

Abstract—Hyperspectral images are used in different
applications in Earth and space science, and many of these
applications exhibit real- or near real-time constrains. A problem
when analyzing hyperspectral images is that their spatial
resolution is generally not enough to separate different spectrally
pure constituents (endmembers); as a result, several of them can
be found in the same pixel. Spectral unmixing is an important
technique for hyperspectral data exploitation, aimed at finding
the spectral signatures of the endmembers and their associated
abundance fractions. The development of techniques able to
provide unmixing results in real-time is a long desired goal in the
hyperspectral imaging community. In this paper we describe a
real-time hyperspectral unmixing chain based on three main
steps: 1) estimation of the number of endmembers using the
hyperspectral subspace identification with minimum error
(HySime), 2) estimation of the spectral signatures of the
endmembers using the vertex component analysis (VCA), and 3)
unconstrained abundance estimation. We have developed new
parallel implementations of the aforementioned algorithms and
assembled them in a fully operative real-time unmixing chain
using graphics processing units (GPUs), exploiting NVIDIA's
compute unified device architecture (CUDA) and its basic linear
algebra subroutines library (CuBLAS), as well as OpenMP and
BLAS for multi-core parallelization. As a result, our real-time
chain exploits both CPU (multi-core) and GPU paradigms in the
optimization. Our experiments reveal that this hybrid GPU-CPU
parallel implementation fully meets real-time constraints in
hyperspectral imaging applications.

Index Terms—Hyperspectral imaging, spectral unmixing,
graphics processing units (GPUs), hyperspectral signal subspace
identification with minimum error (HySime), vertex component
analysis (VCA), abundance estimation.

I. INTRODUCTION
yperspectral sensors are characterized by their high
spectral resolution and for their capacity to collect

massive data volumes. For instance, a typical "data cube",
collected by the well-known NASA Jet Propulsion
Laboratory's Airborne Visible Infrared Imaging Spectrometer
(AVIRIS) [1], has a size of 614 lines with 512 samples and
224 spectral bands, with spectral resolution of 10 nm. This
amounts to approximately 140 MB of data per cube. AVIRIS

Manuscript received January 21, 2015; revised June 2015 and September
2015; accepted September 18, 2015.

E. Torti, G. Danese, and F. Leporati are with the Dipartimento di
Ingegneria Industriale e dell'Informazione, University of Pavia, 27100 Pavia,
Italy (e-mail: emanuele.torti01@ateneopv.it, gianni.danese@unipv.it,
francesco.leporati@unipv.it).

A. Plaza is with the Hyperspectral Computing Laboratory, Department of
Technology of Computers and Communications, University of Extremadura,
10071 Caceres, Spain (e-mail: aplaza@unex.es).

scanning rate is 12 Hz, but several instruments under
development such as the Environmental Mapping and
Analysis Program (EnMAP) [2] or Hyperion [3] are able to
collect data at higher rates, such as 230 Hz for EnMAP and
220 Hz for Hyperion. With those scanning rates, a standard
AVIRIS hyperspectral data cube should be processed in about
5 seconds in order to meet real-time processing performance.

An important aspect in hyperspectral image processing is
that the pixel resolution is generally not fine enough to
separate different pure constituent materials (called
endmembers in hyperspectral jargon [4]). As a result, there is a
need to develop real-time implementations of spectral
unmixing techniques. Generally, two mixture models have
been used for hyperspectral image analysis: linear [5] and
nonlinear [6]. The first one is the most widely used, since it is
simple to implement and unsupervised. In this model, each
mixed pixel is interepreted as a linear combination of the
endmember spectral signatures weighted by the correspondent
percentage of pure material present in the pixel, i.e. the so
called abundance fraction. Each pixel can be represented by a
N-dimensional spectral vector, where N is the number of the
acquired bands. At the spatial coordinates (,)i j , the pixel
vector can be represented as [(1), (2),..., ()] L

ij ij ij ijs s s s L= ∈ ℜ ,

where ()ijs k is the spectral response of sensor channels

1, 2,...,k L= . Under these assumptions, the pixel vector at
coordinates (,)i j is given by:

1

p
k

ij ij ij k ij ij
k

s Ma n m a n
=

= + = +∑ , (1)

where
1 1[, ,...,]pM m m m= is a so-called mixing matrix, which

contains the spectral signature of p endmembers,
1 2[, ,...,]p T

ij ij ij ija a a a= is the abundance vector made up of the

abundance fractions of the p endmembers, and
ijn is an

additive noise vector. The unmixing process consists of
estimating the mixing matrix and the abundance fractions. For
this operation, it is necessary to estimate first the number of
endmembers in the data cube, which is a crucial task for
correct data unmixing. Typically, the number of bands L is
much greater than the number of endmembers p, and
hyperspectral vectors lie in a lower-dimensional subspace [5].

