
Long-term correlations in short,
non-stationary time series: an application

to international R&D collaborations

Lorenzo Righetto∗ Alessandro Spelta† Emanuele Rabosio‡

Fabio Pammolli§¶

February 18, 2019

Abstract

Within the perimeter of patent collaboration networks, the average distance of
collaborations and the number of countries involved per each collaboration have
been shown to have increased steadily in time. Less attention, though, has been
devoted to assessing whether growth of cross-country collaborations is stable or ro-
bust in time. To address this scientific question we focus on the identification of
long-term correlations (i.e. persistence in time). Our data sets consists of time
series of yearly average collaboration radii and of cross-border links in the Euro-
American subsystem of the global collaboration network for the period 1978 - 2014.
To detect long-term correlations, we use Detrended Fluctuation Analysis, a method
that is used to measure persistence in signals. In addition, we devise a general
and original procedure to assess the statistical significance of results for short time
series. Our results, showing that long-term correlations do exist in the great ma-
jority of our signals, reinforce the hypothesis of a diminishing role of geographical
distance in technological collaborations. Results at the level of nations show that a
significant degree of heterogeneity in scaling values can be detected within Europe,
irrespectively of the substantial efforts towards the set-up of an integrated European
Research Area.
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1 Introduction1

Networks of collaborative agreements are recognized as an ever-widening organization2

form, especially in high technology, knowledge-intensive fields (Arora and Gambardella,3

1994; Arora et al., 2001; Orsenigo et al., 2001). In particular, networks of collabora-4

tions among innovators have been indeed extensively used to represent and analyze the5

division of innovative labor since the seminal paper by Freeman (Freeman, 1991). The6

structure of the international network of patent collaboration, in terms of co-inventions or7

co-assignation of patents, has been evaluated broadly in recent literature and the average8

distance of collaborations, together with the number of countries involved per each collab-9

oration, has been shown to have increased steadily in time (Chessa et al., 2013; Morescalchi10

et al., 2015). Several factors play a role in this ongoing phenomenon, including increasing11

ease of knowledge sharing, physical transportation, diminishing language barriers, and12

so on. Similar studies concerning academic research collaborations have shown gener-13

ally coherent results (Frenken et al.; Hoekman et al., 2010; Waltman et al., 2011), with14

some notable exceptions highlighting the concurrent domestic increase of collaborations15

(Maisonobe et al., 2016). Despite the growing body of literature on knowledge networks,16

the analysis of their temporal evolution still remains at its infancy. Less attention has17

been indeed devoted, for instance, to assessing whether the growth of geographical dis-18

tance and of the number of cross-country technological collaborations may be considered19

stable or robust, beyond the common global trend associated with the globalization. In20

this paper, we make use of Detrended Fluctuation Analysis (DFA) (Peng et al., 1994)21

to detect the presence of long-term correlations in our time series. In other words, this22

corresponds to determining whether the observed increases in geopolitical features of tech-23

nological collaborations can be considered persistent in time. So far, DFA has been used24

in different fields, e.g. to investigate diseased states in physiological studies (Hardstone25

et al., 2012), as well as prey search behaviors in ecological studies (Viswanathan et al.,26

1996).27

In the context of R&D collaborations, this analysis can be used to bring further evi-28

dence of a decreasing role of distance, in the context of globalization (Disdier and Head,29

2008), in case collaboration patterns are shown to display such long-term correlations –30

e.g. meaning that the increase of the distances of collaborations in the short run makes31

them more likely to increase also in the future. In fact, DFA represents a useful tool as32

it purges the signal from the underlying trends and is, as such, particularly indicated for33

time series which exhibit strong non-stationarity (Hu et al., 2001), as we observe in this34

case (see Chessa et al., 2013; Morescalchi et al., 2015). We apply DFA to time series of35

yearly average collaboration radii and of yearly number of cross-border links, recorded for36

all collaborations (co-inventions and co-assignations) at the OECD TL3 aggregation scale37

– all regions in the European Union (EU) and in the United States (US) are considered38

– from OECD RegPat registry of patent applications, which currently spans from 197839

to 2014. We choose to track both these measures, even though they convey similar infor-40

mation, for several reasons - for instance, to control for specific geographical, historical41

or economic reasons that might make it easier for a region to initiate international col-42

laborations, but in a limited geographical range. We restrict the analysis to the EU+US43

subsystem to better highlight the role of US nodes in determining the observed EU scal-44

ing values, in line with previous literature focusing on these two important subsystems45
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(Owen-Smith et al., 2002; Chessa et al., 2013). We aggregate results at the national level46

(and, for the most part, at “continental” level) as in Viswanathan et al. (1996) to obtain47

a more reliable estimate of scaling behaviours.48

In the literature, several papers have highlighted the shortcomings of the DFA method49

in terms of estimation errors for short time series (see e.g. Delignieres et al., 2006) or even50

of its real detrending power (Bryce and Sprague, 2012). We take into account these fore-51

warnings by performing several controls on synthetically generated time series of specified52

length and known DFA scaling. On one side, we make sure that trend removal is actually53

performed, following Hu et al. (2001). On the other side, by repeating the synthetic gen-54

eration of time series, we obtain a measure of the estimation error at varying time series55

length and scaling factor. We use these measures to complement our empirical observa-56

tions with confidence intervals, e.g. to detect whether uncorrelation can be excluded with57

statistical significance.58

Results show that long-term correlations do exist in the great majority of our signals.59

