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Abstract 
  
Many information systems record executed process instances in the event log , a very rich source 
of information for several process management tasks, like process mining and trace comparison. 
In this paper, we present a framework, able to convert activities in the event log into higher level 
concepts, at different levels of abstraction, on the basis of domain knowledge. Our abstraction 
mechanism manages non trivial situations, such as interleaved activities or delays between two 
activities that abstract to the same concept.  
Abstracted traces can then be provided as an input to an intelligent system, meant to implement a 
variety of process management tasks, significantly enhancing the quality and the usefulness of its 
output.  
In particular, in the paper we demonstrate how trace abstraction can impact on the quality of 
process discovery, showing that it is possible to obtain more readable and understandable process 
models.  
We also prove, through our experimental results, the impact of our approach on the capability of 
trace comparison and clustering (realized by means of a metric able to take into account 
abstraction phase penalties) to highlight (in)correct behaviors, abstracting from details.  
  
1. Introduction  
Many commercial information systems and enterprise resource planning tools, routinely adopted 
by organizations worldwide, record information about the executed business process instances in 
the form of an event log 1 . The event log stores the sequences ( traces van der Aalst, 2011 
henceforth) of activities that have been executed at the organization, typically together with some 
key parameters, such as execution times.  
Event logs constitute a very rich source of information for several business process management 
tasks. Indeed, the experiential knowledge embedded in traces is directly resorted to, e.g., in 
operational support ( van der Aalst, 2011 ) and in agile workflow tools ( Weber & Wild, 2005 ), 
which can take advantage of trace comparison and retrieval, to make predictions about a running 
process instance completion, or to provide instance adaptation support, in response to expected 
situations as well as unanticipated exceptions in the operating environment. Moreover, event logs 
are the input to process mining ( van der Aalst et al., 2003; van der Aalst, Weijters, & Maruster, 
2004 ) algorithms, a family of mainly a-posteriori analysis techniques able to extract non-trivial 



knowledge from these historic data; within process mining, process model discovery algorithms, in 
particular, take as input the event log and build a process model, focusing on its control flow 
constructs.  
All of these activities, however, provide a purely syntactical analysis, where activities in the event 
log are compared and processed only referring to their names. Activity names are strings without 
any semantics, so that identical activities, labeled by synonyms, will be considered as different, or 
activities that are special cases of other activities will be processed as unrelated.  
Upgrading trace comparison and process mining to the conceptual layer can enhance existing 
algorithms towards more advanced and reliable approaches. Indeed, the capability of relating 
semantic structures such as taxonomies or ontologies to activities in the log can enable both trace 
comparison and process discovery techniques to work at different levels of abstraction (i.e., at the 
level of instances and/or concepts) and, therefore, to mask irrelevant details, to promote reuse, 
and, in general, to make trace and/or process model analysis much more flexible, and closer to the 
real user needs. As a matter of fact, semantic process mining , defined as the integration of 
semantic processing capabilities into classical process mining techniques, has been proposed in 
the literature since the first decade of this century (see, e.g., de Medeiros and van der Aalst, 2009; 
de Medeiros, van der Aalst, and Pedrinaci, 2008 , and Section 5 ). However, while more work has 
been done in the field of semantic conformance checking ( Grando, Schonenberg, & van der Aalst, 
2011; de Medeiros et al., 2008 ), to the best of our knowledge semantic process discovery needs 
to be further investigated. In this paper:  
1. We present a semantic-based, multi-level abstraction mechanism, able to operate on event 
log traces. In our approach, activities in the log are mapped to instances of ground concepts 
(leaves) in a taxonomy, so that they can be converted into higher-level concepts by navigating the 
hierarchy, up to the desired level, on the basis of the user needs;  
2. We provide the abstraction mechanism as an input to further analysis mechanisms, namely 
trace comparison and process discovery.  
The abstraction mechanism has been designed to properly tackle non-trivial issues that could 
emerge. Specifically:  
• Two activities having the same ancestor in the taxonomy (at the chosen abstraction level) 
may be separated in the trace by a delay (i.e., a time interval where no activity takes place), or by 
activities that descend from a different ancestor ( interleaved activities henceforth). Our approach 
allows to deal with these situations, by creating a single macro-activity , i.e., an abstract activity 
that covers the whole time span of the two activities at hand, and is labeled as the common 
ancestor; the macroactivity is however built only if the total delay length, or the total 
number/length of interleaved activities, do not overcome proper admissibility thresholds set by 
the user. The delays and interleaved activities are quantified and recorded, for possible use in 
further analyses. In particular, we present a metric where this information is accounted for as a 
penalty, and affects the distance value in abstract trace comparison;  
• Abstraction may generate different types of temporal constraints between pairs of macro-
activities; specifically, given the possible presence of interleaved activities, we can obtain an 
abstracted trace with two (or more) overlapping or concurrent macro-activities. Our approach 
allows to represent (and exploit) this information, by properly maintaining both quantitative and 
qualitative temporal constraints in abstracted traces. Once again, this temporal information can be 
exploited in further analyses. In particular, the metric we adopt in trace comparison can deal with 
all types of temporal constraints.  
The most significant and original methodological contributions of our work thus consist in:  



• Having defined a proper mechanism for abstracting event log traces , able to manage non 
trivial situations (originating from the treatment of interleaved activities or delays between two 
activities sharing the same ancestor);  
• Having provided a trace comparison facility , which resorts to a metric (extending the one 
we presented in Montani & Leonardi, 2014 ), able to take into account also the information 
recorded during the abstraction phase.  
On the other hand, as for process discovery, we currently rely on classical algorithms embedded in 
the open source framework ProM ( van Dongen, De Medeiros, Verbeek, Weijters, & der Aalst, 
2005 ). It is worth noting that the abstraction mechanism could, in principle, be given as an input 
to different analysis techniques as well, besides the ones described in this paper.  
  