In order to estimate p, many different approaches have been
proposed in the literature, including projection methods for
seeking the subspace through minimizing a cost function [7];
topological methods for finding the manifold where data set

Emanuele Torti, Member, IEEE, Giovanni Danese Member, IEEE, Francesco Leporati, Member, IEEE, and
Antonio Plaza, Senior Member, IEEE

A Hybrid CPU-GPU Real-Time
Hyperspectral Unmixing Chain

H

lives [8]; and projection-based techniques which analyze the
existing correlation between adjacent bands [9]. After the
estimation of p, the endmember identification step can be
performed. It is possible to distinguish between two main
categories of endmember identification algorithms: with and
without the pure pixel assumption [5]. Pure pixel-based
algorithms are more widely used than the others, mainly
because they have lower computational cost. Finally, for
abundance estimation constrained, partially constrained and
unconstrained algorithms can be used [4].

Performing the unmixing chain under real-time constraints
is a highly desired goal in many applications, such as
biological threat detection, monitoring of chemical
contamination, wildfire tracking and so on. In recent years,
some unmixing chain have been implemented using high
performance computing architectures such as graphics
processing units (GPUs) and multi-core processors [11, 12].
For instance, in [13] an unmixing chain based on the popular
virtual dimensionality (VD) algorithm [14] for estimating the
number of endmembers, orthogonal subspace projection with
Gram-Schmidt orthogonalization (OSP-GS) [15] for
estimating the endmember signatures, and unconstrained least
squares (UCLS) [16] for abundance fraction estimation.
However, it must be noted that more precise and reliable
algorithms for hyperspectral image processing have been
developed in recent years, such as hyperspectral subspace
identification with minimum error (HySime) [10] for
estimating the number of endmembers, or vertex component
analysis (VCA) for estimating endmember signatures [17].
The HySime and VCA algorithms have been implemented in
parallel [18, 19]. However, it is still possible to optimize those
implementations and build a full spectral unmixing chain in
real-time. In this paper, we develop a full spectral unmixing
chain implemented in real-time using both GPUs and multi-
core CPUs simultaneously (i.e., it is a hybrid CPU-GPU
implementation), enhancing the parallel implementations of
HySime and VCA and adding an implementation of
abundance estimation by exploiting the computational power
of both GPUs and multi-core processors, in a hybrid fashion.
For the GPU part, we have used NVidia CUDA [20] and the
CuBLAS1 library, while for the multi-core part we have used
OpenMP2. Moreover, we have also developed a multi-core
version based on the popular BLAS functions provided by the
GNU scientific library3. A main novelty of the proposed
implementation with regard to other works in the literature is
precisely its hybrid CPU-GPU nature, which is adequately
exploited in this work in order to achieve real-time unmixing
results. The proposed real-time unmixing chain is validated
using a variety of hyperspectral scenes. The remainder of the
paper is organized as follows. Section II describes the
different algorithms used to implement the unmixing chain.
Section III describes a hybrid CPU-GPU parallel
implementation of the unmixing chain and a multi-core CPU
implementation. Section IV presents experimental results

1 https://developer.nvidia.com/cuBLAS (accessed April 2015)
2 http://openmp.org/wp/ (accessed April 2015)
3 https://www.gnu.org/software/gsl/ (accessed May 2015)

using a variety of hyperspectral scenes. Section V concludes
the paper with some remarks and hints at plausible future
research lines.

II. HYPERSPECTRAL UNMIXING CHAIN
Our unmixing chain is made up of three main algorithms:
HySime for estimating the number of endmembers, VCA for
estimating the endmember signatures, and unconstrained
abundance estimation. In the following we describe these
algorithms.

A. HySime Algorithm

The noise estimation required by this phase has been carried
out assuming additive noise, as shown by (1). A hyperspectral
image S can be represented as a LxN matrix, containing N
spectral vectors of L dimensions. Each column of this matrix,
denoted hereinafter as iz , is the data associated to the i-th
band. We can define the matrix

1 1 1[,..., , ,...,]
i i i LZ z z z z∂ − += , and

assume that each vector iz is a linear combination of the
remaining L-1 bands. Those vectors can be written as:

ii i iz Z β ξ∂= + ,
 (2)

where iβ is an L-1 dimensional regression vector and iξ is the
N-1 dimensional modeling error vector. The least squares
estimator of iβ , with {1,..., }i L∈ , is given by:
 1ˆ ()

i i i

T T
i iZ Z Z zβ −

∂ ∂ ∂= , (3)
and the noise estimation is given by:
 ˆ ˆ

ii i iz Zξ β∂= − . (4)
Now, the expression of the noise correlation matrix

1 1
ˆ ˆ ˆ ˆ ˆ[,...,] [,...,] /T

n N NS Nξ ξ ξ ξ= can be obtained. The pseudocode
of the algorithm used for noise estimation is given below.

