
  

Abstract—Hyperspectral images are used in different 
applications in Earth and space science, and many of these 
applications exhibit real- or near real-time constrains. A problem 
when analyzing hyperspectral images is that their spatial 
resolution is generally not enough to separate different spectrally 
pure constituents (endmembers); as a result, several of them can 
be found in the same pixel. Spectral unmixing is an important 
technique for hyperspectral data exploitation, aimed at finding 
the spectral signatures of the endmembers and their associated 
abundance fractions. The development of techniques able to 
provide unmixing results in real-time is a long desired goal in the 
hyperspectral imaging community. In this paper we describe a 
real-time hyperspectral unmixing chain based on three main 
steps: 1) estimation of the number of endmembers using the 
hyperspectral subspace identification with minimum error 
(HySime), 2) estimation of the spectral signatures of the 
endmembers using the vertex component analysis (VCA), and 3)  
unconstrained abundance estimation. We have developed new 
parallel implementations of the aforementioned algorithms and 
assembled them in a fully operative real-time unmixing chain 
using graphics processing units (GPUs), exploiting NVIDIA's 
compute unified device architecture (CUDA) and its basic linear 
algebra subroutines library (CuBLAS), as well as OpenMP and 
BLAS for multi-core parallelization. As a result, our real-time 
chain exploits both CPU (multi-core) and GPU paradigms in the 
optimization. Our experiments reveal that this hybrid GPU-CPU 
parallel implementation fully meets real-time constraints in 
hyperspectral imaging applications.   
 

Index Terms—Hyperspectral imaging, spectral unmixing, 
graphics processing units (GPUs), hyperspectral signal subspace 
identification with minimum error (HySime), vertex component 
analysis (VCA), abundance estimation. 

I. INTRODUCTION 
yperspectral sensors are characterized by their high 
spectral resolution and for their capacity to collect 

massive data volumes. For instance, a typical "data cube", 
collected by the well-known NASA Jet Propulsion 
Laboratory's Airborne Visible Infrared Imaging Spectrometer 
(AVIRIS) [1], has a size of 614 lines with 512 samples and 
224 spectral bands, with spectral resolution of 10 nm. This 
amounts to approximately 140 MB of data per cube. AVIRIS 
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scanning rate is 12 Hz, but several instruments under 
development such as the Environmental Mapping and 
Analysis Program (EnMAP) [2] or Hyperion [3] are able to 
collect data at higher rates, such as 230 Hz for EnMAP and 
220 Hz for Hyperion. With those scanning rates, a standard 
AVIRIS hyperspectral data cube should be processed in about 
5 seconds in order to meet real-time processing performance. 

An important aspect in hyperspectral image processing is 
that the pixel resolution is generally not fine enough to 
separate different pure constituent materials (called 
endmembers in hyperspectral jargon [4]). As a result, there is a 
need to develop real-time implementations of spectral 
unmixing techniques. Generally, two mixture models have 
been used for hyperspectral image analysis: linear [5] and 
nonlinear [6]. The first one is the most widely used, since it is 
simple to implement and unsupervised. In this model, each 
mixed pixel is interepreted as a linear combination of the 
endmember spectral signatures weighted by the correspondent 
percentage of pure material present in the pixel, i.e. the so 
called abundance fraction. Each pixel can be represented by a 
N-dimensional spectral vector, where N is the number of the 
acquired bands. At the spatial coordinates ( , )i j , the pixel 
vector can be represented as [ (1), (2),..., ( )] L

ij ij ij ijs s s s L= ∈ ℜ , 

where ( )ijs k  is the spectral response of sensor channels 

1, 2,...,k L= . Under these assumptions, the pixel vector at 
coordinates ( , )i j  is given by:  

                             
1

p
k

ij ij ij k ij ij
k

s Ma n m a n
=

= + = +∑  ,                   (1) 

where 
1 1[ , ,..., ]pM m m m=  is a so-called mixing matrix, which 

contains the spectral signature of p endmembers, 
1 2[ , ,..., ]p T

ij ij ij ija a a a= is the abundance vector made up of the 

abundance fractions of the p endmembers, and 
ijn is an 

additive noise vector. The unmixing process consists of 
estimating the mixing matrix and the abundance fractions. For 
this operation, it is necessary to estimate first the number of 
endmembers in the data cube, which is a crucial task for 
correct data unmixing. Typically, the number of bands L is 
much greater than the number of endmembers p, and 
hyperspectral vectors lie in a lower-dimensional subspace [5]. 

