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Abstract

Using a real-world data set encompassing the daily portfolio holdings and ex-
posures of complex investment funds, we derive a set of quantitative attributes to
capture essential behavioral features of fund managers. We find the existence and
stability of three investment attitudes, namely the conservative, the reactive, and
the pro-active profiles, defining communities that respond differently when facing
external shocks. The conservative community has behavioral similarities that tend
to decrease due to external shocks, the reactive community members greatly increase
their activity level especially during turmoil phases, while delegated investors in the
pro-active community are more resilient to turbulence and counterbalance the im-
pact of the events by adjusting their portfolio exposures in advance. We show that
exogenous shocks only temporarily perturb the behavioral traits of the communities
which then go back to their original states once the distress is embedded.
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1 Introduction

“The age of asset management is upon us”. These words were pronounced by Andrew
Haldane, the chief economist of the Bank of England, to stress the increasing influence of
the investment industry on financial markets and the potential risk this poses on financial
stability (Haldane et al., 2014). The industry of assets under management is, indeed,
growing rapidly; it has approximately doubled its size over the past decade, showing a
trend that seems not to decline in the near future. PriceWaterhouseCoopers, for instance,
has estimated that the industry of assets under management could touch around USD100
trillion by 2020, reaching USD400 trillion by 20501.

Delegated investors2 are concerned with their relative performance compared to their
peers. Searching for alpha, i.e. extra-returns with respect to a benchmark, has the
potential to inject spillover effects into the financial system, possibly generating frictions
in market liquidity similar to a bank run (Feroli et al., 2014). Such adverse dynamics
are more likely to arise from asset managers behaving in a correlated fashion. In other
words, while during market upswings managers are likely to look for yield in an attempt to
outperform their benchmarks, in market downturns they quest for safety to boost relative
return rankings, possibly causing a flight to quality effect (Davis and Madura, 2012).

A vast literature has addressed the issues of funds’ dynamic asset allocation and stock-
picking decisions by examining how excess returns relative to benchmarks are obtained
(Barras et al., 2010; Christopherson et al., 2009; Grinblatt et al., 1995; Grinold, 1989;
Sharpe et al., 1999). Nevertheless, the behavioral features driving managers in their
allocation choices are far from being well analyzed and investigated (Hsieh et al., 2011).
The scope of this paper is, hence, to analyze the behavioral features that drive managers
in their allocation choices. Besides sector, asset type, geographical and market portfolio
compositions, we want to disentangle similarities in the behavior of professional investors
in terms of e.g. trading intensity, derivative exposures and position concentration. In
particular, we are interested in studying how extreme events reveal coordinated behaviors
usually hidden by almost perfectly balanced portfolio dynamics to provide the potential
for a better understanding of fund managers’ activities.

We employ a micro-level data set of complex portfolio holdings for constructing a vec-
tor of behavioral features that describe the investment decisions of managers. We focus
on the year 2015 due to the relevant macroeconomic and geopolitical events that heavily
perturbed financial markets as, for instance, the Greek austerity packages, the elections
in UK as well as the major monetary changes that occurred both in Europe and in the
US. We investigate the patterns of co-occurrences of behavioral traits through time to
determine similarities and differences across the behaviors of professional investors in the
light of the economic and geopolitical events affecting market dynamics. We focus on the
behavioral responses of managers to market instability, investigating their attitudes to-
wards risk and uncertainty by introducing an intrinsically temporal approach that allows
to simultaneously identify communities and track their activity over time (Pecora and
Spelta, 2017; Spelta, 2017). Our primarily interest is in strong, or dominant, relation-

1See https://www.pwc.com/gx/en/industries/financial-services/asset-management/publications/asset-
management-2020-a-brave-new-world.html.

2The terms delegated investors, fund managers and asset managers are used as synonymous in the
paper.
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ships that tie together managers’ behavioral features. As these types of relationships are
more difficult to be broken, they reveal the “true” and persistent structures of managers’
behavioral attitudes, emphasizing the relationships between e.g. the use of mental models
and the representation of the financial markets by delegated investors (Johnston-Laird,
1983; Johnson-Laird, 2010).

In particular, besides the Minimal Spanning Tree (MST) analysis of the time con-
strained similarity networks built from managers’ behavioral attributes, a coefficient of
residuality is defined to capture the structural evolution of primary linkages (Mantegna
and Stanley, 1999; Onnela et al., 2002; Spelta and Araújo, 2012). The residuality coeffi-
cient captures not only the changes in the threshold that insures connectivity of the whole
network, but it also measures the variations in the relative amounts of strong and weak
ties, contributing to identifying the coordinated behaviors arising, for instance, during
financial crisis periods. Strong linkages are then analyzed from a geometric perspec-
tive showing that the systematic information characterizing managers’ behaviors actually
belongs to a space of few dimensions (Seber, 2009), where we have applied a multidi-
mensional decomposition technique to identify persistent communities with homogeneous
behavioral features.

Our work relies on a particular tensor decomposition approach, the so-called CP de-
composition (whose label refers to the two most popular techniques, namely the “Cande-
comp”, developed by Carroll and Chang (1970), and the “Parafac” proposed by Harshman
(1970)). This approach basically stands for a singular value decomposition (SVD) applied
to multidimensional array; it also reflects the fact that an evolving network can be de-
scribed as a time-ordered sequence of adjacency matrices that represent the state of a
given system at a certain time. These adjacency matrices are, then, arranged in a single
mathematical object that is the three-way tensor.

The intrinsically temporal nature of the methodology allows us also to investigate
managers’ activity patterns and temporal correlations during various market phases. Our
study reveals the existence of three communities characterized by different investment
behavioral traits: conservative, reactive and pro-active. The analysis of the activity level
of the communities as a function of time shows how fund managers with a conservative
behavior respond to external shocks by decreasing their similarities. The opposite happens
to reactive fund managers that, instead, increase their synchronization during unexpected
events. Those fund managers can also be named pro-cyclical to differentiate them from the
last group, i.e. the pro-active funds, whose members tend to anticipate possible market
shocks (thus deserving also the label of counter-cyclical funds managers).

More importantly, our temporal analysis confirms that, besides a general increase in
the synchronization between managers’ behaviors during turbulent periods, communities
react differently when facing exogenous shocks. We observe a temporary perturbation
in the configuration of the traits characterizing a community only in the neighborhood
of major distress events, which vanishes once the turbulence has been internalized by
market participants. These findings contribute to the debate on the interdependence
between market dynamics and the impact of events causing systemic instability since the
agents considered in the study, i.e. professional investors, are those that are more likely
to interpret market signals in a timely manner.

