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Abstract

There is recent growing evidence that abnormalities in the microbiota composition can have a major role in
the development of obesity and diabetes and that some actions of metformin may be mediated by gut
bacteria. Several mechanisms have been found. A reduced microbial diversity is associated to inflammation,
insulin-resistance and adiposity. In particular, a rise in the Firmicutes/Bacteroidetes ratio is related to a low-
grade inflammation and to an increased capability of harvesting energy from food. Interestingly, high-fat-
diet favors the growth of bacteria capable of extracting more energy from food. Changes in some
metabolites, such as short-chain fatty acids (SCFAs), produced by gut microbiota, and decreased amounts
of the Akkermansia muciniphila are associated with the presence of type 2 diabetes. Among the mechanisms
by which metformin acts on glucose metabolism and on the cardiovascular risk, some of them are due to
positive effects on gut microbiota. A shift towards positive SCFAs produced by bacteria, an increase in some
bacterial strains, including A. muciniphila, and some actions on bile acids mediated by microbiota have been

described. All these recent advances have been reported and discussed.



Introduction

The microbiota is a complex and heterogeneous ecosystem of taxonomically identified and
unidentified microorganisms residing in several districts of the human body, being over 70%
localized in the gastrointestinal tract and typified by two dominant bacterial phyla, namely
Bacteroidetes and Firmicutes. The microbiota lives in a symbiotic relationship with its host and is
characterized by a considerable inter-individual variability. The most dramatic changes in its
composition take place during early childhood and are influenced by several variables including type
of delivery (vaginal or cesarean), diet, environment [1]. Given that the number of microbial genes
(a.k.a. microbioma) has been estimated 150-fold higher than the number of genes in the human
genome, the microbiota seems to carry out more than 98% of the genetic activity of the organism,
as if it were a “second genome” [2]. Moreover, it can be also considered as a metabolic “organ”;
indeed, not only facilitates harvesting of nutrients and energy from the ingested food but is able, as
well, to produce a wide range of bioactive compounds, such as vitamins and short-chain fatty acids
(SCFAs), and it is implicated in the regulation of several metabolic processes. Consequently, it is not
surprising that abnormalities in the microbiota composition are often linked to the presence of

common metabolic diseases, such as obesity and type 2 diabetes (T2D) [3].

Role of the microbiota in obesity and diabetes

In the last four decades, the global prevalence of obesity has almost reached 650 million of people,
a number that is 6 times more than what observed in the 1990s and that cannot be only explained
by an increased caloric intake and a reduced physical activity [4]. To this regard, it has been
suggested that the gut microbiota, and particularly its changes in the composition and biodiversity,
can play a relevant role in the development of metabolic diseases [5]. For instance, a high-fat diet
(HFD) promotes in mice the development of systemic endotoxemia and inflammation, favors the
growth of bacteria capable of extracting more energy from the ingested food, and triggers insulin
resistance and obesity [3]. Notably, HFD leads, for example, to a drop in Lactobacillus genus (which,
instead, has positive effects on the gastrointestinal barrier function) and to an increase in microbial
populations (i.e. Oscillibacter) that release pro-inflammatory cytokines (primarily TNF-a and IL-6)
and alter negatively the gut barrier [6]. In contrast, germ-free (GF) mice fed with HFD are protected
from increased gut inflammation and exhibit decreased adiposity with respect to conventionally

raised mice fed with the same diet [7]. Nevertheless, GF mice transplanted with the microbiota of



obese mice become obese within the next 2 weeks [8]. In humans, most of the published studies
indicate that a rise in the Firmicutes/Bacteroidetes ratio is related to an augmented low-grade
inflammatory status and to a more elevated capability of harvesting energy from food. Further,
these studies are in agreement with the concept that a diminished microbial diversity is associated
with a higher insulin resistance, inflammation and adiposity [4, 9].

With respect to diabetes, during the last ten years, several studies have also pointed out changes in
gut microbiota composition or function in T2D patients, where the dysbiosis mostly depends on a
depletion in butyrate-producing bacteria (i.e. Faecalibacterium prausnitzii and Roseburia
intestinalis) coupled with an enrichment of opportunistic pathogens (i.e. Escherichia coli,
Bacteroides caccae, Clostridium ramosum, Clostridium symbiosum, Clostridium hathewayi and
Eggerthella lenta) [10, 11]. To this regard, it should be emphasized that changes in the metabolites
produced by gut microbiota may be associated with the development of T2D and insulin resistance.
In particular, SCFAs, such as butyrate, acetate and propionate, are endowed with important
metabolic functions and are critical for gut health [3, 12]. Indeed, SCFAs display beneficial effects on
peripheral tissues, such as adipose tissue, liver and skeletal muscles, leading to an improvement of
insulin sensitivity [13, 14]. Specifically, butyrate also improves gut barrier integrity by increasing the
transcription of mucin and claudin-1, and regulating the expression of epithelial tight-junction
proteins [10, 15]. Moreover, together with propionate, butyrate has been shown to activate
intestinal gluconeogenesis resulting in metabolic benefits in energy homeostasis, such as decreased
adiposity and body weight, and a better glucose control, including a reduction in hepatic glucose
production [16].