Fig. 1. Framework architecture and data flow.  
In addition to these methodological contributions, in the paper we also describe our experimental 
work in the field of stroke care, in which we adopted multi-level abstraction and trace comparison 
to cluster event logs of different stroke units, in order to highlight correct and incorrect behaviors, 
abstracting from details, such as local resource constraints or local protocols, that are irrelevant to 
verify the medical appropriateness of a macro-activity. We also provide process discovery results, 
showing how the abstraction mechanism allows to obtain simpler and more understandable 
stroke process models.  
The paper is organized as follows. Section 2 presents methodological and technical details of the 
framework. Section 3 describes an application of the abstraction facility as a pre-processing step 
for process model discovery. Section 4 provides experimental results. Section 5 addresses 
comparisons with related work. Section 6 is devoted to discussion. Finally, Section 7 presents our 
conclusions and future research directions.  
2. Methods  
This section describes methodological and technical details of our approach.  
The architecture and the data flow of the framework we have developed are shown in Fig. 1 .  
The first step to be executed is event log preparation , that takes as input the available database 
(recording executed activities and additional data), and exploits domain knowledge (in the form of 
a taxonomy); the event log then undergoes multi-level abstraction , which resorts to domain 
knowledge as well. The abstracted event log can be given as an input to different process 
management tasks, such as trace comparison and process discovery (currently realized by 
resorting to ProM van Dongen et al., 2005 ).  
The terminology we use, and the details about domain knowledge sources and computational 
modules, are described in the following subsections.  
2.1. Terminology  
Trace : a sequences of activities that belong to a same process execution.  
Activity or ground activity : an activity recorded in an event log trace (corresponding to a leaf 
concept in the taxonomy described in Section 2.2 ).  
Delay : time interval between two ground activities logged in a trace, where no other activity takes 
place.  
Interleaved activity : a ground activity that descends from a different ancestor in the taxonomy of 
activities described in Section 2.2 , with respect to the two ground activities that are currently 
being considered for abstraction. In the trace, the interleaved activity is placed between the two 
activities at hand.  
Macro-activity : partial output of the abstraction process; a macro-activity is an abstracted activity 
that covers the whole time span of multiple ground activities, and is labeled as their common  
  



Fig. 2. An excerpt from the stroke domain taxonomy.  
ancestor in the taxonomy, at the specified abstraction level. As a special case, the macro-activity 
can abstract a single ground activity as its ancestor.  
Abstracted trace : global output of the abstraction process; an abstracted trace is the 
transformation of an input trace into a new trace containing macro-activities.  
Metric or distance function : a function that defines a distance between each pair of elements of a 
set, i.e., it provides a numerical description of how far apart two objects are.  
Similarity : if the distance between two objects is d , we define similarity as 1 − d.  
2.2. Domain knowledge  
In our framework, domain knowledge is provided by means of a taxonomy. In the paper, all 
examples will refer to the domain of stroke management.  
An excerpt of our stroke management taxonomy is reported in  
Fig. 2 .  
The taxonomy, which has been formalized by using the Protégé editor, has been organized by 
goals. Indeed, a set of classes, representing the main goals in stroke management, have been 
identified, namely: “Prevention”, “Pathogenetic Mechanism Identification”, “Causes 
Identification”, “Administrative Actions” and “Other”. Some of these main goals, in a parent-child 
relation, are further specialized into subclasses, according to more specific goals (e.g., 
“Prevention” specializes into “Early Relapse Prevention”, “Long Term Relapse Prevention”, “Brain 
Damage Reduction” and “In-Hospital Mortality Reduction”), down to the ground activities, that 
will implement the goal itself (e.g., “Long Term Relapse Prevention”, aiming at preventing another 
stroke in the long run, specializes into several ground activities, including “Anticoagulant 
Medicines” and “Diabetologist Counseling” see Fig. 2 ). Overall, our taxonomy is composed by 136 
classes, organized in a hierarchy of four levels.  
2.3. Event log preparation  
As illustrated in Fig. 1 , the event log preparation module takes as input the database (containing 
activity execution information, such as starting and ending times, and additional data, like, e.g., 
patient’s demographics and clinical data in the medical domain); it also takes as input domain 
knowledge, i.e., the taxonomy.  
In this phase, the starting/ending times of activities are used to calculate activity ordering within 
every trace.  
The log preparation module generates an event log where traces are represented in an eXtensible 
Event Stream (XES) ( Verbeek, Buijs, van Dongen, & van der Aalst, 2011 ) file. The XES format is an 
extension of the MXML ( van Dongen & van der Aalst, 2005 ) format where elements have an 
optional extra attribute called modelReference . This attribute allows to link an activity to a 
concept in an ontology: in our case, to a leaf in the taxonomy. Proper activity attributes also allow 
to record precondition values; if preconditions do not hold, abstraction will not take place (see 
Section 2.4 ).  
2.4. Multi-level abstraction of the event log  
Our multi-level abstraction procedure operates as described in  
Algorithm 1 below. The function abs _algorithm   takes as input an  
ALGORITHM 1: Multi-level abstraction algorithm.  
1 abs _trace  = abs _ algorithm (trace, taxo, l e v el , del ay _th , n _int  er _th , int er _th  ) ;  
2 abs _trace   = ∅ ;  
3 for e v ery i ∈ act i v it ies in trace do  
4 if (( i.precond = ∅ ∨ i.precond = f ul f il l ed) ∧  
( i.startF lag = yes )) then  
5 create : m i as ancestor(i, l e v el ) ;  



6 m i .start = i.start;  
7 m i .end = i.end;  
8 total _delay   = 0 ;  
9 num _inter   = 0 ;  
10 total _inter   = 0 ;  
11 for ( e v ery j ∈ elements in trace ) do  
12 if ( j is a delay) then  
13 total _delay   = total _delay   + j.length ;  
14 else  
15 if ( j.precond = ∅ ∨ j.precond = fulfilled) ∧  
( ancestor(j, l e v el ) = ancestor(i, l e v el ) ) then  
16 if (total   _delay   < delay _th  ∧ num _inter   <  
 n _inter   _th  ∧ total _inter   < inter _th  ) then  
17 m i .end = max (m i .end , j.end ) ;  
18 j.startFlag = no ;  
19 end  
20 else  
21 num _inter   = num _inter   + 1 ;  
22 t otal _inter   = t otal _inter   + j.length ;  
23 end  
24 end  
25 end  
26 else if ( precond = ¬ f ul f il l ed) then 27 create : m i as singleton ;  
28 m i .start = i.start;  
29 m i .end = i.end;  
30 end  
31 append m i to abs _trace   ;  
32 end  
33 return abs _trace   ;  
  
event log trace , the domain taxonomy taxo , and the level in the taxonomy chosen for the 
abstraction (e.g., le v el = 1 corresponds to the choice of abstracting the activities up to the sons of 
the taxonomy root). It also takes as input three thresholds ( delay _th , n _inter  _th  and inter _th  
). These threshold values have to be set by the domain expert in order to limit the total admissible 
delay time within a macro-activity, the total number of interleaved activities, 
  
