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A B S T R A C T

This paper analyzes credit rating default dependencies in a multisectoral framework. Using Mergent's FISD
database, we study the default series in the U.S. over the last two decades, disaggregating defaults by industry-
sector group. During this period, two main waves of default occurred: the implosion of the “dot-com” bubble
and the global financial crisis. We estimate a Multivariate Autoregressive Conditional Poisson model according to
the biweekly number of defaults that occurred in different sectors of the economy from 1996 to 2015. We discuss
the contagion effect between sectors in two ways: the degree of transmission of the probability of default from one
sector to another, i.e., the “infectivity” of the sector, and the degree of contagion of one sector from another, i.e.,
the “vulnerability” of the sector. Our results show differences between the sectors' relations during the first and
second part of our sample. We add some exogenous variables to the analysis and evaluate their contribution to the
goodness of fit.
1. Introduction

It has been widely documented, particularly in Moody's reports on
default rates (see, for example, Berthault et al., 2000), that the number of
firm defaults is highly correlated with the economic business cycle and
with the industry-sector-specific evolution. The corporate bond market
has repeatedly suffered from the clustering of default events to a much
greater extent than during the period of the Great Depression (see Gie-
secke et al., 2011). The clustering of defaults could be explained by
common factors that affect the default risk of individual firms (see Das
et al., 2006). It could be due to internal problems that arise when firms
are unable to generate cash flow in a distressed scenario –mainly because
of disruptions in demand, supply, commodity prices, and/or production
costs. This kind of default dependence or conditional dependence is
cyclical, as it is related to the economic cycle and other macrostructure
factors (see Giesecke and Weber, 2006). In a highly interrelated econ-
omy, the ability of firms to generate cash flows and hence their pro-
pensity to default vary with the fundamentals of the economy, such as
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commodity prices, asset demand and production costs. The relationship
of firms with the general economic environment could induce depen-
dence between firms' defaults (Giesecke and Weber, 2004).

There is another type of default dependence, credit contagion that is
related to business relationships or legal interdependencies that can exist
between companies.1 The most common kind of direct links between
companies are those that involve productive processes that are neces-
sarily related, for example, the assembly of cars and the production of
tires for vehicles, as well as borrowing and lending contracts or other
legal links, such as parent-subsidiary relationships.2 Credit contagion risk
is thus the risk that is due to microstructural factors such as business
relationships or legal interdependencies. It seems unavoidable that in the
presence of these types of company links, the cash flow generation
problems of one company could entail an increase in their propensity to
default and, hence, the propagation of the default probability from one
firm to another. Lando and Nielsen (2010) address what they refer to as
the “domino effect” to explain the clustering of defaults, as long as there
are occasional default events that are not considered the result of
M. Maggi).
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contagion but are, on the contrary, a clear case of contagion.
All of these prior factors could cause firm defaults to cluster over time

depending on the economic business cycle, variations in common
macrostructure factors and/or specific microstructural in-
terdependencies. In this paper, we study the credit contagion risk that
could be underlying microstructural dependence, controlling for the
conditional dependence that could exist due to macroeconomic factors.
We analyze the role of credit contagion in two directions that we call
“vulnerability” and “infectivity”. We define vulnerability as the trans-
mission effect that affects firms from one sector and that has been
generated in firms from another sector. In this case, one sector is affected
by credit problems that arise first in another sector. Conversely, we
define infectivity as the credit risk transmission effect that starts in
companies operating in one sector and that ends up affecting firms
belonging to another industry group. In this situation, credit problems in
one sector trigger credit deterioration in firms from other sectors.

Several recent papers have found evidence in favor of the relationship
between defaults and macroeconomic variables (see, for example, Chen
and Wu, 2014; Yurdakul, 2014). Moreover, there is ample evidence that
firm defaults are correlated and tend to cluster over time. Since the paper
by Das et al. (2007), who analyze the sources of default clustering on U.S.
industrial and financial firm defaults, many studies have analyzed this
issue and developed new models, finding evidence of the existence of
correlation between corporate defaults.3 Egloff et al. (2007) propose a
model of credit contagion that includes macro- and microstructural in-
terdependencies among the debtors of a credit portfolio. They find that
both interdependencies, particularly microstructural ones, seem to
explain the tail behavior of portfolio credit losses, suggesting that both
channels should be included in the modeling of credit contagion. Dong
and Wang (2014) implement a model where the intensities are all
affected by macroeconomic conditions and the interdependent default
structure arises from default contagion, allowing them to capture the
default clustering phenomenon. Their model provides flexibility in
incorporating the impacts of changes in macroeconomic factors and
default contagion into the default intensities.

In a more recent work, Lando and Nielsen (2010) analyze the sources
of correlation in corporate defaults. The authors review the paper by Das
et al. (2007) and perform different analyses to test for conditional in-
dependence or contagion effects among U.S. industrial firm defaults.
They use a different specification of the default intensity, which provides
different results than those in Das et al. (2007), since they cannot reject
the same tests as in the previous results. In this last work, the contagion
effect through “covariates”, which are an indicator of the default in-
tensities of firms, cannot be detected with their specification of default
intensity, which Lando and Nielsen (2010) suggest is a problem of mis-
specification. To check this, they implement a new test using the Hawkes
process alternative to analyze whether microstructural dependencies
among U.S. industrial firms are affected by the occurrence of defaults,
concluding that there is no evidence of the existence of a channel of
default contagion. Using another kind of model, Agosto et al. (2016) find
evidence that macroeconomic factors are able to explain the observed
firm default correlation in U.S. industrial firms. Azizpour et al. (2018)
study the different sources of default clustering on U.S. firms. They find
that contagion is the main factor in explaining default clustering and that
only a residual and insignificant amount is unexplained by this source.

The vast majority of large companies have some kind of debt issues
among their funding sources. Additionally, the debt of almost all major
companies has been rated at least by one credit rating agency (CRA). It is
a fact that when a firm experiences economic problems, its debt reflects
3 Other indirect evidence that corporate defaults are correlated can be found
in, for example, Collin-Dufresne et al. (2001), who finds evidence of common
movements in corporate bond spreads, and Collin-Dufresne et al. (2010), who
finds empirical support for contagion in bond returns in response to large credit
events.
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this issue, showing low ratings for issuer creditworthiness. In fact, bond
firm defaults should sometimes precede and anticipate the firm default
itself.4 Therefore, these rating categories should be an indicator of, in the
best case, transitory problems or, in the worst case, structural problems.
This fact could be relevant for other firms with tie-in businesses, as long
as one firm default could increase the probability of default of another
firm or even trigger the other firm's default.

This paper analyzes credit rating default dependencies in a multi-
sectoral framework in the U.S. corporate bond market. We study default
clustering over the period starting in April 1989 and ending in April
2015, disaggregating defaults by industry-sector groups. The objective is
to analyze whether there is a contagion effect of the intensity of defaults
from one sector to another as well as to examine one industry's vulner-
ability to credit defaults relative to another sector.

The two concepts of sector default vulnerability and infectivity are
motivated by a series of past default events where large concentrations of
defaults could reflect after-shocks of different crisis episodes. Some ex-
amples are as follows:

� The 1997 Asian crisis that involved vulnerable commodity prices and
a deterioration in international trade.

� In 1998, the Long-Term Capital Management bailout implied a chain
reaction in a wide number of financial firms.

� During 2000–2002, the dot-com bubble, which had being brewing
since 1997, burst, dragging hundreds of technology and services
companies into bankruptcy.

� In 2001, the Enron collapse presented one of the major default events,
affecting multiple energy-related firms' balance sheets and investor
and creditor portfolios.

� As a result of the dot-com bubble, in 2002, Worldcom, the great
telecommunications corporation, suffered one the largest accounting
scandals and corporate bankruptcies of that time.

� Finally, the financial crisis that started in 2008 with the collapse of
Lehman Brothers is the largest bankruptcy ever reported in U.S. his-
tory, involving the collapse of thousands of financial firms and banks
and eventually becoming a global crisis.

We analyze the role of contagion in two directions, vulnerability and
infectivity, and for this purpose, we propose a Multivariate Autore-
gressive Conditional Poisson model (MACP). Count processes seem to be
suitable models for this type of default contagion since default events are
measured by an integer number. We therefore model sectoral defaults as
a multivariate count process following Heinen and Rengifo (2007). The
use of this model allow us to estimate the degree of exposure of each
sector to firms' defaults from other sectors, which we call vulnerability.
Additionally, we are able to estimate the level of contagion that defaults
from one sector can transmit to firms in the remaining industry groups.

