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Abstract

Following the 2007-08 Global Financial Crisis, there has been a growing research interest on
the spatial interrelationships between house prices in many countries. This paper examines the
spatio-temporal relationship between house prices in the twelve provinces of the Netherlands
using a recently proposed econometric modelling technique called the Bayesian Graphical
Vector Autoregression (BG-VAR). This network approach is suitable for analysing the com-
plex spatial interactions between house prices. It enables a data-driven identification of the
most dominant provinces where temporal house price shocks may largely diffuse through the
housing market. Using temporal house price volatilities for owner-occupied dwellings from
1995Q1 to 2016Q1, the results show evidence of temporal dependence and house price dif-
fusion patterns in distinct sub-periods from different provincial housing sub-markets in the
Netherlands. In particular, the results indicate that Noord-Holland was most predominant
from 1995Q1 to 2005Q2, while Drenthe became most central in the period 2005Q3–2016Q1.

JEL classification: C11; C15; C32; C52; R20; R32
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1. Introduction

The collapse of house prices during the 2007-08 Global Financial Crisis (GFC) slowed down
economic growth in many countries. After the GFC, researchers and governments alike have
been seeking to understand the dynamics of house price development in order to resuscitate
the stagnating housing market and the general economy. This has consequently led to a new
research agenda that specifically seeks insights into spatial interactions and diffusion between
the regional housing markets. House prices vary over space and time, but developments of
house prices across regions may not be entirely independent of each other. As explained by
Gong et al. (2016), there are significant variations in regional house prices. However, house
prices interrelate spatially over time, and it is paramount for governments to understand these
interrelationships so as to formulate policies to regulate the overall functioning of the housing
market.

Spatial interrelationships between regional house prices may take the form of a long-
run convergence or a temporal diffusion mechanism. Long-run convergent property markets
equilibrate and remain integrated over a long period of time (Holmes and Grimes, 2008;
Cook, 2005; Cotter et al., 2011). Temporal house price diffusion is also sometimes known
in the literature as ripple or spillover effect (see Meen, 1999). This market phenomenon
depicts the situation where house price shocks in one region is believed to propagate to house
prices in other regions with a transitory or permanent effect (Balcilar et al., 2013; Canarella
et al., 2012; Pollakowski and Ray, 1997). Empirical evidence in support of this temporal
house price diffusion mechanism exists in the context of the US (Canarella et al., 2012; Holly
et al., 2010; Pollakowski and Ray, 1997) and the UK (Meen, 1999, 1996; Holly et al., 2011).
More recent results from China and other developing countries also lend support to the house
price diffusion hypothesis (see Gong et al., 2016; Lee and Chien, 2011; Nanda and Yeh, 2014;
Balcilar et al., 2013). However, in most of these previous studies, the hypothesis is tested for
a lead-lag relationship where it is assumed a priori that the diffusion will start from some
economically “superior region”.

In this paper, we shed light on the spatial and temporal house price diffusion in the case of
the Netherlands. The focus is specifically as follows. First, we investigate if there is a spatial
dependence of temporal house price volatilities and a diffusion pattern between provinces
in the Netherlands. Secondly, we are interested in identifying from the data the provinces
which may serve as the dominant sources of house price shocks. Lastly, we investigate if these
spatio-temporal relationships vary over time.

We employ a graphical network approach for studying these spatio-temporal house price
dynamics. Graphical modelling is a class of multivariate analysis that uses graphs consisting of
nodes and edges to study the interaction and path dependence between variables. The nodes
of this graph represent the variables while the edges (or links) denote their interactions and
dependence structure (see Lauritzen, 1996; Eichler, 2007). The graphical modelling approach
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has become popular as a more natural way to discover hidden and complex interactions among
multiple variables. It is applied mostly in the study of contagion and systemic risk analysis in
the financial sector where there is complicated and non-linear relationships between variables
(see Ahelegbey, 2016, for a more comprehensive review). Like most financial variables, one
indeed expects a complex interrelationships between regional house prices which can easily
be handled by the graphical network approach.

This paper specifically adopts the graphical method recently proposed by Ahelegbey et al.
(2016a) called the Bayesian Graphical Vector Autoregression (BG-VAR). The BG-VAR is a
data-driven approach where the directed edges of the network represent causal relationships.
The empirical application in this paper uses quarterly data (1995:Q1 - 2016:Q1) on temporal
house price volatilities for second-hand owner-occupied dwellings from the twelve provinces
of the Netherlands. The results establish a temporal dependence and diffusion dynamics
existing between the provincial housing markets. These spatial relationships, however, vary
over time in terms of the degree of dependence and the centrally dominant sub-markets. In
particular, between 1995Q1 and 2005Q2, Noord-Holland was most predominant, whereas the
central regional housing market in the period 2005Q3–2016Q1 was Drenthe.

We organised the remaining sections of the paper as follows. A brief overview of the related
literature is provided in Section 2. Section 3 describes the BG-VAR model. The description
of our data is presented in Section 4 while Section 5 discusses the empirical results. The entire
paper is concluded in Section 6.