ALGORITHM 1 - NOISE ESTIMATION FOR HYSIME

The notation

,[']
i i

S ∂ ∂
represents the matrix 'S after removing

the i-th row and the i-th column, while
,[']

iiS ∂
 and

,[']
i iS ∂

represent, respectively, the i-th row of the matrix

:,[']
i

S ∂
and the matrix

,[']
i

T
iS ∂

. After this preliminary step, the
dimensionality of the hyperspectral subspace can be estimated.
This estimation is based on the identification of a set of
orthogonal directions. The subspace spanned by the signal is
determined by seeking the minimum square error between the

INPUT 1 2[, ,...,]NS s s s≡

1: : TZ S= , ˆ ()TS Z Z= ;
2: 1ˆ' :S S −= ;
3: for i := 1 to L do

4: , ,
, ,

,

['] [']ˆ ˆ: ['] []
[']

i i

i i i

i i
i i

i i

S S
S S

S
β ∂ ∂

∂ ∂ ∂

= −

 ;
5: ˆ ˆ:

ii i iz Zξ β∂= − ;
6:end for
OUTPUT ξ̂

original signal x and a noisy projection obtained by the vector
y x n= + , where n is a zero-mean Gaussian distributed noise.
The subspace is determined by minimizing a two-termed
objective function, made up by the power of the signal
projection error and the power of noise projection. The first
term is a decreasing function of the subspace dimension, while
the latter is an increasing one. This leads to this expression:

2
1,

ˆ ˆ(,) arg min (2)
j j

i j

k
i ijp

p c b
π

δ

π σ
=

 = + − +

∑
�����

, (5)

where π is the permutation of indices 1,...,i L= and k is the
subspace dimension.

jib and 2
jiσ are quadratic forms given by:

 ˆ
j j j

T
i i y ib e S e= , 2 ˆ

j j j

T
i i n ie S eσ = (6-7)

where ie are the eigenvalues of the estimated signal correlation

matrix ˆ
xS [2]. The pseudocode of the algorithm used for

subspace estimation is given in Algorithm 2.

ALGORITHM 2 - SIGNAL SUBSPACE ESTIMATION FOR HYSIME

B. VCA algorithm

The VCA is based on two geometrical assumptions: i) the
endmembers are the vertices of a simplex, and ii) the affine
transformation of a simplex is also a simplex. The algorithm
assumes that the endmembers appear in pure form in the
scene. The set { }:1 1, 0p Ta R a a∈ = ≥

is a simplex, so by

using ii) we deduce that the set
{ }: ,1 1, 0N Ts R x Ma a a∈ = = ≥ is also a simplex. Assuming that

0n = in (1), all the spectral pixels belong to the convex cone
{ }: ,1 1, 0, 0N TC s R s M a a aγ γ= ∈ = = ≥ ≥ , where γ is a scale

factor given by, for example, illumination variability due to
surface topography. Projecting the simplex onto a hyperplane

1Ts u = allows us to obtain the new simplex
{ }: / (),N Ty R y s s u s C∈ = ∈ . It is important to choose a suitable

u that ensures that no observed vectors are orthogonal to it.
The algorithm iteratively performs this projection onto the
direction orthogonal to the subspace spanned by the
endmembers already determined, and the extreme of the
projection in each iteration is the new endmember. In other

words, VCA projects data onto the subspace signal with
dimensionality p̂ N� , in order to decrease computational
complexity. In our case, the dimensionality is estimated in the
first step of the unmixing chain (using the HySime algorithm).

ALGORITHM 3 - VCA

The projection can be performed using singular value

decomposition (SVD) or principal component analysis (PCA).
According to [3], we made this choice using a threshold based
on signal-to-noise ratio (SNR). In [3] it has been empirically
shown that, when the data are noiseless, an SVD followed by a
projection gives the best results, while in the other case a PCA
generally performs better. It must be noted that in [3] the
threshold value (SNRth) for determining the dimension of
subspace for data projection is also defined, that is p̂ if the
SNR is higher than SNRth or ˆ 1p − otherwise. The pseudocode
of the VCA is shown in Algorithm 3.