The rest of the paper is organized as follows. Section 2 presents the
historical data employed. In Section 3, we present our model to address
the vulnerability and infectivity facets of credit contagion that we define.
In Section 4, we present the main results of our analysis. Finally, Section
5 concludes the paper.

2. Data

In this paper, we use data on the debt default of firms domiciled in the
U.S. during the time period starting on January 1, 1996, and ending on
April 30, 2015. We identify default events using the Fixed Income Se-
curity Database (FISD) provided by Mergent, which includes rating his-
tory information from the three major credit rating agencies, Fitch,
4 Some exceptions can be made, which also constitutes one of the greatest
criticisms of CRAs in recent years, e.g., the mortgage-backed securities and
Enron major default events, for which CRAs had not assigned default credit
ratings a few days before they collapsed.
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Moody's and Standard& Poors. They provide rating classes (AAA, AA,…,
D) depending on the creditworthiness of the issuer, and we retrieve the
worst ratings for each rating agency that indicates an actual default.5 We
observe 5,078 bond defaults occurring over 1,126 days along the entire
examined period of 4,868 working days.6

Most of the issuers have more than one bond outstanding, and they
are sometimes rated by more than one CRA. In these cases, once any
issuance of a firm is downgraded, the rest of the securities outstanding
are also downgraded. Therefore, in order to consider multiple bond de-
faults on the same day as one firm default, we compute defaults at a firm
level. Moreover, we also avoid duplicated defaults when more than one
rating agency rates a firm. Additionally, in order to correct for those
consecutive firms' defaults that could not be independently caused by
parent-subsidiary relations, we disregard all defaults that occur within
two months7 surrounding any other default event from the same firm.8

Finally, we obtain a sample of 1,284 daily firms' defaults that affected
997 different issuers distributed over different industry-sector groups.

Fig. 1 shows the total number of firm credit defaults grouped per
month. The largest number of defaults over one month occurs in April
2009, with 31 credit defaults registered. This period corresponds to the
first months of the period of the recent global financial crisis that affected
a large number of countries all over the world. Likewise, we can observe
that the number of defaults seems to cluster around some of the crisis
episodes mentioned above, for example, December 2001, when the
Enron collapse occurred and the subsequent explosion of the dot-com
bubble, and October 2008, which marks the beginning of the global
financial crisis. In addition, we observe overdispersion of the distribution
of the daily counts of defaults, since the empirical average of our sample
is approximately 4.78 defaults per month, while the empirical variance is
35.62.

There is another particular feature of our data sample related to the
calendar day on which defaults tend to occur. Fig. 2 displays the distri-
bution of default counts, and we can see that most defaults occur at the
beginning and the middle of a month. This finding is consistent with the
characteristics of our data sample since corporate bonds use to fix their
corresponding coupon payments on the first and the fifteenth day of the
month. When a rated firm fails on its payments, the CRA or CRAs that
evaluate the creditworthiness of such a firm used to establish a grace
period between one and five business days before they assign a default
rating of either ‘D’ or ‘SD’.9 Although the tendency in Fig. 2 is to observe
defaults on days 2 and 16, which is in accordance with the periods in
which rating agencies assign rating defaults for failed firms, we do not
observe a large number of defaults on any particular calendar day; thus,
our results should not be biased by this feature.

To determine the existence and degree of the two transmission effects
derived from the credit contagion phenomena, i.e., vulnerability and
infectivity, we group the firms into the following industry sectors:
5 Fitch and Standard & Poors establish D as the worst rating, while Moody's
follows a different classification and provides a rating of C to bonds in default.
6 If a default occurs during a weekend or holidays, we consider the default to

be the date of the next working day.
7 Other authors, such as Lando and Nielsen (2010), employ a one-month

window of days to avoid potential interrelated defaults.
8 Since CRAs monitor credit rating assessments and re-rate the potential

defaulting firms within a period of one month on average, this procedure of
requiring a minimum period of two months between two consecutive defaults of
the same firm ensures us that defaults are being treated as independent default
events.
9 Note that this rating assessment could be provisional, which is why a firm

can suffer more than one rating default throughout its life. For instance, Stan-
dard and Poor's establishes different wide grace periods from one to five busi-
ness days and a maximum of 30 calendar days for missed payments before
assigning a rating of ‘D’ or ‘SD’ (see https://www.spratings.com/document
s/20184/774196/RatingsDirect_Commentary_1990483_Mar-06-2018_10_42.pdf
).
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industrial, financial, new technology, energy, utility, transportation and
other sectors. We consider these sectors the main and critical ones; they
can act as the major sources of the two contagion effects that we aim to
study. For example, the financial sector should be crucial in the financial
crisis and could act as a primary source of credit risk that could propagate
to other sectors. This also true of the energy sector during the Enron
crisis, in which credit problems could have started and then moved to the
other industries. Fig. 3 displays the distribution of the biweekly number
of defaults by main sectors. We observe that the sectors with the majority
of defaults are those of the industrial, financial and, to a lesser degree,
new technology sectors. Moreover, these sectors are predominant within
the twomain crises that cover our data sample. We can see that industrial
and new technology firms suffer most of the defaults during the years
2000–2003, whereas during the financial crisis period around 2008 and
2009, the vast number of defaults occur for financial companies. The late
2011 peak in the number of defaults in the transportation sector could be
explained by the fact that this sector had the highest number of defaults
in 2011, accounting for a total of eleven defaults during that year, with
two defaults in August and nine in November, including American
Airlines.

Table 1 shows the number of firm defaults distributed by industry
group. We observe that the default rate in the sample equals 1.29, indi-
cating that the number of defaults exceeds the number of firms.10 The
highest number of defaults occurs in firms within the industrial sector
(663 defaults); meanwhile, the sector with the lowest number of defaults
is the utility sector (13 defaults). The largest average number of defaults
occurs in the “other” group, with 18 different firms that present an
average number of 1.67 defaults per firm. On the other hand, the lowest
default rate by sector is for transportation, with an average of approxi-
mately 1.16 defaults per firm. This distribution of defaults is in accor-
dance with the higher number of industrial firms relative to other types of
firms and with the analyzed period that covers consecutive crises that
have, to a greater or lesser extent, affected the industrial field.

3. The model and the covariates

Our aim is to study the evolution of the number of defaults in the
various sectors and their interrelations. As such, our phenomenon is
measured by an integer number, so count processes appear to be an
appropriate model. We therefore model the sectoral defaults as a multi-
variate count process. Following Heinen and Rengifo (2007), we include
an autoregressive component to account for the peculiar time evolution
of the defaults (clusters and memory).

Consider a number K of sectors with K¼ 1, …, 7. Let Ni,t be the
number of firm defaults in sector i during fortnight t.11 We indicate {Nt}
the integer valued vector process or sectoral defaults, Nt2NK.

We model the count process {Nt} as a Multivariate Autoregressive
Conditional Poisson (MACP) (Heinen and Rengifo, 2007). Let {Ft} be a
filtration with respect to which the process {Nt} is adapted. The condi-
tional distribution of Ni,t is assumed to be Poisson.

Ni,t j Ft ~ Poi(λi,t), i¼ 1, …, K.

with time-varying conditional intensities λt 2RK,

λt ¼ ωþ
Xp

j¼1

AjNt�j þ
Xq

j¼1

Bjλt�j; (1)
10 Note that firms can suffer more than one credit rating default from their
issuances over several years, which is why the number of defaults exceeds the
number of firms.
11 According to the characteristics of our data sample shown in Fig. 2, we
consider biweekly data. We take the number of firm defaults within each fort-
night of each month, i.e., the number of defaults from the 1st to the 14th day of
the month and from the 15th to the last day of the month.

https://www.spratings.com/documents/20184/774196/RatingsDirect_Commentary_1990483_Mar-06-2018_10_42.pdf
https://www.spratings.com/documents/20184/774196/RatingsDirect_Commentary_1990483_Mar-06-2018_10_42.pdf


Fig. 1. Monthly number of defaults. This figure shows the aggregate number of defaults per month over the period starting on January 1996 and ending on April
2015, extracted from rating history information reported by Mergent's FISD database.

