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SUMMARY
This paper proposes a Bayesian, graph-based approach to identification in vector autoregressive
(VAR) models. In our Bayesian graphical VAR (BGVAR) model, the contemporaneous and tem-
poral causal structures of the structural VAR model are represented by two different graphs. We
also provide an efficient Markov chain Monte Carlo algorithm to estimate jointly the two causal
structures and the parameters of the reduced-form VAR model. The BGVAR approach is shown
to be quite effective in dealing with model identification and selection in multivariate time series of
moderate dimension, as those considered in the economic literature. In the macroeconomic appli-
cation the BGVAR identifies the relevant structural relationships among 20 US economic variables,
thus providing a useful tool for policy analysis. The financial application contributes to the recent
econometric literature on financial interconnectedness. The BGVAR approach provides evidence of
a strong unidirectional linkage from financial to non-financial super-sectors during the 2007-2009
financial crisis and a strong bidirectional linkage between the two sectors during the 2010-2013
European sovereign debt crisis.

Keywords: Bayesian Graphical Models, Granger Causality, Markov Chain Monte Carlo,
Structural VAR, Vector Autoregression.

1. INTRODUCTION

Since the seminal paper of Sims (1980), vector autoregressive (VAR) models have been

widely used to estimate and forecast multivariate time series in macroeconomics. Despite the

success of the VAR model, two of the challenges of econometricians are the problems of over-

parametrization and identification of the VAR models. Various solutions to these problems

have been discussed and criticized in many papers (e.g., Cooley and Leroy, 1985, Bernanke,

1986, King et al., 1991, Rubio-Ramirez et al., 2010, Doan et al., 1984). In particular, for

structural VAR (SVAR) model identification, the standard approach relies on shocks for

the dynamic analysis of the model through impulse response functions. To achieve this,
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some researchers impose structures provided by a specific economic model in which case the

empirical results will be only as credible as the underlying theory (Kilian, 2013). Moreover,

in many cases, there are not enough credible exclusion restrictions to achieve identification.

In this paper, we propose an identification approach for SVAR models based on a graph

representation of the conditional independence among variables (see Pearl, 1988, Lauritzen

and Wermuth, 1989, Whittaker, 1990, Wermuth and Lauritzen, 1990). The graph inference

discussed in this paper is in the spirit of Corander and Villani (2006), but differs substantially

from it. A first relevant difference is that our approach considers acyclic graphs, whereas in

Corander and Villani (2006), the dependence structures are not acyclic and cannot be used

to achieve identification. A second major difference is that we propose a joint inference of the

graphs and the parameters, whereas they focus only on the causal structures. Furthermore,

Corander and Villani (2006) apply a fractional Bayes approach, which is a questionable

methodology for a variety of models (e.g., see Berger and Pericchi, 1998, de Santis and

Spezzaferri, 1999). Finally, it is not at all clear in general, how one should define the

factorization of the likelihood, or which fractions should be used for each component. Thus,

in this paper we follow Madigan and York (1995) and Grzegorczyk and Husmeier (2008)

and apply an efficient MCMC algorithm.

The SSVS of George et al. (2008) is, perhaps, the closest approach to the model inference

discussed in this paper. The authors use two separate sets of restrictions for the contempo-

raneous and lagged interactions, as in our BGVAR model. However, the SSVS procedure

and the BGVAR model differ substantially in the way the restrictions are introduced. The

BGVAR handles the restrictions directly on the structural model, whereas the SSVS deals

with the reduced-form model. This represents one of the most important contributions of

our paper, since we are able to solve the identification problem of the SVAR using the

natural interpretation of the graph structures and the acyclic constraints on the contempo-

raneous relationships. Consequently, the BGVAR model provides a convenient framework

for policy analysis, as the contemporaneous graph reveals the presence and direction of the

effects of policy actions. Moreover, the BGVAR model allows the researcher to learn about

relationships among variables in the absence of indications from economic theory.

Another major difference between the BGVAR model and the SSVS regards the algo-
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rithm used for the posterior approximation. The algorithm proposed in George et al. (2008)

for the SSVS inference is a single-move Gibbs sampler, whereas our MCMC sampler for

BGVAR is a collapsed and multi-move Gibbs sampler that has been proven to be more

efficient both in the MCMC literature (e.g., see Liu, 1994, Roberts and Sahu, 1997) and in

our simulation comparisons.

We provide some applications of our approach to well-known data sets studied in macroe-

conomics and finance. The macroeconomic application focuses on modeling and forecasting

US-macroeconomic time series following the moderate-dimension VAR approach in Stock

and Watson (2008) and Koop (2013). Our BGVAR approach provides a data-driven identi-

fication of the structural relationships among economic variables, thus offering a useful tool

for policy analysis. The financial application focuses on the empirical investigation of the

linkages among economic sectors in the Euro-zone. The use of graphical models in financial

time series analysis have been investigated in Carvalho and West (2007) and Carvalho et al.

(2007), and receives a lot of attention in the recent years (e.g., see Billio et al., 2012, Diebold

and Yilmaz, 2014, 2015). In our application, the BGVAR produces a better representation

of the linkages between the financial and non-financial super-sectors than the Granger-causal

(GC) inference approach previously used in the literature.

The paper is organized as follows: Section 2 presents BGVAR models. Section 3 dis-

cusses the model inference scheme. Section 4 provides an illustration of BGVAR on synthetic

datasets, and a comparison with alternative approaches. Section 5 and 6 present macroeco-

nomic and financial applications, respectively.

2. BAYESIAN GRAPHICAL VECTOR AUTOREGRESSION

In a SVAR model, the dynamics of the variable of interest Yt is

Yt = B0Yt +
p∑
i=1

BiYt−i +
p∑
i=1

CiZt−i + εt, (1)

t = 1, . . . , T , where Yt is ny vector of response variables, Zt is nz vector of predictor variables,

εt is ny vector of structural error terms, independent and identically normal, i.e., εt
iid∼
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N (0,Σε), p is the maximum lag order; B0 is ny × ny matrix of structural contemporaneous

coefficients, with zero diagonals; Bi and Ci, with 1 ≤ i ≤ p, are ny×ny and ny×nz matrices

of structural coefficients, respectively.

The identification problem of SVAR is that, (1) is not directly estimable from which to

derive the ‘true’ model parameters. This is because, a set of values exists for the coefficient

matrices such that the likelihood function takes the same value at all points of this set. Thus,

the true values for the coefficient matrices cannot be directly estimated from the data.

2.1 Over-Parametrized VAR Models

A general approach to model and forecast dynamics in multivariate time series is the reduced-

form VAR model. Let Xt = (Yt, Zt)′ be a (n = ny + nz)-dimensional vector of observed

variables at time t, and B∗i = (Bi, Ci), 1 ≤ i ≤ p, the ny×n matrices of unknown coefficients

for the response and predictor variables. The reduced form of (1) can be expressed as

Yt =
p∑
i=1

AiXt−i +A−1
0 εt (2)

for t = 1, . . . , T , where A0 = (Iny − B0) is a ny × ny matrix, Iny is the ny-dimensional

identity matrix, Ai = A−1
0 B∗i , 1 ≤ i ≤ p are the reduced-form lag coefficient matrices such

that Ai, 1 ≤ i ≤ p, is of dimension ny × n and ut = A−1
0 εt is a ny-dimensional vector

of reduced-form errors independent and identically normal, ut
iid∼ N (0,Σu). Alternatively,

equation (2) can be rewritten in a matrix form as:

Y = X ′A′+ + U (3)

where Y is stacked Y ′p+1, . . . , Y
′
T−p, such that Y is of dimension (T − p) × ny, X ′ is

stacked X ′p+1−s, . . . , X
′
T−s, 1 ≤ s ≤ p, such that X ′ is of dimension (T − p) × np, A+ =

(A1, A2, . . . , Ap) is of dimension ny × np and U is stacked u′p+1, . . . , u
′
T−p, such that U is

of dimension (T − p)× ny.

Estimating (3) with a full, lagged dependence structure across equations and a high lag

order may result in a very large number of parameters relative to the number of data points
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at hand. This phenomenon is referred to as over-parametrization and could lead to a loss of

degrees of freedom that affects inference and the reliability of predictions.

To deal with an over-parametrized VAR model, several approaches have been discussed in

the econometric literature. Early works by Doan et al. (1984) proposed a prior distribution

(e.g., the Minnesota prior) to shrink the coefficients toward a random walk model. George

et al. (2008) proposed the SSVS prior distribution to identify the relevant variables for

predicting the response variables. The SSVS incorporates a latent variable, γ, which is an

indicator matrix with elements interpreted as and indicator of whether to include or exclude

a variable from the model.

Although the Minnesota prior distribution has proved efficient in handling over-parametrized

VAR models, its effectiveness is limited (see e.g., McNees, 1986, Kadiyala and Karlsson, 1993,

George et al., 2008). The SSVS has also proved efficient in selecting relevant variables in

over-parameterized VAR models. However, the estimated SSVS coefficient matrix often con-

sists of elements with values significantly different from zero, whereas the rest concentrate

around zero but are not ignored. Parsimony is, therefore, not guaranteed.