INPUT 1 2[, ,...,]NS s s s≡ , p̂
1: 10 ˆ15 log ()thSNR p= + ;
2:if thSNR SNR> then
3: ˆ:d p= ;
4: : T

dX U S= ; { dU obtained by SVD of /TSS N }
5: : ()u mean X= ; {mean of each row}
6:

:, :, :,[] : [] / ([])j j jY X X u= ;
7: else
8: ˆ: 1d p= − ;
9:

:, :,[] : ([])T
j d jX U S s= − ; { dU obtained by PCA}

10:
1,..., :,: arg max []j N jh X== ;

11: : [| | ... |]H h h h= ; { H is a 1xN vector}

12: :
X

Y
H

=

;

13:end if
14: [0,...,0,1]T

ue = ;
15: : [| 0 | ... | 0]uA e= ; { A is a p̂ x p̂ matrix}
16:for i := 1 to p̂ do
17: ˆ: (0,)pw rand I= ; { w is a zero-mean Gaussian vector
of covariance

p̂I }

18: (): ((()) / ()f I AA w I AA w• •= − − ;

19: Tv f Y= ;
20:

1,..., :,: arg max []j N jg v==

21:
:, :,[] : []i gA Y= ;

22: [] :iindex g= ;
23:end for
24: if thSNR SNR> then
25:

ˆ
ˆ : []p indexM U X= ;

26:else
27:

ˆ
ˆ : []p indexM U X s= + ;

28:end if
OUTPUT M̂ ; {estimated mixing matrix}

INPUT 1 2[, ,...,]NS s s s≡ , ˆ /T
yS SS N= , ξ̂

1: ()1ˆ ˆ ˆ: T
n i ii

S
N

ξ ξ= ∑ ;

2: ()()1ˆ ˆ ˆ: T
x i i i ii

S s s
N

ξ ξ = − −
 ∑ ;

3: 1: [,...,]LE e e= ; { ie are the eigenvalues of ˆ
xS }

4: 1: [,...,]Lδ δ δ= ;
5: ˆ ˆ(,) : ()sortδ π δ= ; { iδ sorted in ascending order}
6: ˆ :p = number of terms 0iδ < ;

OUTPUT p̂ ,
ˆ1̂ ˆ

ˆ ,...,
pi iX e e =

; {signal subspace}

At this point, it is important to note that the noise estimation
performed by VCA is the same one described for HySime. Of
course, by connecting the two algorithms it only needs to be
performed once. Lines 1-13 in Algorithm 3 are related to
dimensionality reduction, while lines 14-23 are core of VCA
algorithm. The remaining lines are related to the estimation of
the mixing matrix.

C. Unconstrained Abundance Estimation

For the abundance estimation part of our unmixing chain, we
use unconstrained abundance estimation. This part is based on
removing the noise term from equation (1), so the
hyperspectral image is expressed as:
 S Ma= , (8)
where M is the mixing matrix estimated by VCA and a is the
abundance matrix. The pixel reconstruction error is:
 2ˆe S Ma= − . (9)

The error is minimized by finding a suitable a, and the least
square solution is given by:

 1()T Ta M M M S−= , (10)
where 1()T TM M M− is the pseudo-inverse of matrix M.

III. UNMIXING CHAIN PARALLEL IMPLEMENTATION
For developing the parallel implementation of the unmixing
chain described in Section II, we started from the Matlab
implementations of HySime4 and VCA5 which are available
online. We verified the results of our parallel implementation
using the outputs provided by the two original
implementations. Our implementation does not change the
outputs of each single algorithm. The Matlab version has been
used in order to identify intensive code parts. We profiled the
code using different synthetic hyperspectral images generated
using a suitable Matlab script [2] that chooses endmember
signatures from USGS Library (1995 version)6. The synthetic
images are different in both size and number of endmembers;
the size ranges from 2000 to 500000 pixels, while the number
of endmembers ranges from 15 to 25. Matrix-matrix
operations and matrix-vector operations were identified as the
most intensive code parts. Those calculations are required in
the noise estimation stage and in the computation of ˆ

nS and ˆ
xS

for signal subspace estimation, and also in the dimensionality
reduction and the computation of vector v for the
identification of endmembers. In order to obtain the best
possible execution times, we parallelized all those calculations
using GPUs. The main limitation of this kind of platform is
the need for intensive memory transfers, which are used for
copying data from the CPU RAM memory to GPU global
(video) memory. The communication is performed by a PCI
Express bus, so it is important to minimize the amount of
transferred data. Moreover, only big amounts of data should

4 http://www.lx.it/pt/~bioucas/code/demo_Hysime.zip (accessed May 2015)

5 http:// www.lx.it/pt/~bioucas/code/demo_vca.zip (accessed May 2015)
6 http://speclab.cr.usgs.gov (accessed May 2015)

be moved to the GPU in order to quickly perform different
calculations and finally transfer the results back to the CPU.

For the signal subspace estimation, we transferred the image
to the GPU memory at the beginning, using the cudaMemcpy
function specifying the HostToDevice parameter. After that
we performed the matrix multiplication using the function
cublasDgemm, which executes the calculation:
 () ()C op A op B Cα β= + , (11)
where , ,A B C are matrices and ,α β are scalars. The notation

()op • indicates the transpose operation. In our case, we set the
scalar β to zero and the scalar α to 1 or to 1/ N , as
appropriate.

