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Abstract 

 The cerebellum is involved in learning and memory of sensory motor skills. However, the 

way this process takes place in local microcircuits is still unclear. The initial proposal, that was  

casted into the Motor Learning Theory, suggested that learning had to occur at the parallel fiber – 

Purkinje cell synapse under supervision of climbing fibers. However, the uniqueness of this 

mechanism has been questioned and multiple forms of long-term plasticity have been revealed at 

various locations in the cerebellar circuit, including synapses and neurons in the granular layer, 

molecular layer and deep-cerebellar nuclei. At present, more than 15 forms of plasticity have been 

reported. There has been a long debate on which plasticity is more relevant to specific aspects of 

learning, but this question turned out to be hard to answer using physiological analysis alone. 

Recent experiments and models making use of closed-loop robotic simulations are revealing a 

radically new view: one single form of plasticity is insufficient while altogether the different forms 

of plasticity can explain the multiplicity of properties characterizing cerebellar learning. These 

include multi-rate acquisition and extinction, reversibility, self-scalability and generalization. 

Moreover, when the circuit embeds multiple forms of plasticity, it can easily cope with multiple 

behaviors endowing therefore the cerebellum with the properties needed to operate as an effective 

generalized forward controller.  
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Introduction 
The cerebellum is involved in the acquisition of procedural memory and several attempts 

have been done at linking cerebellar learning to the underlying neuronal circuit mechanisms. The 

first hypothesis was proposed within the Motor Learning Theory, which indicated that some form of 

LTD or LTP (Albus, 1971; Marr, 1969) had to occur at the parallel fiber - Purkinje cell (PF-PC) 

synapse under guidance of the CFs, which were assumed to convey an error signal. Following the 

demonstration that a form of PF-PC LTD compatible with theory actually exists (Ito & Kano, 

1982), many other works have reported that several forms of synaptic and non-synaptic plasticity 

exist in the cerebellum. Now synaptic plasticity is known to be distributed in the granular layer, 

molecular layer and deep cerebellar nuclei (DCN) (D'Angelo, 2014; Gao et al., 2012; Hansel et al., 

2001a) involving both excitatory and inhibitory synaptic transmission as well as neuronal intrinsic 

excitability. Most of these different forms of plasticity eventually impinge on three main neurons, 

namely granule cells (GrCs), PCs, and DCN cells, which act as nodes integrating excitatory and 

inhibitory plasticity. 

These new findings have complicated rather than clarified the issue of how the cerebellum 

might learn and store information using its internal circuitry. At present, there is not yet agreement 

about the type of information conveyed by the climbing fibers into the cerebellum or about their 

potential role. The Marr-Albus theory maintains that climbing fibers carry either an error signal 

related to directional information (Kawato & Gomi, 1992) or a binary teaching signal (De Gruijl et 

al., 2012; Houk et al., 1993). Conversely, considering the periodic nature of climbing fiber activity, 

others (Llinas et al., 1997) maintain that IO activity is related with the timing of movement. 

However, investigations in which this periodicity was not observed (Keating & Thach, 1995) 

suggested that the climbing fiber activity was correlated with the onset of movements. The 

controversy extends to IO functional properties, which are not yet univocally defined (Bengtsson & 

Hesslow, 2006; De Zeeuw et al., 1998; Van Der Giessen et al., 2008). Finally, the different 

cerebellar plasticity mechanisms recently observed in the cerebellum and related nuclei suggest that 

motor learning may not be exclusively related to climbing fiber activity (D'Angelo, 2011; D'Angelo 

et al., 2010; Hansel et al., 2001c; Ohtsuki et al., 2009). Alternative hypotheses have suggested an 

important role for plasticity in the DCN (Medina & Mauk, 1999) or in the vestibular nuclei (Yang 

& Lisberger, 2013). However, no clues were given to integrate the role of all the different plasticity 

mechanisms into a coherent view.  

When trying to face this issue, a fundamental question emerges: how could the role of 

multiple plasticity mechanisms be determined within a complex system of circuit loops transporting 

feed-back signals related to ongoing behavior? Recently, the problem has been faced through two 

series of experiments, in which the cerebellar circuit was engaged in learning tasks during closed-

loop signal processing.  