Fig. 2. Calendar day effects. This figure shows the aggregate number of defaults on a calendar day over the period starting on January 1996 and ending on April
2015, extracted from rating history information reported by Mergent's FISD database.
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where

ω 2 ℝK ; Nt 2 ℕK ; Aj;Bj 2 ℝðKxKÞ; 8j:
With full rank matrices A and B, great flexibility can be achieved at

the cost of a large number of parameters, which increases quickly with K.
For practical reasons, we limit the parameters' number setting p¼ q¼ 1,
and more importantly, we restrict the matrices A and B as follows (see
also Heinen and Rengifo, 2007)

A ¼ diagðaÞ þ γδ
0
; B ¼ diagðbÞ (2)

with a, b, γ, δ 2 ℝK column vectors. Moreover, in order to estimate the
values of γ and δ, we impose the following condition γK ¼ 1� PK�1

k¼1 γk.
Thanks to the formulation (2), we adopt the following interpretation

of the parameters: parameter aj measures the own effect of defaults in
sector j. It measures the impact of a firm default in one sector on the
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intensity of other firms' defaults within the same sector. Parameter bj
assesses the own memory effect of sector intensity λj. It measures the
persistence of the effect of a firm default within one specific sector. The
vector γ collects the multipliers of the off-diagonal elements of the rows
of matrix A. Hence, parameter γjmeasures the responsiveness of λj to firm
defaults in other sectors, which we refer to as sector vulnerability. The
entries of δ represent the multipliers of the off-diagonal elements of the
columns of matrix A. Therefore, δj measures the influence of Nj on the
other sectors' λs, which we refer to as sector infectivity.

To account for the effects of the exogenous variables on the count
process, we introduce the dependence of the intensity λt from some
variable Xt. Let {X} be the process collecting the time series of H exog-
enous variables (Xt 2 ℝH). Therefore, with p¼ q¼ 1, the time-varying
conditional intensities are

λt ¼ ωþ ANt�1 þ Bλt�1 þ CðXt�1Þ
0
; (3)



Fig. 3. Biweekly number of defaults by sector. This figure shows the number of defaults by fortnight in the main considered sectors over the period starting on
January 1996 and ending on April 2015, extracted from rating history information reported by Mergent's FISD database.

Table 1
Distribution of defaults. This table shows the distribution of the firms' defaults across sectors over the period from January 1996 to April 2015. IND, FIN, NTEC, ENE,
UTI, TRA, and OTH refer to the industrial, financial, new technology, energy, utility, transportation and other sectors, respectively. Defaults are obtained with data from
the FISD provided by Mergent.

IND FIN NTEC ENE UTI TRA OTH TOTAL

#defaults 663 231 169 106 13 72 30 1,284
#firms 528 156 138 86 9 62 18 997
Avg. #defaults per firm 1.26 1.48 1.22 1.25 1.44 1.16 1.67 1.29
Max. #defaults per firm 7 5 4 5 3 3 6 7
Min. #defaults per firm 1 1 1 1 1 1 1 1

12 The time series data on the GDP, RP, IP and LI and data to compute the Baa-
AAA spread are obtained from the Federal Reserve Economic Data (FRED)
website, provided by the Federal Reserve Bank of St. Louis, https://fred.stlouisf
ed.org/. The data to compute the 10Y-3m spread have been obtained from the
Federal Re serve (FED) web page, https://www.federalreserve.gov/data.htm.
Time series of the S&P500 Index and the VIX Index have been obtained from the
Investing and the Chicago Board Option Exchange (Cboe) websites: https
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where ω 2 ℝK ; Nt 2 ℕK ; A;B 2 ℝðKxKÞ;C 2 ℝKxH and the prime de-
notes the transposition to be consistent with the matrix product rules.
Because λt cannot take negative values, we explicitly add a non-negative
constraint on the values of λt.

As exogenous variables, we considered financial, real and macro-
economic indicators. The initial set of variables contains the following:

� The monthly Chicago Board Options Exchange Market Volatility
Index (VIX) in order to control for the uncertainty in financial
markets.

� The 10-year Treasury bond to 3-month Treasury bill monthly spread
(10Y-3m), which represents the slope of the yield curve, to capture
the appetite of investors for different maturities.

� The Baa to AAA Moody's rated monthly spread (Baa-AAA), which is
strongly indicative of fundamental factors affecting default risk pre-
mia and can be viewed as an indicator of market distress.

� The 1-month return on the S&P500 index (S&P), which also captures
financial market evolution.

� The real gross domestic product change from quarter one year ago
(GDP) in order to control for the effects caused by greater fluctuations
in general economic activity.

� The monthly smoothed recession probabilities (RP) in order to cap-
ture contracting economic cycles.

� The month-to-month change in the Industrial Production Index (IP) in
order to control for domestic economic conditions.
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� The monthly Leading Index (LI) in order to capture movements in
external market conditions influencing U.S. asset prices.12

The returns on the S&P500 index have been previously used in other
works, as in Duffie et al. (2007), Das et al. (2007), Lando and Nielsen
(2010), Kramer and L€offler (2010) and Agosto et al. (2016). The changes
in the Industrial Production Index have also been considered in Das et al.
(2007), Lando and Nielsen (2010) and Agosto et al. (2016). The Leading
Index has been used by Agosto et al. (2016). Similar to Lando and Nielsen
(2010) and Kramer and L€offler (2010), we use a spread between two
treasuries, the spread between the 10-year Treasury bond and the
3-month Treasury bill rates. Analogous to that in Agosto et al. (2016), we
include the VIX index to control for the uncertainty in financial markets
and the recession probabilities to control for business cycle expansions
and contractions.

Table 2 shows the correlations and variance inflation factors (VIFs)
among the exogenous variables. The Leading Index presents the largest
://www.investing.com/indices/us-spx-500, and http://www.cboe.com/pro
ducts/vix-index-volatility/vix-options-and-futures/vix-index/vix-historical-
data, respectively.

https://fred.stlouisfed.org/
https://fred.stlouisfed.org/
https://www.federalreserve.gov/data.htm
https://www.investing.com/indices/us-spx-500
https://www.investing.com/indices/us-spx-500
http://www.cboe.com/products/vix-index-volatility/
http://www.cboe.com/products/vix-index-volatility/
http://vix-options-and-futures/vix-index/vix-historical-data
http://vix-options-and-futures/vix-index/vix-historical-data


Table 2
Correlation matrix and variance inflation factors. This table shows the correlation matrix between the exogenous variables in Panel A and the variance inflation
factors (VIFs) for 3 sets of variables in Panel B. VIX, 10Y-3m, Baa-AAA, S&P, GDP, RP, IP and LI refer to the Chicago Board Options Exchange Market Volatility Index, the
10-year Treasury bond to 3-month Treasury bill spread, the Baa to AAAMoody's rated spread, the return on the S&P500 index, the real change in gross domestic product
change, the smoothed recession probabilities, the change in the Industrial Production Index, and the Leading Index, respectively. The time series data for the GDP, RP, IP
and LI and the data to compute the Baa-AAA spread are obtained from the Federal Reserve Economic Data (FRED) website, provided by the Federal Reserve Bank of St.
Louis, https://fred.stlouisfed.org/. The data to compute the 10Y-3m spread have been obtained from the Federal Reserve (FED) web page, https://www.federalreserv
e.gov/data.htm. Time series data for the S&P500 Index and the VIX Index have been obtained from the Investing and the Chicago Board Option Exchange (Cboe)
websites https://www.investing.com/indices/us-spx-500, and http://www.cboe.com/products/vix-index-volatility/vix-options-and-futures/vix-index/vix-historical-d
ata, respectively. The time series cover the period from January 1, 1996, to April 31, 2015.