2.2 Identification of Structural Dynamics

The reduced-form does not offer much information regarding the structural dynamics of

the VAR model. The challenging problem of econometricians relates to learning about the

structural dynamics from the reduced-form estimates. A standard approach to this problem

relies on the role of shocks for the dynamics of the model. This approach is done through

impulse response functions. Consider the covariance matrix of the errors related to (3)

Σu = E(A−1
0 εtε

′
t(A−1

0 )′) = A−1
0 Σε(A−1

0 )′ (4)

then, the identification problem relies on estimating A0 and Σε. The standard SVAR,

however, assumes the covariance matrix of the structural errors is diagonal (normalized),

Σε = Iny . This means that the main challenge lies in estimating A0 or B0. Thus, in

the SVAR framework, B0 is interpreted as a contemporaneous relationship among shocks

rather than the observed variables. To have an identifiable model, some researchers impose

Copyright © 2014 John Wiley & Sons, Ltd.
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the structure provided by a specific economic model, although in that case, the empirical

results will be only as credible as the underlying theory (Kilian (2013)). Moreover, in many

cases, there are not enough credible exclusion restrictions to achieve identification. Various

approaches to this problem have been discussed and criticized (e.g., Cooley and Leroy, 1985,

Bernanke, 1986, King et al., 1991, Rubio-Ramirez et al., 2010, Kilian, 2013).

The inability to provide convincing and enough credible exclusion restrictions and to

achieve identification has stimulated interest in alternative identification methods (Kilian,

2013). Swanson and Granger (1997) argued that contemporaneous correlation among errors

is not appropriate for the impulse response studies. Stock and Watson (2001) also pointed

out that the identification problem relates to differentiating between correlation and causa-

tion. As an alternative to imposing restrictions on B0, Demiralp and Hoover (2003) showed

that the application of graph-theoretic methods and stochastic search algorithms can reduce

or even eliminate the need for prior information or to appeal to restrictions from an economic

theory when identifying the causal order of structural models. In their SSVS prior, George

et al. (2008) also incorporate a latent variable, ω, as an indicator matrix to learn about the

contemporaneous correlations among shocks. Identification of the structural dynamics using

shocks is subject to the specification of the reduced-form residuals or the contemporaneous

covariance matrix of the residuals alone. Although reliance on shocks for the structural

dynamics proves useful, it is limited in some ways. A possible limitation is based on the as-

sumption that the VAR is correctly estimated. Even the variable selection of the SSVS does

not totally ignore irrelevant variables. Therefore, misspecification of the model can affect

the estimation of the reduced-form error covariance matrix that may affect the relationship

identification. Moreover, policy actions are not necessarily shocks and, therefore, the idea

of structural analysis from the assessment of reduced-form residuals may affect conclusions

on dependence among the response variables.

2.3 Graphical Models and Structural VAR

Graphical models are statistical models that summarize the marginal and conditional in-

dependences among random variables by means of graphs (Brillinger, 1996). Specifically,
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a graph is characterized by nodes and edges, where the nodes represent variables and the

edges depict the nature of the interaction among variables. For instance, the relationship

P → Q means the variable P causes the variable Q. The node P from which a directed

edge originates is the parent (explanatory variable), and its end Q is the child (response

variable).

One of the appealing features of the graphical approach to multivariate time series analy-

sis is the possibility of giving a graphical representation of the logical implications of models

as well as the conditional independence relationships. As an example, assume P → Q→ R,

then P and R would be probabilistically dependent in the absence of Q; but conditional

on Q, they would be independent. Such kind of dependence is common in structural mod-

els, and a graphical approach provides a simple framework to represent and estimate these

relationships. In this paper, we employ directed graphs, which present an unambiguous

direction of causation among the variables. Using such class of models provides information

on the structural dynamics among the variables by means of the directed edges.

Let Xt = (X1
t , X

2
t , . . . , X

n
t ), where Xi

t is a realization of the i-th variable at time t.

Equation (1) can be represented in the form of a graphical model with a one-to-one corre-

spondence between the coefficient matrices and a directed acyclic graph (DAG):

Xj
t−s → Xi

t ⇐⇒ B∗s,ij 6= 0 0 ≤ s ≤ p (5)

where B∗0 = B0, for s = 0, and B∗s = (Bs, Cs), for 1 ≤ s ≤ p. By considering the structural

dynamics as a causal dependence among variables, the relationship in (5) for 1 ≤ s ≤ p

can be referred to as lagged (temporal) dependence, and as contemporaneous dependence

for s = 0. Temporal dependence is based on the time flow and relies on the assumption

that causes precede effects in time. Contemporaneous causal relationships are based on

distinguishing between instantaneous causation from correlations.

Let X = (X1, . . . , XT ) be a time series of n variables and length T . The joint distribution

of the variables in X can be described by a graphical model (G, θ) ∈ {G,Θ}, where G is

a graph representing the structural relationships, θ is a vector of structural parameters, G

is the space of the graphs, and Θ is the parameter space. We represent G ∈ G as a DAG
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composed of directed edges defining the contemporaneous and temporal dependence among

the variables, θ ∈ Θ is the structural parameters, θ ≡ {µ,Σx} ≡ {µ,B∗,Σε}, where µ is

n vector of means of Xt = (X1
t , . . . , X

n
t ), ∀t; Σx is the covariance matrix of the observed

time series that decomposes into {B∗,Σε}, where B∗ = (B0, B1, . . . , Bp, C1, . . . , Cp), is the

matrix of structural coefficients and Σε is the structural error covariance matrix. Without

loss of generality, we assume the data is generated by a stationary process and that µ = 0.

2.4 Bayesian Graphical VAR Models

Following the representation in equation (5), we define:

B∗s = (Gs ◦ Φs), 0 ≤ s ≤ p (6)

where for s = 0, B∗0 = B0 is ny ×ny structural coefficients of contemporaneous dependence,

G0 is ny × ny, binary connectivity matrix and Φ0 is a ny × ny matrix of coefficients. For

1 ≤ s ≤ p, B∗s = (Bs, Cs) is a ny × (ny + nz) matrix of structural coefficients of temporal

dependence, Gs is a ny × (ny + nz) binary connectivity matrix and Φs is a ny × (ny + nz)

matrix of coefficients. The operator (◦) is the element-by-element Hadamard’s product

(i.e., B∗s,ij = Gs,ij Φs,ij). We refer to G0 as the connectivity matrix of contemporaneous

dependence and toGs, 1 ≤ s ≤ p, as the matrix of the temporal dependence. Elements inGs,

0 ≤ s ≤ p, are indicators such that Gs,ij = 1 ⇐⇒ Xj
t−s → Xi

t and 0 otherwise. Elements

in Φs, 0 ≤ s ≤ p, are structural regression coefficients, such that Φs,ij ∈ R represents the

value of the effect of Xj
t−s on Xi

t . There is a one-to-one correspondence between Φs and B∗s

conditionally on Gs:

B∗s,ij =


Φs,ij if Gs,ij = 1

0 if Gs,ij = 0
(7)

Based on our notation in (6), equation (1) can be expressed as:

Yt = (G0 ◦ Φ0)Yt +
p∑
i=1

(Gi ◦ Φi)Xt−1 + εt (8)

Copyright © 2014 John Wiley & Sons, Ltd.



BAYESIAN GRAPHICAL MODELS FOR STRUCTURAL VAR PROCESSES 9

where (Gj ◦ Φj) are the graphical model structural coefficient matrices whose non-zero

elements describe the value associated with the contemporaneous and temporal dependences,

respectively. We assume the prior distribution for B∗ is normal, i.e., B∗ ∼ N (B∗, V B).

Estimating (8) involves specification of the lag order, p, inference of the causal structure,

G = (G0, G1, . . . , Gp), and the set of parameters, {B∗0 , B∗1 , . . . , B∗p ,Σε} that are estimated

from Σx. In this paper, specification of p is based on testing the appropriate lag order using

the sample data and the BIC. Following Madigan and York (1995), we assume that the prior

on G is uniform, P (G) ∝ 1, and that given a complete graph, the prior on Ωx = Σ−1
x is a

conjugate Wishart. See APPENDIX A for details.

The objective of this paper is twofold. First, we provide insight into the structural VAR

dynamics by inferring G from the observed time series. This step is necessary to handle the

identification issues of SVAR. To achieve this, we follow the conventional Bayesian graphical

model approach of integrating the likelihood with respect to the unknown random parame-

ters θ and obtaining the marginal likelihood function over the graphs P (X|G). See Hecker-

man and Geiger (1994) for details on the marginal likelihood of Gaussian graphical models.

The second objective is to contribute to solving the problem of over-parameterization in

VAR models. To achieve this, we incorporate the inferred structural relationships to select

the relevant variables to estimate a reduced-form VAR. Following (2), (3), (6), and (8), the

reduced-form parameters of the standard VAR model can be mapped to that of the Bayesian

graphical model as follows:

A0 = Iny − (G0 ◦ Φ0), Ai = (Iny −G0 ◦ Φ0)−1(Gi ◦ Φi), i = 1, . . . , p (9)

where A0 is ny × ny coefficient matrix conditional on G0, ut is ny vector of reduced-form

error terms, and A+ is a stacked reduced-form coefficient matrix, B∗+ is a stacked form

of B∗1 , . . . , B∗p . The connectivity matrix associated with B∗+ can be expressed as G+, a

stacked form of G1, . . . , Gp, and that of A+ can be represented as G∗+ = (Iny − G0)−1G+,

such that G+ and G∗+ are of dimension ny × np. We notice that Σu = (Iny − G0 ◦

Φ0)−1Σε(Iny −G0 ◦ Φ0)−1′. Following the general concept of the SVAR model, we assume

the structural errors are a priori independent, which means Σε is a diagonal matrix. By nor-
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malizing Σε to an identity matrix, the identification problem reduces to estimating B∗0 whose

structure of dependence is given by G0. The inference of G0 from the observed time series

offers insight into the contemporaneous dependence of the response variables. Based on the

assumption that B∗0 follows a normal density, we can estimate the signs of the contempora-

neous relationships from the partial correlations of the observed time series. The inference

on the sign, together with the inferred contemporaneous structure, G0, offers some insight

into the presence and causal directions of policy actions on key variables of the system. We

shall notice that following the Markov equivalence principle of contemporaneous directed

graphs (see Andersson et al. (1997) two or more graphs with similar correlation structures,

but different edge directions, may have the same marginal likelihood. As suggested in An-

dersson et al. (1997), the modeller should focus his attention on the class of essential graphs

rather than DAGs. In this case, our graphical approach is not able to provide a unique

solution to the SVAR identification problem and the researcher should choose between one

of the graphs in the equivalent classes, by using other arguments, from economic theory, or

sources of informations. In estimating A+, non-zero (zero) entries in G∗+ can be interpreted

as indicators of relevant (not-relevant) variables to be included (excluded) in (from) the

model. These zero entries restrictions allow us to avoid estimating all the coefficients in the

VAR model. It presents an automatic way to achieve dimensionality reduction and variable

selection. An advantage of this approach to VAR inference is that by combining G0 and G+

to obtain G∗+, we are able to identify relevant variables with a causal interpretation. The

prior distributions and the posterior computation for the parameters of our reduced-form

VAR are discussed in Section 3.