In order to estimate p, many different approaches have been 
proposed in the literature, including projection methods for 
seeking the subspace through minimizing a cost function [7]; 
topological methods for finding the manifold where data set 
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lives [8]; and projection-based techniques which analyze the 
existing correlation between adjacent bands [9]. After the 
estimation of p, the endmember identification step can be 
performed. It is possible to distinguish between two main 
categories of endmember identification algorithms: with and 
without the pure pixel assumption [5]. Pure pixel-based 
algorithms are more widely used than the others, mainly 
because they have lower computational cost. Finally, for 
abundance estimation constrained, partially constrained and 
unconstrained algorithms can be used [4].  

Performing the unmixing chain under real-time constraints 
is a highly desired goal in many applications, such as 
biological threat detection, monitoring of chemical 
contamination, wildfire tracking and so on. In recent years, 
some unmixing chain have been implemented using high 
performance computing architectures such as graphics 
processing units (GPUs) and multi-core processors [11, 12]. 
For instance, in [13] an unmixing chain based on the popular 
virtual dimensionality (VD) algorithm [14] for estimating the 
number of endmembers, orthogonal subspace projection with 
Gram-Schmidt orthogonalization (OSP-GS) [15] for 
estimating the endmember signatures, and unconstrained least 
squares (UCLS) [16] for abundance fraction estimation. 
However, it must be noted that more precise and reliable 
algorithms for hyperspectral image processing have been 
developed in recent years, such as hyperspectral subspace 
identification with minimum error (HySime) [10] for 
estimating the number of endmembers, or vertex component 
analysis (VCA) for estimating endmember signatures [17]. 
The HySime and VCA algorithms have been implemented in 
parallel [18, 19]. However, it is still possible to optimize those 
implementations and build a full spectral unmixing chain in 
real-time. In this paper, we develop a full spectral unmixing 
chain implemented in real-time using both GPUs and multi-
core CPUs simultaneously (i.e., it is a hybrid CPU-GPU 
implementation), enhancing the parallel implementations of 
HySime and VCA and adding an implementation of 
abundance estimation by exploiting the computational power 
of both GPUs and multi-core processors, in a hybrid fashion. 
For the GPU part, we have used NVidia CUDA [20] and the 
CuBLAS1 library, while for the multi-core part we have used 
OpenMP2. Moreover, we have also developed a multi-core 
version based on the popular BLAS functions provided by the 
GNU scientific library3. A main novelty of the proposed 
implementation with regard to other works in the literature is 
precisely its hybrid CPU-GPU nature, which is adequately 
exploited in this work in order to achieve real-time unmixing 
results. The proposed real-time unmixing chain is validated 
using a variety of hyperspectral scenes. The remainder of the 
paper is organized as follows. Section II describes the 
different algorithms used to implement the unmixing chain. 
Section III describes a hybrid CPU-GPU parallel 
implementation of the unmixing chain and a multi-core CPU 
implementation. Section IV presents experimental results 
 

1 https://developer.nvidia.com/cuBLAS (accessed April 2015) 
2 http://openmp.org/wp/ (accessed April 2015) 
3 https://www.gnu.org/software/gsl/ (accessed May 2015) 

using a variety of hyperspectral scenes. Section V concludes 
the paper with some remarks and hints at plausible future 
research lines. 

II. HYPERSPECTRAL UNMIXING CHAIN 
Our unmixing chain is made up of three main algorithms: 
HySime for estimating the number of endmembers, VCA for 
estimating the endmember signatures, and unconstrained 
abundance estimation. In the following we describe these 
algorithms. 
 
