
Graphical network models for international

�nancial �ows

P. Giudici 1

Department of Economics and Management, University of Pavia

A. Spelta 2

Department of Economics and Management, University of Pavia

Abstract

The late-2000s �nancial crisis has stressed the need of understanding the world �-

nancial system as a network of countries, where cross-border �nancial linkages play

a fundamental role in the spread of systemic risks. Financial network models, that

take into account the complex interrelationships between countries, seem to be an

appropriate tool in this context. To improve the statistical performance of �nancial

network models, we propose to generate them by means of multivariate graphi-

cal models. We then introduce Bayesian graphical models, that can take model

uncertainty into account, and dynamic Bayesian graphical models, that provide a

convenient framework to model temporal cross-border data, decomposing the model

into autoregressive and contemporaneous networks. The paper shows how the appli-

cation of the proposed models to the Bank of International Settlements locational

banking statistics allows the identi�cation of four distinct groups of countries, that

can be considered central in systemic risk contagion.
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1 Introduction

The recent �nancial crisis has shown that �nancial markets and, more specif-

ically, interbank markets, are highly interdependent. Network models can de-

scribe such interdependencies, as shown for example in Billio et al. (2012).

The network structure of national interbank markets has been studied by So-

ramaky and coauthors (2007), who analysed interbank payments transferred

between commercial banks by the Fedwire Funds Services. A related contribu-

tion is the work of Fujiwara et al. (2009), that explores the credit relationships

that exist between commercial banks and large companies in Japan. Empir-

ical network studies have also been carried out on some European national

interbank markets (De Masi et al., 2006, Boss et al., 2004).

Other papers have addressed the evolution of networks of bank transfers at a

more global level, using the Bank of International Settlements (BIS) data set:

Garratt et al. (2011), McGuire and Tarashev (2006), Minoiu and Reyes (2013).

In particular, Minoiu and Reyes (2013) use con�dential data representing cross-

border bilateral �nancial �ows intermediated by national banking systems, and

found evidence of important structural changes in banking �nancial networks,

following the occurrence of stress events. The same authors point out that their

result should be interpreted with some caution because of the large amount of

non-reporting countries (their sample contains 184 countries, of which only 15

report bilateral positions to the BIS).

Our aim is to extend Minoiu and Reyes (2013), using data on the total �nancial

exposure of each country with respect to the rest of the world: a database that,

besides being publicly available, is more reliable. Applying a stochastic network
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model to such data, we establish bilateral links between countries, that can

be used to understand which countries are most central and, therefore, most

contagious (or subject to contagion).

To improve the performances of �nancial network models we introduce graph-

ical models, that enrich the network perspective with a more structured sta-

tistical approach. As recently argued in Spelta and Araújo (2012), Billio et al

(2012) and Barigozzi and Brownlees (2013), a more structured approach allows

results that are more robust with respect to data variations and, in addition,

being a full inferential approach, properly adjusts statistical estimates taking

sample variability into account.

Graphical models can be informally de�ned as a �marriage�between multivari-

ate statistics and graph theory. They embed the idea that interactions among

random variables in a system can be represented in the form of graphs, whose

nodes represent the variables and whose edges show their interactions. For an

introduction to graphical models see, for instance, Pearl (1988), Lauritzen and

Wermuth (1989), Whittaker (1990), Wermuth and Lauritzen (1990), Edwards

(1990), Lauritzen (1996).

From their appearance in the 90�s, several methodological advances have been

made for graphical models, but less so in terms of applications, especially in

economics. This is because of two main problems, that require more advanced

formulations.

First, in economics a graphical structure must provide not only a good �t

but also a good interpretation. This may result in choosing a model that

has little support from the data, leading to predictions worse than could be

obtained with other models. In other words inference restricted to be �model-
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dependent�may lead to suboptimal results. A second problem is that graphical

models are essentially static, photographing a situation in a given time span.

This assumption seems to be restrictive in economics, in the case of variables

that change over time, for example during periods of �nancial stress.

The above problems can be solved with the use of more advanced, Bayesian,

graphical models, as shown in Madigan and York (1995), Giudici and Green

(1999) and, more recently, Ahelegbey et al. (2012). In particular, Madigan and

York (1995) and Giudici and Green (1999) propose a Bayesian model able to

consider all possible graphical structures, choose the best �tting ones and, if

necessary, average inferential results over the set of all models, thus solving the

�rst problem. In Ahelegbey et al. (2012) the authors propose a Bayesian infer-

ential approach, to analyze the dynamic interactions among macroeconomics

variables in a graphical vector autoregressive model, that can be employed to

overcome the second problem as well.

The methodological contribution of this paper is to consider both the above ex-

tensions in a �nancial network setting. From an applied viewpoint, the results

obtained from the application of di¤erent graphical models will be compared

in terms of adjacency matrix and implications on systemic risk transmission

between countries.