2.5 Statistical Inference on Graphical VAR Models

Statistical inference on graphical models can be a challenging goal as shown in the following.

Let Yt and Zt be the ny and nz vectors of the response and predictor variables of the SVAR,

respectively. The structural dynamics can be decomposed as contemporaneous and temporal

dependences. For directed graphs, the number of possible structures of the temporal depen-

dence, F (p, ny, n), is a function of p, the lag order, ny, the number of response variables,

Copyright © 2014 John Wiley & Sons, Ltd.
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and n = ny + nz, the total number of explanatory variables, while the contemporaneous

dependence, H(ny), is a recursive function of only ny (Robinson, 1977):

F (p, ny, n) = 2pnyn, H(ny) =
ny∑
i=1

(−1)i+1
(
ny
i

)
2i(ny−i) H(ny − i)

where
(
ny
i

)
is the binomial coefficient and H(0) = 1, H(1) = 1. Following Friedman et al.

(1998), we represent the contemporaneous and temporal dependences separately because

the learning processes of the two structures are distinct. Based on this assumption, the

number of possible structures for a SVAR of order p, with ny response variables, and nz

predictor variables, can be expressed as G(p, ny, n) = H(ny)F (p, ny, n). Figure 1 shows that

0 5 10 15 20
10

0

10
100

10
200

10
300

 number of nodes (n
y
 = n, n

z
 = 0) 

 l
o
g
 n

u
m

b
e
r 

o
f 
s
tr

u
c
tu

re
s

 

 

p = 0

p = 1

p = 2

p = 3

Figure 1: Logarithmic estimates of the number of possible structures for a SVAR model of
order p, 0 ≤ p ≤ 3, with the number of response variables ny equal to the number of nodes
n, (0 ≤ n ≤ 20), and no predictors (nz = 0).

the number of possible structures increases super-exponentially with the number of nodes,

(n = ny and nz = 0), and the lag order (different lines).

This challenge has been discussed extensively as a model determination problem (see

Chickering et al., 2004, Corander and Villani, 2006). However, we follow the Bayesian

paradigm of Madigan and York (1995), Giudici and Green (1999), and Dawid and Lauritzen

(2001), that allows us to take into account structure and parameter uncertainty.

3. EFFICIENT MODEL INFERENCE SCHEME

Copyright © 2014 John Wiley & Sons, Ltd.
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Under the Bayesian framework of Geiger and Heckerman (1999), the structural parame-

ters can be integrated out analytically to obtain a marginal likelihood function over graphs.

This allows us to apply an efficient Gibbs sampling algorithm (e.g., Casella and Robert,

2004) to sample the graph structure and the model parameters in blocks (e.g., Roberts and

Sahu, 1997). At the iteration t, the resulting collapsed Gibbs sampler (Liu, 1994) consists

of the following steps:

1. Sample the structural relationships G(t)
0 and G

(t)
+ from the full conditional distribu-

tion P (G0, G+|X ), by using a Metropolis-Hastings (MH) algorithm with random walk

proposal distribution Q(G(t)
0 , G

(t)
+ |X , G

(t−1)
0 , G

(t−1)
+ )

2. Sample the reduced-form parameters A(t)
+ and Σ(t)

u directly from the full conditional

distribution P (A+,Σu|G(t)
0 , G

(t)
+ ,X )

Sampling the structural relationships, (G0, G+), from the joint distribution is computa-

tionally intensive, since the number of possible structures, as shown in Figure 1, increases

super-exponentially with the number of nodes and lags. In addition, the acyclic constraint

on the contemporaneous structure requires a verification scheme, which is not required in

the temporal structure and can negatively affect the mixing of the MCMC.

Following Friedman et al. (1998), we collapse further the Gibbs sampler, drawing the the

temporal structure, G+ and G0, from their approximate marginal posterior distributions.

Thus, the first step of the Gibbs sampler is:

1.1 Sample G(t)
0 from P (G0|X ) by a random walk MH

1.2 Sample G(t)
+ from P (G+|X ) by a random walk MH

We will refer to G+ as the multivariate autoregressive (MAR) structure and to G0 as the

multivariate instantaneous (MIN) structure. To sample the graph structures, we use a

modified and more efficient version of the MCMC algorithm proposed by (Madigan and

York, 1995, Grzegorczyk et al., 2010). See APPENDIX B for further details of our MCMC

scheme. In the following we describe the different steps of the Gibbs sampler.

Copyright © 2014 John Wiley & Sons, Ltd.
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3.1 Sampling the MAR Structure

The likelihood of the MAR structure is given by the probability density function of the

normal distribution N (0,Σx,+), where Σx,+ is the temporal covariance matrix. Specification

of the maximum lag order, p, is based on the BIC. Based on the specification of p, we estimate

G+ = (G1, . . . , Gp), a single structure of dimension ny×np, that comprises all the temporal

structures stacked together.

The sampling approach is such that at each iteration, we randomly draw a candidate

explanatory variable for each of the response variables and either add or delete an edge be-

tween them and account for potential interactions among the explanatory variables. Since

edges flow only forward and not backward, edge addition or removal results in an acyclic

graph. The probability of selecting a node is strictly positive for all nodes, therefore, this

guarantees irreducibility, since it is possible to reach other configurations in finite time re-

gardless of the present state. Furthermore, with a positive probability, the chain can remain

in the current state, which satisfies aperiodicity. Hence, this proposal scheme guarantees

the ergodicity of the MCMC chain. See APPENDIX B for details.

3.2 Sampling the MIN Structure

To learn the MIN structure from the observed time series, we assume the stationarity of the

VAR model and denote with N (0,Σy,0), the distribution of the contemporaneous variables,

with Σy,0 as the covariance matrix. We allow for acyclic constraints to identify the causal

directions in the system and to produce an identifiable model. To sample acyclic graphs,

we modify the concept of Giudici and Castelo (2003) by exploiting the following condition.

Let Xi
t and Xj

t be two nodes in a MIN structure. Xj
t → Xi

t is legal if and only if the

intersection between the descendants of Xi
t and the ancestors of Xj

t is empty. For example,

assume P → . . . → Q → . . . → R, then P and Q are ancestors of R, and Q and R are

descendants of P . We see that adding an edge R → P is illegal since it produces a cycle.

Our proposal of a directed edge Xj
t → Xi

t can be implemented in two steps. First, we

verify if there is a directed edge from Xi
t to Xj

t . If such relationship exists, we remove the

link. Secondly, we add the directed edge Xj
t → Xi

t only if a directed path from Xi
t to Xj

t ,

Copyright © 2014 John Wiley & Sons, Ltd.
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(Xi
t → . . . → Xj

t ) does not exist. This can be verified using the reachability matrix (see

e.g., Wasserman, 1994). Alternatively, the second step can be handled by adding Xj
t → Xi

t

and testing whether the resulting structure is a directed acyclic graph.

3.3 Estimating Reduced-Form Graphical VAR

After sampling the structures (G0, G+) from the observed data, we proceed to sample the

parameter of the associated reduced-form VAR model. Following the expression in (9), we

notice that the graph structure associated with the reduced-form coefficients matrix A+

is given by G∗+ = (Iny − G0)−1G+. Thus, we incorporate the MIN and MAR structures

to obtain the graph structure of the reduced-form VAR (G∗+). Clearly, if G0 is empty

(no contemporaneous dependencies), then the reduced-form coincides with the structural

dynamics. We select the non-zero elements of G∗+, to indicate the relevant variables of the

model. To estimate (A+,Σu), we consider two typical prior distributions extensively applied

in the Bayesian VAR literature, i.e., the Minnesota (MP) and the normal-Wishart (NW)

prior.

Minnesota Prior

The MP prior was proposed by Doan et al. (1984) to shrink the VAR model toward a random

walk model. Here, the diagonal elements of A1 were shrunk toward one and the remaining

coefficients in A+ = (A1, . . . , Ap) toward zero. The basic idea is that more recent lags

provide more reliable information than distant ones and that one’s own lags should explain

more of the variation of a given variable than the lags of the other variables. The prior

expectation, E[(Ak)ij ], is equal to δ if j = i and k = 1, and takes value 0 otherwise. The

variance of the coefficient matrices is V[(Ak)ij ] = ασ2
i k
−2σ−2

j . The coefficients in A+ are

assumed to be a priori independent and normally distributed, A+ ∼ N (A, V ). Conditional

on G∗+, we estimate the posterior mean (Ai) and variance (V i) of the coefficient of relevant

variables in each equation by Ai = V i(V −1
i Ai + σ−2

i W ′iY
i) and V i = (V −1

i + σ−2
i W ′iWi)−1,

where Ai and V i, i = 1, . . . , ny, are the prior mean and variance of the relevant variables

in each equation, and Wi ∈ X ′ is the set of relevant variables that influence the response
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variable Y i. The covariance matrix of the residuals, Σu, is assumed to be diagonal, fixed,

and known; Σu = diag(σ2
1 , . . . , σ

2
ny ). Here, σ2

i , i = 1, . . . , ny, is the estimated variance of

the residuals from a univariate autoregressive model of order p for variable Y i (see Banbura

et al., 2010, Karlsson, 2013). Following the recent literature, we set δ = 0.9 and α = 0.5.

