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Abstract—This paper presents an extension of the Variational
Meshless Method to the calculation of the dispersion diagram of
metallic waveguides including inhomogeneous dielectric regions.
The method is based on the combination of the variational
formulation of a two-dimensional boundary problem and of
the meshless method using radial basis functions. The problem
requires a vector representation of the field, and it leads to a
well-conditioned, real and symmetric eigenproblem, where the
matrices depends on the propagation constant β. By solving the
eigenproblem for several values of β, a spurious-free dispersion
diagram of the guiding structure is obtained. Several structures
are studied to demonstrate the accuracy and reliability of the
proposed technique. The simulation results are compared with
analytical ones, when available, and with those given by a
commercial FEM code, always showing a very good agreement
with a smaller number of unknowns.

Index Terms—Dispersion diagram, eigenproblem, meshless
method, radial basis functions, variational method, waveguide
modes.

I. INTRODUCTION

DURING THE LAST DECADE, the scientific community
has given a lot of attention to the Meshless Method with

Radial Basis Functions (RBFs) [1]–[3]. This technique has
been applied to various kind of physical problems such as
mechanical, fluid-dynamic, astrophysics and others cases [4].
This technique has also been applied to various classes of elec-
tromagnetic problems, e.g. FDTD [5]–[12], boundary prob-
lems [13], scattering and imaging problems [14]–[16], inverse-
scattering [17], [18], and 2D-eigenvalue problems [19]–[27].

The principal advantage of the Meshless Methods is that
they do not require the mesh generation over the domain
under study, which is discretized with spatial nodes instead of
finite elements as in FEM [28]. In fact, the mesh generation
is a time and memory consuming process that sometime re-
quires resources comparable with the solution of the problem.
This characteristic of the Meshless Methods is advisable, in
particular, when including complicated geometries presenting
inhomogeneous materials, discontinuities, or corners. In fact,
in the case of mesh-dependent basis functions, a good quality
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of mesh generation is required to avoid a high interpolation
error on the solution [28]. Furthermore in the time-varying
simulations a frequent re-meshing may be needed. This often
happens in inverse scattering processes, where the use of
the Meshless Methods seems promising for real-time simu-
lations [17].

In spite of the many advantages, when applied to elec-
tromagnetic eigenproblems, the standard Meshless Method
based on radial basis functions (RBFs) presents some limita-
tions [20]. In fact, when a unique value of the shape parameter
is adopted for all the RBFs, the solution critically depends
on the position of the collocation points, in particular on the
boundary of the domain under study [20]. Moreover, a low
accuracy is observed in the evaluation of the first eigensolution
with the Neumann boundary condition [20]. In [26] a very
simple and no-time consuming technique has been proposed
to overcome these issues, which is based on a randomized
definition of the RBFs with a particular statistical distribution
of the shape parameter. Another problem of the Meshless
Method with RBFs is that, in its original form, based on the
Point Matching technique, it leads to a non-symmetric eigen-
problem and, sometimes, to singular matrices, thus making
the problem potentially ill-conditioned [30]. To overcome this
drawback, in [27] the use of the Variational Formulation [28],
[31]–[35] in conjunction with the Meshless Method has been
proposed for the first time for the solution of homogeneous
waveguides. In [27] a novel automatic refinement technique
has also been suggested to add unknowns in the regions of the
domain where there is a rapid-varying behavior of the solution.
This is done keeping the problem well-conditioned after an
arbitrary number of cycles, through a local definition of the
shape parameters of the RBFs. Furthermore, the algorithm
of [27] does not need preconditioning and, for this reason,
it is less time-consuming than the standard meshless method.

In this paper, the extension of the Variational Meshless
Method to the determination of the dispersion diagram of in-
homogeneous guiding structures is proposed and validated. In
the case of inhomogeneous structures, as well-known, a scalar
representation of the field through the Hertz-Debye potentials
is no longer possible as the eigensolutions of the problem
are not separable into TE and TM modes [31]. Therefore,
a vector representation of the field is necessary [28]. The
magnetic field equation is considered, as it was also done for
the electromagnetic tomography of biological tissues [18], and
each field component is represented by using three different
RBFs. The application of the Variational Meshless Method to



LOMBARDI ET AL., EVALUATION OF THE DISPERSION DIAGRAM OF INHOMOGENEOUS WAVEGUIDES BY THE VARIATIONAL MESHLESS METHOD 2

this kind of problem leads to an eigensystem that permits the
evaluation of the dispersion characteristic of the first modes.
As it will be pointed out, this technique leads to a well-
conditioned eigensystem and the number of unknowns needed
to represent the solution is significantly lower than the FEM
counterpart.