In a first set of tests, eye-blink classical conditioning (EBCC) was elicited in humans and its 

effectiveness was impaired using TMS (Hoffland et al., 2012; Monaco et al., 2014), which proved 

able to alter specific learning components and cerebellar subcircuits. In the second set of tests, the 

cerebellar circuit was reconstructed using detailed models of neurons and synapses (Solinas et al., 

2010). Then, the models were adapted and inserted into robotic control systems capable of 

reproducing the same behaviors that are known to engage cerebellar learning in leaving beings 

(Casellato et al., 2014; Casellato et al., 2013; Casellato et al., 2012; Garrido et al., 2013a; Garrido 

et al., 2013c; Luque et al., 2014a). These robotic tests allowed a direct assessment of the way the 



cerebellum might use distributed plasticity to process incoming information and generate an 

internal memory useful to drive sensori-motor adaptation.  

 

Distributed plasticity in the cerebellar network 

Recent reviews have been dealt with the multiple long-term forms of plasticity (at least 15 

synaptic and 3 of intrinsic excitability) discovered in the cerebellar circuit (D'Angelo, 2014; Gao et 

al., 2012; Hansel et al., 2001a; Mapelli et al., 2015). Here we report a brief summary of the major 

forms of plasticity experimentally observed in the cerebellum (Fig.1): 

 

  In the granular layer, synaptic plasticity has been described at the mossy fiber (MF) to 

granule cell (GrC) relay, as long-term potentiation (LTP) (D'Angelo et al., 1999; D'Angelo et al., 

2005; Sola et al., 2004) and long-term depression (LTD) (D'Errico et al., 2009; Gall et al., 2005). 

LTP and LTD have been also observed in vivo (Diwakar et al., 2011; Roggeri et al., 2008). MF-

GrC LTP proved dependent on NMDAR (D'Angelo et al., 1999) activation and showed a 

presynaptic expression probably mediated by NO release from GrCs (Maffei et al., 2002; Maffei et 

al., 2003). According to the Bienenstock-Cooper-Munro (BCM) plasticity rule (Bienenstock et al., 

1982), LTP and LTD induction correlated with stimulus duration and frequency through a 

postsynaptic calcium-dependent mechanism (D'Errico et al., 2009; Gall et al., 2005) with a sliding 

threshold controlled by neuromodulators (Prestori et al., 2013). Forms of plasticity in the Golgi cell 

inhibitory loop remain hypothetical at the present (except for some evidence for LTD at the PF-

GoC synapse; (Robberechts et al., 2010)), although modeling predictions suggested they may 

provide a powerful regulatory mechanism (Garrido et al., 2013c).  

 

 In the molecular layer, synaptic plasticity has been described in multiple forms at the 

parallel fiber to Purkinje cell (PF-PC) synapse, parallel fiber to molecular layer interneuron (PF-

MLI) synapse and molecular interneuron - Purkinje cell (MLI-PC) synapse. At the PF-PC 

connection, several forms of plasticity have been observed: presynaptic LTP (Crepel & Jaillard, 

1990; Shibuki & Okada, 1992), presynaptic LTD (Qiu & Knöpfel, 2007), postsynaptic LTP 

(Coesmans et al., 2004b; Lev-Ram et al., 2002), postsynaptic LTD (Hartell, 2002; Wang & Linden, 

2000; Xia et al., 2000). The postsynaptic forms of LTP and LTD have been reported to be 

bidirectional according to an inverse BCM plasticity rule. Moreover, while postsynaptic PF-PC 

LTD is generally assumed to require paired climbing fiber (CF) activation, this may not be an 

absolute requirement in some cases (Ohtsuki et al., 2009). Although PF-PC plasticity has been 

observed in vivo (Ito, 1972; Ito, 1989; Ramakrishnan & D'Angelo, 2012), it is not clear whether all 

these forms of plasticity are present in vivo and cooperate in regulating PC activity state. 

 A form of climbing fiber - Purkinje cell (CF-PC) plasticity has been reported and suggested 

to play a pivotal role in controlling the PF-PC state of activity. CF induced complex spikes in PCs 

are an important source of intracellular calcium that can determine the direction of plasticity at the 

PF-PC synapse. Indeed, CF-PC LTD (Shen et al., 2002) was shown to affect the probability of 

postsynaptic LTP and LTD induction at the PF-PC synapses (Coesmans et al., 2004b). 

PF-MLI LTP (Bender et al., 2009) and LTD (Soler-Llavina & Sabatini, 2006), respectively pre- and 

postsynaptically expressed, have been described. Interestingly, PF-MLI LTP may be induced by 

paired activation of PFs and CFs in vivo (Jörntell & Ekerot, 2002). 