The paper is organized as follows. Section 2 introduces �nancial networks based

on graphical models, and compares them with non graphical ones. In Section

3, we introduce Bayesian graphical models, and show their theoretical impli-

cations: in particular, we describe a model averaging context and show how a

dynamic approach can be built by decomposing the model into multivariate

autoregressive and contemporaneous networks. Section 4 describes the empir-
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ical results obtained with the application of the previous network models to

the Bank of International Settlement cross-border �nancial �ow data. Finally,

section 5 contains some concluding remarks and future research directions.

2 Graphical models

Systemic risk can be represented by a network that describes the mutual rela-

tionships between the di¤erent economical agents involved.

Correlation based networks are suitable to visualize the structure of pairwise

marginal correlations among a set of N time series. If we associate di¤erent

time series with di¤erent nodes of a network, each pair of nodes can be thought

to be connected by an edge, with a weight that can be related to the correlation

coe¢ cient between the two corresponding time series. Thus, a network of N

nodes can be described by its associated matrix of weights, named adjacency

matrix, an N �N matrix, say A, with elements ai;j. Alternatively, if the aim

of the research is to focus on the structure of the interconnections, and less

on their magnitude, the adjacency matrix can be made binary, setting ai;j = 1

when two nodes are correlated and ai;j = 0 when they are not correlated.

It is well known that pairwise marginal correlations measure both the direct

and the indirect e¤ect of a variable on another. If the aim is to measure only

the direct e¤ect between two variables, without the "mediation" of others,

pairwise partial correlations, rather than marginal ones, should be calculated.

From a statistical viewpoint, while correlations can be estimated, on the basis

of N observed time series of data, assuming that observations follow a multi-

variate Gaussian model, with unknown variance-covariance matrix �, partial
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correlations can be estimated assuming that the same observations follow a

graphical Gaussian model, in which � is constrained by the conditional inde-

pendence described by a graph (see e.g. Lauritzen, 1996, and Whittaker, 1990

or, from an econometric viewpoint, Carvalho and West, 2007 and Corander

and Villani, 2006).

Let x = (x1; :::; xN) 2 RN be a N�dimensional random vector distributed

according to a multivariate normal distribution NN (�;�). Without loss of

generality, we will assume that the data are generated by a stationary process,

and, therefore, � = 0: In addition, we will assume throughout that the covari-

ance matrix � is not singular.

Let G = (V;E) be an undirected graph, with vertex set V = f1; :::; Ng, and

edge set E = V �V , a binary matrix, with elements eij, that describes whether

pairs of vertices are (symmetrically) linked between each other (eij = 1), or

not (eij = 0). If the vertices V of this graph are put in correspondence with the

random variables X1; :::; XN , the edge set E induces conditional independence

on X via the so-called Markov properties (see e.g. Lauritzen, 1996).

More precisely, the pairwise Markov property determined by G states that, for

all 1 � i < j � N :

eij = 0() Xi ? XjjXV nfi;jg;

that is, the absence of an edge between vertices i and j is equivalent to inde-

pendence between the random variables Xi and Xj, conditionally on all other

variables xV nfi;jg.

In our context, all random variables are continuous and it is assumed that

X � NN (0;�). Let the elements of ��1, the inverse of the variance-covariance
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matrix, be indicated as f�ijg:Whittaker (1996) proved that the following equiv-

alence also holds:

Xi ? XjjXV nfi;jg () �ijV = 0

where

�ijV =
��ijp
�ii�jj

denotes the ij-th partial correlation, that is, the correlation between Xi and

Xj conditionally on the remaining variables XV nfi;jg.

Therefore, by means of the pairwise Markov property, given an undirected

graph G = (V;E), a graphical Gaussian model can be de�ned as the family

of all N -variate normal distributions NN (0;�) that satisfy the constraints

induced by the graph on the partial correlations, as follows:

eij = 0() �ijV = 0

for all 1 � i < j � N .

In practice, the available data will be used to test which partial correlations

are di¤erent from zero, once a signi�cance level threshold � is chosen. This

leads to the selection of a graphical model on which to condition all inferences.

In the next section we propose a Bayesian graphical model that takes model

uncertainty into account.

Once a network is estimated, for example on the basis of a graphical Gaussian

model, a natural request is to summarise it into a systemic risk measure. This

request is quite reasonable, not only from a descriptive viewpoint, but also to

provide an indicator that can act as an "early warning" predictive monitor.

The summary measure that has been proposed in �nancial network modeling

to explain the capacity of an agent to cause systemic risk, that is, a large con-
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tagion loss on other agents, is the eigenvector centrality (see e.g. Fur�ne, 2003

and Billio et al., 2012). The eigenvector centrality measures the importance of

a node in a network by assigning relative scores to all nodes in the network,

based on the principle that connections to few high scoring nodes contribute

more to the score of the node in question than equal connections to low scoring

nodes.