A. HySime Algorithm 
 
The noise estimation required by this phase has been carried 
out assuming additive noise, as shown by (1). A hyperspectral 
image S  can be represented as a LxN matrix, containing N 
spectral vectors of L dimensions. Each column of this matrix, 
denoted hereinafter as iz , is the data associated to the i-th 
band. We can define the matrix 

1 1 1[ ,..., , ,..., ]
i i i LZ z z z z∂ − += , and 

assume that each vector iz  is a linear combination of the 
remaining L-1 bands. Those vectors can be written as: 
                                       

ii i iz Z β ξ∂= + ,
                                  (2) 

where iβ  is an L-1 dimensional regression vector and iξ is the 
N-1 dimensional modeling error vector. The least squares 
estimator of iβ , with {1,..., }i L∈ , is given by: 
                                   1ˆ ( )

i i i

T T
i iZ Z Z zβ −

∂ ∂ ∂= ,                             (3) 
and the noise estimation is given by: 
                                       ˆ ˆ

ii i iz Zξ β∂= − .                                  (4) 
Now, the expression of the noise correlation matrix 

1 1
ˆ ˆ ˆ ˆ ˆ[ ,..., ] [ ,..., ] /T

n N NS Nξ ξ ξ ξ=  can be obtained. The pseudocode 
of the algorithm used for noise estimation is given below. 

ALGORITHM 1 - NOISE ESTIMATION FOR HYSIME 

 
  
The notation 

,[ ']
i i

S ∂ ∂
represents the matrix 'S  after removing 

the i-th row and the i-th column, while 
,[ ']

iiS ∂
 and 

,[ ']
i iS ∂

represent, respectively, the i-th row of the matrix 

:,[ ']
i

S ∂
and the matrix 

,[ ']
i

T
iS ∂

. After this preliminary step, the 
dimensionality of the hyperspectral subspace can be estimated. 
This estimation is based on the identification of a set of 
orthogonal directions. The subspace spanned by the signal is 
determined by seeking the minimum square error between the 

INPUT 1 2[ , ,..., ]NS s s s≡  

1: : TZ S= , ˆ ( )TS Z Z= ; 
2: 1ˆ' :S S −= ; 
3: for i := 1 to L do 

4:   , ,
, ,

,

[ '] [ ']ˆ ˆ: [ '] [ ]
[ ']

i i

i i i

i i
i i

i i

S S
S S

S
β ∂ ∂

∂ ∂ ∂

 
= −  
 

 ; 
5:   ˆ ˆ:

ii i iz Zξ β∂= − ; 
6:end for 
OUTPUT ξ̂  



original signal x  and a noisy projection obtained by the vector 
y x n= + , where n  is a zero-mean Gaussian distributed noise. 
The subspace is determined by minimizing a two-termed 
objective function, made up by the power of the signal 
projection error and the power of noise projection. The first 
term is a decreasing function of the subspace dimension, while 
the latter is an increasing one. This leads to this expression: 

2
1,

ˆ ˆ( , ) arg min ( 2 )
j j

i j

k
i ijp

p c b
π

δ

π σ
=

 
 = + − + 
 
 

∑
�����

,            (5) 

where π  is the permutation of indices 1,...,i L=  and k  is the 
subspace dimension. 

jib  and 2
jiσ  are quadratic forms given by:

 ˆ
j j j

T
i i y ib e S e=  ,  2 ˆ

j j j

T
i i n ie S eσ =               (6-7) 

where ie are the eigenvalues of the estimated signal correlation 

matrix ˆ
xS [2]. The pseudocode of the algorithm used for 

subspace estimation is given in Algorithm 2. 
 

ALGORITHM 2 - SIGNAL SUBSPACE ESTIMATION FOR HYSIME 

 
 

 
B. VCA algorithm 
 
The VCA is based on two geometrical assumptions: i) the 
endmembers are the vertices of a simplex, and ii) the affine 
transformation of a simplex is also a simplex. The algorithm 
assumes that the endmembers appear in pure form in the 
scene. The set { }:1 1, 0p Ta R a a∈ = ≥  

is a simplex, so  by 

using ii) we deduce that the set 
{ }: ,1 1, 0N Ts R x Ma a a∈ = = ≥ is also a simplex. Assuming that 

0n =  in (1), all the spectral pixels belong to the convex cone 
{ }: ,1 1, 0, 0N TC s R s M a a aγ γ= ∈ = = ≥ ≥ , where γ  is a scale 

factor given by, for example, illumination variability due to 
surface topography. Projecting the simplex onto a hyperplane 

1Ts u =  allows us to obtain the new simplex 
{ }: / ( ),N Ty R y s s u s C∈ = ∈ . It is important to choose a suitable 

u  that ensures that no observed vectors are orthogonal to it. 
The algorithm iteratively performs this projection onto the 
direction orthogonal to the subspace spanned by the 
endmembers already determined, and the extreme of the 
projection in each iteration is the new endmember. In other 

words, VCA projects data onto the subspace signal with 
dimensionality p̂ N� , in order to decrease computational 
complexity. In our case, the dimensionality is estimated in the 
first step of the unmixing chain (using the HySime algorithm). 