 A form of MLI-PC LTP has been reported to depend on the CF-induced rebound 

potentiation of inhibitory currents in PCs (Kano et al., 1992). 



 

 In the DCN, several forms of synaptic plasticity have been described, at MF-DCN and PC-

DCN synapses. A MF burst that precedes a DCN post-inhibitory rebound depolarization 

(consequent to PC activation) induces a synapse-specific MF-DCN LTP (Pugh & Raman, 2006b). 

This induction protocol mimics the predicted time-course of excitation and inhibition during eye-

blink conditioning. Interestingly, MF-DCN LTP has been shown to depend on the timing of the two 

different signals acting independently, rather than being a coincidence detector enabled by reaching 

a calcium threshold. This mechanism is likely to be adequate to allow adaptive plasticity during 

associative learning tasks (Medina & Mauk, 1999; Pugh & Raman, 2009). Moreover, a form of 

calcium-dependent MF-DCN LTD has been described (Zhang & Linden, 2006a). 

 At the PC-DCN connection both LTP (Ouardouz & Sastry, 2000) and LTD (Morishita & 

Sastry, 1996)  have been observed. LTP and LTD appeared to depend on NMDARs activation and 

postsynaptic intracellular calcium increase. As a consequence, plasticity at this synapses strongly 

depends on excitatory (MF and CF) synapses activation level (Morishita & Sastry, 1996; Ouardouz 

& Sastry, 2000). 

 

 Plasticity mechanisms in the granular layer may serve to improve spatio-temporal recoding 

of MF inputs into specific GrC spike patterns [expansion recoding (D'Angelo & De Zeeuw, 2009)]. 

Overall, synaptic plasticity in the molecular layer may serve to store correlated granular layer spike 

patterns, through PFs activation, under the CFs teaching signal (D'Angelo et al., 2011). Synaptic 

plasticity in the DCN may serve to store MF spike patterns (Bagnall & du Lac, 2006; Pugh & 

Raman, 2006b) depending on control signals generated through the cerebellar cortical loop. Recent 

works (Masuda & Amari, 2008b; Medina & Mauk, 1999; Medina & Mauk, 2000) have suggested 

the importance for MF-DCN and PC-DCN plasticity in controlling cerebellar learning in eye-blink 

conditioning and vestibulo-ocular reflex (VOR). Moreover, long-term changes in intrinsic 

excitability in GrCs (Armano et al., 2000), PCs (Belmeguenai et al., 2010; Schreurs et al., 1998) 

and DCN (Aizenman & Linden, 2000; Zhang et al., 2004) cells could further regulate the global 

activity level in these neurons contributing to homeostasis and plasticity in the circuit (e.g. see 

(Schweighofer et al., 2001)). 

  

Complex spatiotemporal dynamics of cerebellar learning 

The nature of cerebellar learning is complex and different components and properties have 

been revealed in experiments in animals and humans. A useful test that can be used to explore 

cerebellar learning is the EBCC reflex. An unconditioned stimulus (US, like a corneal touch or an 

electrical stimulus on the supraorbital nerve) elicits an eye-blink. This can be associated with a 

conditioned stimulus (CS, like a tone) to elicit a blink with precise time relationship to US. The 

EBCC is useful as it involves prediction of an event with precise timing through associative 

learning, thereby summarizing in an elementary form the essential elements of cerebellar 

functioning (D'Angelo & Casali, 2013). A leading hypothesis in EBCC is that the fast reversible 

learning phase of the reflex occurs in the cerebellar cortex, while persistent memory is stored into 

deeper structures, for example the DCN.  

The involvement of the cerebellar cortex in EBCC was previously suggested by experiments 

in which the GABAA receptor agonist muscimol was infused to transiently inactivate local circuit 

functions in rats. Infusion of muscimol in the posterior cerebellar cortex (lobule HVI) was effective 



after short (5–45 min) (Attwell et al., 2002) but not after longer delays (90 min) (Cooke et al., 

2004). Conversely, muscimol infusion in the anterior interpositus nucleus just after training was 

poorly effective. These experiments suggested that learning was transferred quite early from a 

cortical into a nuclear neuronal site.  

