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ABSTRACT 

Background and Objectives: Intrauterine Growth Restriction (IUGR) is a fetal condition defined as the 

abnormal rate of fetal growth. The pathology is a documented cause of fetal and neonatal morbidity and 

mortality. In clinical practice, diagnosis is assessed at birth and may only be suspected during pregnancy. 

Therefore, designing an accurate model for the early and prompt identification of pathology in the antepartum 

period is crucial in view of pregnancy management. 

Methods: We tested the performance of 15 machine learning techniques in discriminating healthy versus 

IUGR fetuses. The various models were trained with a set of 12 physiology based heart rate features extracted 

from a single antepartum CardioTocographic (CTG) recording. The reason for the utilization of time, 

frequency, and nonlinear indices is based on their standalone documented ability to describe several 

physiological and pathological fetal conditions. 

Results: We validated our approach on a database of 60 healthy and 60 IUGR fetuses. The machine learning 

methodology achieving the best performance was Random Forests. Specifically, we obtained a mean 

classification accuracy of 0.911 [0.860, 0.961 (0.95 confidence interval)] averaged over 10 test sets (10 Fold 

Cross Validation). Similar results were provided by Classification Trees, Logistic Regression, and Support 

Vector Machines. A features ranking procedure highlighted that nonlinear indices showed the highest 

capability to discriminate between the considered fetal conditions. Nevertheless, is the combination of 

features investigating CTG signal in different domains, that contributes to an increase in classification 

accuracy. 

Conclusions: We provided validation of an accurate artificially intelligence framework for the diagnosis of 

IUGR condition in the antepartum period. The employed physiology based heart rate features constitute an 

interpretable link between the machine learning results and the quantitative estimators of fetal wellbeing. 

 

Keywords— Machine learning and statistical models; Fetal Heart Rate monitoring; Predictive 

Analytics; Physiology-based features; Multivariate analysis; 
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1. INTRODUCTION 

 

Nowadays, antepartum fetal monitoring is a routine methodology adopted in clinical practice to assess 

fetal wellbeing throughout pregnancy, mainly in the context of pathological fetal state identification [1,2]. 

The most used technique consists in recording the Fetal Heart Rate (FHR) by means of the CardioTocography 

(CTG) [3]. The rationale for its utilization relies on the fact that it has been extensively shown how FHR 

changes can anticipate and/or even predict fetal distress as well as adverse conditions before the insurgence 

of any other symptom [4].  

CTG analysis has been progressively shifting from pure visual observation of the traces to its 

computerized version [5], which consists of extracting various quantitative parameters associated with fetal 

conditions [6,7]. Morphological [8], frequency [7,9], and nonlinear/complexity indices [10–13] are usually 

thought to summarize the various pathophysiological aspects of FHR. 

Despite the large availability of FHR quantitative indicators, a very limited portion of fetal-related 

literature addresses the investigation of fetal surveillance by means of multivariate approaches. If this latter 

consideration was to be attributed to scarce data availability in the past, recent years have seen the endless 

growth of data generated during patients’ care path [14]. Additionally, the technological advancements in 

parallel with novel parameters contributed to an increase in the amount of available data related to fetal 

monitoring [15]. 

As a result, if adding more measurements could hopefully contribute to better insights into 

pathophysiological systems, inevitability it increases the complexity of data analysis as well as the 

interpretation of the extracted results. Machine learning methodologies appear as a possible solution to this 

issue, as they can face large and complex datasets [15,16]. However, it is also to be underlined that when a 

subset of features is automatically extracted from a large amount of data, the interpretation of the results is 

usually difficult to be linked to the a priori knowledge of the underlying physiological mechanisms.  

 

In the presented study, we designed a two-step methodology for the early identification of a pathological 

fetal state, namely: Intrauterine Growth Restriction (IUGR). The implementation was achieved by deriving 

features from a single antepartum CTG trace by means of advanced signal analytics. Subsequently, various 

machine learning techniques were trained with the extracted FHR features. The rationale for employing such 

physiology based heart rate features aimed to realize a tool capable of providing an interpretable link between 

the machine learning results and the physiological mechanisms of fetal regulation. Moreover, the 

specification of early identification is achieved by removing the influence of gestational age (GA) at which 
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the available traces were acquired, thus providing a reliable and effective set of tools for the antenatal IUGR 

discrimination. 