More formally, for the i-th node, the eigenvector centrality is proportional to

the sum of the scores of all nodes which are connected to it, as in the following

equation:

xi =
1

�

NX
j=1

ai;jxj;

where xj is the score of a node j, ai;j is the (i; j) element of the adjacency

matrix of the network, � is a constant and N is the number of nodes of the

network.

The previous equation can be rewritten for all nodes, more compactly, as:

Ax = �x;

where A is the adjacency matrix, � is the eigenvalue of the matrix A, with

associated eigenvector x, an N -vector of scores (one for each node).

Note that, in general, there will be many di¤erent eigenvalues � for which a

solution to the previous equation exists. However, the additional requirement

that all the elements of the eigenvectors be positive (a natural request in our

context) implies (by the Perron�Frobenius theorem) that only the eigenvector

corresponding to the largest eigenvalue provides the desired centrality mea-

sures. Therefore, once an estimate of A is provided, network centrality scores

can be obtained from the previous equation, as elements of the eigenvector
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associated to the largest eigenvalue.

Remark. The centrality measure is often applied to sparse networks, based

on adjacency matrices that contain several zeros. This implies the need of

establishing a criterion to decide whether the similarity between two agents

is relevant enough to join them with a link. In the network literature, this

task has been accomplished through the construction of a Minimal Spanning

Tree (see for example Araújo and Mendes, 2000 and Spelta and Araújo, 2012).

The application of the Minimal Spanning Tree criterion is, however, limited.

With this method one is forced, a priori, to deal with a network that is a

tree, therefore without cycles and with only N � 1 edges. This construction

therefore neglects part of the information contained in the adjacency matrix,

since it only takes the N � 1 edges that are considered in the hierarchical

clustering process. The partial correlation networks that we have proposed,

based on graphical Gaussian models, have instead a general applicability.

3 Bayesian Graphical models

3.1 Static models

Graphical model uncertainty can be taken into account, along with parameter

uncertainty, within a Bayesian approach, whose main practical advantage is

that inferences on quantities of interest can be averaged over di¤erent models,

each of which has a weight that corresponds to its Bayesian posterior proba-

bility. See, for example, Madigan et al. (1994), Giudici and Green (1999) and

Castelo and Giudici (2003).
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To achieve this aim, the �rst task is to recall the expression of the marginal

likelihood of a graphical Gaussian model, and specify prior distributions over

the parameter � as well as on the graphical structures G.

For a given graph G, consider a sample X of size n from P = NN(0;�), and let

Sn be the corresponding observed variance-covariance matrix. For a subset of

vertices A � N , let �A denote the variance-covariance matrix of the variables

in XA, and de�ne with SA the corresponding observed variance-covariance

submatrix.

To derive the likelihood of a graphical Gaussian model, we now recall the

notion of a decomposable graph. Let GA be a subgraph, obtained from the

graph G considering as vertex set the elements of A and as edge set the subset

of the edge set of G that contains only the vertices in A. The subgraph GA is

complete if all its vertices are joined by an edge. A complete subgraph that is

not contained within another complete subgraph is called a clique. An ordering

of the cliques of an undirected graph, (C1; :::; Cn) is said to be perfect if the

vertices of each clique Ci, also contained in any previous clique C1; :::; Ci�1,

are all member of one previous clique; that is, for i = 2; :::; n;

Si = Ci \
i�1[
j=1

Ci � Ch

for some h = h (i) 2 f1; 2; :::; i � 1g. The sets Si are called separators. If an

undirected graph admits a perfect ordering it is said to be decomposable.

When the graph G is decomposable the likelihood of the data, under the

graphical Gaussian model speci�ed by P , nicely decomposes as follows (see

e.g. Dawid and Lauritzen, 1993):

p(xj�; G) =
Q
C2C p(xC j�C)Q
S2Sp(xSj�S)

;

11



where C and S respectively denote the set of cliques and separators of the

graph G, and:

P (xC j�C) = (2�)�
n�jCj
2 j�C j�n=2exp[�1=2tr

�
SC (�C)

�1
�
]

and similarly for P (xSj�S).

Dawid and Lauritzen (1993) propose a convenient prior for the parameters of

the above likelihood, the hyper inverse Wishart distribution. It can be obtained

from a collection of clique speci�c marginal inverse Wisharts as follows:

l(�) =

Q
C2C l(�C)Q
S2S l(�S)

where l(�C) is the density of an inverse Wishart distribution, with hyperpa-

rameters TC and �, and similarly for l(�S). For the de�nition of the hyperpa-

rameters here we follow Giudici and Green (1999) and let TC and TS be the

submatrices of a larger matrix T0 of dimension N �N , and choose � > N . To

complete the prior speci�cation, for P (G) we assume a uniform prior over all

possible graphical structures.

Dawid and Lauritzen (1993) show that, under the previous assumptions, the

posterior distribution of the variance-covariance matrix � is a hyper Wishart

distribution with �+N degrees of freedom and a scale matrix given by:

Tn = T0 + Sn

where Sn is the sample variance-covariance matrix. This result can be used

for quantitative learning on the unknown parameters, for a given graphical

structure.