ALGORITHM 3 - VCA 

 
The projection can be performed using singular value 

decomposition (SVD) or principal component analysis (PCA). 
According to [3], we made this choice using a threshold based 
on signal-to-noise ratio (SNR). In [3] it has been empirically 
shown that, when the data are noiseless, an SVD followed by a 
projection gives the best results, while in the other case a PCA 
generally performs better. It must be noted that in [3] the 
threshold value (SNRth) for determining the dimension of 
subspace for data projection is also defined, that is p̂  if the 
SNR is higher than SNRth or ˆ 1p −  otherwise. The pseudocode 
of the VCA is shown in Algorithm 3. 

INPUT 1 2[ , ,..., ]NS s s s≡ , p̂  
1: 10 ˆ15 log ( )thSNR p= +  ; 
2:if thSNR SNR>  then 
3:   ˆ:d p=  ; 
4:   : T

dX U S= ; { dU obtained by SVD of /TSS N } 
5:   : ( )u mean X= ; {mean of each row} 
6:   

:, :, :,[ ] : [ ] / ([ ] )j j jY X X u= ; 
7: else 
8:   ˆ: 1d p= − ; 
9:   

:, :,[ ] : ([ ] )T
j d jX U S s= − ; { dU obtained by PCA} 

10:  
1,..., :,: arg max [ ]j N jh X== ; 

11:  : [ | | ... | ]H h h h= ; { H  is a 1xN vector} 

12:  :
X

Y
H
 

=  
 

; 

13:end if 
14: [0,...,0,1]T

ue = ; 
15: : [ | 0 | ... | 0]uA e= ; { A is a p̂ x p̂ matrix} 
16:for i := 1 to p̂  do 
17:  ˆ: (0, )pw rand I= ; { w is a zero-mean Gaussian vector 
of covariance 

p̂I } 

18:  ( ): (( ( ) ) / ( )f I AA w I AA w• •= − − ; 

19:  Tv f Y= ; 
20:  

1,..., :,: arg max [ ]j N jg v==  

21:  
:, :,[ ] : [ ]i gA Y= ; 

22:  [ ] :iindex g= ; 
23:end for 
24: if thSNR SNR>  then 
25:  

ˆ
ˆ : [ ]p indexM U X= ; 

26:else 
27:  

ˆ
ˆ : [ ]p indexM U X s= + ; 

28:end if 
OUTPUT M̂ ; {estimated mixing matrix} 

INPUT 1 2[ , ,..., ]NS s s s≡ , ˆ /T
yS SS N= , ξ̂  

1: ( )1ˆ ˆ ˆ: T
n i ii

S
N

ξ ξ= ∑ ; 

2: ( )( )1ˆ ˆ ˆ: T
x i i i ii

S s s
N

ξ ξ = − −
 ∑ ; 

3: 1: [ ,..., ]LE e e= ; { ie are the eigenvalues of ˆ
xS } 

4: 1: [ ,..., ]Lδ δ δ=  ; 
5: ˆ ˆ( , ) : ( )sortδ π δ= ; { iδ sorted in ascending order} 
6: ˆ :p =  number of terms 0iδ < ; 

OUTPUT p̂ , 
ˆ1̂ ˆ

ˆ ,...,
pi iX e e =

 
; {signal subspace} 



At this point, it is important to note that the noise estimation 
performed by VCA is the same one described for HySime. Of 
course, by connecting the two algorithms it only needs to be 
performed once. Lines 1-13 in Algorithm 3 are related to 
dimensionality reduction, while lines 14-23 are core of VCA 
algorithm. The remaining lines are related to the estimation of 
the mixing matrix. 
 
C. Unconstrained Abundance Estimation 
 
For the abundance estimation part of our unmixing chain, we 
use unconstrained abundance estimation. This part is based on 
removing the noise term from equation (1), so the 
hyperspectral image is expressed as: 
                                            S Ma= ,                                   (8) 
where M is the mixing matrix estimated by VCA and a is the 
abundance matrix. The pixel reconstruction error is: 
                                         2ˆe S Ma= − .                                (9) 

The error is minimized by finding a suitable a, and the  least 
square solution is given by: 

                                1( )T Ta M M M S−= ,                          (10) 
where 1( )T TM M M− is the pseudo-inverse of matrix M. 