In recent experiments (Fig. 2), EBCC has been elicited and then its components have been 

disrupted using TMS in humans (Hoffland et al., 2012; Monaco et al., 2014). Consistent with 

animal experiments, TMS applied just after training (5–10 min) affected the transient phase of 

learning. The cellular mechanisms of EBCC learning are thought to depend on long-term synaptic 

plasticity at cortical and deep cerebellar nuclei (DCN) synapses (Attwell et al., 2002; Attwell et al., 

2001; Cooke et al., 2004). The parallel fiber–Purkinje cells synapse is strategically located at the 

convergence between the mossy fiber–parallel fiber pathway (carrying the CS) and the climbing 

fiber pathway (carrying the US). Another site of convergence is the DCN, which collects both 

mossy fiber and climbing fiber signals, in addition to being modulated by Purkinje cells (D'Angelo, 

2014). 

At both sites, long-term synaptic plasticity has been suggested to play important roles in 

EBCC (De Zeeuw & Yeo, 2005). In particular, cortical plasticity has been associated with the fast 

learning process, and DCN plasticity with the slow learning process (Garrido et al., 2013a; Medina 

& Mauk, 2000). Thus, the effect of TMS is compatible with disruption of cortical rather than DCN 

plasticity. Given the distributed nature of cerebellar cortical plasticity, a working hypothesis is that 

TMS operated at multiple cortical sites (D'Angelo, 2014): (i) in the granular layer, on N-methyl-D-

aspartate (NMDA) receptor-dependent LTP and LTD at the MF-GrC synapses as well as on long-

lasting changes in granule cell intrinsic excitability; (ii) in the molecular layer, on various forms of 

NMDA receptor-independent LTP and LTD at PF-PC, at climbing fiber–Purkinje cell synapses, at 

molecular interneuron synapses as well as on long-lasting changes in Purkinje cells intrinsic 

excitability.  

 

Models of cerebellar synaptic plasticity  

In order to conceptualise the different forms of cerebellar plasticity, a set of 4 simplified 

rules has recently been proposed following the main biological properties reported above (cf. Fig. 

1). All these plasticity rules were conceived to be bidirectional and have been based on simplified 

formalisms. These rules have be rescaled and assigned to specific synapses and cerebellar 

microcomplexes (i.e. the morpho-functional units in which the cerebellar model has been 

subdivided) in order to deal with the complexity that neurorobotic tasks imposed (see below).  

 

1) PF-PC synaptic plasticity is, by far, the most investigated cerebellar plasticity mechanism, as 

evidenced by the large amount of studies supporting the existence of multiple forms of LTD 

(Boyden et al., 2004; Coesmans et al., 2004a; Ito & Kano, 1982) and LTP (Boyden et al., 2004; 

Coesmans et al., 2004a; Hansel et al., 2001b). Proof of this PF-PC plasticity trace was recently 

encountered in both anesthetised (Ramakhrishan and D’Angelo, unpublished observations) and alert 

animals (Márquez-Ruiz & Cheron, 2012). The most renowned form of LTD is heterosynaptically 

driven by CF activity and therefore to the complex spikes (CSs) elicited in PCs, whereas the main 

form of LTP does not require CF activity and, therefore it is related to the simple spikes generated 

by PF activity. The specific formalism developed to descried the PF-PC plasticity rule depended on 

the model adopted to describe the cerebellar granular layer. Assuming that PFs were active 



following a certain time sequence during movement (Yamazaki & Tanaka, 2005; Yamazaki & 

Tanaka, 2007b; Yamazaki & Tanaka, 2009), PF-PC synaptic plasticity could be implemented as 

follows (Garrido et al., 2013b; Luque et al., 2014b): 
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where  
j iPF PCW t   represents the weight change between the jth PF and the target PC associated 

with the ith microcomplex.  iIO t  stands for the current activity coming from the associated 

climbing fibre, LTPMax and LTDMax are the maximum long term potentiation/ long terms depression 

(LTP/LTD) values, and α is the LTP decaying factor. This rule assumes that LTP and LTD coexist 

at the same PF-PC synapse. Since LTP and LTD, by definition, induce opposite effects in relation 

to CF activity, providing the mathematical expression with appropriate parameters makes the 

synaptic weight variation to be positive (LTP) when CF activity is approaching 0 (low error levels 

in the movement), and makes the weight variation to be negative (LTD) and linearly proportional to 

CF activity otherwise. In previous approaches, a linear function was used (Masuda & Amari, 

2008a) when the synaptic weight were modified according to a teaching signal, but this implied the 

inability of the synaptic learning rule to fully remove the manipulation error since LTD was always 

counterbalanced by “unsupervised” LTP. The present rule overcomes the linearity problem by 

inserting the α decaying factor. 