In addition, the proposed prior distribution can be used to integrate the likeli-
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hood with respect to the unknown random parameters, obtaining the so-called

marginal likelihood of a graph, which will be the main metric for structural

learning, that involves choosing the most likely graphical structures.

Giudici and Green (1999) show that such marginal likelihood is equal to:

P (xjG) =
Q
C2C p(xC)Q
S2Sp(xS)

where

p (xC) = (2�)
�n�jCj

2
k (jCj; �+ n)
k (jCj; �)

det (T0)
�=2

det (Tn)
(�+n)=2

where k(�) is the multivariate gamma function, given by:

kp (a) = �
p(p�1)

4
Qp
j=1�

�
a+

1� j
2

�
:

By Bayes rule, the posterior probability of a graph is given by:

P (Gjx) / P (xjG)P (G)

and, therefore, since we assume a uniform prior over the graph structures,

maximizing the posterior probability is equivalent to maximizing the marginal

likelihood. For graphical model selection purposes we shall thus search in the

space of all possible graphs for the structure such that

G� = argmax
G
P (Gjx) / argmax

G
P (xjG) :

The Bayesian approach does not force conditioning inferences on the (best)

model chosen. The assumption of G being random, with a prior distribution

on it, allows any inference on quantitative parameters to be model averaged

with respect to all possible graphical structures, with weights that correspond
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to the posterior probabilities of each graph. This is due to Bayes�Theorem:

P (�jX) = P (�jx;G)P (Gjx)

However, in many real problems, the number of possible graphical structures

could be very large and we may need to restrict the number of models to be av-

eraged. This can be done e¢ ciently, for example, following a simulation-based

procedure for model search, such as Markov Chain Monte Carlo (MCMC)

sampling, described in Madigan and York (1995).

In our context, given an initial graph, the algorithm samples a new graph

using a proposal distribution. To guarantee irreducibility of the Markov chain,

we follow Castelo and Giudici (2003) and test whether the proposed graph is

decomposable. Following Giudici and Green (1999) we apply the concept of a

junction tree (see Lauritzen 1996): the addition of an edge between two nodes

is allowed if the two nodes belong to two di¤erent connected components of

the tree or if the cliques they belong to are connected by a separator. On the

other hand, the removal of an edge is allowed if such edge belongs to a single

clique.

The newly sampled graph is then compared with the old graph, calculating

the ratio between the two marginal likelihoods. If the ratio is greater than

a predetermined threshold (acceptance probability), the proposal is accepted,

otherwise it is rejected. The algorithm continues until practical convergence is

reached (as in Castelo and Giudici, 2003).
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3.2 Dynamic models

The Bayesian graphical model presented so far is a static model, that assumes

that each of the N time series is made up of n independent and identically dis-

tributed observations. We now extend the approach in a more realistic dynamic

setting. Following the idea of Ahelegbey et al. (2012), we build a graphical

model that is made up of two parts: a simultaneous cross-sectional compo-

nent, similar to the model in the previous subsection, and a novel multivariate

dynamic autoregressive component.

To achieve this aim we recall the de�nition of a vector autoregressive (VAR)

process. A VAR process of order s is of the form:

Xt = B0Xt +B1Xt�1 + :::+BsXt�s + "t t = 1; :::; n

where Xt is an N dimensional vector of time series realizations at time t, "t is

an N dimensional vector of independent and serially uncorrelated structural

disturbances with mean zero and a diagonal variance-covariance matrix �, and

B0; :::; Bs are N �N regression matrices.

A dynamic graphical model (DGM) can be built exploiting the above vector

autoregressive (VAR) representation of multivariate time series observations.

In a VAR model, for any given time lag s, we can establish a one-to-one

correspondence with a graphical model, by setting a zero edge between two

vertices i and j whenever, for any given time lag s, a dependent variable Xj,

observed at time t, is independent from an explanatory variable X i, observed

at time t� s as follows:

ei;js = 0 =) X i
t ? X

j
t�sj

�
XV nfig
t ; XV nfjg

t�s
�
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We can exploit equivalences as the above one to build a dynamic graphical

model, for any speci�ed time lag in a vector autoregressive process. More

formally, let G #= fG1; : : : ; Gsg be a collection of graphs generated at di¤erent

time lags, where G� denotes a graph for each lag � = 1; : : : ; s.

For any given time lag � we can then de�ne a dynamic graphical model (DGM)

as a pair (G;G� ), where G is a graphical model, that de�nes the contempo-

raneous conditional dependences between the available random variables; and

G� is another graphical model, that de�nes the temporal conditional depen-

dences between the same variables, at two di¤erent times, lagged by � . The

vertex set and the dimension of G� is the same as that of G; the dimension of

the edge set is also the same but the pairs on which edges can be placed are

lagged: one variable at time t, and one variable at time t� � .