III. UNMIXING CHAIN PARALLEL IMPLEMENTATION 
For developing the parallel implementation of the unmixing 
chain described in Section II, we started from the Matlab 
implementations of HySime4 and VCA5 which are available 
online. We verified the results of our parallel implementation 
using the outputs provided by the two original 
implementations. Our implementation does not change the 
outputs of each single algorithm. The Matlab version has been 
used in order to identify intensive code parts. We profiled the 
code using different synthetic hyperspectral images generated 
using a suitable Matlab script [2] that chooses endmember 
signatures from USGS Library (1995 version)6. The synthetic 
images are different in both size and number of endmembers; 
the size ranges from 2000 to 500000 pixels, while the number 
of endmembers ranges from 15 to 25. Matrix-matrix 
operations and matrix-vector operations were identified as the 
most intensive code parts. Those calculations are required in 
the noise estimation stage and in the computation of ˆ

nS and ˆ
xS  

for signal subspace estimation, and also in the dimensionality 
reduction and the computation of vector v  for the 
identification of endmembers. In order to obtain the best 
possible execution times, we parallelized all those calculations 
using GPUs. The main limitation of this kind of platform is 
the need for intensive memory transfers, which are used for 
copying data from the CPU RAM memory to GPU global 
(video) memory. The communication is performed by a PCI 
Express bus, so it is important to minimize the amount of 
transferred data. Moreover, only big amounts of data should 

 
4 http://www.lx.it/pt/~bioucas/code/demo_Hysime.zip (accessed May 2015) 

5 http:// www.lx.it/pt/~bioucas/code/demo_vca.zip (accessed May 2015) 
6 http://speclab.cr.usgs.gov (accessed May 2015) 

be moved to the GPU in order to quickly perform different 
calculations and finally transfer the results back to the CPU.  

For the signal subspace estimation, we transferred the image 
to the GPU memory at the beginning, using the cudaMemcpy 
function specifying the HostToDevice parameter. After that 
we performed the matrix multiplication using the function 
cublasDgemm, which executes the calculation: 
                             ( ) ( )C op A op B Cα β= +  ,                (11) 
where , ,A B C are matrices and ,α β are scalars. The notation 

( )op •  indicates the transpose operation. In our case, we set the 
scalar β  to zero and the scalar α  to 1 or to 1/ N , as 
appropriate. 

At this point, it is important to note that we chose to 
manually manage the memory transfers in order to obtain 
better performances. The CuBLAS library functions used in 
this work are only highly optimized GPU kernels. CuBLAS 
stores matrices in column-major order, while standard C 
matrices are stored in row-major order, so it is important to 
convert data from the first schema to the latter. Obviously, for 
converting a matrix from row-major to column-major and 
vice-versa, the data must be transposed. Since transposition of 
a big matrix requires time, we choose to implement this 
operation using the GPU too. For that purpose, we used the 
function cublasDgeam, which performs the calculation: 
                             ( ) ( )C op A op Bα β= + .                             (12) 
For transposing matrix A , we set the parameters 1α =  and 

0β =  and chose a suitable value to ( )op A . It is important to 
note that the kernel ignores the value of matrix B when 0β = . 
Concerning other operations such as eigenvalues (δ ) sorting, 
or negative values counting, we chose to use the CPU instead 
of the GPU, since the amount of data is lower. For the 
eigenvalues calculation, we implemented an optimized 
algorithm based on Householder reductions and QR 
transformations, while for the sorting step we implemented a 
quicksort algorithm. The other operations have been 
implemented using OpenMP, specifically using the statement 
#pragma omp parallel for, which allocates a loop iteration to 
each thread. It is possible to use this strategy since the 
algorithm iterations are independent in our case. Moreover, we 
specify which data are shared among threads and which data 
are private using the suitable options. We chose to share input 
and output values among threads, while loop management 
variables are private to each thread. Finally we decided to use 
a static scheduling rather than a dynamic one, because we 
empirically observed that in our experiments this option 
performs better. In some cases we also used the reduction 
clause to accumulate results of various threads in a single 
variable. For example, the final count of negative values is 
performed in parallel using a reduction as follows: each thread 
works on a chunk of data, and finally the master thread 
accumulates the final results of each thread in a single 
variable. All the calculations needed by the signal subspace 
estimation step have been performed using double precision 
floating point, to guarantee the same precision as Matlab. 
However, the VCA step requires single precision floating 



point accuracy, so we wrote an OpenMP routine for 
converting the image and the noise correlation matrix into that 
format. 