Fig. 3. Different trace abstraction situations: (a) two activities are abstracted to a single macro-
activity macro 1, with a delay in between; (b) two activities are abstracted to a macro-activity 
macro 1, with an interleaved activity in between, resulting in a different macro-activity macro 2 
during macro 1; (c) two activities are abstracted to a macro-activity macro 1, with an interleaved 
activity in between, which is later aggregated to a fourth activity, resulting in a macro-activity 
macro 2 overlapping macro 1.  
and the total duration of interleaved activities, respectively. In fact, it would be hard to justify that 
two ground activities share the same goal (and can thus be abstracted to the same macro-activity), 
if they are separated by very long delays, or if they are interleaved by many/long different ground 
activities, meant to fulfill different goals.  
The function outputs an abstracted trace.  



For every activity i in trace , an iteration is executed (lines 3–32). First, the preconditions of i , set 
in the log preparation phase, are considered. If the set of preconditions of i is empty, or if the 
preconditions of i are fulfilled, then a macro-activity m i , initially containing just i , and sharing its 
starting and ending times, is created. m i is labeled referring to the ancestor of i at the abstraction 
level provided as an input. Accumulators for this macro-activity (totaldelay, num-inter and total-
inter, commented below) are initialized to 0 (lines 4–10). Then, a nested cycle is executed (lines 
11–25): it considers every element j following i in the trace, where a trace element can be an 
activity, or a delay between a pair of consecutive activities. Different scenarios can occur:  
• If j is a delay, total − delay is updated by summing the length of j (lines 12–14).  
• If j is an activity, the set of preconditions of j is empty or its preconditions are fulfilled, and j 
shares the same ancestor of i at the input abstraction level , then j is incorporated into the macro-
activity m i . This operation is always performed, provided that total − delay, number − inter and 
total − inter do not exceed the threshold passed as an input (lines 15–19). j is then removed from 
the activities in trace that could start a new macroactivity, since it has already been incorporated 
into an existing one (line 18). This kind of situation is described in Fig. 3 (a).  
• If j is an activity, but does not share the same ancestor of i , or violates some preconditions, 
then it is treated as an interleaved activity. In this case, num − inter is increased by 1, and total − 
inter is updated by summing the length of j (lines 20– 23). This situation, in the end, may generate 
different types of temporal constraints between macro-activities, as the ones described in Fig. 3 
(b) (Allen’s during Allen, 1984 ) and Fig. 3 (c) (Allen’s overlaps Allen, 1984 ).  
On the other hand, if some of the preconditions of i are not fulfilled, i cannot be abstracted 
referring to its ancestor in the taxonomy. In this case a singleton is created, i.e., a dummy 
macroactivity m i , sharing the starting and ending times of i , that will not aggregate with any 
other activity (lines 26–30).  
Finally, the macro-activity m i is appended to abs _trace , that, in the end, will contain the list of all 
the macro-activities and singletons that have been created by the procedure (line 31).  
Complexity . The cost of abstracting a trace is 
O ( activities ∗elements ), where activities is the number of activities in the input trace, and 
elements is the number of elements (i.e., activities + delay intervals) in the input trace.  
2.5. Trace comparison  
In our approach, every trace (abstracted trace) is a sequence of activities (macro-activities, 
respectively), each one stored with its execution starting and ending times. Therefore, an activity 
is basically a symbol (plus possible execution parameters, in particular the temporal information). 
Starting and ending times allow to get information about activity durations, as well as qualitative 
(e.g., Allen’s before, overlaps, equals etc. Allen, 1984 ) and quantitative temporal constraints (e.g., 
delay length, overlap length Lanz, Weber, & Reichert, 2010 ) between pairs of consecutive 
activities/macro-activities.  
In order to calculate the distance between two abstracted traces, we have extended a metric for 
ground trace comparison we published in Information Systems in 2014 ( Montani & Leonardi, 2014 
). The main features of this metric are summarized below. The extensions needed to deal with 
abstracted traces are also discussed in this section.  
In the metric in Montani and Leonardi (2014) , we first take into account activity types, by 
calculating a modified edit distance which we have called Trace Edit Distance ( Montani & 
Leonardi, 2014 ). As the classical edit distance ( Levenshtein, 1966 ), Trace Edit Distance tests all 
possible combinations of editing operations that could transform one trace into the other one. 
However, the cost of a substitution is not always set to 1. Indeed, as already observed, we have 
organized activities in a taxonomy: we can therefore adopt a more semantic approach, and apply 
Palmer’s distance ( Palmer & Wu, 1995 ), to impose that the closer two activities are in the 