Normal-Wishart Prior

The independent NW is the commonly used prior distribution in the estimation of seem-

ingly unrelated regression (SUR) models. This prior assumes: A+ ∼ N (A, V ) and Σ−1
u ∼

W(ν, S−1), where S is the prior sum of squares and ν is the associated degrees of free-

dom. In this application, we deviate slightly from the standard approach of estimating the

posterior mean and variance of A+ by considering coefficient updates similar to the Min-

nesota approach. Conditional on G∗+, we select the relevant variables, Wi, i = 1, . . . , ny,

of each equation by Ai = V i(V −1
i Ai + σ−2

i W ′iY
i) and V i = (V −1

i + σ−2
i W ′iWi)−1, where

σ2
i , i = 1, . . . , ny, is the variance of residuals from the posterior of Σu. The posterior of

Σ−1
u is Wishart distributed with S = S + (Y ′ − XA

′)′(Y − XA
′) and ν = ν + (T − p)

degrees of freedom. A is the posterior of A+ with dimension ny × np such that elements of

relevant variables in A store the corresponding elements of Ai, i = 1, . . . , ny, and the rest

(representing not-relevant variables) are restricted to zero.

4. SIMULATION EXPERIMENTS

We study the efficiency of our inference approach on simulated datasets generated from

a n-node graphical model. We consider the following data generating process (DGP):

Xt =
p∑
i=0

(Ik ⊗Bi)Xt−i + εt, (10)

t = 1, . . . , T , where Xt is a n-dimensional vector, p is the lag order, and Bi, i = 0, 1, 2, 3, is

the sequence of 5 × 5 coefficient matrices given in Table I. Note that k controls the size n

of the model, since n = 5k. For a more general validity of our simulation study, we consider

six different settings, which correspond to the lag order and the model dimension one can
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commonly find in the empirical applications. We set p = 1, 2, 3 in the 5-node (i.e., k = 1) and

20-node (i.e., k = 4) models. We generate T = 110 data points for each k and p, and use 100

observations for the model estimation and 10 for the out-sample forecast analysis. For each

setting, we replicate the simulation and estimation exercises 20 times, with random draws

from the DGP. All the results reported in the following are averages over the replications.

Table I: Structural coefficients of the data generating process. B0 is the contemporaneous
coefficient matrix, and B1, B2, and B3 are the temporal coefficient matrices at lag 1, 2 and
3, respectively.

(B0) (B1) (B2) (B3)
0 0 -0.8 0 0
0 0 0 0 0
0 0 0 0 0
0 0.5 0 0 -0.5
0 0 0 0 0




-0.8 0 0 0 0
0.6 0 0.5 0 0
0.7 0 -0.5 0 0
0 0 0.5 0.7 0
0 -0.6 0 0 0.6




0 0 0 0 0
0.5 0 0 0 0
0 0 0 0 -0.4

-0.6 0 0 0 0
0 0 -0.4 0 0




0 0 0 0 0
0 0 0 0 0
0 0 0 -0.4 0
0 0 0 0 0
0 0.4 0 0 0


We compare the MIN structure with the contemporaneous structure of the PC algorithm

(see APPENDIX C) and SSVS ω matrix (SSVS(ω)). See George et al. (2008) for details

on the implementation of the SSVS approach. The MAR structure is also compared with

the temporal dependence structure given by a modified conditional Granger-causal (C-GC)

inference and the SSVS γ matrix (SSVS(γ)). For this comparison, we modified the C-GC

of (Ding et al., 2006) to select significant Granger-causal variables at different lags (see

APPENDIX C). As an alternative to the C-GC the Granger causal priority (see Sims

(2010)) can be applied, which is an approach to discriminating between mediated and direct

Granger-causal effects.

We evaluate the accuracy of our estimates by comparing the BGVAR model with the

BVAR and the SSVS models. The reduced-form model is estimated by considering the

BGVAR under the Minnesota (BGV-MP) and the normal-Wishart (BGV-NW) prior dis-

tributions, and the BVAR model under the Minnesota (BV-MP) and the normal-Wishart

conjugate (BV-NW) prior distributions. The prediction accuracy of the models is evaluated

using the log-predictive score and the AIC score. See APPENDIX C for details on the graph

accuracy assessment and the model prediction accuracy evaluation.

For the small- (moderate-) dimension models, we run a total of 20,000 (40,000) Gibbs

iterations and exclude 50% burn-in samples for our BGVAR model. For the predictive model
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estimation, we run a total of 2200 Gibbs iterations with 200 burn-in samples for both BVAR

and BGVAR. Following the suggestions in George et al. (2008), we run a total of 20,000

Gibbs iterations for the SSVS and exclude 10,000 burn-in samples.

Table II: Comparing inference on the 5- and 20-node models with lag order p = 1, 2, and
3. The comparison is done in terms of accuracy of the contemporaneous structures (first
panel), accuracy of the temporal dependence structures (second panel), forecast accuracy
(third panel), and computational time (fourth panel).

Small-size (n = 5) Moderate-size (n = 20)
Scheme p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

Contemporaneous Structure Inference (Accuracy)

PC 80.00 72.00 72.00 95.75 93.75 96.25
MIN 88.00 88.00 80.00 96.75 96.25 96.25

Temporal Structure Inference (Accuracy)

C-GC 100.00 100.00 89.33 100.00 99.04 96.67
MAR 100.00 100.00 100.00 100.00 99.47 99.75

Forecast Accuracy (log predictive score)

BV-MP -47.12 -50.16 -11.96 -241.13 -256.57 -41.39
BV-NW -43.48 -45.90 4.09 -308.74 -484.03 -111.82
SSVS -42.33 -41.66 20.19 -224.77 -226.72 26.97
BGV-MP -45.55 -47.96 -13.04 -208.21 -206.61 -9.23
BGV-NW -41.14 -40.14 6.75 -221.44 -223.03 -0.13

Prediction Accuracy Adjusted (AIC)

BV-MP 144.24 200.32 173.92 1282.27 2113.13 2482.79
BV-NW 136.95 191.81 141.82 1417.48 2568.05 2623.64
SSVS 134.66 183.32 109.62 1249.55 2053.44 2346.06
BGV-MP 117.09 149.92 100.08 640.43 1087.22 1230.47
BGV-NW 108.28 134.29 60.50 666.87 1120.06 1212.26

Computational Time (in seconds)

SSVS(γ, ω) 42.26 51.38 67.46 735.38 3340.88 9587.92
BGVAR 16.09 17.04 17.47 153.24 187.54 229.01

We report in Table II the results of the comparison between the different inference

schemes. The top panel of the table shows that the MIN achieves a higher accuracy than

the PC. In both small and moderate-dimension settings, we notice that the MIN inference

achieves an accuracy above the 80%. This evidence shows that our inference of the contem-

poraneous dependence from the observed time series offers some insight into the structural

dynamic of the VAR. See also APPENDIX D for further details. The second panel of Table

II shows that both MAR and C-GC perform well at inferring the temporal dependence re-

lationships. However, we notice that MAR achieves a slightly higher accuracy than C-GC

when p = 3, in both small (5-node) and moderate (20-node) dimension models. See also
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APPENDIX D for further details. The third panel of Table II shows the forecast accuracy of

the models based on log predictive scores - sum of log predictive likelihood over the forecast

period. The log predictive score strongly favors BGVAR with normal-Wishart (Minnesota)

prior in small (moderate) dimension DGP with lag order p < 3, and favors SSVS in small and

moderate dimension DGP with lag order p = 3. When adjusted for the number of estimated

coefficients, (see the fourth panel) BGVAR (with both the Minnesota and normal-Wishart

priors) achieves a higher predictive accuracy and fits the simulated data better than BVAR

and SSVS. The bottom panel of Table II shows the computational time (average over the

different prior settings) for inference of the SSVS and the BGVAR connectivity matrices and

parameters. Since only BGVAR and SSVS are concerned with joint inference on parameters,

temporal and contemporaneous structures, the computational times for PC, C-GC and BV

are not reported. For the small dimension DGP we set 20,000 iterations for the SSVS and

the BGVAR inference. Since the number of possible structures increases super-exponentially

with the number of nodes and lags, for the moderate dimension DGP, we consider 40,000

iterations for BGVAR, and maintain 20,000 iterations for SVSS. Our results show that, in

both small- and moderate-dimension settings, the collapsed Gibbs sampler used for the BG-

VAR posterior approximation is computationally less expensive than the algorithm used for

the SSVS posterior approximation. Although we obtain similar results over different exper-

iments and settings, our limited investigations confirm the good mixing of MCMC chain for

our BGVAR model.

5. MODELING AND FORECASTING MACROECONOMIC TIME SERIES

The work by Banbura et al. (2010) has motivated a growing interest in the application

of high dimensional BVAR models to forecast macroeconomic time series. In their empir-

ical application, the authors showed that high dimensional BVAR models produce better

forecasts than the traditional (factor methods) approach. These findings were recently cor-

roborated by Koop (2013) in his study on forecasting with Bayesian VARs. According to

Banbura et al. (2010), most of the gains in forecast performance of high dimensional mod-
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els was achieved using medium VARs (n = 20). Based on this, we apply our inference to

model a moderate dimension VAR of 20 macroeconomic variables. The first objective of this

exercise is to offer an interpretations of the structural dynamics by comparing our results

with both the PC algorithm and the Granger-causal inference. Secondly, we compare the

estimated BGVAR model with both the BVAR model and the SSVS procedure, and evaluate

their predictive performance.