This result shows that the suppression of the global underlying trend does not affect the60

positive long-term correlation of the selected time series. This general result does not61

prevent us from running comparisons, e.g. between the EU+US system and each possible62

subsystem – down to European national level – to detect marginal effects of, say, including63

US nodes to the magnitude of long-term positive correlations in EU signals. In particular,64

we assess the degree of heterogeneity of observed scaling values among EU countries, to65

evaluate the deviation of the system from a completely integrated European R&D area.66

The paper is organized as follows. Section 2 describes the dataset we use and the67

metrics we extract from it. We describe in Section 3 the DFA method in general and68

in the specific application to our case study. Section 4 is devoted to the presentation of69

results and their discussion. Conclusions in Section 5 close the paper. In the Appendix,70

we describe the details of our DFA application to the case under study and the controls71

on the soundness of our DFA scaling value estimation.72

2 Data73

We make use of the data provided by the OECD RegPat registry, which contains all74

patent records from the European Patent Office (EPO) since the first application (1978)75

until present. We treat 2014 as the latest complete year of application to allow for the76

review process to be completed for all patents in that year. In addition to that, in RegPat77

all assignee and inventor addresses are attributed a single OECD TL3 level geographical78

location for each of the OECD partner countries. We restrict our analysis to EU and79

US regions, which constitute, together, around 85% of the total number of OECD TL380

regions in RegPat (4700 out of 5552). This spatial segmentation corresponds to NUTS381

regions for EU and to counties for US. We complement this dataset by calculating centroid82

coordinates for each of these regions. To increase the number of nodes in this network,83

we use all European regions within the 2013 edition of the NUTS3 map (which also84

includes not “full” EU countries such as Switzerland and Turkey). What we obtain85

is a spatial characterization of the patent collaboration network, which we analyze in86

terms of co-assignments (companies collaborating for R&D regarding a specific patent)87

and co-inventions (different scientists/researchers collaborating as part of one or more88

organizations). In the former case, the reported address is related to the location of the89
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company’s headquarter, while in the latter case the location may refer to the inventor’s90

residence or the address of her/his working place (which may differ from the related91

assignee’s headquarter address, of course).92

We extract all patent numbers which relate to multiple records (i.e. the patent is93

the result of a co-assignment or of a co-invention) and compute two metrics from each94

collaboration and for each of the involved nodes (regions):95

• the average of the distance (which we call radius of co-assignment/co-invention,96

ρA/ρI in symbols) from the focal node to all other collaborating nodes (this metric97

can be zero), computed on a sphere and expressed in kilometres;98

• the number of cross-border (i.e. cross-country or cross-state in the US case) links99

that the focal node collects within the collaboration (again, this metric can be zero).100

Cross-border links for co-assignments and co-inventions are expressed as CBA/CBI101

in symbols, respectively.102

We aggregate these metrics by computing the average yearly radius of collaboration103

(no finer temporal scale is allowed by the RegPat database) and the yearly sum of cross-104

border links in each node. We repeat this calculation for 3 different segmentations of our105

network:106

• EU: only European nodes are considered (i.e. US nodes do not contribute to the107

computations);108

• US: only US nodes are considered (cross-border links, in this case, refer to cross-state109

links);110

• EU+US: the whole system is considered.111

In the end, we obtain time series of both metrics for all nodes covered by the focal112

segmentation and for the time span 1978-2014. We further exclude the starting year 1978113

since the number of applications was extremely low, around 0.1% of the total.114

3 Detrended Fluctuation Analysis115

We make use of DFA (Peng et al., 1994), a widely used technique for the identification116

of long-term correlations in time series (see e.g. Hardstone et al. (2012) for a compelling117

review of this method). The first step of DFA consists in transforming the time series118

under study in a random walk path, by integrating the time series x(t) as follows:119

y(t) =
t∑

k=1

[x(k)− < x >], (1)

where < x > is the mean value of x(t). The transformed signal is then segmented120

in windows of various sizes ∆n. In each window, and repeatedly for all values of ∆n, a121

polynomial of order s (hence, the order of the DFA applied to the focal case is fitted to122

the integrated data, in order to obtain an estimated set of points y′(k). Please note that,123

as a result of the controls we perform (see the Appendix), we choose to use DFA-2 (i.e.124

s = 2). The value of the fluctuation function F (∆n) for that particular value of ∆n is125
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the average of the standard deviation between the polynomial fit y′ and the data, over all126

data points N, for all windows:127

F (∆n) =

√√√√ 1

N

N∑
k=1

[y′(k)− y(k)]2 (2)

When F (∆n) is plotted against ∆n in a double-logarithmic plot, the relationship is128

expected to be linear and the slope of the regression line defines the DFA scaling α.129

This scaling is a measure of the presence of self-similarity and, relatedly, of long-term130

correlations in the signal, as it tracks down the scaling of dispersion around a regressor131

for increasing window sizes. In particular, the value of α can describe the following signal132

behaviours:133

• 0 < α < 0.5: the signal has long-term memory and is anti-correlated;134

• 0.5 < α < 1: the signal has long-term memory and is correlated;135

• α = 0.5: the signal is uncorrelated (has no memory);136

• α > 1: the signal is non-stationary.137

This relates to the intrinsic properties of the signal in the sense that, at least in138

the range between 0 and 1, it represents three different behaviors of the random walker139

corresponding to the time series under study (see also Fig. 3 in Hardstone et al., 2012,140

for a pictorial representation) :141

• 0 < α < 0.5 (anti-correlation): the random walker moves preferentially in the142

opposite direction with respect to the previous step; the resulting cumulated walk143