An outline of the method was given in [36], and some
examples of its application were also reported in [37]. The
aim of this manuscript is to extend over the conference papers
by providing a more detailed and comprehensive description
of the Variational Meshless Method for inhomogeneous 2D
structures. Therefore, the full development of the algorithm is
reported, and useful information for its implementation into
an efficient computer code are given. Finally, the numerical
results, reported to validate the method and to demonstrate
its capabilities, are widely discussed, including a convergence
analysis and a comparison with both other numerical tech-
niques and theoretical results (when available).

The paper is organized as follows: Section II describes the
basic field theory and its meshless approximation. Section
III discusses the numerical implementation of the variational
formulation of the field, and the embedding of both the
divergence and the boundary conditions in the final eigenvalue
problem. Finally, Section IV reports and discusses significant
numerical examples that permits to appreciate the accuracy
and efficiency of the proposed method.

II. BASIC THEORY

A. Field Equations

Let us consider the inhomogeneous shielded waveguide
shown in Fig. 1, where Ω is the cross section and Γ is its
boundary. With the aim of calculating the dispersion diagram
of the propagating modes, the vector wave equation is imposed
for the magnetic field ~H = ~h(x, y) e−jβz . The propagation
constant β is set, and the value of the wavenumbers at which
the field can propagate are calculated. Since guiding structures
bounded by metallic walls are considered in this paper, the
electric wall boundary condition must be enforced. Moreover,
the divergence-free condition is also enforced to avoid spurious
solutions, as widely discussed in [28], [38]. The problem
reduces to the following set of equations [28]

∇×
(

1

εr
∇× ~H(x, y, z)

)
− k2

0µr
~H(x, y, z) = 0 in Ω (1)

∇ · ~H = 0 in Ω (2)

n̂ · ~H(x, y, z) = 0 on Γ (3)

where k0 = 2πf
√
µ0ε0 is the wavenumber in vacuum, f

is the frequency, µ0 is the vacuum permeability, ε0 is the
vacuum permittivity, and n̂ is the outward normal on Γ
(see Fig. 1). The problem (1) has the following equivalent
variational formulation [28]

F ( ~H) =
1

2

∫
Ω

(
1

εr
∇× ~H · ∇ × ~H − k2

0µr
~H · ~H

)
dΩ (4)

It is noted that all the components of the magnetic field
are continuous also in presence of dielectric discontinuities,
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Fig. 1. Geometry of the cross-section of an arbitrarily shaped waveguide
including different dielectric materials. The CPs where the RBFs are centered
are grouped into internal CPs and boundary CPs.

whereas adopting the equation for the electric field would have
also required to enforce the normal field discontinuity at the
dielectric interfaces.

To determine the dispersion diagram of the inhomogeneous
waveguide, the functional F in (4) must be made stationary.
Beside this, the divergence and the boundary condition are
also applied.

B. Meshless Approximation

The vector magnetic field can be expressed as

~H(x, y, z) = [x̂Hx(x, y) + ŷHy(x, y) + jẑHz(x, y)] e−jβz

(5)
It is noted that the z-component of the field is jHz , as usually
done in the variational approach [28]. In this way, the resulting
numerical problem will involve only real matrices.

Each component of the field is represented as a combina-
tion of RBFs each one centered in a collocation point (CP)
(Fig. 1). Calling hτi (x, y) the RBF centered in the i-th CP,
with τ = x, y, z, the component along the direction τ can be
written as

Hτ (x, y) =

N∑
i=1

aτi h
τ
i (x, y) (6)

It is noted that among the N CPs, there are L internal
collocation points (ICPs) that lie within Ω, and M boundary
collocation points (BCPs) that lie on Γ, as shown in Fig. 1.