The paper is structured as follows: Section 2 describes the data set and presents the
methodology applied to identify communities via a temporal clustering decomposition.
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This section is also devoted to the description of the behavioral indicators used to charac-
terize managers’ investment attitudes. Section 3 exhibits the results of the study focusing
on the arising communities of managers and providing the characterization and stability
analysis of their behavioral traits over time. Finally, Section 4 concludes and provides the
economic discussion about the results.

2 Data and methodology

2.1 Behavioral features data

In the present paper, we employ a data set that contains the daily portfolio allocations of
22 open-ended funds3 in the year 2015. More than 4 thousands constituents belonging to
70 different countries are present in the data set. The funds’ size ranges from 12 M/Euro
to 2.3 B/Euro. The data covers information on fund returns, on the total values of the
assets under management (AUM), and on the portfolio constituents (e.g., their market
values, prices, and quantities). The constituents include several financial instruments,
ranging from stocks to bonds and derivatives. Each position is classified according to the
asset class, market, sector and geographical location of the issuer. The data set granularity
supports its use for studying the behavioral commonalities among asset managers.

Investment funds have been typically studied in terms of portfolio compositions, fo-
cusing in particular on their performances, by examining how excess returns relative to
benchmarks are obtained based on, for instance, dynamic asset allocations and stock-
picking decisions (Barras et al., 2010; Christopherson et al., 2009; Fama and French,
1993; Grinblatt et al., 1995; Grinold, 1989; Sharpe et al., 1999). Portfolio allocation has
been usually described by discriminating between different geographical, sectoral and as-
set type classes corresponding to each portfolio constituent. Indeed, the typical approach
for asset management is to allocate funds into specific areas, e.g., US vs. Eurozone, or
according to certain sectors or asset types, e.g., automotive vs. financial or bonds vs.
equities.

Differently from previous literature on investment strategies, which focuses on indica-
tors for standard portfolio compositions to characterize competing funds (Benartzi and
Thaler, 2001; Fung and Hsieh, 1997; Sharpe, 1992), we exploit information extracted from
data that is usually not fully publicly available to identify and characterize the behav-
ioral traits of managers. In order to study the dynamics of these behavioral features, we
introduce a list of attributes as proxies to map different investment profiles. We propose
to examine three relevant dimensions to characterize how behavioral features affect asset
managers in their portfolios allocation. The first dimension is the use of derivatives for
hedging or speculating purposes. This indicator helps to detect manager’s willingness to
accept risk when making investment decisions. The second dimension is the manager’s
intensity of trading, which is the ratio of the market value of trades in one day to the value
of the fund AUM. Finally, we quantify the investment concentration level among differ-
ent asset classes, which is related to the trade-off that delegated investors face between
using specialization to gain extra returns and the benefit of increasing diversification to
mitigate risk. Although these attributes are far from being a complete and exhaustive

3We do not have information about funds’ identity therefore we have identified them with progressive
numbers from id1 to id22.
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representation of the investment behavioral profiles, however, they enrich the basic per-
spective provided by public categories (e.g., classifications based on geographical, sectoral
and asset classes), thus significantly enhancing our understanding of funds managers’
behaviors.

For each fund i in time t we construct a daily vector yi(t) of synthetic indicators
representing both the portfolio composition and the investment strategy preferences of
fund managers. We use these investment styles to map behavioral criteria that delegated
investors apply when examining and selecting among competing allocation possibilities.
The vector y(t), therefore, includes measures of both the portfolio composition and man-
ager responses to external signals, e.g., trading intensity, use of derivatives, attitude to
stock selection and asset diversification. In particular, we apply a principal component
analysis on the categories for market, geographical, sectoral and asset classes to extract
a list of 10 features related to portfolio composition. To measure a manager’s propensity
to trade, we use the ratio between the market value of trades in one day and the value
of the assets under management (hereinafter, the turnover index or TI). The hedging
coefficient (HC), which indicates whether equity derivatives are used for hedging or for
speculation purposes, has been derived as a proxy to measure the managers’ willingness
to accept risk. Finally, to capture the trade-off between specialization and diversifica-
tion, the Herfindahl-Hirschman index (HHI), that quantifies the investment concentra-
tion/diversification among equities, corporate and government bonds markets, has been
calculated. Finally, to limit the potential noise in daily observations, all measures at time
t are averaged over the preceding 10 days. Our results are robust enough across windows
ranging from 5 to 15 days (see Tables in Appendix B).

2.2 The distance matrix

Once we have constructed the daily vectors of fund managers’ behavioral features, we
compute a measure of similarity for each pair of the N funds by adopting the cosine
metric used in information retrieval for sparse and multidimensional settings. Given two
funds whose time-t behavioral characteristics are collected in vectors yi(t) and yj(t), the
time-t cosine (cos) of the angle between them is:

cos(yi(t),yj(t)) =
< yi(t),yj(t) >

||yi(t)||||yj(t)||
. (1)

where < ◦ > indicates the inner product and || ◦ || the Euclidean norm. The distance
matrix D (t) is computed as:

Dij (t) = 1− cos(yi(t),yj(t))

The stronger the similarity (i.e., the force that connects two fund managers’ behavioral
characteristics), the shorter the length of the links connecting the funds. In other words,
pairs of funds that are dissimilar receive higher weights since they are placed far away
from each other, while values approaching zero are assigned to pairs with highly similar
characteristics.

The fully-connected nature of D (t) does not aid in the determination of whether
there are relevant patterns taking place in the system. The analysis of the systems, whose
topological signature is a complete (fully-connected) network, demands the corresponding
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representation of the system where sparseness replaces completeness in a suitable way. To
accomplish this purpose we first derive the Minimal Spanning Tree (MST) representation
of fund managers’ behavioral similarities.

2.3 The Minimal Spanning Tree

For each time t from the N × N distance matrix D, we apply the nearest neighbor
method to perform the hierarchical clustering. At the initial step, we consider N clusters
corresponding to the N funds. Then, at each subsequent step, two clusters li and lj are
merged into a the same single cluster if:

d (li, lj) = min {d (li, lj)}

with the distance between clusters being defined as:

d (li, lj) = min {dpq}

with p ∈ li and q ∈ lj. These operations are repeated until a single cluster emerges. This
clustering process is also called the single link method since one obtains the MST of a
network. Given a connected graph, the corresponding MST is a tree of N − 1 edges
that provides the minimum value of the sum of the edge distances. More specifically,
the hierarchical clustering procedure takes N − 1 steps to be completed when the graph
is composed by N nodes, and it exploits, at each step, a particular distance di,j ∈ D to
merge two clusters into a single one. Let C = {dq}, q = 1, ..., N−1, be the set of distances
di,j ∈ D used at each step of the clustering procedure, and L = max{dq}. It follows that
L = dN−1. By determining the threshold distance value (L), which ensures the full
connectivity between funds’ features, we are able to define a representation of D with
sparseness replacing fully-connectivity in a suitable way. In particular we consider strong
ties those links that have a weight less than L. Those links represent high similarities
between pairs of funds’ behavioral characteristics vectors. In formula:

D̂ij =

{
Dij if dij < L

0 otherwise

In so doing, we do not assume an a priori specification for the degree of sparseness
of D letting stronger similarities in the pruned network D̂ to spontaneously emerge from
the dynamic of the system.