All the dimensional reduction operations are highly 
parallelizable, so the matrix multiplications have been 
performed using CuBLAS, while the other operations have 
been performed using OpenMP. The  used kernels are the 
counterpart of the ones described before, with the only 
difference that the data are represented in single precision 
floating point, using cublaSgemm (for matrix multiplications) 
and cublasSgeam (for matrix transpositions). This 
transposition cannot be avoided, since we need the results also 
for the host computation.  Concerning the VCA main for 
loop, we transfer the Y matrix only before the loop and store it 
in the GPU memory, since it is not modified during the 
various iterations. Each loop iteration then computes the w  
and f  vectors using OpenMP. The f  vector is moved to the 
GPU memory and the product Tf Y  is computed using the 
CuBLAS kernel cublasSgemv, which performs the operation: 
                                  ( )c op A x cα β= + ,                              (13) 
where c  and x are vectors, α  and β  are scalars and A is a 
matrix that can be transposed. We set the parameters 1α = and 

0β = , and finally we transpose the matrix. After this kernel is 
completed, we need to search for the position of the 
maximum; this operation is performed by using another 
CuBLAS kernel called cublasIsamax. Since in CuBLAS 
vectors are stored using 1-indexing while in C are stored using 
0-based indexing, it is necessary to subtract 1 from the index 
returned by the kernel for results consistency. Also, it is 
important to perform the maximum search on the GPU 
because this avoids to transfer vector v  to the CPU, allowing 
us to improve the execution times even further. All the 
remaining operations are performed using OpenMP. This 
computation is schematized in figure 1. Regarding the 
abundance estimation step, the pseudo-inverse calculation has 
been performed using OpenMP, since the dimensions of the 
data involved are not extremely big. The final multiplication 
in (10) has been performed on the GPU using a suitable kernel 
provided by the cublasDgemm function. SVD has been solved 
using QR factorization implemented through Householder 
reflections, while matrix inversion has been solved using LU 
factorization. Both algorithms have been parallelized with 
OpenMP. Concerning the BLAS implementation, we 
exchanged the CuBLAS functions calls and the data transfers 
with suitable functions, such as gsl_blas_dgemm, 
gsl_blas_dgeam and gsl_blas_sgemm. 
 

IV. EXPERIMENTAL RESULTS 
 
A. GPU architecture 
The NVidia GPU architecture used in this work is codenamed 
Kepler, and includes the new SMX processors architecture and 
an enhanced memory subsystem, offering better performance 
in terms of bandwidth [20]. Each SMX unit features 192 fully 
pipelined floating-point and integer arithmetic CUDA cores. 

SMX also has special function units (SFUs), for approximated 
transcendental functions computation. Parallel threads are 
scheduled in groups of 32 (warps) and each SMX has four 
warp schedulers and eight dispatch units. The most important 

aspect of this architecture is the possibility to pair double 
precision instructions with other instructions.  Each SMX has 
64 KB of on-chip memory that can be configured as 16 KB of 
shared memory and 48 KB of level 1 (L1) cache or 48 KB of 
shared memory and 16 KB of L1 cache or 32 KB of shared 
memory and 32 KB of L1 cache. The shared memory 
bandwidth for 64 bit and larger load operations is 256 Bytes 
per core clock. Moreover, there is also a 48 KB read-only L1 
cache, directly managed by the compiler.  The L2 cache is the 
primary point of data unification between the SMX for high 
speed data sharing. Kepler features 1536 KB of L2 cache. 
Notice that L2 cache allows communication between SMX 
and GPU global memory (DRAM), which is the main  
communication channel with the CPU. 
 

 

TABLE I 
HARDWARE SPECIFICATIONS 

 

 
Number 
of cores 

Clock 
frequency 

[GHz] 
RAM [GB]

CPU Intel 
3770 i7  

4 3.40 8 

Nvidia 
Tesla K40 

active 
2880 0.875 12 

 

 
Figure 1 - Main "for" cycle of the VCA algorithm 



 

 
The Kepler register files, shared memories, L1 and L2 

caches and DRAM memory are protected by  Single-Error 
Correct Double-Error Detect (SECDED) Error-Correction 
Code (ECC). Moreover, read-only L1 cache performs single-
error correction through a parity check.  