Among the various kinds of RBFs (i.e., Gaussian, multi-
quadratic, and inverse quadratic) [1]–[3], in this work Gaussian
RBFs are adopted, which are defined as [26]

hτi (x, y) = e−ξ
τ
i c[(x−xi)

2+(y−yi)2] (7)

where (xi, yi) is the position of the i-th collocation point.

Moreover, the coefficient c is called shape parameter and is
related to the width of the function. Its choice is one of the
most critical aspects of the meshless methods and can be
performed in various manners (see, for instance, [1], [2]). The
most common definition is

c = 1/(σh2) (8)

where

h =

√
AΩ√
N − 1

(9)
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is the average distance between the CPs [12], AΩ is the
total area of the domain Ω, and σ is a parameter typically
selected by using preconditioning algorithms, like the leave-
one-out cross validation (LOOCV) algorithm [2]. Finally, the
parameter ξτi is a random factor generated for each RBF with a
uniform distribution within the interval (0,1). It was introduced
in [26] where it was demonstrated its ability to improve the
accuracy of the solution. Moreover in [27] it was shown that
its use permitted to avoid the time consuming preconditioning
step.

It is noted that the Gaussian RBFs (7) are C∞, and this
allows a simple treatment during their differentiation.

III. NUMERICAL IMPLEMENTATION

A. Matrix Representation of the Variational Problem
Substituting (5) and (6) into (4) gives the following func-

tional to extremize

F (a) =
1

2

[
aTCa− k2aTTa

]
(10)

where

a = [ax1 , a
x
2 , . . . , a

x
N , a

y
1, a

y
2, . . . , a

y
N , a

z
1, a

z
2, . . . , a

z
N ]
T (11)

and

C =


C11 C12 C13

CT
12 C22 C23

CT
13 CT

23 C33

 T =


T 11 0 0

0 T 22 0

0 0 T 33

 (12)

The entries of the N × N sub-matrices Cαβ and T αβ are
given by

C11(i, j) = +

∫
Ω

1

εr

∂hxj
∂y

∂hxi
∂y

dΩ + β2

∫
Ω

1

εr
hxjh

x
i dΩ

C22(i, j) = +

∫
Ω

1

εr

∂hyj
∂x

∂hyi
∂x

dΩ + β2

∫
Ω

1

εr
hyjh

y
i dΩ

C33(i, j) = +

∫
Ω

1

εr

(
∂hzj
∂x

∂hzi
∂x

+
∂hzj
∂y

∂hzi
∂y

)
dΩ

C12(i, j) = −
∫

Ω

1

εr

∂hxj
∂y

∂hyi
∂x

dΩ

C13(i, j) = +β

∫
Ω

1

εr

∂hzj
∂x

hxi dΩ

C23(i, j) = +β

∫
Ω

1

εr

∂hzj
∂y

hyi dΩ

T 11(i, j) = +

∫
Ω

µrh
x
j h

x
i dΩ

T 22(i, j) = +

∫
Ω

µrh
y
j h

y
i dΩ

T 33(i, j) = +

∫
Ω

µrh
z
j h

z
i dΩ

(13)

where the expressions of the first order derivatives are calcu-
lated analytically

∂hτi
∂x

(x, y) = −2ξτi c(x− xi)hτi (x, y)

∂hτi
∂y

(x, y) = −2ξτi c(y − yi)hτi (x, y)
(14)

It is worth noting that due to their definitions C and T are
real, symmetric, and nonsingular. Moreover, the matrix T is
independent on β, whereas the matrix C can be written as

C = C0 + βC1 + β2C2 (15)

where C0, C1, C2 are also β-independent.

B. Matrix Representation of the Divergence Condition

On substitution of (5) and (6) in (2) the following expression
is obtained

∇ · ~H =

N∑
i=1

axi
∂hxi
∂x

+

N∑
i=1

ayi
∂hyi
∂x

+ β

N∑
i=1

azi h
z
i (16)

Applying the Method of Moments (MoM) by using hzj as
test functions, (16) is transformed into the following matrix
equation

Da = 0 (17)

where
D =

[
D11 D12 D13

]
(18)

and the Dαβ are all N ×N matrices and their entries are

D11(i, j) =

∫
Ω

hzj
∂hxi
∂x

dΩ

D12(i, j) =

∫
Ω

hzj
∂hyi
∂y

dΩ

D13(i, j) = β

∫
Ω

hzj h
z
i dΩ

(19)

It is noted that matrix D has dimension N × 3N , and his
nullity is 2N .