taxonomy in terms of the steps that separate them via their common ancestor, the less penalty we 
introduce for substitution. Trace Edit Distance then takes the combination of editing operations 
associated to the minimal cost. Such a choice corresponds to a specific alignment of the two traces 
( optimal alignment henceforth), in which each activity in one trace has been matched to an 
activity in the other trace–or to a gap.  
Given the optimal alignment, we can then take into account temporal information. In particular, 
we compare the durations of aligned activities by means of a metric we called Interval Distance ( 
Montani & Leonardi, 2014 ).  
Moreover, we take into account the temporal constraints between two pairs of subsequent 
aligned activities on the traces being compared (e.g., activities A and B in trace P ; the aligned 
activities A  and B  in trace Q ). We quantify the distance between their qualitative constraints 
(e.g., A and B overlap in trace P;   meets   in trace Q ), by resorting to a metric known as Neighbors-
graph Distance ( Montani & Leonardi, 2014 ). If Neighbors-graph Distance is 0, because the two 
pairs of activities share the same qualitative constraint (e.g., A and B overlap in trace P;   and B  
also overlap in trace Q ), we compare quantitative constraints by properly applying Interval 
Distance again (e.g., by calculating Interval Distance between the two overlap lengths).  
In the metric in Montani and Leonardi (2014) , these three contributions (i.e., Trace Edit Distance, 
Interval Distance between durations, Neighbors-graph Distance or Interval Distance between pairs 
of activities) are finally combined as a linear combination with non-negative weights.  
When working on macro-activities, however, the metric in Montani and Leonardi (2014) needs to 
be extended, by considering, given the optimal macro-activities alignment, two additional 
contributions:  
• A penalty due to the different length of the delays incorporated into the two aligned 
macro-activities;  
• A penalty due to the different length of interleaved activities in the two aligned macro-
activities being compared.  
Delay penalty is defined as follows:  
Definition 1. Delay penalty . Let A and B be two macro-activities, that  have been matched in the 
optimal alignment. Let delay A =  length (i ) be the sum of the lengths of all the k delays that have 
been incorporated into A in the abstraction phase, calculated by Algorithm 1 (and let delay B be 
analogously defined). Let maxdelay be the maximum, over all the abstracted traces, of the sum of 
the lengths of the delays incorporated in an abstracted trace. The Delay Penalty delay p ( A, B ) 
between A and B is defined as: d elay p (A, B ) =  d elay A − d elay B | maxd elay  
As for interleaved activities penalty, we operate analogously to delay penalty, by summing up the 
lengths of all interleaved activities that have been incorporated within a single macro-activity in 
the abstraction phase.  
Definition 2. Interleaving length penalty . Let A and B be two macro-activities, that have been 
matched in the optimal alignment.  
Let inter A    ki = 1 lengththat (i  )have be  thebeen sum incorporated of the lengths into  Aof in all 
the the abk   
interleaved activities  
straction phase, calculated by Algorithm 1 (and let inter B be analogously defined). Let maxinter be 
the maximum, over all the abstracted traces, of the sum of the lengths of the interleaved activities 
incorporated in an abstracted trace. The Interleaving Length Penalty interL p ( A, B ) between A 
and B is defined as: int erL p (A, B ) =  int er A − int er B | maxint er  
The extended metric working on abstracted traces includes in the linear combination these two 
penalties as well.  



It is worth noting that our metric, given its capability to manage both quantitative and qualitative 
temporal constraints, enables to properly deal with temporal information at all abstraction levels.  
By allowing the treatment of abstraction penalties and the management of temporal information, 
the extended metric is therefore able to address all the issues we cited in the Introduction.  
2.6. Process discovery  
In our approach, we are currently resorting to the well-known process mining tool ProM, 
extensively described in van Dongen et al. (2005) . ProM (and specifically its newest version ProM 
6) is a platform-independent open source framework that supports a wide variety of process 
mining and data mining techniques, and can be extended by adding new functionalities in the 
form of plugins.  
In this paper, we have exploited ProM’s Heuristic Miner ( Weijters, der Aalst, & de Medeiros, 2006 
). Heuristic Miner ( Weijters et al., 2006 ) is a plug-in for process discovery, able to mine process 
models from event logs. Heuristic Miner receives as input the log, and considers the order of the 
activities within every single trace. It can mine the presence of short-distance and long-distance 
dependencies (i.e., direct or indirect sequence of activities), and information about parallelism, 
with a certain degree of reliability. The output is provided as a graph, known as the “dependency 
graph”, where nodes represent activities, and edges represent control flow information. The 
output can be converted into other formalisms as well.  
Currently, we have chosen to rely on Heuristics Miner, because it is known to be tolerant to noise, 
a problem that may affect medical event logs (e.g., sometimes the logging may be incomplete). 
Anyway, testing of other mining algorithms available in ProM 6 is  
  
Fig. 4. Comparison between two process models, mined by resorting to Heuristic Miner, operating 
on ground traces. The figure is not intended to be readable, but only to give an idea of how 
complex the models can be.  
foreseen in our future work. Moreover, the interface of our framework to ProM will allow us to 
test additional analysis plug-ins in the future.  
3. A process discovery example  
In this section, we showcase how the capability of abstracting the traces on the basis of their 
semantic goal has allowed us to obtain clearer medical process models, where unnecessary details 
are hidden, but key behaviors are clear.  
Fig. 4 compares the process models of two different Stroke  
Units (SUs), namely SU1 and SU2, mined by resorting to  
Weijters et al. (2006) , operating on ground traces. Fig. 5 , on the other hand, compares the 
process models of the same SUs as Fig. 4 , again mined by resorting to Heuristic Miner, but 
operating on traces abstracted at the second level of the taxonomy in Fig. 2 (where the root is 
considered as level 0).  
Generally speaking, a visual inspection of the two graphs in Fig. 4 is very difficult. Indeed, these 
two ground processes are “spaghetti-like” ( van der Aalst, 2011 ), and the extremely large number 
of nodes and edges makes it hard to identify commonalities in the two models.  
The abstract models in Fig. 5 , on the other hand, are much more compact, and it is possible for a 
medical expert to analyze them. In particular, the two graphs are not identical, but in both of them 
it is easy to a identify a path containing some macro-activities, which corresponds to the 
treatment of a typical stroke patient, namely: “Causes Identification” (which does not further 
specialize in subclasses according to the taxonomy in Fig. 2 ), “Cardio-Embolic Mechanism” 
(subclass of “Pathogenetic Mechanism Identification”), “Early Relapse Prevention”, “Long Term 
Relapse Prevention”, “InHospital Mortality Reduction” (all subclasses of “Prevention”), “Dismissal” 
(subclass of “Administrative Actions”). The macro-activities at hand are highlighted in bold in the 



figure. The (different) interleaving of a few additional activities between the six steps is just due to 
minor changes in the two hospital practices.  
The model for SU1 at the top in Fig. 5 also shows a larger number of paths, while the model for 
SU2 at the bottom has fewer treatment options. This is a very reasonable outcome, since SU1 is a 
well-equipped SU, where different kinds of patients, including atypical ones, can be managed, 
thanks to the availability of different skills and instrumental resources. On the other hand, SU2 is a 
  