 
B. Performance Evaluation 
 
We generated different synthetic hyperspectral images with 
increasing sizes (from 2000 pixels to 500000 pixels) choosing 
endmembers signatures from the USGS Library using the 
MATLAB script provided in [10]. Those images have been 
used for two main purposes: the first one is to compare the 
results of the MATLAB implementation and our parallel 
implementation, while the second reason is to be able to 
characterize the computational complexity of the whole 
unmixing chain. We also used real images for evaluation 
purposes: two well-known AVIRIS images collected over the 
Cuprite mining district (47750 pixels, 188 bands) and the 
World Trade Center area (314368 pixels, 224 bands); a 
Hydice image collected over a forest radiance environment 
(4096 pixels, 169 bands); and a ROSIS hyperspectral image 
collected over the city of Pavia, Italy (1024000 pixels, 102 
bands). The tests have been performed on a PC equipped with 
an Intel 3770 i7 CPU, working at 3.40 GHz, with 8 GB of 
RAM. The used GPU is a Tesla K40 active equipped with the 
previously described Kepler architecture  (Table I). The 
communication between the CPU and the GPU is performed 
by a PCI-e 2.0 16x bus. The operating system is a 64 bit 
Ubuntu 12.10, which is fully supported by the CUDA 6.0 
environment. The code compilation is performed using nvcc 
compiler for GPU code and gcc for CPU code. We optimized 

the code using suitable compilation flags such as -O3 and -
fopenmp for the CPU code. Table II shows the execution times 
of the MATLAB implementation, our BLAS implementation 
and our hybrid CUDA and OpenMP parallel implementation 
using synthetic images. We measured execution times using 
MATLAB profiler for the MATLAB implementation and 
suitable functions such as omp_get_wtime for the other 
implementations. It is important to note that our 
implementation outperforms MATLAB and BLAS as the 
image dimension grows up, and since AVIRIS acquires about 
300000 pixels in 5 seconds, the real-time constraint is 
satisfied. Moreover, it is possible to identify the image sizes 
that make the hybrid parallel approach convenient with respect 
to the pure CPU multi-core one. It must be noticed that, in our 
case, the hybrid solution performs better since we have images 
with 10000 pixels, which is a small size when compared with 
standard hyperspectral image sizes. The real-time compliance 
assertion is also supported by experiments conducted using 
real images, which are reported in Table III. Specifically, it 
must be noted that the Pavia image is spatially four times 
bigger than a regular AVIRIS scene (unless it has less bands, 
but this is due to the different instrument used for acquisition), 
so the execution time is about 20 seconds. The obtained 
execution times fully meet real time constraints also in this 
particular case.  All the reported times (except for the 
MATLAB ones) are obtained as the mean of different 
executions with standard deviation always less than 2%. We 
also evaluated accuracy of the obtained unmixing results with 
respect to the serial implementation. In all cases the results 
have a mean square error difference that is less than 1%.  

If we compare the obtained results with other developments 
in the literature, such as the GPU implementation of the pixel 
purity index (PPI) algorithm [12] and other geometrical 
techniques [13], we can outline the following aspects. In [12] 
tests are conducted on the AVIRIS World Trade Center image, 
implementing a parallel unmixing chain on different 
architectures such as a Beowulf cluster at NASA's Goddard 
Space Flight Center, an heterogeneous network made up 16 
workstations mounting Intel Xeon, AMD Athlons and SUNW 
UltraSparc processors, a Xilinx Virtex-II FPGA, and a 
NVIDIA Tesla C1060 GPU. The best result is obtained by the 
Beowulf cluster, which took 4.98 s to perform the full 
unmixing process, using 256 Intel Xeon nodes working at 2.4 
GHz. Our execution time is lower than this one. Moreover, it 
must be highlighted that we are using a desktop system, which 
is much less expensive in terms of cost and maintenance. In 

TABLE II 
EXECUTION TIMES FOR SYNTHETIC HYPERSPECTRAL IMAGES. IN BRACKETS 

THERE IS THE SPEED UP WITH RESPECT TO MATLAB VERSION 
 

Pixel 
number 

Bands p̂  MATLAB 
[s] 