For implementation reasons (see Sec. III-E), it is interesting
to note that matrix D can be written as

D = D0 + βD1 (20)

where D0, and D1 are both β-independent.

C. Matrix Representation of the Boundary Condition

On substitution of (5) and (6) in (3) and by applying the
MoM procedure on the boundary Γ (i.e., testing only with
hzj centered on the BCPs) the following matrix equation is
obtained

Ba = 0 (21)

where
B =

[
B11 B12 0

]
(22)

where 0 is the M × N null matrix and Bαβ are M × N
matrices, and their expressions are

B11(i, j) =

∫
Γ

cos(θo)
[
hzj (xo, yo)h

x
i (xo, yo)

]
dl

B12(i, j) =

∫
Γ

sin(θo)
[
hzj (xo, yo)h

y
i (xo, yo)

]
dl

(23)

where θo is the angle between n̂ and x̂ on the boundary
observation point (xo, yo) as shown in Fig. 1. Note that the
matrix B is β-independent.
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D. Assembling the Final Eigenproblem

Due to (17), the solution vector a must lie in the null space
of D. This condition can be imposed in the following way

a = EDx (24)

where x is 2N × 1 unknown vector and ED is a 3N × 2N
matrix and is an orthonormal basis for the null space of D
obtained from the singular value decomposition.

Substituting (24) in (21) the following expression is ob-
tained

BEDx = 0 (25)

and it is possible to write

x = EBz (26)

where z is an unknown vector and EB is an orthonormal basis
for the null space of BED, obtained from the singular value
decomposition. The rank of B is M , the dimension of EB is
2N × (N + L), and z is an (N + L)× 1 vector.

By combining (26) and (24), substituting in (10) and ex-
tremizing the resulting expression, the following eigensystem
is obtained

C′(β)z = k2
0T

′(β)z (27)

where

C′(β) = ET
BE

T
DCEDEB

T ′(β) = ET
BE

T
DTEDEB

(28)

Once the eigenproblem (27) is solved, the original unknowns
are calculated as

a = (EDEB) z (29)

It is worth noting that, due to (13) and to (19), C′ and T ′

depend on the propagation constant β as parameter. From
a computational point of view, this does not represent a
drawback, since the matrices are built for a given β and (27)
is repeatedly solved for different values of β. Moreover, C′

and T ′ are real, symmetric, and nonsingular, thus leading to
a well-conditioned eigenproblem [30]. The dimension of the
problem (27) is (N + L), which is smaller than the number
of original set unknowns a.

By setting the value of β, the solution of the problem (27)
provides all the modes propagating within the waveguide with
that value of β. On the other hand, the pairs {β, k(i)

0 } (and,
therefore, {β, ω(i)}) for plotting the dispersion diagram are
obtained.

E. Implementation of the Algorithm

The theory presented in this section has been implemented
in a Matlab code and the flowchart of the resulting script
is shown in Fig. 2, where Q is the number of β values
to compute. In particular the values of β to be considered
(β1, . . . , βQ) are set by the user.

The first step is the definition of the CPs on the domain.
This is done by increasing their density in the regions with
higher dielectric constant. More in detail, the definition of the
average distance h in (8) is locally modified dividing it by a

b= bi

solve the eigenproblem

i ≤ Q

define the collocation points

true

end
i++false

assemble the b–depependent

Eigenproblem C ’(b)z= k0T ’(b)z

i=1

compute the b–indepependent

Matrices C0, C1, C2, D0, D1, T, B

Fig. 2. Flowchart of the implemented algorithm.

factor
√
εr, and new CPs are added following the procedure

described in [27].
In the previous sections it has been noted that the matrices

T and B, C0, C1, C2, D0, and D1 are β-independent.
Therefore, they can be calculated once for all before starting
the β-loop, as shown in Fig. 2. After that, the β-loop starts, and
the β-dependent matrices C, D, and ED are calculated for
every value βi. This permits to assemble the eigenproblem (27)
through (28). Its enables permits to compute the wavenumbers
of the first modes for that particular value of β. The β-loop
stops when all the β values have been considered and the
dispersion diagram is plotted.