(i.e. cumulated time series) will show very small fluctuations in time and thus the144

slope of the fluctuation function at increasing window sizes will be relatively low;145

• 0.5 < α < 1 (correlation): the random walker tends to repeat the same moves it146

has performed previously, inducing wide fluctuations in time; thus, when measuring147

the error between a regressor and the data at large window sizes, this error will be148

much larger than the error measured at small window sizes (i.e. a higher slope);149

• α = 0.5: when the choice of a direction of movement is independent from the150

previous steps, in analogy with pure diffusion the mean square displacement in time151

of the random walker will scale as 0.5.152

In our case study, following Viswanathan et al. (1996), we extend the method to the153

case of several short signals grouped together, by calculating F (∆n) over all possible154

windows in the subsystem under study. In brief, each value of the standard deviation155

of residuals is averaged over N (the size of the individual time series, i.e. 36) times156

the number of nodes constituting that particular subsystem. We use here 6 values of157

∆n, corresponding to the exact divisors of 36 (i.e. ∆n = 4, 6, 9, 12, 18, 36). We also158

standardize values with respect to individual mean and standard deviation values, to159

further homogenize the sample data in terms of geographical range and country “size”.160
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Subsystem ρA ρI CBA CBI

EU 0.37 0.30 0.22 0.75
US 0.15 0.12 0.20 0.37

EU+US 0.28 0.19 0.23 0.52
(EU+US)EU 0.40 0.31 0.26 0.78
(EU+US)US 0.17 0.13 0.18 0.30

Table 1: Fraction of nodes in each subsystem displaying a monotonic trend according to Mann-Kendall test. ρA: average
yearly radius of co-assignment; ρI : average yearly radius of co-invention; CBA: number of yearly cross-border links according
to co-assignments; CBI : number of yearly cross-border links according to co-inventions.

We are aware, of course, that the series under study might contain strong non-161

stationarities which might undermine the results of DFA (Bryce and Sprague, 2012). Nev-162

ertheless, the effect of trends on DFA has been studied in the literature and workarounds163

to ascertain the true underlying scaling of the signal have been demonstrated in Hu et al.164

(2001). In particular, in Hu et al. (2001) it emerges that DFA of order x (termed DFA-x)165

can only neutralize the effect of x − 1 order trends. For additional information on the166

application of DFA to our case study and on the controls we performed (including the167

ones for determining the actual detrending power of DFA in our case), please see the168

Appendix.169

4 Results and Discussion170

As a first assessment of the general evolution of the metrics under study, we calculate171

the prevalence of nodes for which a Mann-Kendall test at significance level 0.05 detects a172

monotonic trend. We report the results in Table 1. The values we obtain are substantial,173

confirming that there is an underlying global trend in this metrics that is affecting a174

large portion of regions, especially in the EU. As a caveat, we have to specify that higher175

statistics we obtain for the EU system, with respect to the US system, are likely to be176

due to the “submission bias” that is intrinsic to using the RegPat database (which comes177

from EPO data). In this respect, results concerning the US subsystem should be looked178

at in relative terms.179

Despite the high prevalence of non-stationary individual signals in our data, our ap-180

plication of DFA-2 can purge the trend effects from the estimated scaling, as shown in181

the Appendix. Table 2 shows the results of the application of the method to the 3 se-182

lected subsystems, plus the scaling obtained when the EU and the US are embedded in183

the EU+US system. This allows us to detect positive or negative effects of a combined184

collaboration system on the robustness of these series. In very general terms, scaling185

values turn out to indicate positive long-term correlation in all the selected subsystems,186

for all metrics analyzed (see Fig. 1 for an example of fluctuation plots and their relative187

estimated scaling). We confirm this result by reshuffling our data series, as performed in188

Castillo et al. (2015). We randomly reassign data points to different nodes for each year189

and estimate the DFA-2 scaling. We verify that series become uncorrelated in this case190

(i.e. values lie within the 5-95th percentile region of an uncorrelated synthetic signal).191

Co-assignment metrics also show lower scaling values than those regarding co-invention192

metrics, as a result of co-assignment being a much rarer occurrence. As specified earlier,193

US scaling values are generally lower than in the EU subsystem, except for that of the194
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Subsystem ρA ρI CBA CBI

EU 0.62 0.68 0.62 0.69
US 0.60 0.71 0.58 0.66

EU+US 0.60 0.63 0.62 0.65
(EU+US)EU 0.62 0.67 0.63 0.70
(EU+US)US 0.59 0.61 0.58 0.62

Table 2: DFA-2 scalings in each subsystem, for each of the measured quantities. Symbols as in Table 1.