VIX 10Y-3m Baa-AAA S&P GDP RP IP LI

Panel A. Correlations
VIX 1.00 0.15 �0.58 �0.40 �0.39 0.52 �0.29 �0.55
10Y-3m 0.15 1.00 �0.34 �0.03 �0.39 0.17 �0.03 �0.24
Baa-AAA �0.58 �0.34 1.00 0.14 0.75 �0.76 �0.06 0.79
S&P �0.40 �0.03 0.14 1.00 0.14 �0.21 �0.10 0.18
GDP �0.39 �0.39 0.75 0.14 1.00 �0.65 �0.16 0.81
RP 0.52 0.17 �0.76 �0.21 �0.65 1.00 0.02 �0.80
IP �0.29 �0.03 �0.06 �0.10 �0.16 0.02 1.00 0.00
LI �0.55 �0.24 0.79 0.18 0.81 �0.80 0.00 1.00
Panel B. Variance Inflation Factors
full set 2.40 1.29 4.16 1.34 4.00 3.30 1.38 5.45
set 1 2.35 1.26 4.07 1.34 2.66 2.64 1.36
set 2 1.83 2.96 1.21 2.76

Table 3
Model 0 parameter estimates for the whole sample. This table shows the main results from Equations (1) and (2) for the sample that comprises the period from
January 1996 to April 2015. IND, FIN, NTEC, ENE, UTI, and TRA refer to the industrial, financial, new technology, energy, utility, and transportation sectors,
respectively. The number of defaults are obtained with data from the FISD database provided by Mergent, Inc., and financial, real and macroeconomic data are obtained
from the FRED, FED, Investing and Cboe websites. Asymptotic standard errors are reported in parenthesis. The symbols ***, **, * and � indicate statistical significance at
the 0.1%, 1%, 5% and 10% levels, respectively.

IND FIN NTEC ENE UTI TRA

ω 0.0350* 0.0178* 0.0035 0.0063 0.0022 0.0311
(0.0173) (0.0081) (0.0039) (0.0142) (0.0061) (0.0207)

a 0.1598*** 0.1031*** 0.1501*** 0.0802* 0.0071 0.0061
(0.0282) (0.0221) (0.0391) (0.0366) (0.1225) (0.0478)

b 0.7881*** 0.8376*** 0.7782*** 0.7514*** 0.3959 0.4054*
(0.0167) (0.0310) (0.0547) (0.1125) (0.2921) (0.1925)

γ 0.1857 0.0686� 0.1145* 0.1890� 0.0948** 0.3474
(0.1669) (0.0360) (0.0575) (0.1060) (0.0338) (1.0000)

δ 0.0324 0.0537 0.1042** 0.1841*** 0.0099 0.0887
(0.0231) (0.0668) (0.0330) (0.0495) (0.2343) (0.0860)

logl �1966.9229
AIC 3991.8
BIC 4111.8
pseudo R2 0.2829
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correlation coefficients with other variables (see Panel A, Table 5).
Moreover, the LI displays a VIF larger than 5 in the full set, which sug-
gests that the level of directional connection among the independent
variables is significant. These relations can be explained by the compo-
sition of this index.13 As indicated by the Federal Reserve Economic Data
(FRED), the Leading Index is computed on the basis of variables that are
related to or coincide with the 10-year Treasury bond to 3-month Trea-
sury bill spread, the GDP quarterly change, the recession probability and
the Industrial Production Index. For this reason, we chose to compare 2
different sets of variables: set 1 contains all the exogenous variables
except the Leading Index, and set 2 includes the VIX, the Baa to AAA
Moody's spread, the S&P return and the Leading Index. Note that these
two sets of variables do not present extremely large correlation co-
efficients or VIF values. Additionally, to reduce some issues derived from
the different scales of the exogenous variables, their values have previ-
ously been standardized.

The same analysis of exogenous correlation and collinearity has been
13 See Federal Reserve Bank of Philadelphia, Leading Index for the United
States [USSLIND], retrieved from the FRED website, Federal Reserve Bank of St.
Louis; https://fred.stlouisfed.org/series/USSLIND, July 17, 2018.
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performed on the two subperiods 1996–2005 and 2006–2015, gener-
ating very similar results; for the sake of interest and space, we do not
report all details, but they are available upon request. Fig. 4 displays the
time series of the eight standardized exogenous variables.

4. Results

We estimate the MACPmodel using the data presented in Section 2 by
maximum likelihood. Some parameter constraints are imposed: ω� 0,
a� 0, b� 0, γ � 0, δ� 0, and the stationarity and positiveness of λt.

The analysis is performed for the time period from January 1996 to
April 2015, and as a robustness check, we carry out the same analysis on
two subsamples to isolate two large default clusters. The first one covers
the years from 1996 to 2005 and includes the “dot-com” bubble implo-
sion episode, and the second one comprises the period from 2006 to 2015
and includes the global financial crisis years.14

For each time interval, three models are estimated: Model 0, the
14 Notably, the Augmented Dickey-Fuller test performed on the number of
sector defaults N

t rejects the unit root hypothesis for all sectors, for the full
sample and for the two subperiods, at the 1% level.

https://fred.stlouisfed.org/
https://www.federalreserve.gov/data.htm
https://www.federalreserve.gov/data.htm
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http://products/vix-index-volatility/vix-options-and-futures/vix-index/vix-historical-data
http://products/vix-index-volatility/vix-options-and-futures/vix-index/vix-historical-data
https://fred.stlouisfed.org/series/USSLIND


Fig. 4. Standardized exogenous time series. This figure displays the time series of the exogenous variables considered in this study: the Chicago Board Options
Exchange Market Volatility Index (VIX), the 10-year Treasury bond to 3-month Treasury bill spread (10Y-3m), the Baa to AAA Moody's rated spread (Baa-AAA), the
return on the S&P500 index (S&P), the real change in gross domestic product change (GDP), the smoothed recession probabilities (RP), the change in the Industrial
Production Index (IP), and the Leading Index (LI). The time series data for the GDP, RP, IP and LI and the data to compute the Baa-AAA spread are obtained from the
Federal Reserve Economic Data (FRED) website, provided by the Federal Reserve Bank of St. Louis, https://fred.stlouisfed.org/. The data to compute the 10Y-3m
spread have been obtained from the Federal Reserve (FED) web page, https://www.federalreserve.gov/data.htm. Time series data for the S&P500 Index and the VIX
Index have been obtained from the Investing and the Chicago Board Option Exchange (Cboe) websites https://www.investing.com/indices/us-spx-500, and
http://www.cboe.com/products/vix-index-volatility/vix-options-and-futures/vix-index/vix-historical-data, respectively. The time series cover the period from
January 1, 1996, to April 31, 2015.
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Table 4
Model 1 parameter estimates for the whole sample. This table shows the main results from Equations (2) and (3) for the sample that comprises the period from
January 1996 to April 2015. IND, FIN, NTEC, ENE, UTI, and TRA refer to the industrial, financial, new technology, energy, utility, and transportation sectors,
respectively. The exogenous variables in the table are the same as appearing in Table 2. The number of defaults are obtained with data from the FISD database provided
by Mergent, Inc., and financial, real and macroeconomic data are obtained from the FRED, FED, Investing and Cboe websites. Asymptotic standard errors are reported in
parenthesis. The symbols ***, **, * and � indicate statistical significance at the 0.1%, 1%, 5% and 10% levels, respectively.

IND FIN NTEC ENE UTI TRA

Ω 0.0350 0.0178 0.0035 0.0063*** 0.0022*** 0.0311**
(0.0321) (0.0109) (0.0072) (0.0017) (0.0000) (0.0107)

a 0.1598** 0.1031* 0.1501*** 0.0802* 0.0071 0.0061
(0.0521) (0.0517) (0.0364) (0.0398) (0.1689) (0.0531)

b 0.7881*** 0.8375*** 0.7782*** 0.7514*** 0.3959*** 0.4054***
(0.0660) (0.0636) (0.1143) (0.0445) (0.0178) (0.0501)

γ 0.1857** 0.0686 0.1145 0.1890*** 0.0948*** 0.3474
(0.0635) (0.0597) (0.0955) (0.0530) (0.0266) (1.0000)

δ 0.0324*** 0.0537 0.1042*** 0.1841*** 0.0099 0.0887
(0.0081) (0.0329) (0.0113) (0.0403) (0.2716) (0.0811)

VIX 0.0042 0.0025 0.0012 0.0006 �0.0003*** 0.0002
(0.0181) (0.0105) (0.0064) (0.0041) (0.0000) (0.0188)

10Y-3m 0.0002 0.0009 �0.0003 0.0023 0.0014*** �0.0000
(0.0145) (0.0053) (0.0012) (0.0078) (0.0000) (0.0119)

Baa-AAA 0.0023 0.0015 0.0007 �0.0001 0.0001*** 0.0010
(0.0267) (0.0149) (0.0084) (0.0109) (0.0000) (0.0286)