The dataset consists of quarterly observations, from 1959Q1 to 2008Q4, of 20 US-

macroeconomic variables which were originally used by Koop (2013). We transform the

data as in Koop (2013). See APPENDIX E for the list of series and their transformation.

The specification of the lag order (p = 1) is based on testing the appropriate lag length using

BIC. We estimate a model with the following 7 response variables: (Y ) - real gross domestic

product (GDP), (Pi) - consumer price index, (R) - Federal funds rate, (M) - money stock

M2, (C) - real personal consumption, (IP ) - industrial production index, and (U) - unem-

ployment. We consider the following 13 additional variables as predictor variables: (MP ) -

real spot market price index for all commodities, (NB) - non-borrowed reserves, (RT ) - total

reserves, (CU) - capacity utilization, (HS) - housing, (PP ) - producer price index, (PC)

- personal consumption expenditure, (HE) - real average hourly earnings, (M1) - money

stock M1, (SP ) - S&P500 index, (IR) - 10-yr US treasury bill rate, (ER) - US effective

exchange rate, (EN) - employment.

To allow for model (structure and coefficient) changes, we apply a moving window to

estimate, for each window, the structure and the associated predictive model. The moving

window uses the most recent observations to estimate the model. Thus new data are added to

the exiting dataset and the oldest observations are deleted. We initialize the first sample from

1960Q1− 1974Q4, and then move the window forward by 4-quarters. We produce forecasts

for all the horizons up to 4-quarters ahead. Our last sample is set to 1993Q1 − 2007Q4.

Thus the forecast period ranges from 1975Q1 to 2008Q4.

We report in the left column of Figure 2 the results of PC, SSVS(ω) and MIN averaged

over 1960Q1−2006Q4. The results of the PC algorithm show strong evidence of the following

edges: Ct−Yt−IPt−Ut, and Mt−Rt. SSVS(ω) shows Ct−Yt−IPt−Ut, and MIN reveals:

Yt → Ct, IPt → (Yt, Ut), and Rt → Mt. Thus all the structures capture contemporaneous

Copyright © 2014 John Wiley & Sons, Ltd.
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Figure 2: Contemporaneous structure of PC, SSVS and MIN (left column) and temporal
dynamic structure of C-GC, SSVS and MAR (right column), averaged over the period
1960Q1−2006Q4. In each plot, the light (dark) green color indicates weak (strong) evidence
of dependence. The variables are: (Y ) - real GDP, (Pi) - consumer price index, (R) -
Federal funds rate, (M) - money stock M2, (C) - real personal consumption, (IP ) - industrial
production index, (U) - unemployment, (MP ) - real spot market price, (NB) - non-borrowed
reserves, (RT ) - total reserves, (CU) - capacity utilization, (HS) - housing, (PP ) - producer
price index, (PC) - personal consumption expenditure, (HE) - real average hourly earnings,
(M1) - money stock M1, (SP ) - S&P500 index, (IR) - 10-yr US treasury bill rate, (ER) -
US effective exchange rate, (EN) - employment.

relationships between: consumption (Ct) and real GDP (Yt); industrial production (IPt)

and unemployment (Ut); money supply (Mt) and interest rates (Rt); industrial production

(IPt) and GDP (Yt).

Though PC shows a stronger evidence of the effects of consumption (Ct) and industrial

production (IPt) on real GDP (Yt), it does not rule out the possibility of a reverse effect of
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real GDP (Yt) on consumption (Ct) and industrial production (IPt). A possible explanation

for the different findings of MIN regarding this relationship could stem from issues related

to Markov equivalence of graphical models (see Section 2) or from issues related to the

exclusion of other relevant variables. The results in APPENDIX E show that MIN and PC

dependence structures are sensitive to the exclusion of relevant variables, as opposed to the

SSVS procedure. On the contrary in the SSVS procedure, the edges between variables may

be wrongly inferred, also when all relevant variables are included in the model.

In the right column of Figure 2 we report the temporal dependence structure of C-GC,

SSVS(γ) and MAR, averaged over 1960Q1 − 2006Q4. The figure reveals that C-GC and

MAR identify stronger evidence of dependence than SSVS(γ). More specifically, SSVS(γ)

finds strong evidence of dependence only for two edges, whose probabilities are close to 60%.

MAR, on the other hand, detects edges that are persistent over time. For example, current

real GDP (Yt) strongly depends on previous level of consumption (Ct−1); current level of

inflation (Pit) strongly depends on previous level of inflation (Pit−1); and current level of

money stock M2 (Mt) strongly depends on previous levels of money stock M1 (M1t−1) and

the 10-year US treasury bill rate (IRt−1). Finally, we shall note that these response variables

may also weakly or temporarily depend on other variables, but the edge probabilities in

Figure 2 may be close to zero since they are averages over a sequence of rolling estimates.

Similar conclusions hold true for the comparison between the estimated coefficient matrices

of the BVAR (see APPENDIX E).

The top-left chart in Figure 3 compares the evolution of the BIC scores of PC (in blue)

and MIN (in green) over the period 1960Q1− 2006Q4. The figure shows that the BIC score

favors MIN over PC, giving an indication that MIN provides a better representation of the

contemporaneous dependence in the observed time series than PC. The top-right chart in

Figure 3 presents the evolution of the BIC scores of C-GC (in blue) and MAR (in green)

over the period 1960Q1 − 2006Q4 for the macroeconomic application. Clearly, the figure

shows that the BIC favors the MAR over the C-GC. This seems to indicate that the MAR

structure provides a better representation of the temporal dependence in the observed time

series than the C-GC.

In the last row of Figure 3, we report the evolution of the log predictive scores and
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Figure 3: The BIC of the contemporaneous (top left) and temporal (top right) depen-
dence structures of the PC (blue), C-GC (blue) and the MAR (green) over the period
1960Q1 − 2006Q4. Log predictive score (bottom left) and predictive AIC Score (bottom
right) of BVAR, SSVS and BGVAR over 1975Q1 − 2008Q4. BV-Minn represents BVAR
under Minnesota prior (blue), BV-NW - BVAR under normal-Wishart (green), SSVS -
Stochastic Search Variable Selection (red), BGV-Minn - BGVAR under Minnesota prior
(cyan), and BGV-NW - BGVAR under normal Wishart (pink).

AIC scores of the competing models over the period 1975Q1− 2008Q4. The log predictive

scores - the sum of the log predictive, measure the forecast performance of the models. The

AIC scores on the other hand measure the predictive performance adjusted for number of

estimated coefficients. The figure shows that the log predictive score strongly favors BGVAR

Minnesota (in cyan), followed by BGVAR normal-Wishart (pink) and SSVS (in red). The

two BVAR models record the lowest log predictive scores. When adjusted for the number

of estimated coefficients, the AIC scores strongly favor the BGVAR model (under both

Minnesota and normal-Wishart prior distributions), followed by SSVS and BVAR. Thus,

BGVAR achieves a higher predictive accuracy and fits the data better than BVAR and

SSVS.

6. MEASURING FINANCIAL INTERCONNECTEDNESS
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The level of interconnectedness of the financial system received a lot of attention by

many parts in the aftermath of the 2007-2009 financial crisis. While the greater intercon-

nectedness can increase the systemic risk and the probability of contagion, it can also have

a positive impact on the system, provided the authorities take steps to prevent the sys-

temic risk. For this reason, several studies on financial networks have empirically assessed

the linkages and the exposures within financial institutions (e.g., see Hautsch et al. (2012),

Billio et al. (2012), and Diebold and Yilmaz (2014)). Non-financial institutions, on the

other hand, have increasingly gained awareness of the need to adopt financial strategies to

avoid being vulnerable to instabilities in financial markets. The objective of the financial

application presented in this paper is to investigate empirically, by means of BGVAR, the

linkages between financial and non-financial institutions. Ultimately the aim is to assess the

interconnectedness of the system and thus its vulnerability.

The dataset consists of the return indexes of the 19 super-sectors of Euro Stoxx 600,

sampled at a monthly frequency from January 2001 to August 2013 (source: Datastream).

The dataset also represents the largest Eurozone companies in each of the 19 super-sectors, as

defined by the Industry Classification Benchmark (ICB). The countries covered are Austria,

Belgium, Finland, France, Germany, Greece, Ireland, Italy, Luxembourg, the Netherlands,

Portugal, and Spain (see APPENDIX E). The specification of the lag order (p = 1) is based

on testing the appropriate lag length using BIC. Following Billio et al. (2012), we apply a

36-month moving window to analyze the evolution of the linkages among the super-sectors.

In this application we focus only on the temporal dependence among the variables. To

this purpose, we compare the structure of our MAR with the modified conditional Granger-

causality (C-GC) and with the modified pairwise Granger-causality (P-GC).

We compute the number of linkages by summing all the edges in the graph structure

for each window. Top-left panel of Figure 4 compares the evolution of the number of links

of P-GC (blue line), C-GC (green line) and MAR (red line) as a percentage of all possible

edges among the super-sectors over the sample period. As shown in Figure 4, the percentage

of links obtained P-GC is relatively higher than that of C-GC and MAR. C-GC on the other

hand, moves in accordance with MAR except in the period 2005-2007, where MAR records

a lower number of edges.

Copyright © 2014 John Wiley & Sons, Ltd.
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Figure 4: Linkages among the super-sectors of Euro Stoxx 600 from January 2001 to August
2013 based on a 36-month moving window. Evolution of the total links (top left), BIC scores
(top right), percentage of links from financial to non-financial (bottom left) and from non-
financial to financial (bottom right) super-sectors, of P-GC (blue), C-GC (green) and MAR
(red).

Using MAR, we observe four periods of large interconnectedness. The periods identified

are pre-2005, 2007-2009, 2010-2011, and 2011-2013. By matching these periods to notable

global and European events, we notice that the pre-2005 can arguably be linked to the

aftermath of scandals such as Enron and Worldcom; whereas 2007-2009 and 2010-2013

capture the recent financial crisis and the European sovereign crisis, respectively.