A VAR process of order � and, correspondingly, a dynamic graphical model of

order � , assumes that the within period (contemporaneous) conditional depen-

dence among variables are described by a Multivariate instantaneous network

(MIN) graphical component. In addition, the lag � conditional dependency

structure between the variables is constant in time, and depends only on the

lag � , as described by a Multivariate AutoRegressive network (MAR) compo-

nent. Assume, from now on, for simplicity and without loss of generality, that

� = 1.

Assume that we have now available, for each time point t = 1; : : : ; n, a random

observation from a multivariate normal distribution NN(0;�).

Let �it�1and �
i
t be the neighbors of X

i
t in the MAR and MIN networks. Fol-

lowing Ahelegbey et al. (2012), the marginal likelihood function decomposes

according to the structure of the model into a MAR and a MIN component,

16



as follows:

P (Xj�; G) =
nY
t=1

NY
i=1

P
�
X i
t j�it�1(G1); �it(G);�

�
=

=
nY
t=1

NY
i=1

P
�
X i
t j�it�1(G1);�

�
�

nY
t=1

NY
i=1

P
�
X i
t j�it(G);�

�

The above decomposition of the structure facilitates the inference procedure

such that we can learn the MIN network independently from the MAR net-

work. Model search simpli�es into searching for the network that maximizes

each marginal likelihood score independently, according to what shown in the

previous subsection.

In this paper, given the high dimensionality of the model space we consider

MCMC sampling approximate computations, and follow what proposed in

Grzegorczyk (2010) and Ahelegby et al. (2012).

4 Empirical analysis

4.1 Data

The Bank for International Settlements locational banking statistics (LBS)

include aggregate international claims and liabilities of reporting banks by

country of residence and provides a plentiful data set of aggregate cross-border

exposures for a set of reporting and non-reporting countries all over the world.

LBS are based on quarterly data and, in practice, are available since the 1980s.
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Here we consider 24 countries, reported in Table 1, for which the data are

complete and reliable. Each country is represented by the value of its liabili-

ties towards all other countries, measured on a quarterly basis, from the last

quarter of 1983 (Q4-1983) to the third quarter of 2011 (Q3-2011).

AT: Austria IT: Italy

BS: Bahamas JP: Japan

BH: Bahrain LU: Luxemburg

BE: Belgium NL: Netherlands

CA: Canada AN: Netherlands Antilles

KY: Cayman Islands NO: Norway

DK: Denmark SG: Singapore

FI: Finland ES: Spain

FR: France SE: Sweden

DE: Germany CH: Switzerland

HK: Hong Kong GB: United Kingdom

IE: Ireland US: United States

Table 1: Reporting Countries
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4.2 Financial networks

We �rst consider the application of �nancial network models, based on mar-

ginal correlations, to the LBS data. The 24 � 24 adjacency matrix (A), with

elements ai;j, can be obtained on the basis of a 24 � 24 correlation matrix,

for the set of 24 reporting countries (N = 24), calculated on n = 110 time

observations. Instead of using a fully connected network, as in the network

modeling literature (see e.g. Araújo and Mendes, 2000), we consider a �statis-

tical�network, in which the edge that connects two countries is present on the

basis of a pairwise F-test, that informs whether the corresponding correlation

is signi�cant or not, with a signi�cance level �. Figure 1 shows the network

obtained on the basis of such an adjacency matrix, taking a signi�cance level

equal to � = :05.

Figure 1: Marginal correlations network. The size and the

intensity of the color of each node is proportional to its

eigenvector centrality. Larger and darker nodes display

higher centrality.
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From Figure 1, note that the network is not fully connected, but only few links

are removed. More precisely, most of the countries have all the 23 links with

the others, with the exception of JP and HK, that have 22, and AN, that has

only 21 links. Economically, our results above may be interpreted attributing

to JP, HK and AN (but especially to the latter two) a role of �countercyclical

bu¤ers�, less subject to �nancial cycles, in accordance with Errico and Borrero

(1999) and Huizinga and Nicodeme (2004).

4.3 Graphical models

We now apply graphical Gaussian model to the LBS data, and derive an ad-

jacency matrix based on graphical model selection. In such adjacency matrix,

two countries will be linked if the corresponding edge is present in the selected

graphical model or, equivalently, when the corresponding partial correlation

is signi�cantly di¤erent from zero. Figure 2 shows the network obtained on

the basis of the selected graphical model, taking a signi�cance level equal to

� = :05. The size of the nodes is a function proportional to the eigenvector

centrality of each node. Thicker nodes are the ones with the highest centrality,

that is, most linked with respect to the other variables.
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Figure 2: Partial correlation based network. The size and

the intensity of the color of each node is proportional to

its eigenvector centrality. Larger and darker nodes display

higher centrality.