Figure 1: Loglog plots of fluctuation function values versus ∆n for ρA (radius of co-assignment) in the 3 selected subsystems
(EU, US, EU+US) and in the EU/US subsytems when embedded into the EU+US subsystem. Black solid lines show the
linear fit we use to estimate the DFA-2 scaling.
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radius of co-invention, showing a perhaps greater ease of establishing stable connections,195

even at longer distance, within the US subsystem. It has to be noted that this might also196

stem, for instance, from a more geographically sparse distribution of company locations.197

This last hypothesis might also explain the discrepancy between the co-assignment and198

the higher co-invention scaling values for the US subsystem.199

To single out the contribution of “leading nodes”, i.e. the nodes showing a significant200

monotonic trend (see Table 1), we estimate the scaling when all these nodes are removed201

from each subsystem. Table 3 shows the results of this analysis. Scaling values become202

generally closer to the “uncorrelated” mark (α = 0.5, which would entail that the un-203

derlying signal can be associated to white noise and, as such, nothing can be said about204

its persistence in time), but, still, they lie outside the 95th percentile threshold values205

for uncorrelated signals. In general, subsytems do not seem to change their qualitative206

behavior and can be said to be robust to the removal of their most performing nodes. It207

stems from these results that the increasing patterns that are observed in technological208

collaboration metrics at continental level can be considered persistent in time, regardless209

of the underlying trend and of the presence of the most performing nodes.210

4.1 Long-term correlation at EU national level211

Results, so far, show a general picture that looks remarkably similar, at least qualitatively,212

for all metrics and subsystems we have taken into account. The structure of the data213
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Subsystem ρA ρI CBA CBI

EU 0.61 0.63 0.59 0.58
US 0.58 0.60 0.57 0.61

EU+US 0.59 0.60 0.59 0.58
(EU+US)EU 0.61 0.62 0.60 0.58
(EU+US)US 0.57 0.60 0.57 0.58

Table 3: DFA-2 scaling values in each subsystem, for each of the measured quantities, when nodes showing monotonic
trends (see Table 1) are removed. Symbols as in Table 1.

allows us, though, to perform a much more particular analysis, i.e. at EU national level.214

In this context, we point out that several political initiatives are currently in place to215

favor the integration of the European R &D collaboration system (see e.g. Schengell and216

Lata, 2013; Chessa et al., 2013; Arrieta et al., 2017).217

To see whether reducing the geographical scale of the analysis might unravel differ-218

ent properties of local systems and, thus, relevant heterogeneities within the EU system,219

we single out 18 EU countries having more than 10 “active” regions in at least one of220

the datasets (i.e. they have at least 10 regions having at least one co-assignment or221

co-invention in the selected time span), and estimate their correspondent DFA-2 scaling222

for all metrics. Table 4 shows the list of selected countries and the results of this anal-223

ysis. We include “partial” or younger EU members to see whether longer or fuller EU224

membership is associated with DFA-2 scaling results. We remark here that, due to the225

lower number of data points at national scale, we treat as potentially uncorrelated all226

scaling values below a 95th percentile threshold (marked with a star in Table 4), that we227

obtain from generating uncorrelated synthetic signals (see the Appendix for details). In228

this respect, although there is not enough information to perform a thorough statistical229

analysis, it seems notable that uncorrelated behavior can arise both “within” (as in the230

Portugal case) and outside EU-15 borders, and viceversa (see e.g. Hungary and Poland,231

where relationships between inventors, especially, seem to be maintained in time, whereas232

it seems much more unlikely for Polish and Hungarian companies to participate in a233

co-assignment). Switzerland emerges as the best performing country for all metrics, pin-234

pointing the role of geographical (i.e. the country being a natural continental hub in this235

respect, not to mention the compresence of several languages) but also institutional (i.e.236

the high number of multinational corporation HQs and of international organizations)237

factors in maintaining long-distance collaborations in time.238

Moreover, it also seems relevant to investigate which countries improve their scaling239

when US nodes are taken into account while calculating the selected metrics. Figure240

2 shows the results (in terms of percentage change) for all countries and metrics. We241

single out variations exceeding the average estimation error for the relative number of242

active regions in each country and for each metric (see the Appendix for details). Also,243

we highlight increments/decrements that bring the scaling above/below the uncorrelation244

threshold we have set for that country and metric (see Table A1 in the Appendix). We245

group countries in positively, negatively and contrasted/neutrally affected groups, based246

on the presence of a significant increase, or decrease, or no significant change/concurrent247

presence of significant decrease and increase, respectively. Interestingly, this grouping248

highlights relatively coherent blocks, in terms of economic relationships. As expected, this249

analysis pinpoints the national systems which have stronger relationships, traditionally,250
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Country ρA ρI CBA CBI

Austria: AT 0.68 0.72 0.68 0.78
Belgium: BE 0.62 0.71 0.69 0.78
Bulgaria: BG 0.52∗ 0.58∗ 0.57∗ 0.67

Switzerland: CH 0.77 0.81 0.86 0.92
Germany: DE 0.63 0.70 0.63 0.70

Greece: EL 0.60∗ 0.60∗ 0.52∗ 0.53∗

Spain: ES 0.65 0.68 0.61 0.66
France: FR 0.61 0.70 0.65 0.78
Croatia: HR 0.56∗ 0.61∗ 0.62∗ 0.51∗

Hungary: HU 0.60∗ 0.73 0.51∗ 0.74
Italy: IT 0.65 0.70 0.62 0.68

Netherlands:NL 0.60 0.68 0.65 0.78
Poland: PL 0.52∗ 0.73 0.54∗ 0.66

Portugal: PT 0.48∗ 0.66 0.45∗ 0.60∗

Romania: RO 0.51∗ 0.61 0.51∗ 0.55∗

Sweden: SE 0.62 0.76 0.53∗ 0.78
Turkey: TR 0.48∗ 0.55∗ 0.46∗ 0.56∗

United Kingdom: UK 0.61 0.59 0.63 0.69

Table 4: DFA-2 scaling values in each of the selected 18 EU countries, when only EU nodes are taken into account, for all
measured quantities. Symbols as in Table 1. All country codes refer to the ISO classification, except for Greece (EL). ′∗′:
values below the 95th percentile threshold for uncorrelated signals listed in Table A1 in the Appendix.

