k = 3. The Silhouette coefficient values, reported on each bar of the plot, represent a measure of how similar each
data instance (i.e., each RSN) is to its own cluster in comparison to other clusters. Specifically, a silhouette coefficient close to 1 indicates that the RSN is close to
the center of the cluster, while RNSs with silhouette coefficients close to 0 are on the border between two neighboring clusters. The average value of the Silhouette
coefficients reported on the bars is 0.652 and represents the final Silhouette score for k = 3. (B) Plot showing the average Silhouette scores for different values of k
(i.e., different number of k clusters), with 2 ≤ k ≤ 10. Note that, for our data, the maximum Silhouette score (0.652), which corresponds to the optimal number of k
clusters to be used for the analysis, is obtained for k = 3 (Silhouette score = 0.652).
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FIGURE 7 | Results of the k-means clustering results analysis for k = 3. (A) 3D scatter plot showing the position of the elements of each identified cluster (C1, C2,
and C3). C1 (blue) contains eight RSNs: LVN, MVN, SMN, AN, RVAN, TPN, PN, and LN. C2 (green) contains four RSNs: DMN, SN, CBLN, and LVAN. The third
cluster, C3 (magenta) groups three RSNs: WMN, FCN, and ECN. The axes of the 3D plot represent the three dimensions of the k-means input data: rcTstory , rcTpost1,

rcTpost2. (B) Plot of the behavioral trends associated to the three clusters. Each trend has been obtained by averaging the rcT values across scans of the RNSs
belonging to the specific cluster. For each trend, the relative standard error has also been reported. C2 cluster has been associated to a “long-lasting” pattern of
changes since the mean rcT trend peaks in post1 after the listening task which occurs during story. On the contrary, C3 has been associated to a “short lasting” rcT

trend which peaks in story and recovers rapidly during post1, while C1 presents a mixed-trend between those of C2 and C3.

the visual networks MVN and LVN. Both these networks are
mainly located in the occipital lobe and include the primary
visual cortex (V1) that has been shown to be involved in visual
mental imagery (Knauff et al., 2000; Pearson et al., 2015). The C2
cluster including DMN, SN, CBLN, and LVAN can be associated
to attention switching, as this action is known to involve SN and
DMN (Menon, 2011), as well as to the error/novelty detection
task for which the cerebellum, entirely included in CBLN, has
been proposed to play a key role (Anderson et al., 2012; Picerni
et al., 2013). Finally, FCN, ECN, and WMN, which grouped in
cluster C3, can be associated to working memory involvement
in the story listening. Indeed, these networks involve primarily
the frontal and prefrontal cortices including BA9-10 and BA44-47
areas which are known to be active areas during working memory
tasks (Ranganath et al., 2003). Thus, the three main functions that
are supposed to involve the cerebellum along with corresponding

cerebro-cortical areas during cognitive processing (D‘Angelo and
Casali, 2013) are identified in the three RSN clusters.

It is interesting to note that cluster C3, which includes all
the RNSs primarily supporting working memory (WMN and
FCN) and executive functioning (ECN), showed a short-lasting
change overall (Figure 7B). This finding may be interpreted
as a further indication that these three RSNs may be actively
engaged in the sensorial perception of the story as well as in
the cognitive processing of its content through an immediate
increase of attentional processing. Conversely, cluster C2, which
includes the attentive network LVAN, CBLN as well as DMN
and SN, and is involved in the external-internal switching loop
of attention, showed a long-lasting RSN change (Figure 7B). We
speculate that this long-lasting change supports an emotional and
attentional involvement related to the story content that persists
after the naturalistic stimulation. Although some indication that
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FIGURE 8 | Bar plots showing for each discussed contrast: (B) story > all, (C) story > pre, (D) story > post1, and (E) story > post2, the localization of FC changes
within the 28 areas of the cerebellum identified with the SUIT atlas (A) (Diedrichsen et al., 2009). For each contrast, each bar height corresponds to the percentage
of FC alteration observed in the specific cerebellar area (i.e., number of altered voxels divided for the number of voxels of the area mask in the SUIT atlas). Note that
for each contrast, the most altered cerebellar areas are those located in the posterior cerebellum.

this might happen a few seconds after the stimulus was reported
in Hasson et al. (2009), our results indicate that this persistence
of RSNs FC alterations can last for up to 15 min and involve large
scale networks including the cerebellum.