Having defined D̂ we can also compute the number S of redundant elements in D̂,
namely the number of distances dij that, although assuming values smaller than L, do
not need to be considered in the hierarchical clustering procedure leading to the MST.
In a connected graph, S is called the cyclomatic number since it provides the cardinality
of the cycles of the graph. Here, cycles and trees may or may not emerge in the result-
ing structures of the graph. In particular, clustered networks show a high cyclomatic
number, while on the opposite scenario the networks resemble a tree-like structure and,
consequently, present low clustering values.
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2.4 The Principal Coordinates Analysis

To facilitate the detection of commonalities between the behaviors of delegated investors,
we mitigate the course of data dimensionality by applying the Principal Coordinates
Analysis (Seber, 2009) to the matrix D̂ containing strong similarities. We determine the
centering matrix as follows:

H = I−N−111T

where I is the N × N identity matrix, and 1 is a vector of N ones. The eigenvalue and
eigenvectors of the matrix:

B = H
(
−1

2
D̂
)

H

are then determined for each day (t). The coordinates in the lower-dimensional space are
recorded in a matrix Λs = AsG

(1/2)
s , where As refers to the eigenvectors that correspond

to the s largest eigenvalues of B, and G(1/2)
s contains the square root of the s largest

eigenvalues along the diagonal elements.
By looking at the decay of the eigenvalues of the scalar product X = ΛsΛ

T
s in Fig-

ure 10 (Appendix A), we see that the first three-dimensions capture the structure of the
deterministic similarities and behavioral trends that are driving the system. Therefore,
we embed D̂ in a three-dimensional space (s = 3), obtaining, for each t, the configura-
tion matrix Λ3 that contains the coordinates of funds managers’ behavioral traits in the
reduced space. The resulting multivariate geometric spaces, where each fund is uniquely
identified by a set of coordinates, provide the basis for the computation of the CP de-
composition and of the community detection analysis. In other words, the scalar product
matrix X = Λ3Λ

T
3 is the primary object of the cluster analysis.

2.5 The CP decomposition

Starting from the evolving scalar product matrix X obtained at each time t, we build a
3-way tensor (Bro, 1997; Kolda and Bader, 2009) X ∈ RN×N×T , where the index N = 22
represents funds and T = 219 denotes days. Thus, the tensor is composed of 219 slices,
X ∈ R22×22. The tensor X encompasses both the topological and temporal information
of the evolving behavioral characteristics of funds managers. To reveal the community
structure of such behavioral traits and their activity patterns, lower-dimensional factors
need to be identified and extracted from the data. To this end, we use the CP decom-
position (Bro, 1997; Kolda and Bader, 2009; Pecora and Spelta, 2017; Spelta, 2017) to
represent the tensor as a suitable product of lower-dimensional factors.

Solving this problem consists in finding the R rank-1 tensors that best approximate the
tensor X . This multidimensional decomposition is, thus, analogous to a community de-
tection where the number of communities is set a priori: the number of lower-dimensional
factors we select to approximate the tensor is the number of communities (and activity
patterns) we obtain. Assuming that the number of components is fixed (at the end of
the section we relax this hypothesis by introducing a test to choose the proper number
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of communities), we compute a CP decomposition with R lower-dimensional factors that
best approximates X , i.e., to find

min
X̂

∥∥∥X−X̂ ∥∥∥2

F
with X̂= [σ; U,V,W] =

R∑
r=1

σrur ◦ vr ◦wr (2)

where || ◦ ||2F represents the Frobenius norm, R is a positive integer and V ∈ RN×R,
U ∈ RN×R, W ∈ RT×R and σ = ‖V‖ ‖U‖ ‖W‖ .

The problem is solved by using an Alternating Least Squares (ALS) Algorithm (Bro,
1997) dividing the minimization into three-dimensional sub-problems by unfolding the
tensor X . Meaning rearranging the elements of X into three matrices X(1),X(2) and X(3).
The three resulting matrices have a size of N ×NT , N ×NT and T ×NN , respectively.
In this way problem (2) is equivalent to the minimization of the difference between each
of the modes and their approximation in terms of factors.

min
U

∥∥∥X(1) −UMT
VW

∥∥∥2

F

where MVW = V �W and X(1) is the N ×NT unfolded matrix of X ,

min
V

∥∥∥X(2) −VMT
UW

∥∥∥2

F

where MUW = U�W and X(2) is the N ×NT unfolded matrix of X and

min
W

∥∥∥X(3) −WMT
UV

∥∥∥2

F

where MUV = U�V and X(3) is the T ×NN unfolded matrix of X .
After computing the Karush-Kuhn-Tucker conditions, we compute the gradient of the

local cost functions. The stationary points can be found via the following updates:

U← 1
MT

V W MV W
X(1)MVW

V← 1
MT

UW MUW
X(2)MUW

W← 1
MT

UV MUV
X(3)MUV

being the scalar product matrices symmetric, this implies U = V. To choose the cor-
rect number communities, usually multiple CP decompositions with different number of
components are computed until “good” enough one is found. However, when data are
noisy, the model fit alone cannot determine the best rank approximation, therefore, we
follow Bro and Kiers (2003) by employing the Core Consistency Diagnostic (Corcondia)
to compare results obtained from different numbers of components. The Corcondia test
determines whether, for a fixed number of components, the model is better described by
a Tucker decomposition (Tucker, 1966) or by a CP decomposition. The Tucker method
essentially decomposes a tensor into a set of matrices and one small core tensor. We
notice that the tensor decomposition described by Equation (2) can be written, in scalar
notation as:

X̂ =
R∑
n=1

R∑
n=1

R∑
t=1

g1
mmnuinvjnwkt (3)
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where g1
mmn = δijδjkδik is the unit superdiagonal tensor. This form is a special represen-

tation of a more general tensor decomposition, the Tucker decomposition, where gmmn,
known as the core tensor, encodes the interactions between the three factors and does not
have to be superdiagonal. The Corcondia test, in other words, compares g1

mmn with gmmn
and is written as follows:

Corc(R) = 1−
∑R
n=1

∑R
n=1

∑R
t=1(gmmn − g1

mmn)2∑R
n=1

∑R
n=1

∑R
t=1(g1

mmn)
(4)

A Corcondia test close to 100% indicates that the CP decomposition better explains
the data with respect to a Tucker model. If the data cannot be described by a trilinear
decomposition or too many communities are employed, the Corcondia will be close to
zero (or even negative). In practice the core consistency decreases slowly for an increasing
number of components and then sharply falls when the correct number of components is
exceeded. Finally, the number of components that should be chosen corresponds to the
last high consistency value4.