One of the most abundant single species in the human intestinal microbiota is Akkermansia
muciniphila, a mucin-degrading bacterial strain, which has gained considerable attention since
decreased amounts of the bacterium have been linked to obesity, insulin resistance, diabetes and
other cardiometabolic disorders in rodents and in humans [17]. Of interest, A. muciniphila has
recently been shown to delay the onset of type 1 diabetes in diabetes-prone animals probably as a
result of its modulatory action on the immune system [18]. However, although oral administration
of A. muciniphila to mice fed with HFD significantly improves glucose homeostasis, the antidiabetic
properties of this bacterium have not been clearly demonstrated in humans due to its growth
requirements and oxygen sensitivity that render the use of living A. muciniphila unsuitable for
putative therapeutic opportunities [11]. Nonetheless, Plovier and collaborators recently faced this

issue finding that the pasteurized A. muciniphila versus the live bacterium is endowed with an



enhanced capacity to reduce fat mass development, insulin resistance and dyslipidemia in mice.
Although it remains to be clarified how pasteurization improves A. muciniphila action, they also
showed that the outer membrane protein Amuc_1100 is specifically implicated in the bacterium-to-
host interaction via the Toll-like receptor 2 signaling, and that this protein partially recapitulates the
effects of A. muciniphila towards insulin resistance, obesity and gut barrier alteration [19]. These
data pave the way for future human researches exploring A. muciniphila as a therapeutic approach

in the management of metabolic diseases.

Metformin: a new outlook for an old antidiabetic drug

Metformin is an orally administered drug that has been employed for more than 60 years as a first-
line antidiabetic compound, either alone or in combination with other anti-hyperglycemic drugs,
due to its safety profile and favorable cardiovascular outcomes. Although the possible development
of a rare adverse event, lactic acidosis, sometimes limits its use.

The glucose-lowering effect of metformin has been primarily ascribed to a reduction of hepatic
gluconeogenesis. Nevertheless, in spite of elevated levels of metformin accumulating in the human
intestinal mucosa, much lower concentrations of the drug are detected in the plasma (up to 300
times lower) [20]. Further, after an oral administration, metformin half-life in blood is around 3-4
hours, which appears inconsistent with the duration of its glucose-lowering effect. In addition, the
glucose-lowering effect of the newly developed delayed-release metformin is similar to that of the
same dose of the extended-release metformin, in spite of a much lower bioavailability [21].
Therefore, the possibility exists that the metabolic benefits linked to metformin treatment may in
part depend upon its action in the gut (Figure 1). Accordingly, metformin-dependent glucose
lowering is stronger following intradoudenal versus intravenous administration of the drug [22].
Concerning the underlying molecular mechanism, in both humans and rodents, metformin has
consistently been shown to augment the blood levels of the incretin hormone glucagon-like peptide
1 (GLP-1) produced by enteroendocrine L cells that, through several pathways (i.e. glucose-
dependent insulinotropic and glucagonstatic effects, slowing of gastric emptying), improves blood
glucose homeostasis [22]. Of note, a recent study documented that a 24 hours exposure to
metformin directly stimulates GLP-1 secretion from intestinal L cells [23].

However, accumulating evidence also underscores the ability of metformin to reshape the gut
microbiota promoting, as well, a shift towards SCFAs-producing bacteria in T2D individuals [11, 24].

A double-blind study carry on treatment-naive T2D patients demonstrated that, after 4 months,



metformin induces significant changes in the relative abundance of more than 80 bacterial strains
compared to placebo, where most of the changes were observed in the Firmicutes and
Proteobacteria phyla. Moreover, fecal transfer from metformin-treated donors to HFD-fed GF mice
improved glucose tolerance, proving that metformin-altered microbiota can produce glucose-
lowering effects. Of interest, the same authors also found an enhanced abundance of Akkermansia
muciniphila and, in in vitro experiments, they demonstrated that metformin directly increases the
growth of this bacterium [25]. This is in agreement with other studies showing that metformin
dramatically increases the abundance of A. muciniphila up to 20% of the total microbiota [14, 26].
Finally, transcriptome analyses on fecal samples from treatment-naive patients cultured with
metformin in a gut simulator documented that metformin directly affects gut microbiota regulating
the expression of genes encoding metalloproteins or metal transporters [25].