At this point, it is important to note that we chose to
manually manage the memory transfers in order to obtain
better performances. The CuBLAS library functions used in
this work are only highly optimized GPU kernels. CuBLAS
stores matrices in column-major order, while standard C
matrices are stored in row-major order, so it is important to
convert data from the first schema to the latter. Obviously, for
converting a matrix from row-major to column-major and
vice-versa, the data must be transposed. Since transposition of
a big matrix requires time, we choose to implement this
operation using the GPU too. For that purpose, we used the
function cublasDgeam, which performs the calculation:
 () ()C op A op Bα β= + . (12)
For transposing matrix A , we set the parameters 1α = and

0β = and chose a suitable value to ()op A . It is important to
note that the kernel ignores the value of matrix B when 0β = .
Concerning other operations such as eigenvalues (δ) sorting,
or negative values counting, we chose to use the CPU instead
of the GPU, since the amount of data is lower. For the
eigenvalues calculation, we implemented an optimized
algorithm based on Householder reductions and QR
transformations, while for the sorting step we implemented a
quicksort algorithm. The other operations have been
implemented using OpenMP, specifically using the statement
#pragma omp parallel for, which allocates a loop iteration to
each thread. It is possible to use this strategy since the
algorithm iterations are independent in our case. Moreover, we
specify which data are shared among threads and which data
are private using the suitable options. We chose to share input
and output values among threads, while loop management
variables are private to each thread. Finally we decided to use
a static scheduling rather than a dynamic one, because we
empirically observed that in our experiments this option
performs better. In some cases we also used the reduction
clause to accumulate results of various threads in a single
variable. For example, the final count of negative values is
performed in parallel using a reduction as follows: each thread
works on a chunk of data, and finally the master thread
accumulates the final results of each thread in a single
variable. All the calculations needed by the signal subspace
estimation step have been performed using double precision
floating point, to guarantee the same precision as Matlab.
However, the VCA step requires single precision floating

point accuracy, so we wrote an OpenMP routine for
converting the image and the noise correlation matrix into that
format.

All the dimensional reduction operations are highly
parallelizable, so the matrix multiplications have been
performed using CuBLAS, while the other operations have
been performed using OpenMP. The used kernels are the
counterpart of the ones described before, with the only
difference that the data are represented in single precision
floating point, using cublaSgemm (for matrix multiplications)
and cublasSgeam (for matrix transpositions). This
transposition cannot be avoided, since we need the results also
for the host computation. Concerning the VCA main for
loop, we transfer the Y matrix only before the loop and store it
in the GPU memory, since it is not modified during the
various iterations. Each loop iteration then computes the w
and f vectors using OpenMP. The f vector is moved to the
GPU memory and the product Tf Y is computed using the
CuBLAS kernel cublasSgemv, which performs the operation:
 ()c op A x cα β= + , (13)
where c and x are vectors, α and β are scalars and A is a
matrix that can be transposed. We set the parameters 1α = and

0β = , and finally we transpose the matrix. After this kernel is
completed, we need to search for the position of the
maximum; this operation is performed by using another
CuBLAS kernel called cublasIsamax. Since in CuBLAS
vectors are stored using 1-indexing while in C are stored using
0-based indexing, it is necessary to subtract 1 from the index
returned by the kernel for results consistency. Also, it is
important to perform the maximum search on the GPU
because this avoids to transfer vector v to the CPU, allowing
us to improve the execution times even further. All the
remaining operations are performed using OpenMP. This
computation is schematized in figure 1. Regarding the
abundance estimation step, the pseudo-inverse calculation has
been performed using OpenMP, since the dimensions of the
data involved are not extremely big. The final multiplication
in (10) has been performed on the GPU using a suitable kernel
provided by the cublasDgemm function. SVD has been solved
using QR factorization implemented through Householder
reflections, while matrix inversion has been solved using LU
factorization. Both algorithms have been parallelized with
OpenMP. Concerning the BLAS implementation, we
exchanged the CuBLAS functions calls and the data transfers
with suitable functions, such as gsl_blas_dgemm,
gsl_blas_dgeam and gsl_blas_sgemm.

IV. EXPERIMENTAL RESULTS

A. GPU architecture
The NVidia GPU architecture used in this work is codenamed
Kepler, and includes the new SMX processors architecture and
an enhanced memory subsystem, offering better performance
in terms of bandwidth [20]. Each SMX unit features 192 fully
pipelined floating-point and integer arithmetic CUDA cores.