After having solved the model, a post-processing of the results provides additional
information about the organizational principles of behavioral features. Information about
the community structure of funds managers’ behavioral similarities and about their tem-
poral activity have been found through the leverage analysis. Leverage can be seen as
an influence measure, which ranges between zero and one and expresses the deviation
from the average data distribution. A high value of the influence measure indicates an
influential variable, while a low value stands for the opposite (Bro, 1997). The leverage
within the r-th community has been computed as:

cr = diag
(
ur
(
uTr ur

)−1
uTr

)

τr = diag
(
wr

(
wT
r wr

)−1
wT
r

)
The vector cr encompasses the leverage of each funds in the r-th community, while

the vector τr encompasses the leverage of each day in the sample, i.e., the level of the
r-th community activity in the t-th working day. Managers’ behaviors with high leverage
values in the r-th component are placed together into the same community as they are
highly influential within that community. Similarly, a high leverage in the time dimension
of the r-th community indicates a high activity in that community at time t, or, in other
words, that in the t-th working day members within that community are very similar in
their behavioral features.

3 Results

In order to gain a deeper understanding of the structure inferred from the data, we
have reported the MST configurations obtained during different turmoil phases, namely,
the QE, the election in the UK, the Yuan devaluation, the S&P correction, the Siriza
elections and the Greek austerity package. The roles of the different funds in allowing the

4Figure 11 in Appendix A shows the goodness of fit and displays the Corcondia test values for different
number of factors on the right
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network to be connected are presented in Figure 1. For instance, there are no funds with
a prominent role in terms of centrality (the degree ranges from 1 to 3), meaning that all
funds have been impacted equally by the different events. Moreover, the position of the
funds on the MST is not stable over time meaning that different events shape the network
of similarities in different ways. Nevertheless, it has to be notice that the MST contains,
by construction, only N − 1 edges and therefore most of the information could be lost if
the other connections are not taken into account.

Figure 1: Minimal Spanning Tree. For different and relevant economic events of the year 2015 we have reported the
MST configuration of fund similarities. Notice that no fund play a dominant role in connecting the network and that a
fund’s position in the network does not remain stable over time.

3.1 Identification of Synchronization Phases

During economic booms and normal times, financial markets tend toward randomness,
whereas in the crisis periods the structure of financial markets is reinforced in the topolog-
ical sense, as shown by the clustering coefficient (see Onnela et al. (2002)). The number S
of redundant elements emphasizes such structural changes that take place on the network
structure.
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Figure 2: Cyclomatic Number. The red line shows the daily values of the cyclomatic number S, i.e. the number
of distances dij that, although being smaller than L, does not need be considered in the hierarchical clustering process
leading to the MST, along with the standard deviation in black. Green bars represent economic and geopolitical events
that stormed the financial markets in 2015.

Not surprisingly, increasing clusterization tend to be a consequence of disturbed peri-
ods as reported in Figure 2.

Moreover, in the distressed periods high similar positions (namely, “synchronization”)
emerge in financial markets, thus, reinforcing their topological structures (Onnela et al.,
2002). To capture this feature in the behavioral traits of the delegated investors we define
a residuality coefficient as:

ρ(t) =

∑
d(t)ij>L(t) d(t)−1

ij∑
d(t)ij<L(t) d(t)−1

ij

Figure 3: Residuality Coefficient. The blue line shows the daily values of the residuality coefficient i.e. ratio of the
similarities between funds’ behavioral characteristics that lie above and below the MST threshold or, in other words, the
ratio between weak and strong ties. Green bars represent economic and geopolitical events that stormed the financial
markets in 2015. One can see that around January, July and November 2015, the index reaches the lowest values due
to the influence of the geopolitical events that occurred in this period. Funds managers’ behavioral similarities increase
significantly during these occasions.

Residuality relates the relative strengths of the similarities above and below the MST
threshold and provides evidence for the structural changes that toke place during market
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turmoils. Figure 3 shows the values of ρ(t) for the year 2015 and allows for capturing the
main differences in the behaviors of fund managers between turmoil phases and “business
as usual” days. Figure 3 indicates that the lowest values of ρ(t) correspond to the Greek
and English elections, to the Greek austerity referendum and to the new austerity pack-
ages. The decrease of the residuality coefficient observed in Figure 3 is due to that the
distance values below L(t) tend to be smaller (shorter) than those above the threshold, i.e.
strong ties intensify, showing that synchronization between behavioral traits’ similarities
increase significantly during these major geopolitical events.

3.2 Identification of Behavioral Community

We are also interested in discovering homogeneous traits at the community level that
may reveal the different mental models and investment practices employed by delegated
investors. A tensor decomposition with 3-factors (R = 3) explains 75% of the data
variability and the Corcondia test around 90%, indicates that the CP decomposition is
suitable for qualifying the structure of the data we employ. We partition the behavioral
traits of fund managers into three communities by employing a soft partition scheme. We
compute membership probabilities5 of each fund inside each community by normalizing
the leverage of the i-th fund in the r-th community. Denoting by cir the leverage value
of the i-th fund in the r-th community, allows us to compute the degree membership ĉir
inside community r as follows:

ĉir =
cir∑R
r=1 cir

Figure 4 shows the membership probabilities of each fund. Most of the funds have
a degree of membership concentrated in one community meaning that they strongly and
exclusively belong to that particular community for most of the time and have well defined
behavioral traits. We find that this tendency is reflected in funds id1, id2, id5, id6 and
id14 which strongly belong to Community-1 or in funds id4, id9, id10, id12, id13 and
id15 that compose Community-2 and in funds id3, id19, id21 and id22 that pertain to
Community-3. Other funds (namely id7, id8, id11, id16 id17 id18 and id20), instead, have
a dispersed degree of membership and belong to more than one community. These funds
seem to have mixed behavioral characteristics inherited from the different communities.

3.3 The Features of Behavioral Communities

We identify the behavioral characteristics of each community by examining its features
values over time. The features of a community have been identified as the weighted sum of
the features of the community constituents, where the weights are the degree membership
of each fund in that community6.

5Such membership distribution is used to assign funds to communities. We apply a hard partition
scheme in which we assign each fund to the community where the fund has the highest impact in terms
of strength.

6If a fund is assigned to the first community with a degree membership of .7, that community will
have the 70% of the characteristics of the fund.
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Figure 4: Community memberships. For each fund, the probability of belonging to one of the three identified
communities has been reported. Most funds, having an unimodal membership distribution, exclusively belong to only one
community. Funds id1, id2, id5, id6 and id14 strongly belong to Community-1 (blue) while funds id4, id-9, id10, id12 ,id13
and id15 compose the second community (red). Community-3 (yellow) refers to funds id3, id19, id21 and id22. The other
funds, having a membership distribution that is closer to uniform, belong to different communities at the same time.