Figure 4 compares the evolution of the percentage of links of P-GC (blue line), C-GC

(green line) and MAR (red line) from financial to non-financial super-sectors and from non-

financial to financial super-sectors. Again, the P-GC overestimates the linkages compared

to C-GC and MAR. MAR still identifies four peaks of high connectedness in both figures.

Surprisingly, these periods coincide with the results shown in the top-left panel of Figure 4.

This similarity suggests that periods of financial market turbulence also experienced a higher

number of linkages between financial and non-financial super-sectors. In the pre-2005 period,

Copyright © 2014 John Wiley & Sons, Ltd.



BAYESIAN GRAPHICAL MODELS FOR STRUCTURAL VAR PROCESSES 25

we observe a stronger linkage from non-financial to financial super-sectors than the reverse.

The 2007-2009 financial crisis sees a stronger linkage from financial to non-financial super-

sectors compared to the linkage from non-financial to financial. For the 2010-2013 European

sovereign crisis, we observe an equally strong linkage between the two super-sectors.

The BIC scores (Figure 4, top-right) strongly favors the MAR structure in the greater

part of the sample period. The P-GC approach is the least favored among the three schemes.

This result is, to some degree, expected since the pairwise Granger causality approach deals

only with bivariate time series and does not consider the conditioning on relevant covariates.

We also observe that the BIC score favors C-GC above P-GC. This is expected since the

modified conditional Granger considers the conditioning on relevant covariates. However,

with a higher number of variables relative to the number of data point, the C-GC approach

encounters a problem of over-parameterization, that leads to a loss of degrees of freedom and

to inefficiency in correctly gauging the causal relationships. The BGVAR approach allows

the researcher to handle such situations, by conditioning on all relevant variables, carrying

out joint inference on all quantities of interest, and achieving model parsimony. The BIC

score confirms that BGVAR provides a more accurate representation of the linkages among

the institutions than P-GC and C-GC, offering a better approach to studying systemic risk.

7. CONCLUSION

This paper develops a new Bayesian graph-based approach to identification and over-

parameterization issues in structural VAR models. Our inference procedure of the BGVAR

causal relationships provides also a variable selection procedure. Moreover, we propose an

efficient Markov chain Monte Carlo algorithm to infer the BGVAR causal structures and

the unknown parameters from observed multiple time series. In both simulation exper-

iments and real data applications, the BIC score indicates that our BGVAR produces a

better representation of the structural causal relationships than several competing standard

approaches. Our comparison results show that the BGVAR model is more parsimonious

and interpretable than both the classical Bayesian VAR (BVAR) and the stochastic search

Copyright © 2014 John Wiley & Sons, Ltd.
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variable selection (SSVS) models.

In the macroeconomic application, the BGVAR provides a data-driven identification of

the structural VAR, thus offering a useful tool for policy analysis. The predictive accuracy,

adjusted for number of estimated coefficients, strongly favors BGVAR over BVAR and SSVS.

In the financial application the BIC score indicates that our BGVAR inference produces a

better representation of the linkages among economic sectors than the Granger inference,

thus offering a better approach to studying systemic risk.
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APPENDIX A. BGVAR PRIOR AND POSTERIOR DISTRIBUTIONS

A graphical model is defined by a graph structure G and a collection of parameters, θ.

Let Xt = (X1
t , X

2
t , . . . , X

n
t ), where Xi

t is a realization of the variable Xi at time t. Let

X = (X1, . . . , XT ) be a time series of n observed variables. We assume that X follows a

multivariate normal distribution, and define θ ≡ {µ,Ωx}, Ωx = Σ−1
x . For simplicity, we

assume that the data is generated by a stationary process and, without loss of generality,

we set µ = 0. The likelihood of X is given by

P (X|Ωx, G) = (2π)−nT2 |Ωx|
T
2 exp

{
− 1

2 〈Ωx, Ŝx〉
}

(A.11)

where 〈A,B〉 = tr(A′B) denotes the trace inner product and Ŝx =
∑T
t=1 XtX

′
t. From

a Bayesian perspective, the joint prior distribution over (Ωx, G) is given as P (G,Ωx) =

P (G)P (Ωx|G). Two sources of uncertainty are associated with the model: the graph struc-

ture G and the parameter Ωx. The graph structure G considered in this paper is charac-

terized by 0 − 1 elements, Gij , where Gij = 1 means Xj → Xi, and Gij = 0 means that

no link exists between the two variables. An independent Bernoulli prior with parameter β

is assumed on each edge. We assume β = 0.5, that leads to a uniform prior on the graph
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space, i.e. P (G) ∝ 1.

Following the standard Bayesian paradigm, we assume that Ωx conditional on a complete

graph G is Wishart distributed, Ωx ∼ W(ν, S−1
0 ), with density

P (Ωx|G) = 1
Kn(ν, S0) |Ωx|

(ν−n−1)
2 exp

{
− 1

2 〈Ωx, S0〉
}

(A.12)

where ν > n + 1 is the degree of freedom parameter, S0 is a symmetric positive definite

matrix, and Kn(ν, S0) is the normalizing constant given by

Kn(ν, S0) =
∫
|Ωx|

(ν−n−1)
2 exp

{
− 1

2 〈Ωx, S0〉
}
dΩx = 2 νn2 |S0|−

ν
2 Γn

(ν
2

)

with Γn(a) = π
n(n−1)

4
∏n
i=1 Γ

(
a− i+1

2

)
and Γ(·) the gamma function. Following Geiger and

Heckerman (1999), we assume that the independence and modularity conditions are satisfied.

In our SVAR model, the independence assumption means that the structural coefficients

and the error terms, within and across equations, are a priori independent. The modularity

assumption states that if a response variable has the same set of explanatory variables in

two graphs, then the associated parameters must have the same prior distribution. These

assumptions on the prior distributions allow us to factorize the likelihood, to integrate out the

parameters analytically, and to obtain the following expression for the marginal likelihood:

P (X|G) =
∫
P (X|Ωx, G)P (Ωx|G)dΩx

= (2π)−nT2
Kn(ν, S0)

∫
|Ωx|

T+ν−n−1
2 exp

{
− 1

2 〈Ωx, S0 + Ŝx〉
}
dΩx = Kn(ν + T, S0 + Ŝx)

(2π)nT/2Kn(ν, S0)

Based on the uniform prior assumption over structures, maximizing the posterior probabil-

ity of G is equivalent to maximizing the marginal likelihood metric. For graphical model

selection purposes, we sample G in the space of all possible graphs from the marginal pos-

terior distribution, G ∼ P (G|X ) ∝ P (X|G). We assume S0 and S0 + Ŝx are the prior and

posterior covariance matrices and define Σx = S0/ν, Σx = (S0 + Ŝx)/(ν + T ). Based on

the choice of the prior distribution, the marginal likelihood factorizes into the product of

ny terms, each one involving the response variable (Y i) and its set of explanatory variables
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(πi) (see Geiger and Heckerman (1999)), i.e.

P (X|G) =
ny∏
i=1

P (X|G(Y i, πi)) =
ny∏
i=1

P (X (Y i,πi)|G)
P (X (πi)|G)

(A.13)

where ny is the number of response variables, G(Y i, πi) is the sub-graph of G with nodes Y i

and the elements of πi, X (Y i,πi) is the sub-matrix of X consisting of the response variable Y i

and its set of explanatory variables πi; and X (πi) is the sub-matrix of the set of explanatory

variables of (Y i). The closed form of the marginal likelihood for a graph G is given as

(Heckerman and Geiger, 1994):

P (XD|G) = (π)
−ndT

2
|Σx,d|−

(ν+T )
2

|Σx,d|−
ν
2

nd∏
i=1

Γ
(
ν+T+1−i

2

)
Γ
(
ν+1−i

2

) (A.14)

where D ∈
{

(Y i, πi), (πi)
}

, and XD is a sub-matrix of X consisting of nd × T realizations,

where nd is the dimension of D, |Σx,d| and |Σx,d| are the determinants of the prior and

posterior covariance matrices associated with D. The above is referred to as the Bayesian

Gaussian equivalent (BGe) metric (Heckerman and Geiger, 1994).

In our application, the parameters of interest are the reduced form coefficients matrix,

(A+), and covariance matrix of the reduced form errors, (Σu). These are transformations

of the structural parameters, {B∗,Σε}, which can be estimated from Σx = Ω−1
x . Following

a standard Bayesian approach, we considered two typical BVAR prior settings, i.e. the

Minnesota and the normal-Wishart prior. In both cases, we assume A+ ∼ N (A, V ), and

compute the posterior mean (Ai) and variance (V i) of each VAR equation as follow: Ai =

V i(V −1
i Ai+σ−2

i W ′iY
i), V i = (V −1

i +σ−2
i W ′iWi)−1, where Ai and V i, are the prior mean and

variance of the relevant variables in each equation, andWi, is the set of relevant variables that

influence the response variable Y i. Under the assumption of a Minnesota prior distribution,

σi = σi,, i = 1, . . . , ny are the diagonal elements of Σu = diag(σ2
1 , . . . , σ

2
ny ). Under the

normal-Wishart prior distribution, σ2
i , is the variance of residuals from the posterior of Σu,

which is assumed to be inverse-Wishart distributed, Σu ∼ IW(ν, S).
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Algorithm 1 MIN Sampling
1: Initialize G(1) as (ny × ny) zero matrix
2: for t = 1 to Total iterations do
3: Pick at random ρ(t) = (ρ(t)

1 , . . . , ρ
(t)
ny ) from the set of the ny! possible permutations

of the integers {1, . . . , ny}
4: for i = 1 : ny do set ỹi = y

ρ
(t)
i

, ỹi ∈ Vy and G∗ = G(t)