As a proof of concept of an impactful and clinically relevant application of artificial intelligence in the 

field of fetal monitoring, in this paper we compared the validity and performances of several machine learning 

techniques for the classification of healthy fetuses versus fetuses affected by IUGR. The former pathology 

along with small for gestational age (SGA) represent the second cause of perinatal mortalities, contributing 

to 52% of stillbirths [17]. Moreover, the IUGR condition has been extensively reported as affecting perinatal 

and postnatal development under several different aspects [18]. 

As reported in [19], the key point in IUGR management is the early identification of the pathology to the 

aim of improving both the time setting and the management of delivery. Unfortunately, methodologies 

towards a reliable and timely detection of IUGR condition are still pending, to the point where the assessment 

can only be performed at birth [19]. As a consequence, the overall outcome of IUGR babies has not changed 

much over time [19]. The crucial challenge which is yet to be addressed is aimed to develop reliable tools 

which ideally would be able to provide antenatal identification of IUGR condition, starting from the available 

and clinically recorded data.  

2. MATERIALS AND METHODS 

2.1 Data collection and subject selection 

In a collaboration framework among the Ob-Gyn Clinics at the Azienda Ospedaliera Universitaria 

Federico II, Napoli, Italy, Biomedical Engineering Labs of Politecnico di Milano, Italy, and Università di 

Pavia, Italy, FHR traces were collected in a large population of pregnant women.  

Among the available CTG recordings, we asked clinicians to select 120 CTG recordings: 60 Healthy and 

60 IUGR fetuses. The left-hand side of Fig. 1 displays a 30-minutes segment for a healthy (top) and an IUGR 

(bottom) CTG traces. The prenatal fetal condition for each subject was verified after delivery to confirm 

group membership previously assessed at the CTG timepoint. Healthy fetuses at birth presented the following 

characteristics: weight and abdominal circumference ±10% with respect to the normative ranges and Apgar 

score = 10. IUGRs were identified based on anamnesis and showed weight below the 10th percentile for the 

corresponding GA, abdominal circumference below the 10th percentile, and Apgar score < 8. The average 

duration of the FHR tracing was > 30 minutes for both healthy fetuses and IUGRs to contain both activity 

and quiet periods of the fetus. FHR recordings were collected in a controlled clinical environment, with the 

pregnant woman lying on a bed during the standard protocol of non-stress test. The average GA at CTG 

measurement for healthy fetuses was 34.78±0.53 weeks (Inter Quartile Range (IQR) = 34-35) whereas for 

IUGR fetuses was 32.27±2.79 weeks (IQR = 30-34). The reason for a nonoverlap in terms of GA between  
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the two groups relies on the fact that in clinical practice normal pregnancies are usually monitored only after 

the 33rd week of gestation whereas earlier assessments are usually available when considering suspected 

IUGR cases. 

2.2 Selection and statistical preprocessing of features 

In previous works, we approached the identification of IUGR fetuses by means of various FHR-based 

encompassing time domain, frequency, and nonlinear domains.   

Time domain indices were computed as suggested by Arduini et al. [8]: Delta, Interval Index (II), Short 

Term Variability (STV), and Long Term Irregularity (LTI). The former three parameters were computed 

dividing the signal in windows of length equal to 60 s, LTI in windows of length equal to 180 s.  

The frequency content of the FHR signal was analyzed by means of Power Spectral Density (PSD) [20]. 

This technique provide the power associated with specific frequency components of FHR, as described in 

detail in [7]. In this study, the power associated to Low Frequency band (LF_pow) is computed in the 

Fig. 1.  Left panel display two 30-minutes CTG recordings of a healthy (top) and an IUGR (bottom) subjects respectively. On 
the right-hand side, the corresponding time series of time domain features are shown. Delta, II, and STV are computed by 
considering 1-minute window, thus resulting in 30 estimates throughout the reported recording. On the other hand, a 3-minutes 
window is employed in STV computations, thus 10 values are obtained.  
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frequency range (0.03-0.15 Hz), Movement Frequency power (MF_pow) in the frequency range (0.15-0.5 

Hz), High Frequency power (HF_pow) in the frequency range (0.5-1 Hz). Powers in the different bands have 

also been combined to extract the ratio LF/(MF+HF).   

Regarding nonlinear features of the FHR signal, we estimated Approximate Entropy (ApEn) [10], Lempel 

Ziv Complexity (LZC) with binary alphabet [21], and Phase Rectified Signal Average (PRSA) features [22]. 

Nonlinear FHR measures were computed considering nonoverlapping windows of length equal to 180 s, with 

the exception of PRSA features, namely APRS and DPRS which consist of a single estimate since they are 

computed based on the entire recorded CTG trace. A detailed and more extensive description of the computed 

indices is reported in the Supplementary Materials and in the Data Brief Article. 