with the US, such as the UK and Turkey. The significant increase in the DFA metrics251

of these countries, that is observed when US collaborations are accounted for, implies252

that the collaborations with US firms and inventors are long-standing and persistent in253

time. In particular, when you remove US collaborations, the time series for the radius254

of co-invention in Turkey become uncorrelated in time, even. Interestingly, also countries255

which entertain solid relationships with the UK display a steady increase in all metrics (i.e.256

Belgium, Netherlands and France; see panel A in Fig.2). On the contrary, the grouping of257

negatively affected countries reveals a block of notoriously interconnected countries from258

the economic point of view (i.e. Austria, Germany, Switzerland, Poland and Romania).259

Interestingly, Switzerland emerges as the most negatively affected country, as only the260

scaling of cross-border co-invention links increases, rather slightly. We note that this261

does not imply necessarily that Switzerland is performing worse than other countries (e.g.262

has less collaborations with the US; as hinted by data on life sciences industry in Owen-263

Smith et al., 2002, the opposite is probably true), but that its collaborations with the US264

are more erratic, which also means that they could be more ubiquitous and dynamic. All265

other countries show a non-univocal behavior, although many improve their co-assignment266

scaling value, and, more expectedly, cross-border links become more stable in time.267

4.2 Correlation of national DFA scaling values with features of268

the local collaboration graph269

From the previous results, it seems apparent that external factors play a role in deter-270

mining the observed scaling values in different countries. Correlations between patenting271
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Figure 2: Percentage changes in DFA-2 scalings for all the selected metrics and in each of the selected EU countries,
when the whole EU+US subsystem is considered in metrics calculation. Positive values indicate that metrics increase when
US collaborations are accounted for, and viceversa. Light blue bars: radius of co-assignment ρA; dark orange: radius of
co-invention ρI ; yellow: cross-border links in co-assignments CBA; purple: cross-border links in co-inventions CBI . ′+/-′:
the positive/negative difference is higher in magnitude than the average estimation error for the corresponding length of
the time series (see the Appendix and Table A1). ′*′: the difference is such that the scaling passes from uncorrelated
to correlated (green star) or viceversa (red star). Uncorrelation is defined according to the thresholds in Table A1 in the
Appendix. Panel A (“Positively affected”): countries whose metrics are positively affected by US collaborations (i.e. at
least one shows a significant increase and, concurrently, there are no significant decreases). Panel B (“Negatively affected”):
countries whose metrics are negatively affected by US collaborations (i.e. at least one shows a significant decrease and,
concurrently, there are no significant increases); Panel C (“Contrasted/neutral”): countries whose metrics show either no
significant change, or concurring significant increases and decreases.

rates in general and local economies have been studied in the past (Guellec and de la272

Potterie, 2001; De Rassenfosse and van Pottelsberghe de la Potterie, 2007) and seem273

redundant in our case. What might be more interesting, perhaps, is to see whether cer-274

tain features of the national collaboration networks can be associated with the observed275

scaling values. This might shed light on the organizational properties of national R&D276

systems that seemingly promote a greater persistence of technological collaboration time277

series. In this context, we point out that our previous results on the heterogeneity of DFA278

scaling values among EU countries and, also, of their dependence on US collaborations,279

show that a completely integrated European Research Area is far from being fulfilled.280

This is interesting also from a policy perspective, since it is known that, for instance,281

EU initiatives towards technological collaboration have been directed to increase certain282

properties of the EU R&D network (e.g. clustering), even though the impact on actual283

knowledge diffusion is controversial (Cowan and Jonard, 2004). To this end, we extract284

the cumulative weighted adjacency matrices of the selected countries for years 2010-2014,285

in which the weight of each link is defined as the inverse of the number of collaborations286

between each pair of nodes. We use this cumulative network as a representation of the287

current state of the collaboration network, in terms of topological properties. This is288

performed for co-assignment and co-invention networks both. We then calculate a set of289

graph properties that we deem relevant to describe the topological structure of the net-290

work (i.e. density, assortativity, average closeness, network clustering coefficient, central291

point dominance and diameter). We then correlate these topological features with the292

observed scaling values, normalized by the corresponding standard deviation to account293

for the different variances arising from different numbers of active regions and different294
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scaling values (see the Appendix for details). Results are shown in Table 5.295

In general, only co-assignment scaling values turn out to exhibit significant correla-296

tions with graph properties, hinting at the fact that systemic properties might be more297

important for co-assignment time series, rather than for co-invention ones. This was298

also apparent from the actual scaling values (Table 5), where countries with seemingly299

uncorrelated co-assignment time series had positively correlated co-invention time series.300

Among all the graph properties we extracted, a few ones emerge as associated with301

higher DFA scaling values. In particular, the diameter (i.e. the greatest distance between302

any pair of vertices) of national co-assignment networks is positively correlated to DFA303

scaling values at very high significance level, highlighting the role of more developed304

and complete networks. Assortativity (a measure of the attachment preference to nodes305

with similar degree) and clustering are the other two important characteristics showing306

significant, positive correlations with DFA scaling values. Considering that all these three307

features show themselves significant, positive cross-correlations, it results that persistence308

in time of the co-assignation metrics is related to systems with specialized – but strongly309

connected – subnational clusters.310

Graph metric ρA ρA,US CBA CBA,US ρI ρI,US CBI CBI,US

Density 0.14 0.16 0.03 0.03 0.35 0.32 0.43 0.43
Assortativity 0.49∗ 0.50∗ 0.55∗ 0.55∗ −0.05 −0.06 0.04 0.04