BLAS 
[s] 

CUDA and 
OpenMP 

[s] 

2000 224 15 0.430 
0.390 

(1.10x) 
0.412 

(1.04x) 

10000 224 15 0.894 
0.785 

(1.13x) 
0.515 

(1.73x) 

20000 224 15 1.735 
1.320 

(1.31x) 
0.615 

(2.82x) 

50000 224 15 3.996 
2.125 

(1.88x) 
0.920 

(4.34x) 

75000 224 20 4.528 
3.246 

(1.39x) 
1.173 

(3.86x) 

100000 224 20 6.327 
5.426 

(1.16x) 
1.499 

(4.22x) 

200000 224 20 15.421 
9.360 

(1.64x) 
2.563 

(6.01x) 

500000 224 25 32.963 
29.250 
(1.12x) 

5.856 
(5.63x) 

 

TABLE III 
EXECUTION TIMES FOR REAL HYPERSPECTRAL IMAGES 

 

Image 
Pixel 

number 
Bands p̂  

CUDA and 
OpenMP 

[s] 
Hydice 4096 169 18 0.188 
Cuprite 47750 188 18 0.631 

WTC 314368 224 23 3.625 
Pavia 1024000 102 58 5.312 



[13] tests have been performed using the AVIRIS Cuprite 
image, using a system made up of two Quad Core Intel Xeon 
working at 2.53 GHz with 12 physical cores, a NVIDIA 
GeForce GTX 580 GPU and a NVIDIA Tesla C1060 GPU. 
The best results were obtained by the first GPU, which took 
about 0.6 seconds to perform calculations. This time is very 
close to ours, but we implemented more recent unmixing 
techniques, thus achieving a better precision. In other works, 
parallel implementations of HySime and VCA have been 
presented [15, 16]. The main difference with our work is that 
we developed an optimized version for a more recent GPU 
architecture. Moreover, we developed a hybrid parallel 
application using both CUDA (GPU) and OpenMP (multi-
core), while in [15] only GPU computing was used. The 
memory transfers have also been optimized, exploiting level 1, 
2 and 3 CuBLAS functions and trying to perform most of the 
calculations in the GPU. For example, the core of the VCA 
algorithm has been optimized in terms of finding the minimum 
value of a vector. This value is computed directly on the GPU 
using a suitable kernel, so we only need to transfer an integer 
value to the CPU. The memory transfers took from 20% of the 
execution time to 60% (from 0.1 seconds to 3.2 seconds), 
according to image dimension. Finally, we have experimental 
data that enable us to characterize the computational 
complexity of the whole algorithm. In particular, using Nvidia 
Visual Profiler on our hybrid implementation with the WTC 
image, we found that 35% of the execution time is used for 
memory transfers. The remaining GPU time is used mainly for 
the cublasDgemm and the cublasSgemm that occupy, 
respectively, 25% and 15% of the total execution time. To 
conclude this section, we emphasize that the main limitation 
of employing GPU technology in spaceborne missions is 
related to power consumption, since a GPU like the one used 
in this study has a power consumption of up to 200 W. This 
issue will be probably solved in future GPU generations, since 
limiting power consumption is an important objective of GPU 
vendors such as NVidia for allowing the scientific community 
to use their devices in embedded applications. Moreover, 
memory communication is a well-known performance 
bottleneck, but this problem could be solved using a system 
where the memories of the CPU and GPU are unified.  

V. CONCLUSIONS AND FUTURE LINES 
In this paper we presented a hybrid CPU-GPU parallel 
implementation of a hyperspectral unmixing chain made up of 
the HySime algorithm for estimating the number of 
endmembers, the VCA for identifying the endmember 
signatures, and unconstrained abundance estimation. The 
parallel implementation exploits hybrid parallelization, using 
both CUDA and OpenMP. The parallel implementation has 
been tested on different synthetic image sizes, on an Intel i7 
CPU connected with a NVIDIA Kepler GPU. The parallel 
unmixing chain fully meets real-time constraints, since a 
regular AVIRIS scene acquired in 5 seconds is processed in 
about 3.6 s. As future research we are planning on performing 
optimizations of other hyperspectral analysis algorithms for 

classification and compression using a hybrid CPU-GPU 
framework such as the one presented in this contribution.   
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