 

2) MF-DCN synaptic plasticity has been shown to depend on the intensity of DCN cell excitation 

(Medina & Mauk, 1999; Pugh & Raman, 2006a; Racine et al., 1986; Zhang & Linden, 2006b) and 

could be implemented as follows (Garrido et al., 2013b; Luque et al., 2014b)  
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where ∆WMF-DCNi(t) represents the weight change between the active MF and the target DCN 

associated with the ith microcomplex, PCi(t) is the current activity coming from the associated PCs, 

LTPMax and LTDMax are the maximum LTP/LTD values, and α is the LTP decaying factor. The MF-

DCN learning rule, despite its resemblance to the PF-PC learning rule, bores two significant 

differences. The first difference is a consequence of the limited capability of MFs, compared with 

PFs, to generate sequences of non-recurrent states (Yamazaki & Nagao, 2012; Yamazaki & Tanaka, 

2007a; Yamazaki & Tanaka, 2009). The second difference involves the connection driving LTD 



and LTP. Whilst PF-PC plasticity is driven by CF activity, MF-DCN plasticity is driven by PC 

activity. This mechanism is capable of optimising the activity range in the whole inhibitory pathway 

comprising MF-PF-PC-DCN connections: high PC activity causes MF-DCN LTD, whereas low PC 

activity causes MF-DCN LTP. This mechanism implements an effective cerebellar gain controller 

able to adapt its output activity range in order to minimise the amount of inhibition generated in the 

MF-PF-PC-DCN inhibitory loop. 

3) PC-DCN synaptic plasticity was reported to depend on the intensity of DCN cells and PC 

excitation (Aizenman et al., 1998; Masuda & Amari, 2008a; Morishita & Sastry, 1996; Ouardouz & 

Sastry, 2000 ) and could be implemented as follows (Garrido et al., 2013b; Luque et al., 2014b): 
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where ∆WPCi-DCNi(t) is the synaptic weight adjustment at the PC-DCN connection reaching the DCN 

cell associated with the ith microcomplex, PCi(t) is the current activity coming from the associated 

PCs and finally DCN is the current activity regarding DCN cells. LTPMax and LTDMax are the 

maximum LTP and LTD values, and α is the LTP decaying factor. This learning rule leads the PC-

DCN synapses into a synaptic weight appropriate to match the activity from the cortex (MF-PF-PC-

DCN) and the activity from the excitatory pathway (MF-DCN). According to this learning rule LTP 

occurs only when both the PCs and their target DCN cell are simultaneously active.  

 

4) Finally, it has recently been proposed that IO-DCN synaptic plasticity may provide an efficient 

way to embed the feedback controller predicted by Ito (Ito, 2008) within the cerebellar circuitry. 

This controller was able to generate a proper command in motor cortex capable of tuning the 

viscoelastic properties of the musculo-skeletal system. This was conceived as a fast mid-term 

adaptation mechanism to cope with the initial control phase when plasticity has not yet progressed 

in the rest of the cerebellar circuit. Within this hypothesis, IO-DCN plasticity was implemented to 

regulate the initial synaptic strength of DCN cells driven by the IO as follows (Luque et al., 2014b):  
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MTD
W ( t ) MTP IO t

IO t 1

,where i 1,2, ,Number of microcomplexes

   




    

where ∆WIO-DCN,i (t) represents the differential synaptic weight factor related to the active 

connection at time t (whose associated activity state corresponds to IOi(t)). The connection 

corresponds to the DCN cell associated to the ith microclomplex.  iIO t  stands for the current 

activity coming from the associated climbing fibre. MTPMax and MTDMax are the maximum mid-

term potentiation and depression, and α is the MTD decaying factor. MTPMax and MTDMax are large 

in comparison to LTP and LTD at the other synapses ensuring a fast response and a negligible 

contribution to the learning process in the long term.   



 

Whilst these equations appropriately address the learning process of the cerebellar network, 

some issues remain to be clarified experimentally, including assumptions regarding the LTP 

decaying rate and the biologically plausible mechanism through which LTP and LTD relative 

scaling factor parameters actually find correspondence in real synapses. Moreover, the variety of 

biological mechanisms is not fully represented by these equations. In fact, there are many more 

plasticity rules located at the PF-PC synapses than considered here, as well as there are plasticity 

mechanisms within the granular layer that were sidestepped. Conversely, plasticity at the IO-DCN 

connection was predicted but its existence remains to be proved.       