From Figure 2 we can see that the selected graph and, therefore, the corre-

sponding adjacency matrix, is rather sparse, especially in comparison with the

network in Figure 1. Indeed, di¤erently from before, the average number of

edges pointing to a node is 2:083: each node is connected, on average, to only

two other nodes. This can be explained recalling the di¤erence between mar-

ginal and partial correlations: while marginal correlations are unconditional

and re�ect all comovements between two variables (direct and indirect), par-

tial correlations are conditional on the dependences described by the selected

graph and measure only direct correlations.

From an interpretational viewpoint, note that country with the highest number

of connecting edges is NL, followed by SE. It is well known that the Dutch

�nancial system is largely exposed to the rest of the world, also in a direct
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way, having large banks that operate at a high cross-border level. On the

other hand, the role of SE could be explained by the crisis that many northern

countries su¤ered together at the beginning of the nineties. A second remark

is that the US, as stressed by Von Peter (2007), has few connecting edges

(only with KY), as its correlation is with all the system, and few countries in

particular. Similarly, GB, that is another important �nancial hub, is also little

directly connected (only with NL).

We remark that we have considered alternative choices for the signi�cance

level, of � = 0:10 and � = 0:01 and compared the obtained selected graphical

models. It turns out that � = 0:10 leads to a graph with 24 links, as for

� = 0:05, while � = 0:01 leads to a more sparse graph, with 16 links.

4.4 Static Bayesian graphical models

We now present the results from the application of the Bayesian graphical

model. The main advantage of the Bayesian approach to graphical models is

the possibility of model averaging the results obtained with single models, with

weights provided by the corresponding graph posterior probabilities. This idea

can be applied to the adjacency matrix elements, which, therefore, become

relative frequencies of edge presence. Figure 3 presents the network obtained

with such an adjacency matrix. In order to obtain Figure 3 we have run our

MCMC algorithm for 8500 iterations, using the last 500 iterations to calculate

edge presence frequencies.
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Figure 3: Static Bayesian graphical network. The size

and the intensity of the color of each node is

proportional to its eigenvector centrality. Larger and

darker nodes display higher centrality.

From a statistical viewpoint, note that the graph in Figure 3 is somewhat

"intermediate" between those in Figure 1 and Figure 2: this is the e¤ect of

Bayesian model averaging.

Economically, the results from the static Bayesian graphical model suggests

that the US, followed by LU, GB, NL, FI and DE are central nodes. Indeed,

the US display the highest centrality measure, followed by LU, FI, DE, NL,

GB, followed by CH. While the role of the United States and that of the

United Kingdom can be explained by the role these two countries have in

the world �nancial network, as international hubs (see Minoiu and Reyes,

2013), the position achieved by the Netherlands, Switzerland, and also that of

Germany can be attributed to their large cross-border exposures which re�ects

into their high prociclicity with the rest of the international system. The two

situations are indeed distinct: while the position of the United States and
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that of the United Kingdom re�ects their position as a host to many foreign

banks, countries like the Netherlands, Germany and Switzerland are home to

multinational banks generating considerable intero¢ ce activity across borders

(see Von Peter, 2007). Finally, the position of Luxembourg and that of Finland

may be attributed to a global or local role as �o¤-shore�countries.

To complete the report on the static Bayesian analysis, Figure 4 contains four

di¤erent diagnostics of convergence of MCMC simulations, based, respectively,

on the number of edges present in the estimated model (Figure 4a), on the

estimated log-likelihood (Figure 4b), on the cumulative di¤erence between the

number of accepted and rejected models (Figure 4c) and on the eigenvector

centrality of all the 24 countries in the sample (Figure 4d).
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Figure 4: Convergence diagnostics for the static Bayesian graphical model. Top-left

panel: number of edges. Top-right: Log-likelihood. Bottom-left:acceptance ratio.

Bottom-right: eigenvector centrality
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In Figure 4, and in each of the subplots, the x�axis represents the running

iteration. Note that, after about the �rst 4000 iterations, the Markov chain

starts to converge, according to all diagnostics.

4.5 Dynamic Bayesian graphical models

We now consider the application of dynamic Bayesian graphical models. Figure

5 shows the network based on model averaging the adjacency matrix over the

di¤erent dynamic models. For the sake of comparison, we have used the same

MCMC settings as before. Of course, the number of nodes is now higher and,

therefore, so is the number of possible edges.

Figure 5: Dynamic Bayesian graphical network. The

size and the intensity of the color of each node is

proportional to its eigenvector centrality. Larger and

darker nodes display higher centrality.

On the basis of Figure 5, and the associated centrality measures the countries

that are most central in the MIN component of the dynamic model are BE,
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IT followed by NL, US and NO. If we focus on lagged variables in the MAR

component, the highest centrality is shown by LU, HK and FI even if the score

is lower, as we expect by de�nition, when compared with the contemporaneous

variables. The role of o¤-shores countries is therefore recovered from the lagged

variables. Comparing the overall dynamic model with respect to static one,

note the presence of BE in the countries that own the highest centrality. This

evidence can be explained following Garratt et al. (2011), who claims that

Belgium and the Netherlands have become heavily interdependent. In addition,

there appears a lower centrality for DE, CH and the UK which are overtaken

by two southern European countries: IT, ES.