In a very recent study performed on newly diagnosed T2D patients naively treated with metformin
for only 3 days, it was documented that even a short treatment with the drug is able to reshape gut
microbiota composition, where the genus Bacteroides is characterized by the largest decrease in
abundance and being B. fragilis the most changed. Indeed, the authors also showed that metformin
inhibits, in a dose-dependent fashion, the growth of B. fragilis. In addition, transplanted stool from
subjects with T2D treated with metformin to microbiota-depleted mice fed with HFD caused, on
one side, a decrease in B. fragilis abundance and, on the other, an improvement in glucose
intolerance and insulin resistance, indicating that the beneficial effects of metformin can be
transferred by stool transplantation [27]. A modulation of the gut microbiota by metformin has been
also reported to improve the metabolic profile of aged obese mice, suggesting that the drug may
have a therapeutic impact on metabolic disorders also in elderly individuals [28].

Another target of metformin action is represented by bile acids that, thanks to their amphipathic
structure, facilitate emulsification and absorption of dietary lipids and fat-soluble vitamins. Notably,
bile acids have been involved not only in the hepatic regulation of cholesterol metabolism but also
in glucose homeostasis [29]. The inhibition of bile acid resorption by biguanides has been
acknowledged since the 1970s [30], and the resulting rise in fecal bile acid secretion, which is
coupled to anincrease in bile acid synthesis from cholesterol, likely accounts for metformin-induced
lowering in serum cholesterol levels [31]. In humans, the primary bile acids, cholic acid (CA) and
chenodeoxycholic acid (CDCA) are synthesized in the liver from cholesterol and secreted as glycine
and, to a lesser extent, taurine conjugates into the intestine. CDCA is further converted to the

secondary bile acid ursodeoxycholic (UDCA) by gut microbial 7a/B-dehydrogenation and



transported back to the liver via the enterohepatic circulation. Here, most of UDCA is conjugated
with glycine and taurine to generate, respectively, GUDCA (glycoursodeoxycholic acid) and TUDCA
(tauroursodeoxycholic acid), which are transported into the gut and successively reabsorbed into
the ileum epithelial cells. Overall, about 95% of secreted bile acids is reabsorbed from the intestine,
mainly as conjugated acids. Bile acids deconjugation is carried out by bacteria endowed with bile
salt hydrolase (BSH) activity, thus preventing their active reuptake. Metagenomic analyses revealed
that, in the human gut, BSH is present in all major bacterial divisions and archaeal species including
Bacteroides, Lactobacilli, Bifidobacteria and Clostridium [32].

After metformin treatment, Sun and colleagues found that especially the levels of the conjugated
bile acids GUDCA and TUDCA were elevated. To this regard, they demonstrated that GUDCA and
TUDCA were negatively correlated with B. fragilis, and that its BSH activity was strongly reduced
following metformin administration. Further, they documented that GUDCA significantly increases
the levels of GLP-1. Of interest, Sun and collaborators also proved that GUDCA and TUDCA are
potential antagonists of the nuclear receptor FXR (farnesoid X receptor) [27], which controls bile
acid homeostasis, glucose and lipid metabolism, and it is implicated in several metabolic diseases
[33]. Indeed, oral administration of GUDCA strongly reduces intestinal FXR signaling and alleviates
some metabolic endpoints in established obese mice, thus suggesting that the GUDCA-intestinal
FXR pathway can represent a potential novel target to counteract metabolic disorders in humans
[27].

Collectively, these data strongly indicate that the gut, and especially the microbiota, is a key site of
metformin action in the control of glucose homeostasis. Moreover, given that metformin treatment
has also been associated with a significant decrease in all-cause mortality and incidence of age-
related diseases, the drug has been even proposed as an anti-aging molecule [24, 34]. Therefore,
further knowledge on its action will help to better address the therapeutic targets of this widely

employed antidiabetic molecule.
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Figure 1. Main effects of metformin in the gut. Metformin is able to reshape the gut microbiota promoting
a shift towards short-chain fatty acids (SCFAs)-producing bacteria, where most of the changes have been
observed in the Firmicutes and Proteobacteria phyla. SCFAs, through the G-protein-coupled receptors GPR-
41 and GPR-43, lead to the secretion of intestinal peptides implicated in glucose homeostasis or food intake,
such as glucagon-like peptide 1 (GLP-1) or peptide YY (PYY). SCFAs also improve gut barrier integrity; indeed,
dysfunctions in gut barrier expose the host to high levels of translocated lipopolysaccharide (LPS) that
promotes the production of pro-inflammatory cytokines (primarily TNF-a and IL-6), which in turn trigger
subclinical inflammation and insulin resistance. Specifically, metformin enhances the abundance of
Akkermansia muciniphila; accordingly, decreased amounts of the bacterium have been linked to the
development of obesity, insulin resistance, and diabetes. Further, A. muciniphila seems to have a modulatory
action on the immune system which may account for a delayed onset of type 1 diabetes. Moreover,
metformin treatment regulates the expression of genes encoding metalloproteins/metal transporters, and
increases the levels of the conjugated bile acids GUDCA (glycoursodeoxycholic acid) and TUDCA
(tauroursodeoxycholic acid). This latter effect likely accounts for metformin-induced lowering in serum
cholesterol levels.
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