Considering the specific cerebellar areas, visual imagery
probably involved lobule VI and Crus-I in MVN as well as in

LVN, providing the basis for spatial transformations and mental
rotation of objects as well as movement perception and planning
(Cattaneo et al., 2014; Ferrari et al., 2018). Language processing in
LN was associated to FC change in lobule VI, Crus-I and Crus-II.
While the role of cerebellum in visual and language processing
is rather well established, somehow more surprising were the
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remarkable changes occurring in the attentive networks LVAN
and RVAN involving lobule VI, Crus-I and Crus-II, implying
a fundamental role of these cerebellar areas in attention. These
findings allow us to speculate that the cerebellum was actively
taking part to attention switching in relation to violations of
expectations emerging from visual and semantic representations
of the story content, as much as reported for sensorimotor control
(Brooks et al., 2015). The active role of cerebellum in switching
from the internal to external reference framework during the
story can be supported when looking at clustering results of
the network behaviors where the CBLN is grouped with DMN
and SN, known to play a key role in performing this operation
(Menon, 2012).

Methodological Considerations
Since in this study data were acquired using a sequence with
relatively long TR (>2 s), the analysis was limited to FC below
0.1 Hz (Damoiseaux et al., 2006). Recent studies have shown
that spontaneous BOLD activity may also persist in higher
frequency bands (up to 0.8 Hz) (Boubela et al., 2013; Chen
and Glover, 2015). It would be interesting to extend our study
acquiring rs-fMRI with a multi-band EPI sequence, which would
enable the investigation of changes of spontaneous BOLD activity
above 0.1 Hz. This would also allow to adopt different analysis
approaches, such as sliding window (SW) analysis (Shakil et al.,
2016), inter-subject correlation (ISC) analysis (Hasson et al.,
2010) and dynamic time warping (DTW) analysis (Meszlényi
et al., 2017), that might reveal further time-varying aspects of
RSN FC dynamics.

In this study, the naturalistic stimulation was represented by a
story enriched with elements that are known to engage working
memory and executive functions supported by the cerebro-
cerebellar circuits. Here, we aimed to explore overall changes
caused by this naturalistic stimulus through the analyses of the
RSNs. The study of the contribution of each single element of the
story to the FC changes was beyond the purposes of our work
as would require a different acquisition strategy for example to
allow a dynamical FC analysis. Future studies may be designed to
assess individual elements contributions to RSNs FC changes or
to assess RSNs FC alterations using different naturalistic stimuli,
e.g., visual scenes or less engaging story contents.

CONCLUSION

The RSNs FC changes detected during continuous cognitive
processing, which involved working memory along with
attention switching and object mental manipulation, deeply
involved the posterior cerebellum. Beyond demonstrating the
existence of structural connections between the cerebellum
and several cortical structures, this can be considered as clear
evidence of the functional engagement of the cerebellum during
cognitive processing. The specific role of cerebellum within these
networks can be further analyzed considering brain theories that
place the cerebro-cerebellar circuits at the core of processes of
error detection and sensory prediction (D‘Angelo and Casali,
2013; Ito, 2013). Similarly, one should construct theories to

understand how activity in these circuits is perpetuated beyond
the story listening potentially to promote interpretation and
memorization. Future studies could optimize recovery timings
further in the experimental protocol in order to analyze these
novel concepts in greater detail. Given the emerging involvement
of the cerebellum in several neurological and neuropsychiatric
disorders, one could envisage the use of this simple protocol to
assess mechanisms of cognitive alterations in pathologies such as
Alzheimer’s disease, Multiple Sclerosis and autism, just to name a
few (Castellazzi et al., 2014; d’Ambrosio et al., 2017; Olivito et al.,
2018).
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