2. Extant Literature

Many scholars have been working on the spatio-temporal house price diffusion or the so-called
ripple effect and a vast literature now exist. An extensive review of the literature is provided
by Balcilar et al. (2013) and most recently by Nanda and Yeh (2014) and Gong et al. (2016).
We only provide a brief summary here. The study of this ripple effect hypothesis actually be-
gan from the UK when English researchers observed that house prices rise, during an upswing,
first from the South-East (mostly London) and then spread out to other parts of the country
(Giussani and Hadjimatheou, 1991; Meen, 1996, 1999). According to Pollakowski and Ray
(1997) house price diffusion will not necessarily occur between neighbouring housing markets,
but may require some form of economic interrelationship. Meen (1999) likewise shared the
view of Pollakowski and Ray (1997), and noted that spatial dependence may not be neces-
sary for explaining the ripple effect. Meen (1999) then suggested four probable mechanisms
through which rising house prices from one region may later manifest in other parts of the
UK. These channels according to the author include: migration, equity transfer, spatial arbi-
trage and spatial patterns in house price determinants. As also noted later by Canarella et al.
(2012), migration particularly may lead to house price ripple effect if households relocate in
response to changes in the spatial distribution in house prices.
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Meen (1999) also provided an empirical framework for testing the ripple effect by assuming
that regional house prices will react to shocks at different rates. The author’s approach was
equivalent to testing the stationarity of the regional to national house price ratios. Although
Meen (1999) was unsuccessful in confirming the ripple effect with the Augmented Dickey-
Fuller test, the author’s empirical framework became the basis for other scholars who later
found empirical evidence using more sophisticated stationarity test procedures. Cook (2003),
for instance adopted the Threshold Autoregressive (TAR) and Momentum Threshold Autore-
gressive (MTAR) test procedures while Holmes and Grimes (2008) used a combination of unit
root test and Principal Component Analysis (PCA) to confirm the spillover effect in the UK.
Canarella et al. (2012) similarly studied the house price diffusion effect in the US by using a
combination of the Generalised Least Squares (GLS) version of the Dickey-Fuller, non-linear
unit root tests and other test procedures that control for structural breaks. Balcilar et al.
(2013) also adopted a Bayesian and non-linear unit root tests, with and without structural
breaks to investigate the ripple effect in the South African housing market. The Panel Seem-
ingly Unrelated Regressions Augmented Dickey-Fuller (SURADF) has equally been employed
by other scholars (e.g. Lee and Chien, 2011; Holmes, 2007).

Recently, tremendous effort, relying on the advances in the econometric literature, has
also been channelled into refining the methodology for testing the ripple effect hypothesis
beside the “Meen framework”. Holly et al. (2011), for example proposed a dynamic modelling
approach where they allowed shocks from the dominant region to propagate to other regions
and then echo back. The authors found support for the ripple effect using this approach for the
UK with London as the dominant region. Gong et al. (2016) adopted similar method in their
study of ripple effect for 10 regions in the Pan-Pearl river of China. Nanda and Yeh (2014),
in a related study also suggested using a dynamic panel-spatial model. Some studies equally
advocated formulating a Spatial Vector Autoregressive (SPVAR) model and subsequently
testing for Granger Causality (GC) and/or performing Impulse Response Analysis (IRA) to
examine the ripple effect hypothesis. Brady (2014), for example captured the spatial diffusion
between regional housing prices in the US with impulse response functions estimated from a
Spatial Autoregressive (SAR) model.

Pinkse and Slade (2010) as well as Gibbons and Overman (2012), however, argued that the
SAR model and many other spatial models (see LeSage and Pace, 2009; Florax and Folmer,
1992; Dubin, 1992) may suffer generally from mis-specification because the spatial weighting
matrices which are central to those models are constructed in an ad-hoc manner. Other
authors entirely avoid constructing the spatial weighting matrix by estimating traditional
VAR to perform GC and IRA. For instance, Vansteenkiste and Hiebert (2011) adopted a
global VAR model and IRA to study the house price spillover effects across countries in the
euro area. Gupta and Miller (2012), similarly formulated traditional VAR model after which
they tested for GC and performed IRA to verify the spatial diffusion phenomenon between
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Los Angeles, Las Vegas, and Phoenix in the US.
The VAR based models, similarly suffer from mis-specification or over-parametrisation,

which may render the impulse response function and GC test inaccurate (see Koop et al., 2010;
Vega and Elhorst, 2013; George et al., 2008). To eliminate the problem of mis-specification
and over-parametrisation, Ahelegbey et al. (2016a) recently proposed the Bayesian graphical
network vector autoregressive (BG-VAR) method which provides a better approach to specify
and estimate a parsimonious VAR model. The novelty of the BG-VAR is that, we can identify
the temporal dependence structure between the variables without having to estimate the
structural (VAR) parameters. In addition, the method could be used to identify the direction
of dependence between the variables and it is somewhat related to the concept of GC. The
GC, however adopts a pairwise (or conditional pairwise) analysis to identify the dependence
patterns without accounting for the structural uncertainties. On the other hand, the BG-VAR
employs a Bayesian technique which incorporates necessary prior information to explore the
structure and to apply model averaging. Ahelegbey (2016) provided empirical evidence that
support the superior efficiency of the BG-VAR over the GC in producing dependence patterns
that are more suitable for capturing complex interdependencies. Investigating the dependence
structure between multiple time series with the BG-VAR model is generally more convenient
for researchers and policy makers to understand directional or causal relationships.