SMX also has special function units (SFUs), for approximated
transcendental functions computation. Parallel threads are
scheduled in groups of 32 (warps) and each SMX has four
warp schedulers and eight dispatch units. The most important

aspect of this architecture is the possibility to pair double
precision instructions with other instructions. Each SMX has
64 KB of on-chip memory that can be configured as 16 KB of
shared memory and 48 KB of level 1 (L1) cache or 48 KB of
shared memory and 16 KB of L1 cache or 32 KB of shared
memory and 32 KB of L1 cache. The shared memory
bandwidth for 64 bit and larger load operations is 256 Bytes
per core clock. Moreover, there is also a 48 KB read-only L1
cache, directly managed by the compiler. The L2 cache is the
primary point of data unification between the SMX for high
speed data sharing. Kepler features 1536 KB of L2 cache.
Notice that L2 cache allows communication between SMX
and GPU global memory (DRAM), which is the main
communication channel with the CPU.

TABLE I
HARDWARE SPECIFICATIONS

Number
of cores

Clock
frequency

[GHz]
RAM [GB]

CPU Intel
3770 i7

4 3.40 8

Nvidia
Tesla K40

active
2880 0.875 12

Figure 1 - Main "for" cycle of the VCA algorithm

The Kepler register files, shared memories, L1 and L2

caches and DRAM memory are protected by Single-Error
Correct Double-Error Detect (SECDED) Error-Correction
Code (ECC). Moreover, read-only L1 cache performs single-
error correction through a parity check.

B. Performance Evaluation

We generated different synthetic hyperspectral images with
increasing sizes (from 2000 pixels to 500000 pixels) choosing
endmembers signatures from the USGS Library using the
MATLAB script provided in [10]. Those images have been
used for two main purposes: the first one is to compare the
results of the MATLAB implementation and our parallel
implementation, while the second reason is to be able to
characterize the computational complexity of the whole
unmixing chain. We also used real images for evaluation
purposes: two well-known AVIRIS images collected over the
Cuprite mining district (47750 pixels, 188 bands) and the
World Trade Center area (314368 pixels, 224 bands); a
Hydice image collected over a forest radiance environment
(4096 pixels, 169 bands); and a ROSIS hyperspectral image
collected over the city of Pavia, Italy (1024000 pixels, 102
bands). The tests have been performed on a PC equipped with
an Intel 3770 i7 CPU, working at 3.40 GHz, with 8 GB of
RAM. The used GPU is a Tesla K40 active equipped with the
previously described Kepler architecture (Table I). The
communication between the CPU and the GPU is performed
by a PCI-e 2.0 16x bus. The operating system is a 64 bit
Ubuntu 12.10, which is fully supported by the CUDA 6.0
environment. The code compilation is performed using nvcc
compiler for GPU code and gcc for CPU code. We optimized

the code using suitable compilation flags such as -O3 and -
fopenmp for the CPU code. Table II shows the execution times
of the MATLAB implementation, our BLAS implementation
and our hybrid CUDA and OpenMP parallel implementation
using synthetic images. We measured execution times using
MATLAB profiler for the MATLAB implementation and
suitable functions such as omp_get_wtime for the other
implementations. It is important to note that our
implementation outperforms MATLAB and BLAS as the
image dimension grows up, and since AVIRIS acquires about
300000 pixels in 5 seconds, the real-time constraint is
satisfied. Moreover, it is possible to identify the image sizes
that make the hybrid parallel approach convenient with respect
to the pure CPU multi-core one. It must be noticed that, in our
case, the hybrid solution performs better since we have images
with 10000 pixels, which is a small size when compared with
standard hyperspectral image sizes. The real-time compliance
assertion is also supported by experiments conducted using
real images, which are reported in Table III. Specifically, it
must be noted that the Pavia image is spatially four times
bigger than a regular AVIRIS scene (unless it has less bands,
but this is due to the different instrument used for acquisition),
so the execution time is about 20 seconds. The obtained
execution times fully meet real time constraints also in this
particular case. All the reported times (except for the
MATLAB ones) are obtained as the mean of different
executions with standard deviation always less than 2%. We
also evaluated accuracy of the obtained unmixing results with
respect to the serial implementation. In all cases the results
have a mean square error difference that is less than 1%.