5: Draw a candidate explanatory variable, yj ∈ Vy\{yρ(t)
i

}
6: if G∗(yj , ỹi) = 1 then set G∗(yj , ỹi) = 0
7: Add/remove edge; G∗(ỹi, yj) = 1−G∗(ỹi, yj)
8: if G∗ is acyclic then sample u ∼ U[0,1]
9: Compute the Bayes factor: BF = P (X|G∗)/P (X|G(t))

10: if u < min{1, BF} then G(t+1) = G∗

11: else G(t+1) = G(t)

12: else G(t+1) = G(t)

APPENDIX B. MCMC SAMPLING

The Markov Chain Monte Carlo (MCMC) algorithm described in Madigan and York

(1995) is a Metropolis-Hastings (MH). Given a graph G, the algorithm samples a new graph

G∗ based on a proposal distribution. The new graph is accepted with probability

A(G∗|G) = min
{
P (X|G∗)
P (X|G)

P (G∗)
P (G)

Q(G|G∗)
Q(G∗|G) , 1

}
(B.15)

where P (X|G) is the likelihood, P (G) is the prior and Q(G∗|G) is the proposal distribu-

tion. For the single edge addition or removal, the proposal distribution assigns a uniform

probability to all possible graphs in the neighborhood nbd(G) of G, which is the set of

all graphs that can be reached from the current state (G) by adding or deleting a single

edge. Following Madigan and York (1995), we considered a symmetric proposal distribution

(i.e., Q(G|G∗) = Q(G∗|G)). Moreover, by assuming a uniform graph prior the acceptance

probability simplifies to the Bayes factor.

We modify the standard MCMC inference scheme to allow for inference of contempora-

neous and temporal dependence structures. Let Vy be ny vector of response variables, Vx

be np vector of explanatory variables, and Vy\{yi} the subvector of Vy obtained by deleting

the i-th element of Vy. The pseudo-code for sampling the contemporaneous and temporal

structures are given in Algorithms 1 and 2, respectively. To speed up the algorithm, the
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Algorithm 2 MAR Sampling
1: Initialize G(1) as (ny × np) zero matrix
2: for t = 1 to Total iterations do
3: Pick at random ρ(t) = (ρ(t)

1 , . . . , ρ
(t)
ny ) from the set of the ny! possible permutations

of the integers {1, . . . , ny}
4: for i = 1 : ny do set ỹi = y

ρ
(t)
i

, ỹi ∈ Vy and G∗ = G(t)

5: Draw a candidate explanatory variable, xj ∈ Vx

6: Add/remove edge; G∗(ỹi, xj) = 1−G∗(ỹi, xj)
7: Sample u ∼ U[0,1]
8: Compute the local Bayes factor: BF = P (X|G∗(ỹi, πi))/P (X|G(t)(ỹi, πi))
9: if u < min{1, BF} then G(t+1)(ỹi, πi) = G∗(ỹi, πi)

10: else G(t+1)(ỹi, πi) = G(t)(ỹi, πi)

common approach is to reduce the size of the search space by restricting the maximum

number of explanatory variables (fan-in) in the parent set of each response variable. In our

application, we do not impose such restriction. However, to reduce the computing time, we

pre-compute Σx, Σx and the metric in (A.14). Since the proposal involves a single edge

addition or removal, we compute the scores of the structures at each iteration by updating

only the local scores affected by the move. To sample the MIN structures, we apply the score

function in (A.13) and (A.14) by replacing G with the contemporaneous structure G0 and

Σx and Σx with the prior and posterior covariance matrix of the contemporaneous response

variables. For the MAR structure inference, we organize our time series into (1× n) blocks

composed of lagged variables (X) and a dependent variable (Y i). The matrix X is stacked

X ′p+1−s, . . . , X
′
T−s, 1 ≤ s ≤ p, such that X is of dimension np× (T −p), X (i) = (X ′, (Y i)′)′,

where i = 1, . . . , ny, X (i) is (np + 1) × (T − p). Let G+ be a stacked graph of the MAR

relationships. Then the marginal likelihood of the MAR structure is

P (X|G+) =
ny∏
i=1

P
(
X (i)(Y i,πi+)∣∣G+

)
P
(
X (i)(πi+)∣∣G+

) (B.16)

where πi+ is the candidate explanatory variables of Y i, consisting of the lagged variables in

X+. We score the MAR structure by evaluating (A.13) and (A.14), and by replacing G with

G+, and Σx and Σx with the prior and posterior covariance matrices of X (i), i = 1, . . . , ny.
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APPENDIX C. GRAPHICAL MODEL EVALUATION

Convergence Diagnostics

We monitor the convergence of the MIN and MAR structures by using the potential scale

reduction factor (PSRF) and the multivariate PSRF (MPSRF) of Gelman and Rubin (1992)

and Brooks and Gelman (1998), respectively. See also Casella and Robert (2004), ch. 12, for

a review on methods for convergence monitoring in MCMC. The PSRF (MPSRF) monitors

the within-chain and between-chain covariances of the global (local) log posterior densities

of the sampled structures to test whether all the chains converged to the same posterior

distribution. The chain is said to have properly converged if PSRF (MPSRF ) ≤ 1.2. In

all of the simulation and empirical applications, we obtained MPSRF and PSRF for both

MAR and MIN less than 1.1, which indicates convergence of the MCMC chain.

Graph Structure Evaluation

We estimate the posterior probability of the edge Gij by êij , which is the average of

the MCMC samples from the Gij posterior distribution. In order to identify significant

explanatory variables for our model, we define a one sided posterior credibility interval for

the edge posterior distribution, and find the interval lower bound

q(1−α) = êij − z(1−α)

√
êij(1− êij)

neff
(C.17)

where neff is the effective sample size (see Casella and Robert (2004), pp. 499-500) repre-

senting the number of independent posterior samples of the graph, and z(1−α) is the z-score

of the normal distribution at the (1− α) significance level. Finally we define the estimator

Ĝij , of the edge from Xj to Xi, as

Ĝij =


1 if q(1−α) > 0.5

0 otherwise
(C.18)
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Clearly as neff →∞, Ĝij = 1 if êij > 0.5.

When the data generating process is known, we refer to the non-zero elements as real

positives and the zero elements as real negatives. Based on (C.17), we obtain a connectivity

structure, where non-zero elements are referred to as predicted positives and the zero ele-

ments as predicted negatives. The metric to evaluate the graph-predictive accuracy is shown

in Table III. TP indicates the number of real positives correctly predicted as positives, FP

Table III: Classification table for graph-predictive accuracy evaluation.
Real Positives Real Negatives

Predicted Positives TP FP
Predicted Negatives FN TN

indicates the number of real negatives predicted as positives, TN indicates the number of

real negatives correctly predicted as negatives, and FN indicates the number of real positives

predicted as negatives. In this paper, we employ the accuracy rate (ACC) to measure the

predictive accuracy of the graph structure, that is

ACC = TP + TN

TP + TN + FP + FN

When the true model is unknown, we compare the graph structure using the BIC:

BIC(Ĝ) = −2 log(P (X|Ĝ)) + |E| log(T ) (C.19)

where P (X|Ĝ) is the marginal likelihood, |E| is the number of non-zero edges in the estimated

graph Ĝ and T is the number of time series observations.

Model Prediction Accuracy

The evaluation of the accuracy of the estimated model was based on the AIC score (see

Gelman et al. (2013)) given by

AIC(M̂) = −2 log(P (X|M̂)) + 2|ÂM | (C.20)
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where |ÂM | is the number of estimated coefficients in the model M̂ , and logP (X|M̂) is the

log predictive score.

PC Algorithm

The PC algorithm, (named after authors Peter Spirtes and Clark Glymour) is a graph-

theoretic approach developed by Spirtes et al. (2000) for learning partially directed struc-

tures. The algorithm uses conditional independence (e.g the Fisher’s z statistic) test to

decide whether a particular constraint holds. See Spirtes et al. (2000) for details on imple-

mentation of the PC algorithm.

Granger-Causality

Pairwise Granger causality (P-GC) (Granger, 1969) relies on the condition that if the pre-

diction of Xi
t is improved by incorporating lagged observations of Xj

t , then Xj
t has a causal

influence on Xi
t . A limitation to this approach in multivariate settings is the inability to

discriminate between direct and mediated causal influences. For instance, one variable may

influence two other variables with differential time delays, and a pairwise analysis may in-

dicate a causal influence from the variable that receives an early input to the variable that

received a late input. Conditional Granger causality (C-GC) (Ding et al., 2006) deals with

this limitation by accessing dependence between a pair of time series conditional on other

series and their lags. The C-GC relies on block-wise Granger causality test which includes

all lags of the pair of variables of interest (see Ding et al. (2006), eqs. 17.30-17.33). In

this paper, we modified the C-GC procedure and use pairwise-Granger causality at different

lags conditioning on the other series and their lags. In our modified C-GC we estimate the

VAR(p) model

Xi
t =

p∑
s=1

βs,1X
1
t−s+ . . .+

p∑
s=1

βs,iX
i
t−s+ . . .+

p∑
s=1

βs,jX
j
t−s+ . . .+

p∑
s=1

βs,nX
n
t−s+uit (C.21)
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where i, j ∈ {1, . . . , n}, i 6= j, and test whether Xj
t−s → Xi

t , by checking if the following

hypothesis holds true

H0 : βs,j = 0, H1 : βs,j 6= 0

with a t-test.