3. The Bayesian Graphical Vector Autoregressive (BG-VAR) Model

This section presents the formulation of the BG-VAR model adopted in this paper. Assume
for a moment that temporal house price volatilities in one region is a result of earlier shock
to house prices in other regions. We can formulate a vector autoregressive process of order
p (VAR(p)) to capture these interdependencies. As mentioned earlier, some authors study
the spatial and temporal house price dynamics by testing for Granger causality (GC) and
performing IRA from this underlying VAR model.

Let Yt denote the vector of house price volatilities at the time t from n regions. We can
write the VAR(p) process for Yt following the equation

Yt =
p∑

i=1
BiYt−i + ut = BXt + ut, ut ∼ N (0, Σu) (1)

where t = p + 1, . . . , T ; p is the maximum lag order to be chosen and Xt = (Y ′
t−1, . . . , Y ′

t−p)′

is np × 1 stacked matrices of the lagged regional house price volatilities. B = (B1, . . . , Bp),
where Bi, 1 ≤ i ≤ p is an n × n matrix of coefficients, which determine the dependence of the
house price volatilities on their lags.

The set of equations in (1) captures the structure of the interactions between the regional
house price volatilities and Ahelegbey et al. (2016a) showed that the temporal dependencies
between them could be inferred from B. For example, when the volatility of house prices in
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one region depends only on a subset but not on earlier shock to house prices in all the regions,
there are components of B that become zero. In general, Bij measures the anticipated effect
of changes in the j-th predictor (Xj,t) on the house price development in the i-th region (Yi,t).

Ahelegbey et al. (2016a) demonstrated that the VAR model (1) can be operationalised as
a graphical model using the relation B = (G ◦ Φ), where G is a binary (0/1) matrix, Φ is a
coefficients matrix, both of dimension n×np, and (◦) is the element-by-element product. The
elements of G represent the presence or absence of an edge (interaction) between volatility of
house prices in pairs of regions. A one-to-one correspondence between B and Φ conditional
on G can be identified. That is, Bij = Φij , 0, if Gij = 1; and Bij = 0, if Gij = 0.

As an example, consider an arbitrary five-dimensional VAR(1) with coefficients matrix

B =



β11 0 0 0 0
β21 0 β23 0 0
β31 0 β33 0 0
0 0 β43 β44 0
0 β52 0 0 β55

 (2)

where the non-zero elements of B are real numbers. The network that depicts the temporal
dependence among the variables associated with (2) can be visualised in Figure 1. The nodes
of this network are specifically the five variables: Y1t, Y2t, Y3t, Y4t and Y5t. Since β21 , 0,
Y1,t−1 has a significant impact on Y2,t. This also means that an edge exists between Y1 and
Y2 which is denoted as Y1 → Y2. The edges of the network indicate the lagged dependencies
between the variables without self lag effects, which are the indirect effects.

Figure 1: Network matrix and diagram associated with the temporal dependence in the five-
dimensional VAR(1) process in (2).
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Elhorst (2014) and LeSage and Pace (2009) discussed the direct and the indirect (or
spillover) effects between spatial variables. Figure 1 shows that the two effects may be easily
distinguished with the BG-VAR approach. The direct effect are represented in the diagonal
of the graph matrix G, while its off-diagonals describe the indirect interactions depicted
by the Figure 1(b). For the diffusion dynamics, it suffices to estimate only the network
structure captured by G. Let Dt = (X ′

t, Y ′
t )′ be a d × 1 vector, where d = n + np and

assume Dt ∼ N (0, Ω−1), where Ω is a d × d precision matrix. The joint distribution for all
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the variables in Dt can be summarised with a graphical model and represented by the pair
(G, Ω) ∈ (G × Θ). Here, G is a directed acyclic graph (DAG) of the relationships among the
variables in Dt, Ω consists of the VAR model parameters, G and Θ are the graph and parameter
space respectively. The triple (Ω, Σu, B) are mathematical related. Suppose Xt ∼ N (0, Σxx)
and Yt|Xt ∼ N (BXt, Σu), B and Σu can be obtained from the covariance matrix of Dt (i.e.
Σ = Ω−1) by

B = ΣyxΣ−1
xx , Σu = Σyy − ΣyxΣ−1

xx Σxy (3)

where Σyx is n×np covariances between Yt and Xt, Σxx is np×np covariances among Xt and
Σyy is n × n covariances among Yt. Given B, Σu and Σxx, Ω can equally be obtained using
the well-known Sherman-Morrison-Woodbury formula (Woodbury, 1950),

Ω = Σ−1 =
(

Σ−1
xx + B′Σ−1

u B −B′Σ−1
u

−Σ−1
u B Σ−1

u

)
, where Σ =

(
Σxx Σxy

Σyx Σyy

)
(4)

By defining B = (G◦Φ), equation (4) shows how Ω relates to G through B. The specification
of the BG-VAR model is completed with the choice of a hierarchical prior on the lag order p,
the graph structure G and the parameter Ω.