 

The complete procedure of parameter extraction produced N=12 indices, 10 of which are extracted by 

averaging the corresponding time series (extracted by subdividing the FHR recording in windows), and 2 of 

them are global parameters computed considering the whole recording at once. The right-hand side of Fig. 1 

displays an example of time domain parameters. The length of each series is equal to the number of available 

windows (number of acceptable intervals) in the original CTG trace after performing the quality assessment. 

As reported in [7], the majority of FHR parameters can noticeably vary depending on the fetal state (quiet or 

activity). In order to reduce such intrasubject source of variability and considering that fetal state annotation 

cannot be performed routinely in clinical practice, the average of the parameters of each time series was 

calculated. This approach is justified by the fact that our database contains recordings with both activity and 

quiet periods. 

 

The reason behind the selection of this restricted subset of features relies on their individual peculiar 

ability in discriminating IUGRs and normal fetuses as described in the following. To summarize: the a priori 

knowledge parameters to be employed as the starting set of features for further analysis are: Delta, II, STV, 

LTI (time domain) [8]; LF_pow, MF_pow, HF_pow, LF/(MF+HF) (frequency domain) [7]; ApEn(1, 0.1) 

[10], LZC(2, 0) , Acceleration Phase Rectified Slope (APRS) and Deceleration Phase Rectified Slope (DPRS) 

(nonlinear domain) [23].  

Parameters employed in the computation of ApEn were m=1 and r=0.1 thus resulting in the feature 

ApEn(1, 0.1). LZC was computed within a binary approach, having the factor value (p) set to zero, the 

computed quantity is reported as LZC(2, 0). Additional information regarding LZC applied to FHR analysis 

may be found in [24]. The last nonlinear technique employed to investigate FHR was the so-called PRSA 

method, introduced by Bauer [22]. In this context, Acceleration Phase Rectified Slope (APRS) and 

Deceleration Phase Rectified Slope (DPRS) were computed as reported in [25].  
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All preprocessing operations on the extracted features were performed by R, a free software environment 

for statistical computing [26]. A very limited portion of the total number of subjects (8 out of 120) presented 

some missing features (the percentage of missing features is equal to 1.5% of the total number of features). 

In order to account for features missingness, we employed the R package missForest [27]. It is suitable to be 

used in the case of mixed-type data. The imputation procedure is based on the training of a random forest 

which is capable of predicting the missingness based on the observed and available data [27]. 

The majority of extracted features showed evidence of intermediate correlation accordingly to the 

definition by Cohen [28] (0.30 < |Spearman’s Rank Correlation coefficient (ρ)| < 0.50) with the GA at which 

trace was acquired (GA_CTG). This assumption stands considering both the whole cohort but even when 

limiting the analysis to the considered IUGR population as reported in Table I.  

 

Therefore, to address the dependence of measures with respect to time of the assessment, all variables 

were adjusted using a Robust Linear Regression (RLR) and the derived residuals were employed in the 

further analyses to provide machine learning classifier with features independent from the GA at which the 

CTG traces were recorded. Results of correlation between parameters (unadjusted and adjusted) and 

GA_CTG are reported in Table I. As an example, distribution of Unadjusted (U) and Adjusted (A) of four of 

the further employed covariates are shown in Fig. 2 along with the corresponding regression lines.  

TABLE I 
SPEARMAN’S RANK CORRELATION COEFFICIENT BETWEEN 

EXTRACTED PARAMETERS AND GA_CTG —  
UNADJUSTED (U) AND ADJUSTED (A) DISTRIBUTIONS 

* indicates statistically significant correlation p < 0.05 

  Correlation Coefficient ρ 
 Unadjusted (U) Adjusted (A) 

Parameter Overall Healthy IUGR Overall Healthy IUGR 

Delta 0.3295 * -0.1000 0.2128 0.0117 -0.0184 -0.0339 

II 0.0024 0.0286 -0.1455 0.0174 0.0061 -0.0412 

STV 0.4170 * -0.0388 0.3505 * 0.0178 -0.0388 -0.0399 

LTI 0.3030 * -0.1266 0.0937 0.0103 -0.0429 -0.0101 

LF_pow 0.1684 -0.0265 -0.1254 0.0393 0.0143 0.0052 

MF_pow -0.0286 -0.0122 0.1120 -0.0017 0.0347 -0.0124 

HF_pow -0.2407 * -0.0041 -0.0732 -0.0544 -0.0408 -0.0049 

LF/(MF+HF) 0.1684 -0.0265 -0.1254 0.0498 -0.0653 -0.0092 

ApEn(1, 0.1) 0.2313 * 0.0551 0.1527 0.0083 0.0245 -0.0288 

LZC(2, 0) 0.2310 * -0.2799 * 0.0204 0.0839 -0.1556 0.0429 

APRS 0.4112 * 0.0408 0.2502 0.0147 0.0184 -0.0283 

DPRS -0.4896 * -0.0408 -0.3478 -0.0152 0.0163 0.0087 
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2.3 Multivariate Analysis 