If we compare the obtained results with other developments
in the literature, such as the GPU implementation of the pixel
purity index (PPI) algorithm [12] and other geometrical
techniques [13], we can outline the following aspects. In [12]
tests are conducted on the AVIRIS World Trade Center image,
implementing a parallel unmixing chain on different
architectures such as a Beowulf cluster at NASA's Goddard
Space Flight Center, an heterogeneous network made up 16
workstations mounting Intel Xeon, AMD Athlons and SUNW
UltraSparc processors, a Xilinx Virtex-II FPGA, and a
NVIDIA Tesla C1060 GPU. The best result is obtained by the
Beowulf cluster, which took 4.98 s to perform the full
unmixing process, using 256 Intel Xeon nodes working at 2.4
GHz. Our execution time is lower than this one. Moreover, it
must be highlighted that we are using a desktop system, which
is much less expensive in terms of cost and maintenance. In

TABLE II
EXECUTION TIMES FOR SYNTHETIC HYPERSPECTRAL IMAGES. IN BRACKETS

THERE IS THE SPEED UP WITH RESPECT TO MATLAB VERSION

Pixel
number

Bands p̂ MATLAB
[s]

BLAS
[s]

CUDA and
OpenMP

[s]

2000 224 15 0.430
0.390

(1.10x)
0.412

(1.04x)

10000 224 15 0.894
0.785

(1.13x)
0.515

(1.73x)

20000 224 15 1.735
1.320

(1.31x)
0.615

(2.82x)

50000 224 15 3.996
2.125

(1.88x)
0.920

(4.34x)

75000 224 20 4.528
3.246

(1.39x)
1.173

(3.86x)

100000 224 20 6.327
5.426

(1.16x)
1.499

(4.22x)

200000 224 20 15.421
9.360

(1.64x)
2.563

(6.01x)

500000 224 25 32.963
29.250
(1.12x)

5.856
(5.63x)

TABLE III
EXECUTION TIMES FOR REAL HYPERSPECTRAL IMAGES

Image
Pixel

number
Bands p̂

CUDA and
OpenMP

[s]
Hydice 4096 169 18 0.188
Cuprite 47750 188 18 0.631

WTC 314368 224 23 3.625
Pavia 1024000 102 58 5.312

[13] tests have been performed using the AVIRIS Cuprite
image, using a system made up of two Quad Core Intel Xeon
working at 2.53 GHz with 12 physical cores, a NVIDIA
GeForce GTX 580 GPU and a NVIDIA Tesla C1060 GPU.
The best results were obtained by the first GPU, which took
about 0.6 seconds to perform calculations. This time is very
close to ours, but we implemented more recent unmixing
techniques, thus achieving a better precision. In other works,
parallel implementations of HySime and VCA have been
presented [15, 16]. The main difference with our work is that
we developed an optimized version for a more recent GPU
architecture. Moreover, we developed a hybrid parallel
application using both CUDA (GPU) and OpenMP (multi-
core), while in [15] only GPU computing was used. The
memory transfers have also been optimized, exploiting level 1,
2 and 3 CuBLAS functions and trying to perform most of the
calculations in the GPU. For example, the core of the VCA
algorithm has been optimized in terms of finding the minimum
value of a vector. This value is computed directly on the GPU
using a suitable kernel, so we only need to transfer an integer
value to the CPU. The memory transfers took from 20% of the
execution time to 60% (from 0.1 seconds to 3.2 seconds),
according to image dimension. Finally, we have experimental
data that enable us to characterize the computational
complexity of the whole algorithm. In particular, using Nvidia
Visual Profiler on our hybrid implementation with the WTC
image, we found that 35% of the execution time is used for
memory transfers. The remaining GPU time is used mainly for
the cublasDgemm and the cublasSgemm that occupy,
respectively, 25% and 15% of the total execution time. To
conclude this section, we emphasize that the main limitation
of employing GPU technology in spaceborne missions is
related to power consumption, since a GPU like the one used
in this study has a power consumption of up to 200 W. This
issue will be probably solved in future GPU generations, since
limiting power consumption is an important objective of GPU
vendors such as NVidia for allowing the scientific community
to use their devices in embedded applications. Moreover,
memory communication is a well-known performance
bottleneck, but this problem could be solved using a system
where the memories of the CPU and GPU are unified.

V. CONCLUSIONS AND FUTURE LINES
In this paper we presented a hybrid CPU-GPU parallel
implementation of a hyperspectral unmixing chain made up of
the HySime algorithm for estimating the number of
endmembers, the VCA for identifying the endmember
signatures, and unconstrained abundance estimation. The
parallel implementation exploits hybrid parallelization, using
both CUDA and OpenMP. The parallel implementation has
been tested on different synthetic image sizes, on an Intel i7
CPU connected with a NVIDIA Kepler GPU. The parallel
unmixing chain fully meets real-time constraints, since a
regular AVIRIS scene acquired in 5 seconds is processed in
about 3.6 s. As future research we are planning on performing
optimizations of other hyperspectral analysis algorithms for

classification and compression using a hybrid CPU-GPU
framework such as the one presented in this contribution.

ACKNOWLEDGMENT

The authors gratefully acknowledge NVidia Corporation for
the donation of the NVidia Kepler GPU used for this research.

REFERENCES
[1] R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson,

B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R.
Olah and O. Williams, "Imaging spectroscopy and the airborne
visible/infrared imaging spectrometer," Remote Sens. Environ., 65(3),
pp. 227-248, Sep. 1998.