As before we complete the analysis report with the diagnostics of convergence.

Figure 6 shows the results.
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Figure 6: Convergence diagnostics for the dynamic Bayesian graphical model.

Top-left panel: number of edges. Top-right: Log-likelihood. Bottom-left:acceptance

ration. Bottom-right: eigenvector centrality
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Figure 6 shows the actual convergence of the chosen diagnostics around 5000

iterations, for all of the plotted convergence measures.

To further check the correctness of our procedure we have applied the frame-

work proposed by Cook et al. (2006) to both of our proposed Bayesian graph-

ical models, considering the variance-covariance matrix, our main object of

inference. For each element of � we have compared the values sampled by our

MCMC algorithm with those obtained sampling from the prior and, then, from

the conditional likelihood, as suggested in Cook et al. (2006). As summary sta-

tistics, we have calculated, for each replication, an empirical quantile for each

element of the variance-covariance matrix and, then, we have computed its

mean functional, from which Z scores can be obtained, leading, �nally, to the

Cook test statistics.

Table 3 reports some quantiles associated with the distribution of the Z-score,

using the MCMC samples from our Bayesian (static) graphical model.

Prob. 0.025 0.25 .05 0.75 0.975

Quan. Stat. 0.055 0.221 0.336 0.523 0.965

Quan. Dyn. 0.022 0.165 0.320 0.490 0.923

Table 2: Quantiles associated with the cumulative probabilities of the Z-score in

the static model (second row) and in the dynamic model (third row).

From Table 2 note that the distribution is concentrated around small values

of the test statistics and, therefore, our procedure can be diagnosed as correct.

We remark that a similar results has been obtained for the dynamic model.
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We have also checked our normality assumption, employing posterior predic-

tive analysis, as described in Geweke (2005). Our MCMC output has been

summarized by two scalar functions, the determinant and the trace. For each

of them we have derived the predictive density and checked whether their

observed values are in a 100(1 � �)% highest posterior density credible set.

It turns out that both functions satisfy this requirement, for our Bayesian

graphical models.

We �nally compare our results with those obtained with Granger-causality net-

works (Billio et al., 2012). Although Granger causality models are causal and,

therefore, cannot be strictly compared with our undirected graphical mod-

els, they are an important literature benchmark. Di¤erently from Billio et al.

(2012), that employ pairwise Granger causality, here we consider the N vari-

able case, where N > 2 , by estimating an n variable autoregressive model.

In such conditional Granger causality, X2 Granger-causes X1 if lagged obser-

vations of X2 help predict X1 when lagged observations of all other variables

X3 : : : XN are also taken into account.

Figure 7 shows the application of such model to our data.
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Figure 7: Conditional Granger causality network. The size

and the intensity of the color of each node is proportional to

its eigenvector centrality. Larger and darker nodes display

higher centrality.

The network in Figure 7, and the associated centrality measures, emphasize

the role of some European countries, that are, on average, more central than

non European ones. In particular, the Asian countries are, on average, the

most peripheral. The biggest hubs, according with the eigenvector centrality

measure, are GB, and FI: this can be explained, as in the static model, by

their multinational banks and, for Finland, by its local o¤-shore role, that

generate considerable intero¢ ce activity across borders (see also Von Peter,

2007). They are followed by BS and than by US, IE, ES and KY similarly

as in the dynamic Bayesian graphical model. The novelty are the role of the

Cayman Islands (KY), of Bahamas (BS) and Ireland (IE), clearly o¤-shore

countries as are LU, HK and FI in the dynamic model. Indeed as pointed out

by Von Peter (2007), the Cayman Island concentrate most of their positions
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on US banks, which is therefore a related node. In addition, IE is a country

that also has low tax rates and lax regulation and can, therefore, be considered

a "semi-tax" heaven.

We have �nally evaluated a possible change in the network structure, as it can

be relevant in understanding the behavior of the system and, accordingly, the

systemic risk. To achieve this aim, we have split the data into two subsequent

sub-samples: the �rst takes into account the liabilities of the countries for the

period 1983-1997 and the second for the period 1997-2011. In Table 3 we report

some basic network statistic for the static Bayesian model calculated for the

two sub-samples, together with the same measures calculated over the whole

data sample. The same statistics for the dynamic Bayesian model are shown

in Table 4.

1983-2011 1983-1997 1997-2011

Number of edges 123.5 130 124.4

Average degree 10.28 10.83 10.37

Average Eigenvector centrality 0.029 0.022 0.023

Average std of Eigenvector centrality 0.004 0.003 0.002

Table 3 : Posterior means and standard deviations for the static Bayesian

graphical model
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1983-2011 1983-1997 1997-2011

Number of edges 252.5 255.5 238

Average degree 10.52 10.64 9.91

Average Eigenvector centrality 0.016 0.011 0.011

Standard deviation of Eigenvector centrality 0.008 0.004 0.004

Table 4 : Posterior means and standard deviations for the dynamic Bayesian

graphical model

Table 3 shows that, for the static Bayesian graphical model, all statistics re-

main approximately the same over the three samples. The comparison in terms

of number of edges and in terms of average degree indicates that the average

number of links a node has in both networks is approximately equal. The com-

parison in terms of eigenvector centrality and its standard deviation leads to

similar results.