We now focus on the estimation procedure for the graph structure (G) associated with
the temporal dependence between the regional house prices. In the Bayesian framework, the
joint prior distribution of (p, G, Ω) is given by Pr(p, G, Ω) = Pr(p)Pr(G|p)Pr(Ω|p, G). It
is important to first select the optimal lag order for the VAR model. Following Ahelegbey
et al. (2016b), we choose p in the range 0 < pmin < pmax < ∞, for some lower bound pmin

and upper bound pmax. More specifically, we assume p follows a discrete uniform prior on
{pmin, . . . , pmax} with a distribution

Pr(p) = 1
pmax − pmin + 1

(5)

Since we seek to estimate the regional market that is central in the spread of house price
volatility from the data, it is more reasonable to assume a priori that any region is equally
likely to play this role. This implies that the graph structure can be represented as a product
of local sub-graphs of each equation of the model and may be written as

Pr(G|p) =
n∏

i=1
Pr(πi|p) (6)

where πi = {j = 1, . . . , np : Gij = 1} is the set of price volatilities of the i-th equation
predictors.

We formulate in what follows, the standard techniques for estimating G also described by
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Ahelegbey et al. (2016a,b). We assume for each edge Gij , an independent Bernoulli trial with
conditional prior probability

Pr(πi|p, γ) = γ|πi|(1 − γ)np−|πi| (7)

where |πi| is the cardinality of πi and γ ∈ (0, 1) is the Bernoulli parameter. We use a uniform
graph prior by choosing γ = 0.5 so that Pr(πi|p, γ = 0.5) = 2−np and Pr(G|p) ∝ 1.

Following standard Bayesian paradigm, we also assume that Ω conditional on p and a
complete graph G is Wishart distributed, Ω ∼ W(ν, S−1), with density

Pr(Ω|p, G) = 1
Kd(ν, S)

|Ω|
(ν−d−1)

2 exp
{

− 1
2

⟨Ω, S⟩
}

(8)

where ⟨A, B⟩ = tr(A′B) is the trace inner product, ν is the degree of freedom, S is the prior
sum of squared matrix and Kd(ν, S) is the normalizing constant. The likelihood of a random
sample D = (D1, . . . , DT ) is multivariate Gaussian with density

Pr(D|p, Ω, G) = (2π)− 1
2 dT |Ω|

1
2 T exp

{
− 1

2
⟨Ω, Ŝ⟩

}
(9)

where Ŝ =
∑T

t=1 DtD
′
t is a d × d sample sum of squared matrix.

Given that G is unknown, a standard Bayesian approach for determining the graph struc-
ture is to integrate out Ω from (9) with respect to its prior given by

Pr(D|p, G) =
∫

Pr(D|p, Ω, G) Pr(Ω|p, G)dΩ = Kd(ν + T, S + Ŝ)
(2π)

1
2 dT Kd(ν, S)

(10)

where S + Ŝ is the posterior sum of squared matrix. The expression (10) is the marginal
likelihood function expressed as ratio of the normalising constants of the Wishart posterior
and prior. Following standard application, the marginal likelihood factorises into the product
of local terms, each involving Yi,t and its set of selected predictors, Xπi,t, given by

Pr(D|p, G) =
n∏

i=1
Pr(D|p, Gi,πi) =

n∏
i=1

Pr(D(i,πi)|p, G)
Pr(D(πi)|p, G)

(11)

where D(i,πi) and D(πi) are sub-matrices of D consisting of (Yi,t, Xπi,t) and Xπi,t respectively.
Let wi ∈ ({i} ∪ πi). The closed-form expression for the left-hand side of (11) is given by

Pr(Dwi |p, G) = π− 1
2 T |wi|ν

1
2 ν|wi|

(ν + T )
1
2 (ν+T )|wi|

|Σwi
|

1
2 ν

|Σ̄wi |
1
2 (ν+T )

|wi|∏
s=1

Γ
(

ν+T +1−s
2

)
Γ
(

ν+1−s
2

) (12)

where |wi| is the cardinality of wi, Σwi
and Σ̄wi are the prior and posterior covariance matrices

of Dwi . Again, we follow standard practice and set Σwi
= I|wi|, where I|wi| is a |wi|-dimensional
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identity matrix.1 By definition, (12) consists of a component that is independent of Σ̄wi . We
can reduce the computational time by expressing this independent component as a function
Qν(|wi|, p, T ) given by

Qν(|wi|, p, T ) = π− 1
2 T |wi|ν

1
2 ν|wi|

(ν + T )
1
2 (ν+T )|wi|

|wi|∏
s=1

Γ
(

ν+T +1−s
2

)
Γ
(

ν+1−s
2

) (13)

Since for each equation, we have np number of explanatory variables, |wi| will be bounded
below by 1 and above by np+1. Thus, we can set ν = np+2. Given ν, T and p, Qν(|wi|, p, T )
does not directly depend on the variables in wi but on |wi| ∈ {1, . . . , np + 1}. Hence, (12)
may be expressed as