In this investigation, we deepened the preliminary results obtained by analyzing the same database 

analyzed in [29]. While our previous work was mainly focused on the comparison between the performances 

of univariate versus multivariate classifiers, in this paper we investigate within a more detailed approach the 

possible influence of GA over the performances of machine learning methodologies and their feature 

robustness and insensitivity to GA_CTG. Moreover, the more precisely conducted analysis on feature space 

will provide validation for the utilization of physiology based heart rate features for the early identification 

of IUGR pathology. As a general consideration, multivariate analysis was designed to search for an optimal 

decision rule in the multidimensional space of the parameters to predict the class of interest, namely healthy 

versus IUGR. A complete roadmap from CTG signal to binary classification is depicted in Fig. 3. 

Fig. 2.  Scatterplots showing Delta, STV, HF_pow, APRS distributions as a function of GA_CTG. The unadjusted-distribution 
graphs show the regression lines for Healthy (dashed), IUGR (twodash), and overall population (solid) for the U set. The 
adjusted-distribution graphs display the A set distribution and the derived regression lines (dotted). In the latter case, the 
absence of any trend (after performing RLR) is reflected in a single regression line (dotted) for the three distributions.  
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Several multivariate models were employed towards to aim of identifying the most reliable technique for 

predicting IUGR condition. The employed machine learning techniques and the corresponding employed R 

packages are reported in Table II. 

The following algorithms were applied:  

Logistic Regression (LR): is a regression model where the probability of a class of interest is obtained as the 

results of a logistic function provided with a linear combination of the features. The general formulation for 

Logistic Regression is expressed in Equation 1: 

𝑃(𝑦|𝒙) =
𝑒 ∑

1 + 𝑒 ∑
  (1) 

Fig. 3. Machine learning approach to the classification of antepartum fetal heart rate signal. Top panel: from signal to feature 
extraction; middle panel: feature processing, imputation of missing parameters, feature space reduction based on physiological 
knowledge; bottom panel: machine learning techniques and validation of performances. 
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where y is a target class (Healthy versus IUGR), 𝑥  are the available features, 𝛼 and 𝛽s are the regression 

coefficients estimated by the algorithm. The method, as formulated in the previous Equation 1 generates a 

linear decision boundary, i.e. a hyperplane in the multidimensional space.  

LR can be utilized including all covariates (LR), namely the whole set of previously extracted parameters 

or coupled with a features selection algorithm called stepwise selection of informative features (step function) 

[30], allowing (LR-SW-INT) or not (LR-SW) for pairwise interactions between features [31]; 

Within the family of approaches based on regression we also employed RIDGE regression for binary 

outcomes (RIDGE) [32]; elastic net regression for binary outcomes with different alpha settings (alpha = 

0.25 (ENET 0.25), alpha = 0.50 (ENET 0.5), alpha = 0.75 (ENET 0.75) [33]; and Least Absolute Selection 

and Shrinkage Operator for binary outcomes (LASSO) [34]. For RIDGE, ENET and LASSO regressions, the 

optimal lambda parameter was computed by considering each training set separately (as described in the 

following) and the same seed was imposed for each analysis.  

Naïve Bayes (NB): is a classification algorithm based on the Bayes theorem. NB assumes that the 

attributes  𝑥  are conditionally independent given the class y, as formulated in Equation 2: 

𝑃(𝑦|𝒙)  ∝ 𝑃(𝑦) 𝑃(𝑥 |𝑦) (2) 

   

Despite these rather simplistic assumptions, NB often outperforms more sophisticated machine learning 

TABLE II 
TESTED MACHINE LEARNING TECHNIQUES, THEIR 

CORRESPONDING ACRONYMS, AND EMPLOYED R PACKAGES 

Machine Learning Technique Acronym R package 
Logistic Regression including all 
covariates  

LR stats 

Logistic Regression, stepwise 
feature selection and pairwise 
interactions between features  