Closeness 0.24 0.22 0.33 0.32 0.03 0.01 −0.01 0.01
Clustering 0.44 0.43 0.51∗ 0.49∗ 0.29 0.28 0.23 0.23

CPD 0.27 0.26 0.23 0.21 −0.11 −0.11 −0.22 −0.23
Diameter 0.71∗∗ 0.71∗∗ 0.71∗∗ 0.71∗∗ −0.14 −0.16 −0.03 −0.03

Table 5: Correlation coefficients between normalized DFA-2 scalings in each of the selected 17 EU countries and the
corresponding graph metrics (CPD: Central Point Dominance). Asterisks show the p-value associated with the statistically
significant correlation coefficients: *: p < 0.1; **: p < 0.05. Other symbols as in Table 1.

5 Conclusions311

We have applied Detrended Fluctuation Analysis to time series of selected metrics con-312

cerning international patent collaborations (be them co-assignments or co-inventions),313

based on the OECD RegPat database. In particular, we have focused on two metrics:314

the average yearly radius of collaboration and the yearly number of cross-border collabo-315

rations. We have extracted these metrics at the level of OECD TL3 regions, the spatial316

segmentation provided by RegPat, limited to the EU and US systems.317

We can summarize the main conclusions of this work as follows:318

• when evaluating long-term correlation properties at “continental” scale (that is, EU,319

or US, or EU+US), the time series of the selected metrics show that the increases320

that we observe in our data set are persistent in time and, as such, can be expected to321

protract after our observation period; also, these persistence properties are resistant,322

to some extent, to the removal of the best performing regions;323

• when calculating scaling values at EU national level, different qualitative and quan-324

titative behaviors emerge; the observed changes in scaling values when US collabo-325

rations are taken into account shed light on which countries have stronger overseas326
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relationships; in particular, the UK, Turkey and traditionally related countries such327

as Belgium, France and the Netherlands all increase their persistence metrics, when328

US collaborations are accounted for; on the contrary, the “German block” (i.e. Ger-329

many and German-speaking countries and also German neighbors such as Poland)330

shows significant decreases;331

• even though the number of selected nations is necessarily low, several and signifi-332

cant associations between DFA scaling values and features of the national internal333

collaboration graph are found; in particular, co-assignment persistence in general334

emerges as correlated to the diameter (i.e. the maximum distance in the graph),335

assortativity (i.e. the attachment preference of nodes to nodes of similar degree)336

and clustering of said graph, highlighting the role of the development of national337

R&D systems in guaranteeing persistence of international or simply long-distance338

collaborations.339

We maintain that this study can help deepen our understanding of the intrinsic prop-340

erties of the evolution of international cooperation on R&D, in terms of the persistence341

in time of the distance between collaborating regions and of the number of cross-border342

collaborations each region has. In particular, our results confirm that there is a general,343

persistent increase of relevant metrics of international technological collaborations, espe-344

cially in the EU, but they also show that the performance of single EU countries and also345

the dependence on US collaborations are extremely varied. This latter result can shed346

further light on the difficulties in creating a fully integrated European Research Area.347

Despite the shortcomings of the data (i.e. series being short and, often, non-stationary),348

we have performed several controls on our estimation of the DFA scaling to improve the349

consistency of our results. Up to now, applications of DFA to short data series have350

been scarce, to the best of our knowledge, and we believe that our effort represents a351

relevant methodological advance in this respect. In particular, with respect to previous352

literature (Viswanathan et al., 1996), we have provided a procedure to associate measures353

of statistical confidence to the observed scaling values.354

Having highlighted the limitations of this study, a more extensive characterization355

of spatial-temporal patterns of international collaboration can come from the study of356

individual inventors, especially when a finer time scale can be accounted for. Studies on357

the exploration of the “space of ideas” are also a potential extension of this method to358

the study of innovation processes. A finer time scale is available from the USPTO open359

dataset (US Patent and Trademark Office, 2018), even though such individual-based study360

has to rely on a thorough disambiguation of patent records. A few methods indeed have361

been applied with considerable effort and success (Li et al., 2014; Morrison et al., 2017),362

so we believe this study might set a new path for time series analysis in the field of363

innovation studies.364

12



References365

Arora, A.; Gambardella, A. Res Policy 1994, 23, 523–532.366

Arora, A.; Fosfuri, A.; Gambardella, A. Ind Corp Change 2001, 10, 419–451.367

Orsenigo, L.; Pammolli, F.; ; Riccaboni, M. Res Pol 2001, 30, 485–508.368

Freeman, C. Res Policy 1991, 20, 499–514.369

Chessa, A.; Morescalchi, A.; Pammolli, F.; Penner, O.; Petersen, A. M.; Riccaboni, M.370

Science 2013, 339, 650–651.371

Morescalchi, A.; Pammolli, F.; Penner, O.; Petersen, A. M.; Riccaboni, M. Res Policy372

2015, 44, 651–668.373

Frenken, K.; Hoekman, J.; Kok, S.; Ponds, R.; van Oort, J., F.and van Vliet In Death374

of Distance in Science? A Gravity Approach to Research Collaboration.; Pyka, A.,375