Fig. 5. Comparison between the two process models of the same SUs as Fig. 4 , mined by resorting 
to Heuristic Miner, but operating on abstracted traces.  
more generalist SU, where very specific human knowledge or technical resources are missing. As a 
consequence, its process model is more homogeneous, since atypical patients are not admitted 
here. For instance, one path shows that SU1 can perform extracranical vessel inspection, which is 
typically absent in a less specialized SU. On the other hand, SU2 performs a neuroprotection 
intervention, which is not prescribed anymore by the most recent guidelines: this is an indication 
that SU2 personnel may have less up-to-date knowledge. Very interestingly, our abstraction 
mechanism, while hiding irrelevant details, allows to still appreciate these differences.  
4. Experimental results  
In this section, we describe two experimental works we have conducted, in the application domain 
of stroke care. In the first one (see Section 4.1 ) we have validated the abstraction algorithm, by 
comparing the output of our system to manual trace abstraction, conducted by a human expert. In 
the second work (see Section 4.2 ), we have studied the impact of multi-level abstraction on trace 
comparison; in particular, we have designed a set of clustering experiments, to verify whether it is 
possible to highlight correct behaviors and anomalies with respect to the latest clinical practice 
guidelines for stroke management, abstracting from details (such as, e.g., local resource 
constraints or local medical practice), that are irrelevant to the verification of medical 
appropriateness of a macro-activity. 
The available event log was composed of more than 15,0 0 0 traces, collected at the 40 Stroke Unit 
Network (SUN) collaborating centers of the Lombardia region, Italy. Traces were composed of 13 
activities on average. The 40 Stroke Units (SUs) are not all equipped with the same human and 
instrumental resources: in particular, according to resource availability, they can be divided into 3 
classes. Class-3 SUs are top class centers, able to deal with particularly complex stroke cases; class-
1 SUs, on the contrary, are the more generalist centers, where only standard cases can be 
managed. Class 3 counts 9 SUs, class 2 includes 25 SUs, and class 1 is composed by 6 SUs.  
In the experiments, thresholds to be passed as input to the abstraction algorithm (see Algorithm 1 
) were common to all traces in the log, and set as follows: delay _th  = 300 minutes, n _inter  _th  = 
3 , inter _th  = 300 minutes. This choice was set by our medical coauthor, on the basis of medical 
knowledge. Interestingly, we also made tests with different thresholds (making changes of up to 
10%), but results (not reported due to lack of space) did not differ significantly.  
The metric we adopted for trace comparison is the one we described in Section 2.5 , where the 
linear combination weights were all equal and their sum was 1.  
Results are provided in the following.  
4.1. Abstraction  
As a first experimental work, we have validated the abstraction algorithm, by comparing the 
output of our system to manual trace abstraction, conducted by an expert.  
In this first experiment, we randomly chose 20 of the available traces.  
These traces were analyzed by the expert, who annotated each of them with all the macro-
activities he could recognize. The same traces were analyzed by the system. As a final step, the 
two sets of abstracted traces were compared pair by pair, to check consistency.  



On 18 abstracted traces pairs, we identified no differences: the output provided by the expert was 
identical to the one generated by the system. This is a reasonable outcome, since the system 
operates on the basis of the medical knowledge formalized in the taxonomy. In 2 cases, however, 
the expert was unable to correctly identify all the macro-activities: in these situations, the 
presence of many delays and/or interleaved activities led him to split a macroactivity, identified as 
unique by the system, into a set of separated and shorter macro-activities, since he was unable to 
manually verify that the abstraction thresholds had not been exceeded, or it proved difficult to 
him to identify all the goals pursued during the trace execution, and to recognize when several 
goals overlapped or took place simultaneously.  
An example of this situation is shown in Figs. 6 and 7 . Fig. 6 shows part of a rather complex trace, 
together with the annotations provided by the expert, displayed below the trace itself. Fig. 7 
shows how the system was able to abstract the very same trace. Our system recognized a larger 
number of macroactivities (i.e., “Long Term Relapse Prevention” and “In-Hospital Mortality 
Reduction”, not identified by the human expert). Moreover, the system was able to capture a 
complex pattern, suggesting that, while the physicians were preparing the patient for discharge 
through actions fulfilling the “Long Term Relapse Prevention” goal, he suffered from sudden 
complications (e.g., pneumonia), that had to be managed, requiring a phase of “In-Hospital 
Mortality Reduction”.  
After having reviewed the results, the expert recognized that the system output was correct, since 
more/longer macro-activities and more complex temporal relations had been properly identified, 
overcoming his own abstraction capability. 
  
Fig. 6. Abstraction of a complex trace by the human expert.  
  
Fig. 7. Abstraction of a complex trace by the system.  
4.2. Trace comparison  
As a second experimental work, we have analyzed the impact of our abstraction mechanism on 
trace comparison, and on the quality of trace clustering.  
In our study, we first considered the traces of every single SU separately, and compared clustering 
results on ground traces with respect to those on abstracted traces. We then repeated the 
experiment by keeping together the traces of the SUs classified as belonging to the same class. In 
these additional experiments, once again, we compared clustering results on ground traces with 
respect to those on abstracted traces.  
For the sake of brevity, only two experimental results will be shown in this section.  
Specifically, we resorted to a hierarchical clustering technique, known as Unweighted Pair Group 
Method with Arithmetic Mean (UPGMA) ( Sokal & Michener, 1958 ). UPGMA is typically applied in 
bioinformatics, where sequences of symbols (similar to our traces) have to be compared. The 
algorithm operates in a bottom-up fashion. At each step, the nearest two clusters are combined 
into a higher-level cluster. The distance between any two clusters A and B is taken to be the 
average of all distances between pairs of objects “x” in A and “y” in B, that is, the mean distance 
between elements of each cluster. After the creation of a new cluster, UPGMA properly updates a 
pairwise distance matrix it maintains. UPGMA also allows to build the phylogenetic tree (the 
hierarchy) of the obtained clusters.  
In all of these experiments, the hypothesis we wished to test was the following: “the application of 
the abstraction mechanism allows to obtain more homogeneous and compact clusters (i.e., able 
to aggregate closer examples); however, outliers are still clearly identifiable, and isolated in the 
cluster hierarchy”. Homogeneity is a widely used measure of the quality of the output of a 
clustering method (see e.g., Duda, Hart, & Stork, 2001; Francis, Leon, Minch, & Podgurski, 2004; 