Figures 5-7 show these values along time in the upper panels and the average value
in the bottom panels. Some interesting results emerge. Generally speaking, the average
features of each community are stable over time but in some cases, during crisis phases, we
can observe a perturbation in the configuration of the traits characterizing a community
and this is specially true for the HC coefficient reported in Figure 5. Community-1 has
on average the highest hedging coefficient followed by Community-3 and Community-2
(bottom panel), nevertheless Community-3 displays the biggest drop of the HC coefficient
in the interval June-July 2015, i.e., during the turbulent phase dominated by the UK
election and Greek events (see upper panel).

Also, the time series of the HHI index reported in Figure 6 show some breaks in con-
nection with the most relevant economical and geopolitical events. For instance, all of the
communities have the highest concentration on fund positions, but the high concentra-
tion of members in Community-1 decreases after the approval of the austerity measures
by the Greek parliament, while the contrary occurs for the members of Community-2 and
Community-3 which pass from a lower concentration in the summer to a higher concen-
tration after July, thus returning back to their past levels.

By looking at the TI shown in Figure 7, Community-1 displays the lowest values along
the entire time window meaning that members of this community infrequently adjust their
portfolios. Members of Community-2 and Community-3, on the other hand, behave the
opposite having a high average turnover value.

Finally, although portfolio compositions matter for the characterization of funds con-
ducts, these dimensions do not appear to fully characterize a community. For instance,
as Figures 12-15 in Appendix A emphasize, all the three communities primarily invest in
developed markets especially in Italy and Europe. Beside that, members of Community-1
mostly invest in equity instruments, while Community-2 is more oriented to Corporate
bonds and Community-3 to Government Bonds.
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Figure 5: Hedging Coefficient (HC). The figure displays in the upper panel the changes of the Hedging coefficient of
each community over time. The bottom panel shows the average values over time. Besides the highest value of the HC
index of Community-1, it is interesting to note how Community-3 decreases the HC during crisis periods.
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Figure 6: Herfindhal-Hirshman Index (HHI). The figure displays in the upper panels the dynamics in time of the
Herfindhal index computed on various asset classes for each community. The bottom panel shows the average values over
time. All the communities are highly concentrated on fund positions and less on the other asset classes. This behavior,
however, is not constant over time but shows abrupt changes during crisis periods.
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Figure 7: Turnover Index (TI). The figure displays in the upper panel the turnover movements of each community over
time. The bottom panel shows the average values over time. Community-1 has the lowest turnover and this characteristic
is stable over time. On the other hand communities 2 and 3 have a high and fluctuating turnover.
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3.4 Analysis of Community Synchronization

The tensorial decomposition, by taking into consideration both spatial and temporal
features, allows us to investigate how the different communities responded to external
events that perturbed the markets. As in the previous case, we normalize the leverages
related to the temporal components and obtain the temporal activity patterns of each
community over time. The probabilities (τ̂r) are shown in Figure 8 and represent the
level of synchronization of the funds’ behavioral features within each community along the
reference period. In other words, these probabilities reflect how the behavioral similarities
of each community respond to external factors.

Figure 8: Temporal Activity Patterns The level of synchronization of behavioral similarities within each community
is described by the three colored lines. The blue line represents Community-1, the activity patter of Community-2 is
shown in red and the yellow line corresponds to the synchronization of Community-3 members. Green bars represent
relevant economic and geopolitical events. One can see that these events bring breaks in the synchronization level of the
communities. Members of Community-1 decrease their activity while the contrary occurs for Community-2. Community-3
instead seems to be less affected by external events.

To gauge the level of synchronization within communities we focus on major distress
events that occurred in the year 2015. Again, the austerity measures imposed on Greece
turned out to be among the most shocking events. In addition, the synchronization level
of behavioral traits within communities was also heavily affected by the introduction of
the Quantitative Easing (QE) and by the macroeconomic conditions as expressed by the
S&P500 correction of August. In particular, Community-1 decreased its activity during
most of the events in 2015, meaning that the behavioral similarities of its members tended
to reduce because of external forces. The contrary happened to Community-2, whose
members increased their behavioral similarities during the same period. Community-
3, instead, seems to be less affected by external events as it maintained a stable level
of activity. In other words, fund managers in Community-1 and Community-2 seem
to be less sensitive to external shocks, although presenting opposite trends, while fund
managers of Community-3 appear to be more resilient against market turmoils exhibiting
synchronization levels less dispersed. These traits would have remained largely hidden if
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we had stopped our investigation at the system level without deepening the analysis at
the community level.

The cross-correlation between the temporal pattern of the three communities and the
CBOE volatility index (VIX) is performed to investigate whether a change in the syn-
chronization level of behavioral traits of a community lags/leads the market volatility.
In other words, we aimed at quantifying the manager response to changes in the market
volatility level through variations in the synchronization intensity reflected by the tem-
poral community patterns. The cross-correlation function (CC) of the two time series is
the product-moment correlation as a function of k lags between the series7. In formula:

CCτ̂r,V IX (k) =
CVτ̂r,V IX (k)√

CVτ̂r,τ̂r (0)CVV IX,V IX (0)

where τ̂r and VIX represent the temporal pattern of community r and the volatility index,
respectively, and c (k) is the the cross-covariance function (CV) defined as:

CVτ̂r,V IX (k) =
1

N

N−k∑
t=1

(
τ̂r,t − τ̂r

) (
V IXt+k − V IX

)
; k = 0, 1, ..., (N − 1)

CVτ̂r,V IX (k) =
1

N

N∑
t=1−k

(
τ̂r,t − τ̂r

) (
V IXt+k − V IX

)
; k = −1, ...,− (N − 1)

where variables with upper bars indicate the average value.
Figure 9 shows the correlation coefficients between the temporal component of the dif-

ferent communities with the VIX index for different time lags. The high positive/negative
significant cross-correlation at negative lags shows how fund managers, being expert man-
agers aware of market dynamics in a timely way, anticipate the market volatility. The
strong positive (negative) values of Community-2 (Community-1) emphasize that an in-
creasing (decreasing) synchronization between the behavioral features of the community
members leads to an increased market volatility. Moreover, the fact that the instanta-
neous correlation (i.e., lag equal to zero) between the temporal pattern of Community-3
and the VIX is not statistically significant, differently from the lag-0 correlations of the
temporal patterns of Community-1 and Community-2, means that funds in Community-3
seem to be more able to fully anticipate market shocks, promptly re-adjusting their portfo-
lios in advance, while those in the other communities appear slightly less forward-looking
(correlation values with positive lags remain significant).