Pr(Dwi |p, G) = Qν(|wi|, p, T ) |Σ̄wi |−
1
2 (ν+T ) (14)

The posterior covariance matrix of D is also given by

Σ̄ = 1
ν + T

(
νId +

T∑
t=1

DtD
′
t

)
(15)

Thus, Σ̄wi in (14) can be obtained as a sub-matrix of Σ̄ which corresponds to the elements in
wi. Pre-computing Σ̄ and Qν(|wi|, p, T ) for |wi| given ν, T and p, before sampling the network
matrix reduces the computational complexity and makes the algorithm efficient. The details
of sampling the network structure is provided in Appendix A.

4. Description of Data

This section gives a brief background to the regional housing market in the Netherlands
and describes the data. The spatial units for our analysis include the twelve official Dutch
provinces.2 These are, namely Drenthe (DR), Flevoland (FL), Friesland (FR), Gelderland
(GE), Groningen (GR), Limburg (LI), Noord-Brabant (NB), Noord-Holland (NH), Overijssel
(OV), Zuid-Holland (ZH), Utrecht (UT) and Zeeland (ZE) (see map in Figure 2). According
to Statistic Netherlands (CBS), Zuid-Holland is the largest in terms of GDP (141.758 billion
Euros in 2014), followed by Noord-Holland (133.358 billion Euros in 2014). Zeeland is the
smallest with estimated GDP of 11.429 billion Euros in 2014. The capital Amsterdam is
hosted by Noord-Holland while the government seat (The Hague) is located in Zuid-Holland.

The extant literature suggest a higher tendency of house price shocks to diffuse from some
“mega economic districts” to peripheral regions (see Gong et al., 2016; Holly et al., 2011).
Thus, our initial expectation is that Noord-Holland or Zuid-Holland may be central in the
house price diffusion mechanism in the Netherlands within certain periods.

1 For any n × n identity matrix A, we have |A| = 1.
2 In this paper, we use region and province interchangeably.
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Figure 2: Map of the twelve provinces of the Netherlands.

Source: d-maps.com

We use quarterly house price indexes spanning the period 1995Q1 to 2016Q1 for second-
hand owner-occupied dwellings in this paper. The data is obtained from Statistic Netherlands
(CBS). CBS is the Dutch official agency which publishes statistics on housing and other sectors
of the economy. The indexes are constructed adopting the sale price appraisal ratio (SPAR)
method (see de Haan et al., 2009). By using official annual appraised values for the dwellings
and chaining the ratios, CBS adjusts for appraisal bias in the SPAR index but is unable to
control for quality changes. Given available house transaction data, CBS’ SPAR index is the
most reliable in the Netherlands (De Vries et al., 2009).

A simple plot of the house price indexes (Figure 3) shows a common trend in the growth
of house prices in all the twelve regional markets before and after the GFC. The periods prior
to 2009 show a relatively faster house price appreciation which may be attributed to many
factors. For instance, the Dutch government promoted home ownership forcefully during those
periods with the National Mortgage Guarantee scheme and through an income tax structure
that offered generous rebates on the mortgage interest rates (see, Toussaint and Elsinga,
2007; Boelhouwer et al., 2004; Elsinga, 2003; Boelhouwer, 2002). These incentive packages
generally made it cheaper for individual households to purchase their own dwellings, which
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Figure 3: Dutch regional house price indexes.
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DR = Drenthe, F L = Flevoland, F R = Friesland, GE = Gelderland, GR = Groningen, LI = Limburg, NB =
Noord-Brabant, NH = Noord-Holland, OV = Overijssel, UT = Utrecht, ZE = Zeeland, ZH = Zuid-Holland.
Source: Statistics Netherlands.

consequently led to increase in demand and rise in house prices before the crisis.
As in other countries, financial institutions in the Netherlands were also hit by the 2007-08

GFC. The impact of the crisis on house prices however started in the last quarter of 2008 as
seen in Figure 3. Following the GFC, average house prices in the Netherlands declined by
almost 25% between 2009 and 2013. Teulings (2014), attributed the collapse in the Dutch
property values with the higher unemployment and redundancy rates during the meltdown.
Other scholars however blamed the collapse on the Dutch financial institutions who tightened
up mortgage accessibility and impeded new home buyers from the market (Elsinga et al.,
2016; Boelhouwer, 2014; Bardhan et al., 2011). Since the beginning of 2014, there has been
gradual recovery of Dutch house prices, somewhat faster in Zuid-Holland and Noord-Holland.