S&P 0.0020 �0.0009 �0.0005 0.0011 0.0001*** 0.0000
(0.0255) (0.0158) (0.0055) (0.0131) (0.0000) (0.0183)

GDP 0.0039 �0.0010 0.0010 �0.0004 �0.0001*** 0.0007
(0.0260) (0.0116) (0.0119) (0.0119) (0.0000) (0.0208)

RP 0.0029 0.0047 0.0019 0.0002 �0.0002*** 0.0001
(0.0271) (0.0129) (0.0073) (0.0099) (0.0000) (0.0348)

IP 0.0012 0.0016 �0.0002 0.0019 0.0004*** 0.0007
(0.0141) (0.0071) (0.0042) (0.0047) (0.0000) (0.0333)

logl �1957.7515
AIC 4057.5
BIC 4351.3
pseudo R2 0.2864

Table 5
Model 2 parameter estimates for the whole sample. This table shows the main results from Equations (2) and (3) for the sample that comprises the period from
January 1996 to April 2015. IND, FIN, NTEC, ENE, UTI, and TRA refer to the industrial, financial, new technology, energy, utility, and transportation sectors,
respectively. The exogenous variables in the table are the same as appearing in Table 2. The number of defaults are obtained with data from the FISD database provided
by Mergent, Inc., and financial, real and macroeconomic data are obtained from the FRED, FED, Investing and Cboe websites. Asymptotic standard errors are reported in
parenthesis. The symbols ***, **, * and � indicate statistical significance at the 0.1%, 1%, 5% and 10% levels, respectively.

IND FIN NTEC ENE UTI TRA

ω 0.0329 0.0187� 0.0036 0.0000*** 0.0000 0.0293
(0.0223) (0.0098) (0.0056) (0.0000) (0.0065) (0.0528)

a 0.1591*** 0.0997*** 0.1434*** 0.0677** 0.0000 0.0000
(0.0294) (0.0295) (0.0399) (0.0223) (0.1522) (0.0441)

b 0.7894*** 0.8343*** 0.7875*** 0.7988*** 0.4129* 0.4386
(0.0402) (0.0387) (0.0529) (0.0000) (0.1750) (0.2917)

γ 0.1845 0.0731 0.1132 0.1788*** 0.1012 0.3493
(0.2379) (0.0639) (0.0779) (0.0000) (0.0698) (1.0000)

δ 0.0349*** 0.0525*** 0.0826*** 0.1806* 0.0001 0.1002***
(0.0000) (0.0000) (0.0000) (0.0785) (0.2382) (0.0028)

VIX 0.0043 0.0055 0.0033 0.0022*** �0.0003 �0.0003
(0.0131) (0.0063) (0.0036) (0.0000) (0.0148) (0.0193)

Baa-AAA �0.0015 �0.0043 0.0005 �0.0033*** 0.0003 0.0008
(0.0249) (0.0124) (0.0075) (0.0000) (0.0165) (0.0260)

S&P �0.0017 �0.0050 �0.0016 0.0042*** �0.0006 �0.0012
(0.0233) (0.0134) (0.0109) (0.0000) (0.0106) (0.0263)

LI �0.0020 �0.0052 �0.0009 0.0043*** 0.0004 0.0029
(0.0255) (0.0102) (0.0069) (0.0000) (0.0215) (0.0211)

logl �1955.2005
AIC 4016.4
BIC 4235.7
pseudo R2 0.2881
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model without exogenous variables; Model 1, the model with the
exogenous variables in set 1 (all exogenous variables, except the Leading
Index); andModel 2 the model with the exogenous variables in set 2 (the
VIX, the Baa to AAA Moody's spread, the S&P return, the Leading Index).
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4.1. Full sample

Tables 3–5 show the estimation results for the full sample
(1996–2015). We report the output of all three models, although the



Fig. 5. Model 0 estimated intensities for the whole sample. This figure displays the implied λs that are computed on the basis of the results displayed in Table 3 for
the whole sample. The intensities (bold lines) are compared to the actual number of defaults (thin lines).
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information criteria and the likelihood ratio test identify Model 0 as the
best one. A significant own effect (parameter a) is present in the indus-
trial, financial, new technology and energy sectors (this holds for all three
models). These are also the sectors with the largest number of defaults, as
shown in Table 1. Hence, in these sectors, the probability of a firm
suffering a default increases when another company in the same sector
suffers a default; i.e., there is a contagion effect within the industrial,
financial and new technology sectors.

If we look at the own memory effect (value of parameter b), we find
that the coefficient is highly statistically significant in the industrial,
384
financial, new technology and energy sectors; Model 1 indicates a sig-
nificant effect on all sectors. This result suggests that the effect derived
from a firm default tends to remain persistent over time within the firm's
sector, which could explain the clustering of defaults during some
periods.

Regarding the vulnerability effect (parameter γ), the three models
produce different results. All models find statistically significant loadings
for the energy sector, although the result is weak for Model 0. The utility
sector has a significant γ in Models 0 and 1; for the industrial sector, the
parameter γ is significant only in Model 1. These results indicate that



Table 6
Model 0 parameter estimates for the first subsample. This table shows the main results from Equations (1) and (2) for the sample that comprises the period from
1996 to 2005. IND, FIN,NTEC, ENE, UTI, and TRA refer to the industrial, financial, new technology, energy, utility, and transportation sectors, respectively. The number
of defaults are obtained with data from the FISD database provided by Mergent, Inc., and financial, real and macroeconomic data are obtained from the FRED, FED,
Investing and Cboe websites. Asymptotic standard errors are reported in parenthesis. The symbols ***, **, * and � indicate statistical significance at the 0.1%, 1%, 5%
and 10% levels, respectively.

IND FIN NTEC ENE UTI TRA

ω 0.0002 0.0096** 0.0000 0.0000 0.0000 0.0000
(0.0021) (0.0035) (0.0039) (0.0094) (0.0998) (0.0017)

a 0.1214*** 0.0000 0.1121* 0.1062** 0.0000 0.0000
(0.0338) (0.0200) (0.0535) (0.0402) (0.8222) (0.0185)

B 0.8770*** 0.9061*** 0.7889*** 0.7126*** 0.0001 0.9655***
(0.0061) (0.0428) (0.0672) (0.0791) (0.0132) (0.0039)

γ 0.0000 0.1496� 0.3226*** 0.2578 0.2251 0.0449
(0.1128) (0.0775) (0.0725) (0.2290) (0.1763) (1.0000)

δ 0.0475** 0.0533 0.1045** 0.0109 0.0000 0.0373***
(0.0171) (0.0649) (0.0355) (0.0751) (0.5786) (0.0081)

logl �1064.2020
AIC 2186.4
BIC 2290.1
pseudo R2 0.2493

Table 7
Model 1 parameter estimates for the first subsample. This table shows the main results from Equations (2) and (3) for the sample that comprises the period from
1996 to 2005. IND, FIN, NTEC, ENE, UTI, and TRA refer to the industrial, financial, new technology, energy, utility, and transportation sectors, respectively. The
exogenous variables in the table are the same as appearing in Table 2. The number of defaults are obtained with data from the FISD database provided by Mergent, Inc.,
and financial, real and macroeconomic data are obtained from the FRED, FED, Investing and Cboe websites. Asymptotic standard errors are reported in parenthesis. The
symbols ***, **, * and � indicate statistical significance at the 0.1%, 1%, 5% and 10% levels, respectively.