To summarize our main findings, we provide a nomenclature for the communities
we have identified. Funds in Community-1 have low TI values and infrequently adjust
their portfolios, thus deserving the name “conservative” funds. Moreover, members of
Community-1 have a high HC indicator, meaning that they rely on hedging strategies.
Differently, members in Community-2 are more prone to change portfolio allocations (high
TI) and have a low HC value. Funds in this community are “reactive” in their portfo-
lio investment behavior and try to exploit these investment features in their allocation
strategies. Members of Community-3 are, instead, characterized by a high TI and a mild
HC indicator. In addition, members of Community-3 seem to be more prone to antic-
ipating external events than the other funds justifying their “pro-active” labeling. The

7Contemporaneous correlation is indicated by k = 0.
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cross-correlation reported in Figure 9 supports the idea that these funds may represent
the “first mover” in interpreting market signals confirming our behavioral identification
approach by showing that these features are revealed by the use of a multidimensional
perspective applied to a granular data set. Although portfolio compositions matter for
the characterization of funds’ conduct, our analysis highlights that more weight should
be given to the behavioral traits of investment managers.

Figure 9: Cross-Correlation. The figure shows the correlation coefficients between the temporal component of the
different communities and the VIX index for different lags. Lag-0 cross-correlation is interpreted as the instantaneous
correlation between the temporal community patterns of the community and the volatility index. High positive/negative
cross-correlation at negative lags shows the leading power of the temporal community patterns.

4 Discussion and conclusion

The technique presented in the paper is the first attempt to map behavioral funds profiles
through time both at a system and at a community level. Our approach captures the
heterogeneity in managers’ investment behaviors and provides rich information about how
their allocation decision processes change with external events that impact the market
dynamic.

Although portfolio compositions display some differences among the emerging com-
munities, the additional behavioral attributes that we propose help to depict peculiar
and persistent traits that characterize each community. Our analysis also enables us to
identify the heterogeneous responses of delegated investors to external shocks. We have
shown that the behavior fund managers becomes more similar around the days of relevant
economical and geopolitical events by revealing a more uniform pattern but, beside that,
we have also indicated the existence of different levels of synchronization between the
behavioral traits of each community.

We believe that the behavioral commonalities detected by this study are relevant for
several reasons. First, our findings confirm that behavioral traits play an important role
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in expert decision-making processes. Second, we show that exogenous shocks perturb the
different communities in various ways. Some behavioral attitudes are reinforced during
the out-of-equilibrium phase, while other traits weaken. However, communities appear
only temporarily perturbed by major economic and geopolitical shocks, returning back to
their original states once the distress is embedded. This important finding expands our
understanding on how financial turmoil spreads throughout an economical system.
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Appendix A

Figures 10 show the decay of the first 20 eigenvalues of the scalar product matrix X (t) =
Λ(t)Λ(t)T averaged over time. From the figure clearly emerges that the first three dimen-
sion capture the structure of the deterministic similarities and behavioral trends that are
driving the system.

Figure 10: The Scalar Product Matrix Eigenvalues. The plot exhibits average value of the first 20 eigenvalues of the
scalar product matrix X (t) = Λ(t)Λ(t)T . The the decay of the eigenvalues shows that the first three dimensions contain
the deterministic structure of the data. The rest of the space may be seen as being generated by random fluctuations.

Figures 11 shows the value of the Corcondia test for different number of communities
along with the percentage fit.

Figure 11: Model Fit and Corcondia Test. The figure reports the goodness of fit (blue) and the values of the Corcondia
test (red) for different number of components. The percentage fit is shown on the left y-axis while the Corcondia values are
put on the right y-axis. A 3-factors model explains 75% of the data variability and the Corcondia test around 90% suggests
adequacy of the model.

Figures 12-15 show the portfolio composition values of the communities along time in
the upper panels and the average value in the bottom ones. The figure emphasize, all the
three communities primarily invest in developed market especially in Italy and Europe.
Beside that, members of Community-1 mostly invest in equity while Community-2 is more
oriented to Corporate bonds and Community-3 to Government Bonds.
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Figure 12: Market Composition. The figure displays in the upper panels the dynamic along time of the market
composition of each community. The bottom panel shows the average values along time. All the communities are highly
concentrated on developed market and this behavior is not affected by external events.
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Figure 13: Sector Composition. The figure displays in the upper panels the dynamic along time of the sectoral
composition of each community. The bottom panel shows the average values along time. All the communities are well
concentrated on Government bonds but communities 1 and 2 also encompasses equity assets form financial, consumers and
technology sectors.
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Figure 14: Geographical Composition. The figure displays in the upper panels the dynamic along time of the
geographical composition of each community. The bottom panel shows the average values along time. All the communities
are quite concentrated on European markets, especially Italy.
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Figure 15: Asset Composition. The figure displays in the upper panels the dynamic along time of the asset composition
of each community. The bottom panel shows the average values along time. Community-1 is concentrated on Equity,
Community-3 on Government bonds while Community-2 members have more disperse assets composition.
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Appendix B

All the results presented in the Main Text are obtained averaging the data over a rolling
window of 10 days. To insure robustness in the results we have also performed the same
operations using other two different window levels, namely 5 and 15 days. Here we
report the tables regarding the sensitivity analysis of the results to changes in the moving
windows. Results are robust across different window specifications. This exercise helps
also in identifying the behavioral characteristics of each community.

Table 1: Funds Compositions. The table reports market, geographical, sectoral, and asset classes compositions,
respectively. Column Obs indicates the number of constituents for each group. Columns 5d, 10d, and 15d-MW refer to
compositions in percentage computed over a rolling window in the interval of 5, 10, 15 days. Mean and Std stand for the
mean value and its corresponding standard deviation computed over the whole sample.