Sharan & Shamir, 20 0 0; Yip, Chan, & Mathew, 2003 ). A classical definition of cluster 
homogeneity is the following ( Yip et al., 2003 ):  
 dist(x, y ))  
H   
2  
where | C | is the number of elements in cluster C , and 1 − dist(x, y ) is the similarity between any 
two elements x and y in C . Note that, in the case of one-trace clusters, homogeneity is set to 1 
(see e.g., Francis et al., 2004 ). The higher the homogeneity value, the better the quality of 
clustering results. The average of the homogeneity H of the individual clusters can be calculated 
on (some of) the clusters obtained through the method at hand, in order to assess clustering 
quality.  
We computed the average of cluster homogeneity values level by level in the hierarchies.  
We also computed some statistics, referring to trace comparison results, cluster by cluster. 
Namely, we measured:  
• The mean distance value between any two traces in the cluster;  
• The variance of distance values within the cluster.  
First, we worked on single SUs. As an example, we report on the results of applying UPGMA to the 
240 traces of SUcl2, a class2 SU. The obtained cluster hierarchy height was 19 when working on 
ground traces, and 21 when working on abstracted ones (see  
Fig. 8 ).  
Fig. 9 shows a comparison of the average homogeneity values, computed by level in the cluster 
hierarchies, on ground vs. abstracted traces. As it can be observed, homogeneity on abstracted 
traces was higher then the one calculated on ground traces.  
It is also interesting to study the management of outliers, i.e., in our application domain, traces 
that could correspond to the treatment of atypical patients, or to medical errors. These traces 
record rather uncommon activities, and/or present uncommon temporal constraints among their 
activities. For instance, in SUcl2, trace 105 is very peculiar: it describes the management of a 
patient suffering from several inter-current complications (diabetes, hypertension, venticular 
arrythmia, venous thrombosis), who required many extra-tests and many specialist counseling 
sessions, interleaved to more standard activities. Ideally, these anomalous traces should remain 
isolated as a one-trace cluster for many UPGMA iterations, and be merged to other nodes in the 
hierarchy as late as possible, i.e., close to the root (level 0).  
Indeed, when working on ground traces, outliers of SUcl2 were merged very late to the hierarchy. 
As shown in Fig. 8 , eight particularly significant outliers (according to our medical co-author), 
were merged between level 6 and level 1. Trace 105 was merged at level 5. Very interestingly, this 
capability of “isolating” outliers was preserved when working on abstracted traces. Indeed, the 
eight outlying traces considered above were merged between level 6 and level 1 in the abstracted 
traces hierarchy as well with minor variations with respect to the ground trace hierarchy; 
specifically, trace 105 was merged at level 4, highlighting its anomaly even better then in the 
ground trace case.  
Fig. 8 also provides two tables, illustrating trace comparison statistics in the various clusters. As it 
can be observed, the mean 
  
  
Fig. 8. Identification of outliers (in rectangles) in cluster hierarchies (only the upper hierarchy 
levels are shown); trace comparison statistics in clusters.  



Fig. 9. Comparison between average homogeneity values, computed level by level in the two 
cluster hierarchies obtained by UPGMA on ground traces and on abstracted traces, on a specific 
class-2 SU.  
  
Fig. 10. Comparison between average homogeneity values, computed level by level in the two 
cluster hierarchies obtained by UPGMA on ground traces and on abstracted traces, on 300 traces 
randomly chosen from class-3 SUs.  
distance between any two pairs of traces in the clusters of the abstracted traces hierarchy (bottom 
of the figure) is always lower than the mean distance between any two pairs of traces in the 
clusters of the ground traces hierarchy (top of the figure). All variance values are small. These 
outcomes are well aligned to the homogeneity results, and reinforce our hypothesis about the 
advantages of abstraction in providing more robust results.  
We then repeated our experiment on all the SUs, divided by level. As an example, we present the 
results on class-3 SUs. For the test shown in this paper, we randomly sampled 33 to 34 traces for 
each one of the 9 SUs in class-3 group, thus obtaining a working dataset of 300 traces. We then 
applied UPGMA to the 300 ground and abstracted traces. The obtained cluster hierarchy height 
was 22 when working on ground traces, and 20 when working on abstracted ones. Fig. 10 shows a 
comparison of the average of cluster homogeneity values, computed by level in the cluster 
hierarchies. As it can be observed, homogeneity on abstracted traces was always higher then the 
one calculated on ground traces, where the difference could be up to 0.2 (in a [0 1] range) in some 
levels of the hierarchies. The capability of isolating outliers was preserved in this experiment as 
well. Referring to 5 particularly significant outliers (again, according to our medical co-author), 
they were merged between level 5 and level 3 in the ground traces hierarchy, and between level 4 
and level 3 in the abstracted traces hierarchy. Statistics on trace comparison provided results in 
line with the ones commented for SUcl2.  
4.3. Conclusions on the experimental results  
Experiments on trace abstraction showed that the system performance overcomes the one of a 
medical expert. In 83% of the test traces, human and automatic abstraction results were identical, 
but in 17% of the traces the system was able to identify longer macroactivities, while the human 
expert was misled by the presence of many delays and interleaved activities. After having 
reviewed the results, the expert recognized that the system output was indeed correct.  
As regards the experiments on trace comparison and clustering, our hypothesis, stating that the 
application of the abstraction mechanism allows to obtain more homogeneous clusters (i.e., able 
to aggregate closer examples), where, however, outliers are still clearly identifiable, was verified. 
Indeed, cluster homogeneity grew when working on abstracted traces.Trace comparison results 
improved as well, leading to a lower mean distance between any two pairs of traces in the 
abstracted traces clusters. Trace comparison statistics, as expected, are thus well aligned to 
homogeneity results, and further testify the robustness of comparison and clustering operating 
after the abstraction phase.  
Experiments were run on a machine equipped with an Intel(R) Xeon(R) CPU E5-2640v2, CPU @ 
2GHz, 4GB RAM. Abstraction time took 32 seconds when working on 50 randomly selected traces, 
and up to 34 minutes when working on 500 traces (times can slightly vary depending on traces 
length and interleaved activi 
  