 

Closed-loop robotic simulations embedding multiple plasticity rules  

In a recent series of papers, we have explored the impact of distributed cerebellar plasticity 

using a reverse engineering approach, i.e. making a biologically plausible reconstruction of the 

system to explore its internal mechanisms of function (Fig. 3). Since the classical long-term 

synaptic plasticity between parallel fibers (PFs) and Purkinje cells (PCs), which is driven by the 

inferior olive (IO), can only account for limited aspects of learning, we have used distributed forms 

of plasticity in the molecular layer and deep cerebellar nuclei (DCN) (Casellato et al., 2014; 

Casellato et al., 2015; Garrido et al., 2013a; Luque et al., 2014a). In the model, the climbing fibers 

provide a teaching signal driving long-term synaptic plasticity both at the IO-PC and IO-DCN 

connections.  

The robotic simulations revealed that PF-PC plasticity was fundamental to relate cerebellar 

plasticity to motor errors, but also revealed that PF-PC plasticity proved insufficient per se to make 

the cerebellum an effective forward controller. LTD and LTP had to co-evolve dynamically in order 

to control PF-PC transmission making it reversible for resetting and reuse. The memory stored in 

the PF-PC synapse was then transferred into the DCN allowing consolidation. This memory transfer 

was controlled by feedback signals arriving through extracerebellar loops and proved critical to 

allow self-rescaling and automatic gain adjustment, preventing PF-PC saturation. This operation 

required double adjustment of MF-DCN and PC-DCN synapses in order balance memory 

deposition in DCN neurons. Moreover, in order to accelerate and stabilize learning, the closed-loop 

robotic simulations suggested that cerebellar gain control could be adjusted through MF-DCN and 

PC-DCN synaptic plasticity working in equilibrium with IO-DCN plasticity. IO-DCN connections 

ensure stable outputs in the early learning stages, when the strength of MF-DCN and PC-DCN 

connections is not set yet through the learning process. When the strength of the synaptic weights of 

MF-DCN and PC-DCN connections begins to stabilize, the synaptic strength of the IO-DCN 

connection diminishes. Therefore, at the end of the learning process, the effect of the IO-DCN 

connection in determining the cerebellar output is negligible. Nonetheless, the IO-DCN connection 

remains ready to act when new unexpected patterns have to be learnt. In addition, a proper synaptic 

weight adjustment at DCN synapses allows the PFs to operate over their complete frequency range, 

enhancing the precision of the cerebellar output. To sum up, the IO-DCN pathway could allow a 

global feedback error reduction facilitating early and fast error corrections. The MF-PF-PC-DCN 

system would operate by achieving more accurate corrections in the long term but it required slow 

learning (Luque et al., 2014a).  

An interesting aspect of the robotic simulations was that they could be successfully applied 

to different behaviors known to involve the cerebellum, including VOR, EBCC, force field 

correction, arm trajectory control (Casellato et al., 2014; Casellato et al., 2015), indicating that the 



implicit algorithm of the cerebellar network was of general applicability. With reference to the 

EBCC case illustrated above, EBCC simulations supported the concept that memory transfer 

between PF-PC and DCN synapses has to occur rapidly after the beginning of learning, helping to 

define the possible patterns of alterations leading to EBCC impairment caused by cTBS (Casellato 

et al. unpublished). 

 

 Distributed plasticity: new perspectives for cerebellar learning 

TMS – EBCC experiments in humans in vivo and closed-loop robotic simulations have 

provided new insight on how the sensori-motor control system could exploit distributed plasticity in 

the cerebellar network to generate biologically plausible learning. TMS – EBCC experiments have 

indicated that memory has to be transferred from the cerebellar cortex to DCN in order to stabilize 

learning, although the exact time constant of memory transfer is still unknown. Robotic simulations 

have implemented this memory transfer by allowing the cerebellar circuit to dynamically adjust 

synaptic weights between the PF-PC synapse and the DCN by exploiting the sensory-feedback 

deriving from ongoing activity in closed-loop.  

Robotic simulations revealed that a supervised mechanism relating cerebellar learning to 

motor errors at the PF-PC synapse remains a critical constraint. However, PF-PC plasticity also 

proved insufficient per se to make the cerebellum an effective forward controller and other forms of 

plasticity distributed throughout the network appeared to be critical. These include plasticity in the 

DCN but also probably in the granular layer and molecular, although plasticity in these two latter 

subcircuits has not been tested in robotic simulations yet. Plasticity in the granular layer is indeed 

expected to determine and store the large variety of spatio-temporal patterns required to implement 

the expansion recoding of MF signals to be presented to PCs and could become critical when 

multiple forms of input signals from extended sensori-motor structures will be considered.   