LR-SW-INT stats 

Logistic Regression, stepwise 
feature selection and without 
pairwise interactions between 
features  

LR-SW stats 

RIDGE regression  RIDGE glmnet 
Elastic NET, alpha = 0.25  ENET 0.25 glmnet 
Elastic NET, alpha = 0.50  ENET 0.5 glmnet 
Elastic NET, alpha = 0.75  ENET 0.75 glmnet 
Least Absolute Selection and 
Shrinkage Operator  

LASSO glmnet 

Naïve Bayes  NB e1071 
Classification Trees  CT rpart 
Random Forests  RF randomForest 
Support Vector Machines, linear 
kernel  

SVM-LIN e1071 

Support Vector Machines, 
polynomial kernel  

SVM-POLY e1071 

Support Vector Machines, radial 
kernel 

SVM-RAD e1071 

Support Vector Machines, 
sigmoid kernel  

SVM-SIGM e1071 
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algorithms. This is due to the fact that although the individual class density estimates may be biased, the 

assumption of feature independence (given the class variable) is not effectively affecting the posterior 

probabilities [35] of belonging to a specific class. 

Classification Trees (CT): are widely used in the machine learning field and they consist of a set of rules 

that defines a tree-like structure, in which branches represent different decisional paths and terminal nodes 

(leaves) corresponds to the assignment to a target class. CT generates a set of nonlinear decision boundaries 

through piecewise constant functions in the multidimensional space. In this work, the information gain was 

employed as the splitting criterion for CT [36].  

Random Forests (RF): are ensemble classifiers that consist of a variable number of CTs grown based on 

a set of attributes selected randomly from the complete set of parameters; each CT contributes with its own 

classification of the analyzed examples. As a result, the final classification is provided by a voting approach, 

which considers the complete set of CTs. Thanks to their scalability and generalization performance, RFs are 

increasingly exploited in clinical research [37]. 

Support Vector Machines (SVM): are a family of classifier capable of mapping the training samples into 

high-dimensional attributes space, to the aim of defining a hyperplane that maximizes the distance between 

observations belonging to the different classes. If the training set cannot be separated by a linear boundary, 

the optimal hyperplane that best discriminates between/among examples of different class labels is identified 

resorting to a suitable space transformation through kernel functions. In this work, we employed SVMs with 

linear kernel (SVM-LIN), polynomial kernel (SVM-POLY), radial kernel (SVM-RAD), and sigmoid kernel 

(SVM-SIGM) [38]. 

From an implementation point of view, models were learned on the training sets using the default settings. 

The available data were split into training and testing sets according to a 10 Folds Cross Validation (CV). 

The training sets were employed to the aim of evaluating the performances of classification algorithms and 

different feature selection while the corresponding test sets were used to test the relative discriminative 

performances. The above-described machine learning methods were tested on either the U and A set of 

features towards to aim of comparing the two approaches and identifying if GA_CTG had a significant effect 

on IUGR classification.  

2.4 Multivariate model evaluation 

In this work, an IUGR subject correctly classified as such is counted as a true positive (TP), and a healthy 

subject correctly classified is counted as a true negative (TN). On the contrary, an IUGR subject erroneously 

classified as healthy is counted as a false negative (FN), and a healthy subject erroneously classified as IUGR 

is counted as a false positive (FP).  
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The performances of each model are reported in terms of four different figures of merit, namely 

Classification Accuracy: 𝐶𝐴 = (𝑇𝑃 + 𝑇𝑁)/(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁), sensitivity: 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃/(𝑇𝑃 +

𝐹𝑁), specificity: 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁/(𝑇𝑁 + 𝐹𝑃), positive predictive value: 𝑃𝑃𝑉 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃), and 

negative predictive value: 𝑁𝑃𝑉 = 𝑇𝑁/(𝑇𝑁 + 𝐹𝑁). The Area Under the Receiver Operating Characteristic 

(AUROC) was estimated by averaging the results obtained by providing the model with different test sets, 

namely the ones obtained using 10 Folds CV procedure. Since the healthy/IUGR ratio was 1, model ranking 

was performed based on CA. 

3. RESULTS  

Multivariate analysis has been performed considering alternatively the U and A set of features. Prior to 

multivariate testing, a preliminary analysis of the correlation between covariates has been performed. As a 

general consideration, features to be provided to any machine learning algorithm should be highly correlated 

with the classes to be distinguished but not be highly correlated with one another [39]. By way of example, 

values of correlation for the A set of covariates are reported in Table III. 