Scharnhorst, A., Eds.376

Hoekman, J.; Frenken, K.; Tijssen, R. Res Pol 2010, 39, 662–673.377

Waltman, L.; Tijssen, R.; van Eck, N. J Inform 2011, 5, 574–582.378

Maisonobe, M.; Eckert, D.; Grossetti, M.; Jegou, L.; Milard, B. J Inform 2016, 10,379

1025–1036.380

Peng, C.-K.; Buldyrev, S. V.; Havlin, S.; Simons, M.; Stanley, H. E.; Goldberger, A. L.381

Phys Rev E 1994, 49, 1685.382

Hardstone, R.; Poil, S.-S.; Schiavone, G.; Jansen, R.; Nikulin, V. V.; Mansvelder, H. D.;383

Linkenkaer-Hansen, K. Front Physiol 2012, 3, 450.384

Viswanathan, G. M.; Afanasyev, V.; Buldyrev, S.; Murphy, E.; Prince, P.; Stanley, H. E.385

Nature 1996, 381, 413.386

Disdier, A.-C.; Head, K. Rev Econ Stat 2008, 90, 37–48.387

Hu, K.; Ivanov, P. C.; Chen, Z.; Carpena, P.; Stanley, H. E. Phys Rev E 2001, 64, 011114.388

Owen-Smith, J.; Riccaboni, M.; Pammolli, F.; Powell, W. W. Manag Sci 2002, 48, 24–43.389

Delignieres, D.; Ramdani, S.; Lemoine, L.; Torre, K.; Fortes, M.; Ninot, G. J Math Psychol390

2006, 50, 525–544.391

Bryce, R.; Sprague, K. Nat Sci Rep 2012, 2, 315.392

Castillo, R. D.; Kloos, H.; Holden, J. G.; Richardson, M. J. Front Physiol 2015, 6, 138.393

Schengell, T.; Lata, R. Pap Reg Sci 2013, 92, 555–577.394

Arrieta, O. A. D.; Pammolli, F.; Petersen, A. Sci Adv 2017, 3, e1602232.395

13



Guellec, D.; de la Potterie, B. v. P. Res Policy 2001, 30, 1253–1266.396

De Rassenfosse, G.; van Pottelsberghe de la Potterie, B. OxRep 2007, 23, 588–604.397

Cowan, R.; Jonard, N. JEDC 2004, 28, 1557–1575.398

US Patent and Trademark Office, PatentsView database. 2018; http://www.399

patentsview.org/.400

Li, G.-C.; Lai, R.; D’Amour, A.; Doolin, D. M.; Sun, Y.; Torvik, V. I.; Yu, A. Z.; Flem-401

ing, L. Res Policy 2014, 43, 941–955.402

Morrison, G.; Riccaboni, M.; Pammolli, F. Nat Sci Rep 2017, 4, 170064.403

A Appendix404

A.1 Specific methodology of DFA application405

We devise a specific methodology to recover the DFA scaling value, given the particular406

conditions of our case study, i.e. short, “composite” time series, possibly characterized407

by non-stationarity. We generate n synthetic Gaussian noise series of length t (in our408

case, t = 36), characterized by a specific scaling value (i.e. α = 0.5). Here, we choose409

n = 1000 to decrease the estimation error and thus to pinpoint the effects of trend. As410

performed in Hu et al. (2001), we superimpose to an arbitrary fraction of these series411

a trend of a given order. We estimate the DFA scaling for 1, 000 realizations and for412

different values of the fraction of nodes with a superimposed trend (spanning from 10%413

to 100%). In general, we note that DFA can best detect the true scaling of the underlying414

signal when the first two window lengths (i.e. ∆n = {4, 6}), which likely suffer from bad415

parameterization, are discarded (Fig. A.1A). In the DFA-1 case, scaling turns out to be416

' 2 as in Hu et al. (2001) for any non-negative fraction of nodes with a linear trend417

(αDFA−1 = 2.00 ± 6.34 · 10−4). The distributions of estimated DFA scalings at different418

values of the fraction of nodes with a trend, instead, turn out to be indistinguishable419

from the one coming from realizations with no trend superimposition in a two-sided420

Wilcoxon rank-sum test (αDFA−2 = 0.54± 1.5 · 10−3; see below for a quantitative analysis421

of the estimation error). At the same time, the presence of higher order trends (e.g.422

quadratic) in a fraction of the n series would manifest in a clearly non-stationary scaling423

(i.e. αDFA−2 = 3.05 ± 3.16 · 10−4). Thus we make use of DFA-2 as the best trade-424

off between detrending power and local overparameterization (our window lengths being425

highly constrained at t = 36).426

A.2 Additional controls427

We find appropriate, due to the low absolute number of data points and to the shortness of428

the maximum window length, to assess quantitatively the degree of error associated with429

our estimate, as revealed e.g. by Fig. A.1A. To this end, we perform 1,000 repetitions430

of the synthetic series generation, at varying scaling values, and calculate the average431

error between our estimate and the true scaling. For comparison purposes, we repeat432

14

http://www.patentsview.org/
http://www.patentsview.org/
http://www.patentsview.org/