Obs Mean 5d-MW Std 5d-MW Mean 10d-MW Std 10d-MW Mean 15d-MW Std 15d-MW
Developed Market 3494 0.8721 0.0195 0.8728 0.0189 0.8735 0.0182
Emerging Market 291 0.0511 0.0056 0.051 0.0054 0.0509 0.0053
Frontier Market 14 0.0027 0.0001 0.0027 0.0001 0.0027 0.0001
Other 304 0.0742 0.0157 0.0736 0.0151 0.073 0.0145
Africa 4 0.0011 0.0003 0.0012 0.0002 0.0012 0.0002
Asia 44 0.0088 0.0012 0.0088 0.0011 0.0087 0.0011
East Asia and Pacific 398 0.1579 0.0211 0.1577 0.0183 0.1577 0.0171
Eurozone 1396 0.1666 0.0167 0.1666 0.0157 0.1664 0.0153
Italy 461 0.2769 0.0474 0.2774 0.0458 0.2777 0.045
North America 956 0.2371 0.0156 0.2371 0.0119 0.2373 0.0102
Other Europe 469 0.0654 0.0145 0.0656 0.0139 0.0659 0.0134
Other Geograph. Areas 335 0.0779 0.0163 0.0774 0.0158 0.0768 0.0151
South America 40 0.0084 0.0008 0.0084 0.0007 0.0084 0.0006
Basic Materials 165 0.0309 0.0074 0.0308 0.007 0.0307 0.0066
Communications 229 0.044 0.008 0.0439 0.0077 0.0438 0.0075
Consumer 642 0.1578 0.0204 0.1578 0.0196 0.158 0.0191
Diversified 218 0.1229 0.026 0.123 0.0254 0.1229 0.0248
Energy 183 0.0371 0.0119 0.037 0.0115 0.037 0.0113
Financial 531 0.1663 0.0105 0.1665 0.0099 0.1668 0.0094
Gvt 305 0.2432 0.0587 0.2435 0.0577 0.2435 0.0571
Industrial 264 0.0873 0.0078 0.0874 0.0074 0.0875 0.0071
Other Sector 1295 0.0281 0.0145 0.0274 0.0133 0.0268 0.0118
Real Estate 23 0.0096 0.0016 0.0096 0.0016 0.0096 0.0016
Technology 150 0.0589 0.0089 0.059 0.0084 0.0592 0.0082
Utilities 98 0.0141 0.0021 0.0141 0.0018 0.0141 0.0016
Bond Corp 598 0.2018 0.0227 0.2014 0.0221 0.2008 0.0216
Bond Gvt 325 0.254 0.057 0.2542 0.0559 0.2542 0.0553
Commodity 8 0.0006 0.0013 0.0005 0.0011 0.0005 0.0008
Currency 139 0.0001 0.0002 0.0001 0.0002 0.0001 0.0002
Equity 2952 0.5297 0.0532 0.5301 0.0512 0.5309 0.0501
Interest Rate Deriv. 39 -0.0004 0.0003 -0.0004 0.0003 -0.0004 0.0003
Money Mkt 33 0.0141 0.0061 0.014 0.0059 0.0138 0.0057
Other Asset type 9 0.0001 0.0002 0.0001 0.0002 0.0001 0.0002
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Table 2: Belonging Percentage. The table reports the belonging percentage of each fund inside each community. C1
represents Community-1, C2 represents Community-2 and C3 represents Community-3. 5d-MV means that the results have
been obtained using a moving windows of 5 days while 10d-MV reefers to a 10 days moving window and 15d-MV to a 15
days moving window.

C1 5d-MV C2 5d-MV C3 5d-MV C1 10d-MV C2 10d-MV C3 10d-MV C1 15d-MV C2 15d-MV C3 15d-MV
Id-1 0.92 0.07 0.01 0.93 0.06 0.01 0.96 0.04 0.00
Id-2 0.76 0.02 0.22 0.77 0.01 0.22 0.72 0.00 0.27
Id-3 0.27 0.01 0.71 0.27 0.02 0.71 0.30 0.03 0.67
Id-4 0.07 0.58 0.35 0.08 0.63 0.29 0.09 0.65 0.26
Id-5 0.87 0.11 0.02 0.87 0.12 0.01 0.87 0.12 0.01
Id-6 0.81 0.16 0.02 0.81 0.14 0.05 0.82 0.14 0.04
Id-7 0.41 0.51 0.08 0.34 0.58 0.08 0.27 0.63 0.10
Id-8 0.42 0.03 0.55 0.46 0.02 0.52 0.42 0.01 0.57
Id-9 0.02 0.80 0.18 0.01 0.84 0.14 0.01 0.88 0.11
Id-10 0.00 0.87 0.12 0.01 0.81 0.19 0.00 0.74 0.26
Id-11 0.05 0.68 0.27 0.05 0.63 0.32 0.04 0.59 0.37
Id-12 0.27 0.70 0.02 0.30 0.70 0.00 0.30 0.70 0.00
Id-13 0.02 0.71 0.26 0.02 0.75 0.22 0.03 0.78 0.19
Id-14 0.92 0.05 0.04 0.88 0.06 0.06 0.89 0.06 0.05
Id-15 0.22 0.70 0.08 0.34 0.62 0.04 0.47 0.51 0.02
Id-16 0.14 0.25 0.61 0.11 0.30 0.59 0.12 0.33 0.55
Id-17 0.55 0.45 0.00 0.61 0.39 0.00 0.65 0.33 0.02
Id-18 0.43 0.14 0.43 0.45 0.14 0.41 0.51 0.12 0.37
Id-19 0.17 0.00 0.83 0.15 0.00 0.84 0.18 0.00 0.82
Id-20 0.51 0.48 0.01 0.55 0.42 0.03 0.53 0.44 0.03
Id-21 0.05 0.25 0.71 0.05 0.29 0.66 0.03 0.33 0.64
Id-22 0.16 0.06 0.78 0.14 0.01 0.86 0.11 0.00 0.89

Table 3: Temporal Activity Patterns. The table reports aggregate statistics of the temporal activity patterns of the
three communities. C1 represents Community-1, C2 represents Community-2 and C3 represents Community-3. 5d-MV
means that the results have been obtained using a moving window of 5 days while 10d-MV reefers to a 10 days moving
window and 15d-MV to a 15 days moving window.

Min 1st Q Mean Median 3rd Q Max Std
Time Activ. C1 5d-MV 0.16 0.26 0.34 0.32 0.43 0.70 0.12
Time Activ. C2 5d-MV 0.16 0.24 0.34 0.33 0.41 0.68 0.12
Time Activ. C3 5d-MV 0.18 0.24 0.34 0.32 0.44 0.67 0.12
Time Activ. C1 10d-MV 0.06 0.20 0.31 0.26 0.45 0.68 0.14
Time Activ. C2 10d-MV 0.06 0.20 0.31 0.26 0.45 0.66 0.15
Time Activ. C3 10d-MV 0.04 0.18 0.31 0.26 0.47 0.61 0.15
Time Activ. C1 15d-MV 0.11 0.26 0.34 0.34 0.43 0.54 0.10
Time Activ. C2 15d-MV 0.14 0.29 0.35 0.34 0.40 0.57 0.09
Time Activ. C3 15d-MV 0.08 0.27 0.35 0.33 0.42 0.57 0.10

Table 4: Communities Market Composition. The table reports aggregate statistics of the main market compositions
of the three communities. C1 represents Community-1, C2 represents Community-2 and C3 represents Community-3. 5d-
MV means that the results have been obtained using a moving window of 5 days while 10d-MV reefers to a 10 days moving
window and 15d-MV to a 15 days moving window.