Since the aim of this work is to demonstrate the accuracy
and reliability of the proposed theory, the current implemen-
tation of the code is a non-compiled Matlab script, and it does
not exploit any geometrical symmetry.

IV. NUMERICAL RESULTS

To demonstrate the performances of the presented method,
four examples are reported in this section.

An independent validation is obtained by comparison with
analytical results, when available, and with simulation results
given by ANSYS HFSS. The code was run on a computer
with an Intel Corei7-6700 CPU @ 3.40 GHz (8 CPUs), and
16 GB of RAM.

All the simulations described in the following subsections
have been conducted with a fixed value of σ = 1 in (8), in this
way it is demonstrated that also in the case of inhomogeneous
dielectric filled waveguide the introduction of the parameter ξτi
permits to avoid the preconditioning, as it was proved in [27].
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Fig. 3. Dielectric Loaded Waveguide: (a) Geometry of the structure
(a = 10 mm); (b) Dispersion diagram calculated by the variational meshless
method (gray circles) compared with the HFSS simulation (black cross).
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Fig. 4. Behavior of | ~H| (arbitrary units) for the first mode of the Dielectric
Loaded Waveguide of Fig. 3: (a) β = 5 rad/m; (b) β = 1200 rad/m.

A. Dielectric Loaded Waveguide

The first example refers to the analysis of the dielectric
loaded waveguide considered in [39]. The domain is shown in
Fig. 3(a), where all the relevant dimensions and information
about the dielectric are also provided. The number of colloca-
tion points used to define the unknown is N = 100 CPs (i.e.,
L = 70 internal CPs and M = 30 boundary CPs). In Fig. 3(b)
the obtained dispersion diagram is shown and compared with
the results given by ANSYS HFSS after a port only simulation
with 284 triangles on the input port. The variational meshless
method simulation needed overall 1.2 s to compute both the
β-independent matrices and the 26 reported β-steps (HFSS
CPU time: 26 s). The average discrepancy vs HFSS results
was in the order of 1%. It is important to highlight that the
presented method has given no spurious solutions.

Beside the dispersion diagram, the proposed method permits
to calculate also the modal field for a given value of β.
Fig. 4 shows the magnetic field | ~H| of the first mode of the
dielectric loaded waveguide in the cases β = 5 rad/m and
β = 1200 rad/m. As expected, increasing the value of β (and,

(a) (b)

(c)

Fig. 5. Random distribution of the CPs used for the convergence analysis of
the Dielectric Loaded Waveguide: (a) 100 CPs; (b) 320 CPs; (c) 1040 CPs.

therefore, the frequency), the field becomes more concentrated
in the region with the highest dielectric constant.

For this structure, an analytical solution is also avail-
able [31]. Therefore, it is possible to calculate the error

E(β) =
fn(β)− fa(β)

fa(β)
(30)

in the determination of the propagating frequency for a given
β. In (30), fa is the analytical value of the frequency [31],
and fn is its numerical value calculated by the variational
meshless method. This permits to perform a convergence
analysis, repeatedly increasing the number of the CPs. Table I
reports the results of the convergence analysis for the first
mode. The three different random distributions of the CPs
shown in Fig. 5) were considered. The errors of the frequency
were calculated when β ranges form 0 to 1200 rad/m. It clearly
appeared that the error decreased when increasing the number
of CPs, and, in the worst case, it is below 0.5% with only 100
CPs.

TABLE I
RELATIVE ERROR IN THE EVALUATION OF THE DISPERSION PAIRS {β, f}
OF THE FIRST MODE OF THE DIELECTRIC LOADED WAVEGUIDE OF FIG.