In this paper, we study the temporal diffusion pattern of house price volatilities in the
Netherlands. We follow Martens and Van Dijk (2007) to define the house price volatilities for
each region as the squared returns given by

SRt = [100(log It − log It−1)]2 (16)

where It is the house price index at the time t. Figure 4 summarises the temporal regional
house price volatilities. It shows that house prices were more volatile in most regions from
1995 until the early 2000s, and gradually decline afterwards.
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Figure 4: Regional house price volatilities.
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5. Spatio-temporal house price dynamics

We estimate the temporal dependencies between the regional house price volatilities from the
network structure as described in Section 3. We set the minimum and maximum lag order to
p = 1 and p = 4 respectively. The estimation first follow a twenty-quarter rolling window and
the result is summarised with the network density to examine the extent of interdependencies
between the regional house prices over time. The network density is a simple aggregate index
for the degree of interdependence. It is defined for each estimation window as the percentage of
the regions whose temporal house price volatilities are dependent on earlier price movements
in other regions. More specifically, the network density is the number of identified edges in
the network divided by the total possible edges. For n number of regions or variables, there
are n(n − 1) possible edges indicating the indirect effects.

Figure 5 presents the network density associated with the temporal regional house price
volatility interdependencies. The average network density over the study period is about 43%,
which gives evidence of temporal interdependence and diffusion between the regional house
price volatilities. Figure 5 also shows that the degree of interdependence varies over time.
It was higher particularly between 1995 and 2005, then began to decrease until 2008, after
which it has been on the rise again.

The above sub-periods somewhat coincide with recognisable stages in the development
of house prices in the Netherlands. It is recognised by most Dutch researchers that the
period 1995–2005 is one during which house prices increased legitimately because of the rise
in household disposable income and government stimulation of the housing market (De Vries,
2010; Toussaint and Elsinga, 2007; Boelhouwer et al., 2004; Boelhouwer, 2002). On the other
hand, some analysts argued that the Dutch house price development from 2005–2008 was
mostly due to over-valuation and speculative investment activities which also precipitated
the crisis that started in the last quarter of 2008 (Xu-Doeve, 2010; Aalbers, 2009a,b).
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Figure 5: Network density estimated with rolling window over the period 1995Q2 – 2016Q1.
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5.1. Sub-period dynamics

To ascertain if the central regions in the house price diffusion dynamics vary with time, we
study in details the network structure within sub-periods. It is appropriate to identify if there
are structural shifts in the network density and delineate the sub-periods along them. A simple
recurrent plot (Marwan et al., 2007) in Figure 6 shows a significant period of structural change
in the network density, occurring between 2005 and 2006.3 Using the sequential method of
Bai and Perron (2003, 1998), we also test for the structural shift and the break date. The
sequential test assumes no knowledge of the break date but requires that a model for the series
and maximum likely breaks are specified. Following Brady (2014), we model the series for
the network density as an AR(1) process. We allow up to 3 breaks, however the BIC suggests
only one significant structural shift, occurring at 2005Q2. This confirms the recurrent plot
also suggesting one structural shift.

We re-estimate the network structure for the two sub-periods: 1995Q1–2005Q2 and
2005Q3–2016Q1. The summary statistics and optimal lag order associated with the net-
work structure for each specific sub-period are presented in Tables 1 and 2. The average path
length, for example, represents the average graph-distance between all pair of nodes, where
interconnected nodes have graph distance of 1. In general, the higher the graph distance the
slower it takes house price shocks in one region to cascade systemically. Table 1 also indicates
the total links and average degree which are important for the network analysis.

The interest here is to identify the regions with temporal house price volatilities that
are predominately interdependent and their specific direction of interconnection with the
others. These regions are interesting because they play important role in the transmission

3 A recurrence plot is a way to visualise and study the dynamics of phase space by a two- dimensional plot
(Marwan et al., 2007).
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Figure 6: Recurrent plot indicating the patterns in the network density over time.
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Table 1: The network statistics for the sub-period graphs.

Edges/Links Density Average Degree Average Path
Length

1995Q1–2005Q2 94 0.71 15.67 1.29
2005Q3–2016Q1 39 0.30 6.50 1.73

Table 2: Equation-specific lag order of each equation for the sub-periods.

Period DR FL FR GE GR LI NB NH OV UT ZE ZH
1995Q1–2005Q2 3 2 1 2 4 2 2 2 2 2 1 2
2005Q3–2016Q1 1 1 1 1 1 1 1 1 1 1 1 1

of house price shocks. In the network terminology, these regions are the hub-centralities
(see, Benzi et al., 2013). The network structures for the two sub-periods are presented in
Figure 7. The figure shows the explicit nature and degree to which the regional house price
volatilities are temporarily dependent on one another. For example, it indicates a direct
temporal dependence of house price volatilities in Nord-Brabant on Noord-Holland between
1995Q1 and 2005Q2 but not during the period 2005Q3–2016Q1. As with Figure 5, Figure 7
similarly reveals that there is heavier dependency between the regional house prices before
2005 than it was afterwards. Again, this may indicate the shift in the developments of Dutch
house prices.