IND FIN NTEC ENE UTI TRA

ω 0.0002 0.0096 0.0000 0.0000 0.0000*** 0.0000
(0.0004) (0.0073) (0.0120) (0.0212) (0.0000) (0.0034)

a 0.1214*** 0.0000 0.1121 0.1062� 0.0000 0.0000
(0.0307) (0.0069) (0.1661) (0.0606) (1.8604) (0.0089)

b 0.8769*** 0.9061*** 0.7889*** 0.7126*** 0.0001*** 0.9655***
(0.0242) (0.0364) (0.1130) (0.0088) (0.0000) (0.0056)

γ 0.0000 0.1496*** 0.3226� 0.2578** 0.2251*** 0.0449
(0.0413) (0.0407) (0.1760) (0.0970) (0.0046) (1.0000)

δ 0.0475*** 0.0533 0.1045 0.0109 0.0000 0.0373
(0.0010) (0.0481) (0.0852) (0.0244) (0.1874) (0.0716)

VIX 0.0004 0.0003 0.0002 0.0001 �0.0001*** 0.0001
(0.0106) (0.0102) (0.0111) (0.0170) (0.0000) (0.0049)

10Y-3m �0.0001 �0.0000 0.0002 0.0000 �0.0000*** �0.0002
(0.0117) (0.0038) (0.0065) (0.0223) (0.0000) (0.0025)

Baa-AAA 0.0003 0.0004 0.0004 0.0003 0.0001*** 0.0002
(0.0302) (0.0175) (0.0358) (0.0405) (0.0000) (0.0082)

S&P 0.0003 0.0001 0.0001 0.0001 �0.0000*** 0.0000
(0.0153) (0.0151) (0.0491) (0.0243) (0.0000) (0.0097)

GDP 0.0003 0.0001 0.0005 0.0002 0.0001*** 0.0003
(0.0335) (0.0102) (0.0333) (0.0319) (0.0000) (0.0095)

RP 0.0018 0.0001 0.0002 0.0002 0.0001*** 0.0002
(0.0545) (0.0275) (0.0761) (0.0649) (0.0000) (0.0053)

IP �0.0000 �0.0000 �0.0000 0.0001 0.0000*** 0.0006
(0.0059) (0.0032) (0.0104) (0.0355) (0.0000) (0.0015)

logl �1062.2931
AIC 2266.6
BIC 2520.5
pseudo R2 0.2504

15 The pseudo R2 value is evaluated with respect to the Poisson model with
λi,t¼E [Ni,s, s t], i¼1, …, K; that is, for each sector, the intensity at time t equals
the average number of defaults up to time t.
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these industries are the sectors most vulnerable to defaults, meaning that
firms' defaults occurring in other sectors more strongly affect the
occurrence of defaults in the industrial, energy and utility sectors.

Moreover, the results for the infectivity effect suggest that the only
sector with a strong, significant contagion effect across all models is the
new technology sector. This finding indicates that firm defaults starting
in companies from the new technology sector more strongly affect de-
faults occurring in other firms from other sectors. Moreover, the energy
sector has a significant coefficient, although it is weak for Model 0. The
industrial sector has a significant coefficient in Models 1 and 2, and the
financial sector has a significant coefficient in Model 0 (weak) and
Model 2.
385
Finally, the exogenous variables do not seem to have a substantial
contribution. In fact, the information criteria and the likelihood ratio test
indicate that the model without exogenous variables is the best one.
Moreover, the pseudo R2 value weakly increases from Model 0 to the
models with exogenous variables.15 Moreover, the finding of significant
exogenous effects for the utility sector in Model 1 and for the energy
sector in Model 2 may indicate the undesirable instability of the



Table 8
Model 2 parameter estimates for the first subsample. This table shows the main results from Equations (2) and (3) for the sample that comprises the period from
1996 to 2005. IND, FIN, NTEC, ENE, UTI, and TRA refer to the industrial, financial, new technology, energy, utility, and transportation sectors, respectively. The
exogenous variables in the table are the same as appearing in Table 2. The number of defaults are obtained with data from the FISD database provided by Mergent, Inc.,
and financial, real and macroeconomic data are obtained from the FRED, FED, Investing and Cboe websites. Asymptotic standard errors are reported in parenthesis. The
symbols ***, **, * and � indicate statistical significance at the 0.1%, 1%, 5% and 10% levels, respectively.

IND FIN NTEC ENE UTI TRA

ω 0.0002 0.0096 0.0000 0.0000 0.0000*** 0.0000
(0.0006) (0.0354) (0.0227) (0.0160) (0.0000) (0.0037)

a 0.1214*** 0.0000 0.1121 0.1062** 0.0000 0.0000
(0.0268) (0.0296) (0.0865) (0.0331) (1.1429) (0.0273)

b 0.8770*** 0.9061*** 0.7889*** 0.7126*** 0.0001*** 0.9655***
(0.0270) (0.0369) (0.0870) (0.0436) (0.0000) (0.0186)

γ 0.0000 0.1496 0.3226 0.2578* 0.2251*** 0.0449
(0.0418) (0.1859) (0.2703) (0.1031) (0.0046) (1.0000)

δ 0.0475*** 0.0533 0.1045 0.0109 0.0000 0.0373
(0.0010) (0.0775) (0.1472) (0.0650) (0.4276) (0.0416)

VIX 0.0004 0.0004 0.0002 0.0001 �0.0000*** 0.0001
(0.0069) (0.0128) (0.0089) (0.0034) (0.0000) (0.0036)

Baa-AAA 0.0003 0.0004 0.0005 0.0002 0.0000*** 0.0002
(0.0250) (0.0116) (0.0182) (0.0175) (0.0000) (0.0030)

S&P 0.0002 0.0001 0.0001 0.0001 �0.0000*** 0.0000
(0.0127) (0.0138) (0.0144) (0.0222) (0.0000) (0.0178)

LI 0.0011 0.0001 0.0005 0.0001 0.0000*** 0.0002
(0.0247) (0.0074) (0.0283) (0.0269) (0.0000) (0.0103)

logl �1060.0261
AIC 2226.1
BIC 2415.6
pseudo R2 0.2491
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estimation procedure.
We can see in Fig. 5 that, principally for the sectors with the largest

number of defaults, the estimated intensity closely follows the evolution
of the default time series. In addition, if we look at the first half of the
sample, the second sector in terms of intensity is the new technology
sector. By contrast, in the second half of the sample, the financial sector is
the second leading sector in terms of intensity. This result suggests that
the model is able to detect the overall difference between the two main
default clusters of recent decades, i.e., the dot-com bubble implosion
driven by new technology sector and the global financial crisis driven by
the financial sector.

The implied λs for Models 1 and 2 are reported in Figures A.1 and A.2
in the Technical Appendix. Note that the inclusion of the exogenous does
not add a visible contribution. Moreover, Table A.1, panel A and
Figure A.7 show the result for Model 0 with the restrictions γ ¼ δ¼ 0, i.e.
no infectivity and contagion effects. We remark that the likelihood ratio
test rejects the restrictions.
4.2. Period from 1996 to 2005

The results from the first subsample (1996–2005) are displayed in
Tables 6–8. According to our findings, the industrial and energy sectors
present a significant own effect across all models; however, the own ef-
fect is significant for the new technology sector only in Model 0. Again,
these are the sectors with the largest number of defaults. These results
suggest that the model is able to detect an intrasectoral contagion effect.
The coefficient of the own memory effect is statistically significant for all
sectors except the utility sector, only in Model 0. In this case, the intensity
of defaults seems to persist over time in almost all sectors.

However, concerning the vulnerability effect, the models do not
agree: Model 0 has a significant γ parameter for the new technology
sector but a barely significant one for the financial sector. The other two
models provide different results. During this period, which includes the
dot-com bubble implosion, the new technology sector seems to have
suffered from a vulnerability effect coming from defaults in other sectors.
In addition, we find that coefficients of the infectivity effect are statisti-
cally significant for the industrial sector across all models, whereas
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Model 0 indicates a significant effect for the new technology and trans-
portation sectors. This result indicates that firm defaults in these sectors
are contagious to other firms belonging to other sectors. Finally, all of the
considered exogenous variables are statistically significant only for the
utility sector, but with very small coefficient values. However, Model
0 with no exogenous turns out to be the best one concerning the infor-
mation criteria and the likelihood ratio test.

Fig. 6 plots the implied λs for the first subsample (1996–2005). We
emphasize that whenwe restrict the sample to the first half, the relevance
of default intensity for new technology firms is confirmed, since the
largest peaks in the values of the implied λs occur around the beginning
and middle of 2002. Also in this subperiod, the estimated intensity
closely follows the evolution of the default time series.

The implied λs for Models 1 and 2 are reported in Figures A.3 and A.4
in the Technical Appendix. Note that the inclusion of the exogenous does
not add a visible contribution. Moreover, Table A.1, panel B and
Figure A.9 show the result for Model 0 with the restrictions γ ¼ δ¼ 0, i.e.
no infectivity and contagion effects. We remark that the likelihood ratio
test rejects the restrictions.
4.3. Period from 2006 to 2015

In Tables 9–11, we show the main results for the second subsample
from January 2006 to April 2015. Notably, a significant own effect is
present in the industrial, financial, new technology and energy sectors.
The results are quite stable across models. In this case, it is also confirmed
that these sectors have the largest number of defaults. Therefore, the
model performs well in detecting intrasectoral contagion effects, similar
to its performance in the first subsample. Additionally, the own memory
is significant for all sectors except the transportation sector. We remark
that in this period, al-most all sectors are significantly vulnerable, and all
sectors are significantly contagious. This result is quite consistent across
models. Finally, information criteria and likelihood ratio tests also indi-
cate that the best model is the one without exogenous variables. We note
that all exogenous effects are significant for the utility sectors in Model 1,
but none of them is significant in Model 2.