3. THE RANDOM DISTRIBUTIONS OF THE CPS OF FIG. 5 WERE
CONSIDERED.

Propagation Analytical #CPs = 100 #CPs = 320 #CPs = 1040
constant β frequency Fig. 5(a) Fig. 5(b) Fig. 5(c)

(rad/m) (GHz) E(β) (%) E(β) (%) E(β) (%)

0 5.78212 0.4518 0.2919 0.1246
100 6.81088 0.4368 0.2811 0.1273
200 9.14706 0.3937 0.2498 0.1126
300 11.92380 0.3333 0.2072 0.0927
400 14.83090 0.2725 0.1652 0.0728
500 17.79330 0.2218 0.1308 0.0564
600 20.79280 0.1828 0.1051 0.0442
700 23.82170 0.1531 0.0856 0.0350
800 26.87440 0.1300 0.0706 0.0277
900 29.94620 0.1121 0.0592 0.0223
1000 33.03360 0.0978 0.0500 0.0179
1100 36.13360 0.0865 0.0429 0.0145
1200 39.24410 0.0770 0.0370 0.0116
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Fig. 6. Shielded Insulated Image Guide: (a) Geometry of the structure
(δ = 1 mm, w = 2.25 mm, d = 0.5 mm, a = 13.5 mm, b = 8 mm);
(b) Dispersion diagram calculated by the variational meshless method (gray
circles) compared with the HFSS simulation (black cross).
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Fig. 7. Behavior of | ~H| (arbitrary units) for the first mode of the Shielded
Insulated Image Guide of Fig. 6: (a) β = 5 rad/m; (b) β = 1200 rad/m.

It is worth noting that by increasing the number of randomly
distributed CPs, some of them might tend to coincide (see
Fig. 5(c)). Nonetheless, due to the introduction of the random
factor ξτi in (7), as proposed in [26], the RBFs are still
independent, and the numerical problem (27) remains well-
conditioned [27].

B. Shielded Insulated Image Guide

The second example refers to the analysis of a shielded
insulated image waveguide presented in [40]. The domain is
shown in Fig. 6(a), where all the relevant dimensions and
information about the dielectric are also provided. This is
a relevant example to test the proposed method, since it
features a multi-dielectric discontinuity (i.e., an edge with
three different dielectric materials). The number of collocation
points used to define the unknown is N = 326 CPs (i.e.,
L = 282 internal CPs and M = 44 boundary CPs). In Fig. 6(b)
the obtained spurious-free dispersion diagram is shown and
compared with the results given by ANSYS HFSS after a
port only simulation with 696 triangles on the input port. The

²r1=1

d

3 d²r2=9.6

x

y

(a)

(b)

Fig. 8. Round Double-Layer Shielded Waveguide: (a) Geometry of the
structure (d = 6.35 mm); (b) Dispersion diagram calculated by the variational
meshless method (gray circles) compared with the HFSS simulation (black
cross).

|H|

x (mm)y (mm)
-2

-4

0

-4
0-2

2
 4

 4
2

0.05

0.10

0.20

0.15

|H|

x (mm)y (mm)
-2

-4

0

-4
0-2

2
 4

 4
2

0.10

0.20

0.30

(a) (b)

Fig. 9. Behavior of | ~H| (arbitrary units) for the first mode of the Round
Double-Layer Shielded Waveguide of Fig. 8: (a) β = 5 rad/m; (b) β =
1500 rad/m.

simulation with the variational meshless method needed 8.7 s
to compute the initial matrices and the reported 37 β-steps
(HFSS CPU time: 147 s), and an average discrepancy in the
order of 1% was observed.

The magnetic field for two different values of β (namely
β = 5 rad/m and β = 2000 rad/m) is plotted in Fig. 7, show-
ing the field confinement in the high permittivity dielectric
material when the frequency increases.

C. Round Double-Layer Shielded Waveguide

The third example refers to the analysis of a round double-
layer shielded waveguide proposed in [41]. The domain is
shown in Fig. 8(a), where all the relevant dimensions and
information about the dielectric are also provided. As can
be easily seen this problem is characterized by a higher
discontinuity of the dielectric constant.

To avoid the well-known systematic error due to the rep-
resentation of circular arcs with discrete nodes, an equivalent
external radius of 3.180166 mm has been used in this simula-
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TABLE II
RELATIVE ERROR IN THE EVALUATION OF THE DISPERSION PAIRS {β, f}

OF THE FIRST MODE OF THE ROUND DOUBLE-LAYER SHIELDED
WAVEGUIDE OF FIG. 8, CONSIDERING 685 CPS.