To determine the hub-centrality, we use the Katz measure (Katz, 1953). The Katz mea-
sure scores the centrality of a region by considering its direct and indirect interdependences
with other regions. Table 3 presents the centralities and the ranks associated with the net-
work structure in Figure 7 for each region. The table indicates Noord-Holland as the most
central during the period 1995Q1–2015Q2, while Drenthe ranks the most central for the sub-
period 2005Q3–2016Q1. As one of the largest economic regions (mainly due to influence of
the national capital, Amsterdam), it is not surprising that Noord-Holland is central in the
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Figure 7: Network diagrams showing the temporal dependence between house price volatilities in the
12 Dutch regional markets during (6a) 1995Q1 – 2005Q2, (6b) 2005Q3 – 2016Q1.
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The sizes of the nodes are proportional to the degrees (number of other regions to which the specified region
at the node is connected to). This graph is produced with the R program.

temporal house price diffusion pattern. Earlier studies (e.g. Holly et al., 2011; Giussani and
Hadjimatheou, 1991) similarly found that house prices diffusion in the UK exists from the
economic hub, London. On the other hand, the result of Table 3 shows that economically
smaller regions such as Drenthe may equally be pivotal in diffusion of house prices during cer-
tain periods. Although it is unclear why smaller regions will be that central, suburbanisation
and recent trend of urban to rural migration of certain class of people in the Netherlands,
majority who are seniors, may play some role (see de Jong et al., 2016; Accetturo et al., 2014;
Van Ommeren et al., 1999).

The network distance in Table 3 may be used to further examine the diffusion dynamics of
temporal house price volatilities from the central regions. The network distance is by definition
the length of the shortest path between two nodes in the network. A network distance of 1
denotes a direct interdependence, while a distance of 2 indicates the interdependence between
two nodes that is mediated by another node. In tandem with this description, the results of
Table 3 may be interpreted to mean that, temporal house price volatility from Noord-Holland
in the period 1995Q1–2005Q2 had a direct causal relationship with the volatility of house
prices in the other regions, except Friesland and Zeeland where this was mediated. Similarly,
we find that temporal causal relationships exist between house price volatility in Drenthe and
the rest of the regions during the period 2005Q3–2016Q1, except Zeeland for which this was
mediated.
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Table 3: Hub centrality, rank and distance associated with the network for the sub-periods.

1995Q1 – 2005Q2 2005Q3 – 2016Q1
Centrality Rank Distance Centrality Rank Distance

Drenthe 54.55 12 1 23.65 1 0
Flevoland 212.72 3 1 1.00 12 1
Friesland 139.46 9 2 1.78 9 1
Gelderland 136.25 10 1 1.66 10 1
Groningen 163.18 6 1 17.59 2 1
Limburg 179.52 5 1 11.68 3 1
Noord-Brabant 212.98 2 1 1.80 8 1
Noord-Holland 228.85 1 0 2.96 6 1
Overijssel 122.96 11 1 5.25 5 1
Utrecht 142.55 8 1 7.18 4 1
Zeeland 151.88 7 2 1.00 11 2
Zuid-Holland 207.51 4 1 1.80 7 1

The bold values indicate the hubs.

6. Summary and concluding remarks

In an effort to revive the housing markets that have collapsed in many countries following
the 2007–2008 Global Financial Crisis (GFC), there is an ongoing research agenda that seeks
understanding into the spatio-temporal dynamics of house prices. This paper makes three
main contributions to this new research area. Firstly, the paper studied the spatio-temporal
house price dynamics in the unique context of the Netherlands, which is first of its kind.
Here, the paper specifically asked if there is temporal spatial dependence of house prices in
the Netherlands. It then investigated the diffusion pattern and identified the specific regions
where temporal house price volatilities are likely to spread.

For the second contribution, the paper demonstrated the usefulness of graphical and
network techniques in analysing the spatio-temporal house price dynamics. Particularly, the
paper adopted the newly proposed Bayesian graphical vector autoregression (BG-VAR) model
which is in general more efficient in identifying dependence patterns between multiple variables
than the traditional concept of Granger Causality (see Ahelegbey et al., 2016a). As a third
contribution, the paper proposed a simple data driven techniques to identify the regional
housing sub-market where diffusion of temporal house price volatilities may predominately
start. This approach deviates from previous studies which assumed a priori some “bigger
cities” as most central in investigating the house price diffusion process (e.g. Holly et al.,
2011). The potential selection bias is avoided in our approach because the central region can
be easily inferred from the network using statistical measures for the centrality.

In the empirical analysis, the paper used temporal volatilities constructed from quarterly
house price indexes for owner-occupied dwelling between 1995Q1 and 2016Q1. The results,
based on the BG-VAR model and various network statistics, support a temporal dependence
and diffusion of house prices in the Netherlands. We also observed that the degree of temporal
interdependence varies over time. Especially, we found that the Dutch regional house prices
were highly interdependent between 1995 and 2005. After 2005, the degree of interdependence
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weakened until 2008 and again increased from 2008 to 2016 (Figure 5). We performed formal
empirical break tests, which suggest that a structural shift in the temporal dependence actu-
ally exists at 2005Q2 (see Figure 6). The break may reflect some experts’ believe of Dutch
housing investments shifting to more speculative activities which also precipitated the severe
decline of house prices after 2008 (see Xu-Doeve, 2010; Aalbers, 2009a).