 

The correlation coefficient values in each domain are on average higher than comparing feature 

correlation in the same area. The former result is related to the fact that the proposed features have the ability 

to grasp different characteristics of FHR, thus their information content is different, resulting in a low value 

TABLE III 
SPEARMAN’S RANK CORRELATION COEFFICIENT COMPUTED ON 

THE ADJUSTED SET OF COVARIATES 
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DPRS -0.60 -0.03 -0.62 -0.42 -0.37 0.22 0.29 -0.37 -0.03 -0.26 -0.84 

Delta 0.03 0.93 0.43 0.4 -0.17 -0.45 0.40 0.06 0.33 0.57 

II -0.10 0.03 -0.11 0.15 0.01 -0.11 0.01 0.13 -0.07 

STV 0.38 0.36 -0.13 -0.41 0.36 0.02 0.31 0.57 

LTI 0.29 -0.18 -0.21 0.28 0.08 0.17 0.37 

LF_pow -0.72 -0.75 0.99 -0.27 0.24 0.33 

MF_pow 0.15 -0.72 0.20 0.07 -0.27 

HF_pow -0.75 0.32 -0.39 -0.18 

LF/(MF+HF) -0.27 0.26 0.33 

ApEn(1, 0.1) 0.14 0.02 

LZC(2, 0) 0.19 
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of correlation. Regarding high values of correlation among indexes of the same domain, a clear example is 

the parameter LF/(MF+HF) which is highly correlated to the other frequency extracted indexes (LF_pow, 

MF_pow, and HF_pow). Based on this criterion, the ratio LF/(MF+HF) was excluded from the set of 

employed parameters, resulting in a reduced parameter space of 11 features: Delta, II, STV, LTI (time 

domain); LF_pow, MF_pow, HF_pow (frequency domain); ApEn(1, 0.1), LZC(2, 0), APRS, DPRS 

(nonlinear domain).  

Table IV and Table V report the mean discriminative performances of the top five machine learning 

techniques in classifying the test sets (10 Folds CV) for U and A set of covariates respectively. The average 

performances in the first case are: CA=0.8812, Sensitivity=0.8912, Specificity=0.8704, PPV=0.8908, 

NPV=0.8988, whereas on the second one: CA=0.8296, Sensitivity=0.8544, Specificity=0.8048, 

PPV=0.8320, NPV=0.8666. 

The two machine learning techniques which outperformed, showing the best discriminative performances 

were: RF_U: mean CA=0.911 and CT_U: CA = 0.911 when considering the model learned on U covariates. 

In the case of adjusted covariates by GA_CTG, RF_A: mean CA=0.855, and LR-SW_A: mean CA=0.833, 

showed the best CA among the proposed machine learning models. 

Focusing the attention on the comparison of AUROC for RF_U, CT_U, RF_A, and LR-SW_A, no 

statistically significant difference was observed after performing post-hoc tests between models’ AUROC. 

The values of AUROC (averaged over the 10 test sets) for RF_U: AUROC=0.974, CT_U: AUROC=0.892, 

RF_A: AUROC=0.935, and LR-SW_A: AUROC=0.933 are reported in Fig. 4. 

TABLE IV  
MEDIAN (25th, 75th PERCENTILES) OF CLASSIFICATION ACCURACY (CA), SENSITIVITY, SPECIFICITY, POSITIVE AND NEGATIVE PREDICTIVE 

VALUES (PPV AND NPV) FOR ADOPTED MACHINE LEARNING TECHNIQUES LEARNED ON THE UNADJUSTED SET OF COVARIATES. 
MACHINE LEARNING TECHINIQUES ARE SORTED IN DESCENDING ORDER OF CA 

Model CA Sensitivity Specificity PPV NPV 

RF 0.911 (0.860, 0.961) 0.902 (0.820, 0.985) 0.919 (0.819, 1.019) 0.936 (0.859, 1.013) 0.918 (0.852, 0.984) 

CT 0.911 (0.846, 0.975) 0.871 (0.766, 0.976) 0.950 (0.892, 1.008) 0.949 (0.890, 1.009) 0.893 (0.808, 0.978) 

LR-SW 0.867 (0.797, 0.937) 0.900 (0.817, 0.983) 0.833 (0.721, 0.946) 0.859 (0.774, 0.944) 0.900 (0.822, 0.978) 

SVM-RAD 0.867 (0.781, 0.952) 0.850 (0.762, 0.938) 0.883 (0.770, 0.996) 0.893 (0.790, 0.996) 0.856 (0.775, 0.938) 