Propagation constant Analytical frequency Error
β (rad/m) f (GHz) E(β) (%)

0 16.80500 0.8634
5 16.80650 0.3669

90 17.26530 0.3185
200 18.96420 0.1756
300 21.34080 0.0280
400 24.24910 -0.0994
500 27.48860 -0.1995
900 41.17940 -0.2761

1400 53.09200 -0.1341
1800 58.18670 0.0393

tion, which guarantees the same area for the circular domain
and the approximated 45-edges polygonal one.

The number of collocation points used to define the un-
known is N = 685 CPs (i.e., L = 640 internal CPs and
M = 45 boundary CPs). The simulation needed 42.3 s to
compute the initial matrices and the reported 32 cycles. In
particular the initial solution, required about 8.0 s, while every
cycle lasted about 1.1 s. In Fig. 8(b) the obtained dispersion
diagram is shown and compared with the results given by
ANSYS HFSS after a port only simulation with 2426 triangles
on the input port (HFSS CPU time: 690 s). An average
discrepancy in the order of 1% was observed, and, also in
this case, the solution was spurious-free.

By increasing the frequency, the field becomes more con-
fined in the dielectric with higher permittivity as shown in
Fig. 9 where the cases with β = 5 rad/m and β = 1500 rad/m
for the first mode are plotted.

This structure has an analytical solution for the dispersion
diagram [31], and this allows for calculating the error (30).
Table II reports the error in the calculation of the frequency of
the first mode, for β ranging form 0 to 1800 rad/m, considering
685 CPs. An error below 1% is observed also in the worst case.

D. Elliptic Inhomogeneous Waveguide

The fourth example refers to the analysis of an elliptic
inhomogeneous waveguide proposed in [42]. The domain is
shown in Fig. 10(a), where all the relevant dimensions and
information about the dielectric are also provided.

The number of collocation points used to define the un-
known is N = 336 CPs (i.e., L = 246 internal CPs and
M = 90 boundary CPs). The simulation needed 7.44 s to
compute the initial matrices and the reported 28 cycles. In
particular the initial solution required about 2.9 s, while every
cycle lasted about 0.162 s. In Fig. 10(b) the obtained dispersion
diagram is shown and compared with the results given by
ANSYS HFSS after a port only simulation with 502 triangles
on the input port (HFSS CPU time: 112 s). An average
discrepancy in the order of 1% was observed, and, also in
this case, the solution was spurious-free.

20 l

²r2=2.26

²r1=1

8.2 l

4.1 l10 l

(a)

(b)

Fig. 10. Elliptic Inhomogeneous Waveguide: (a) Geometry of the structure
(l = 1 mm); (b) Dispersion diagram calculated by the variational meshless
method (gray circles) compared with the HFSS simulation (black cross).
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Fig. 11. Behavior of | ~H| (arbitrary units) for the first mode of the Elliptic
Inhomogeneous Waveguide of Fig. 10: (a) β = 5 rad/m; (b) β = 800 rad/m.

As expected, the increase in frequency leads to the con-
finement of the field in the dielectric with higher permittivity,
as shown in Fig. 11, where the cases with β = 5 rad/m and
β = 800 rad/m for the first mode are plotted.

V. CONCLUSION

The Variational Meshless Method formerly proposed for ho-
mogeneous structures has been extended to simulate inhomo-
geneous shielded waveguides. To this aim, a vector variational
formulation of the electromagnetic problem has been adopted,
and the proper boundary condition has been enforced together
with the divergence condition. Radial basis functions are
defined on randomly defined collocation point in the analysis
domain. This leads to a real, symmetric, well-conditioned
and spurious-free eigenproblem. A great advantage of the
proposed technique is the complete random distribution of
the collocation points, which reduces the pre-processing time
avoiding the meshing step. Moreover, a good accuracy is
achieved with a limited number of unknowns, as it has been
proved by the convergence study. The proposed method has
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been validated through four examples found in the literature,
and the results successfully compared with analytical results,
when available, and with ANSYS HFSS simulations.
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