[2] T. Stuffler, K. Förster, S. Hofer, M. Leipold, B. Sang, H. Kaufmann, B.
Penné, A. Mueller and C. Chlebek, "Hyperspectral imaging - An
advanced instrument concept for the EnMAP mission," Acta Astronaut.,
65(7/8), pp. 1107-1112, Oct./Nov. 2009.

[3] J. S. Pearlman, P. S. Barry, C. C. Segal, J. Shepanski, D. Beiso and S. L.
Carman, "Hyperion, a space-based imaging spectrometer," IEEE Trans.
Geosci. Remote Sens., 41(6), pp. 1160-1173, Jun. 2003.

[4] N. Keshava and J. F. Mustard, "Spectral unmixing," IEEE Signal
Process. Mag., 19(1), pp. 44-57, Jan. 2002.

[5] J. M. Bioucas-Dias, A. Plaza, N. Dobigeon, M. Parente, Q. Du, P.
Gader, J. Chanussot, "An overview on hyperspectral unmixing:
Geometrical, statistical, and sparse regression based approaches," IEEE
J. Sel. Topics Appl. Earth Observ. Rem. Sens., 5(2), pp. 354-379, 2012.

[6] R. Heylen, M. Parente and P. Gader, "A review of nonlinear
hyperspectral unmixing methods," IEEE J. Sel. Topics Appl. Earth
Observ. Remote Sensing, vol. 7, no. 6, pp.1844-1868, 2014.

[7] L. L. Scharf, "Statistical Signal Processing, Detection Estimation and
Time Series Analysis," Reading, MA, Addison-Wesley, 1991.

[8] J. Bruske and G. Sommer, "Intrinsic dimensionality estimation with
optimally topology preserving maps," IEEE Trans. Pattern Anal. Mach.
Intell., 20(5), pp. 572-575, May 1998.

[9] C. Chang and S. Wang, "Constrained band selection for hyperspectral
imagery," IEEE Trans. Geosci. Rem. Sens., 44(6), pp. 1575-1585, June
2006.

[10] J. M. P. Nascimento and J. M. Bioucas-Dias, "Hyperspectral subspace
identification," IEEE Trans. Geosci. Remote Sens., 46(8), pp. 2435-
2445, Aug. 2008.

[11] A. Plaza, J. Plaza, A. Paz and S. Sanchez, "Parallel hyperspectral image
and signal processing," IEEE Signal Process. Mag., vol 28, no. 3, pp.
119-126, 2011.

[12] A. Plaza, Q. Du, Y. L. Chang, R. L. King, “High Performance
Computing for Hyperspectral Remote Sensing,” IEEE J. Sel. Topics
Appl. Earth Observ. Remote Sens., 4(3), pp. 528-544, Sept. 2011.

[13] S. Bernabé, S. Sanchez, A. Plaza, S. López, J. A. Benediktsson and R.
Sarmiento, "Hyperspectral Unmixing on GPUs and Multi-Core
Processors: A comparison," IEEE J. Sel. Topics Appl. Earth Observ.
Remote Sens., 6(3), pp. 1386-1398, 2013.

[14] C. I. Chang and Q. Du, "Estimation of number of spectrally distinct
signal sources in hyperspectral imagery," IEEE Trans. Geosci. Remote
Sens., 42(3), pp. 608-619, 2004.

[15] S. Bernabé, S. López, A. Plaza and R. Sarmiento, "GPU implementation
of an automatic target detection and classification algorithm for
hyperspectral image analysis," IEEE Geosci. And Remote Sens. Letters,
10(2), pp. 221-225, 2013.

[16] C. I. Chang, "Hyperspectral Data Processing: Algorithm Design and
Analysis", John Wiley & Sons Inc, 2013

[17] J. M. P. Nascimento and J. M. Bioucas-Dias, "Vertex component
analysis: A fast algorithm to unmix hyperspectral data," IEEE Trans.
Geosci. Remote Sens., 43(4), pp. 898-910, Apr. 2005.

[18] E. Torti, M. Acquistapace, G. Danese, F. Leporati and A. Plaza, "Real-
Time Identification of Hyperspectral Subspaces," IEEE J. Sel. Topics
Appl. Earth Observ. Remote Sens., 7(6), pp. 2680-2687, 2014.

[19] A. Barberis, G. Danese, F. Leporati, A. Plaza and E. Torti, "Real-Time
Implementation of the Vertex Component Analysis Algorithm on
GPUs," IEEE Geosci. and Rem. Sens. Letters, 10(2), pp. 251-255, 2013.

[20] NVIDIA Corporation, "NVIDIA's Next Generation CUDATM Compute
Architecture: Kepler GK110", Whitepaper available online.