There are some predictions descending from these investigations about the nature of 

plasticity mechanisms in the cerebellar circuit. First, all plasticities should be reversible, so they 

could have both LTP and LTD. Secondly, since the memory transferred into downstream structures 

(e.g. from PF-PC into DCN) is controlled by feedback signals arriving through extracerebellar 

loops, understanding distributed plasticity requires the whole system working in closed-loop. 

Thirdly, there are forms of plasticity that may not last for long in the freely behaving animal (e.g. 

PF-PC LTD itself) and this should be taken into account when searching for such plasticities 

experimentally. Fourthly, there could be forms of plasticity that have not yet been identified 

experimentally but could have remarkable impact on cerebellar learning (e.g. the IO-DCN 

plasticity). Finally, DCN neurons could process not just two but even three forms of plasticity 

coming from MF-DCN, PC-DCN and potentially also IO-DCN synapses. Therefore, further 

experimental investigation on plasticity of synapses impinging on DCN neurons is needed.  

The robotic cerebellar models need themselves to be improved by implementing more 

realistic spiking networks and learning rules. For example, the variety of plasticities impinging on 

PC and DC synapses is not yet represented in the models. Moreover, the granular layer needs still to 

be fully implemented. Finally, robotic simulations will have to be counterchecked by performing 

biological experiments in which critical plasticities can be selectively switched off to see whether 

comparable alterations emerge in animal behavior. Genetic mutant mice with inducible cell-specific 

alterations may be used to selectively block one or more plastic mechanisms. Alternatively, 

optogenetics may be used to switch on-off plasticity at certain synapses.  



In conclusion, distributed plasticity is opening a new perspective for interpreting the 

complex processes underlying cerebellar learning and its understanding needs to make use of the 

new tools provided by neural circuit modeling and neurorobotics in combination with advanced 

biological techniques for selective brain circuit control and monitoring. It is also envisaged that new 

robotic controllers and robots embedding distributed plasticity rules will demonstrate improved 

versatility and self-adapting properties allowing in turn to better understand how the forward 

controller operations of the cerebellum take place in nature.  
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Fig.2 

 

 

 

 

 

 

 

 

 

 



 

 
 

 

 

Fig.3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 
Fig.4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure legends 
 

 

Figure 1. Distributed plasticity in the olivo-cerebellar circuit.    

This schematic view shows the main architecture of cerebellar microcircuits. Inputs from mossy 

fibers (MFs, in red), parallel fibers (PFs, in red) and inferior olive (IO) projections (climbing fibers, 

CFs, in orange) provide the excitatory drive, while the inhibitory connections are shown in blue. In 

particular, the granular layer and the molecular layer are endowed with an inhibitory loop mediated 

by local interneurons (Golgi cell, GoC, and molecular layer interneuron, MLI, respectively), while 

the whole cerebellar cortex acts as the inhibitory loop to the deep cerebellar nuclei (DCN) neurons, 

through the Purkinje cell (PC) connection. MFs and CFs project both to the cerebellar cortex and to 

the DCN neurons. MFs contact granule cells (GrCs) and send collaterals to inhibitory GoCs. GrCs 

originate the PFs that make synaptic contact with PCs, MLI and GoCs (originating a granular layer 

feedback loop). 

The major forms of plasticity reported in the cerebellar network are indicated: synaptic long-term 

potentiation (LTP), synaptic long-term depression (LTD), and plasticity of intrinsic excitability (ie). 

At the PF-PC connection the forms of presynaptic LTP or LTD (pre LTP, pre LTD) and 

postsynaptic LTP or LTD (post LTP, post LTD) are specified. 

 

Figure 2. EBCC in two-session protocols reveals multiple learning mechanisms.    

EBCC was induced in human subjects in a two-session protocol. ….. 