SVM-POLY 0.850 (0.762, 0.938) 0.933 (0.850, 1.017) 0.767 (0.627, 0.907) 0.817 (0.712, 0.922) 0.927 (0.838, 1.017) 

 

TABLE V  
MEDIAN (25th, 75th PERCENTILES) OF CLASSIFICATION ACCURACY (CA), SENSITIVITY, SPECIFICITY, POSITIVE AND NEGATIVE PREDICTIVE 

VALUES (PPV AND NPV) FOR ADOPTED MACHINE LEARNING TECHNIQUES LEARNED ON THE ADJUSTED SET OF COVARIATES. MACHINE 

LEARNING TECHINIQUES ARE SORTED IN DESCENDING ORDER OF CA 

Model CA Sensitivity Specificity PPV NPV 

RF 0.855 (0.794, 0.916) 0.838 (0.729, 0.947) 0.871 (0.766, 0.976) 0.889 (0.799, 0.980) 0.862 (0.773, 0.951) 

LR-SW 0.833 (0.759, 0.908) 0.867 (0.773, 0.961) 0.800 (0.665, 0.935) 0.835 (0.737, 0.934) 0.870 (0.785, 0.955) 

LR 0.825 (0.743, 0.907) 0.850 (0.731, 0.969) 0.800 (0.665, 0.935) 0.830 (0.730, 0.931) 0.862 (0.766, 0.958) 

SVM-RAD 0.818 (0.738, 0.897) 0.850 (0.719, 0.981) 0.786 (0.687, 0.885) 0.806 (0.723, 0.888) 0.866 (0.756, 0.977) 

LASSO 0.817 (0.716, 0.917) 0.867 (0.744, 0.990) 0.767 (0.627, 0.907) 0.800 (0.687, 0.914) 0.873 (0.761, 0.985) 
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In order to define the final models, RF and LR-SW were learned on the whole set of computed features. 

Nevertheless, features selection procedures for both RF and LR-SW were performed. It is crucial to pinpoint  

 

that investigating the performances of the former machine learning techniques on a reduced feature space 

may be helpful in reducing the amount of FHR extracted parameters within achieving the same level of 

prediction accuracy.  

Regarding RF_U and RF_A, the relative importance of each feature is shown in Fig. 5. Results indicate 

that for the U set of covariates LZC(2, 0), ApEn(1, 0.1), HF_pow, LTI and DPRS caused the greatest decrease 

in terms of CA if removed from the model. Similarly, when considering RF_A, LZC(2, 0), HF_pow, ApEn(1, 

0.1), LTI and LF_pow were identified as most explanatory variables for the model. It is crucial to highlight 

Fig. 4.  Mean AUROC (95% CI) for the multivariate analysis: RF_U, CT_U, RF_A, and LR-SW_A. False positive rate is 
defined as FP/(FP+TN) and true positive rate corresponds to sensitivity.  
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that the most explanatory parameters are encompassing all the investigated domain: time, frequency and 

nonlinear. The latter assumption is valid for both RF_U and RF_A enforcing the idea that combining FHR 

features belonging to different domains provides a more comprehensive and extensive snapshot of the 

interacting mechanism leading to the IUGR condition.  

 

Coming to the second-best performing machine learning techniques, CT_A identifies the same covariates 

previously found for RF_U as most explanatory. In the case of LR-SW_U, the covariates producing the 

highest decrease in accuracy if excluded are: LTI, LZC(2, 0), STV, LF_pow, HF_pow, ApEn(1, 0.1), 

MF_pow. Consistently with RF, despite the different ranking of importance, CT_A and LR-SW_U select a 

reduced set of variables encompassing the three different domains. Fig. 5 displays variables ranked in 

descending order of mean decrease in accuracy. It is crucial to pinpoint that RF methodology appears stable 

and quite insensitive to covariance dependence upon GA_CTG. LZC(2, 0) is identified as producing the most 

impactful decrease in accuracy by both RF_U and RF_A. The remaining covariates are on average ranked in 

a similar fashion by the two models, strengthening the limited impact of GA_CTG on classification accuracy. 

Fig. 5.  Variables importance according to the RF classifier on the whole cohort and associated decrease in model CA 
when progressively excluding features. Top bar graph is relative to RF_A and bottom one to RF_U. 
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On the opposite, it is peculiar to observe the dramatic drop of performances when comparing CT_U and CT_A. 