Table 4 shows that the structure of the dynamic Bayesian graphical model is

also quite stable over time. The most important di¤erence between Table 4

and Table 3 is that the dynamic Bayesian network has 48 nodes (instead of

only 24), and therefore, model complexity (as described, for example, by the

number of edges) is higher.

The previous comparison shows that the overall structure of our Bayesian

graphical models is stable in time. This does not mean that the dynamic of

each single node in the network has the same property. Indeed such dynamic

may be important to evaluate how systemic risk has evolved over the years, in
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accordance with di¤erent stages of the world economy. In order to understand

it we have therefore calculated the eigenvalue centrality of each node, for the

same sample periods as before. The results are reported in Figure 8, for the

static Bayesian graphical model.
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Figure 8: Eigenvector centrality for the static Bayesian model over three

di¤erent peiods: (1893-1997) blue bars, (1987-2011) green bars and

(1983-2011) red bas.

Figure 8 represents the eigenvector centrality scores for the static Bayesian

network. For the overall sample (1983-2011), the countries with the highest

centrality are US, LU, FI, DE, NL, GB, followed by CH. If we focus the

attention on the �rst half of the sample (1983-1997), the ranking changes and

the most central country turns out to be Canada, followed by US, BS, JP and

two other o¤-shore countries, namely HK and KY. We remind that JP and

HK have su¤ered from the Asian crisis during the mid-nineties: this fact can

be the origin of their high centrality score during the �rst half of the sample

and the relative low value in the second half of the sample. Looking instead

at the second half of the sample (1997-2011) note that the US is still a high

ranking central country, followed by SE, ES and DK, which do not rank as
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high in the �rst half of the sample. We believe that such a di¤erence could

have been trigged by the European Monetary System (EMS) crises in the early

nineties, which can be associated to the lost of centrality of Northern European

countries.

In Figure 9 we report the eigenvector centrality scores for the nodes of the

dynamic Bayesian graphical model.
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Fig. 1. Figure 9: Eigenvector centrality for the dynamic Bayesian model over three

di¤erent peiods: (1893-1997) blue bars, (1987-2011) green bars and (1983-2011) red

bas.

From Figure 9 it is evident that the scores associated with contemporaneous

nodes are higher that the ones of the autoregressive component. The ranking

of the countries in the MIR network component appears to be similar to the

dynamic of the score in the static Bayesian graphical model. In the MAR

component, instead, the most central countries are all European countries:

DK, DE, IT, LU and CH.

Overall, Figures 8 and 9 suggest that the US maintain throughout its role as

international �nancial hub, as its high centrality is stable over time. It is also
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clear that the results obtained using the whole sample are a sort of average

e¤ect between the results obtained separately in the two sub samples. The

application of the model to di¤erent subsamples, if the latter are appropriately

chosen, can indeed shed further light on the causes of systemic risk: here we

have highlighted the role of both the North European crisis of the early nineties

and of the Asian �nancial crisis in the mid nineties.

5 Conclusions

Network models are a useful tool to model systemic risks in �nancial systems.

They are essentially descriptive, and based on highly correlated networks. The

paper contains two main research contributions that improve network models.

First, we introduce multivariate Gaussian graphical models, de�ned in terms

of Markov properties, on the basis of which links in the network can be re-

moved if their corresponding partial correlation is not signi�cant. Second, we

robustify graphical model networks by means of a Bayesian approach, both

in a static and in a time-varying framework, thus providing an estimate of

partial correlations that, rather than being based on a single model, takes into

account model uncertainty.

We have applied our proposed methods to the Bank of International Settle-

ments locational banking statistics, with the aim of identifying central coun-

tries, whose failure could result in further distress or breakdowns in the whole

system. Our results show that the countries that are potentially most conta-

gious/subject to contagion can be splitted in three main groups: international

�nancial hubs such as US and GB; o¤-shore countries such as LU, HK, BS,

KY, IE and FI and, �nally, countries with large cross-border �nancial activi-
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ties as NL, CH and DE. A fourth group of countries, including weak �nancial

systems, emerges only when dynamic lagged e¤ects are properly considered,

as with a dynamic Bayesian graphical model.

Further research include the application of what proposed here to the study of

the interconnectedness between �nancial institutions, such as banks or insur-

ance companies. This involves, from a methodological viewpoint, using more

general models, that allow for clustering of institutions, for example within

countries. On the other hand, the importance of regulatory prescriptions, based

on extreme values (such as the Value at Risk) suggest the development of

graphical models that model the tail, rather than the mean, of the response

distribution.
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