(A) The EBCC is a reflex in which the olivo-cerebellar system operates in closed-loop. The 

Conditioned Stimulus (CS) is an electrical stimulus to the supraorbital nerve and is conveyed to the 

sensory trigeminal nucleus (V). The Unconditioned Stimulus (US) corresponds to a tone. CS and 

US coterminate ( “delay” EBCC). The olivo-cerebellar circuit learns to produce a Conditioned 

Responses (CRs), i.e. an eyelid blink anticipating the US onset. In this system the movement is 

triggered by  stimulus and can be subsequently corrected in the nuclei of the facial nerve (VII) by 

the cerebellar intervention. The US is conveyed to the IO and generates CF signals, the CS is 

conveyed through the auditory system and generates MF signals. No loop between cerebellum and 

cerebral cortex is required. The eyelid muscles and skin also convey proprioceptive and 

esteroceptive signals to MFs.   

(B) Number of CRs (%) along trials ….  progressively learnt to generate CRs anticipating the US, 

to rapidly extinguish them and to consolidate the learnt association to be exploited in the re-test 

session.  

 

Figure 3. Closed-loop simulations using an olivo-cerebellar model single plasticity   

An olivo-cerebellar spiking-neural network (OC-SNN) model was coupled to a robotic control 

system through a radial basis function (RBF) interface to simulate an obstacle collision avoidance 

task, an associative Pavlovian-like behavior emulating EBCC (cf. Fig.2). IN this task, the IO-SNN 

operated as a forward controller operated by regulating the firing pattern in DCN neurons under PC 

control. 

(A) The OC-SNN was operated in closed-loop. The Conditioned Stimulus (CS) represents a 

Warning signal, detected by the optical tracker, activating at a give distance distance threshold 

between the moving robot end-effector and the fixed obstacle placed along its trajectory. The 

Unconditioned Stimulus (US) corresponds to the collision event (crash). CS and US coterminate (as 



in the “delay” EBCC). The olivo-cerebellar model learns to produce Conditioned Responses (CRs), 

i.e. an arm elevation (avoidance) anticipating the US onset. In this system, the trajectory planner 

generates a movement that is subsequently corrected in the motor controller by the cerebellar 

intervention. No loop is active between cerebellum and trajectory planner. The US is generated by 

collision during the task and conveyed by the sensory controller to the IO. The CS is generated by 

the optical tracker. The sensory controller also conveys proprioceptive signal from the robotic arm 

sensors to MFs of the OC-SNN.   

(B) Number of CRs (%) along trials (80 acquisition trials and 20 extinction trials for two sessions in 

a row; CR% is computed as percentage number of CR occurrence within blocks of 10 trials each). 

The black curve is the median on 15 tests, and the grey area is the inter-quartile interval. Despite 

uncertainty and variability introduced by the direct interaction with a real environment, the OC-

SNN progressively learnt to generate CRs anticipating the US, to rapidly extinguish them and to 

consolidate the learnt association to be exploited in the re-test session. Note the similarity with 

EBCC acquisition in Fig.2.  

(C) PCs and DCNs spike distribution along trial time (500 ms from CS onset, t0) for all trials. Each 

pixel represents one time-bin of 10ms, within which the number of spikes of the correspondent 

group is computed (first column PC cell population, second column DCN cell population). After 

learning, the response of PCs to MF inputs decreased and this increased the discharge in DCN 

neurons. The process was better exemplified in the adaptation of the EBCC, in which a precise time 

relationship between the events can be established. Since the DCN spike pattern changes occurred 

before the US arrival, the DCN discharge accurately predicted the US and therefore could facilitate 

the release of an anticipatory behavioral response. At the same time, the IO signal carrying US 

decreased. The prediction of a noxious stimulus triggers an anticipatory motor command. The 

inhibition mechanism of the IOs by the DCNs translates the motor command into a sensory 

prediction signal, allowing a single cerebellar area to simultaneously tackle both motor execution 

and sensory prediction. 

 

 
Figure 4. Dynamic plasticity processing in closed-loop robotic simulations using an olivo-

cerebellar model with distributed plasticity   

An olivo-cerebellar neural network (OC-NN) model embedded with distributed plasticity  was 

coupled to a robotic control system as in Fig.3 to simulate an obstacle collision avoidance task, an 

associative Pavlovian-like behavior emulating EBCC (cf. Fig.2). In this task, the IO-NN operated as 

a forward controller operated by regulating the firing pattern in DCN neurons under PC control.  

Plasticity was implemented at the PF-PC, MF-DCN and PC-DCN synapses. 

(A) EBCC learning with 1 or 3 plasticity rules … 

(B) Dynamic development of plasticity … fast acquisition in PF-PC … slow transfer to MF-DCN 

and PC-DCN … fast extinction in PF-PC … maintenance in MF-DCN and PC-DCN … 
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