In Fig. 7, we display the estimation results for this subsample



Fig. 6. Model 0 estimated intensities in the period 1996–2005. This figure displays the implied λs that are computed on the basis of the results displayed in
Table 6. The intensities (bold lines) are compared to the actual number of defaults (thin lines).

A. Escribano, M. Maggi Economic Modelling 82 (2019) 376–400
(2006–2015). We remark that when we restrict the sample to the second
half, the relevance of the default intensity for the financial sector is
confirmed, as we can observe that the implied λs increase dramatically
around the end of 2008 and the beginning of 2009.

The implied λs for Models 1 and 2 are reported in Figures A.5 and A.6
in the Technical Appendix. Note that the inclusion of the exogenous does
not add a visible contribution. Moreover, Table A.1, panel C and
Figure A.9 show the result for Model 0 with the restrictions γ ¼ δ¼ 0, i.e.
no infectivity and contagion effects. We remark that the likelihood ratio
test rejects the restrictions.
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5. Conclusions

This paper analyzes credit rating default dependencies in a multi-
sectoral framework. Using Mergent's FISD database, we study the default
series in the U.S. over the last two decades, disaggregating defaults by
industry-sector groups. During this period, two main waves of default
occurred: the implosion of the “dot-com” bubble and the global financial
crisis. We estimate a Multivariate Autoregressive Conditional Poisson
(MACP) model on the number of defaults in a fortnight that have
occurred in different sectors of the economy.



Table 9
Model 0 parameter estimates for the second subsample. This table shows the main results from Equations (1) and (2) for the sample that comprises the period from
2006 to 2015. IND, FIN,NTEC, ENE, UTI, and TRA refer to the industrial, financial, new technology, energy, utility, and transportation sectors, respectively. The number
of defaults are obtained with data from the FISD database provided by Mergent, Inc., and financial, real and macroeconomic data are obtained from the FRED, FED,
Investing and Cboe websites. Asymptotic standard errors are reported in parenthesis. The symbols ***, **, * and � indicate statistical significance at the 0.1%, 1%, 5%
and 10% levels, respectively.

IND FIN NTEC ENE UTI TRA

ω 0.0000 0.0059*** 0.0004*** 0.0088*** 0.0000*** 0.0112***
(0.0000) (0.0010) (0.0000) (0.0003) (0.0000) (0.0029)

a 0.3656*** 0.0914** 0.0785*** 0.1131*** 0.0009 0.0010
(0.0235) (0.0282) (0.0075) (0.0053) (0.2458) (0.0146)

b 0.7062*** 0.7722*** 0.4669*** 0.3260*** 0.4378� 0.8984***
(0.0262) (0.0283) (0.0070) (0.0072) (0.2451) (0.0107)

γ 0.0013*** 0.2780*** 0.2437*** 0.4368*** 0.0403*** 0.0000
(0.0000) (0.0074) (0.0022) (0.0049) (0.0048) (1.0000)

δ 0.2133*** 0.0001*** 0.0082*** 0.0007*** 0.1378*** 0.0000***
(0.0099) (0.0000) (0.0000) (0.0000) (0.0049) (0.0000)

logl �920.2687
AIC 1898.5
BIC 1994.0
pseudo R2 0.1658

Table 10
Model 1 parameter estimates for the seconds subsample. This table shows the main results from Equations (2) and (3) for the sample that comprises the period from
2006 to 2015. IND, FIN, NTEC, ENE, UTI, and TRA refer to the industrial, financial, new technology, energy, utility, and transportation sectors, respectively. The
exogenous variables in the table are the same as appearing in Table 2. The number of defaults are obtained with data from the FISD database provided by Mergent, Inc.,
and financial, real and macroeconomic data are obtained from the FRED, FED, Investing and Cboe websites. Asymptotic standard errors are reported in parenthesis. The
symbols ***, **, * and � indicate statistical significance at the 0.1%, 1%, 5% and 10% levels, respectively.

IND FIN NTEC ENE UTI TRA

ω 0.0000 0.0059 0.0004*** 0.0088*** 0.0000*** 0.0112***
(0.0000) (0.0049) (0.0000) (0.0012) (0.0000) (0.0018)

a 0.3656*** 0.0914*** 0.0785 0.1131** 0.0009 0.0010
(0.0490) (0.0099) (0.0632) (0.0356) (0.0072) (0.0117)

b 0.7062*** 0.7722*** 0.4669*** 0.3260*** 0.4378*** 0.8984***
(0.0500) (0.1484) (0.0630) (0.0661) (0.0002) (0.0123)

γ 0.0013 0.2780* 0.2437* 0.4368*** 0.0403*** 0.0000
(0.0052) (0.1063) (0.1114) (0.0465) (0.0000) (1.0000)

δ 0.2133*** 0.0001 0.0082*** 0.0007*** 0.1378 0.0000***
(0.0139) (0.0001) (0.0000) (0.0001) (0.1471) (0.0000)

VIX �0.0061 0.0010 0.0002 �0.0001 0.0002*** 0.0023
(0.0459) (0.0150) (0.0683) (0.0157) (0.0000) (0.0081)

10Y-3m �0.0060 0.0007 �0.0007 0.0014 0.0002*** 0.0014
(0.0245) (0.0065) (0.0277) (0.0195) (0.0000) (0.0092)

Baa-AAA 0.0000 0.0028 0.0017 0.0007 0.0002*** 0.0004
(0.0427) (0.0272) (0.0192) (0.0145) (0.0000) (0.0114)

S&P 0.0021 0.0006 �0.0012 0.0006 0.0002*** 0.0001
(0.0518) (0.0305) (0.0582) (0.0154) (0.0000) (0.0248)

GDP 0.0028 0.0017 �0.0008 0.0006 �0.0000*** 0.0011
(0.0505) (0.0449) (0.0249) (0.0268) (0.0000) (0.0114)

RP �0.0004 0.0039 �0.0009 0.0004 �0.0001*** �0.0005
(0.0317) (0.0113) (0.0310) (0.0224) (0.0000) (0.0169)

IP 0.0075 0.0007 0.0023 0.0012 0.0002*** 0.0001
(0.0309) (0.0143) (0.0299) (0.0092) (0.0000) (0.0110)

logl �917.6704
AIC 1977.3
BIC 2211.2
pseudo R2 0.1684

Table 11
Model 2 parameter estimates for the second subsample. This table shows the main results from Equations (2) and (3) for the sample that comprises the period from
2006 to 2015. IND, FIN, NTEC, ENE, UTI, and TRA refer to the industrial, financial, new technology, energy, utility, and transportation sectors, respectively. The
exogenous variables in the table are the same as appearing in Table 2. The number of defaults are obtained with data from the FISD database provided by Mergent, Inc.,
and financial, real and macroeconomic data are obtained from the FRED, FED, Investing and Cboe websites. Asymptotic standard errors are reported in parenthesis. The
symbols ***, **, * and � indicate statistical significance at the 0.1%, 1%, 5% and 10% levels, respectively.