In particular, CT_U is ranked as the second-best performing machine learning technique while CT_A is the 

least performing one (CA=0.771, Sensitivity=0.757, Specificity=0.786, PPV=0.805, NPV=0.802) followed 

by SVM-SIGM only (CA=0.702, Sensitivity=0.705, Specificity=0.700, PPV=0.709, NPV=0.710). In the 

latter case, GA_CTG plays a fundamental role and it becomes evident that the correction for such dependence 

is mandatory to provide accurate discrimination between healthy and IUGR fetuses. Regarding the remaining 

machine learning techniques, namely SVM and ENET, yet not giving the best performances, they appear less 

dependent upon GA_CTG providing comparable results in terms of CA when employing either U or A set 

of covariates. 

4. DISCUSSION 

The presented investigation provides evidence of a feasible application of machine learning techniques for 

the early identification of IUGR condition in the antepartum period. Such design appears as radically different 

with respect to the up-to-date clinical practice where IUGR condition is assessed at birth and only suspected 

in the antepartum period. The rationale for the utilization of the presented physiology based heart rate features 

relies on the fact that these features as standalone parameters had shown enhanced discrimination power in 

classifying healthy versus IUGR fetuses [21,25,40].   

However, throughout the years it has become clear that a single index cannot be descriptive of all 

pathophysiological processes taking place in the pregnancy period thus the need for multivariate analysis of 

FHR emerged as evident. These are the main reasons contributing to the choice of the use of physiology 

based heart rate features in this investigation. Moreover, our approach demonstrated the independence of 

different machine learning methodologies to the time at which CTG recordings were acquired.  

Coming to the discussion of the results section, it appears evident that both RF_U and RF_A achieved 

adequate performances, thus proposing as a possible candidate as a tool for early discrimination in the context 

of the presented investigation. Random Forest is becoming a popular machine learning technique and it has 

been claimed as particularly accurate and interpretable by several authors [41], [42]. A clear example of 

interpretability of the results is the feature ranking results reported in Fig. 5. Consistently with previous 

findings [40], LZC(2, 0) is associated with the most considerable mean decrease in accuracy. On average, 

IUGR fetuses have been reported as characterized by lower values of  LZC with respect to healthy ones  [25], 

as this is also verified in this analysis. The reported difference is to be attributed to lower complexity of FHR 

for pathological subjects, thus supporting the hypothesis of an unbalance in the autonomic nervous system 

mechanisms in IUGR condition. Similarly, values of ApEn(1, 0.1) are greater in healthy versus IUGR. 

Nevertheless, this entropy index resulted in a lower mean decrease in accuracy accordingly to the reported 

lower discriminative power with respect to LZC measures [40]. Moreover, the corresponding time domain 



 17 

index (LTI) which quantifies FHR variability considering windows of analogous time duration was found 

among the top informative features. As for both LZC(2, 0) and ApEn(1, 0.1), LTI values in healthy are greater 

to the ones for IUGR subjects as previously found in [25]. This latter finding contributes to the hypothesis of 

an impaired ANS regulation in the pathological conditions. Lastly, PRSA-derived index DPRS was found 

significantly greater in IUGR versus healthy. Despite not providing an analogous definition of acceleration 

and deceleration as ones found in the clinical context, the PRSA slope is dependent upon both the amplitude 

and duration of the ANS-related events modulating the FHR [9].  

To summarize, the reported results reinforce the idea that several controlling mechanisms affect HRV, 

acting linearly and nonlinearly. This specifically happens when a pathological condition arises, and the 

analytic frameworks need to merge and combine information coming from different domains to obtain an 

exhaustive and comprehensive description of FHR dynamics. The latter consideration is reflected in the 

obtained findings considering feature ranking in RF, reporting the first five features encompassing the three 

domains of investigation, namely time, frequency, and nonlinear. 

 

5. CONCLUSIONS 

Findings reported in this investigation confirm the importance of a multivariate approach to investigate 

the variety of implications resulting from a pathological condition such as IUGR. The advantages resulted 

by the application of several machine learning techniques rely on: i) easy-to-use model capable of providing 

an early and interpretable antenatal diagnosis of IUGR condition; ii) parameters extracted from routinely 

CTG examination can be fed into the model regardless the considered GA_CTG. The latter novelty is of 

primary importance given that, in nowadays clinical practice, IUGR fetuses are usually monitored far in 

advance with respect to healthy ones so that the proposed model may see its direct translation in the clinical 

field. This opens to further and extensive validation of multi-feature model presented in this work on a large 

already recorded and available dataset. The cutting-edge frontier for the methods described in this work 

would be focusing on tracking the evolution from health condition to pathological state in a patient-specific 

way by integrating heterogeneous data which are dynamically evolving in time.  
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