Figure A.1: Panel A: loglog plot of fluctuation function values versus the corresponding window length of 1, 400 synthet-
ically generated time series of total length 36 (gray circles) and fixed scaling (0.5). The black solid line shows the linear
fit over the last 4 window lengths, while the dashed solid line shows the linear fit over the whole set of window lengths.
Panel B: average and error bars between estimated and true DFA-2 scaling for 1,000 repetitions of time series generation,
at varying scaling and number of nodes n. Light blue circles show the median error, while whiskers extend to distribution
percentiles (light blue: 5-95th, n = 5; dark orange: 25-75th, n = 5; yellow: 5-95th, n = 1400). The lilac shaded panel
excludes the scaling values that are outside the range found in this paper’s results.

this simulation for the aforementioned minimum value n = 5 and for n = 1400, which is433

approximately the number of “active” EU regions(i.e. appearing in the RegPat database)434

and, thus, represents a measure of the value of n we use at the aggregate scale. We show435

in Fig. A.1B that this error converges to zero for growing values of the true underlying436

scaling. When n = 5, only in a few cases the error goes beyond 10%, for extreme values437

of the 5-95th error bar. Increasing the number of nodes does not change the median error438

dramatically but narrows the distribution of error values considerably. This seems in439

accordance with similar results on short data series shown in Delignieres et al. (2006).440

Much greater deviations are found when the underlying series is anti-correlated (shaded441

area in Fig. A.1B), but we anticipate that this is almost never found in our results.442

Due to the relatively high standard deviation that is found when the number of regions443

under study is low, we deem necessary to have a measure of confidence when discriminating444

between uncorrelated and long-term correlated signals. This is particularly relevant for445

the national scale analysis, when the number of active regions spans from 5 to 402. To446

this end, we retrieve the 95th percentile value of the scaling value observed in, again,447

1,000 repetitions of synthetic series generation of an uncorrelated signal (α = 0.5), for448

each value of the number of regions that we find in the selected countries (see Table449

A1 for the complete list). This corresponds to performing a 1-tailed t-test and sets450

a sort of threshold above which we exclude uncorrelation in the observed data, with451

relative safety. Additionally, we compute the average percent error from the true scaling452

to have a comparison value for the variations we observe i.e. when considering EU/US453

collaborations at national scale. Table A1 shows both threshold values for all the values454

of the number of active regions and their correspondent country. We do not report results455

regarding the super–national scale, as our results are all well beyond the threshold value456

in all these cases.457

We also deem necessary to account for the different standard deviations we observe458

when varying number of active regions, especially when we correlate the observed scalings459
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to exogenous factors (see Section 4). To this end, we normalize the observed scalings460

by their associated standard deviation, which we obtain by observing the distribution of461

1,000 synthetic realizations of signals having the same parameters (i.e. DFA true scaling,462

number of active regions). This is meant to remove the confounding effect of different463

variances in the data, when performing correlation analysis.464

Country nρA α95 ∆̄% nρI α95 ∆̄% nCBA α95 ∆̄% nCBI α95 ∆̄%

AT 33 0.59 5.8 35 0.59 5.7 33 0.59 5.8 35 0.59 5.7
BE 44 0.59 5.3 44 0.59 5.3 38 0.59 5.5 44 0.59 5.3
BG 10 0.64 9.6 23 0.61 6.7 5 0.68 13.2 14 0.63 8.3
CH 26 0.60 6.4 26 0.60 6.4 25 0.61 6.6 26 0.60 6.4
DE 401 0.55 3.4 402 0.55 3.4 333 0.56 3.5 402 0.55 3.4
EL 29 0.60 6.1 391 0.59 5.4 25 0.61 6.6 33 0.59 5.8
ES 50 0.58 5.0 56 0.58 4.9 41 0.59 5.5 54 0.58 5.0
FR 95 0.57 4.3 96 0.57 4.3 87 0.57 4.4 96 0.57 4.3
HR 11 0.64 9.2 19 0.61 7.1 7 0.67 11.3 15 0.62 8.0
HU 20 0.61 7.0 20 0.61 7.0 13 0.63 8.5 20 0.61 7.0
IT 109 0.57 4.1 110 0.57 4.0 80 0.57 4.5 107 0.57 4.1
NL 40 0.59 5.5 40 0.59 5.5 39 0.59 5.4 40 0.59 5.5
PL 552 0.58 5.0 72 0.58 4.5 26 0.60 6.4 69 0.58 4.6
PT 19 0.61 7.1 23 0.61 6.7 11 0.64 9.2 20 0.61 7.0
RO 133 0.63 8.5 36 0.59 5.7 8 0.65 10.6 30 0.60 6.2
SE 21 0.61 6.9 21 0.61 6.9 21 0.61 6.9 21 0.61 6.9
TR 27 0.60 6.2 50 0.58 5.0 9 0.65 9.9 31 0.60 6.1
UK 1204 0.57 4.0 125 0.57 3.9 101 0.57 4.2 124 0.57 4.1

Table A1: Number of active regions in each country and for each measured metric (nρA/I
, nCBA/I

) together with

corresponding control statistics. α95 represents the 95th percentile value of the distribution of the estimated scalings in
1,000 repetitions of a synthetically generated series with true α = 0.5. ∆% is the percent error between the estimated and
the observed scalings, averaged along the 1,000 repetitions of different values of the true scaling, ranging from 0.5 to 0.9,
is also shown. Other symbols as in Table 1. Superscripts in the number of active regions indicate a difference between the
EU-only and the EU+US cases. 1: n = 40, α95 = 0.59, ∆̄% = 5.5; 2: n = 56, α95 = 0.58, ∆%=4.9;3: n = 14, α95 = 0.63,
∆% = 8.3; 4: n = 121, α95 = 0.57, ∆% = 4.1.
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