C1 5d-MV C2 5d-MV C3 5d-MV C1 10d-MV C2 10d-MV C3 10d-MV C1 15d-MV C2 15d-MV C3 15d-MV
Developed Mkt 0.22 0.19 0.20 0.22 0.19 0.20 0.23 0.19 0.20
Emerging Mkt 0.01 0.03 0.02 0.01 0.03 0.02 0.01 0.03 0.02
Frontier Mkt 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Other Mkt 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

Table 5: Communities Geographical Composition. The table reports aggregate statistics of the main geographi-
cal compositions of the three communities. C1 represents Community-1, C2 represents Community-2 and C3 represents
Community-3. 5d-MV means that the results have been obtained using a moving window of 5 days while 10d-MV reefers
to a 10 days moving window and 15d-MV to a 15 days moving window.

C1 5d-MV C2 5d-MV C3 5d-MV C1 10d-MV C2 10d-MV C3 10d-MV C1 15d-MV C2 15d-MV C3 15d-MV
Africa 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Asia 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00
EAP 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.02
EU zone 0.07 0.09 0.04 0.07 0.09 0.04 0.07 0.09 0.04
Italy 0.10 0.04 0.13 0.09 0.04 0.13 0.10 0.04 0.13
US 0.03 0.03 0.02 0.03 0.03 0.02 0.02 0.03 0.02
Other EU 0.03 0.02 0.01 0.03 0.02 0.01 0.03 0.02 0.01
Other 0.02 0.03 0.03 0.02 0.03 0.02 0.02 0.02 0.03
South America 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.01 0.00
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Table 6: Communities Sectorial Composition. The table reports aggregate statistics of the main sectorial composi-
tions of the three communities. C1 represents Community-1, C2 represents Community-2 and C3 represents Community-3.
5d-MV means that the results have been obtained using a moving window of 5 days while 10d-MV reefers to a 10 days
moving window and 15d-MV to a 15 days moving window.

C1 5d-MV C2 5d-MV C3 5d-MV C1 10d-MV C2 10d-MV C3 10d-MV C1 15d-MV C2 15d-MV C3 15d-MV
Basic mat 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Comm 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01
Cons 0.04 0.02 0.01 0.04 0.02 0.01 0.04 0.02 0.01
Div 0.03 0.07 0.04 0.03 0.07 0.05 0.03 0.07 0.05
Energy 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01 0.00
Fin 0.05 0.04 0.03 0.05 0.04 0.03 0.05 0.04 0.02
Gov 0.06 0.05 0.12 0.06 0.05 0.12 0.07 0.05 0.12
Ind 0.02 0.01 0.00 0.02 0.01 0.00 0.02 0.01 0.00
Other 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Real est 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Tech 0.01 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00
Util 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01 0.00

Table 7: Communities Asset Class Composition. The table reports aggregate statistics of the main asset class compo-
sitions of the three communities. C1 represents Community-1, C2 represents Community-2 and C3 represents Community-3.
5d-MV means that the results have been obtained using a moving window of 5 days while 10d-MV reefers to a 10 days
moving window and 15d-MV to a 15 days moving window.

C1 5d-MV C2 5d-MV C3 5d-MV C1 10d-MV C2 10d-MV C3 10d-MV C1 15d-MV C2 15d-MV C3 15d-MV
Bond Corp 0.04 0.09 0.06 0.04 0.10 0.06 0.04 0.10 0.05
Gond Gov 0.06 0.05 0.13 0.06 0.05 0.13 0.07 0.05 0.12
Commod 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Currency 0.00 0.00 -0.00 0.00 0.00 -0.00 0.00 0.00 -0.00
Equity 0.15 0.09 0.04 0.15 0.08 0.05 0.15 0.08 0.06
IRDs -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00
Money Mkt 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.01
Other Ass 0.00 0.00 -0.00 0.00 0.00 -0.00 0.00 0.00 -0.00

Table 8: Communities Hedging Coefficient (HC). The table reports aggregate the Hedging Coefficient of the three
communities. C1 represents Community-1, C2 represents Community-2 and C3 represents Community-3. 5d-MV means
that the results have been obtained using a moving window of 5 days while 10d-MV reefers to a 10 days moving window
and 15d-MV to a 15 days moving window. We simplify the framework by focusing on the geographical segmentation. HC
takes a value of 0 if both signs of the market exposures are concordant (this indicates that the strategy is not an hedging
strategy). It is equal to 1 when the market exposures of the derivatives are larger than those of the underlying equity
instruments and the signs are discordant. Whenever the ratio is in [−1; 0], the HC is the absolute value of the ratio of the
market exposures. If there is a derivatives exposure but the corresponding underlying equity assets are not present, then
the value for HC is put equal to zero since this is not a hedging position.

C1 5d-MV C2 5d-MV C3 5d-MV C1 10d-MV C2 10d-MV C3 10d-MV C1 15d-MV C2 15d-MV C3 15d-MV
HC 0.02 0.01 0.01 0.02 0.01 0.01 0.03 0.01 0.01

Table 9: Communities Concentration Index. The table reports aggregate statistics of Herfindahl-Hirschman Index
(HHI) for different asset classes in the three communities. C1 represents Community-1, C2 represents Community-2 and
C3 represents Community-3. 5d-MV means that the results have been obtained using a moving window of 5 days while
10d-MV reefers to a 10 days moving window and 15d-MV to a 15 days moving window.

C1 5d-MV C2 5d-MV C3 5d-MV C1 10d-MV C2 10d-MV C3 10d-MV C1 15d-MV C2 15d-MV C3 15d-MV
GovBond 0.06 0.01 0.06 0.06 0.01 0.06 0.06 0.01 0.06
CorpBond 0.06 0.08 0.04 0.06 0.08 0.04 0.06 0.08 0.04
Equity 0.01 0.03 0.02 0.01 0.03 0.02 0.01 0.03 0.02
Funds 0.17 0.13 0.10 0.17 0.12 0.09 0.18 0.12 0.09

Table 10: Communities Turnover. The table reports aggregate statistics of communities’ turnover (TI). TI in t for fund

f is computed as TIf,t =

∑N

i=1
|Qi,t−Qi,t−1|×Pi,t/FXi,t

NAFf,t
, where FXi,t is the exchange rate and NAFf,t is the total market

value in t. We consider the absolute value of these quantities since we are interested in the portion of the portfolio which
varies due to quantity changes. C1 represents Community-1, C2 represents Community-2 and C3 represents Community-3.
5d-MV means that the results have been obtained using a moving window of 5 days while 10d-MV reefers to a 10 days
moving window and 15d-MV to a 15 days moving window.

C1 5d-MV C2 5d-MV C3 5d-MV C1 10d-MV C2 10d-MV C3 10d-MV C1 15d-MV C2 15d-MV C3 15d-MV
Turn Over 0.05 0.09 0.09 0.05 0.09 0.09 0.05 0.09 0.09
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