Fig. 11. Abstraction times (in minutes) as a function of the number of traces in the event log.  
ties/delays). Details are shown in Fig. 11 . These times testify the efficiency of the abstraction 
algorithm in practice which, anyway, is not supposed to be applied in time-critical situations.  
5. Related work  



The use of semantics in business process management, with the aim of operating at different 
levels of abstractions in process discovery and/or analysis, is a relatively young area of research, 
where much is still unexplored.  
One of the first contributions in this field was proposed in Casati and Shan (2002) , which 
introduces a process data warehouse, where taxonomies are exploited to add semantics to 
process execution data, in order to provide more intelligent reports. The work in Grigori et al. 
(2004) extends the one in Casati and Shan (2002) , presenting a complete architecture that allows 
business analysts to perform multidimensional analysis and classify process instances, according to 
flat taxonomies (i.e., taxonomies without subsumption relations between concepts). The work in 
Sell, Cabral, Motta, Domingue, and dos Santos Pacheco (2005) develops in a similar context, and 
extends OLAP tools with semantics (exploiting ontologies rather than (flat) taxonomies). Hepp, 
Leymann, Domingue, Wahler, and Fensel (2005) propose a framework able to merge semantic 
web, semantic web services, and business process management techniques to build semantic 
business process management, and use ontologies to provide machine-processable semantics in 
business processes ( Hepp & Roman, 2007 ).  
Semantic business process management is further developed in the SUPER project ( Pedrinaci et 
al., 2008 ), within which several ontologies are created, such as the process mining ontology and 
the event ontology ( Pedrinaci & Domingue, 2007 ); these ontologies define core terminologies of 
business process management, usable by machines for task automation. However, the authors do 
not present any concrete implementations of semantic process mining or analysis.  
Ontologies, references from elements in logs to concepts in ontologies, and ontology reasoners 
(able to derive, e.g., concept equivalence), are described as the three essential building blocks for 
semantic process mining and analysis in de Medeiros et al. (2008) . This paper also shows how to 
use these building blocks to extend ProM’s LTL Checker ( van der Aalst, de Beer, & van Dongen, 
2005 ) to perform semantic auditing of logs.  
The work in de Medeiros et al. (2007) focuses on the use of semantics in business process 
monitoring, an activity that allows to detect or predict process deviations and special situations, to 
diagnose their causes, and possibly to resolve problems by applying corrective actions. Detection, 
diagnosis and resolution present interesting challenges that, on the authors’ opinion, can strongly 
benefit from knowledge-based techniques.  
In de Medeiros et al. (2007) and de Medeiros and van der Aalst (2009) the idea to explicitly relate 
(or annotate) elements in the event log with the concepts they represent, linking these elements 
to concepts in ontologies, is also addressed.  
In de Medeiros and van der Aalst (2009) an example of process discovery at different levels of 
abstractions is presented. It is however a very simple example, where a couple of ground activities 
are abstracted according to their common ancestor. However, neither the management of 
interleaved activities or delays, nor the correct identification of temporal constraints generated 
when aggregating different macro-activities are addressed.  
Moreover, most of the papers cited above (including Hepp et al., 2005; de Medeiros & van der 
Aalst, 2009; de Medeiros et al., 2008; de Medeiros et al., 2007 ) present theoretical frameworks, 
and not yet a detailed technical architecture nor a concrete implementation of all their ideas.  
Bose and van der Aalst (2009) characterize the manifestation of commonly used process model 
constructs in the event log and adopt pattern definitions that capture these manifestations, and 
propose a means to form abstractions over these patterns. In particular, the approach identifies 
loops in traces, and replaces the repeated occurrences of the manifestation of the loop by an 
abstracted entity that encodes the notion of a loop. It also identifies common functionalities in the 
traces and replaces them with abstract entities. This work, however, does not make use of 
semantic information.  



Another interesting approach to abstraction in process models is the one in Smirnov, Reijers, and 
Weske (2012) . The authors propose abstraction to generate more readable high-level views on 
business process models. They are able to discover sets of related activities, where each set 
corresponds to a coarse-grained task in an abstract process model. Specifically, abstraction resorts 
to a clustering technique, where activity properties (such as, e.g., roles and resources) are 
exploited to aggregate the different activities into the common task. The authors adopt the 
enhanced Topic Vector Space Model to reflect the semantic relations between activity property 
values: in this way, the distance between two different, but related values, can be lower that 1.  
Differently from our approach, however, the abstraction solution described in Smirnov et al. 
(2012) is not applied to traces and therefore cannot be adopted for trace comparison. Moreover, 
it requires that all activity properties are available and logged which, unfortunately, is often not 
the case, for instance in medicine, where logging may be incomplete in practice. Moreover, 
clustering does not take into account temporal relations between activities, in the sense that it 
may also aggregate activities executed at temporally distant phases of the model control flow; on 
the other hand, our approach, by operating on traces, which log the temporal sequence of activity 
executions and their temporal constraints, strongly relies on temporal information, maintains it, 
and allows to exploit it in further analyses, such as abstracted trace comparison.  
Thus, the work in Smirnov et al. (2012) adopts a significantly different technique to process model 
abstraction with respect to our proposal; nonetheless, it is certainly a relevant related work, and it 
would be interesting to compare abstraction results obtained through that method to our medical 
logs, in order to evaluate pros and cons of the two methodologies.  
Referring to medical applications, the work in Grando et al. (2011) proposes an approach, based 
on semantic process mining, to verify the compliance of a Computer Interpretable Guideline with 
medical recommendations. In this case, semantic process mining refers to conformance checking 
rather than to process discovery (as it is also the case in de Medeiros et al., 2008 ). These works 
are thus only loosely related to our contribution.  
As regards trace comparison, as already observed, in this paper we have extended a metric we 
published in Montani and Leonardi (2014) , able to exploit domain knowledge in activity 
comparison, and to manage all types of temporal constraints. Other metrics for trace comparison 
have been proposed in the literature. In particular Kapetanakis, Petridis, Knight, Ma, and Bacon 
(2010) , combines a contribution related to activity similarity, and a contribution related to delays 
between activities. As regards the temporal component, it relies on an interval distance definition 
which is quite similar to ours. Differently from what we do, however, no search for the optimal 
activity alignment is performed. The distance function in Kapetanakis et al. (2010) does not exploit 
activity duration, and does not rely on semantic information about activities, as we do. Finally, it 
does not deal with different types of qualitative temporal constraints. Another interesting 
contribution is Combi, Gozzi, Oliboni, Juarez, and Marin (2009) , which addresses the problem of 
defining a similarity measure able to treat temporal information, and is specifically designed for 
clinical workflow traces. Interestingly, the authors consider qualitative temporal constraints 
between matched pairs of activities, resorting to the Neighbors-graph Distance, as we do. 
However, in Combi et al. (2009) the alignment problem is strongly simplified, as they only match 
activities with the same name. In this sense, our approach is much more semantically oriented. 
Several metrics for comparing process models, instead of traces, also exist. Most of them are 
based on proper extensions of the edit distance as well ( Bergmann & Gil, 2014; Dijkman, Dumas, 
& Garca-Banuelos, 2009; LaRosa, Dumas, Uba, & Dijkman, 2013; Minor, Tartakovski, Schmalen, & 
Bergmann, 2008; Montani, Leonardi, Quaglini, Cavallini, & Micieli, 2015a ), and, in some cases, 
allow for a semantic comparison among model activities ( Bergmann & Gil, 2014; Montani et al., 