IND FIN NTEC ENE UTI TRA

ω 0.0000 0.0059*** 0.0004*** 0.0088*** 0.0000*** 0.0112***
(0.0000) (0.0007) (0.0000) (0.0000) (0.0000) (0.0027)

a 0.3656*** 0.0914* 0.0785*** 0.1131*** 0.0009 0.0010
(0.0172) (0.0366) (0.0060) (0.0059) (0.1642) (0.0183)

b 0.7062*** 0.7722*** 0.4669*** 0.3260*** 0.4378** 0.8984***
(0.0193) (0.0368) (0.0060) (0.0085) (0.1641) (0.0102)

γ 0.0013*** 0.2780*** 0.2437*** 0.4368*** 0.0403*** 0.0000
(0.0000) (0.0029) (0.0137) (0.0058) (0.0024) (1.0000)

δ 0.2133*** 0.0001*** 0.0082*** 0.0007*** 0.1378*** 0.0000***

(continued on next page)
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Table 11 (continued )

IND FIN NTEC ENE UTI TRA

(0.0041) (0.0000) (0.0000) (0.0000) (0.0061) (0.0000)
VIX �0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

(0.0000) (0.0182) (0.0383) (0.0143) (0.0355) (0.0055)
Baa-AAA �0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

(0.0000) (0.0217) (0.0067) (0.0123) (0.0202) (0.0081)
S&P 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

(0.0000) (0.0338) (0.0335) (0.0115) (0.0463) (0.0092)
LI 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

(0.0000) (0.0193) (0.0333) (0.0184) (0.0408) (0.0060)
logl �920.2516
AIC 1946.5
BIC 2121.0
pseudo R2 0.1658

Fig. 7. Model 0 estimated intensities in the period 2006–2015. This figure displays the implied λs that are computed on the basis of the results displayed in
Table 9. The intensities (bold lines) are compared to the actual number of defaults (thin lines).
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Our results show that the model is able to describe the default time
series and allows a consistent interpretation of the two main waves of
defaults in recent decades. In general, the persistence of λs is significant,
and this helps to explain default clustering.

We also discuss the contagion effect between sectors in two ways: the
degree of transmission of the probability of default from one sector to an-
other, i.e., the “infectivity” of the sector, and the degree of contagion of
one sector from another, i.e., the “vulnerability” of the sector. We find
that the own effects, i.e., intrasectoral contagion, are significant in the
sectors with the largest number of defaults. For these sectors, the own
effect seems to be more important than intersectoral contagion in
explaining the time series of the defaults.

To better detect intersectoral contagion, we split the sample into two
subsamples. The separate analysis of the two subperiods sheds light on
the sectoral dependencies, since we observe some differences between
390
the sectors' relations during the first and second parts of our sample. In
fact, for the full sample, these effects can be difficult to disentangle,
probably because of the divergent nature of the twomain default clusters.

In the first subperiod, the selected model detects the infectivity and
vulnerability of the new technology sector. This finding was expected,
although the result is not stable across the model specifications. Instead,
in the second subsample, a general result to highlight is that in this
period, all sectors seem interconnected with regard to infectivity and
vulnerability. This result can be interpreted as a feature of the global
financial crisis, whose effects spread throughout the whole economy,
affecting every sector.

Finally, we add to the analysis some exogenous variables and evaluate
their contribution to the goodness of fit. However, the inclusion of these
variables does not appear to indicate a relevant contribution to the
goodness of fit of the model.
Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.econmod.2019.01.020.
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A. Technical Appendix

This appendix collects some additional estimation results, concerning model specifications with worse performances than the one presented in the
main part of the paper.
A.1. Models 1 and 2 results

Figures from A.1 to A.6 show the implied λs for Models 1 and 2. Remark that the behaviors are very close to the ones obtained by Model 0, therefore,
the inclusion of the exogenous does not seem to add a visible contribution.
A.2. No infectivity and contagion

Table A.1 and Figures A.7, A.8 and A.9 report the results of the estimation of a restricted model with γ ¼ δ¼ 0. Information criteria and likelihood
ratio tests indicate that the restrictions are rejected. This means that the infectivity and contagion effects are significant and help in explaining the
phenomenon at study.
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Fig. A.1. Implied λs for Model 1, entire period (1996–2015). Bold lines refer to the intensities and thin lines to the actual number of defaults.
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Fig. A.2. Implied λs for Model 2, entire period (1996–2015). Bold lines refer to the intensities and thin lines to the actual number of defaults.
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Fig. A.3. Implied λs for Model 1, first period (1996–2005). Bold lines refer to the intensities and thin lines to the actual number of defaults.
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Fig. A.4. Implied λs for Model 2, first period (1996–2005). Bold lines refer to the intensities and thin lines to the actual number of defaults.
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Fig. A.5. Implied λs for Model 1, second period (2006–2015). Bold lines refer to the intensities and thin lines to the actual number of defaults.
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Fig. A.6. Implied λs for Model 2, second period (2006–2015). Bold lines refer to the intensities and thin lines to the actual number of defaults.
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Fig. A.7. Implied λs for Model 0, restricted to γ ¼ δ¼ 0, entire period (1996–2015). Bold lines refer to the intensities and thin lines to the actual number of defaults.
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Fig. A.8. Implied λs for Model 0, restricted to γ ¼ δ¼ 0, first period (1996–2005). Bold lines refer to the intensities and thin lines to the actual number of defaults.
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Fig. A.9. Implied λs for Model 0, restricted to γ ¼ δ¼ 0, second period (2006–2015). Bold lines refer to the intensities and thin lines to the actual number of defaults.
Table A.1
Model 0, restricted to γ ¼ δ¼ 0, parameter estimates for the three considered time periods. This table shows the main results from Equations (1) and (2). IND, FIN,
NTEC, ENE, UTI, TRA refer to industrial, financial, new technology, energy, utility, and transportation sectors, respectively. The number of defaults are obtained with
data from the FISD database provided by the Mergent, Inc., and financial, real and macroeconomic data are obtained from the FRED, the FED, the Investing and the Cboe
web pages. Asymptotic standard errors are reported in parenthesis. The codes ***, **, * and � indicate statistical significance at 0.1%, 1%, 5% and 10% levels,
respectively.

Entire period (1996–2015)
399
IND
 FIN
 NTEC
 ENE
 UTI
 TRA
Panel A.

ω
 0.0341�
 0.0231**
 0.0130*
 0.0227
 0.0008
 0.0041�
(0.0183)
 (0.0086)
 (0.0059)
 (0.0254)
 (0.0012)
 (0.0023)

a
 0.1661***
 0.1068***
 0.1720***
 0.1226�
 0.0205�
 0.0420***
(0.0294)
 (0.0240)
 (0.0405)
 (0.0628)
 (0.0112)
 (0.0124)

b
 0.8032***
 0.8441***
 0.7863***
 0.7783***
 0.9493***
 0.9282***
(0.0353)
 (0.0299)
 (0.0496)
 (0.1550)
 (0.0416)
 (0.0180)

logl
 �1991.6037

AIC
 4019.2

BIC
 4093.7
(continued on next column)
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Table A.1 (continued )
Entire period
400
(1996–2015)
IND
 FIN
 NTEC
 ENE
 UTI
 TRA
Panel B. First period (1996–2005)

ω
 0.0000
 0.0000***
 0.0742
 0.0625**
 0.0427**
 0.0032
(0.0000)
 (0.0000)
 (0.0703)
 (0.0239)
 (0.0142)
 (0.0030)

a
 0.1145***
 1.3758***
 0.3977**
 0.3232***
 0.0184
 0.1707*
(0.0209)
 (0.0124)
 (0.1243)
 (0.0813)
 (0.0314)
 (0.0749)

b
 0.8853***
 0.4785***
 0.5014*
 0.3612*
 0.0016
 0.8128***
(0.0209)
 (0.0146)
 (0.2031)
 (0.1615)
 (0.0182)
 (0.0857)

logl
 �1288.1807

AIC
 2612.4

BIC
 2676.7

Panel C. Second period (2006–2015)

ω
 0.0000
 0.0138
 0.0005*
 0.0134***
 0.9864***
 0.0472***
(0.0000)
 (0.0105)
 (0.0002)
 (0.0026)
 (0.0760)
 (0.0132)

a
 1.3131***
 0.0505**
 0.1031***
 0.1416***
 0.0009
 0.0020
(0.0000)
 (0.0162)
 (0.0210)
 (0.0332)
 (0.2275)
 (0.0461)

b
 0.1649***
 0.9240***
 0.6698***
 0.4140***
 0.4369***
 0.7823***
(0.0000)
 (0.0156)
 (0.0468)
 (0.1046)
 (0.0079)
 (0.0231)

γ
 0.0000***
 0.0000***
 0.0000***
 0.0000***
 0.0000***
 0.0000
(0.0000)
 (0.0000)
 (0.0000)
 (0.0000)
 (0.0000)
 (1.0000)

δ
 0.0000***
 0.0000***
 0.0000***
 0.0000***
 0.0000***
 0.0000***
(0.0000)
 (0.0000)
 (0.0000)
 (0.0000)
 (0.0000)
 (0.0000)

logl
 �11466.9748

AIC
 22969.9

BIC
 23029.2
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