Studying in more detail the resulting sub-periods 1995Q1–2005Q2 and 2005Q3–2016Q1,
we identified Noord-Holland and Drenthe as the respective regional housing markets that are
most central in a temporal diffusion of house price volatility. One key lesson from our findings
is that, contrary to the extant literature (e.g. Meen, 1999; Holly et al., 2011; Gong et al., 2016)
which posit that temporal house price volatility spread from some economically “mega city”,
there exists the possibility that the diffusion may equally start from an “economically smaller”
region (like Drenthe in the Dutch case under study here). The results of the paper also suggest
that the central region where the house price diffusion predominantly starts may change over
time depending on the economic conditions.

Previous literature also suggest that temporal house price volatility diffuse from the central
region and slowly through to the remote peripheral areas. We analyse this diffusion pattern
in this paper with the network distance. The network distance yields literally the number of
regions to which temporal house price volatilities may diffuse having started from the central
region. This however augments the graphical aids provided by the results of the BG-VAR
detailed in the main text. For the Netherlands, we identified that the diffusion trajectory is
limited to at most 2 regions, following a maximum network distance of 2 in the respective
sub-periods studied.

In sum, the BG-VAR provides an effective approach for analysing the complex spatial
interactions between the regional house prices. It builds on the traditional VAR model by
adopting an efficient identification strategy which avoids estimation of the structural param-
eters. The method also could easily distinguish the direct and indirect interaction between
spatial variables as discussed by LeSage and Pace (2009). By transforming the conventional
spatial (autoregressive) models into the structural VAR framework, the BG-VAR may equally
be applicable. Furthermore, because the method avoids estimation of the structural parame-
ters, the BG-VAR promises a better approach to avoid the ad-hoc and mis-specification of the
spatial weighting matrix inherent in most spatial analysis (see e.g. Gibbons and Overman,
2012; Pinkse and Slade, 2010). We leave this however for further investigation and future
research.
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Appendix A. Sampling Network Structure

The sampling of the graph structure in this paper follows the procedure described by Aheleg-
bey et al. (2016b). The method is summarised here for completeness. First, for a given lag
order p, the initialisation of the Markov chain Monte Carlo (MCMC) is ran in two steps.

(i) Set G0 to n × np null matrix. This is the case when each equation has no predictor(s).
(ii) For each equation i = 1, . . . , n; test each Xj ∈ X, j = 1, . . . , np as a potential predictor

of Yi. If Pr(Yi|Xj , p) > Pr(Yi|p), then set G0
i,j = 1, otherwise G0

i,j = 0.

These steps provide a good starting point for implementing the algorithm for sampling the
network structure. The authors suggest to use the Gibbs sampling algorithm which proceeds
at each m-th iteration as follows:

(i) Denote with G(m−1), the current network matrix and find π
(m−1)
i , the set of indexes of

the non-zero elements of the i-th row of G(m−1).

(ii) Find X
(m−1)
πi , the vector of elements in X whose indexes corresponds to π

(m−1)
i .

(iii) Draw an index k from the set of indexes of possible predictors, say Xk ∈ X.

(iv) Set G∗ = G(m−1) and add/remove edge between Yi and Xk, i.e., G
(∗)
ik = 1 − G

(m−1)
ik .

(v) Find π
(∗)
i , the set of indexes of the non-zero elements of the i-th row of G(∗) and X

(∗)
πi ,

the vector of elements in X whose indexes corresponds to π
(∗)
i .

(vi) Compute Pr(Yi|X(m−1)
πi , p) and Pr(Yi|X(∗)

πi |p), and Rα = Pr(Yi|X(∗)
πi , p)

Pr(Yi|X(m−1)
πi , p)

.

(vii) Sample u ∼ U[0,1] from a uniform distribution. If u < min{1, Rα}, set G(m) = G(∗),
otherwise set G(m) = G(m−1).

The above steps are implemented for a total of M iterations and averaged over the sampled
graphs. The posterior probability of an edge is then estimated by êij = 1

M

∑M
m=1 G

(m)
ij , where

G
(m)
ij is the edge from Xj,t to Yi,t in the network matrix G at the m-th iteration. See Ahelegbey

et al. (2016a) for details on the convergence diagnostics of the MCMC chain. For simplicity,
we estimate Ĝij such that Ĝij = 1, if êij > 0.5, and zero otherwise.

We construct a temporal network structure by transforming the estimate matrix Ĝ to an
adjacency (square binary) matrx of a directed graph. Following the labeling of our network
matrix as shown in Figure 1, the edges in the adjacency matrix indicate a direct link from a
column label to a row label. For example Aij = 1 means Yj → Yi. Let A be an n × n null
matrix. We construct the adjacency matrix following the steps below.

(i) For i , j = 1, . . . , n, denote with yj , the set of indexes of Yj,t−1, . . . , Yj,t−p ∈ Xt

(ii) Find Vi,yj = Ĝi,vj , the vector of edges on the i-th row and the yj columns of Ĝ

(iii) If
∑

Vi,yj , 0 then set Aij = 1, otherwise Aij = 0

The main diagonal of A are therefore represented by zeros. The above is similar to testing,
H0 : B1,ij = . . . = Bp,ij = 0 against HA : Not H0, ∀i, j = {1, . . . , n}, i , j.
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