2015a ). However, given the very different structure of a process model (which is a graph) with 
respect to a trace, these works are only loosely related to our contribution.  
The main approaches discussed in this section are summarized in Fig. 12 .  
6. Discussion  
To summarize our comparison to related works, in the current research panorama, our approach 
appears to be very innovative, for several reasons:  
• Many approaches, presenting very interesting and sometimes ambitious ideas, just provide 
theoretical frameworks, while concrete implementations of algorithms and complete 
architectures of systems are often missing;  
• In semantic process mining, more work has been done in the field of conformance checking 
(also in medical applications), while process discovery still deserves attention (also because many 
approaches are still at the theoretical level, as commented above);  
• As regards trace abstraction, it is often proposed as a very powerful means to obtain better 
process discovery and analysis results, but technical details of the abstraction mechanism are 
usually not provided, or are illustrated through very simple examples, where the issues we 
presented in the Introduction (related to the management of interleaved activities or delays, and 
to the correct identification of temporal constraints generated when aggregating different macro-
activities) do not emerge;  
 
• As regards trace comparison, to the best of our knowledge, our previously published metric 
( Montani & Leonardi, 2014 ), enhanced to deal with abstracted traces, still represents one of the 
most complete contributions to properly account for both non temporal and temporal 
information, and to perform a semantic comparison between activities.  
Nonetheless, some limitations can be observed, and should be tackled in our future work:  
• We currently rely on a taxonomy to formalize medical knowledge; this limits the type of 
knowledge that we can represent. In the future, we will need to consider multiple inheritance, and 
more complex relations between activities, goals, roles and responsibilities, resorting to 
ontologies;  
• We currently do not consider the context of activity execution (i.e., what activities were 
executed earlier in the trace, and when), before starting abstraction. To tackle this issue, in the 
future we will introduce a rule-based approach. Rules, having as an antecedent the execution of 
some activities registered earlier in the trace, or specific patient’s characteristics, will properly fire, 
to initiate the abstraction step. Temporal constraints (e.g., the delay since the completion of the 
already executed activity) will also be taken into account in these rules.  
We believe that such improvements will extend the applicability and the flexibility of our 
approach.  
7. Conclusions  
In this paper, we have presented a framework for multi-level abstraction of event log traces. In our 
architecture, abstracted traces are then provided as an input to different analysis techniques – 
namely, trace comparison and process discovery, in the current implementation. Our trace 
comparison facility relies on a metric that extends our previous contribution in Montani and 
Leonardi (2014) : such a distance is able to manage both temporal and non temporal information 
in traces, and has been properly extended to work on abstracted traces as well. Process discovery 
relies on ProM algorithms; indeed, the overall integration of our approach within ProM is foreseen 
in our future work.  
Experimental results on abstraction and on its application to trace comparison and trace clustering 
in the field of stroke management, have shown that it is easier to identify common behaviors in 
abstracted traces, with respect to ground traces: in particular, cluster homogeneity, when 



operating on abstracted traces, reaches higher values. At the same time, outliers (i.e., anomalies 
and incorrect behaviors) are still clearly visible in abstracted traces as well (and clearly detected by 
the clustering method we used). Further examples have illustrated that the capability of 
abstracting the event log traces on the basis of their semantic goal allows to discover clearer 
process models, where unnecessary details are hidden, but key behaviors are clear. In the future, 
we plan to conduct more experiments, e.g., by comparing different process models (of different 
SUs) obtained from abstracted traces. Comparison will resort to knowledge-intensive process 
similarity metrics, such as the one we described in Montani, Leonardi, Quaglini, Cavallini, and 
Micieli (2015b) . We will also extensively test the approach in different application domains.  
  
Fig. 12. Comparison between our approach and the main related works in the literature.  
From a methodological viewpoint, we plan to extend our approach in different directions. First, we 
will consider different knowledge structures, such as ontologies, or multiple taxonomies, able to 
provide abstraction information from different viewpoints (e.g., not only the viewpoint of activity 
goals as it happens in the single taxonomy we are currently adopting but also the one of roles and 
responsibilities of the involved actors, when available). As a consequence, the similarity metric will 
need proper extensions or adjustments (e.g., by considering the work in Hwang, Grauman, and 
Sha, 2012 in the case of multiple taxonomies). The modularity of our approach will make this 
extensions relatively easy. Second, we will introduce a rule-based approach to initiate abstraction. 
Proper rules, having as an antecedent the execution of some activity registered earlier in the log, 
will fire, to initiate the abstraction step. This will allow us to control the abstraction process on the 
basis of the context, i.e., of the already executed activities. Temporal constraints (e.g., the delay 
since the completion of the already executed activity) will also be taken into account in these 
rules. We believe that such improvements will make our framework more complete and much 
more useful in practice.  
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