APPENDIX D. APPLICATION TO SIMULATED DATA

In Figure 5, we show the contemporaneous structure of PC, SSVS(ω) and MIN, for the

5-node and p = 3 lag model, averaged over the 20 replications. The PC indicates strong

evidence of the following relationships: X2
t −X4

t −X3
t −X5

t −X3
t . The SSVS(ω) shows the

following: X2
t −X3

t −X4
t −X5

t −X3
t . The MIN structure indicates the following: X1

t → X3
t ;

X4
t → X2

t ; X5
t → (X3

t , X
4
t ). We conclude that all the three approaches capture similar

correlations.

The SSVS(ω) shows only contemporaneous correlations and does not offer the directions

of the causal effects. The PC shows partially directed edges with indications that some causal

directions are more probable than their reverse, e.g. P (X4
t → X5

t |X ) = 0.9 > P (X5
t →

X4
t |X ) = 0.6. However the PC indicates a contemporaneous correlations (undirected edge)

between the majority of the variables. The MIN structure shows an unambiguous direction

of the edges among the variables. From a comparison with the DGP of the contemporaneous

structure (B0), given as: X2
t → X4

t ; X3
t → X1

t ; X5
t → X3

t , we notice that the MIN shows

similar relationships with some edges in the opposite direction of the DGP. A possible

explanation relates to issues of Markov equivalence of contemporaneous directed graphical

models discussed in Section 2.

Figure 6 shows the temporal structure of C-GC, SSVS(γ) and MAR for the 5-node p = 3

lag model averaged over 20 replications. The figure shows that C-GC and MAR detect more

strong evidence of dependence than SSVS(γ). MAR presents a better inference of the DGP

than C-GC and SSVS(γ).

In Figure 7, we report the estimates of the reduced-form coefficient matrices. For the

sake of conciseness, a comparison between BVAR (normal-Wishart), SSVS and BGVAR
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Figure 5: Contemporaneous structure of the 5-node model (p = 3) averaged over 20 repli-
cations. Response (explanatory) variables are on rows (columns). The light (dark) green
indicate weak (strong) dependence.

(normal-Wishart) is provided only for the 5-node DGP with p = 3. Negative, positive and

null elements are represented in red, green, and white, respectively. The BVAR and the SSVS

coefficient matrices look dense whereas that of the BGVAR model are sparse (with a lot of

null elements). The SSVS and the BVAR matrices are similar with most of the elements

in the BVAR slightly greater (in absolute values) than their SSVS counterparts. This is

not surprising since the SSVS draws the coefficient from a mixture of two normal densities.

Since a priori one of the two mixture components is peaked at zero, SSVS favors a shrinking-

to-zero of the coefficients. The BGVAR model on the other hand is more parsimonious than

the BVAR and the SSVS.

APPENDIX E. ECONOMIC APPLICATIONS
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Figure 6: Temporal structure of the 5-node model (p = 3) averaged over 20 replications.
Response (explanatory) variables are on rows (columns). The light (dark) green indicates
weak (strong) dependence.

Macroeconomic and Financial Data Description

Table IV gives the data description and transformation code from Koop (2013) used for

our macroeconomic application. Table V presents the description of the Euro Stoxx 600

super-sectors obtained from Datastream for our financial application.
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Figure 7: Coefficients matrix of BVAR (normal-Wishart), SSVS, and BGVAR (normal-
Wishart), for the 5-node model with lag order p = 3. Response (explanatory) variables are
on the rows (columns). Elements in red (green) represent negative (positive) coefficients,
white elements for zeros.
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Table IV: Data description and transformation code to achieve stationarity. The transfor-
mation code is as follows: 1 = no transformation, 2 = first difference, 3 = second difference,
4 = log, 5 = first difference of the log variable, 6 = second difference of the log variable. (∗)
Added to augment the response variable vector.

Short ID Mnemonic Code Description
Response Variables

Y GDP251 5 Real GDP, Quantity Index (2000=100)
Π CPIAUCSL 6 CPI All Items
R FYFF 2 Interest rate: Federal funds (effective) (% per annum)
M FM2 6 Money stock: M2 (bil$)
C GDP252 5 Real Personal Cons. Exp., Quantity Index
IP IPS10 5 Industrial production index: total
U LHUR 2 Unemp. rate: All workers, 16 and over (%)
I∗ GDPIC96 5 Real gross domestic private investment

Predictor Variables
MP PSCCOMR 5 Real spot market price index: all commodities
NB FMRNBA 3 Depository inst reserves: non-borrowed (mil$)
RT FMRRA 6 Depository inst reserves: total (mil$)
CU UTL11 1 Capacity utilization: manufacturing (SIC)
HS HSFR 4 Housing starts: Total (thousands)
PP PWFSA 6 Producer price index: finished goods
PC GDP273 6 Personal Consumption Exp.: price index
HE CES275R 5 Real avg hrly earnings, non-farm prod. workers
M1 FM1 6 Money stock: M1 (bil$)
SP FSPIN 5 S&Ps common stock price index: industrials
IR FYGT10 2 Interest rate: US treasury const. mat., 10-yr
ER EXRUS 5 US effective exchange rate: index number
EN CES002 5 Employees, non-farm: total private

Table V: Description of Euro Stoxx 600 super-sectors. (∗) Included from September 2008.
Short ID Description Sector

Financial
BK Banks Financial
IN Insurance Financial
FS Financial Services Financial
RE∗ Real Estates Financial

Non-Financial
CM Construction & Materials Industrial
IGS Industrial goods & services Industrial
AP Automobiles & Parts Consumer Goods
FB Food & Beverage Consumer Goods
PHG Personal & Household Goods Consumer Goods
RT Retail Consumer Services
MD Media Consumer Services
TL Travel & Leisure Consumer Services
CH Chemicals Basic Materials
BR Basic Resources Basic Materials
OG Oil & Gas Oil & Gas
TC Telecom Telecom
HC Health Care Health Care
TG Technology Technology
UT Utilities Utilities
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Robustness Check for the Macroeconomic Application

In our sensitivity analysis, we augment the set of response variables of the macroeconomic

model with the gross domestic private investment. Figure 8 shows the results of PC, SSVS(ω)

and MIN for the augmented model.
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Figure 8: Contemporaneous structure of the PC, SSVS and MIN averaged over 1960Q1 −
2006Q4. The light (dark) green color indicates weak (strong) evidence of dependence. Re-
sponse (explanatory) variables are on the rows (columns). The variables are: (Y ) - real
gross domestic product, (Pi) - consumer price index, (R) - Federal funds rate, (M) - money
stock M2, (C) - real personal consumption expenditure, (IP ) - industrial production index,
(U) - unemployment rate and (I) - gross domestic private investment.

In order to show the effects of the omission of relevant variables on the causal structure

estimates, we compare the results of PC, SSVS and MIN, when investment is included as a

response variable. The structures of both PC and MIN show no evidence of the effect of real

GDP on consumption and no direct effect of industrial production on real GDP (see Figure

8 in APPENDIX E). However, they record strong evidence of the effects of consumption on

real GDP. In addition, they capture strong evidence of the effect of industrial production

on investment and a direct effect of investment on real GDP. The SSVS(ω) approach on

the other hand maintains a strong correlation between industrial production and real gross
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domestic product even when investment is included. Consequently, in our application the

MIN and PC dependence structures are sensitive to the exclusion of relevant variables, as

opposed to the SSVS procedure. On the contrary in the SSVS procedure, the edges between

variables may be wrongly inferred, also when all relevant variables are included in the model.

These results are due to the fact that MIN (PC) uses directed (partially directed) edges

to represent the contemporaneous dependence structure while SSVS(ω) uses undirected

relationships among variables. As a result, SSVS(ω) does not provide any information on

the direction of influence among variables and is less sensitive to the choice of the variable

to include in the analysis.

Estimated Parameters for the Macroeconomic Application

We compare the estimated coefficient matrices of the BVAR (normal-Wishart), SSVS, and

BGVAR (normal Wishart prior) for the last window (1993Q1−2007Q4) of the sample data.

This is shown in Figure 9. Elements in red (green) represent negative (positive) coefficients

and white elements represent zeros. Most of the BAVR coefficient values are slightly higher

(in absolute values) than the corresponding SSVS coefficient values. These results confirm

that the SSVS approach acts as a parameter shrinkage and does not ignore unimportant

variables. The BGVAR model distinguishes instead the relevant explanatory variables from

the unimportant ones. In Figure 9, the coefficients of the unimportant explanatory variables

are represented in white color. Having a large number of white elements (zero coefficients)

implies that, unlike BVAR and SSVS, BGVAR adopts a framework where response variables

can be determined by only a handful of explanatory variables. For instance, forecasting real

GDP (Yt+1) for the period 2008Q1− 2008Q4 depends only on real GDP (Yt), consumption

(Ct), industrial production (IPt), non-borrowing reserves (NBt), S&P500 index (SPt) and

employment (ENt). A similar observation holds for the other response variables. These

results confirm that the BGVAR model is more parsimonious than BVAR and SSVS and

reduces the future cost of predictions.
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(b) SSVS Coefficients
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(c) BGVAR Coefficients

Figure 9: Coefficients matrix of BVAR (normal-Wishart), SSVS, and BGVAR (normal-
Wishart) for the period 1993Q1−2007Q4. Response (explanatory) variables are on the rows
(column). Elements in red (green) represent negative (positive) coefficients, white elements
for zeros. The variables are: (Y ) - real GDP, (Pi) - consumer price index, (R) - Federal funds
rate, (M) - money stock M2, (C) - real personal consumption, (IP ) - industrial production
index, (U) - unemployment, (MP ) - real spot market price, (NB) - non-borrowed reserves,
(RT ) - total reserves, (CU) - capacity utilization, (HS) - housing, (PP ) - producer price
index, (PC) - personal consumption expenditure, (HE) - real average hourly earnings, (M1)
- money stock M1, (SP ) - S&P500 index, (IR) - 10-yr US treasury bill rate, (ER) - US
effective exchange rate, (EN) - employment.
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